University of Arkansas, Fayetteville

ScholarWorks@UARK

University Libraries Faculty Publications and Presentations

University Libraries

1-2021

New Faculty Research Profile: Martin A. Edwards: Bibliometric Analysis of his Research

Lutishoor Salisbury

Yang Tian

Jeremy Smith

Follow this and additional works at: https://scholarworks.uark.edu/libpub

Part of the Information Literacy Commons, and the Scholarly Publishing Commons

Profile of the Newest CHBC Faculty - Welcome!

Assistant Professor Martin A. Edwards

Emphasis

Scanned	Probe	Microscor) \/
Jeannea	ITODE	Which Oscop	J Y

- Biophysical phenomena
- Energy applications
- Electrochemistry

Research Program

In a highly interdisciplinary research program Edwards group aims to understand processes and manipulate objects at the micro- and nanoscale. The topics of investigation range from energy applications (batteries and fuel cells), nanobubbles and nanoparticles to biophysical phenomena.

Research Experience / Education

Research assistant professor, University of Utah	2016-2020
Senior research fellow, University of Utah	2014-2016
Post-doctoral, Univ. of North Carolina at Chapel Hill	2011-2013
Post-doctoral, IBEC, Barcelona, Spain	2009-2011
Ph.D., University of Warwick, UK	2004-2008
M.Sc., University of Warwick, UK	2003-2004
MMath, University of Warwick	1999-2003

AWARDS

• 2020. Society for Electroanalytical Chemistry. Royce W. Murray Young Investigator Award

TOP 5 CITED PAPERS		
	Total	Average Citations per Year
Use the checkboxes to remove individual items from this Citation Report		
or restrict to items published between 1945	1872	124.80
1. Localized High Resolution Electrochemistry and Multifunctional Imaging: Scanning Electrochemical Cell Microscopy		
By: Ebejer, Neil; Schnippering, Mathias; Colburn, Alexander W.; et al. ANALYTICAL CHEMISTRY Volume: 82 Issue: 22 Pages: 9141-9145 Published: NOV 15 2010	141	11.75
2. Scanning Micropipet Contact Method for High-Resolution Imaging of Electrode Surface Redox Activity		
By: Williams, Cara G.; Edwards, Martin A.; Colley, Anna L.; et al. ANALYTICAL CHEMISTRY Volume: 81 Issue: 7 Pages: 2486-2495 Published: APR 1 2009	128	9.85
3. Observation of Multipeak Collision Behavior during the Electro-Oxidation of Single Ag Nanoparticles		
By: Oja, Stephen M.; Robinson, Donald A.; Vitti, Nicholas J.; et al. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY Volume: 139 Issue: 2 Pages: 708-718 Published: JAN 18 2017	86	17.20
4. Nanoscale Measurement of the Dielectric Constant of Supported Lipid Bilayers in Aqueous Solutions with		
Electrostatic Force Microscopy	84	9.33
By: Gramse, G.; Dols-Perez, A.; Edwards, M. A.; et al. BIOPHYSICAL JOURNAL Volume: 104 Issue: 6 Pages: 1257-1262 Published: MAR 19 2013		
5. Voltage-Rectified Current and Fluid Flow in Conical Nanopores		
By: Lan, Wen-Jie; Edwards, Martin A.; Luo, Long; et al. ACCOUNTS OF CHEMICAL RESEARCH Volume: 49 Issue: 11 Pages: 2605-2613 Published: NOV 2016	81	13.50

JOURNALS AND IMPACT (FROM ISI JOURNAL CITATION REPORTS)

CATEGORY NAME

ANALYTICAL CHEMISTRY	10	CHEMISTRY, ANALYTICAL	7 of 86	Q1
JOURNAL OF PHYSICAL CHEMISTRY C	9	CHEMISTRY, PHYSICAL MATERIALS SCIENCE, MULTIDISCIPLINARY NANOSCIENCE & NANOTECHNOLOGY	57 of 159 90 of 314 44 of 103	Q2 Q2 Q2
ACS NANO	6	CHEMISTRY, MULTIDISCIPLINARY CHEMISTRY, PHYSICAL MATERIALS SCIENCE, MULTIDISCIPLINARY NANOSCIENCE & NANOTECHNOLOGY	14 of 177 11 of 159 17 of 314 10 of 103	Q1 Q1 Q1 Q1
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY	6	CHEMISTRY, MULTIDISCIPLINARY	13 of 177	Q1
LANGMUIR	4	CHEMISTRY, MULTIDISCIPLINARY CHEMISTRY, PHYSICAL MATERIALS SCIENCE, MULTIDISCIPLINARY	60 of 177 64 of 159 107 of 314	Q1 Q1 Q1
FARADAY DISCUSSIONS	3	CHEMISTRY, PHYSICAL	59 of 159	Q2
JOURNAL OF PHYSICAL CHEMISTRY LETTERS	3	CHEMISTRY, PHYSICAL MATERIALS SCIENCE, MULTIDISCIPLINARY NANOSCIENCE & NANOTECHNOLOGY PHYSICS, ATOMIC, MOLECULAR & CHEMICAL	35 of 159 53 of 314 28 of 103 3 of 37	Q1 Q1 Q2 Q1
APPLIED PHYSICS LETTERS	2	PHYSICS, APPLIED	37 of 155	Q1
CHEMELECTROCHEM	2	ELECTROCHEMISTRY	10 of 27	Q2
CHEMICAL SCIENCE	2	CHEMISTRY, MULTIDISCIPLINARY	21 of 177	Q1
CURRENT OPINION IN ELECTROCHEMISTRY	2	CHEMISTRY, PHYSICAL ELECTROCHEMISTRY MATERIALS SCIENCE, MULTIDISCIPLINARY MATERIALS SCIENCE, MULTIDISCIPLINARY	43 of 159 6 of 27 66 of 314 109 of 314	Q2 Q1 Q1
NANOTECHNOLOGY	2	NANOSCIENCE & NANOTECHNOLOGY PHYSICS, APPLIED	51 of 103 40 of 155	Q2 Q2
PHYSICAL CHEMISTRY CHEMICAL PHYSICS	2	CHEMISTRY, PHYSICAL PHYSICS & CHEMICAL	66 of 159 8 of 37	Q2 Q1
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF	2	MULTIDISCIPLINARY SCIENCES	8 of 71	Q1
ACCOUNTS OF CHEMICAL RESEARCH	1	CHEMISTRY, MULTIDISCIPLINARY	7 of 177	Q1
ACS APPLIED ENERGY MATERIALS	1	CHEMISTRY, PHYSICAL ENERGY & FUELS MATERIALS SCIENCE, MULTIDISCIPLINARY	55 of 159 39 of 112 85 of 314	Q2 Q2 Q2
ACS SENSORS	1	CHEMISTRY, ANALYTICAL CHEMISTRY, MULTIDISCIPLINARY NANOSCIENCE & NANOTECHNOLOGY	3 of 86 27 of 177 24 of 103	Q1 Q1 Q1
ANALYST	1	CHEMISTRY, ANALYTICAL	15 of 86	Q1
ANGEWANDTE CHEMIE INTERNATIONAL EDITION	1	CHEMISTRY, MULTIDISCIPLINARY	15 of 177	Q1
NANO LETTERS	1	CHEMISTRY, MULTIDISCIPLINARY CHEMISTRY, PHYSICAL MATERIALS SCIENCE, MULTIDISCIPLINARY	19 of 177 18 of 159 25 of 314	Q1 Q1 Q1
BIOPHYSICAL JOURNAL	1	BIOPHYSICS	15 of 71	Q1
CHEMICAL COMMUNICATIONS	1	CHEMISTRY, MULTIDISCIPLINARY	34 of 177	Q1

Bibliometric Analysis of Prof. Edwards Research Profile

Citations per year Publication per year RANK / TOTAL QUARTILE

CITATION SNAPSHOT

Average citations per item

CHEMISTRY

PHYSICS

BIOPHYSICS

ENERGY FUELS

ENGINEERING

PHYSIOLOGY

MATERIALS SCIENCE

ELECTROCHEMISTRY

Citing articles Without self citations

RESEARCH A

Research Areas

SCIENCE TECHNOLOGY OTHER TOPICS

BIOCHEMISTRY MOLECULAR BIOLOGY

NEUROSCIENCES NEUROLOGY

Sum of Times Cited

1,882 Without self citations 1,739

REAS - PUBLICATIONS			
	Record Count	% of 70	
	56	80	
	30	42.857	
	24	34.286	
	11	15.714	
	7	10	
	2	2.857	
	1	1.429	
	1	1.429	
	1	1.429	
	1	1.429	
	1	1.429	

Types of Documents			
Document Types	Record Count	% of 70	
ARTICLE	62	88.571	
REVIEW	5	7.143	
LETTER	2	2.857	
EDITORIAL MATERIAL	1	1.429	

AWARDS/EXTRACURRICULAR ACTIVITIES

Web of Science ®

The citation analyses were performed using Web of Science database and the Journal Citation Reports in December 2020. These databases are accessible to U. of A. faculty, students and staff on and off-campus.

Although these databases cover a wide range of publications for each faculty member, they may not cover all of their research output. Other databases that may cover their publications include PubMed, SciFinder and Reaxys.

TOP CITING COUNTRIES

Country	# of Occurrence
USA	383
ENGLAND	246
PEOPLES R CHINA	225
GERMANY	120
FRANCE	88
JAPAN	52
SPAIN	52
CANADA	40
NETHERLANDS	38
SOUTH KOREA	36

Top Citing Institutions

Institution	# of Occurren
UNIVERSITY OF WARWICK	140
CENTRE NATIONAL DE LA RECHER- CHE SCIENTIFIQUE CNRS	61
CHINESE ACADEMY OF SCIENCES	59
UNIVERSITY OF UTAH	53
UTAH SYSTEM OF HIGHER EDUCA- TION	53
NANJING UNIVERSITY	32
CNRS INSTITUTE OF CHEMISTRY INC	29
RUHR UNIVERSITY BOCHUM	29
UNITED STATES DEPARTMENT OF ENERGY DOE	28
UNIVERSITY OF OXFORD	28
BARCELONA INSTITUTE OF SCIENCE TECHNOLOGY	25
EAST CHINA UNIVERSITY OF SCIENCE TECHNOLOGY	25

UNIVERSITY OF CHINESE ACADEMY

UNIVERSITY OF BARCELONA

OF SCIENCES CAS

TOP CITING JOURNALS

Journal Title	# of Occurrence
ANALYTICAL CHEMISTRY	135
JOURNAL OF THE AMERICAN CHEMI- CAL SOCIETY	52
JOURNAL OF PHYSICAL CHEMISTRY C	45
ELECTROCHIMICA ACTA	42
CHEMELECTROCHEM	39
LANGMUIR	39
ACS NANO	35
PHYSICAL CHEMISTRY CHEMICAL PHYSICS	32
ANGEWANDTE CHEMIE INTERNA- TIONAL EDITION	28
JOURNAL OF THE ELECTROCHEMICAL SOCIETY	23
NANOSCALE	23
CHEMICAL SCIENCE	22
CURRENT OPINION IN ELECTRO- CHEMISTRY	22
JOURNAL OF ELECTROANALYTICAL CHEMISTRY	22
NANOTECHNOLOGY	21

MOST RECENT PUBLICATION

Journal of The Electrochemical Society, 2020 167 166507

A High-Pressure System for Studying Oxygen Reduction During Pt

Yulun Zhang, Donald A. Robinson, Kim McKelvey, Hang Ren, Henry S. White, * and Martin A. Edwards a,z @

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States of America

Here we report measurements of the oxygen reduction reaction (ORR) at single Pt nanoparticles (NPs) through their collision with a Au microdisk electrode of lower electrocatalytic activity. Performing measurements at an elevated pressure (10-atm, pure O2) raises the O2 concentration ~50-fold over air-saturated measurements, allowing the ORR activity of smaller Pt NPs to be resolved and quantified, compared to measurements taken at atmospheric pressure. Single-NP ORR current vs potential measurements for 2.6, 16, and 24 nm radius citrate-capped Pt NPs, show the catalytic activity of the smallest Pt NPs to be roughly one order of magnitude greater than the activity of the larger NPs. The particle-by-particle nature of our measurement quantifies the distribution of electrocatalytic activities of individual particles, which we determine to be larger than can be explained by the distribution of particle sizes. Additionally, we report that some of the observed ORR current transients contain multiple sharp peaks per single-NP © 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse,

Manuscript submitted May 5, 2020; revised manuscript received November 18, 2020. Published December 7, 2020.

please email: permissions@ioppublishing.org. [DOI: 10.1149/1945-7111/abcde2]

Supplementary material for this article is available online

Nanoparticle Collisions

TOP-CITED PAPERS

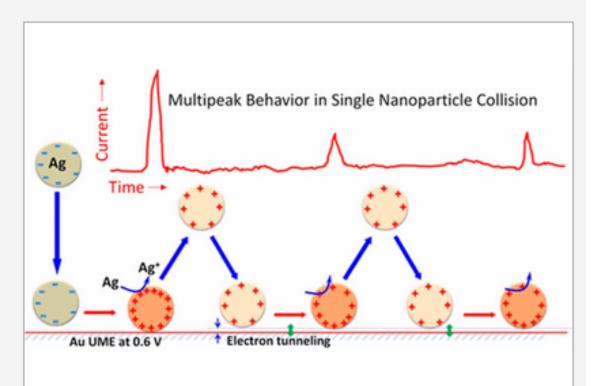
Anal. Chem. 2010, 82, 9141-9145

Letters to Analytical Chemistry

Localized High Resolution Electrochemistry and Multifunctional Imaging: Scanning Electrochemical Cell Microscopy

Neil Ebejer, Mathias Schnippering, Alexander W. Colburn, Martin A. Edwards, and

Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom


Observation of Multipeak Collision Behavior during the Electro-Oxidation of Single Ag Nanoparticles

Stephen M. Oja[†], Donald A. Robinson[‡], Nicholas J. Vitti[‡], Martin A. Edwards[‡], Yuwen Liu[‡], Henry S. White^{*‡}, and Bo Zhang*†

Abstract

of

The dynamic collision behavior of the electro-oxidation of single Ag nanoparticles is observed at Au microelectrodes using stochastic singlenanoparticle collision amperometry. Results show that an Ag nanoparticle collision/oxidation event typically consists of a series of 1 to \sim 10 discrete "sub-events" over an \sim 20 ms interval. Results also show that the Ag nanoparticles typically undergo only partial oxidation prior to diffusing away from the Au electrode into the bulk solution. Both behaviors are characterized and shown to exist under a variety of experimental conditions. These previously unreported behaviors suggest that nanoparticle collision and electro-dissolution is a highly dynamic process driven by fast particle-electrode interactions and nanoparticle diffusion.

Scanning Micropipet Contact Method for High-Resolution Imaging of **Electrode Surface Redox Activity**

Cara G. Williams[†], Martin A. Edwards^{†‡}, Anna L. Colley[†], Julie V. Macpherson[†], and Patrick R. Unwin^{*†}

Abstract

A scanning micropipet contact method (SMCM) is described which promises wide-ranging application in imaging and quantifying electrode activity at high spatial resolution. In SMCM, a moveable micropipet probe (diameter 300 nm to 1 µm) containing an electroactive species in electrolyte solution is brought to a sample electrode surface so that the liquid meniscus makes contact. The micropipet contains a reference-counter electrode, and the sample is connected as the working electrode to make a two-electrode voltammetric measurement. SMCM thus makes possible highly localized electrochemical experiments, and furthermore, heterogeneous electrode surfaces may be investigated without the substrate being completely immersed in solution. This opens up the possibility of making measurements on a wide range of electrode materials without having to encapsulate the electrode. Furthermore, the electrode/solution contact can be made rapidly and briefly, which is useful for situations where the electrode would be unstable for longer periods (e.g., due to corrosion or surface adsorption). For heterogeneously active surfaces the technique is particularly powerful as it allows defined areas to be targeted and individual sites to be probed. To exemplify the approach, the electroactivity of basal plane highly oriented pyrolytic graphite (HOPG) and two types of aluminum alloy were investigated. SMCM measurements indicate that basal plane HOPG shows much greater activity than present consensus. Measurements of chemically heterogeneous aluminum alloy surfaces with SMCM allow variations in redox activity to be mapped with high spatial resolution.

For more information: website: edwardslab.uark.edu, email: maedw@uark.edu and twitter handle: @MEdwardsLab

Prepared by Lutishoor Salisbury, Yang Tian and Jeremy J. Smith, CHBC Library, University of Arkansas. January 2021