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Abstract

The single rate codon model of non-synonymous substitution is ubiquitous in phylogenetic modeling. Indeed, the use of a
non-synonymous to synonymous substitution rate ratio parameter has facilitated the interpretation of selection pressure on
genomes. Although the single rate model has achieved wide acceptance, we argue that the assumption of a single rate of
non-synonymous substitution is biologically unreasonable, given observed differences in substitution rates evident from
empirical amino acid models. Some have attempted to incorporate amino acid substitution biases into models of codon
evolution and have shown improved model performance versus the single rate model. Here, we show that the single rate
model of non-synonymous substitution is easily outperformed by a model with multiple non-synonymous rate classes, yet
in which amino acid substitution pairs are assigned randomly to these classes. We argue that, since the single rate model is
so easy to improve upon, new codon models should not be validated entirely on the basis of improved model fit over this
model. Rather, we should strive to both improve on the single rate model and to approximate the general time-reversible
model of codon substitution, with as few parameters as possible, so as to reduce model over-fitting. We hint at how this can
be achieved with a Genetic Algorithm approach in which rate classes are assigned on the basis of sequence information
content.
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Introduction

The inference of selection within protein coding genes has

benefited greatly from both the development of a probabilistic

framework for phylogenetics [1] and codon models (see [2,3] for

recent reviews). Indeed, the use of codon models has facilitated the

identification of selection occurring at sites [4,5] and along

lineages [6,7]. A fundamental feature of all codon models is that

they assign different rates to synonymous (a) and non-synonymous

(b) substitutions. Each rate is shared within the class, hence a is the

‘‘average’’ of synonymous substitution rates for all possible one-

nucleotide substitutions that don’t change the amino acid, and b is

its non-synonymous analog. This parameterization permits

inference of selection at sites/lineages where non-synonymous

substitutions occur at higher rates than do synonymous substitu-

tions (i.e. v~b=aw1), but is nonetheless biologically implausible.

The nearly universal modeling assumption that all non-synony-

mous substitutions occur at the same rate is contrary to evidence

that residue exchangeabilities are dependent on the physicochem-

ical properties of amino acids (e.g. [8]). Indeed, protein models

derived by estimating the relative rates of amino-acid substitution

in large protein databases consistently show dramatic differences

in the relative replacement rates of different residues (e.g. [9–11]).

To improve the biological realism of codon models, several

recent studies proposed substitution models in which non-

synonymous substitution rates depend on the residues (multi-rate

codon models). These models divide non-synonymous substitution

pairs into multiple categories, and infer substitution rates assuming

they are shared by all the pairs in the same category. Current

multi-rate models include (i) a generic empirical codon model

(ECM) estimated by maximum likelihood from the alignments of

7,332 protein families [12], (ii) a linear combination of amino acid

properties model (LCAP) that expresses the exchangeabilities of

codons as a function of the physicochemical distances between the

the amino acids which they encode [13], (iii) a model in which

amino acid substitution biases are incorporated into codon models

by weighted partitioning of empirically-derived amino acid

substitution rates [14], (iv) the assignment of amino acids to

physico-chemical property classes and the estimation of substitu-

tion rates within and between these classes [15,16] and (v) a

Bayesian approach (for models of protein evolution) which assigns

substitutions to classes with a Dirichlet process [17]. The purpose

of these models is to incorporate biologically realistic substitution

processes into codon models that are frequently used for the

estimation of selective pressure. If amino acids are subdivided into

classes based on a physico-chemical property (as in [15,16]),

selection for property (such as polarity) preservation may be

measured as the decreased rate of non-synonymous substitution

between versus within classes. Alternatively, if amino acid pairwise

substitutions are subdivided into classes, we can determine

whether there is preferential replacement of a subset of amino

acids, suggesting directional selection. Most frequently, a newly
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proposed multi-rate codon model is compared to the single-rate

model and a statistically significant improvement in fit is obtained

to demonstrate its utility. However, the approaches have not been

rigorously compared against each other and it is unclear how

highly each of the models rank in the space of all possible

substitution models. Our current work is focussed on inferring

multi-rate models of codon evolution from alignments, and in

particular the development of a Genetic Algorithm [18] for multi-

rate codon model selection. In so doing we have asked the question

‘‘what is the appropriate reference model to which new models

should be compared’’? In this note we demonstrate that the single

rate (SR) model is an inappropriate baseline model, and rather

advocate the use of a codon general time-reversible (REV) model.

This changes the focus of model comparison from how much

better a new model is than a weak model (SR), to how well a new

model approximates the most general model (REV).

Materials and Methods

We consider the class of time-reversible codon substitution

models which allow a single nucleotide to be substituted

instantaneously, with SR being the simplest and REV being the

most general, and models such as LCAP occupying an

intermediate range. The rate matrix Q for such a model consists

of elements qij that encode the rate with which sense codon i is

replaced with sense codon j:

qij~

r(Ai,Aj)hijpij , i=j, and i?j involves

one nucleotide substitution,

0 , i=j and i?j involves two or

three nucleotide substitutions,

{
P

k=i qik , i~j:

8>>>>>><
>>>>>>:

The three multipliers represent (i) the exchangeability of the

amino-acid residues encoded by codons i and j, r(Ai,Aj) (note that

because the model is time reversible r(Ai,Aj)~r(Aj ,Ai)), (ii)

nucleotide mutational biases, hij , and (iii) equilibrium frequency

parameters, pij , estimated by pk
a – the frequency of the target

nucleotide a, assuming the substitution replaces the k-th

nucleotide, i.e. using the frequency parameterization of [19]. All

model parameters are estimated by maximum likelihood. For all

models, all synonymous rates (where Ai~Aj ) are set to 1. The SR

model assigns a single parameter r(Ai,Aj)~v to all substitution

rates. In this case r(Ai,Aj) is the same as the commonly estimated

v or dN=dS selection parameter. The REV model is obtained by

allowing each pair of distinct amino-acid residues to have an

independent rate (i.e r(Ai,Aj)~vij ). Assuming the universal

genetic code, 75 out of 190 possible residue pairs can be

exchanged via a single nucleotide substitution, hence this model

will have 75 estimable non-synonymous rate parameters.

Models of intermediate complexity, which we hypothesize will

be supported by biological data, are obtained when the number C

of non-synonymous rate parameters is between 1 and 75, i.e. some

residue pairs are exchanged at the same rates, but there may be

several of these non-synonymous rates. We define the number of

rate classes a priori (C~2 or 5) and assign substitutions to rate

classes randomly with uniform probability, i.e. on average the same

number of rates are allocated to each class. Note that we do not

randomly assign the amino acids themselves to rate classes, but

rather each of the 75 pairwise substitutions to rate classes (i.e

I<L, S<W , etc.) Previous approaches [15,16] have assigned

amino acids to classes on the basis of physicochemical properties

and estimated substitution rates within- and between these amino

acid classes. These models, however, are limited by their enforced

transitivity of rates (i.e. the requirement that if X<Y , and Y<Z
are in the same rate class, then so is X<Z). Because the genetic

code itself is not transitive, i.e. one can easily find triplets of amino-

acid residues (for instance E,G,R), where 2=3 pairs can be

exchanged with a single nucleotide substitution, but the last pair

requires two. Enforcing the same substitution rates between one-

and two-step nucleotide substitutions is not easily justified.

Theoretically, multi-rate codon model selection could be based

on the random assignment of amino acid substitutions to rate

classes, however, this approach is infeasible given that there are

&2|1050 models with 5 rate classes. Rather we simply generate

these random models for the purpose of demonstrating how easily

the single rate model is improved upon. An alternative is to assign

pair-wise amino acid substitution rates to classes using a data-

driven approach. Here, we include results for such an approach

based on a Genetic Algorithm (GA), which we describe in a

separate manuscript [20]. We compare the fit of random models to

the SR, ECM, LCAP, GA and REV models using log L scores

and likelihood ratio tests (when appropriate). For the comparison

of random versus SR models we generated 100 instances of the

random model with C classes. Because the SR model is nested

within any random model, a likelihood ratio test with C{1
degrees of freedom can be used to assess significance.

We chose three representative empirical data sets for our model

fit comparisons, namely (i) the PF00803 Pandit [21] alignment

(3A/RNA2 movement protein family, 13 sequences, 277 codons),

a rhodopsin dim-vision protein alignment (38 sequences, 330

codons) from [22], and an HIV-1 group M partial polymerase

gene alignment (98 non-recombinant sequences, 541 codons).

Results and Discussion

For all three alignments, the SR model could be rejected in

favor of a random multi-rate model in the majority of cases with

the likelihood ratio test at P~0:05 level (Table 1). For models with

two rate classes, significantly improved model fit was evident in at

least 43 and up to 80 of the 100 random models (15 and 66 with

Bonferroni correction). Models with 5 rate classes showed

significantly improved model fit for 96 to 100 of the 100

permutations. Our analysis demonstrates that given a sufficiently

large alignment, effectively any random multi-rate model with 5 rate

classes is preferred to the SR model. This observation raises

serious doubts as to the utility of a single rate model as a

benchmark for model comparison.

As an analogy, consider the family of nucleotide models, where

JC69 [23] and the general-time reversible (GTR) model [24] are

representative of the two extremes of model space, where model

Table 1. Comparison of single rate versus random models for
3 alignments.

alignment T N P2 P5

Pandit PF00803 13 27 43 (15) 96 (80)

Rhodopsin 38 330 80 (66) 100 (99)

HIV-1 group M pol 98 541 80 (56) 99 (96)

T = number of taxa, N = number of sites, Pc = number of random permutations
out of 100 which showed significantly improved fit over the SR model
(Likelihood Ratio Test, Pv0:05). Numbers in parentheses are based on
Bonferroni corrected Pv0:0005.
doi:10.1371/journal.pone.0011587.t001

Multi-Rate Codon Models
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space is defined by the number of pair-wise nucleotide substitution

rates. Whilst one cannot argue against the GTR model being the

most representative of the mutation process, it is seldom selected as

the best fitting model. Indeed, of approximately 10,000 sequence

alignments submitted to Datamonkey [25] for nucleotide model

selection, not a single one supported the GTR model over other

Figure 1. Distribution of log likelihood scores for 100 multi-rate models where amino-acid substitutions are assigned randomly to 5 non-
synonymous classes. The fit of single rate (SR), linear combination of amino acid properties (LCAP), empirical codon model (ECM), Genetic Algorithm (GA)
and the general reversible model (REV) are shown as upside-down triangles. Number of rate classes inferred in the GA are 3, 4 and 5 for PF00803, rhodopsin
and HIV-1 pol, respectively. Dashed lines indicate the log likelihood required to (i) reject the single rate model in favor of a 5 rate model (left), and (ii) reject a
5 rate model in favor of REV (right). All models were fitted using maximum likelihood estimates of position-specific nucleotide frequencies.
doi:10.1371/journal.pone.0011587.g001
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models. Note that the model selection procedure in Datamonkey

[26] examines all 203 nucleotide time-reversible models. This

approach is clearly infeasible for codon models, since there are

&2|1050 codon models with 5 rate classes, for example. The

most frequently selected model (31% of cases) was the two

parameter HKY85 model [27]. This does not suggest that HKY85

is the most biologically plausible, but rather the best approxima-

tion to the GTR given limited sample size.

Consequently, we should assess codon models not by whether or

not they outperform the single rate model, but rather by how they

measure up against the general codon model (i.e. REV). We

demonstrate using log likelihood scores. As previously shown

[12,13], both LCAP and ECM models fit better than a single rate

model, at least for the Pandit alignment (Figure 1). Since SR is

nested within LCAP, the improvement in log likelihood score

follows by necessity. However, a glance at Figure 1 should

convince the reader just how trivially easy it is to outperform the

SR model. Comparison of models using BIC (Table 2) indicates

the GA to be the best model for all three alignments. As evident in

comparison of log likelihoods (Figure 1), BIC scores for random

models also indicate improved fit over the single rate model. ECM

is ranked second when fitted to one of the alignments used in ECM

estimation (PF00803), yet fits rhodopsin and HIV-1 alignments

worse than the single rate model, suggesting it may be impossible to

derive a generalist empirical codon model.

When developing multi-rate models of codon evolution we

should strive to not only beat the single-rate model, but also to

approximate the REV model with the fewest possible parameters.

Consider a multi-rate model with 5 independent rate parameters,

as in LCAP. In this case we can plot the log-likelihood limits at

which we reject a single-rate model (left hand dashed line in

Figure 1), and at which we reject a 5-rate model in favor of the

reversible model (right hand dashed line), say at P~0:05 using the

likelihood ratio test (4 degrees of freedom in the first case, 70 in the

second). The performance of most multi-rate codon models thus

far falls between these limits, i.e. the models improve upon the case

of the single rate but can be rejected in favor of REV. We should

construct multi-rate codon models that match the performance of

REV in a statistical sense, with comparable likelihood scores, but

with sufficiently few parameters to be computationally tractable

and estimable from reasonable alignments. Only one model, the

GA [20], achieves this in all cases. This model is set up so as to

prevent over-parameterization, which is achieved by incrementing

the number of non-synonymous rate classes, C, evaluating the

fitness of a population of C-rate models using an appropriately

chosen information criterion, and repeating until fitness is no

longer improved with an increase in the number of rate classes.

The fact that none of the 10,000 model selection analyses run on

Datamonkey contained enough data to reject all simpler models in

favor of a six parameter nucleotide GTR suggest that we should

similarly focus our efforts in the codon space on models with a

small number of rate classes, and investigate the space of candidate

models thoroughly.

In conclusion, we have shown the single rate model to be a poor

benchmark for model comparison, given that random models

nearly always offer improved fit. We argue that the conceptual

approach to codon model selection should instead focus on finding

multi-rate models with a few parameters that can match the

performance of REV, i.e. cannot be rejected in favor of REV, on

alignments of biologically realistic size. Furthermore, our examples

highlight the poor fit of ‘‘generic’’ empirical multi-rate models and

suggest that new multi-rate models should be alignment specific.

Whilst it is not advisable to fit a parameter rich REV model in

practice, due to computational constraints and uncertainty in

parameter estimates on small alignments, we should aim to derive

the best model, given the limitations posed by the size of the

alignment.
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24. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of

DNA sequences. Lectures on Mathematics in the Life Sciences 17: 57–86.
25. Kosakovsky Pond SL, Frost SDW (2005) Datamonkey: rapid detection of

selective pressure on individual sites of codon alignments. Bioinformatics 21:
2531–2533.

26. Kosakovsky Pond SL, Frost SDW (2005) A simple hierarchical approach to

modeling distributions of substitution rates. Mol Biol Evol 22: 223–234.
27. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a

molecular clock of mitochondrial DNA. Mol Biol Evol 21: 160–174.

Multi-Rate Codon Models

PLoS ONE | www.plosone.org 5 July 2010 | Volume 5 | Issue 7 | e11587


