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Introduction

Taking heed of risk is a pivot of finance. It would be almost absurd imagining Markowitz portfolio

theory without sigma, the Capital Asset Pricing Model without beta, Sharpe ratios without

the standard deviation, banks without market, credit, or liquidity risk, or option pricing with

Brownian motion without motion. Although risk is deeply ingrained in finance, there is no

consensus about its measurement. Some intuitive and tractable measures have taken center stage,

for example, the (conditional) value-at-risk (VaR) is the standard risk measure for setting capital

requirements for trading portfolios (Alexander and Baptista, 2017). Most current risk measures

have in common that in quantifying risk for a specific period they only consider the risk at the

end of the period. For example, the 10-day VaR indicates the cumulative loss at day 10 that

is not exceeded with a prescribed probability. Likewise, the conditional VaR, all lower partial

moments, and the standard deviation are functions of the final return distribution.1 Of course,

the final outcome matters – but often so does the path. As anyone stuck in a traffic jam can tell,

it also matters how you get there. To account for this (fairly obvious) insight, path-dependent

risk measures have been developed, which also take into account the path that leads to the

final investment outcome. Path dependence matters in finance for several reasons. First, an

investment’s intermediate price movements may cause liquidity issues, for example, when margin

calls force investors to liquidate a position prematurely. Second, the price path may be highly

relevant for psychological reasons. An investment that steadily increases in value is likely to be

perceived differently than an investment with volatile price movements. From a fund manager’s

perspective, both positive and negative intermediate price movements can cause a withdrawal of

funds – either because of cashing in gains or because of losing trust in the manager.2

1While the standard deviation as a risk measure requires only the distribution of returns at the end of the period,

its most common estimator is derived from higher-frequency returns and square-root-of-time scaling. Therefore,

the estimator requires higher-frequency returns but still disregards their order.
2Although negative price movements may seem more relevant, it is well-documented empirically that investors are

often quicker to realize gains than losses – a phenomenon coined disposition effect by Shefrin and Statman (1985).
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Introduction

Among the most widely quoted path-dependent risk measures are drawdown measures (Mahmoud,

2017). They quantify risk by considering the relative loss incurred from a previous peak. For

example, an investment that initially costs $ 40, moves up to $ 50 and then falls back to $ 40 incurs

a drawdown of 0.2 because it has lost 20% relative to the running maximum at $ 50. Constructed

in terms of the running maximum, all drawdown measures are inherently path-dependent. The

running maximum serves as a natural reference point because it definitely exists, it is easy to

find, and it is straightforward to interpret. At best, the drawdown at a given point in time is

zero, which occurs when the price resides at an all-time high. In all other cases, investors face a

loss with respect to the running maximum. If such a loss is realized at end of the investment

horizon, investors are likely to experience regret for not having exited the investment at the

maximum. In the above example, the final drawdown of 20% thus expresses the loss compared to

selling the investment with optimal market timing.3 By strictly focusing on losses, all drawdown

measures are asymmetric risk measures.

The primary application of drawdown measures is in asset management, where they are used

to quote performance, to allocate or redeem funds, or to evaluate fund managers (Landriault

et al., 2015; van Hemert et al., 2020). Drawdown measures are typically used around hedge

funds, funds of hedge funds, or mutual funds, but also stock or commodity investments (see,

e.g., Eling and Schuhmacher (2007), Heidorn et al. (2009), Eling (2008), Kim (2018), Auer

(2015), respectively). While the Commodity Futures Trading Commission mandates commodity

trading advisors to report their drawdown4, hedge fund managers usually voluntarily disclose this

information (Lhabitant, 2004). Garcia and Gould (1987) already noted over 30 years ago that, in

their experience, despite the variance being accepted as a “good measure of risk,” many investors

put more emphasis on drawdown. Burghardt and Walls (2011, p. xiii) note that the inspiration

for their work on drawdown “was a rough survey we took at one of our earliest conferences. We

had asked everyone what they thought the most useful measure of risk was, and a very large

majority replied ‘drawdown’.”

Consequentially, academic and practical literature about drawdown has developed, a comprehen-

sive review of which can be found in Section 3.2. Generally, several broad strands of literature

have emerged. By formulating a continuous-time investment problem with a drawdown constraint,

Grossman and Zhou (1993) initiate a strand of literature regarding drawdown constraints. These

3This notion requires assuming zero interest rates.
4See section 17 CFR §4.35 on performance disclosures.
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Introduction

constraints are intended to ensure that an investment’s value never falls below a fixed percentage

of the running maximum at any time. Subsequent work on investment problems with a drawdown

constraint includes Cvitanic and Karatzas (1995), Alexander and Baptista (2006), Elie and

Touzi (2008), Sekine (2013), Yao et al. (2013), Cherny and Obłój (2013), Rieder and Wittlinger

(2014), Angoshtari et al. (2016), Kardaras et al. (2017), and Roche (2019). A second strand

of literature addresses mathematical properties of the drawdown process. Given an underlying

stochastic process, the drawdown process is usually defined as the absolute difference between

the underlying’s current value and its maximum. Under various assumptions, several properties

of the drawdown process have been investigated, which are often related to stopping times, see

Hadjiliadis and Vecer (2006), Mijatović and Pistorius (2012), Landriault et al. (2017b), and

Bai and Liu (2019). Drawdown measures have also been used in the denominator of perfor-

mance ratios, and a different strand of literature has specifically addressed this application.

What is debated is whether performance ratios based on different (drawdown) measures lead

to different rankings of investments. For various sets of drawdown measures and various types

of investments, this question is addressed in Eling and Schuhmacher (2007), Eling (2008), Ca-

porin and Lisi (2011), Haas Ornelas et al. (2012), Auer and Schuhmacher (2013), and Auer

(2015). Although all of these strands focus on drawdown – either on drawdown constraints,

drawdown processes, or drawdown-based performance ratios – they do not specifically address

drawdown risk measures. Regarding risk measures, Chekhlov et al. (2005) seminally define the

conditional drawdown (CDD), which constitutes a family of drawdown risk measures. It includes

the maximum drawdown (MDD) and the average drawdown (ADD), which are arguably the

most prominent drawdown risk measures to date. An additional family, the conditional expected

drawdown (CED), has been defined recently in Goldberg and Mahmoud (2017). It is theoretically

interesting but less applicable in practice because it requires knowledge of tail means of the

MDD distribution. Properties of drawdown measures are almost exclusively studied for the

MDD. Its distribution is analyzed by Magdon-Ismail et al. (2004), Cheridito et al. (2012), and

Casati and Tabachnik (2013). Comparative statics are computed in van Hemert et al. (2020) to

analyze how changes in return, volatility, length of time horizon, and autocorrelation affect the

MDD.5 Despite the aforementioned literature, drawdown measures remain much less well-studied

compared to more conventional risk measures, such as value-at-risk and volatility (Goldberg

5The work of van Hemert et al. (2020) probably comes closest to this dissertation’s objective of analyzing

properties of drawdown measures. It partly follows the approach used in the first paper of this dissertation, but

there are notable differences. For example, their comparative statics do not control for higher moments, they use

much coarser data, and they only consider the MDD.
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and Mahmoud, 2017). Especially when it comes to properties of drawdown measures, academic

literature is almost non-existent.

It is this void that this dissertation intends to address. Due to a lack of previous research, hardly

anything is known about fundamental aspects of drawdown measures. Are drawdown measures

sensitive to an asset’s return, its volatility, or both? Do assets with skewed or particularly

fat-tailed returns have significantly higher drawdown? Does it matter which drawdown measure

is used to assess an investment, or do they all come to the same conclusion? Are future drawdowns

in any way predictable given drawdowns measured today? This dissertation addresses all of

these questions in three major chapters, each of which takes the form of a paper and can be read

independently of each other. Their objectives, methods, and outcomes summarize as follows.

The first paper Drawdown Measures and Return Moments addresses fundamental properties of

drawdown measures, most notably their relation to return moments. As drawdown measures

are computed from asset paths, the central idea is to investigate how the drawdown changes

when properties of the path change. The first four moments of the investment’s returns – i.e., its

expected value, standard deviation, skewness, and kurtosis – are a natural set of properties for

the first investigation of this kind regarding drawdown measures. These statistical moments are

standard ways to characterize assets as trending upward or downward, being stable or volatile,

being symmetric or asymmetric (i.e., expressing left-, right-, or zero skewness), or having fat

tails. In order to investigate the moment effects most precisely, a simulation framework is

suited best. Ideally, each moment is varied independently of the others to isolate its effect. A

stochastic process that satisfies this requirement remarkably well is the exponential Lévy process

with normal inverse Gaussian increments. Its parameters can be steered such that paths with

realistic combinations of the first four return moments can be simulated. For the resulting

paths, the MDD, ADD, and CDD0.8 from the conditional drawdown family are computed; the

conditional expected drawdown is computed for four confidence levels between 0.80 and 0.95.

Additionally, a new end-of-period drawdown (eopDD) is postulated as the return difference

between the ex-post best strategy with optimal market timing and the actually experienced

path. For these drawdown quantities, comparative statics are simulated, i.e., starting from a base

case, each return moment is varied separately while holding the other three moments constant.

Unanimously, higher first moments cause lower drawdown, and higher second moments cause

higher drawdown. Both results are plausible: Higher expected returns lead to fewer losses, thus

also curbing drawdown; higher volatility leads to both up and down movements, thus incurring

losses and higher drawdown. For skewness and kurtosis, the effects differ between drawdown
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measures. With increasing right-skewness, all CED measures and the MDD decline considerably,

but CDD0.80 declines only slightly, while eopDD and ADD remain constant. Increasingly fat

tails cause a decline in all CDD measures and eopDD, while the CED increases or declines

slightly depending on the confidence level. As most people prefer investments with high odd

moments and low even moments, the CED with high confidence levels captures this intuition

most successfully.

Several smaller analyses complement the main findings. First, a tailor-made jump diffusion model

with a discrete jump height distribution is employed to reproduce the previous results with a

clearly different model. Second, both models are modified to investigate the effect of sudden

random shocks on the drawdown measures. Upward shocks do not affect the drawdown measures;

downward shocks substantially increase drawdown whereas the effect scales approximately linearly

with the shocks’ magnitude. Third, the effects of dependencies in the return time series are

analyzed in an autoregressive (AR) and a generalized autoregressive conditional heteroscedasticity

(GARCH) model. Holding the first two moments constant, autocorrelation in the return variance

does not affect drawdown in the GARCH(1,1) model. The same holds for autocorrelation in the

returns, which seemingly contradicts results from Goldberg and Mahmoud (2017) for the AR(1)

model. Further analysis shows that the results in the literature had imprecisely been interpreted

as an effect of autocorrelation while instead being an effect of variance. As a last additional

analysis, the new eopDD measure is compared to the other drawdown measures empirically. To

this end, random portfolios of S&P 500 stocks are assembled, and the drawdown of their paths is

compared using rank correlations. The correlation between eopDD and the other measures is

positive but considerably lower than the correlation between, for example, maximum and average

drawdown, indicating that the new eopDD measure captures different aspects of drawdown.

In the second paper6 Drawdown Measures: Are They All the Same?, the idea of assessing

differences and similarities between drawdown measures is developed further. This endeavor

is motivated by an ever-growing variety of drawdown measures introduced in the literature.

Some similarity between drawdown measures is, of course, to be expected because all drawdown

measures follow similar principles, such as considering losses from a previous peak. However,

too much similarity would indicate that defining ever more complex drawdown measures is not

worthwhile, and that a focus on a few promising measures may streamline further research.

In order to compare drawdown measures on theoretical grounds, a first attempt may be to

6This paper is co-authored by Olaf Korn and Christian Schwehm.
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check theoretical properties like homogeneity or subadditivity. However, such an analysis is

not particularly fruitful because many drawdown measures satisfy the conditions of being a

generalized deviation measure according to Rockafellar et al. (2006) in a similar fashion, not

revealing notable differences. Nonetheless, an alternative approach is developed in the paper. The

majority of drawdown measures from the literature can be decomposed into a drawdown graph

and a weight function; the drawdown graph depends on the asset path but is identical for all

drawdown measures, while the weight function is independent of the asset path but characteristic

of the drawdown measure. Comparing the weight functions provides an intuitive grasp of which

aspect of drawdown each measure emphasizes because similarities between weight functions point

to similarities between drawdown measures. For example, the difference between MDD and ADD

becomes quite apparent in the weight functions as the MDD’s weight function is zero everywhere

except for a single element of the drawdown graph, while the ADD’s weight function is constant,

thus distributing weight equally along the drawdown graph.

Complementing this approach, drawdown measures are also compared empirically. To this end,

the idea of computing rank correlations for random portfolios is adopted from the first paper.

Here, however, the construction of portfolios is more sophisticated: 1,000 fictitious portfolio

managers randomly pick stocks from the MSCI World universe such that they hold 100 stocks at

any time. Country and sector constraints ensure that the proportion of stocks from any given

country or sector does not deviate drastically from the corresponding proportions in the MSCI

World index. Each month, there is some rebalancing and adjustment for stocks leaving the index,

and each new stock receives a weight between 0 and 2%. In the random setup, all fictitious

managers have a hit ratio of 50%, i.e., their probability of picking future winners that have above

median return is 0.5. In hindsight, however, some portfolio managers can be endowed with higher

hit ratios by providing them with a higher likelihood of identifying future winners over future

losers. Therefore, each time the skillful portfolio managers create a portfolio and add or drop

stocks during rebalancing, the odds of picking a winning stock and dropping a losing stock are

in their favor. Once 1,000 portfolio paths are simulated with and without skill, the portfolio

managers are ranked using different drawdown measures, and these ranks are compared via

correlation coefficients. Both for hit ratios of 0.5 and 0.6, the results are similar: All correlations

are positive, ranging between 0.258 and 0.874. Thus, correlations between drawdown measures

differ substantially. Especially with an eye toward eopDD, with which correlations are lowest,

drawdown measures do not appear to be “all the same”.

When some managers have stock picking skill – because they have above average hit ratios –
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and other managers do not, the question arises whether drawdown measures can help identify

these skillful managers. For example, if samples of 1,000 skilled managers with a hit ratio of 0.6

and 1,000 unskilled managers with a hit ratio of 0.5 are merged, could drawdown measures tell

them apart? Naturally, the skilled managers’ portfolios should incur lower drawdowns. Hence,

if among the 1,000 managers with lowest drawdown all were skilled, the drawdown measure

would perfectly identify skill. Using the ratio of skilled managers out of 1,000 as a measure of

skill detection, all drawdown measures can indeed detect skill. The ADD correctly identifies

approximately 75% of managers, the MDD slightly more than 65%, and the eopDD slightly less

than 65%. All drawdown measures outperform the standard deviation and expected shortfall,

which are used for comparison.

As mentioned above, an entire strand of drawdown literature is concerned with drawdown-based

performance ratios. Do these ratios behave differently when it comes to skill and rank correlations?

Regarding the latter, different drawdown ratios rank portfolios quite similarly, with correlations

ranging between 0.455 and 0.937. Regarding skill detection, all drawdown ratios (except for

the ratio based on eopDD) perform well and virtually the same. However, all drawdown ratios

sometimes fail miserably at identifying skill in periods when the return is negative because the

negative return affects both numerator and denominator of the ratio and can lead to unskilled

managers receiving better drawdown ratios. In summary, drawdown ratios are more similar than

drawdown measures and prove to be problematic in detecting skill in some circumstances.

The third paper Drawdown Persistence and a Convenient Shortcut to Predicting Mutual Fund

Drawdown focuses on persistence. Since this aspect of risk measures has not been addressed for

drawdown measures before, it is unclear whether the drawdown risk identified for an asset ex-ante

is indicative of this asset’s drawdown in the future, i.e., whether an asset’s drawdown risk persists.

For any risk measure, persistence is a significant property because information about the past

is then potentially valuable for the future. For example, funds regularly report their historical

drawdown to showcase management success (Lhabitant, 2004); however, without persistence, the

fund managers’ drawdown track record would bear no information about their future drawdown

whatsoever, and, thus, reporting drawdown would be pointless in the first place. In a sample

of more than 7,000 equity mutual funds, significant relative persistence can be documented for

the maximum and average drawdown. Thus, on average, funds with lower drawdown than their

peers in the past continue to have lower drawdown in the future. Methodologically, persistence

is assessed with two independent measurement approaches: the correlation between the asset

rankings of the two periods, and the ratio of the average future drawdown of the funds in the
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highest historical drawdown decile divided by the drawdown of the funds in the lowest decile.

For both measures, strong persistence is evidenced in the full sample as well as in subsamples

regarding fund types and period lengths.

A question that is closely related to persistence is that of prediction. While persistence is

concerned with how historical drawdown information relates to the future drawdown, prediction

allows for any historical information to be used to infer future drawdown. Because exhaustively

searching for the best prediction is tedious and likely incomplete, a viable option is to test several

promising predictors. From these, historical volatility emerges as a predictor that outperforms

even the drawdown measures themselves, i.e., the historical standard deviation contains more

helpful information about future MDD than the past MDD. This does not seem to be incidental

because it replicates for all fund categories. A closer look at the data reveals interesting relations:

Within the same year, the return is strongly negatively correlated with the MDD, while the

standard deviation is even more strongly positively correlated with the MDD. However, only

the standard deviation persists over time whereas the return does not. From these observations,

two hypotheses may be formulated: First, volatility persistence combined with the same-period

correlation between standard deviation (SD) and MDD is the driver behind MDD persistence

and SD-MDD persistence. Second, if the return is persistent, so is the MDD. What is required

to assess these hypotheses is a simulation model that incorporates both return and volatility

persistence. Such a model – constructed with fractionally integrated and independent mean

and variance processes – indeed supports both hypotheses. Therefore, whether it is best to

predict drawdown with past volatility or past drawdown depends on the persistence of return

and volatility in the data.

After summarizing the three main chapters separately, several overarching aspects shall be

discussed next, such as the definition of drawdown measures. Regarding its literal meaning,

“drawdown” signifies a process of depletion or reduction. It is a common term in hydrology,

used to describe the depletion process of water reservoirs or aquifers (Wu et al., 2016). In

finance, drawdown refers to a realized or unrealized financial loss, usually large in size. The

term is often used without an explicit definition as if assuming some tacit agreement what is

meant, for example, in Eling (2008) or Tashman and Frey (2009). Judging from the diverse

definitions present in the literature, no such agreement actually exists. For example, some sources

count only such losses as drawdowns that have not been interrupted by an uptick in prices (e.g.,

Schuhmacher and Eling (2011)). A new series of losses (and, thus, a new drawdown) starts as

soon as a period with positive returns interrupts a series of negative returns. This continuous
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drawdown measure is, of course, highly unreliable because a tiny difference in the path can cut

the drawdown in half – depending on whether a return is slightly above or below zero. A second

example of differing definitions is concerned with the measurement of losses. Usually, losses

from the previous peak are quantified relatively by using returns; however, some non-finance

articles use the absolute difference between the maximum and the current value. The latter

is mathematically more tractable but much less applicable in practice since the drawdown of

investments with different initial values cannot be compared directly. When drawdown measures

are defined differently, any conclusions must be considered with caution because it can only be

speculated how results for one drawdown definition transfer to another.

Therefore, in this dissertation, extra emphasis is placed on providing thorough and logically

consistent definitions of all drawdown measures. All such definitions start with the drawdown

graph. Given a discretized price path,7 it is defined for each point in time t as the percentage

loss from the running maximum until t. Figure 0.1 depicts an exemplary price path and its

corresponding drawdown graph.
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Figure 0.1: Illustration of an asset’s discrete price path (above) and the corresponding drawdown graph (below).

Defined as the relative loss between the price at the current position and the preceding all-time high, the drawdown

graph is an immediate consequence of the price path.

By definition, the drawdown graph starts at zero, and always returns to zero whenever the asset

graph reaches a new all-time high. It cannot fall below zero because any point that obtains a

7Drawdown definitions in a continuous-time setting are discussed in Chapter 1.
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negative loss (i.e., a gain) with respect to the running maximum constitutes a new maximum,

and the loss with respect to it is again zero. Sometimes, the drawdown graph resembles a mirror

image of the price path because a decline in the price path corresponds to an increase in the

drawdown graph. However, the mirror image can be far from perfect; for example, when the price

path climbs from one running maximum to another, the drawdown graph remains flat at zero.

Naturally, the maximum drawdown is the maximum and the average drawdown is the average of

the drawdown graph. Considering a specific investment horizon, the end-of-period drawdown

introduced in Chapter 1 is also intuitive as it coincides with the last point of the drawdown graph,

and emphasizes the regret experienced at the end of the investment horizon when looking back at

the asset’s path. It reflects that it can make a difference if an asset is in deep drawdown when it

is evaluated, or if an early downturn has been recovered in the meantime. All these risk measures

are generalized deviation measures according to Rockafellar et al. (2006). Additionally, the

drawdown graph is the basis for the largest class of drawdown measures proposed in the literature

so far – the weighted drawdown (wDD) framework, introduced in Chapter 2. In this framework,

a weight function assigns weights to each element of the drawdown graph and the drawdown

measure results as a weighted sum. This way, each admissible weight function corresponds to a

unique drawdown measure. Not only can almost all drawdown measures proposed in the literature

be subsumed under the wDD framework, but new drawdown measures can be defined with ease.

For example, a linearly increasing weight function may incorporate the idea that drawdowns

become more painful toward the end of the investment horizon. A trend-dependent weight

function may allow drawdowns during a downturn to receive higher weights because they are

potentially more painful than remaining drawdown during a recovery. Both this linearly weighted

drawdown (lwDD) and the trend weighted drawdown (twDD) are investigated in Chapter 2. The

flexibility of the wDD framework provides investors with an easy tool to construct a drawdown

risk measure that suits their risk preferences.

Different sets of drawdown measures are used in the three main chapters on purpose. The

objective of the first paper is to assess how changes in return moments and autocorrelation

affect drawdown measures in general. Therefore, a broad spectrum of drawdown measures is

desirable, which is why all “standard” drawdown measures from the literature are used. Apart

from MDD and ADD, which are the two extremes of the CDD family, the intermediate measure

CDD0.8 from this family is also included. Four members of the CED family, CED0.8, CED0.85,

CED0.9, CED0.95, are investigated, as is the new eopDD. Analyzing a broad variety of drawdown

measures turns out to be beneficial because the effects of higher moments differ between drawdown
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measures. In the second paper, a key aspect is the comparison of different drawdown measures.

Therefore, the set of drawdown measures is augmented to include the average squared drawdown

as well as the lwDD and the twDD from the new weighted drawdown framework. Because it is

infeasible for this type of analysis, the CED is omitted from the second paper; because it is very

similar to the MDD, the CDD0.8 is omitted as well. Additionally, all drawdown measures are

used in the denominator of the corresponding performance ratios. The third paper focuses on

identifying first evidence of drawdown persistence. Therefore, the arguably most wide-spread

drawdown measures, MDD and ADD, are employed first. As drawdown persistence is present,

and there is little reason to expect that other drawdown measures yield drastically different

results, there is no immediate need to extend the set of drawdown measures.

Analytic results for drawdown-related quantities are exceedingly hard to come by. Due to the

drawdown measures’ path dependence, it does not suffice to make an assumption about a return

distribution. Instead, stochastic processes have to be assumed to obtain a path from which

a drawdown measure can subsequently be derived. Stochastic processes significantly exceed

probability distributions in complexity because additional assumptions about the dependence

structure, the time-homogeneity of the probability distribution, and the continuity of the path

become necessary. For example, assuming a standard Brownian motion, Magdon-Ismail et al.

(2004) succeed in deriving a closed-form solution for the expectation of maximum drawdown

only when the drift of the Brownian motion is zero. For positive or negative drift, the solution

involves an infinite sum in which each summand contains an eigenvalue problem. To complicate

matters further, we focus on the economically relevant definition of drawdown in terms of relative

returns, but all analytic results are obtained defining drawdown in absolute terms. Therefore,

simulation studies and empirical analyses are pursued as viable alternatives, each modeling

choice depending on the respective research question. Since moment properties are vital in the

first paper, normal inverse Gaussian Lévy processes and a specifically designed jump-diffusion

model are used to generate sufficiently non-normal returns. Both models satisfy the challenging

requirement that the first four return moments can be varied almost separately. Moreover, both

models are structurally different with one having infinite activity jumps and semi-heavy tails

and the other having no heavy tails and few, fixed-height jumps. As the dependence structure

is not essential, both processes have independent increments, which simplifies the simulations.

In the explicit analysis of autocorrelation in returns and volatility, AR and GARCH processes

are employed. As the first two moments are highly influential and could easily skew the results,

extra emphasis is placed on varying only the autocorrelation but not the first two moments
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such that the specific effects of autocorrelation can be captured. Both AR(1) and GARCH(1,1)

model short-term autocorrelation; conversely, the fractionally integrated (FI) processes in the

third paper also model long-term autocorrelation, which is necessary because the third paper

is concerned with persistence. To investigate both return and volatility persistence separately,

a stochastic mean stochastic variance model is employed whose components are long-range

dependent but independent of each other. As drawdown measures are applied mostly in finance

and it is rarely possible to model each and every aspect of real data, empirical analyses nicely

complement the simulated findings. In the third paper, for example, where mutual funds are

used to investigate into relative drawdown persistence, some heterogeneity in the cross section is

explicitly necessary. In the second paper, random portfolios are simulated based on the MSCI

World constituents and their respective return time series. This mixture of stock data and

simulations has two reasons: First, manager skill can be modeled explicitly, which facilitates

an investigation into whether drawdown measures can detect skill. Second, realistic time series

are obtained for the comparison of different drawdown measures. By simulating portfolios from

a common universe, the managers’ portfolio paths are neither too similar nor too different. If

the paths were too similar, even the most potent risk measures could not detect meaningful

differences and all rankings would result from chance; if the paths were too different, any risk

measure could tell the difference and little would be learned. Overall, this dissertation addresses

questions about drawdown resorting to simulations, empirical analysis, and a mixture of both.

All analytic results are not about properties of drawdown measures but usually concern properties

of the stochastic processes used to conduct the simulation studies.

First and foremost, the papers in this dissertation intend to cater to an audience in academia as

all chapters seek to advance the literature on drawdown-based risk measures from a different

angle. To the best of the author’s knowledge, it is the first dissertation with this objective.

Apart from results on drawdown properties, this work supplies detailed definitions of drawdown

measures, a new drawdown framework to provide structure, and comprehensive references of the

status quo of drawdown research. As such, it should constitute an ideal basis for future research

projects regarding drawdown. Since the drawdown literature appears to trail the application of

drawdown measures in investment practice, this dissertation may also be of interest to finance

practitioners. It may theoretically support ideas previously used without rigorous evidence, or

help set straight incorrect beliefs. As drawdown measures are versatile and often counter-intuitive

it also aspires to be an entertaining and thought-provoking read.
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Published in the International Journal of Theoretical and Applied Finance.1

Abstract

This paper provides an investigation of the effects of an investment’s return moments on drawdown-

based measures of risk, including Maximum Drawdown (MDD), Conditional Drawdown (CDD),

and Conditional Expected Drawdown (CED). Additionally, a new end-of-period drawdown

measure is introduced, which incorporates a psychological aspect of risk perception that previous

drawdown measures had been unable to capture. While simulation results indicate many

similarities in the first and second moments, skewness and kurtosis affect different drawdown

measures in radically different ways. Thus, users should assess whether their choice of drawdown

measure accurately reflects the kind of risk they want to measure.

Acknowledgments: I would like to thank Olaf Korn as well as the participants at the Actuarial and Financial

Mathematics Conference 2018 (Brussels) for helpful comments and suggestions and Tom Dellos, Vitus Benson,

and Niklas Trappe for capable research assistance. I would also like to thank an anonymous reviewer for helpful

comments and suggestions that significantly improved the paper.
1This chapter is a version of an article published in the International Journal of Theoretical and Applied Finance,

Vol. 21, No. 7, 1850042 (2018), https://doi.org/10.1142/S0219024918500425. The copyright is owned by World

Scientific Publishing Company, https://www.worldscientific.com/worldscinet/ijtaf. Reprinted with kind permission.

13



1 Drawdown Measures and Return Moments

1.1 Introduction

In managing risks, the choice of a suitable risk measure is vital. Many classical risk measures

like (semi-)variance, lower partial moments, VaR, and expected shortfall are functions of the

distribution of the risky object at the end of the investment horizon alone. There are two reasons

why instead a path-dependent concept may be necessary. First, conditions on the path may

ensure a strategy’s feasibility, for example, if liquidity constraints require the path not to fall

below some threshold level. Some funds may even face automatic shutdown if a drawdown

constraint is breached during the investment period (Chekhlov et al., 2005). Second, the path

may be an essential psychological component: Investors will most likely perceive and evaluate

two investments with the same 5% final return and equal standard deviation differently if one

strategy had gained 20% but the other had lost 20% in the meantime. Differently perceived risks

can have substantial consequences for fund managers if investors choose to withdraw funding.

Since drawdown measures are frequently used to report a fund’s performance, managers with a

poor drawdown history may also find it difficult to attract new capital. Thus, fund managers

have a strong incentive to construct portfolios that avoid drawdowns.

In the first studies on drawdown, the constraint aspect was dominant, i.e., portfolio optimiza-

tion was pursued under a drawdown constraint, for example, in Grossman and Zhou (1993)

and Cvitanic and Karatzas (1995). Since then, two classes of drawdown measures have been

introduced: the Conditional Drawdown (CDD) family introduced by Chekhlov et al. (2005)

and the Conditional Expected Drawdown (CED) family introduced by Goldberg and Mahmoud

(2017). The CDD family includes the Maximum Drawdown, i.e., the single largest peak to valley

loss, which is commonly applied in practice. The CED family builds on the distribution of

Maximum Drawdowns. Beyond the constraint aspect, the psychological aspect of drawdown

can be incorporated by emphasizing the time horizon. Often, practitioners encounter fixed

investment horizons, evaluation periods, or portfolio rebalancing cycles where the performance

at the end of the time horizon is key. For the aforementioned risk measures, it is, however,

irrelevant if the negative turn causing, for example, a large Maximum Drawdown is at the

beginning of the investment period or towards its end. Hence, these risk measures cannot capture

the psychological component. Therefore, we introduce a new end-of-period drawdown measure

(eopDD), which focuses on the drawdown at the end of the investment horizon, and analyze its

properties. Empirically, portfolio rankings by the eopDD differ markedly from rankings by other

drawdown measures.
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1.1 Introduction

Drawdown risk measures have attracted considerable attention in portfolio management and

academia in the last two decades. Comprehensive references are available in Mahmoud (2017)

and Schuhmacher and Eling (2011). Very recent developments include an intensified probe

into mathematical properties (Landriault et al., 2017b) as well as drawdown measures carving

their way into fields like control theory (Hsieh and Barmish, 2017), option pricing (Dassios and

Lim, 2018), insurance (Palmowski and Tumilewicz, 2017), and energy markets (Charwand et al.,

2017). Despite ongoing research efforts, fundamental properties of drawdown-based measures

are not yet understood. For example, it is an open question how skewness and kurtosis of the

underlying asset returns affect drawdown measures. The presence of skewness and kurtosis

in asset returns has been documented extensively in the literature, for example, in Adcock

et al. (2015) and Mandelbrot (1963). While the importance of considering higher moments is

frequently emphasized in the finance literature (Dittmar, 2002; Guidolin and Timmermann, 2008;

Maringer and Parpas, 2009; Harvey et al., 2010; Jondeau and Rockinger, 2012), this paper is

the first to relate higher moments to drawdown risk measures. It offers a detailed account of

how an investment’s return moments influence drawdown-based measures, including Maximum

Drawdown, Conditional Drawdown, Conditional Expected Drawdown, and the new end-of-period

drawdown.

To provide meaningful guidance for decision-making under risk, risk measures should adequately

reflect how investors perceive risk. There is both theoretical and empirical evidence that high

odd moments are considered desirable and high even moments are not. Intuitively, investors

appreciate high returns (first moment), dislike high variance (second moment), favor extreme

positive over extreme negative events (third moment), and dislike exposure to heavy tails (fourth

moment). Consistent with this intuition, Scott and Horvath (1980) prove that in a theoretical

setting there should be a preference for high skewness and a preference for low kurtosis. Harvey

and Siddique (2000) find that investors demand a significant premium for stocks with negative

skewness. Dittmar (2002) shows that incorporating an additional aversion to kurtosis further

improves the explanation of the cross section of expected returns. Proceeding from these results,

this paper addresses the question which drawdown measure captures moment preferences most

accurately.

Apart from moment influences, we investigate the effect of upward and downward shocks on

drawdown measures. To this end, we introduce randomly occurring market shocks of varying

magnitude. This is especially interesting for path-dependent risk measures since large downward

jumps at the end of the time horizon are likely to facilitate a large end-of-period drawdown
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whereas a large downward jump at the beginning may be made up over the course of the path.

Hence, it is unclear what aggregate effect jumps have on average if their timing is random.

Drawdown measures are path-dependent by nature. Therefore, we propose a simulation framework

to simulate entire sample paths with the desired return moments. The exponential Lévy process

with normal inverse Gaussian increments as introduced by Barndorff-Nielsen (1997) best serves

our needs because it allows modeling higher moments like asymmetry and fat tails in a realistic

way. Simulating paths with certain moment properties allows us to examine the effect of varying

return moments on a wide range of drawdown measures. In detail, we apply the model to

the Maximum Drawdown, Average Drawdown, and CDD0.80 from the Conditional Drawdown

family, the Conditional Expected Drawdown CEDα for several confidence levels α, and the new

end-of-period drawdown including a decomposition into the probability of drawdown and the

conditional expected end-of-period drawdown. For robustness, we repeat the simulation study

for a second model where we add a straightforward jump mechanism to geometric Brownian

motion to obtain a jump diffusion process. For both models, we explicitly derive the choice of

process parameters which are necessary to generate the first four moments of annual returns.

For the first and second moment, the simulation study validates common intuition. Strategies

with higher expected return have lower drawdown because of the upward trend. If a strategy’s

standard deviation increases, its drawdown increases as well. While these results are valid for all

drawdown-based measures under consideration, the results for higher moments differ substantially.

Intuitively, negative skewness should c. p. induce more drawdown risk and thus lead to higher

drawdown risk measures. However, only the CED is consistent with this intuition. The CDD

exhibits non-monotonous behavior with the Average Drawdown being almost unaffected by

changes in skewness. Higher kurtosis counter-intuitively yields lower drawdown measures almost

across the board. Only for the CED with high confidence levels α, drawdown increases with

kurtosis. The size of the kurtosis effect is strong for the CDD but almost negligible for the CED.

For all moments, the directions of the new end-of-period drawdown almost perfectly resemble

the directions of the Average Drawdown. In total, the CED with high α is most in line with

standard moment preferences.

To pin down the moment effects, each moment is varied ceteris paribus. In contrast, we also model

the effect of shocks within a different setup where many moments are impacted simultaneously.

We find that the direction matters: Downward shocks strongly increase drawdown measures

unanimously whereas upward shocks have no significant influence. The size of the downward
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1.2 Drawdown-Based Risk Measures

jumps translates into increases in drawdown approximately linearly.

Finally, we analyze what influence autocorrelation has on the drawdown measures. As both

momentum and volatility clustering have been found in returns, we consider autocorrelation

both in the mean and variance equations in an AR and GARCH model, respectively. For all

drawdown measures, the effects of autocorrelation are almost negligibly small. However, one

has to be careful to correct for mean and especially variance because otherwise autocorrelation

drives up variance which, in turn, increases the drawdown measures. These findings explain and

significantly extend the results on autocorrelation in Goldberg and Mahmoud (2017).

The rest of this paper is organized as follows. In section 1.2, we provide definitions of all

standard drawdown risk measures. Afterwards, we motivate and introduce the new end-of-period

drawdown measure and analyze its properties. In section 1.3, the simulation framework is

introduced and illustrated. Section 1.4 contains the results of the simulation study and answers

the research questions regarding the behavior of the drawdown measures, while section 1.5

discusses robustness. In section 1.6 and 1.7, we analyze the effects of additional jumps and

autocorrelation, respectively. Section 1.8 concludes.

1.2 Drawdown-Based Risk Measures

Several drawdown-based measures have been proposed in the literature. For the sake of com-

pleteness, we first provide all definitions of the standard drawdown measures. Afterwards, a new

end-of-period drawdown measure is introduced, and its properties are examined.

1.2.1 Setting

We fix a time interval [0, T ] where T may be the investment horizon of an investor or the time of

performance evaluation of a portfolio manager. Consider a strategy2 S = {St}t∈[0,T ], for example,

the price process of a single asset or of a portfolio, and its running maximum Mt = supu∈[0,t] Su
for which we require Mt > 0, t ∈ [0, T ]. The drawdown curve of the strategy is then given

by Dt = Mt−St
Mt

, which at each point t indicates the relative loss from the running maximum

until time t. In portfolio management practice, this curve is known as the underwater curve

(Zabarankin et al., 2014). All drawdown-based measures are functionals of this drawdown curve.

2The notation is deliberately general such that it is applicable to arbitrary strategies as long as the drawdown

functionals mentioned below exist.
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In all applications, we consider discretizations of the continuous process S with N + 1 equidistant

points, and denote this sequence of random variables by S = (S0, . . . , SN ) where S0 = S0 and

SN = ST . Denote by Mi the maximum of the first i instances of S with i = 1, . . . , N . The

discrete time analogue to the drawdown curve is the drawdown vector Di = Mi−Si
Mi

. In the

following, we define drawdown measures both for the continuous time process S and for the

discretized process S.

1.2.2 Standard drawdown measures

First, the Maximum Drawdown (MDD) is defined as the supremum of the drawdown curve

MDD(S) = supt∈[0,T ] Dt, i.e., the maximal loss incurred from peak to trough. For the discrete

process, the MDD is the maximum of the drawdown vector MDD(S) = max1≤i≤N Di. The

Average Drawdown (ADD) is defined as the standardized integral under the drawdown curve

ADD(S) = 1
T

∫ T
0 Dt dt or for the discretized process as the averaged drawdown vector ADD(S) =

1
N

∑N
i=1Di. Both MDD and ADD belong to the family of Conditional Drawdown (CDD) measures

introduced by Chekhlov et al. (2005). The CDD with confidence level α is loosely defined as the

mean of the worst (1− α) · 100% drawdowns. In detail,

CDDα(S) =
(∫ T

0
1{Dt ≥ qa} dt

)−1 ∫ T

0
Dt 1{Dt ≥ qa}dt (1.1)

where qα is the α-quantile of the Dt and 1 is the indicator function which is 1 if the statement

in brackets is true and 0 otherwise.3

In the discrete case, the CDD is defined as

CDDα(S) = 1
|Dα|

∑
i∈Dα

Di, Dα = {j |Dj ≥ qα, j ∈ {1, . . . , N}} , (1.2)

where Dα includes all drawdowns which are large enough to be among the worst (1− α) · 100%,

qα is the α-quantile of the Di and | · | denotes set cardinality.

Therefore, the MDD corresponds to α↗1 and the ADD to α↘ 0. The lower the α, the more of

the drawdown curve is taken into account.

A conceptually similar drawdown measure is the Conditional Expected Drawdown (CED)

advocated by Goldberg and Mahmoud (2017). The CED is defined as the tail mean of the

3We omit some intricate notation from Chekhlov et al. (2005) by assuming that the reader is familiar with the

concept of quantiles. Moreover, in the simulations below, the correction term in the CDD formula in Chekhlov

et al. (2005) will diminish due to large sample sizes.
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Maximum Drawdown distribution. If qM(S)
α is the α-quantile of the MDD distribution of the

price process S, then

CEDα(S) = E
[
MDD(S) |MDD(S) ≥ qM(S)

α

]
. (1.3)

To obtain formulas for the discretized process, we can simply substitute S for S in the above

formula.

To compute the realized CDD for a single sample path, the theoretical quantile qα is replaced by

the empirical quantile of the Di. However, the realized CED for a single sample path cannot be

computed because it does not exist. From a single realized Maximum Drawdown inference of the

Maximum Drawdown distribution’s quantiles and conditional expectation is not feasible.

When we are concerned with forward-looking risk assessment for the discretized process, we

usually make distributional assumptions such that we can sample repeatedly from the stochastic

price process S. Given a set of J samples S =
{
Sj
}
j=1,...,J =

{
(Sj1, . . . , S

j
N )
}
j=1,...,J from the

discretized process, we can estimate the expected MDD straightforwardly by the sample average

of the MDDs 1
J

∑J
j=1 MDD(Sj). We estimate the expected ADD and expected CDD analogously.

For the expected CED, we estimate

1
|MDDα|

∑
j∈MDDα

MDD(Sj), (1.4)

where MDDα =
{
j
∣∣∣MDD(Sj) > q

M(S)
α , j ∈ {1, . . . , J}

}
and qM(S)

α is the sample quantile of the

MDD distribution.

1.2.3 A new end-of-period drawdown measure

In practice, investors often enter into investments with a certain investment horizon in mind.

Similarly, portfolio managers’ performance is usually evaluated at fixed dates and trading

strategies are implemented to be rebalanced after regular holding periods. Therefore, investors,

portfolio managers and traders are interested in choosing their positions such that the performance

at the end of the relevant period is as desired.

However, as argued before, the path between now and the invest horizon T may still be relevant

for two reasons. First, liquidity and other constraints may require the path to remain above a

certain threshold. Second, the path may significantly influence how performance is evaluated

psychologically at time T . For example, consider the two strategies in figure 1.1 which are

constructed as realizations from the same stochastic process and have the same final values.
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Figure 1.1: Sample paths of two strategies stemming from the same stochastic process with the same Maximum

Drawdown of 15% and the same final value.

At time T , an investor in the grey strategy (dashed line) is likely to be disappointed with the

strategy because of a significant loss in value compared to the previously achieved high. On the

contrary, an investor will probably be fairly satisfied with the black strategy since it has earned

significantly from a previous slump.

Although the risk measures CDD and CED take the path into account, they cannot distinguish

between the grey and the black strategy as, for example, the Maximum Drawdown for both

strategies is exactly the same in figure 1.1.4 This is not to say that CDD or CED disregard time;

in fact, the expected Maximum Drawdown scales with time because the likelihood of an extreme

drawdown event increases. Choosing a strategy with low expected CDD aims to control the

likelihood of (prolonged) significant drawdown periods. Choosing strategies with low expected

CED tends to ensure that the expected magnitude of an extreme Maximum Drawdown event is

small.

Nonetheless, for all the above-mentioned drawdown risk measures, a large loss within the sample

path always facilitates a large drawdown irrespective of a subsequent rally. For example, consider

a strategy for which short-term outlooks are dire but long-term forecasts are excellent. The

Maximum Drawdown – and all of the drawdown measures defined so far – will deem both the

long-term and the short-term strategy very risky due to the initial slump. However, it is obvious

that in this case the time horizon of the investor is essential to determine if the strategy is risky

4As argued in section 1.2, the CED cannot be computed for a single sample path. Nonetheless, for processes with

sample-wise indistinguishable Maximum Drawdowns, the CEDs must also be indistinguishable because the CED is

a function of the MDD distribution.
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or not. Therefore, we want to define a measure that adequately takes the time horizon into

account.

This measure, we call it end-of-period drawdown, should capture well-esta blished behavioral

aspects. Like all drawdown measures, it should focus on losses because of the well-known insight

from Prospect Theory that losses are weighed significantly higher than gains, see Kahneman and

Tversky (1979), Kahneman et al. (1990) and Veld and Veld-Merkoulova (2008). The reference

point with respect to which losses shall be measured is the running maximum of the path – a

natural choice since the maximum could have been achieved by optimal market timing, i.e.,

switching from the risky strategy to holding cash at the strategy’s maximum. Therefore, any

outcome below the running maximum can be perceived as a loss. Since the running maximum

is time-variant, losses are measured with respect to a dynamic benchmark.5 The severity of

the loss is measured by the loss incurred from the peak to the final position relative to the

initial investment, which allows straightforward comparisons of strategies with different initial

investments.

We define the end-of-period drawdown as

eopDD(S) = MT − ST
S0

, (1.5)

where MT = supu∈[0,T ] Su and T is the investment horizon as before. For the discretized process,

we define eopDD(S) = MN−SN
S0

. The drawdown measures can be interpreted intuitively: High

drawdown indicates high risk, i.e., a large loss in portfolio value from the maximum to the end.

The drawdown thus defined has a straightforward interpretation in terms of regret with respect to

market timing. In the regret literature6, regret is defined as the difference between two strategies:

the ex-post optimal strategy and the strategy that was actually pursued (Gollier, 2020). The

larger the difference between the two strategies, the larger the disutility for the investor. Consider

an investor who can shift his money between a risky strategy and risk-free cash holdings. An

5For an application of reference point adaption in the portfolio context as well as more literature on reference

point dynamics refer to Shi et al. (2015).
6Early accounts of regret in decision-making include Bell (1982) and Bell (1983). Work on behavioral finance

frequently emphasizes the role of regret in the finance context, for example, Shefrin and Statman (1984), Shefrin

and Statman (1985), Barberis et al. (2001), Lin et al. (2006), and Strahilevitz et al. (2011). More recent research

efforts involving regret include Bleichrodt et al. (2010), Bleichrodt and Wakker (2015), Gollier (2020), and Diecidue

and Somasundaram (2017). Neural evidence for regret is presented by Frydman and Camerer (2016) in an

experimental asset market.
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1 Drawdown Measures and Return Moments

investor with optimal market timing would invest into the risky strategy and exit into cash at

the risky strategy’s maximum. The end-of-period drawdown captures the regret of an investor

who cannot time the market perfectly but compares his risky strategy to the optimal strategy

at the end of the time horizon. By elementary calculation, we can express the end-of-period

drawdown as

eopDD(S) = MT − S0
S0︸ ︷︷ ︸
r1

− ST − S0
S0︸ ︷︷ ︸
r2

, (1.6)

i.e., as the difference of the discrete relative return of the ex-post best strategy r1 with optimal

market timing and the return of the chosen strategy r2. Therefore, the eopDD captures the

return-wise difference between the two strategies. Even if the investor is not aware of the running

maximum as a reference point, his evaluation of investment success may still be influenced by

it. In an experimental study, Unser (2000) finds that subjects are not necessarily aware of their

reference points.

To dissect the influences on the expected end-of-period drawdown in more detail, we want to

discriminate whether an increase in E[eopDD] is driven by an increased likelihood of a drawdown

event or an increased severity given a drawdown event. To this end, we consider the following

decomposition which is immediately justified by the definition of the conditional expectation:

E [eopDD] = E [eopDD | eopDD > 0] · P (eopDD > 0) . (1.7)

This decomposition allows us to attribute changes in eopDD either to the severity or likelihood of

a drawdown. The concept of focusing on the probability of drawdown can be found in Angoshtari

et al. (2016).

Despite evident similarities, the eopDD can be substantially different from already existing

drawdown measures. In fact, the difference between the eopDD and the Maximum Drawdown

can be arbitrarily large, for example, if a large drop in portfolio value is entirely offset by a

subsequent rally, such that MDD is large and eopDD is zero.

Several sets of properties (e.g., coherence (Artzner et al., 1999)) have been proposed in the

literature to ensure that risk measures are sensible. For drawdown-based measures, the class of

(generalized) deviation measures originally proposed by Rockafellar et al. (2006) and generalized

to path-dependent measures by Goldberg and Mahmoud (2017) is most suitable. In general

terms, for price processes S from a space of stochastic processes R∞ a risk measure ρ : R∞ → R

is a generalized deviation measure if for all S, S̃ ∈ R∞ and all constant deterministic C ∈ R∞:
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1.2 Drawdown-Based Risk Measures

(C1) Normalization: ρ(C) = 0

(C2) Non-negativity: ρ(S) ≥ 0

(C3) Shift invariance: ρ(S + C) = ρ(S)

(C4) Positive degree-one homogeneity: ρ(λS) = λρ(S) for all λ > 0

(C5) Convexity: ρ
(
λS + (1− λ)S̃

)
≤ λρ(S) + (1− λ)ρ(S̃) for all λ ∈ [0, 1].

The eopDD is a generalized deviation measure since the conditions (C1)–(C4) hold trivially and

for condition (C5) it suffices to see that maxt∈[0,T ] f(t) + g(t) ≤ maxt∈[0,T ] f(t) + maxt∈[0,T ] g(t)

which holds for general functions f and g with f(t) + g(t) <∞ for all t ∈ [0, T ].7

Risk measures from the CDD family and from the CED family are also generalized deviation

measures according to Chekhlov et al. (2005) and Goldberg and Mahmoud (2017), respectively.

Thus, all drawdown measures under consideration satisfy these desirable properties.

1.2.4 Comparing historical performance – a case study

Theoretical properties aside, we want to see how the end-of-period drawdown performs in practice.

To this end, we conduct a case study on portfolio data by considering the following setting:

Let there be 100 portfolio managers who manage portfolios assembled from the S&P 500 stock

index from January 1990 until December 2017. Each manager picks 100 stocks at random and

assigns equal weights. All portfolios have a turnover of 20% each year and are adjusted for stocks

entering and exiting the S&P 500 index.8 For each year and each portfolio manager, we compute

the MDD, CDD0.8, ADD and eopDD.

In figure 1.2, boxplots of the drawdown quantities are displayed to give a rough idea about

the scale of the different drawdown measures. For each drawdown measure, the results for all

managers and all years are combined. Not surprisingly, medians, upper and lower quartiles and

whiskers decrease from MDD over CDD0.8 to ADD. Compared to ADD, the eopDD has an even

lower median but higher variance. While this is unlikely for the other drawdown measures, some

of the eopDDs are exactly zero when the stock price at year-end constitutes an annual maximum.

7As in Goldberg and Mahmoud (2017), the conditions are applied to the risk measure defined in absolute terms,

i.e., ρ(S) = MT − ST . For the eopDD defined in relative terms, the conditions (C3) and (C4) are replaced by a

new multiplicative scalability condition ρ(λS) = ρ(S) for λ > 0.
8In detail, we first drop the stocks which left the index, then randomly eliminate stocks to arrive at 20% and

then draw new stocks from the current index constituents which have not been eliminated in the previous step.
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Figure 1.2: Boxplots as summary statistics for each drawdown measure, each year and 1,000 portfolio managers.

From left to right, the drawdown measures MDD, CDD0.8, ADD and eopDD are displayed. Outliers are omitted.

To analyze whether the different drawdown measures provide distinct information, we compute

rank correlations. I.e., we rank the 100 portfolios by each of the four drawdown measures

and compute the degree of similarity between the rankings. Once annual rank correlations are

obtained for each pair of drawdown measures, we average the annual results and present the rank

correlations for each pair of drawdown measures in table 1.1. If two drawdown measures rank the

100 portfolios in equal order for every manager and every year, the rank correlation should be 1.

If two drawdown measures yield strictly contrary rankings, the rank correlation would equal −1.

Most notably, we observe substantial differences between the end-of-period drawdown and all

other drawdown measures in table 1.1. The rank correlations between eopDD and one of MDD,

CDD0.8, and ADD are approximately 0.3 – the rank correlations between MDD, CDD0.8, and

ADD are each at least twice as large. Hence, we infer that the eopDD measures something

distinct and does not simply reproduce the results from previous drawdown measures.

Next, recall that MDD and ADD are members of the CDD family where MDD corresponds

to α approaching 1, ADD corresponds to α approaching 0. Consistently, the rank correlations

between either MDD or ADD with CDD0.8 are higher (0.80 and 0.76, respectively) than the rank

correlation between both extremes, i.e., between MDD and ADD (0.64). In general, we obtain

rank correlations well above zero for all drawdown measures.

Methodologically, we proceed as in Eling and Schuhmacher (2007) who compare drawdown-based
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1.3 Simulation Framework

eopDD MDD CDD0.8 ADD

eopDD 1 — — —

MDD 0.25 1 — —

CDD0.8 0.30 0.76 1 —

ADD 0.30 0.64 0.80 1

Table 1.1: Rank correlations (average annual Kendall’s τ -b) between portfolios ranked on different drawdown

measures. Upper triangle is omitted because of symmetry.

performance measures using Spearman’s rank correlations. Instead of Spearman’s ρ, we compute

the rank correlations using Kendall’s τ because it corrects more accurately for ties, i.e., when two

(or more) portfolios are assigned the same risk measure (Kendall, 1945). Specifically, we apply

Kendall’s τ -b as in Agresti (2010). Correcting for ties is advisable in this context because the

eopDD is more likely to be exactly zero than the other drawdown measures, thus inducing ties. If

we repeat the analysis and use Spearman’s ρ instead, all rank correlations are slightly higher and

all qualitative results remain unaltered. Moreover, the results are robust to reasonable changes

to the setting, i.e., more portfolio managers (e.g., 1,000), different portfolio sizes (e.g., 50) and

different turnover (e.g., 10% or 30%).

Hence, we find that while the eopDD and the other drawdown measures are related – as indicated

by the positive rank correlations of about 0.30 – the eopDD does not coincide with the other

drawdown measures which display much higher rank correlations among themselves.

1.3 Simulation Framework

We want to analyze how return moments influence drawdown risk measures. Because drawdown

measures are path-dependent, we need a simulation model which generates entire sample paths.

Once such sets of paths S are sampled, we compute the drawdown risk measures with the

formulas from section 1.2. We provide details on the simulation setup here and the simulation

results in section 1.4.

The most important ingredient for the model is a probability distribution whose moments

can be manipulated in a flexible way. The normal inverse Gaussian distribution (NIG) is an

intuitive choice in this regard because its expectation, variance, skewness, and kurtosis – i.e.,

its first four moments – can be varied extensively. The NIG distribution belongs to the class of
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1 Drawdown Measures and Return Moments

generalized hyperbolic distributions and was introduced into the mathematical finance literature

by Barndorff-Nielsen (1997). Its density is given by

f(x, α, β, µ, δ) = αδ exp (δγ + β(x− µ))
π
√
δ2 + (x− µ)2 K1

(
α
√
δ2 + (x− µ)2

)
, (1.8)

where γ =
√
α2 − β2 and K1(u) = 1

2
∫∞

0 exp
(
−1

2u
(
v + 1

v

))
dv is the modified Bessel function of

the third order and index 1 (Kalemanova et al., 2007). The density is defined for 0 ≤ |β| < α,

δ > 0 and µ ∈ R. Intuitively, α governs the tail heaviness and β governs asymmetry, µ is the

location parameter and δ the scale parameter.

The normal inverse Gaussian distribution has been applied in several areas of finance, for example,

in Eriksson et al. (2009), Kalemanova et al. (2007), and Homm and Pigorsch (2012), mainly to

model returns in financial time series, see Aas et al. (2005), Barndorff-Nielsen and Stelzer (2005)

and Wilhelmsson (2009) and the references therein. Log returns can be fitted especially well by the

NIG distribution (Barndorff-Nielsen, 1998). Consequently, we use the NIG distribution to model

the log returns. Whenever we mention returns henceforth, we mean log returns log (St+1/St).

To proceed from a distribution to a process, we exploit that the normal inverse Gaussian family

is closed under convolution: if Y1, Y2 ∼ NIG(α, β, µ1,2, δ1,2) are independent, then Y1 + Y2 ∼

NIG(α, β, µ1 + µ2, δ1 + δ2) (Barndorff-Nielsen et al., 2013). By infinite divisibility, we obtain the

normal inverse Gaussian Lévy process as in Barndorff-Nielsen (1997) which has stationary and

independent increments by definition and has normal inverse Gaussian marginals at all times.9

Once the returns rt ∼ NIG(α, β, tµ, tδ) are simulated, the price process can be computed by

St = S0 exp(rt) where S0 is the price at time 0.10 By construction, the annual return of this

price process is distributed NIG(α, β, µ, δ).

Therefore, we can generate sample paths of the NIG Lévy process with the desired moment

properties if we can find a NIG random variable with the same moments. In other words, for

a sample path to, on average, have annual returns with some specified expectation, variance,

skewness, and kurtosis, it suffices to find parameters α, β, µ and δ such that a NIG random

variable with these parameters has the same four moments. The moment formulas11 for X ∼

9In detail, the marginal distribution of the process is NIG(α, β, tµ, tδ) at time t (Barndorff-Nielsen and Stelzer,

2005).
10The price process hence belongs to the class of exponential Lévy processes.
11The standard deviation is the square root of the centralized second moment. Skewness and kurtosis are also

centralized and normalized. All definitions are provided in A.1.

26



1.3 Simulation Framework

NIG(α, β, µ, δ) are given by Kalemanova et al. (2007):

E[X] =µ+ δβ

γ

sd(X) =
√
δα2

γ3

skewness(X) = 3β
α
√
δγ

kurtosis(X) = 3 + 3
(

1 + 4β
2

α2

)
1
δγ
.

(1.9)

In this non-linear system of four equations and four unknowns, we fix left sides and solve for

the free parameters α, β, µ, and δ using Broyden’s Quasi-Newton method and the double dogleg

trust region method (Dennis and Schnabel, 1996). For example, if an expected return of 8%,

a standard deviation of 20%, a skewness of 0 and a kurtosis of 4 are the choices of the return

moments, then the parameters which generate such a process are α ≈ 8.66, β = 0, µ = 0.08, and

δ ≈ 0.35.

Implementing the NIG Lévy process for discretized paths is straightforward. Consider the

one-year case with 252 trading days:

1. Fix the desired four moments of annual returns.

2. Solve the system of equations (1.9) to obtain the parameters α, β, µ, and δ.

3. Draw 252 realizations from the NIG(α, β, µ/252, δ/252) distribution and obtain the return

process by their cumulative sum.

4. Take the exponential and multiply by S0 to obtain the price process.

5. Use the price path to compute the different drawdown measures from section 1.2.

To be suitable for such an analysis of moment sensitivity, a stochastic model for the asset returns

needs to exhibit specific properties. First, it must be flexible enough to allow variation in each of

the moments while the others are held constant. Otherwise, computing meaningful comparative

statics is infeasible. For example, in a standard geometric Brownian motion without jumps it is

possible to vary the two parameters (µ and σ), but skewness and kurtosis cannot be modified

separately. Second, paths generated from the model should resemble actual paths in financial data.

This aspect is intertwined with the first, as stylized facts about asset returns like left-skewness

and fat tails immediately relate to moment properties. Third, since the moments are fixed

for the annual return but simulated in daily steps, it is of great advantage if distributions are
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1 Drawdown Measures and Return Moments

closed under convolution. Similarly, analytical solutions for the first four moments should exist

such that systems of equations like the above can be formulated. Theoretically, the third and

fourth requirements could be relaxed if parameters were found by simulation. However, immense

computing power would be required to reduce computational imprecision to decent levels. Last,

catering mostly to elegance, we would like the solutions of the system of equations like (1.9)

to be unique, i.e., for a given set of moments there is at most one process in this family that

generates a process with these return moments.

From the myriad of stochastic processes, the NIG Lévy process satisfies all of the above criteria:

The first four moments can be steered independently in a flexible manner, the process has been

found to resemble financial return data (see sources above), analytical solutions for the first

four moments obviously exist, the NIG family is closed under convolution as noted above and

a proof of uniqueness is provided in A.4. We cannot rule out the existence of another equally

suited model but we considered a wide range of models – including, for example, all models in

Schuhmacher and Eling (2011) – and found none meeting all of the criteria.12

In order to still test robustness of the NIG results, we have devised a tailor-made jump diffusion

model which meets the above criteria. It is, however, less flexible with respect to the moments

attainable. Its design is detailed in section 1.5.

In the NIG model, not all combinations of moments are attainable, i.e., the system of equations

need not have a solution for all combinations of prescribed moments. This is not surprising

because, for example, high kurtosis and low standard deviation do not coexist well. We find

virtually no restrictions to choose economically sensible expectations and standard deviations. For

the skewness, symmetrical intervals around zero are attainable due to the parameter restriction

|β| < α. For the kurtosis, arbitrary values are accessible as long as they are strictly greater than

3.13 Since the economically interesting case of large kurtosis corresponds to values larger than 3,

the latter condition is, practically, no constraint.

12Many distributions can be disregarded right away because of too few parameters, for example, the normal,

gamma, logistic, Weibull, student t, uniform distributions etc. In more detail, we considered, for example, Lévy

processes with beta, extended skew-normal and extended skew-t distributed increments, the variance gamma

process as well as other generalized hyperbolic distributions and the jump diffusion processes of Merton with

normally distributed jumps and the jump diffusion model by Kou (2002) with double-exponential jumps.
13This is clear from the kurtosis formula in (1.9) because δ, γ > 0. Generally, all models which can be generated

as time-changed Brownian motion with drift (like the NIG model, cf. Barndorff-Nielsen (1997)) are leptokurtic if

the subordinator is not deterministic (Cont and Tankov, 2004).
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1.4 Drawdown Sensitivities to Return Moments

To validate that the simulation is well-behaved, we simulate 1,000,000 sample paths and compute

the moments of the realized returns for each path. If the simulation framework is correct, the

difference between the prescribed moments and the average realized moments should approach

zero – which it does. Thus, the model, on average, generates paths with the prescribed return

moments.

1.4 Drawdown Sensitivities to Return Moments

To analyze the effects of return moments on drawdown measures, we conduct a simulation

study based on the model from section 1.3. In this model, it is possible to specify the first

four moments and generate sample paths which in expectation have these return moments. To

dissect the effects of the different moments on the drawdown, we choose a base case scenario

and then vary each of the moments one at a time, i.e., we simulate comparative statics. While

either expectation, standard deviation, skewness, or kurtosis of returns are varied, we compute

the expected drawdown measures from section 1.2, i.e., expected Conditional Drawdown and

Conditional Expected Drawdown, expected end-of-period drawdown, and its decomposition.

To be precise, there are slight differences in estimation between the risk measures due to

their definitions. For the CDD family, the eopDD and the conditional eopDD, estimators of

the expectations of the drawdown measures are computed. Canonically, the expectations are

estimated via the sample mean. For the CED family and the probability of end-of-period

drawdown, one directly computes an estimator for the drawdown measure. Canonically, the

quantile is estimated by the sample quantile and the probability is estimated by the sample

frequency.

For each comparative static and for each parameter combination, we employ the model to

generate 1,000,000 paths from which, in turn, all risk measures are computed. The investment

horizon T is fixed to one year following Benartzi and Thaler (1995) who identify one year as an

investor’s typical evaluation period. To mimic trading-daily observations, the path is discretized

into 252 equidistant time intervals. The strategy is arbitrarily initialized at S0 = 100 and we

consider annual logarithmic returns. As a base case, we consider an expected return of 8% p. a.,

a standard deviation of 20% p. a., a skewness of 0 and a kurtosis of 4. The expected return and

standard deviation resemble rough estimates of stock market characteristics and are close to the

choices in Benartzi and Thaler (1995). The choices of skewness and kurtosis induce neither right
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1 Drawdown Measures and Return Moments

nor left skewness and avoid much excess kurtosis in the base case such that these effects can be

introduced separately.14

From the CDD family, we investigate the MDD and the ADD – which are the two extreme cases

– and the CDD0.8 as an example in between. From the class of CED measures, we consider the

CED with confidence levels 0.95, 0.90, 0.85, and 0.8. Intuitively, for α = 1 only the single largest

Maximum Drawdown would be considered, making the measure possibly vulnerable to outliers.

Since the rationale behind the CED is to control the maximal loss for most possible scenarios,

rather high confidence levels make sense economically.

1.4.1 Variation of return moments

We present the main results of the simulation study in figures 1.3 and 1.4. All plots can be read

intuitively in a similar fashion. The first column of figure 1.3 contains the comparative static

for the first moment. Here, the other moments – standard deviation, skewness, and kurtosis –

remain fixed at the base case level while the expected return on the x-axis is varied between

0 and 20%. The three plots then display the expected drawdown measures from the different

drawdown families. According to figure 1.3, all drawdown measures decline monotonically with

rising expected return. The effect is quite significant with some drawdown measures declining

by almost half. These results are plausible since strategies with positive trend tend to make up

intermediate drawdowns such that the drawdown graph is pushed to zero frequently. Hence,

other moments being equal, the higher the expected return, the lower the drawdown measures.

The comparative static for the second moment is displayed in the right column of figure 1.3.

We find that all drawdown measures are monotonically increasing in the standard deviation.

The size of the increase is large – both in absolute terms where all measures increase almost

threefold over the interval between 10% and 30% and in relative terms compared to the other

moment effects.15 As for the first moment, the general tendency of the effect is intuitive: A higher

standard deviation induces more and larger fluctuations in the paths which, in turn, facilitate

more frequent and large drawdown events. Hence, all else equal, higher standard deviation

translates into higher drawdown measures.

14An excess kurtosis of 0 is not feasible in the model because the kurtosis has to be strictly greater than 3.

Additionally, for a kurtosis very close to 3, the range of admissible values for the skewness is very small because

the range increases with higher kurtosis. Hence, we deem 4 to be a sensible base case.
15The y-axes in figures 1.3 and 1.4 are the same for each drawdown family such that results for the different

moments can easily be compared in size.
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Figure 1.3: Comparative static for 1st moment (left column) and 2nd moment. The CDD-charts (first row) contain

the MDD, CDD0.8 and ADD from top to bottom. In the middle row, we display the CED for levels 0.95, 0.9, 0.85,

and 0.8. The bottom row contains the eopDD (bold line) and its decomposition into the probability of eopDD

(dot-dashed line) and the conditional eopDD (dashed line). All paths are simulated from the normal inverse

Gaussian Lévy model.
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1 Drawdown Measures and Return Moments

When it comes to the skewness effects, which are depicted in the left column of figure 1.4,

we observe the general trend that left-skewness induces higher drawdown and right-skewness

induces lower drawdown. Since left-skewness indicates the presence of more extreme losses, higher

drawdown measures seem intuitive. The same is true for the right-skewness by the analogous

argument. However, there are numerous differences between the drawdown families: For the

Maximum Drawdown and CDD0.8, the relationship is monotonic but almost flat for positive

values of skewness. For the Average Drawdown, the relationship is almost flat and monotonicity

is lost. On the contrary, the effect of skewness on the CED is strong across the board with the

effect of varying the skewness between [−0.75, 0.75] being significantly larger than the effect of

varying the expectation between [0, 0.20]. Last, the expected end-of-period drawdown and its

conditional version behave like members of the CDD family. While the eopDD is as flat and

non-monotonic as the Average Drawdown, the conditional eopDD slightly follows the trend like

the Maximum Drawdown. In summary, we observe a general trend for higher drawdown with

increasing left-skewness and vice versa, which however affects different drawdown measures to

different degrees.

The right column of figure 1.4 contains the results on the kurtosis effects. If the kurtosis increases,

i.e., the distribution becomes more heavy-tailed, the CDD decreases monotonically and quite

significantly in size. On the contrary, changes in kurtosis leave the CED almost unaffected. For

high confidence levels, the CED increases slightly; for low confidence levels, it decreases slightly;

and it is mostly flat in between. Compared to the other moments, the effect of the kurtosis on

the CED is almost negligible. The eopDD indicates less risk for higher kurtosis just like the

CDD. The same holds for the elements of its decomposition which also decrease monotonically in

kurtosis. Hence, we observe a tendency for CDD and eopDD to decrease when kurtosis increases

and for CED to remain unaffected.

1.4.2 Drawdown measures and moment preferences

All else equal, what would you choose: An investment with high returns or an investment with

low returns? An investment with a chance of positive extremes or an investment with a chance

of negative extremes? Intuitively, choosing the investment with high expectation and skewness,

i.e., high odd moments, seems like a good idea. Again, all else equal, what would you choose: An

investment with high variability or low variability? With more likely extreme events or less likely

extreme events? In this case, intuition is likely to point to the choice with low standard deviation

and kurtosis, i.e., low even moments. In general, there is both theoretical and empirical evidence
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Figure 1.4: Comparative static for 3rd moment (left column) and 4th moment. The CDD-charts (first row) contain

the MDD, CDD0.8 and ADD from top to bottom. In the middle row, we display the CED for levels 0.95, 0.9, 0.85,

and 0.8. The bottom row contains the eopDD (bold line) and its decomposition into the probability of eopDD

(dot-dashed line) and the conditional eopDD (dashed line). All paths are simulated from the normal inverse

Gaussian Lévy model.
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1 Drawdown Measures and Return Moments

that investors usually prefer assets with high odd moments and low even moments, see Scott and

Horvath (1980), Harvey and Siddique (2000), and Dittmar (2002).

Do drawdown measures reflect this pattern? We address this question using the comparative

statics in figures 1.3 and 1.4. For example, all drawdown measures are consistent with the

moment preferences for the first moment according to figure 1.3 because if the first moment

increases, all drawdown measures decrease monotonically. Since quantitative statements are

not warranted theoretically, we confine ourselves to observing the drawdown measures’ general

tendencies.

If drawdown measures do not act accordingly, there may be unintended consequences. For

example, aiming for a strategy with low drawdown risk, investors may end up taking on high

skewness or kurtosis risk. By looking at the directions in the plots, we can investigate if drawdown

measures react favorably to high odd moments and dismissively to high even moments, vice

versa, or not at all. To summarize the results from the comparative statics, table 1.2 lists the

different drawdown measures’ directions.

E[CDD] CED E[eopDD]

Expectation up down down down

Standard Deviation up up up up

Skewness up down/constant * down constant

Kurtosis up down approx. constant ** down

Table 1.2: Summary of the trends in the comparative statistics of figures 1.3 and 1.4. Risk measures consistent

with standard moment preferences would yield columns of the form (down, up, down, up). The first column

contains the return moments.

* Down for high confidence levels, approx. constant for lower confidence levels.

** Slightly up for high confidence levels, slightly down for low confidence levels.

For the first two moments, all drawdown measures agree with the standard moment preferences

unanimously. The CED perfectly matches the third moment preference because when skewness

increases it declines strongly and monotonically. The effects for the kurtosis are almost negligible

in comparison. However, for high α, i.e., when only the largest Maximum Drawdowns are taken

into account, the CED increases monotonically with the kurtosis. Thus, it is consistent with all

four moment preferences. The CED for low α declines slightly with kurtosis.

For the expected CDD, the results for the skewness differ according to the confidence level. While
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1.5 Robustness

the MDD mostly agrees with a preference for higher skewness, the ADD is almost constant.

Turning to the kurtosis, all CDD measures decline significantly, which implies that heavier tails

indicate lower risk – something that is at odds with the moment preferences. The results for the

expected eopDD very closely resemble those of the ADD from the CDD family.

In conclusion, using the CED with high confidence levels appears to capture the standard moment

preferences best. The MDD (along with other members of the CDD family with high α) is at

least in accordance with preferences for the first three moments.

1.5 Robustness

We want to analyze how return moments like skewness and kurtosis influence drawdown risk

measures. The model we have employed – the normal inverse Gaussian Lévy process – is merely a

tool to analyze this relationship. Naturally, the question arises to what extent the results depend

on the model. To address this potential concern, we repeat the analysis of section 1.4 with an

alternative model which is quite different in nature, namely a jump diffusion model similar to

Merton’s model (Merton, 1976) but with a discrete jump height distribution.

In general, jump diffusion models generate the price process S = {St}t∈[0,T ] via

St = S0 exp
(
µt+ σWt +

Nt∑
i=1

Yi

)
, (1.10)

where µ and σ > 0 are the drift and volatility of the diffusion component, respectively, Wt is

a standard Brownian motion, Nt is a Poisson distributed random variable with parameter λt,

and the Yi are independent and identically distributed (Cont and Tankov, 2004). All random

components are pairwise independent and the sum in the exponent is sometimes referred to as

a compound Poisson process. These models have both been extensively employed in financial

modeling and studied theoretically, cf. Ball and Torous (1983), Kou (2002), Cont and Tankov

(2004), and Hanson (2007). The economic reasoning behind the model is this: small continuous

fluctuations are modeled by a geometric Brownian motion and the occurrences of abnormal

fluctuations due to significant new information are modeled by a Poisson jump process (Ball and

Torous, 1983). This way, the model can represent typical features of real stock price data like

asymmetry and excess kurtosis while still being computationally manageable and economically

sensible. It belongs to the class of exponential Lévy processes and has tractable returns since

log
(
St
S0

)
= µt+ σWt +

Nt∑
i=1

Yi. (1.11)
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1 Drawdown Measures and Return Moments

Here, the rough idea is that the parameter µ controls the first moment, the parameter σ

corresponds to the second moment, one-sided up-jumps (Yi > 0) introduce right-skewness (third

moment), one-sided down-jumps (Yi < 0) left-skewness, and two-sided jumps lead to higher

excess kurtosis, i.e., fourth moment. We find, that it suffices to choose a simple jump distribution

with frequency λ = 1 and two equally likely fixed jump sizes

Yi =


log fu with probability 0.5,

log fd with probability 0.5,
(1.12)

where fu ≥ 1 ≥ fd denote the upward and downward jump factor, respectively. By construction,

the occurrence of an upward jump is equivalent to multiplying the stock price by fu. Note, that

while the size of the jump is fixed by either fu or fd and the frequency is fixed by λ, the number

of jumps per year is Poisson distributed and the timing of the jump within the year is uniformly

distributed. In a given realization, several jumps may occur or none at all.

It remains to be seen how the moments of this model can be controlled. To this end, we

theoretically derive the first four moments from formula (1.11) and the definitions of the moments

as provided in A.1. If X is the annual return of S then computations (detailed in A.2) yield

E[X] =µ+ 1
2
(
log (fu) + log

(
fd
))

sd(X) =
√
σ + 1

2
(
log (fu)2 + log (fd)2

)

skewness(X) =
4
(

log (fu)3 + log
(
fd
)3
)

(
2 log (fu)2 + 2 log (fd)2 + 4σ

)3/2 (1.13)

kurtosis(X) =
[
5 log

(
fd
)4

+
(
6 log (fu)2 + 12σ

)
log

(
fd
)2

+ 5 log (fu)4 +

12 log (fu)2 σ + 12σ2
] (

log (fu)2 + log
(
fd
)2

+ 2σ
)−2

.

As for the normal inverse Gaussian process, we fix left sides and solve this non-linear system of

equations for the free parameters µ, σ, fu, and fd. Again, we employ Broyden’s Quasi-Newton

method and the double dogleg trust region method (Dennis and Schnabel, 1996). For example, if

an expected return of 8%, a standard deviation of 20%, a skewness of 0, and a kurtosis of 3.5 is

the choice of the return moments, then the process parameters which generate such a process

are µ = 0.08, σ ≈ 0.11, fu ≈ 1.18, and fd ≈ 0.85. Simulating asset paths and calculating the

drawdown measures is analogous to section 1.3.

We apply this model to repeat the comparative static analysis from section 1.4. Like figures 1.3
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1.5 Robustness

and 1.4 for the NIG model we obtain figures 1.10 and 1.11 for the jump diffusion model. The new

plots are presented in A.5. For ease of comparison, the axes coincide in all aforementioned plots.

In a nutshell, the results obtained for the normal inverse Gaussian Lévy model in section 1.4 are

affirmed by the results for the jump diffusion process. For the first and second moments, the

plots are indistinguishable not only in relative shape but also in absolute size.

Comparing the results for the third and fourth moments, the intervals of admissible values slightly

differ by construction (more details below). We find that the general trends obtained before

can be verified by the jump diffusion model. There seem to be slight differences between the

models for high-α CDD at high positive skewness and when the jump diffusion model approaches

its highest admissible kurtosis. In summary, the general tendencies from section 1.4 can be

reproduced satisfactorily.

1.5.1 Similarities and differences to the NIG model

We add a short comparison of this model to the NIG model of section 1.3 because, to allow for

a sensible robustness check, the two models should not look too much alike. Some features of

the two processes have to coincide, of course, for example the first four return moments which

we force to coincide. Apart from that, the models appear to be quite different on theoretical

grounds: the NIG Lévy process has infinite activity jumps, no diffusion and semi-heavy tails

whereas the jump diffusion process has very few and fixed-height jumps, a diffusion component

and no heavy tails.

Moreover, there are fewer attainable combinations of moments here than in the NIG model: For

the first and second moment, there are virtually no restrictions as before. For the skewness, the

set of attainable values shrinks from approximately [−0.75, 0.75] in the NIG model to [−0.50, 0.50]

here. Whereas in the NIG model many values are possible for the kurtosis as long as they are

strictly above 3, the kurtosis can be varied between 3 and 4 in this setting. We choose a kurtosis

of 3.5 for the base case (instead of 4 as for the NIG model) such that we can vary the kurtosis

in both directions. One way to allow more moment combinations would be to introduce more

parameters, for example, different jump frequencies λ or more intricately distributed jump heights

Yi. However, an advantage of our model is that in the current parametrization its solutions are

unique – just like in the NIG model.
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Figure 1.5: Comparison of realized daily returns from the NIG model of section 1.3 (left) and the jump diffusion

model of this section. Both histograms of relative frequencies are based on one billion observations from each

model for the base case of µ = 8%, σ = 20%, skewness = 0 and kurtosis = 3.5. For better comparison, y-axes are

log-scaled and the axes of both plots coincide.
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1.6 Drawdown Sensitivity to Shocks

Jump diffusion models and homogeneous Lévy models are somewhat similar in the sense that

one may be approximated by the other (Rydberg, 1997). However, our specific jump diffusion

model with fixed jump heights would be unsuitable to approximate the NIG Lévy process.16

The probably most straightforward way to compare both models is to generate returns from

both models and compare the results, cf. the histograms in figure 1.5. For each histogram, daily

returns were simulated from the base case parametrization. For better visualization, the relative

frequencies are log scaled such that tail behavior can be observed more easily. Apparently, both

return distributions are quite different in shape. In the right histogram, the number of jumps are

clearly visible as separate peaks whereas the left histogram has a single mode. Moreover, the

interval of attainable returns is more than twice as large for the NIG model. In summary, we

find the jump diffusion model of this section to be sufficiently different from the NIG model to

test robustness.

1.6 Drawdown Sensitivity to Shocks

In the comparative statics considered so far, one single return moment changes at a time. For

example, the skewness is varied while the remaining three moments are held constant. As seen

in section 1.5, Poisson jump processes can be employed to help generate processes with certain

sets of moments.

However, jumps may not only constitute a modeling tool. Investors may encounter market

situations in which their gut feeling tells them that a significant shock is imminent. Such

additional jumps due to shocks can easily be incorporated into the model. Assuming that

investors assess their moment expectations separately, the model parameters are fixed as usual.

Afterwards, an additional jump component is added to the model depending on the size and

direction of the suspected shock. Of course, the same is possible for the normal inverse Gaussian

Lévy process from section 1.3 where a Poisson jump component can be added to the NIG

component in each time interval.

16The idea in Rydberg (1997) is to approximate the infinite-activity portion of the NIG Lévy process by a Brownian

motion and the larger jumps by a compound Poisson process. This is especially feasible for trying to approximate

the time-continuous NIG process in more and more detail. Here, we instead sample from the process at a discrete

daily frequency. Moreover, our compound Poisson process with fixed jumps is unsuitable to approximate the large

jumps of the NIG process which have continuous jump heights.
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Figure 1.6: Effect on several drawdown risk measures if a shock is added to the model in its base case configuration.

The size of the additional jump varies between −30% and +30%. As before, the CDD-chart (top left) contains

the MDD, CDD0.8 and ADD from top to bottom. The top right chart displays the CED for levels 0.95, 0.9, 0.85,

and 0.8. The bottom chart contains the eopDD (bold line) and its decomposition into the probability of eopDD

(dot-dashed line) and the conditional eopDD (dashed line). Each plot is based on 1,000,000 simulated paths for

each jump size. All paths are simulated from the normal inverse Gaussian Lévy model with an additional Poisson

jump component.
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1.7 Drawdown Sensitivity to Autocorrelation

Figure 1.6 provides the simulation results for this setting. Starting from the base case, an

additional jump of a size between −30% and +30% with frequency λ = 1 is implemented. As

before, although jump size and jump frequency are fixed, each realization drawn from the model

may or may not contain an additional jump (or many). The results show that upward jumps

starkly differ from downward jumps. All drawdown measures are unaffected by upward jumps of

various sizes. On the one hand, an upward jump may reduce drawdown by offsetting a previous

decline. On the other hand, it may increase drawdown by setting a new benchmark high. The

two effects seem to offset each other. Contrary to upward jumps, downward jumps strongly

increase all measures of drawdown risk. Whereas upward jumps sometimes offset a previous

downturn, downward jumps always cause drawdown by definition. Downward jumps affect

all measures in an approximately linear fashion, i.e., a downward jump of −30% increases a

drawdown measure by twice the absolute amount as a downward jump of −15% compared to

the base case. To emphasize the size of the effect, an anticipated −30% shock in our setting may

double the expected MDD or even triple expected eopDD.

Testing the validity of the results with the alternative jump diffusion model of section 1.5, we

obtain the relationships displayed in figure 1.12 in A.5. The impact of the additional jump on

the drawdown measures almost perfectly coincides for both models which suggests robust results.

1.7 Drawdown Sensitivity to Autocorrelation

Drawdown measures are path-dependent by nature. To derive the drawdown graph, knowledge

of the path is essential. In the models considered so far, paths are constructed in a Lévy fashion,

i.e., increments are independent and stationary. In the following, we relax these conditions and

investigate the effect of dependence in increments on our set of drawdown measures. We employ

the standard AR(1) and GARCH(1,1) models to introduce dependence in the mean and variance

equations, respectively.

Within these models, we cannot hold the first four moments constant while varying the auto-

correlation. Since we have witnessed the sweeping influences of the first and especially second

moments in figures 1.3 and 1.10, we control for expectation and standard deviation while varying

the autocorrelation.
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1 Drawdown Measures and Return Moments

1.7.1 Sensitivity in GARCH model

To incorporate dependence in the variance equation, often witnessed as volatility clustering, we

use the Generalized Autoregressive Conditional Heteroscedasticity model (GARCH) introduced

by Bollerslev (1986). To simulate series of returns r1, . . . , rT , we choose a normal GARCH(1,1)

structure given by

rt = C + εt, εt ∼ N
(
0, σ2

t

)
σ2
t = ω + αε2

t−1 + βσ2
t−1,

(1.14)

where C ∈ R, α, β ≥ 0, ω > 0 and α + β < 1 (Bollerslev, 1987). When fourth moments are

finite17, the 1-step autocorrelation function for the squared process is given by

ρ = corr
(
ε2
t , ε

2
t−1

)
= α+ α2β

1− 2αβ − β2 , (1.15)

which is monotonically increasing in α and β (Ding and Granger, 1996). To isolate the effect of

autocorrelation on the drawdown measures, we prescribe an autocorrelation ρ and determine

the corresponding α = β. Next, we control for changes in the mean and standard deviation by

setting C and ω such that the expectation and standard deviation of annual log returns are 0.08

and 0.20, respectively.18 For each parameter set thus obtained, we simulate 1,000,000 paths and

compute all drawdown measures as before.

The results are provided in figure 1.7. Unambiguously, the relationship between autocorrelation

and all drawdown measures under consideration is virtually flat. Thus, volatility clustering

appears to have no significant effect on drawdown measures.

1.7.2 Sensitivity in AR model

To incorporate dependence in the mean equation, we use the AR (Autoregressive) model as in

Hamilton (1994). In our AR(1) model, series of daily log returns r1, . . . , rT are given by the

difference equation

rt = C + ϕ rt−1 + εt, εt ∼ N
(
0, σ2

ε

)
, (1.16)

where r0 = 0, C ∈ R, |ϕ| < 1 and σ2
ε > 0. The annual return is given by R =

∑T=252
t=1 rt.

17For the GARCH(1,1), E
[
ε4
t

]
<∞ if 3α2 + 2αβ + β2 < 1, which we require in the following (Bollerslev, 1987).

18To this end, we initialize the GARCH(1,1) process for the daily returns in the stationary mean and variance,

which are given by C and ω
1−α−β , respectively.
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Figure 1.7: Effect of autocorrelation on several drawdown risk measures in a GARCH(1,1) model. Mean and

standard deviation of annual returns are held constant. As before, the CDD-chart (top left) contains the MDD,

CDD0.8 and ADD from top to bottom. The top right chart displays the CED for levels 0.95, 0.9, 0.85, and 0.8.

The bottom chart contains the eopDD (bold line) and its decomposition into the probability of eopDD (dot-dashed

line) and the conditional eopDD (dashed line). Each plot is based on 1,000,000 simulated paths for each fixed

autocorrelation.
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1 Drawdown Measures and Return Moments

For the AR(1) process, we analyze how the drawdown measures are affected by autocorrelation

in the returns. The latter is immediately available as

corr (rt, rt−1) = ϕ (1.17)

according to Hamilton (1994). Then, we determine

E[R] = CT

1− ϕ and Var(R) = σ2
ε Ξ(ϕ, T ) (1.18)

where Ξ is a function of ϕ and T as detailed and derived in appendix A.3. We start with the base

case in which E[R] = µ = 8%,
√
Var(R) = σ = 20%. Next, we set ϕ to model autocorrelation

and choose C and σ2
ε such that the annual expectation and standard deviation remain constant,

i.e.,

C = µ(1− ϕ)
252 and σ2

ε = σ2

Ξ(ϕ, 252) . (1.19)

Again, we compute the results for all drawdown measures of section 1.2. The plots contained in

figure 1.8 are similar for all drawdown measures: autocorrelation in the returns has close to no

impact. In general, a slight downward trend can be observed, i.e., the higher the autocorrelation,

the slightly smaller the drawdown measures.

One of the drawdown measures under consideration, the CED, has been studied with regards

to AR(1) autocorrelation before. Goldberg and Mahmoud (2017) report a significantly positive

relationship between the AR-parameter ϕ and the CED. Although these results seem to contradict

our findings, there is a plausible explanation. In the AR model without any corrections, increasing

the autocorrelation ϕ also drives up the return variance. This is intuitive and validated by

Var (rt) = σ2
ε

1− ϕ2

as in formula (A.2) in A.3 because by increasing ϕ the denominator becomes small which

increases the variance. Hence, as Goldberg and Mahmoud (2017) increase ϕ and intend to

measure the effect of autocorrelation, they accidentally also measure the effect of variance. From

our previous results in figures 1.3 and 1.10, we know that changes in variance have a large impact

on all drawdown measures. Hence, we conjecture that autocorrelation in itself does not increase

drawdown but that increasing the autocorrelation parameter in the model increases variance

which we have seen, in turn, to increase drawdown.

To be sure, we compare the effect of autocorrelation on the CED while applying different controls.

Figure 1.9 contains the results. First, we increase autocorrelation but do not control for anything.
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Figure 1.8: Effect of autocorrelation on several drawdown risk measures in an AR(1) model. Mean and standard

deviation of annual returns are held constant. As before, the CDD-chart (top left) contains the MDD, CDD0.8

and ADD from top to bottom. The top right chart displays the CED for levels 0.95, 0.9, 0.85, and 0.8. The

bottom chart contains the eopDD (bold line) and its decomposition into the probability of eopDD (dot-dashed

line) and the conditional eopDD (dashed line). Each plot is based on 1,000,000 simulated paths for each fixed

autocorrelation.
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Figure 1.9: Is the increase in CED with AR(1) autocorrelation reported in Goldberg and Mahmoud (2017) driven

by autocorrelation or variance? All three plots are generated from the AR(1) model. In the left plot, ϕ is increased

with no correction for simultaneous changes in expectation and variance. Correction 1 holds the expectation

constant as ϕ changes. In the right plot, we account for both expectation and variance, thus isolating the effect of

autocorrelation best. In all plots, the CED is presented for levels 0.95, 0.9, 0.85, and 0.8. Each plot is based on

1,000,000 simulated paths for each fixed autocorrelation.

As expected, the CED strongly increases, which is the same result as in Goldberg and Mahmoud

(2017). Next, we hold the expectation constant while varying ϕ. The effect on the CED remains

strong as before. Third, we also correct for the variance and observe that the effect on the

CED disappears entirely. Repeating the analysis for the other drawdown measures yields similar

results. Thus, we conclude that it is variance that drives up the drawdown measures and AR(1)

autocorrelation has no significant effects.

Returning to the GARCH(1,1) model, we can identify the same phenomenon. If we stop

controlling for mean and variance, all drawdown measures increase. Again, we observe that in

order to increase autocorrelation, we increase α and β which, in turn, increases the unconditional

variance ω
1−α−β . We conclude that in both models it is important to control for the variance to

identify the true impact of autocorrelation which is in both cases negligible.

1.8 Conclusion

This paper’s central contribution to the study of drawdown risk measures is twofold. First, it

adds to the motivation of drawdown measures a psychological component which is founded in

regret theory and behavioral finance. A new end-of-period drawdown measure which captures

this psychological component is introduced and analyzed theoretically. Second, this paper relates
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the study of higher moments of returns to the field of drawdown risk measures. It thus provides

answers to natural questions like how asymmetry and fat tails influence how risky a strategy is

deemed by different drawdown risk measures.

The new eopDD measure makes it possible to take into account that investors often encounter fixed

investment horizons, evaluation periods or portfolio rebalancing cycles such that emphasizing the

performance at the end of the time horizon is important. The new measure has straightforward

interpretations in terms of regret with respect to optimal market timing and satisfies the desirable

properties of generalized deviation measures (Goldberg and Mahmoud, 2017). Empirically, it is

found to rank portfolios differently than previous drawdown measures.

To analyze the link between return moments and drawdown measures, analytic results for the

drawdown quantities would be ideal. However, explicit results for drawdown quantities are

almost non-existent in the literature. Certainly, an analytic study of drawdown quantities at

least requires results about the suprema of the underlying stochastic processes, obtaining which

is in itself far from trivial. For the basic drawdown graph, most existing results are either stated

specifically for the (drifted) Brownian motion process (cf. Landriault et al. (2015) and the

references therein), or require the stochastic process to be spectrally negative (e.g., Mijatović

and Pistorius (2012)) – or spectrally positive in the case of drawup instead of drawdown (e.g.,

Pistorius (2004)) – which by definition means that the Lévy measure is supported by (−∞, 0)

(Doney, 2007). Intuitively, spectrally negative processes may move upwards and downwards by

diffusion, may jump downwards, but may never jumps upwards (Doney, 2007). Unfortunately,

neither the NIG Lévy model nor our jump diffusion model are spectrally negative. The NIG

model has upward jumps as its Lévy measure is not concentrated on (−∞, 0), compare, for

example, the Lévy-Khintchine formula in Rydberg (1997). In our jump diffusion model, the

compound Poisson process explicitly jumps upwards with probability 1
2 .

Moreover, results are usually only available for the Maximum Drawdown because it can be derived

from the stopping time τa of the drawdown process first crossing the threshold a (Landriault

et al., 2017b). Mostly, other quantities (related to this stopping time) of the drawdown graph

are considered, for example, the last time the price was at its supremum prior to τa, the running

maximum and minimum at τa, the overshoot and undershoot of the drawdown process at τa (cf.

the sextuple law of Mijatović and Pistorius (2012) or the results in Landriault et al. (2017a) both

formulated in terms of joint Laplace transforms).

In fact, it is already difficult to obtain distributional results for the running maximum of a Lévy
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process, see the extensive references in Kwásnicki et al. (2013). Although the general case has

been addressed as early as in Baxter and Donsker (1957), explicit results have yet been found

for the Brownian motion, the Cauchy process, the compound Poisson with Lévy Khintchine

exponent 1− cos ξ and the (reversed) Poisson process with drift – but neither for the NIG nor

for the jump diffusion processes (Kwásnicki et al., 2013).

In light of the difficulties with an analytic approach, which we leave for further research, we

instead analyze the link between return moments and drawdown measures in a comprehensive

simulation study. Our simulation study includes the new end-of-period drawdown measure as

well as all standard drawdown measures covered in the literature. We employ a normal inverse

Gaussian Lévy model for simulating the paths because it allows wide-ranging manipulation

and analytic computation of the return moments which is vital for this kind of analysis. We

double-check the results with a second tailor-made jump diffusion model and obtain confirming

results.

The simulation study finds that for the first and second moments all drawdown measures react

similarly and in line with standard moment preferences that high odd moments are desirable and

high even moments are not. For higher moments, some results are rather counter-intuitive. For

example, high kurtosis is rewarded by the MDD but penalized by the CED0.95. Consequently,

practitioners are advised to scrutinize if their choice of risk measure is consistent with their needs.

For skewness and kurtosis, members of the CED family generally yield more promising results

than members of the CDD or eopDD family. For high confidence levels, the CED complies with

moment preferences for skewness and kurtosis while the ADD does neither.

Extending the model to include additional jumps, we find that upward shocks have close to

no impact whereas downward shocks raise all drawdown measures significantly. Finally, we

investigate the drawdown measures’ sensitivity to autocorrelation and show that effects are

minute compared to the moment sensitivities.

A Appendix

A.1 Definition of Moments

Many essential properties of probability distributions are encoded in the distributions’ moments.

In general, the n-th moment of a random variable refers to the expectation of its n-th power. It

is commonplace to make higher moments of different distributions comparable by centralization
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around their mean and normalization with their standard deviation. This way, the (centralized

and normalized) moments equal the well-known quantities expectation, variance, skewness, and

kurtosis. For some random variable X, for example, the end-of-period returns of a stochastic

process, the definitions of the moments are as in the following table.

Name Moment Definition

Expectation 1st Moment E [X]

Std. dev.
√
2nd Centr. Moment σX =

√
E
[
(X − E[X])2

]

Skewness 3rd Centr. Norm. Moment E
[(

X − E[X]
σX

)3]

Kurtosis 4th Centr. Norm. Moment
E
[
(X − E[X])4

]
σ4
X

Table 1.3: Definitions of (higher) moments.

A.2 Moment Formulas for the Jump Diffusion Process

In the description of the jump diffusion model in section 1.5, the derivation of the system of

equations (1.13) for the first four moments has been omitted. In the following, we provide a

detailed guide for computing the kurtosis since this constitutes the most complicated case. For

brevity, we will however not explicitly state all formulas. For illustration, we will in the end

provide the explicit formula for the first moment. Recall formula (1.11) for the log return of the

price process for one year

X := µ+ σW1 +
N1∑
i=1

Yi,

where Wt is the Wiener process at time t and Nt ∼ Poi(λt) with λ = 1. Recall from the previous

section that

kurtosis(X) =
E
[
(X − E[X])4

]
Var(X)2 .

In the numerator, we apply binomial formulas, use linearity of the expectation, and collect terms

to obtain

E[X4]− 4EX3]E[X] + 6E[X2]E[X]2 − 3E[X]4.

In the denominator, we use that

Var(X) = E[X2]− E[X]2.
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Hence, it remains to compute E[Xk] for k = 1, . . . , 4 and collect terms. We rewrite X as

X = Z + P where Z = µ+ σW1 ∼ N (µ, σ) and P =
∑N1
i=1 Yi. Once again by binomial formulas,

linearity of the expectation and independence of Z and P , we can compute E[Xk] once all the

expectations E[Zk] and E[P k], k = 1, . . . , 4 are known. To this end, we use the moment-generating

functions of Z and P .19 For Z ∼ N (µ, σ), the moment-generating function is given by

MZ(x) = E [exp(x · Z)] = exp
(
µx+ 1

2σ
2x2
)
.

For the compound Poisson process P , the moment-generating function is

MP (x) = exp (MY1(x)− 1) ,

where MY1(x) is the moment-generating function of Y1. As is well-known, E [Xn] equals the n-th

derivative of MX(x) evaluated at x = 0. This procedure yields

E[Z] = µ E[Z2] = µ2 + σ

E[Z3] = µ3 + 3µσ E[Z4] = µ4 + 6µ2σ + 3σ2.

For P , we first need the moment-generating function MY1(x) of

Y1 =


log fu with probability 0.5,

log fd with probability 0.5,

which is E[exp(x · Y1)] = 1
2 exp (x log fu) + 1

2 exp
(
x log fd

)
. Thus,

MP (x) = exp
(1

2 (fu)x + 1
2
(
fd
)x
− 1

)
.

In total, it now remains to compute well-behaved derivatives which is straightforward and thus

omitted. Then, the formula for the kurtosis from the system of equations (1.13) is obtained. As

an example, we now derive the explicit formula for the first moment:

dMP (x)
dx =

(1
2 (fu)x log (fu) + 1

2
(
fd
)x

log
(
fd
))

exp
(1

2 (fu)x + 1
2
(
fd
)x
− 1

)
and evaluating at x = 0 yields

dMP (x)
dx

∣∣∣∣
x=0

= 1
2 log (fu) + 1

2 log
(
fd
)

= E[P ].

In total, we obtain for the expectation of the log return

E[X] = E[Z] + E[P ] = µ+ 1
2 log (fu) + 1

2 log
(
fd
)

as provided in the system of equations (1.13).

19The two postulated formulas for the moment-generating functions can be verified by straightforward computations

from the respective definitions.
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A.3 Moment formulas for the AR(1) process

For the AR(1) model applied in section 1.7, we derive the expectation and variance of annual

returns R. To recall, series of daily returns r1, . . . , rT are given in the AR(1) model by the

difference equation

rt = C + ϕ rt−1 + εt, εt ∼ N
(
0, σ2

ε

)
,

where r0 = 0, C ∈ R, |ϕ| < 1 and σ2
ε > 0. In the following, we use three results from Hamilton

(1994):

E [rt] = ν = C

1− ϕ (A.1)

Var (rt) = σ2
ε

1− ϕ2 (A.2)

E [rt+n · rt] = ν2 + σ2
ε

1− ϕ2ϕ
n. (A.3)

For the annual return R =
∑T=252
t=1 rt, we compute

E [R] = E
[
T∑
t=1

rt

]
=

T∑
t=1

E[rt]
(A.1)=

T∑
t=1

C

1− ϕ = CT

1− ϕ.

For the variance, we obtain

Var(R) = Var
(

T∑
t=1

rt

)
=

T∑
t=1

Var (rt) + 2
∑

1≤i<j≤T
Cov (ri, rj)

(A.2)=
T∑
t=1

σ2
ε

1− ϕ2 + 2
∑

1≤i<j≤T

(
E [rirj ]− E [ri]E [rj ]

)
(A.1)= σ2

εT

1− ϕ2 + 2
∑

1≤i<j≤T
E [rirj ]− 2T

2 − T
2

(
C

1− ϕ

)2
.

To apply equation (A.3) to the above sum, we count the number of n-distant pairs which is T −n

for n = 1, . . . , T . Thus,

Var(R) = σ2
εT

1− ϕ2 + 2
T∑
n=1

(T − n)
(
ν2 + σ2

ε

1− ϕ2ϕ
n

)
− C2T (T − 1)

(1− ϕ)2

= σ2
εT

1− ϕ2 + 2ν2
T∑
n=1

(T − n) + 2σ2
ε

1− ϕ2

T∑
n=1

(T − n)ϕn − C2T (T − 1)
(1− ϕ)2

= σ2
εT

1− ϕ2 + ν2T (T − 1)−
2σ2

εϕ
(
−ϕT + ϕT − T + 1

)
(1− ϕ2) (1− ϕ)2 − C2T (T − 1)

(1− ϕ)2

(A.1)=
σ2
εT (1− ϕ)2 − 2σ2

εϕ
(
−ϕT + ϕT − T + 1

)
(1− ϕ2) (1− ϕ)2

= σ2
ε ·
(
T (1− ϕ)2 − 2ϕ(−ϕT + ϕT − T + 1)

(1− ϕ2) (1− ϕ)2

)
︸ ︷︷ ︸

=:Ξ(ϕ,T )

.
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A.4 Proof of Uniqueness of the NIG Model

We prove that the system of equations (1.9) from section 1.3 has at most one set of solutions

(α, β, µ, δ). The proof idea is to assume two sets of parameters θ1 = (α1, β1, µ1, δ1) and θ2 =

(α2, β2, µ2, δ2) which yield the same moments and show that θ1 and θ2 must coincide. In other

words, we assume

µ1 + δ1β1
γ1

= µ2 + δ2β2
γ2

(A.4)√
δ1α2

1
γ3

1
=
√
δ2α2

2
γ3

2
(A.5)

3β1
α1
√
δ1γ1

= 3β2
α2
√
δ2γ2

(A.6)

3 + 3
(

1 + 4β
2
1
α2

1

)
1

δ1γ1
= 3 + 3

(
1 + 4β

2
2
α2

2

)
1

δ2γ2
, (A.7)

where γi =
√
α2
i − β2

i , 0 ≤ |βi| < αi, δi > 0 and µi ∈ R for i = 1, 2 and possibly different sets of

parameters θ1 6= θ2.

From (A.6), we obtain

β1
α1
√
δ1γ1

= β2
α2
√
δ2γ2

⇐⇒ β2
1

α2
1δ1γ1

= β2
2

α2
2δ2γ2

, (A.8)

since β1 and β2 have the same sign because the denominator is strictly positive in the first

equation due to the parameter restrictions of the model.

From (A.7), we obtain(
1 + 4β

2
1
α2

1

)
1

δ1γ1
=
(

1 + 4β
2
2
α2

2

)
1

δ2γ2
⇐⇒ 1

δ1γ1
+ 4 β2

1
α2

1δ1γ1
= 1
δ2γ2

+ 4 β2
2

α2
2δ2γ2

and using (A.8) we get

δ1γ1 = δ2γ2. (A.9)

Inserting (A.9) into (A.8), we obtain

β2
1
α2

1
= β2

2
α2

2
and β1

α1
= β2
α2

(A.10)

by the same sign argument for β as above and α > 0. Using (A.5) in combination with (A.9), we

obtain

δ1α
2
1

γ3
1

= δ2α
2
2

γ3
2
⇐⇒ γ1δ1α

2
1

γ4
1

= γ2δ2α
2
2

γ4
2
⇐⇒ α2

1
γ4

1
= α2

2
γ4

2
,
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which together with (A.10) yields

α2
1β

2
1

γ4
1β

2
1

= α2
2β

2
2

γ4
2β

2
2
⇐⇒ β2

1
γ4

1
= β2

2
γ4

2
⇐⇒ β1

γ2
1

= β2
γ2

2
. (A.11)

Applying the definition of γ, we obtain

γ2
1
β1

= γ2
2
β2
⇐⇒ α2

1 − β2
1

β1
= α2

2 − β2
2

β2

⇐⇒ β1
(
α2

1 − β2
1
)

β2
1

= β2
(
α2

2 − β2
2
)

β2
2

⇐⇒ β1

(
α2

1
β2

1
− 1

)
= β2

(
α2

2
β2

2
− 1

)

⇐⇒ β1 = β2,

where the last equivalence is a direct consequence of (A.10). Immediately, we obtain

α1 = α2 and γ1 = γ2

by (A.10) and by definition, respectively. From (A.9), we obtain

δ1 = δ2 and µ1 = µ2

from (A.4). Hence, we conclude that the set of parameters (α, β, µ, δ) which solves the system of

equations 1.9 is unique.

A.5 Simulation Results for the Jump Diffusion Process

This appendix provides details to the results summarized in section 1.5 (figures 1.10 and 1.11)

and in section 1.6 (figure 1.12).
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Figure 1.10: Comparative static for 1st moment (left column) and 2nd moment. The CDD-charts (first row)

contain the MDD, CDD0.8 and ADD from top to bottom. In the middle row, we display the CED for levels

0.95, 0.9, 0.85, and 0.8. The bottom row contains the eopDD (bold line) and its decomposition into the probability

of eopDD (dot-dashed line) and the conditional eopDD (dashed line). All paths are simulated from the jump

diffusion process introduced in section 1.5.
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Figure 1.11: Comparative static for 3rd moment (left column) and 4th moment. The CDD-charts (first row)

contain the MDD, CDD0.8 and ADD from top to bottom. In the middle row, we display the CED for levels

0.95, 0.9, 0.85, and 0.8. The bottom row contains the eopDD (bold line) and its decomposition into the probability

of eopDD (dot-dashed line) and the conditional eopDD (dashed line). All paths are simulated from the jump

diffusion process introduced in section 1.5.
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Figure 1.12: Effect on several drawdown risk measures if a shock is added to the model in its base case configuration.

The size of the additional jump varies between −30% and +30%. As before, the CDD-chart (top left) contains

the MDD, CDD0.8 and ADD from top to bottom. The top right chart displays the CED for levels 0.95, 0.9, 0.85,

and 0.8. The bottom chart contains the eopDD (bold line) and its decomposition into the probability of eopDD

(dot-dashed line) and the conditional eopDD (dashed line). All paths are simulated from the jump diffusion process

introduced in section 1.5.
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Abstract

Over the years, a diverse range of drawdown measures has evolved to guide asset management.

We show that almost all of these measures fit into a unified framework. This new framework

simplifies the implementation of drawdown measures and improves understanding their similarities

and differences. Conceptual differences between drawdown measures translate into different

rankings of portfolios, which we document in a simulation study. Our research also shows that

all drawdown measures can (to some degree) discriminate between skillful and unskillful portfolio

managers, but differ in terms of accuracy. However, the ability to detect skill does not easily

improve performance ratios where drawdown measures serve as the denominator. In conclusion,

our study shows that the choice of an adequate drawdown measure is vital to the assessment of

investments because different measures emphasize different aspects of risk.

Acknowledgments: We would like to thank an anonymous referee, Antti Ilmanen, Jan Viebig, and seminar

participants at the BVI-CFR Event 2019, Frankfurt, and the CFR Research Workshop 2020, Düsseldorf, for helpful
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1A version of this chapter is accepted for publication in the Journal of Portfolio Management, Vol. 47, No. 3

(2021). The Journal of Portfolio Management is published by Portfolio Management Research. Reprinted with
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2 Drawdown Measures: Are They All the Same?

2.1 Introduction

Drawdown measures quantify risk by penalizing losses from previous gains. They capture

important aspects of what investors consider ‘risk’, including psychological aspects (e.g., regret),

which are central to financial decision making (Kahneman and Riepe, 1998; Frydman and Camerer,

2016). Drawdown measures are path-dependent by construction, which sets them apart from other

risk measures, such as (semi-)variance, value-at-risk, or expected shortfall. Therefore, drawdown

measures complement classical risk measures in important ways and are widely used in asset

management. Driven by industry and academia2, a wide variety of drawdown measures has been

developed, including maximum drawdown, average drawdown, conditional drawdown, conditional

expected drawdown, average squared drawdown, and end-of-period drawdown. (Martin and

McCann, 1989; Chekhlov et al., 2005; Goldberg and Mahmoud, 2017; Möller, 2018). Among

these, the maximum drawdown is undoubtedly the most well-known measure. However, as

new drawdown-based measures have emerged, it is important to gain a better understanding

of their potential. How similar are these measures? Do they all lead to the same conclusions?

If these measures do differ, what should guide a specific investor’s choice of an appropriate

drawdown measure in a specific situation? How could these measures be further improved to fit

investor preferences? Is the maximum drawdown still the most reasonable choice or should other

drawdown measures be preferred? Our paper provides answers to these questions both from a

theoretical and empirical angle.

As a theoretical contribution, we establish that almost all drawdown measures can be subsumed

under a common framework, which we refer to as the weighted drawdown (wDD) framework

because its main idea is to attach weights to different elements of the drawdown graph. We

explicitly show how to choose these weights to recover various drawdown measures. The weights

themselves provide information about the economic idea behind each measure. Additionally, a

comparison of weights offers a straightforward way of discovering differences and similarities

between drawdown measures. The wDD framework is also useful in the implementation of

drawdown measures because a generic computer code can simply be adapted to alternative

weight functions to obtain different measures. A further benefit of the wDD framework is that it

not only enhances the understanding of existing drawdown measures, but also provides an easy

2The drawdown concept was first floated and propagated by finance practitioners, such as Young (1991), Burke

(1994), and Kestner (1996), in a quest to find risk measures that are relevant to investors and has been analyzed in

different contexts in the academic literature (Grossman and Zhou, 1993; Alexander and Baptista, 2006; Schuhmacher

and Eling, 2011; Kardaras et al., 2017; Roche, 2019).
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2.1 Introduction

tool to construct customized drawdown measures. By choosing a set of weights, new drawdown

measures can be developed and tailored to a client’s conception of risk.

In our empirical study, we quantify the degrees of similarity between various drawdown measures.

Using almost 20 years of MSCI World index data, we simulate the behavior of portfolio managers

who assemble stock portfolios under various realistic constraints. For the resulting portfolio

strategies, we then compute rank correlations, that is, we compare how each drawdown measure

ranks these portfolio strategies in comparison to other drawdown measures.3 Consistent with

the intuition from the wDD framework, our empirical results reveal a nuanced system of

relationships between the different drawdown measures. Notably, the results show that average

drawdown, average squared drawdown, and linearly weighted drawdown are closely related, but

that correlations drop significantly when it comes to maximum drawdown and end-of-period

drawdown. Hence, different drawdown measures potentially yield substantially different rankings

of investments and are not all the same.

In the base setting of our empirical study, all portfolio managers pick stocks from the index purely

at random. Additionally, we model skillful and unskillful managers by assigning different hit

ratios – i.e., probabilities to pick future winners.4 The analysis of management skill is important

because a lack of skill represents a crucial aspect of risk that drawdown measures should be

able to detect. Our empirical results show that all drawdown measures are indeed useful in skill

discrimination. They are capable of detecting skill because they capture more aspects about risk

than variability alone. However, while average drawdown and linearly weighted drawdown are

particularly useful, maximum drawdown and end-of-period drawdown are considerably weaker at

differentiating between skillful and unskillful managers.

Apart from their immediate application as risk measures, drawdown measures are important

building blocks for performance ratios. Such ratios are commonly constructed for performance

measurement purposes by dividing excess returns (over the risk-free rate) by some measure

of risk (Caporin et al., 2014).5 Using drawdown measures in the denominator, some of the

3Rank correlations are a common method for assessing similarities (see, for example, Eling (2008), Haas Ornelas

et al. (2012), or Auer (2015)).
4Since Jensen (1968), a vast body of literature has studied manager skill using different empirical techniques

(Grinblatt and Titman, 1989; Fama and French, 2010; Sénéchal, 2010; Berk and van Binsbergen, 2015). By varying

the hit ratio, our simulation model incorporates skill in a very intuitive way without requiring complex assumptions

about the data generating process.
5This plug-in technique is inspired by the Sharpe ratio and may be theoretically sound for some risk measures in
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2 Drawdown Measures: Are They All the Same?

resulting drawdown-based performance ratios are already known from the literature and have

received names of their own; for example, Calmar ratio when the maximum drawdown is in the

denominator, Pain ratio when the average drawdown is in the denominator, and Ulcer ratio or

Martin ratio when the average squared drawdown is in the denominator (Cogneau and Hübner,

2009; Schuhmacher and Eling, 2011). The question as to whether ratios, which use different

drawdown measures in the denominator, truly differ from each other has been asked repeatedly

in the literature.6 Our empirical study based on portfolio rankings via performance ratios shows

that differences exist between drawdown measures, although rankings via performance ratios are

more similar than rankings via risk measures. Surprisingly, drawdown performance measures do

not improve the detection of skill as compared to the Sharpe ratio. This is due to deficiencies in

performance ratios in general and is not specific to drawdown measures. To the contrary, the

ability of drawdown measures to detect skill becomes a drawback in the ranking of portfolios

if observed returns become negative. Therefore, a naïve application of drawdown performance

measures is not recommended.

Given all the empirical evidence, the question as to whether drawdown measures are all the

same can be answered in the negative, which is in line with intuition from the wDD framework.

While all drawdown measures produce portfolio rankings that are positively correlated, maximum

drawdown and end-of-period drawdown display significantly different results. All drawdown

measures can be used to differentiate between skillful and unskillful managers, but average

drawdown and linearly weighted drawdown outperform their peers. Differences in portfolio

rankings and skill detection also appear in performance ratios; however, results based on

drawdown performance ratios are more similar than the results based on the drawdown measures

themselves.

2.2 A Unified Framework of Drawdown Measures

To date, many different drawdown-based risk measures have been introduced. The widely used

maximum drawdown (MDD) has been applied in portfolio management at least since the 1980s

and measures the single largest peak to trough loss (Garcia and Gould, 1987). Like the average

some circumstances, like the Sharpe ratio under normally distributed returns (Sharpe, 1966, 1975, 1994). However,

there is so far no theoretical justification to apply this technique to drawdown measures.
6Eling and Schuhmacher (2007), Eling (2008), Caporin and Lisi (2011), Haas Ornelas et al. (2012), Auer and

Schuhmacher (2013), and Auer (2015) conclude that these drawdown ratios are essentially the same because they

lead to the same rankings of investments.
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2.2 A Unified Framework of Drawdown Measures

drawdown (ADD), it belongs to the conditional drawdown family introduced by Chekhlov et al.

(2005). The average squared drawdown (ADD2), also called Ulcer index, was introduced by

Martin and McCann (1989) to emphasize large losses. To incorporate aspects of regret, the

end-of-period drawdown (eopDD) was introduced in Möller (2018).7

All these drawdown measures can be subsumed under a unified framework, which we refer to as

the weighted drawdown (wDD) framework because the main idea is to attach weights to individual

drawdowns. Consider an investor who examines the risk of an investment over the period from

date 0 to date N and assume that market values S0, S1, . . . , SN of the investment portfolio are

available. Then the wDD is defined as the weighted sum, using weights ωi, of the drawdowns Di:

wDD :=
N∑
i=1

ωiDi, 0 ≤ ωi ≤ 1,
N∑
i=1

ωi = 1,

where Di := Mi−Si
Mi

and Mi := max
t=0,...,i

St. The time series of drawdowns Di is called the drawdown

graph. At each point in time, the drawdown graph provides the (percentage) loss incurred from

the previous maximum. Different choices of weights ωi in the wDD framework lead to different

drawdown measures and provide valuable information about the properties of these measures. In

the following paragraph, we explicitly detail the choices of weights necessary to recover each of

the drawdown measures mentioned above.

The ADD is derived by weighting all drawdowns Di equally, hence setting all weights to ωi = 1
N .

To obtain the MDD, the largest element of the drawdown graph receives a weight of one and all

of the other elements a weight of zero because only the largest peak to trough loss is considered.8

The eopDD captures the drawdown at the end of the time period and is defined as the negative

return incurred from the time of the global maximum to date N .9 In terms of ωi, the weight

ωN equals one and all other weights equal zero. For the ADD2, where the drawdowns are first

squared and then averaged, the weights have to be of the form ω∗i = 1
NDi. Because these weights

do not sum to one, we rescale them by computing ωi = 1
Kω
∗
i with K =

∑N
j=1

1
NDj . Such rescaling

7The literature contains even more notions of drawdown. Goldberg and Mahmoud (2017) define an ex-ante

concept requiring the distribution of MDDs, while Landriault et al. (2015) and Landriault et al. (2017b) analyze

the frequency and duration of drawdowns of stochastic processes.
8All members of the conditional drawdown (CDD) family can be obtained by choosing ωi as follows: For the

CDD at confidence level α, count as nα all Di exceeding the α-quantile of the Dis; then ωi = 1
nα

if Di exceeds the

α-quantile and ωi = 0 otherwise.
9The end of the time period considered by the investor may coincide with the investment horizon or refer to the

time at which a regular risk assessment of the investment takes place.
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2 Drawdown Measures: Are They All the Same?

leads to an intuitive interpretation of the weighting scheme because it yields ωi = Di∑N

j=1 Dj
; that

is, each Di receives a weight proportional to its size against all other Dis.10

Within the wDD framework, it is easy to design new drawdown measures. The weights can

be tailored to an individual’s risk preferences, providing an easy way to construct personalized

drawdown measures. For example, it may be reasonable that drawdowns toward the end of the

time period receive higher weights, as investors may remain calm if drawdowns occur at the

beginning, but become increasingly concerned if drawdowns occur toward the end. A set of

weights that reflects such preferences is ω∗i = i
N , where the weights increase linearly from 1

N to 1.

Since these weights do not sum to one, we rescale them via ωi = 1
Kω
∗
i where K =

∑N
j=1

j
N = N+1

2 .

We refer to the resulting drawdown measure as the linearly weighted drawdown (lwDD).

Alternatively, investors may treat drawdowns differently depending on the trend of a strategy.

After heavy losses, drawdowns will likely be perceived as being more painful than drawdowns

incurred when the strategy is already recovering. To reflect such a pattern, one may set all

weights ω∗i to zero if the strategy’s return Ri over the previous month i is positive and to 1
N

otherwise. For the rescaled version ωi, the non-zero weights must be chosen as 1
N∗ , with N∗

denoting the number of instances where Ri ≤ 0. The resulting measure – we call it the trend

weighted drawdown (twDD) – weights all drawdowns Di equally but disregards elements of the

drawdown graph where the strategy is already recovering.

In fact, many other aspects of risk can be captured within the wDD framework. For example,

denote the time from the strategy’s last maximum to date i by di. Weights chosen as di/
∑N
j=1 dj

attach higher weights to prolonged drawdowns and smaller weights to drawdowns of short

duration. Another idea is to assign different weights to drawdowns of different intensities. For

example, drawdowns below a 5%-threshold may be deemed insignificant and receive weight zero.

Figure 2.1 illustrates the weight functions of different drawdown measures for the same (simulated)

drawdown graph. It becomes apparent that the weighting schemes differ significantly, highlighting

certain similarities and differences between the drawdown measures: While ADD, lwDD and

ADD2 usually attach non-zero weights to most elements of the drawdown graph, MDD and

eopDD pick only a single element of the drawdown graph. Depending on the strategy’s trend,

the number of non-zero weights may vary significantly for the twDD. While the weights of ADD,

10In the literature, for example in Caporin et al. (2014), the ADD2 is sometimes defined as the square root of the

version defined above. This alternative does not fit into the wDD framework but is a monotonic transformation

that does not alter the relative ranking of investments.
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Figure 2.1: Illustration of Different Drawdown Measures within the wDD Framework. It shows the weights ωi
needed to obtain specific drawdown measures (i.e., ADD, lwDD, ADD2, twDD, MDD, eopDD) within the wDD

framework. It uses the same simulated drawdown graph with N = 250 for all drawdown measures. This drawdown

graph is depicted by the grey lines. The weight functions are shown as black lines or black dots.

lwDD and eopDD are predetermined at the beginning of the time period, the weights of ADD2,

twDD and MDD depend on the path of the drawdown graph. While lwDD and eopDD both
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focus on drawdowns toward the end of the time horizon, MDD and ADD2 attach the highest

weight to the maximum of the drawdown graph. By highlighting different parts of the drawdown

graph, each drawdown measure emphasizes different aspects of drawdown.

What does the wDD framework tell us about our main question? Are drawdown measures all

the same? Given that many drawdown measures are merely specific versions of the wDD, the

drawdown measures could appear to be all the same. However, as Figure 2.1 shows, the weighting

schemes differ markedly from one drawdown measure to the next. This suggests that at least

some of the measures differ quite significantly from others. To investigate this issue further, we

quantify the degrees of similarity between various drawdown measures in an empirical study.

2.3 Design of Simulation Study

Drawdown measures are applied in many fields11, most notably in fund management. We analyze

drawdown measures within this context by simulating portfolios of fictitious portfolio managers

selecting stocks from the MSCI World universe. Unlike a setup under which actual portfolio data

(e.g., data from hedge funds or mutual funds for which certain information, including information

on the funds’ constituents or strategies, may remain confidential or opaque), our setup provides a

fully transparent and controlled environment that also allows us to introduce management skill.

Data Sources and Data Processing

For the data period from December 1999 to April 2019, monthly constituents data of the MSCI

World index is used to define the investment universe. For each of the constituent stocks, we

obtain daily stock prices from Datastream.12 Any prices denominated in currencies other than

U.S. dollar (USD) are converted to USD using the spot exchange rate taken from Datastream.

To group stocks into broad sectors, we use two-digit Global Industry Classification Standard

(GICS) codes.13 To compute excess returns, U.S. government bond yields for a time to maturity

11Examples of fields include control theory (Hsieh and Barmish, 2017), insurance (Palmowski and Tumilewicz,

2017), energy markets (Charwand et al., 2017), and option pricing (Dassios and Lim, 2018).
12We assume that dividends are reinvested to purchase additional equity. All dividends are on a pre-tax basis.
13The GICS industry classification codes by MSCI and Standard & Poor’s have been found to be superior to

other industry classifications, such as the Fama and French Industry Portfolios and the North American Industry

Classification System (NAICS) (Hrazdil et al., 2013). They are also widely applied in practice (Scislaw, 2015).
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of one year are obtained from Datastream. In total, our investment universe comprises 3,489

stocks from 26 countries and 11 sectors.14

Selecting Portfolios

We consider fictitious portfolio managers, who hold portfolios containing 100 stocks picked

from the MSCI World index at random. To make the selection process more realistic, we add

three design elements. First, we allow for the fact that managers adjust their portfolios over

time. Portfolio adjustments occur because stocks leave the index. Moreover, we allow for some

additional turnover, leading to a total adjustment of 10% per month.15 Second, noting that

managers not only pick stocks, but also assign a portfolio weight to each stock, we mimic such

decisions by assigning each stock a random weight from the set {0%, 0.1% . . . , 2%}, such that

all weights sum to one. Third, in a realistic setting, managers avoid portfolios that drastically

overweight any particular country or sector. Accordingly, we compute the proportions of countries

and sectors in the MSCI World index and limit the deviations from each of these proportions to

be at most 10 percentage points for each manager’s portfolio.

Given these rules for the portfolio selection process, all managers follow the same procedure. On

December 31, 1999, they begin by randomly sampling 100 stocks from the index and assigning

random weights between 0% and 2%. If the resulting portfolio deviates from the country and

sector proportions of the index by more than 10 percentage points, they sample anew until

a portfolio satisfies the country and sector bounds. With the current end-of-day stock prices,

each manager computes how much of each stock has to be bought to obtain the previously

sampled portfolio weights. For each day of the following month, they compute the portfolio values

by aggregating the individual stock prices. If a stock price is unavailable, the last obtainable

price is used. Since the managers may select any stock from the index at the time of portfolio

construction, the procedure is free from survivorship bias.

At the end of the month, the managers remove all stocks from the portfolio that have exited the

14This universe includes all stocks present in the MSCI World index at least once between December 1999 and

April 2019. At the end of the horizon, the index comprises 1641 stocks from 23 countries and 11 sectors.
15We do not consider transaction costs, which would affect both the costs related to turnover and the subsequent

rebalancing of portfolio weights. Assuming proportional transaction costs of 50 bp per transaction, the turnover

step would generate annual costs of 1.2%. Transaction costs arising from the rebalancing step depend on the

dispersion of asset returns. Accounting for these costs would be arduous and would likely provide no additional

insights.
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index. Additionally, they randomly remove stocks until they arrive at the total monthly turnover

of 10%. In the unlikely case that more than 10% of the portfolio’s stocks leave the index, there

is no additional turnover that month. Next, the managers fill the portfolio back up to 100 stocks

by randomly selecting stocks from the new index constituents, excluding those that have been

deleted from the portfolio in the previous deletion step. For the new stocks, they also sample new

portfolio weights. They draw such sets of new stocks and weights until a new portfolio is found

within the country and sector constraints.16 This procedure is repeatedly applied each month.

Introducing Skill

In the base simulation, all of the managers are treated equally in the sense that their information

sets are the same: They all pick from the index constituents purely at random and they all

check the country and sector bounds afterwards. We now extend the simulation model and allow

managers to have some skill in picking future winners over future losers. When the portfolio is

reassembled each month, the universe is split into two halves at the median return of the following

year. The upper half outperforms its peers in the following year (by having above median returns),

while the lower half underperforms. A skillful manager has the ability to anticipate if a given

stock belongs to the upper or lower half, i.e., a skillful manager has some form of foresight. We

define different levels of skill by varying a manager’s probability to correctly decide if a stock

would outperform or underperform. In portfolio management, the above probability is known as

the hit ratio and shall be denoted by δ.17 In our simulation study, we vary δ between 50% and

60%, where 50% corresponds to the purely random case and 60% aims to model a very skillful

manager. Each time a stock is added or deleted from the portfolio during the simulations, we

adjust the probabilities according to a manager’s hit ratio. Thus, managers with δ = 60% skill

have a higher chance of including a future winner in their portfolio and of dropping a future

loser. On average, such skillful managers generate significantly higher returns at similar levels of

standard deviation and skewness (see Table 2.1). Because of its effect on mean returns, higher

manager skill also reduces the expected shortfall and the value-at-risk.

16If in a rare case, this fails in more than 1,000 attempts, the manager increases the turnover in 1%-steps.
17The most prominent skill measure is the α with respect to some factor model. Compared to α, the hit ratio is

more immediate because it operates on the level of individual portfolio constituents without further assumptions

about the data generating process. It requires information about the investment universe but not about asset

pricing factors and factor sensitivities.
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Hit ratio Mean SD Skewness Min. Max. VaR ES

0.50 0.093 0.213 −0.100 −0.517 0.748 −0.277 −0.422

0.51 0.098 0.213 −0.096 −0.512 0.755 −0.270 −0.416

0.52 0.104 0.213 −0.093 −0.506 0.761 −0.264 −0.410

0.53 0.110 0.213 −0.097 −0.503 0.766 −0.257 −0.406

0.54 0.116 0.213 −0.088 −0.498 0.777 −0.253 −0.401

0.55 0.123 0.213 −0.078 −0.492 0.786 −0.245 −0.394

0.56 0.128 0.214 −0.083 −0.490 0.792 −0.240 −0.392

0.57 0.134 0.214 −0.080 −0.484 0.799 −0.233 −0.385

0.58 0.141 0.214 −0.072 −0.477 0.805 −0.226 −0.378

0.59 0.146 0.214 −0.067 −0.474 0.813 −0.220 −0.374

0.60 0.153 0.214 −0.057 −0.468 0.822 −0.213 −0.368

Table 2.1: Summary Statistics of Portfolio Returns for Different Skill Levels. The summary statistics are computed

from annual discrete portfolio returns using a rolling window at a monthly frequency. The numbers represent

averages from 1,000 simulated portfolios of fictitious portfolio managers. The value-at-risk and the expected

shortfall are computed for the 95% confidence level.

2.4 Similarity in Portfolio Rankings

As a first aspect of similarity between drawdown measures, we investigate whether these measures

lead to the same ranking of portfolios. As a measure of similarity, we use rank correlations

between portfolio rankings resulting from different drawdown measures.18 We conduct pairwise

comparisons for all measures mentioned in Figure 2.1, and include the standard deviation and

the expected shortfall for comparison.19 The objects to be ranked are the portfolios of 1,000

fictitious portfolio managers as described above. Rank correlations are obtained using Kendall’s

τ .20 For each of the 210 (overlapping) one-year periods21 in our data period, we compute the

18To quantify the degree of similarity between the measures, rank correlations have been widely applied (see, for

example, Eling (2008), Haas Ornelas et al. (2012), or Auer and Schuhmacher (2013)).
19The expected shortfall is computed for the 95% confidence level. In our setup, employing the expected shortfall

or the value-at-risk leads to virtually the same results.
20Kendall’s τ and Spearman’s ρ are the most common choices for rank correlation measures. While Spearman’s

ρ lacks a straightforward interpretation, Kendall’s τ can easily be interpreted as the probability of two pairs of

observations being concordant minus the probability of being discordant (Noether, 1981). In our setting, it is

advisable to use version b) of Kendall’s τ , which corrects for tied ranks, because the eopDD is frequently zero,

which leads to tied ranks.
21We employ data from December 31, 1999 to April 30, 2019. To implement different hit ratios, one year of future

data is required after a portfolio is set up. Thus, we set up the last portfolio on April 30, 2018. If we wanted to
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rank correlation between two risk measures and report the time-averaged rank correlations in

the lower triangle of Table 2.2. The upper triangle contains 99% confidence intervals for the

corresponding averages computed by using Newey-West standard errors with 12 lags. Panel A of

Table 2.2 contains the results for the purely random case (δ = 0.5) and Panel B contains the

results for highly skillful managers (δ = 0.6). For hit ratios in between, the rank correlations are

well-behaved and tend to descend from the values in Panel A to the values in Panel B.

Panel A: Managers without skill (hit ratio 0.5)
ADD lwDD ADD2 twDD MDD eopDD ES SD

ADD 1 [0.81, 0.87] [0.85, 0.90] [0.68, 0.79] [0.54, 0.63] [0.21, 0.43] [0.27, 0.33] [0.27, 0.33]

lwDD 0.840 1 [0.77, 0.87] [0.62, 0.76] [0.51, 0.63] [0.27, 0.50] [0.25, 0.31] [0.24, 0.31]

ADD2 0.874 0.821 1 [0.76, 0.83] [0.63, 0.70] [0.23, 0.47] [0.29, 0.35] [0.28, 0.35]

twDD 0.736 0.690 0.797 1 [0.58, 0.65] [0.21, 0.45] [0.27, 0.34] [0.27, 0.35]

MDD 0.586 0.568 0.668 0.617 1 [0.19, 0.43] [0.32, 0.41] [0.32, 0.41]

eopDD 0.323 0.387 0.351 0.329 0.311 1 [0.11, 0.22] [0.11, 0.21]

ES 0.299 0.281 0.321 0.308 0.367 0.165 1 [0.60, 0.69]

SD 0.298 0.275 0.314 0.309 0.366 0.157 0.644 1

Panel B: Managers with significant skill (hit ratio 0.6)
ADD lwDD ADD2 twDD MDD eopDD ES SD

ADD 1 [0.80, 0.86] [0.85, 0.89] [0.66, 0.78] [0.53, 0.62] [0.17, 0.37] [0.27, 0.33] [0.26, 0.33]

lwDD 0.828 1 [0.75, 0.85] [0.60, 0.73] [0.48, 0.61] [0.23, 0.44] [0.25, 0.31] [0.24, 0.31]

ADD2 0.867 0.801 1 [0.75, 0.83] [0.63, 0.70] [0.19, 0.41] [0.29, 0.36] [0.28, 0.35]

twDD 0.720 0.665 0.787 1 [0.57, 0.64] [0.17, 0.38] [0.27, 0.35] [0.26, 0.35]

MDD 0.572 0.547 0.660 0.607 1 [0.15, 0.36] [0.32, 0.41] [0.31, 0.40]

eopDD 0.272 0.332 0.296 0.275 0.258 1 [0.10, 0.20] [0.09, 0.19]

ES 0.300 0.280 0.322 0.307 0.361 0.147 1 [0.60, 0.69]

SD 0.296 0.272 0.312 0.305 0.355 0.140 0.642 1

Table 2.2: Rank Correlations Between ADD, lwDD, ADD2, twDD, MDD, eopDD, Expected Shortfall (ES) and

Standard Deviation (SD). The lower triangle contains the average rank correlation of the portfolio rankings (average

over 210 one-year periods); the upper triangle contains the corresponding 99% confidence intervals. Panel A

reports the results for a hit ratio of 0.5 and Panel B reports the results for a hit ratio of 0.6.

The results in Table 2.2 have a straightforward interpretation. When someone compares the

1,000 unskillful portfolio managers using the ADD and someone compares them using the lwDD

update the portfolio one month later, data beyond our data period were necessary. Since all drawdown measures

are evaluated over one-year intervals, the end of the last evaluation period is May 31, 2018. This leads to a total

of 210 one-year periods.
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during a one year period, both rankings would (on average) be correlated by 0.840 (see Table

2.2, Panel A, top left entry). As this correlation is fairly close to one, ADD and lwDD appear to

be fairly similar to each other.

In terms of general structures, Panel A of Table 2.2 shows high pairwise correlations of 0.85±0.03

between ADD, ADD2 and lwDD. Thus, these three measures produce very similar rankings. These

results are highly plausible in light of the wDD framework, as illustrated in Figure 2.1, because

all three drawdown measures assign weights to all elements of the drawdown graph. Correlations

of these measures with twDD, which assigns weights to varying parts of the drawdown graph,

drop slightly, whereas correlations with MDD and eopDD, with only a single element receiving

non-zero weights, drop sharply. Furthermore, it is not surprising that MDD has ADD2 as its

closest relative because MDD and ADD2 assign the highest weight ωi to the same element of the

drawdown graph. The eopDD exhibits the lowest rank correlations to its peers, indicating that

its rankings are significantly different from those of the other drawdown measures. Its closest

relative is lwDD, which also allocates the highest weight to the last element of the drawdown

graph. Moreover, for all pairs of risk measures, the rank correlation is strictly positive and below

0.9 at the 99% confidence level. In comparison, expected shortfall and standard deviation are

rather weakly correlated with the drawdown measures. With a range of rank correlations between

0.258 and 0.874, we can conclude that some of the six drawdown measures under consideration

are closely related while others are very different.

A comparison between Panels A and B shows that rank correlations between drawdown measures

are very robust with respect to the hit ratio. Changes are largest for the eopDD where correlations

decrease monotonically as skill increases. This finding reflects the eopDD’s particular sensitivity

to changes in the first return moment (Möller, 2018) that occur when skill changes.

Finally, we investigate whether similarities in portfolio rankings change if we rank portfolios

according to drawdown-based performance ratios instead of drawdown measures. Compared to

the rank correlations obtained from drawdown measures, as shown in Table 2.2, drawdown-based

performance ratios lead to substantially higher values. The general increase in rank correlations

is likely due to the common numerator of all performance ratios, the excess return. Nonetheless,

all patterns present in Table 2.2 remain intact and the intuitions of the wDD framework remain

valid. For example, the ratio with ADD in the denominator is still closest related to the ADD2

ratio (correlation of about 0.94) followed by the lwDD, twDD and MDD ratios. The ratio with
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eopDD in the denominator exhibits the lowest rank correlations of about 0.47.22 In summary,

drawdown-based performance ratios rank managers more similar than the drawdown measures

themselves, but still display important differences that are in line with the wDD framework.

2.5 Similarity in Skill Detection

A second aspect of similarity between drawdown measures is whether they are equally adept at

differentiating between skillful and unskillful managers. Managerial skill and drawdown should

be interconnected: Managers with high hit ratios select more future winners than future losers.

Consequently, their portfolios should experience lower drawdowns because drawdowns are a direct

consequence of losses. If high hit ratios lead to lower drawdowns, relatively low drawdowns may

be used as an indicator of investor skill. Therefore, we want to explore whether all drawdown

measures are equally suited for this purpose.

To test similarity in skill detection, we consider a setting in which 1,000 skillful managers with a

hit ratio of 60% and 1,000 unskillful managers with a hit ratio of 50% manage their portfolios. We

evaluate the skill detection in each of the 210 overlapping one year periods. For each evaluation

period, we observe the 2,000 portfolio paths and try to distinguish between the skillful and

unskillful managers. As we expect the skillful managers to have lower drawdowns, our best

guess is that all portfolios below the median drawdown belong to a skillful manager and all

portfolios above the median drawdown belong to an unskillful manager. If the relationship

between drawdown and skill were strong, close to 100% of all 2,000 managers would be classified

correctly; not a single correct classification would indicate a strong negative correlation. If

drawdowns and skill were independent, the classification would be approximately 50% accurate

by chance. We use this percentage as a discrimination measure to compare how well different

drawdown measures detect skill.

Figure 2.2 shows how accurately different drawdown measures discriminate between managers

with more and less skill. To arrive at the boxplots in Figure 2.2, we use a one year rolling

window with monthly steps, resulting in 210 yearly periods. For each yearly period, we determine

how many managers are classified correctly by the different drawdown measures. Thus, the

boxplots are indicators of how accurately each drawdown measure detects skill over time and

across market phases. The asterisk reports the average discrimination measure. For example,

22The full results are available from the authors upon request.
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Figure 2.2: Discrimination Between Skillful and Unskillful Portfolio Managers Using Drawdown Measures of Risk.

Each boxplot illustrates how the corresponding risk measure discriminates between skillful and unskillful managers.

Each month for approximately 20 years of data, we observe the performance of 1,000 skillful managers and 1,000

unskillful managers over the preceding year and classify the managers based on the drawdown measures. The

proportion of correctly classified managers is reported on the y-axis. The asterisk additionally depicts the average

discrimination measure (across our 210 observations).

during our historical one-year-periods, ADD classified at best 82% and at worst 62% of managers

correctly with an average of 74%.

We find that ADD performs best and exhibits significant skill detection abilities. Moreover,

the dispersion over time is smallest in comparison. lwDD is almost as successful as ADD,

followed by ADD2. In contrast, twDD, MDD and eopDD are much less accurate at detecting

skill – both on average and with respect to dispersion over time. During some periods, their

classifications are helpful; during other periods, the classifications are worse than random. To

compare different drawdown measures, the relative performance is key because the absolute

levels of our discrimination measure depend on the difference in hit ratios, which is 10% for the

results in Figure 2.2. However, variation in this difference shows that the relative performance of

the various drawdown measures remains unchanged. For reference purposes, we also include the
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expected shortfall and the standard deviation23, which only have little power to discriminate

between skillful and unskillful managers.

In summary, drawdown measures are useful in discriminating between skillful and unskillful

managers. Their tendency to penalize losses gives them a more holistic view than risk measures

that only penalize variability. We also find significant differences between the drawdown measures.

Specifically, measures that incorporate more information about the drawdown graph (i.e., ADD,

lwDD and ADD2) outperform those measures that focus on fewer elements of the graph (i.e.,

twDD, MDD and eopDD).

Given these results, it is a straightforward idea to exploit the drawdown measures’ ability

to detect skill for the improvement of performance ratios. Therefore, we investigate whether

drawdown-based performance ratios, which we henceforth refer to with an additional subscript r,

are particularly capable of detecting management skill. We report the corresponding proportions

of correctly classified portfolio managers in Figure 2.3, which reveals several interesting findings.

First, compared to the corresponding results for the drawdown measures in Figure 2.2, drawdown-

based performance ratios are better at detecting skill on average. This finding is expected, since

ratios use more information due to the excess return in the numerator. Second, all drawdown-

based performance ratios perform similarly well, except for eopDDr, which performs considerably

worse. This is likely due to the following property of eopDDr. In cases in which the time series of

portfolio values reaches its maximum at the end, eopDD is zero. Mathematically, dividing by zero

is infeasible in the ratio; economically, this case constitutes the optimal ‘no risk’ outcome. We

resolve this issue in the economically sensible way by treating all managers with zero eopDD as

equally and infinitely good; however, this leads to a significant number of ties. Third, the Sharpe

ratio appears to detect skill more accurately than the drawdown-based performance ratios. This

is quite surprising, as the drawdown measures themselves already have some ability to detect

skill, much more so than the standard deviation. Fourth, somewhat surprisingly, ADDr, lwDDr,

twDDr, ADD2
r, and eopDDr discriminate markedly worse than chance in some subperiods.

The third and fourth findings require further explanation. When we examine the cases when

drawdown-based performance ratios classify particularly badly, we see that significant portfolio

23Although the standard deviation exhibits the poorest performance in detecting skill, it leads to discrimination

measures slightly above 0.5 on average, indicating some discriminatory power. The reason for this could be a

negative correlation between stock returns and volatility in the cross section due to the leverage effect (Black,

1976) or the volatility feedback effect (Campbell and Hentschel, 1992).
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Figure 2.3: Discrimination Between Skillful and Unskillful Portfolio Managers Using Drawdown-based Performance

Ratios. Each boxplot illustrates how the corresponding performance ratio discriminates between skillful and

unskillful managers. Each month for approximately 20 years of data, we observe the performance of 1,000 skillful

managers and 1,000 unskillful managers over the preceding year and classify the managers based on the drawdown

measures. The proportion of correctly classified managers is reported on the y-axis. The asterisk additionally

depicts the average discrimination measure (across our 210 observations).

losses strongly affect both the ratio’s numerator and denominator, such that when the return in

the numerator becomes more negative, the drawdown measure strongly increases. For example,

a relatively skillful portfolio manager with a loss of 42% and ADD of 0.14 might end up with a

worse ratio (−3) than an unskillful manager with a (higher!) loss of 50% and a (worse!) ADD

of 0.20 but a ratio of −2.5. This is just one example of a more general effect. In the appendix,

we characterize all of the cases in which unskillful managers obtain higher ratios than skillful

managers. The Sharpe ratio is not immune to this effect either.24 However, drawdown ratios are

particularly susceptible to this effect, as the numerator and denominator of the ratio are closely

interrelated. By definition, drawdown measures capture losses from a running maximum, which

24This “perverse” effect is acknowledged in the literature at least since Jobson and Korkie (1981). The ensuing

debate on whether the Sharpe ratio should be used when returns are negative has led to numerous contributions

in its favor, for example, Akeda (2003) and McLeod and van Vuuren (2004), and against, for example, Ferruz

Agudo and Sarto Marzal (2004), Israelsen (2005) and Scholz (2007).
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typically occur when prices are falling and returns are negative. As positive returns increase

and drawdowns tend to be small, the ratio becomes large. As negative returns fall further and

drawdowns typically spike, the ratio may remain unaltered because both effects offset each

other. One strength of drawdown measures is that they are particularly alert to losses; however,

this strength may become a drawback when plugging them into ratios with the excess returns

in the numerator. Therefore, we conclude that a naïve application of drawdown measures in

performance ratios may not be particularly useful overall.

2.6 Conclusion

Drawdown measures provide a number of practical and theoretical benefits: They are intuitive

path-dependent risk measures, which focus on downside risk and capture psychologically important

aspects, such as regret. Consequently, it is no surprise that different variants of these measures

have been developed in the past.

We establish that most of the existing measures can be summarized under the wDD framework.

Moreover, new measures capturing investor-specific preferences can easily be developed within

the framework. This theoretical insight may provide guidance for choosing the most appropriate

drawdown measure for one’s own purposes. However, an immediate question arises: If all these

measures fit into the same framework, are they all fundamentally the same and do they all lead

to the same conclusions? To answer this question, we investigate the similarity of drawdown

measures empirically in two applications: the ranking of portfolios and the ability to detect the

skill of portfolio managers. Our results show that drawdown measures are certainly not all the

same. Moreover, observed similarities and differences between the drawdown measures are well

in line with the intuition from the wDD framework. For example, the most prominent drawdown

measure, MDD, incorporates just the maximum of the drawdown graph and, hence, disregards

plenty of drawdown-related information. Compared to the other drawdown measures in our

study, it produces rankings that are most similar to those of the standard deviation, and it is not

particularly strong at detecting skill. One of the simplest but rarely used measures – the average

drawdown – shows the best results and we like to encourage investors, portfolio managers and

academics to pay more attention to it.

When it comes to the application of drawdown in performance measurement, drawdown-based

ratios detect skill well on average but poorly in periods of negative returns. While similar

ramifications affect other performance ratios, the effect on drawdown-based performance ratios is

even worse, which questions the naïve application of drawdown measures for this application.
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B Appendix

One potential way of dealing with these problems is to apply additive combinations of risk and

return measures instead of ratios.

Drawdown measures of risk could also be applied in portfolio optimization, for example, by max-

imizing drawdown-based performance ratios. One interesting question regarding this application

is how the use of alternative drawdown measures affects the composition of optimal portfolios.

Such optimization is challenging, however, because no formulas for the drawdown of a portfolio

exist and numerical optimization may be infeasible for portfolios with a sizable number of assets.

Improvements on this problem are an important issue for future research.

The simulation framework of our study captures signals relevant to the investment process in

a controlled way. In this paper we consider a pure stock selection signal only. Future research

could investigate the impact of allocation signals that can be implemented via additional segment

constraints. One could also calculate the required hit ratio for a market timing signal to be

profitably integrated into the investment process. Another idea is to investigate the minimal

accuracy for applying a stock selection filter as a means to add value. Such analysis could provide

guidance on the required signal accuracy for each individual step in the investment process.

B Appendix

In this appendix, we characterize when a more skillful manager (with higher returns and lower

risk) obtains a worse performance ratio than a less skillful manager (with lower returns and

higher risk). Let ret1, risk1 and ratio1 denote the return, risk and performance ratio of the skillful

manager, respectively, and denote the corresponding quantities of the less skillful manager with

index 2. It should be noted that for all risk measures under consideration riski ≥ 0. We express

ret2 = ret1 · α and risk2 = risk1 · β. Since we want to characterize when the skillful manager

obtains the worse ratio despite having higher returns and lower risk, i.e., when ratio1 < ratio2,

ret1 > ret2 and risk1 < risk2, we always have β > 1. We distinguish between three distinct cases:

(i) If ret1 < 0, both returns are negative and α > 1. Hence, the skillful manager has the lower

ratio if and only if

ratio1 < ratio2 ⇐⇒
ret1
risk1

<
ret2
risk2

⇐⇒ ret1
risk1

<
ret1 · α
risk1 · β

⇐⇒ 1 > α

β
.

Note that the sign changes in the last step because ret1 is negative. Hence, the ratio misrepresents

the investors’ skill if β > α; that is, when the less skillful manager has a higher relative difference

in risk than return compared to a more skillful manager.
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(ii) If ret2 > 0, both returns are positive and α < 1. Analogously,

ratio1 < ratio2 ⇐⇒
ret1
risk1

<
ret2
risk2

⇐⇒ ret1
risk1

<
ret1 · α
risk1 · β

⇐⇒ 1 < α

β

because ret1 is positive. Since α < 1 and β > 1 the condition β < α is never attainable.

(iii) If ret1 > 0 > ret2, then α < 0. As in the previous case, β < α is never satisfied because

α < 0 and β > 1.

In summary, a more skillful manager will obtain a worse ratio despite having superior risk and

return if and only if both returns are negative and β > α; that is, when the managers’ risks differ

more than the returns.

76



3 Drawdown Persistence and a Convenient
Shortcut to Predicting Mutual Fund
Drawdown

Abstract

Drawdown risk measures allow investors to add an important path-dependent perspective to

their assessment of risk. Computing drawdown measures to evaluate past performance is

straightforward. However, whether drawdown measures can inform investment decisions critically

depends on their persistence, i.e., whether funds’ historical drawdown is indicative of their future

drawdown. We find strong evidence of such persistence in an extensive sample of mutual funds

for a wide variety of fund types and time horizons. While past drawdown is indicative of a fund’s

future drawdown, past volatility is even more informative, thus providing a convenient shortcut

to predicting drawdown. Both further empirical analysis and simulations explain this surprising

finding. They reveal that drawdown persistence is driven primarily by volatility persistence but

is particularly sensitive to persistence in returns. Additionally, the results allow us to specify

in which circumstances relying on either drawdown persistence or the shortcut would be more

advantageous.

Acknowledgments: I would like to thank Olaf Korn and Christian Schwehm for invaluable discussions and

Vitus Benson for capable research assistance.
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3.1 Introduction

Drawdown measures are among the most frequently applied risk measures in the asset management

industry and are used, for example, to evaluate fund managers, to quote performance, or to

aid fund allocation or redemption decisions (Landriault et al., 2015; van Hemert et al., 2020).

Scores of funds use favorable drawdown statistics to attract institutional and private investors

alike (Lhabitant, 2004). Commodity trading advisors are even mandated by the Commodity

Futures Trading Commission to disclose drawdown statistics. From an investor’s perspective,

trying to manage future drawdown makes sense because drawdown measures excel at capturing

what investors truly perceive as ‘risk’ (Harris et al., 2015).

On the lookout for funds with attractive drawdown properties, one’s natural first guess may

be to consider funds with an appealing drawdown track record. However, such statistics would

be of little use if drawdown were not persistent, akin to placing lottery bets relying on the

ticket numbers from last week’s draw. So far, no evidence of drawdown persistence exists in the

literature. Thus, a fund portrayed as having low historical drawdown may very well not be less

risky in the future than its peers with high historical drawdown. Questions of persistence have

been addressed for other risk measures in the literature (e.g., in Casarin et al. (2005)) – but not

for drawdown. As Goldberg and Mahmoud (2017) note, despite their widespread use in practice,

drawdown measures are far less developed in the literature than other risk measures. Therefore,

we address this pressing question because using historical drawdown to guide investment decisions

(e.g., when it is printed in investment brochures) is not logically sound unless drawdown is

persistent.

From an ever-growing set of available drawdown measures, we focus on two of the most widely

propagated measures, the maximum drawdown and the average drawdown. To assess if drawdowns

of mutual funds are persistent, we use an extensive amount of data on U.S. mutual fund returns

from 1990 to 2019 for more than 7,000 distinct funds. The two independent methods we use to

assess relative persistence – one based on rank correlations, the other based on quantile portfolios

– are among the most common approaches of quantifying persistence in the literature (e.g., Harri

and Brorsen (2004), Busse et al. (2010)). Our principal finding is that drawdown measures are

highly persistent. On average, funds with low historical drawdown have relatively low future

drawdown. We document robust persistence for different fund categories, different time horizons,

and different subperiods. Compared to the maximum drawdown, the average drawdown is equally

as persistent, whereas in both cases the effect is highly economically significant.
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When computing drawdown measures, it is imperative to specify the time window during which

they are measured since it is not yet understood how results for short time horizons translate to

long time horizons and vice versa. We compute all results for one year, for three years, and for

three months, obtaining similar persistence for all. As deliberate risk-taking is often desired, we

want to stress that these results can be applied not only to identify low-risk funds but also to

steer future drawdown more generally across the whole drawdown spectrum.

As mutual fund drawdown is persistent, past drawdown can be utilized to predict future drawdown.

However, we identify a ubiquitously available measure that is an even better predictor of future

drawdown: past return volatility. With remarkable robustness, past standard deviation of returns

predicts future maximum and average drawdown. Hence, anyone seeking to manage future

drawdown should look first to the standard deviation, as it may provide a potent and convenient

shortcut to predicting future fund drawdown.

To explain the – at first glance surprising – finding of the shortcut as the more accurate indicator,

we analyze the data in more detail to extract the key drivers of drawdown persistence. Volatility

persistence appears to drive drawdown persistence, but return persistence, if present, is an even

stronger driver. In the absence of significant return persistence, past volatility is the superior

drawdown indicator. These findings are underscored and extended in a simulation study with a

stochastic mean stochastic variance model in which return and volatility persistence are explicitly

included via long-memory processes. Return persistence emerges as the dominant factor that

determines whether historical drawdown or standard deviation is the superior predictor.

By exploiting drawdown persistence or the volatility shortcut, future drawdown risk can be

reduced by favoring funds with low historical drawdown or standard deviation. What are

the implications of such a strategy? For example, are future returns different for funds with

relatively low historical drawdown and funds with high drawdown? Empirically, the mutual fund

returns in our data set suggest no such relationship as they remain largely unchanged. Hence,

on average, choosing a fund with low drawdown or standard deviation does not hurt future

returns. Similarly, the sorted funds do not differ significantly in terms of alpha with respect

to the Fama-French 5-factor model. Only the market beta is lower for low-risk funds than for

their high-risk counterparts. Thus, the simple approach to curb drawdown risk by considering

historical drawdown or using the shortcut sacrifices neither returns nor alpha.

As the implications of our results for investment practice may seem conflicting, we summarize

the key take-aways as follows. On the one hand, there is first-time evidence that considering

79



3 Drawdown Persistence and a Convenient Shortcut to Predicting Mutual Fund Drawdown

drawdown information in the investment process is useful in managing future drawdown properties.

Therefore, a valid conclusion would be that, on average, if you pick a low drawdown mutual

fund today, you can expect relatively low drawdown in the future. As the evidence is robust,

our results support picking mutual funds based on historical drawdown. On the other hand,

as identifying low drawdown funds via the volatility shortcut is more effective, the drawdown

information seems redundant. Indeed, when return persistence is low, using the shortcut is a

viable option; however, historical drawdown is the more accurate predictor if substantial return

persistence can be expected. Therefore, whether to use the shortcut depends on the application.

In any case, readily accessible information is available to improve the choice of mutual funds

when future drawdown is of interest.

This paper is structured as follows. Section 3.2 explains how this paper contributes to the

literature regarding drawdown measures and persistence. Section 3.3 provides details about

the mutual fund data set, and Section 3.4 focuses on the empirical investigation of drawdown

persistence. Section 3.5 introduces the standard deviation as a valid shortcut to predicting

mutual fund returns, and Section 3.6 explains two approaches to understanding the drivers of

persistence. The interplay between return, volatility, and drawdown persistence is explored in

Section 3.6 first within the mutual fund data and then in a simulation study with fractionally

integrated returns. Before the paper concludes, Section 3.7 addresses how managing drawdown

affects average returns and alphas.

3.2 Literature Review

The concept of drawdown is far from new. In the 1980s, Garcia and Gould (1987) note that in

their experience, many investors put more emphasis on maximum drawdown as a risk metric

than on volatility. Many studies have since contributed to a better understanding of maximum

drawdown. For example, Douady et al. (2000) and Magdon-Ismail et al. (2004) derive the

distribution and expected value of the maximum drawdown for a (drifted) Brownian motion;

Camara Leal and de Melo Mendes (2005) compare the maximum drawdown of several index time

series to the maximum drawdown of a fitted Pareto model; Casati and Tabachnik (2013) compare

empirical distributions of maximum drawdown to distributions simulated with skewness and

excess kurtosis; Cheridito et al. (2012) derive the distribution of maximum drawdown for stopped

processes of class sigma; Kim (2018) compare portfolio sorts based on maximum drawdown,

value-at-risk, and volatility; and van Hemert et al. (2020) compute comparative statics to address
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how changes to return, volatility, length of time horizon, and autocorrelation affect the maximum

drawdown.

Although the maximum drawdown is arguably the most prominent drawdown measure, numerous

other drawdown measures have been introduced. Most notably, Chekhlov et al. (2005) propose

the average drawdown as part of a class of drawdown measures called conditional drawdown

(CDD), which also includes the maximum drawdown.1 In contrast to the maximum drawdown,

which captures only the largest drawdown, the average drawdown is computed as the average of

all drawdowns. Similarly, Martin and McCann (1989) mention a measure where all drawdowns

are first squared and then averaged. Some drawdown measures, like the average continuous

drawdown, are used predominantly in the denominator of drawdown-based performance ratios,

cf. Schuhmacher and Eling (2011). Bradford and Siliski (2016) propose the active drawdown

measure which is computed relative to a benchmark index. In addition to measures based on the

intensity of drawdowns, measures related to the duration of drawdowns have also been discussed,

for example, in Mahmoud (2017). Goldberg and Mahmoud (2017) introduce the conditional

expected drawdown (CED), which is useful as an ex-ante risk concept but not applicable to

ex-post evaluation because it requires the distribution of maximum drawdowns and cannot be

computed for a single sample path. A modification of CED with demeaned returns is proposed in

Molyboga and L’Ahelec (2016). The end-of-period drawdown measure, which emphasizes aspects

of regret at the end of the evaluation period, is introduced in Möller (2018). Korn et al. (2019)

propose two new measures, the trend weighted drawdown and the linearly weighted drawdown, as

part of a comprehensive weighted drawdown framework, which includes many previous drawdown

measures.

Apart from the development of drawdown measures, several other strands of drawdown literature

have developed. For example, Grossman and Zhou (1993) incorporate a drawdown constraint

into a continuous-time investment problem in which a specified drawdown must not be exceeded

at any time. This application has attracted significant attention in the literature, including by

Cvitanic and Karatzas (1995), Alexander and Baptista (2006), Elie and Touzi (2008), Sekine

(2013), Yao et al. (2013), Cherny and Obłój (2013), Rieder and Wittlinger (2014), Angoshtari

et al. (2016), Kardaras et al. (2017), and Roche (2019), whereas the drawdown constraint

has been generalized, other constraints have been added, and results have been extended to

1In general, the CDD class includes drawdown measures where the drawdown with respect to the running

maximum is continuously assessed, and the worst (1− α) · 100% of these drawdowns are averaged for α between

zero and one.
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different underlying processes and portfolios. A different strand of largely mathematical literature

has assessed stochastic properties of the drawdown process, see Hadjiliadis and Vecer (2006),

Mijatović and Pistorius (2012), Landriault et al. (2017b), and Bai and Liu (2019). Another

area of ongoing debate is whether different drawdown-based performance ratios lead to different

rankings of investments, see Eling and Schuhmacher (2007), Eling (2008), Caporin and Lisi

(2011), Haas Ornelas et al. (2012), Auer and Schuhmacher (2013), Auer (2015), and Korn et al.

(2019).

Additionally, other ideas regarding drawdown have been pursued. For example, Vecer (2006)

and Vecer (2007) investigate the relation between drawdown and option pricing, Heidorn et al.

(2009) use the maximum drawdown to analyze risk properties of funds of hedge funds, Gilli and

Schumann (2009) employ drawdown measures among other alternative risk measures in portfolio

optimization, and Pospisil and Vecer (2010) define and analyze drawdown Greeks. Moreover,

Zabarankin et al. (2014) develop drawdown-β and drawdown-α with respect to a drawdown

CAPM, Palmowski and Tumilewicz (2017) price drawdown-type insurance contracts, and Challet

(2017) use the drawdown duration to construct an estimator for the Sharpe ratio. Although

drawdown measures are included in many surveys of risk or performance measures (e.g., Bacon

(2008), Caporin and Lisi (2011), and Caporin et al. (2014)), they remain not as well studied as

other risk measures, such as value-at-risk or expected shortfall.

Let us turn to the literature on persistence. Because of its fairly broad literal meaning, i.e. that

a phenomenon continues to exist for a prolonged period, questions of persistence have been

addressed in vastly different fields of finance and economics. These include the persistence of

inflation (Pivetta and Reis, 2007), the persistence of firm capital structure (Lemmon et al., 2008),

the persistence of bank profits (Goddard et al., 2011), the persistence of executive compensation

(Cheng et al., 2015), and the persistence of earnings, cash flows, and accruals (Hui et al., 2016).

However, the arguably most prominent strand of the persistence literature is concerned with

volatility persistence, also known as ‘volatility clustering’.2 Its fundamental observation dates

back at least to Mandelbrot (1963) who notes that large price movements typically follow previous

large movements of either sign, and small changes typically follow previous small changes of either

sign. More rigorously, Ding et al. (1993) observe that autocorrelations of absolute and squared

returns – or, more generally, |rt|d – are positive for various exponents d and even for long lags.

The study of volatility clustering has benefited immensely from the development of (G)ARCH

2We use the terms volatility persistence, volatility clustering, and persistence in standard deviation interchangeably.
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models by Engle (1982) and Bollerslev (1986), which explicitly model persistence in volatility.

Utilizing these models, volatility persistence has been documented with high-frequency as well as

low-frequency data ranging from intraday to monthly returns (Chan et al., 1991; Jacobsen and

Dannenburg, 2003).

While the results on volatility persistence are fairly unanimous, return persistence – or, more

generally, performance persistence – is surrounded by much more ambiguity. Several studies in the

early 1990s support claims of persistence. For example, Jegadeesh and Titman (1993) demonstrate

persistence in single stocks by showing that strategies that buy past winners and sell past losers

generate significant positive returns. Assessing mutual funds,3 Grinblatt and Titman (1992),

Hendricks et al. (1993), Brown and Goetzmann (1995), and Elton et al. (1996) find evidence for

performance persistence in terms of returns and alpha against different portfolio benchmarks. To

measure persistence, they consider regression results, portfolio sorts, contingency tables, and rank

correlations, respectively. In a seminal paper, Carhart (1997) finds that persistence diminishes

if momentum is taken into account. First, he replicates that portfolios sorted on past return

differ substantially in return and CAPM alpha in the following year. Then, he demonstrates

that these differences disappear when alpha is computed with respect to a four-factor model,

which includes a factor-mimicking portfolio for one-year return momentum. Incorporating this

finding by measuring performance as alpha with respect to Carhart’s four-factor model, the

subsequent literature contains mixed results. Bollen and Busse (2005) find short-term persistence

in daily returns that disappears for longer horizons. Cohen et al. (2005) report persistence in

momentum-adjusted returns and report even stronger persistence in a new performance measure

that includes holdings information relative to other funds. Kosowski et al. (2006) find some

evidence of persistence using a bootstrap approach, whereas Fama and French (2010) use a

slightly different bootstrap procedure and find hardly any evidence of persistence. Huij and

Verbeek (2007) find some persistence, especially for small-cap or growth funds, when they improve

the sorting into portfolios with an empirical Bayes approach. Barras et al. (2010) argue that

previous approaches do not distinguish between superior performance because of skill or because

of luck; they try to build portfolios with funds that truly have skill but do not find substantial

3The majority of the performance persistence literature studies mutual funds. Analyzing hedge funds, Ammann

et al. (2013) report significant performance persistence, and Eling (2009) find that persistence critically depends

on the type of hedge fund. Analyzing portfolios managed by institutional investment management firms, Busse

et al. (2010) find that modest persistence is present in three-factor alphas but disappears after controlling for

momentum.
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outperformance. Berk and van Binsbergen (2015) find persistence in mutual fund performance

when combining the four-factor alpha with assets under management to obtain a ‘value-added’

performance measure. El Ghoul and Karoui (2017) compare funds with high and low corporate

social responsibility (CSR) scores and observe that high-CSR funds exhibit stronger performance

persistence than low-CSR funds. Harvey and Liu (2018) use a panel regression framework to

estimate fund alphas and find some evidence of persistence. Overall, performance persistence is

a topic of ongoing debate, and at least some persistence can be observed.

The persistence of higher-order moments has been investigated as well. Ex-post stock returns

exhibit positive skewness, which has been found to persist. For example, Singleton and Wingender

(1986) observe the skewness of monthly stock returns to be weakly persistent over consecutive

five-year periods by computing rank correlations and transition frequencies. Using the same data,

Muralidhar (1993) conducts a bootstrap test that considers the sampling distribution of the

sample skewness and concludes that skewness is strongly persistent. Defusco et al. (1996) and

Nath (1996) support these results by extending the data coverage and adding a new bootstrap test

based on the sampling distribution of the difference in skewness. While the skewness persistence

of individual stocks does not automatically carry over to portfolios, Sun and Yan (2003) find that

mean-variance-skewness efficient portfolios exhibit skewness persistence. Jondeau and Rockinger

(2003) document persistence for the conditional skewness and kurtosis, which they compute with

parameter estimates of a GARCH model with generalized t-distributed residuals. For time series

of stock indices and exchange rates, they find that both conditional skewness and kurtosis are

persistent, but skewness persistence exceeds kurtosis persistence. Ergün (2011) analyzes the

same question with robust skewness and kurtosis measures and obtains mixed results.

We pick up both strands of persistence and drawdown literature and examine the persistence of

drawdown measures. From the persistence angle, expanding the set of analyzed quantities to the

increasingly important class of drawdown measures appears worthwhile. From the drawdown

angle, addressing persistence is crucial to substantiate the use of drawdown measures in investment

practice.

3.3 Mutual Fund Data

In 2018, every third American – or 43.9% of American households – owned shares of mutual

funds, according to the Investment Company Institute (2019). With assets under management of

approximately 10 trillion U.S. dollars (USD), equity mutual funds constitute a pivotal investment

vehicle for private and institutional investors alike. Our sample includes all mutual funds
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domiciled in the U.S. between January 2, 1990 and September 25, 2019 from the Morningstar

database (used, e.g., by Berk and van Binsbergen (2015) and Ma et al. (2019)). We focus on

equity funds and omit money market funds, bond funds, and funds that trade commodities.

The sample includes defunct, alive, and new funds, thus avoiding survivorship bias. Many fund

companies sell funds with multiple share classes. These may differ in fee structure, minimum

investments, or distribution channel, but not in their investment portfolio (Nanda et al., 2009).

As their returns are almost perfectly correlated, including all share classes of a fund would

add little information but would artificially increase the sample size and statistical significance.

Different share classes of the same fund are identified using Morningstar’s fund ID.4 When

multiple share classes are present, we only retain the total return index for the primary share

class.

To group funds into categories, we use the Morningstar category, which is a quantitative and

qualitative assessment of a fund’s three-year primary investment focus. On a broader scale,

several Morningstar categories map to a Morningstar category group. This allows us to conduct

analyses on three levels of detail: the full sample, the Morningstar category groups, and single

Morningstar categories. The final sample comprises funds from 40 Morningstar categories and

three Morningstar category groups: U.S. equity (4,636 funds), international equity (2,064), and

sector equity (781). Morningstar categories sometimes change in time, but changes from one

Morningstar category group to another are rare. We omit the ‘Morningstar’ attribute when

writing about categories from here onward. To ensure that only investable funds are included,

funds are not considered until they reach a size of $5 million in assets under management (AUM)

as in Berk and van Binsbergen (2015).5 We also disregard portions of the path where the data is

not yet available at the daily frequency.

The Morningstar database lists 33,253 equity funds for our selected period. After consolidating

multiple share classes, the sample includes 9,394 funds, 7,263 of which have data available at the

daily frequency and sufficient assets under management. Of these funds, 3,585 are alive, and

3,678 are defunct at the end of the data period. The evolution of the number of funds in the data

4While Berk and van Binsbergen (2015) use the last letters of the fund names to identify subclasses, we use the

fund ID supplied by Morningstar. Comparing both approaches by a rough spot-check, we verify that the fund ID

finds all subclasses identified by the approach of Berk and van Binsbergen (2015) but not vice versa.
5Ma et al. (2019) exclude more funds by applying a threshold of $15 million. As a robustness check, we conduct

our analysis again for the even more conservative threshold of $50 million AUM. All results change only marginally,

and all conclusions remain valid.
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set over time and their aggregated assets under management are displayed in Figure 3.1a. While

the number of funds has risen steadily except for a short period after the Great Recession, assets

under management have been more volatile, finally exceeding $10 trillion. For each fund, we

obtain the total return index as a measure of the fund’s return to an investor when all dividends

and distributions are reinvested. The mean total return is 6.5% p.a. at a standard deviation of

20.2% with slight left-skewness and excess kurtosis, see Figure 3.1b.
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(a) Extent of the data set in terms of assets under management

(AUM) in billion USD (left scale, log scaled) and the number of

alive funds (right scale).

All
U.S.

Equity
Int.

Equity
Sector
Equity

Mean 0.065 0.072 0.051 0.056

Std Dev. 0.202 0.199 0.185 0.244

Skewness −1.178 −1.252 −0.919 −1.206

Kurtosis 8.722 10.276 6.096 7.301

(b) Moment properties of the total returns.

Mean and standard deviation are annualized es-

timates from daily log returns. Skewness and kur-

tosis are based on annual log returns.

Figure 3.1: Summary statistics of the mutual fund data set.

3.4 Drawdown Persistence

Imagine facing a choice between two mutual funds, both of which provide their drawdown

track record. Does incorporating this information about past drawdown improve the investment

decision? The answer to this question critically depends on drawdown persistence. If drawdown

is not persistent, factoring in this information may do more harm than good. Conversely, if past

drawdown is persistent, it contains potentially valuable information about future drawdown,

and investors would be imprudent to dismiss this information. For example, picking the fund

with lower drawdown – given all else is equal – may reduce drawdown risk in the future. More

generally, if the relationship between past and future drawdown is roughly proportional, past

drawdown may be used to steer future drawdown toward the desired risk–return characteristic.

However, it is all in vain without drawdown persistence, which is why we address it thoroughly

in this section. As a prerequisite, we first note how to define drawdown measures adequately in

the following.
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3.4.1 Definition of Drawdown Measures

In general, drawdown measures capture losses from previous peaks. As its name suggests, the

maximum drawdown (MDD) selects the largest loss from a previous peak. It is highly intuitive,

as it quantifies the worst possible market timing (i.e., buying and selling an asset at the worst

combination of buying high and selling low). In the investment industry, this peak to subsequent

trough measure has a firm foothold at least since the 1980s (Garcia and Gould, 1987). For

observed daily market values S0, S1, . . . , SN of an investment, denote the running maximum by

Mt := maxi=0,...,t Si. The MDD is then given as the maximum of all drawdowns Dt := Mt−St
Mt

.

For each point in time t, the drawdown Dt denotes the current percentage loss from the previous

running maximum; its path is termed the ‘drawdown graph,’ and it contains comprehensive

information regarding when, for how long, and how deeply an investment has experienced

drawdowns. By picking the maximum, the MDD highlights a single element of the drawdown

graph. Alternatively, the average drawdown (ADD) incorporates all elements of the drawdown

graph equally, as it is defined as the average of all Di. As it tracks by how much an investment

has been in drawdown on average, it is usually much smaller than the MDD. Both measures

belong to the conditional drawdown family introduced by Chekhlov et al. (2005), which contains

risk measures defined as tail means of the highest (1 − α) · 100% of drawdowns. Within this

family, the MDD results from letting the confidence parameter α tend to one, whereas the ADD

results from setting α to zero. Not only within the conditional drawdown family but also in

empirical asset rankings, MDD and ADD have been found to come from quite opposite ends of

the spectrum of drawdown measures (Korn et al., 2019). Therefore, the persistence results for

MDD and ADD should be fairly representative for drawdown measures in general. In summary,

we apply the maximum drawdown and average drawdown defined by

MDD = max
t=1,...,N

Dt and ADD = 1
N

N∑
t=1

Dt.

By construction, drawdown measures are path-dependent downside risk measures, which are

asymmetric and incorporate loss aversion relative to a time-varying benchmark. Of course,

drawdown measures are always computed for time spans instead of static points. For example,

we compute the MDD for two consecutive periods [t−1, t] and [t, t+1], which we abbreviate to

t−1 and t+1, respectively. The maximum drawdown for the corresponding periods is denoted by

MDDt−1 and MDDt+1, respectively.
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3.4.2 Quantifying Persistence

In order to quantify persistence, we apply two different techniques. The first, which is based on

computing correlation coefficients, has the advantage of aggregating all information into a single

intuitive number. The second technique, which relies on constructing quantile portfolios, allows

for a more detailed look across risk levels and provides a grasp of the effect’s order of magnitude.

Let us describe both approaches in more detail.

If a property is persistent, objects with low historical values tend to have low future values,

and high historical values typically coincide with high future values. That is, historical and

future values are positively correlated. Therefore, our first measure of persistence is a correlation

measure. Correlations are always framed for pairs of values. In our setup, we compare the

drawdown of the same fund in two consecutive time intervals. For now, both time intervals

are 12 months, but different time intervals are discussed in detail later. We follow a rolling

window approach and shift two consecutive one-year windows through the time series in monthly

steps and collect all such pairs. To obtain relative drawdown measures for each fund, we do not

consider each fund in isolation, but we first compute drawdown measures for all funds available at

a certain point in time, and then rank all funds based on historical drawdown. The relative rank,

for example, third-highest drawdown of 100 funds, is given by the rank divided by the number of

available funds, i.e., 3
100 = 0.03. Similarly, the relative rank of each fund is computed for the

second period t+1. We collect all such pairs of relative ranks for all funds and all points in time,

and compute the Pearson correlation coefficient. As usual, positive values (up to 1) indicate

a positive correlation, while negative values (up to −1) indicate anti-correlation. We denote

this correlation-based persistence measure by Pcor. It is known as Spearman’s rank correlation

measure and used to measure persistence, for example, in Elton et al. (1996) and Harri and

Brorsen (2004). This correlation measure also has an alternative interpretation in terms of a

regression slope. Once all pairs of relative ranks are computed, the time t+1 results can be

regressed on the time t−1 results. The slope of the linear regression would indicate if the time

t−1 information was related to the time t+1 outcome. The correlation measure Pcor and the

regression slope are identical for a straightforward reason.6 Therefore, Pcor can just as well be

6Let (xi, yi) denote the pair of relative ranks for the ith fund during t−1 and t+1. Let x̄ and ȳ be the corresponding

averages across all funds. By definition, the correlation is given by
∑

i
(xi− x̄)(yi− ȳ)/

√∑
i
(xi − x̄)2

∑
i
(yi − ȳ)2

and the least squares estimate of the linear regression slope by
∑

i
(xi − x̄)(yi − ȳ)/

∑
i
(xi − x̄)2. Notice that the

numerators coincide. Moreover, the denominators coincide if
∑

i
xi − x̄ =

∑
i
yi − ȳ. Since both xi and yi are

relative ranks, i.e., 1
N
, 2
N
, . . . , 1, their averages and both sums coincide as well.
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interpreted as a regression slope when the relative ranks of time t+1 are regressed on the relative

ranks of time t−1.

Although Pcor is an intuitive metric to quantify persistence, we apply a second metric that

indicates not only the strength of persistence but also its economic scale. This measure is based

on portfolio sorts. After observing the drawdown during period t−1, all mutual funds are sorted

into deciles; then, the average future drawdown during time t+1 is observed within each decile.

Drawdown persistence would lead to the funds in the lowest drawdown quantile portfolio Q1 also

exhibiting the lowest drawdown during the subsequent period. Similarly, the funds sorted into

the highest drawdown quantile portfolio Q10 during t−1 would experience high drawdown during

period t+1. When analyzing quantile portfolios, one often quantifies effects by comparing the

values for the two opposite quantile portfolios Q1 and Q10; the difference 10− 1 and the fraction
10/1 are common examples. Since the values for ADD are typically much smaller than the values

for MDD, the relative 10/1 measure is a good choice to compare effect sizes for MDD and ADD.

We call this persistence measure P10/1. For example, those 80 out of 800 funds in Q1 with the

lowest drawdown during 2018 might experience an average MDD of 20% during 2019. When

those 80 funds in the highest drawdown quantile Q10 on average experience an MDD of 25%

during 2019, the persistence measure P10/1 would equal 25
20 = 1.25. Of course, the intermediate

quantile portfolios two to nine contain information as well. If drawdown persistence is strong,

all portfolios between the two extremes will express drawdowns in t+1 that are monotonically

increasing from one quantile portfolio to the next. Hence, the analysis with quantile portfolios

assesses if the persistence effect is only present in the extremes or across all drawdown levels.

The quantile portfolio approach is a widely accepted method to assess persistence, which is used,

for example, in Carhart (1997) and Berk and van Binsbergen (2015).

Note that Pcor and P10/1 are far from identical. Pcor is a purely relative persistence measure that

would attest to perfect persistence if the highest drawdown fund in t−1 exhibits the highest

drawdown in t+1, the second-highest drawdown fund in t−1 exhibits the second-highest drawdown

in t+1, and so on. This persistence measure does not provide information regarding the order of

magnitude of the effect.7 Conversely, P10/1 provides an intuitive understanding of the economic

effect. For example, a value of 1.5 for P10/1 indicates that the highest drawdown decile on average

experiences 50% more drawdown during t+1 than the lowest drawdown decile. Therefore, we

7It is possible that the ranking during t+1 perfectly coincides with the ranking during t−1, but the differences in

drawdown are arbitrarily small and not economically significant.
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always report both persistence measures. Regarding their interpretation, higher values indicate

stronger persistence. For Pcor, a value of zero is neutral; for P10/1, a value of one indicates neither

positive nor negative persistence.

To avoid any misunderstanding, we quickly also note how we do not measure persistence.

Considering the time series of a mutual fund in isolation, positive autocorrelation of drawdowns

may be interpreted as persistence. Similarly, a positive regression slope of future drawdown

regressed on historical drawdown values may also be understood as persistence. To exhibit such

an absolute kind of persistence, past drawdown would have to exhibit strong capabilities in

predicting future returns, as those strongly affect the future drawdown. However, predicting

returns is notoriously difficult, and there seems little justification that past drawdown is a

promising way of predicting future performance. Instead, we focus on fund persistence relative to

peers for several reasons. Such relative persistence is more appropriate than absolute persistence,

as mutual funds are often evaluated in relative terms such as tracking error or alpha with respect

to a benchmark portfolio because investors in mutual funds generally accept some market risk.

Additionally, when choosing mutual funds, investors are more likely to compare drawdown

figures for different funds and observe how they fared in comparison, than to judge the absolute

numbers. From a different perspective, assessing relative performance is fairer to a mutual fund

manager because while accurately predicting market movements is challenging, tilting portfolios

to be rather stable or risky is achievable. Our approach also ensures that results for different

market phases are comparable. Moreover, even for relative persistence, there are various methods

for quantification. For example, Malkiel (1995), Brown and Goetzmann (1995), and Mateus

et al. (2019) utilize contingency tables, where funds are sorted into winners (W) and losers (L)

in two subsequent periods and the frequency of the four combinations (i.e., WW, WL, LW,

LL) is observed. When we sort funds into winners and losers according to above-median or

below-median MDD in each year from 2000 to 2017, the categories WW and LL comprise more

funds than the categories WL and LW, which indicates persistence. χ2 tests and odds ratio

tests are significant at the 99% confidence level in 17 and 16 out of 18 years, respectively. By

disregarding all information except being above or below the median, this approach is far less

information efficient than using, for example, the rank correlation measure Pcor. Therefore, we

do not report further results on contingency tables but report Pcor instead.

Before turning to the results, let us discuss a few technical details about the computation of Pcor

and P10/1. When we compute the drawdown measures for the period t−1, we first check how

many funds have return data available for the entire t−1 period. We proceed only if more funds
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than twice the number of quantile portfolios are available. For all such funds, the return data

for the t+1 period is obtained next. If returns should become unavailable for a fund during

period t+1, the last obtainable price in the time series is used. In the tables below, we report

a single value for Pcor as well as for P10/1 considering specific sets of funds across several years

using the rolling window approach described above. For Pcor, we obtain a single number because

we collect pairs of relative ranks simultaneously across funds and across time, pool all such pairs,

and compute the correlation coefficient. To obtain P10/1, we first compute the drawdown for all

funds in the quantiles Q1 and Q10 separately for each period, and then take the average over

time. Therefore, the drawdown values for Q1 and Q10 both result from a time-series average

of cross-sectional averages. We take the ratio 10/1 in the end because, statistically, a ratio of

averages is a far more robust estimator than an average of ratios.

3.4.3 Results on Persistence

We investigate persistence for the maximum drawdown and the average drawdown of all mutual

funds in the data set. The most general results are displayed in Table 3.1. For the MDD of the

full sample, both Pcor and P10/1 indicate strong positive persistence. The value for Pcor indicates

that the MDD ranking during t−1 and the MDD ranking during t+1 are correlated by 0.436; the

value 1.74 for P10/1 results from the MDD of quantile portfolio 10 exceeding the MDD of quantile

portfolio 1 by 74%. On average, quantile portfolio 1 exhibits an MDD of 12.7%, while quantile

portfolio 10 exhibits an MDD of 22.1%, which is highly economically significant. The MDD

increases monotonically from portfolio 1 to portfolio 10, which is indicated by the checkmark

(X). Therefore, persistence is present throughout the sample and not only in the extremes. The

results for the ADD are similar, with Pcor being 0.409 and P10/1 being 2.02. Again, the drawdown

increases from quantile portfolio to quantile portfolio, but the drawdown itself is smaller (between

4.1% and 8.3%) because an average, not a maximum, is considered. Table 3.1 also illustrates

the results for U.S. funds, international funds, and sector funds. While all results are close to

the results for the full sample, international funds typically exhibit lower persistence than sector

funds. The number of funds for each subsample is indicated in the last column of Table 3.1.8

8The number of funds for the entire sample differs slightly from the sum of the three category groups because a

few funds change the category group throughout the sample period.

91



3 Drawdown Persistence and a Convenient Shortcut to Predicting Mutual Fund Drawdown

Persistence Quantile Portfolios

Category Group Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr. # funds

MDD:

All Equity 0.436 1.74 0.127 0.139 0.143 0.146 0.150 0.157 0.164 0.173 0.185 0.221 X 7263

U.S. Equity 0.465 1.61 0.125 0.134 0.138 0.140 0.145 0.149 0.157 0.165 0.177 0.201 X 4636

Int. Equity 0.393 1.58 0.139 0.151 0.157 0.159 0.163 0.165 0.170 0.181 0.195 0.219 X 2064

Sector Equity 0.468 2.40 0.122 0.142 0.160 0.165 0.169 0.179 0.192 0.215 0.242 0.293 X 781

ADD:

All Equity 0.409 2.02 0.041 0.045 0.047 0.049 0.051 0.055 0.057 0.060 0.065 0.083 X 7263

U.S. Equity 0.441 1.77 0.039 0.043 0.044 0.046 0.048 0.050 0.053 0.056 0.060 0.069 X 4636

Int. Equity 0.369 1.75 0.048 0.052 0.055 0.056 0.058 0.060 0.063 0.068 0.074 0.084 X 2064

Sector Equity 0.400 2.88 0.042 0.051 0.056 0.057 0.060 0.062 0.070 0.083 0.096 0.121 X 781

Table 3.1: Drawdown persistence results for the full sample. The top half reports on MDD persistence, the bottom

half on ADD persistence. Each row corresponds either to the full sample (all equity) or to a subsample based on

category groups. The persistence measure Pcor is the rank correlation between MDDt−1 and MDDt+1; the measure

P10/1 is the ratio 10/1 of the quantile portfolios 1 and 10. To obtain quantile portfolios, funds are sorted into decile

portfolios based on MDDt−1, and the average MDDt+1 for each portfolio is computed across funds and across

time. A checkmark (X) indicates whether MDDt+1 increases monotonically from quantile portfolio 1 to portfolio

10. All definitions apply to the ADD accordingly. The number of funds in each subsample is denoted by # funds.

According to Table 3.1, drawdown measures exhibit persistence for the whole sample of mutual

funds as well as for each category group. Examining more detail, we assess for each single fund

category within each category group whether MDD and ADD persist. Categories with fewer

than 100 funds are omitted from the analysis because results based on decile portfolios with such

few assets may become unreliable. The results in Table 3.2 demonstrate that MDD and ADD

are highly persistent in every single fund category. Even remarkably similar funds – which, for

example, all invest in small growth stocks – benefit from being sorted by historical drawdown

when information about the future drawdown is desired. Are there differences in persistence

between the categories? U.S. funds tend to be more persistent than international funds, which

is in line with the aggregated results for the category groups in Table 3.1. In the extremes,

persistence varies between 0.465 for small value funds and 0.238 for foreign large growth funds

measured with Pcor, or between 1.50 and 1.19 using P10/1. For some categories, drawdown does

not increase strictly monotonically between decile portfolios, especially when the number of

funds in a given category is small. Furthermore, the absolute level of drawdown across the decile

portfolios differs reasonably between categories: Large value funds exhibit less drawdown across

the board compared to small growth funds, which in turn exhibit less drawdown than sector

funds focused on the technology sector. For each size category – large, mid-cap, and small –
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3.4 Drawdown Persistence

drawdown is highest for growth funds, lowest for value funds, and in between for blended funds.

The strong persistence results for each category hold both for MDD and ADD.

Drawdown measures do not easily scale with time. While the MDD for 24 months is undoubtedly

no smaller than the MDD for 12 months, there is neither law nor reliable estimate nor heuristic

regarding how much larger the 24-month MDD can be expected to be. Therefore, each investor

has to choose a suitable evaluation period when applying drawdown measures. Although for

many investors, an annual horizon may be adequate, other choices are equally valid. To make

sure that the persistence results do not depend on the annual evaluation period, all previous

results are also computed for t+1 periods of three months and three years, and the results are

provided in Tables 3.10, 3.11, 3.12, 3.13, and 3.14 in the appendix. All conclusions regarding

persistence remain valid for both alternative choices of computing the drawdown measures.

Is drawdown persistence an old or a new phenomenon? Considering almost 30 years of data, was

drawdown persistent only in the 1990s and never again since, or has its persistence (re)emerged

recently? Robustness over time is tested by splitting the sample into three subperiods: 1990–1999,

2000–2009, and 2010–2019, each from January to either the end of the year or the end of the data

period.9 According to Table 3.3, strong persistence is present during all three subperiods. It is

slightly stronger between 1990 and 1999, but there is no trend in general. If anything, persistence

has been rising lately according to ADD. While the two full-grown financial crises between 2000

and 2009 cause higher absolute levels of drawdown in the second subperiod, drawdown persistence

remains largely unaffected. Hence, drawdown persistence persists over time.

9Persistence is strongly present in all subperiods irrespective of the sample being split into three, four, or five

subperiods.
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3 Drawdown Persistence and a Convenient Shortcut to Predicting Mutual Fund Drawdown

Panel A: Persistence of MDD

Persistence Quantile Portfolios

Category Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr. # funds

Large Value 0.370 1.33 0.113 0.123 0.127 0.130 0.132 0.132 0.135 0.138 0.140 0.150 X 956

Large Blend 0.357 1.31 0.117 0.127 0.130 0.132 0.133 0.133 0.135 0.139 0.143 0.153 X 1641

Large Growth 0.391 1.38 0.134 0.142 0.146 0.149 0.153 0.157 0.160 0.165 0.172 0.185 X 1144

Mid-Cap Value 0.409 1.39 0.118 0.129 0.133 0.137 0.139 0.141 0.144 0.146 0.151 0.164 X 456

Mid-Cap Blend 0.412 1.45 0.126 0.137 0.144 0.149 0.150 0.153 0.153 0.158 0.164 0.183 X 647

Mid-Cap Growth 0.424 1.45 0.148 0.158 0.167 0.174 0.179 0.183 0.188 0.194 0.198 0.214 X 723

Small Value 0.465 1.50 0.125 0.141 0.146 0.150 0.153 0.157 0.160 0.163 0.169 0.187 X 408

Small Blend 0.376 1.35 0.147 0.156 0.159 0.164 0.168 0.171 0.174 0.173 0.178 0.199 x 617

Small Growth 0.415 1.47 0.159 0.177 0.185 0.190 0.198 0.201 0.204 0.210 0.218 0.234 X 596

Foreign Large Value 0.345 1.21 0.150 0.161 0.167 0.171 0.171 0.174 0.172 0.176 0.181 0.182 x 206

Foreign Large Blend 0.278 1.19 0.144 0.153 0.156 0.158 0.159 0.159 0.162 0.161 0.167 0.172 x 544

Foreign Large Growth 0.238 1.19 0.164 0.172 0.172 0.175 0.178 0.179 0.179 0.180 0.185 0.195 X 245

Div. Emerging Mark. 0.310 1.24 0.188 0.203 0.212 0.215 0.216 0.220 0.222 0.224 0.222 0.233 x 351

World Stock 0.365 1.41 0.123 0.134 0.138 0.142 0.147 0.147 0.153 0.160 0.163 0.173 X 555

Real Estate 0.313 1.29 0.140 0.168 0.168 0.170 0.171 0.169 0.175 0.175 0.176 0.181 x 133

Technology 0.422 1.45 0.187 0.216 0.228 0.235 0.232 0.234 0.240 0.241 0.252 0.272 x 165

Panel B: Persistence of ADD

Persistence Quantile Portfolios

Category Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr. # funds

Large Value 0.330 1.43 0.035 0.038 0.040 0.041 0.041 0.042 0.043 0.044 0.045 0.050 X 956

Large Blend 0.340 1.41 0.037 0.040 0.041 0.042 0.042 0.043 0.044 0.046 0.047 0.052 X 1641

Large Growth 0.339 1.48 0.044 0.048 0.049 0.051 0.052 0.053 0.055 0.056 0.058 0.065 X 1144

Mid-Cap Value 0.369 1.57 0.035 0.040 0.041 0.042 0.043 0.044 0.045 0.046 0.050 0.055 X 456

Mid-Cap Blend 0.372 1.62 0.039 0.044 0.045 0.047 0.048 0.049 0.050 0.051 0.054 0.063 X 647

Mid-Cap Growth 0.378 1.64 0.047 0.053 0.056 0.059 0.060 0.063 0.065 0.067 0.071 0.077 X 723

Small Value 0.396 1.60 0.040 0.045 0.047 0.048 0.050 0.051 0.053 0.054 0.056 0.064 X 408

Small Blend 0.311 1.48 0.048 0.051 0.052 0.054 0.055 0.056 0.056 0.057 0.059 0.071 X 617

Small Growth 0.377 1.64 0.053 0.059 0.063 0.067 0.068 0.070 0.072 0.075 0.078 0.087 X 596

Foreign Large Value 0.284 1.21 0.052 0.056 0.059 0.059 0.060 0.060 0.062 0.062 0.064 0.063 x 206

Foreign Large Blend 0.222 1.28 0.050 0.055 0.056 0.056 0.056 0.056 0.058 0.058 0.060 0.064 X 544

Foreign Large Growth 0.201 1.22 0.058 0.060 0.061 0.062 0.064 0.066 0.066 0.065 0.067 0.071 x 245

Div. Emerging Mark. 0.284 1.27 0.070 0.076 0.080 0.081 0.082 0.083 0.084 0.085 0.085 0.089 X 351

World Stock 0.288 1.59 0.041 0.045 0.047 0.049 0.051 0.051 0.053 0.056 0.057 0.065 X 555

Real Estate 0.299 1.34 0.047 0.057 0.058 0.059 0.060 0.060 0.060 0.061 0.062 0.063 X 133

Technology 0.373 1.49 0.071 0.081 0.086 0.088 0.088 0.089 0.093 0.093 0.101 0.106 X 165

Table 3.2: Detailed drawdown persistence results for single fund categories. Only categories that contain more

than 100 funds are included. All column variables are defined as in Table 3.1.
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3.4 Drawdown Persistence

Panel A: Persistence of MDD

Persistence Quantile Portfolios

Time Period Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr. # funds

All Equity

1990–1999 0.467 2.12 0.095 0.102 0.105 0.107 0.110 0.121 0.132 0.144 0.160 0.201 X 2667

2000–2009 0.431 1.62 0.169 0.187 0.194 0.197 0.203 0.207 0.213 0.221 0.233 0.273 X 5019

2010–2019 0.427 1.62 0.113 0.121 0.124 0.127 0.132 0.137 0.142 0.147 0.155 0.183 X 4851

U.S. Equity

1990–1999 0.538 2.00 0.091 0.096 0.100 0.102 0.107 0.110 0.122 0.136 0.154 0.182 X 1811

2000–2009 0.444 1.48 0.170 0.184 0.188 0.191 0.196 0.202 0.208 0.214 0.226 0.252 X 3388

2010–2019 0.455 1.46 0.110 0.116 0.120 0.121 0.125 0.130 0.134 0.139 0.144 0.161 X 2924

Int. Equity

1990–1999 0.440 2.00 0.110 0.112 0.116 0.118 0.123 0.124 0.130 0.154 0.177 0.220 X 586

2000–2009 0.428 1.41 0.181 0.201 0.210 0.211 0.215 0.219 0.225 0.228 0.241 0.255 X 1094

2010–2019 0.353 1.46 0.121 0.134 0.137 0.142 0.145 0.147 0.149 0.155 0.162 0.177 X 1509

Sector Equity

1990–1999 0.608 3.11 0.088 0.105 0.125 0.130 0.143 0.157 0.170 0.198 0.225 0.274 X 266

2000–2009 0.467 2.12 0.157 0.186 0.210 0.215 0.212 0.225 0.246 0.271 0.296 0.333 x 544

2010–2019 0.418 2.32 0.115 0.129 0.138 0.144 0.145 0.151 0.152 0.170 0.196 0.267 X 529

Panel B: Persistence of ADD

Persistence Quantile Portfolios

Time Period Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr. # funds

All Equity

1990–1999 0.427 2.70 0.027 0.029 0.029 0.031 0.033 0.037 0.041 0.045 0.051 0.073 X 2667

2000–2009 0.388 1.73 0.063 0.070 0.074 0.076 0.079 0.082 0.084 0.087 0.091 0.109 X 5019

2010–2019 0.425 2.06 0.031 0.033 0.036 0.037 0.039 0.041 0.043 0.045 0.049 0.064 X 4851

U.S. Equity

1990–1999 0.487 2.24 0.025 0.026 0.027 0.028 0.030 0.033 0.037 0.041 0.046 0.056 X 1811

2000–2009 0.399 1.60 0.062 0.068 0.070 0.073 0.075 0.078 0.082 0.084 0.089 0.099 X 3388

2010–2019 0.467 1.75 0.028 0.030 0.031 0.032 0.034 0.036 0.038 0.040 0.042 0.049 X 2924

Int. Equity

1990–1999 0.422 2.28 0.036 0.036 0.036 0.037 0.039 0.041 0.045 0.058 0.066 0.082 X 586

2000–2009 0.352 1.46 0.069 0.076 0.080 0.081 0.083 0.085 0.088 0.091 0.095 0.101 X 1094

2010–2019 0.366 1.71 0.038 0.042 0.046 0.047 0.049 0.050 0.051 0.054 0.058 0.065 X 1509

Sector Equity

1990–1999 0.524 4.14 0.029 0.035 0.040 0.042 0.047 0.050 0.056 0.068 0.090 0.120 X 266

2000–2009 0.397 2.23 0.060 0.073 0.082 0.082 0.082 0.087 0.101 0.116 0.124 0.134 X 544

2010–2019 0.356 2.92 0.037 0.042 0.042 0.044 0.047 0.046 0.048 0.058 0.071 0.108 x 529

Table 3.3: Subperiod analysis of the persistence results. The sample period is split into three shorter periods (e.g.,

from January 1990 to December 1999). All variables are defined as in Table 3.1.
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3 Drawdown Persistence and a Convenient Shortcut to Predicting Mutual Fund Drawdown

Length of t−1 period

Measure Length of t+1 10 days 1 month 3 months 6 months 1 year 2 years 3 years 4 years 5 years

MDD 12 months −0.141 −0.062 −0.034 −0.030 0.428 −0.001 −0.001 −0.036 −0.052

ADD 12 months −0.182 −0.099 −0.065 −0.047 0.406 +0.015 +0.006 −0.019 −0.043

MDD 3 months −0.056 +0.016 +0.029 +0.018 0.406 +0.006 +0.011 −0.036 −0.064

ADD 3 months −0.070 −0.005 +0.011 +0.003 0.350 +0.015 +0.001 −0.020 −0.041

MDD 3 years −0.172 −0.093 −0.051 −0.024 0.439 −0.007 −0.022 −0.039 −0.068

ADD 3 years −0.206 −0.119 −0.070 −0.036 0.415 +0.004 −0.009 −0.040 −0.068

Table 3.4: Persistence for different lengths of the t−1 period between 10 days and five years. We compute the

persistence measure Pcor for all funds in the sample. For the one-year t−1 period, we provide the correlation Pcor

shaded in gray; for all other period lengths, we provide the difference to this value. In the first row, for example,

the rank correlation of one-year MDDt+1 with one-year MDDt−1 is 0.428; when two years of t−1 data are used,

the persistence with one-year MDDt+1 drops to 0.427, indicated in the table by −0.001. The rows differ in the

length of the t+1 period as well as the measure MDD or ADD.

When an investor has decided that the annual MDD is of interest in the future, a second question

regarding time becomes practically relevant: how much historical drawdown information shall be

exploited? Intuitively, using one month of data may be insufficient, but using five years of data

may be too long. To address this question, the length of the t−1 period is varied systematically,

and the resulting persistence is documented. Table 3.4 illustrates how significantly changing the

length of the t−1 period affects the results.10 For example, when the past five years instead of

the past one are used to predict the future 12-month MDD, the persistence drops by 0.052, from

0.428 to 0.376. If only one month of data is considered, the persistence drops by 0.062, from

0.428 to 0.366. The results from Table 3.4 show that when predicting 12-month MDD, one year

of historical data yields the highest persistence. For the 12-month ADD in the second row, the

persistence similarly decreases for quite long or short t−1 periods but increases slightly when

two or three years of data are considered. When three months or three years are predicted in

t+1, one might guess that the corresponding period length during t−1 might lead to the highest

10The results in Table 3.4 differ slightly from those in other tables. For example, Table 3.4 reports 0.428 for the

persistence between annual MDDt−1 and annual MDDt+1, while the corresponding result from Table 3.1 is 0.436.

The difference is due to a slight adjustment in the simulation setup for Table 3.4 to create a level playing field for

the comparison between different period lengths. While in Table 3.1 the first evaluated t+1 time window is year

two because one year is necessary beforehand, the first evaluated time window in Table 3.4 is year six because the

five-year t−1 window needs as much time beforehand. Hence, the year two evaluation is omitted in Table 3.4 to

allow for a fair comparison between the one-year and five-year t−1 period lengths. As the adjustment is fairly

small, the resulting differences are small as well.
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3.5 Predicting Drawdown with the Volatility Shortcut

persistence (i.e., three-month MDDt−1 is most correlated with three-month MDDt+1). For the

three-month predictions, this is indeed the case. However, the differences to the predictions based

on one year of data are fairly small for both MDD and ADD. For the three-year predictions,

using three years of data does not lead to improvements, but one year of data is optimal for the

MDD and close to optimal for the ADD. In summary, the exact length of the t−1 period is not

critically important for persistence, for example, the difference between using one year or two

years of data is always negligible. Consequently, investors need not worry too much about how

much history should be taken into account. However, unsurprisingly, using extremely short or

extremely long data history significantly reduces persistence. Among all tested period lengths,

the choice of one year of historical data is always either optimal or close to optimal. Therefore,

regardless of the t+1 period, we adhere to a period length of one year during t−1 for simplicity

unless indicated otherwise.

In conclusion, mutual fund drawdown is persistent. To support this claim, we have systematically

investigated two drawdown measures, MDD and ADD, for numerous sets of mutual funds

from various fund categories using two different persistence measures, Pcor and P10/1. Further

robustness checks regarding the period of investigation and length of the t−1 and t+1 periods

confirm that drawdown persistence is robust.

3.5 Predicting Drawdown with the Volatility Shortcut

Thus far, extensive evidence has been collected that past MDD and ADD are persistent, i.e.,

they are informative in predicting future MDD and ADD. Therefore, consulting past MDD or

ADD to estimate future drawdown is reasonable. However, better options for predicting future

drawdown may be available. While any arbitrary measure or quantity might theoretically serve

as a predictor, we focus on a ubiquitous and straightforward risk measure: the historical standard

deviation of returns.11 This choice is not too far-fetched for two reasons. First, as discussed in the

literature review, volatility itself is highly persistent. Second, drawdown measures are sensitive to

volatility because large fluctuations in prices usually incur high drawdowns. Therefore, historical

standard deviation may contain information about future drawdown.

11Along with the standard deviation, we have also analyzed other measures to predict future drawdown, for

example, realized 10-day and one-year value-at-risk at the 95% confidence level and momentum-based estimators.

Of these, the standard deviation performed best. However, we do not claim that the standard deviation is the best

possible predictor because we have not attempted an all-encompassing search to find the optimal predictor.
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3 Drawdown Persistence and a Convenient Shortcut to Predicting Mutual Fund Drawdown

How accurately the drawdown measures predict themselves has been answered in Section 3.4; to

compare these results with the standard deviation, this analysis requires only slight adaptation.

Instead of asking MDDt−1 to predict MDDt+1, we ask the standard deviation during t−1

(henceforth denoted by StdDevt−1) to predict MDDt+1. All statistics for evaluating persistence,

such as the measures Pcor and P10/1, can be computed analogously for the standard deviation.

The analogous statistic, which compares two different risk measures, can be interpreted just as

well as the persistence statistic, where the same risk measure is applied both in t−1 and t+1.

For the entire sample, the results show that Pcor of the standard deviation predicting MDDt+1

exceeds Pcor of the drawdown measure itself by 0.493 to 0.436. Similarly, P10/1 yields higher

persistence for the portfolios sorted by standard deviation (1.90) compared to those sorted by

MDDt−1 (1.74). These results hold for all category groups and when the ADD is substituted for

the MDD, see Table 3.5 for all details and Tables 3.15 and 3.16 in the appendix for different

period lengths. The differences between standard deviation and drawdown are rather small for

international funds but sizable for U.S. and sector funds.

Persistence Quantile Portfolios

Category Group Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr.

MDD:

All Equity
0.493 1.90 0.123 0.137 0.141 0.145 0.150 0.155 0.162 0.172 0.188 0.234 X

0.436 1.74 0.127 0.139 0.143 0.146 0.150 0.157 0.164 0.173 0.185 0.221 X

U.S. Equity
0.563 1.77 0.119 0.131 0.135 0.139 0.143 0.148 0.156 0.167 0.182 0.211 X

0.465 1.61 0.125 0.134 0.138 0.140 0.145 0.149 0.157 0.165 0.177 0.201 X

Int. Equity
0.433 1.66 0.134 0.148 0.154 0.160 0.164 0.167 0.172 0.182 0.195 0.222 X

0.393 1.58 0.139 0.151 0.157 0.159 0.163 0.165 0.170 0.181 0.195 0.219 X

Sector Equity
0.609 2.72 0.110 0.125 0.145 0.158 0.169 0.182 0.198 0.230 0.262 0.299 X

0.468 2.40 0.122 0.142 0.160 0.165 0.169 0.179 0.192 0.215 0.242 0.293 X

ADD:

All Equity
0.451 2.27 0.040 0.045 0.046 0.048 0.050 0.052 0.055 0.059 0.066 0.091 X

0.409 2.02 0.041 0.045 0.047 0.049 0.051 0.055 0.057 0.060 0.065 0.083 X

U.S. Equity
0.528 2.08 0.037 0.041 0.042 0.044 0.047 0.048 0.052 0.057 0.063 0.077 X

0.441 1.77 0.039 0.043 0.044 0.046 0.048 0.050 0.053 0.056 0.060 0.069 X

Int. Equity
0.419 1.96 0.045 0.051 0.054 0.057 0.058 0.060 0.063 0.068 0.075 0.088 X

0.369 1.75 0.048 0.052 0.055 0.056 0.058 0.060 0.063 0.068 0.074 0.084 X

Sector Equity
0.544 3.63 0.035 0.041 0.050 0.055 0.059 0.064 0.071 0.089 0.106 0.127 X

0.400 2.88 0.042 0.051 0.056 0.057 0.060 0.062 0.070 0.083 0.096 0.121 X

Table 3.5: Analysis of how the standard deviation predicts drawdown. The results based on the standard deviation

are printed in black; the previous persistence results from Table 3.1 are displayed in gray. All variables are defined

as in Table 3.1.
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For an in-depth look, the predictive power of MDDt−1, ADDt−1, and StdDevt−1 is also compared

for single fund categories. To this end, we repeat the computations leading to Table 3.2

analogously for the standard deviation. The resulting Table 3.6 can then be compared to the

drawdown-based Table 3.2. For an easier comparison of the two tables, see Figure 3.2. The

standard deviation predicts MDDt+1 and ADDt+1 better than the corresponding drawdown

measures in every single category and based on every metric. While the measure Pcor for the

standard deviation exceeds the measure for MDD and ADD by a fairly uniform margin across

all categories, the differences in P10/1 vary. For example, the difference between the standard

deviation and the drawdown measures is more pronounced in the U.S. categories than in the

international categories. Besides Pcor and P10/1, a comparison of single decile portfolios yields

that the portfolio Q1 sorted on lowest StdDevt−1 always has lower MDDt+1 than the portfolio

sorted on lowest MDDt−1; similarly, the portfolio Q10 sorted on highest StdDevt−1 always yields

higher MDDt+1 than the portfolio sorted on highest MDDt−1.

In summary, we find that the standard deviation is more informative about future drawdown

than the drawdown measures themselves. Thus, past standard deviation is the superior indicator

when the future drawdown shall be managed. Without computing a single drawdown metric,

practitioners may take the shortcut of using past volatility to manage future drawdown. The

potential implications of this finding are significant. Even investors who actively seek to minimize

future drawdown should choose funds with low past volatility instead of funds with low historical

drawdown. Consequently, reporting past MDD or ADD in fund prospectuses would provide few

benefits. Conversely, investors who choose low volatility funds might already implicitly enjoy

relatively low future drawdown. Hence, low volatility funds may add low expected drawdowns

to their selling points. As the standard deviation is well-established and often computed and

reported already, most implications would remain valid even if – hypothetically – the standard

deviation predicted drawdown only equally reliably but not significantly better. Although

some link between volatility and drawdown should be expected, it may come as a surprise that

volatility’s predictive power exceeds that of the drawdown measure itself. Possible explanations

for the results are discussed in depth in the following section.
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Panel A: Persistence of MDD

Persistence Quantile Portfolios

Category Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr. # funds

Large Value 0.489 1.45 0.107 0.119 0.125 0.130 0.132 0.135 0.136 0.138 0.143 0.155 X 956

Large Blend 0.417 1.41 0.113 0.126 0.131 0.131 0.132 0.133 0.136 0.138 0.144 0.159 X 1641

Large Growth 0.512 1.53 0.127 0.138 0.143 0.148 0.152 0.157 0.161 0.166 0.175 0.194 X 1144

Mid-Cap Value 0.509 1.48 0.114 0.126 0.132 0.137 0.138 0.142 0.146 0.148 0.151 0.169 X 456

Mid-Cap Blend 0.518 1.61 0.121 0.134 0.142 0.145 0.150 0.152 0.156 0.159 0.164 0.195 X 647

Mid-Cap Growth 0.521 1.58 0.142 0.154 0.164 0.171 0.175 0.184 0.190 0.194 0.203 0.225 X 723

Small Value 0.529 1.58 0.120 0.138 0.146 0.150 0.154 0.158 0.161 0.164 0.169 0.190 X 408

Small Blend 0.461 1.41 0.144 0.151 0.157 0.163 0.168 0.170 0.173 0.177 0.184 0.203 X 617

Small Growth 0.514 1.61 0.152 0.169 0.183 0.190 0.194 0.203 0.208 0.213 0.220 0.245 X 596

Foreign Large Value 0.416 1.23 0.150 0.161 0.165 0.167 0.169 0.170 0.175 0.180 0.183 0.185 X 206

foreign Large Blend 0.325 1.23 0.141 0.151 0.155 0.158 0.160 0.160 0.162 0.165 0.166 0.174 X 544

Foreign Large Growth 0.308 1.20 0.163 0.168 0.172 0.173 0.175 0.181 0.182 0.185 0.185 0.196 X 245

Div. Emerging Mark. 0.405 1.26 0.184 0.202 0.209 0.216 0.217 0.221 0.224 0.225 0.227 0.232 X 351

World Stock 0.414 1.49 0.120 0.132 0.137 0.143 0.145 0.149 0.151 0.159 0.166 0.179 X 555

Real Estate 0.375 1.37 0.134 0.169 0.167 0.172 0.171 0.173 0.171 0.174 0.177 0.183 x 133

Technology 0.524 1.54 0.183 0.213 0.218 0.226 0.229 0.234 0.242 0.251 0.258 0.282 X 165

Panel B: Persistence of ADD

Persistence Quantile Portfolios

Category Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr. # funds

Large Value 0.433 1.58 0.033 0.037 0.039 0.041 0.041 0.042 0.043 0.044 0.046 0.052 X 956

Large Blend 0.355 1.53 0.036 0.040 0.042 0.042 0.042 0.042 0.043 0.045 0.048 0.055 X 1641

Large Growth 0.458 1.71 0.041 0.045 0.047 0.049 0.051 0.053 0.055 0.057 0.061 0.070 X 1144

Mid-Cap Value 0.472 1.68 0.034 0.039 0.040 0.042 0.043 0.045 0.046 0.047 0.048 0.057 X 456

Mid-Cap Blend 0.460 1.82 0.038 0.041 0.045 0.045 0.047 0.049 0.050 0.052 0.054 0.069 X 647

Mid-Cap Growth 0.481 1.87 0.045 0.049 0.053 0.056 0.060 0.064 0.066 0.068 0.073 0.084 X 723

Small Value 0.482 1.71 0.038 0.044 0.047 0.049 0.050 0.051 0.054 0.054 0.056 0.065 X 408

Small Blend 0.400 1.61 0.046 0.048 0.050 0.053 0.054 0.055 0.057 0.058 0.062 0.074 X 617

Small Growth 0.477 1.92 0.049 0.056 0.061 0.064 0.066 0.071 0.074 0.076 0.080 0.094 X 596

Foreign Large Value 0.375 1.33 0.051 0.055 0.057 0.058 0.059 0.060 0.062 0.063 0.064 0.068 X 206

Foreign Large Blend 0.299 1.35 0.048 0.053 0.055 0.056 0.057 0.057 0.058 0.059 0.060 0.065 X 544

Foreign Large Growth 0.280 1.30 0.056 0.059 0.061 0.062 0.062 0.065 0.067 0.067 0.068 0.073 X 245

Div. Emerging Mark. 0.389 1.30 0.069 0.074 0.078 0.081 0.081 0.084 0.085 0.086 0.087 0.090 X 351

World Stock 0.350 1.74 0.039 0.044 0.046 0.049 0.050 0.052 0.052 0.056 0.060 0.068 X 555

Real Estate 0.369 1.42 0.045 0.058 0.057 0.060 0.060 0.061 0.059 0.061 0.063 0.064 x 133

Technology 0.507 1.79 0.066 0.077 0.080 0.084 0.086 0.089 0.093 0.099 0.102 0.118 X 165

Table 3.6: Detailed persistence results for single fund categories as in Table 3.2 but with the standard deviation

applied during t−1. During t+1, MDDt+1 is applied in Panel A, and ADDt+1 is applied in Panel B.

100



3.5 Predicting Drawdown with the Volatility Shortcut

0

0.2

0.4

0.6

Large Value
Large Blend

Large Growth

Mid−Cap
Value

Mid−Cap
Blend

Mid−Cap
Growth

Small Value

Small Blend Small
Growth

Foreign
Large Value

Foreign
Large Blend

Foreign
Large Growth

Div.
Emerging

Mark.

World Stock

Real Estate

Technology

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

Corr. to Std Dev.
Corr. to MDD

(a) Comparison of Pcor when predicting MDDt+1.
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(b) Comparison of Pcor when predicting ADDt+1.
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(c) Comparison of P10/1 when predicting MDDt+1.
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(d) Comparison of P10/1 when predicting ADDt+1.

Figure 3.2: Summary of the prediction of MDDt+1 or ADDt+1 with the standard deviation compared to the

drawdown measure itself across fund categories. The drawdown measure is depicted in light gray while the standard

deviation is depicted in dark blue. Plots (a) and (b) use persistence measure Pcor for the comparison, and plots (c)

and (d) use P10/1. In plots (a) and (c), MDDt+1 is the target measure; in plots (b) and (d), it is ADDt+1. All

plots result from a comparison of results from Tables 3.2 and 3.6.
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3.6 The Role of Volatility and Return Persistence

In the previous section, we have collected plenty of evidence for a surprising finding: past standard

deviation is a more accurate indicator of future drawdown than the drawdown measure itself. In

this section, we provide an explanation for this puzzling result, which evolves around volatility

persistence and the (non-)existence of persistence in returns. In the following, we first discuss

data-based evidence and then provide more details with a tailor-made simulation study.

The data-based approach elaborates on the previous correlation analysis, in which rank corre-

lations of MDDt−1 and MDDt+1 as well as StdDevt−1 and MDDt+1 have been reported. Now,

correlations for all possible combinations of t−1 and t+1 quantities are computed for the

drawdown measures, volatility, and returns. For simplicity, we first focus on annual MDD.

When correlations for quantities within the same period are computed as in the left portion of

Table 3.7, the MDD is highly positively correlated with the standard deviation (0.677) and fairly

negatively correlated with the return (−0.346). Both results are intuitive because drawdowns

tend to increase when prices are volatile and they tend to decrease when prices rise. In the right

portion of Table 3.7, we report correlations between consecutive periods, i.e., when one measure

ranks during period t−1 and the other measure ranks during period t+1. As before, we observe

the puzzling fact that the relationship between past and future MDD is weaker (0.436) than

the relation between past standard deviation and future MDD (0.493). Also apparent is the

stark difference between return and standard deviation regarding their respective persistence

properties. While the standard deviation is strongly persistent (0.720), the funds in the sample

exhibit hardly any return persistence (0.103). Both findings are plausible as they are consistent

with the literature, cf. Section 3.2.

Do the persistence results for the return and the standard deviation help to explain our puzzle?

They do, if you consider the following explanation: at the end of period t−1, we would like to

make an educated guess about the future MDD. Although past returns have been significantly

correlated with past MDD, considering past returns to predict future MDD does not seem

like a good idea because the return information itself is not particularly persistent (0.103).

Consequently, past return provides no information about future MDD, and correlations are close

to zero (0.030). Things are different for the standard deviation. The information contained in the

standard deviation is persistent across time (0.720) and highly correlated with MDD in the same

period (0.677). Consequently, past standard deviation is a useful tool for predicting future MDD.

But what about past MDD? It is affected by both past standard deviation and return, of which
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3.6 The Role of Volatility and Return Persistence

Panel A: Correlations of relative ranks with MDD

t−1 t+1

t−1 Return Std Dev. MDD Return Std Dev. MDD

Return 1 0.013 −0.346 0.103 0.088 0.030

Std Dev. 1 0.677 −0.003 0.720 0.493

MDD 1 −0.032 0.482 0.436

Panel B: Correlations of relative ranks with ADD

t−1 t+1

t−1 Return Std Dev. ADD Return Std Dev. ADD

Return 1 0.013 −0.508 0.103 0.088 −0.030

Std Dev. 1 0.592 −0.003 0.720 0.451

ADD 1 −0.070 0.416 0.409

Table 3.7: Correlations between different measures within the period or with the consecutive period. For example,

fund ranks based on return and MDD of the same period (t−1) are correlated −0.346; ranks based on return during

t−1 and MDD during t+1 are correlated 0.030. All correlations are based on the full data set and correspond

to the persistence measure Pcor. For a full correlation matrix, copy the top left submatrix in the bottom right

submatrix, since correlations for the same subperiod are the same, irrespective of it being called t−1 or t+1. Since

it carries no additional information, it has been omitted.

one is useful while the other is not. In a sense, the useful information that the MDD contains

from the standard deviation is obstructed by noise from the return information that is not useful

for predicting future MDD. Therefore, it is reasonable that the standard deviation alone is a

better predictor of future MDD. In addition to the annual correlation results, all correlations for

periods of three months and three years support this argument, cf. Tables 3.17 and 3.18.

If this explanation were true, we would expect that when a fund’s return persistence is high, its

drawdown persistence is high, too. For each fund and point in time, we examine whether such a

relationship exists in the mutual fund data. We quantify the return persistence of fund i between

times t−1 and t+1 by one minus the absolute difference between the relative rank of the fund’s

return during t−1 and its relative rank during t+1, such that persistence is low when relative

ranks are far apart.12 Drawdown persistence is quantified analogously. For example, when a

fund has the highest MDD during t−1 among 1,000 funds and then ranks second according to

12To quantify persistence here, we cannot use Pcor or P10/1 because we need a persistence measure for a single fund

and a single point in time.
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3 Drawdown Persistence and a Convenient Shortcut to Predicting Mutual Fund Drawdown

MDD during t+1, its persistence is 1−
∣∣∣ 1
1000 −

2
1000

∣∣∣ = 0.999, quite close to perfect persistence.

If the formerly highest MDD fund exhibited the second-lowest MDD during t+1, we would

quantify persistence as 1 −
∣∣∣ 1
1000 −

999
1000

∣∣∣ = 0.002, i.e., quite low. To determine whether there

is a relationship between return persistence and MDD persistence, the correlation coefficient

is computed for all pairs of return and MDD persistence for each fund and each period. We

obtain a correlation of 0.21, indicating that return persistence and MDD persistence are indeed

positively correlated.

Similarly, all arguments hold for the average drawdown, see Table 3.7. For the relation between

return persistence and ADD persistence, an even stronger positive correlation of 0.37 is obtained.

All results for both ADD and MDD hold similarly for all category groups.

Simulating Persistence

The analysis of our data set of mutual funds reveals that drawdown persistence is intricately

linked to volatility and return persistence. Volatility persistence emerges as the main driver of

drawdown persistence, but when return persistence is present, it adds significantly to drawdown

persistence. Are these results specific to mutual funds or can they be generalized? To address

whether the previous results are caused by idiosyncratic particularities in the mutual fund data,

we develop a suitable simulation model. Its purpose is to model what happens to drawdown

persistence when return or volatility persistence increase. Therefore, return persistence and

volatility persistence serve as inputs to the model, and we observe the drawdown persistence of

the output.

In general, simulating drawdown requires discretized sample paths, which is why we model daily

log return time series. At large, the model has a stochastic mean stochastic variance structure to

allow return and volatility to be simulated separately. Both stochastic processes for the mean

and volatility component are fractionally integrated (FI) processes introduced by Granger (1980)

because they are ideal to model persistence. Compared to autoregressive moving-average (ARMA)

processes, which are designed to model short-range dependence, FI processes excel at modeling

long-range dependence, which coincides with our notion of persistence. The combination of both

classes of models, autoregressive fractionally integrated moving average (ARFIMA) processes,

have been studied extensively (see Bhardwaj and Swanson (2006), and the references therein)

and have been applied in the finance context (e.g., Caporale and Gil-Alana (2006) and Aye et al.

(2014)). Since we focus on simulating persistence and, therefore, long-range dependence, FI
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3.6 The Role of Volatility and Return Persistence

processes are used to model each component of the stochastic mean stochastic variance model.

This approach allows us to efficiently model both return and volatility persistence.

We model daily log returns in a stochastic mean stochastic variance model with fractionally

integrated subprocesses. The returns rt are simulated via

rt = mt +
√
vt εt with mt = FI(d1, µ1, σ1)

vt = exp(ṽt)

ṽt = FI(d2, µ2, σ2),

where mt is the stochastic mean component, vt is the stochastic volatility component, and

εt ∼ N (0, 1). The fractionally integrated processes {Xt}t=0,...,N = FI(d, µ, σ) are defined via

(1−B)dXt = ηt with ηt ∼ N (µ, σ),

where B is the backshift operator, i.e., BXt = Xt−1, B2Xt = Xt−2 etc., cf. Granger (1980).

What makes the FI process ‘fractional’ is that the exponent d is not necessarily an integer but a

rational number, usually strictly between 0 and 0.5 to ensure positive dependence and stationarity

(Hosking, 1981). To handle such expressions, the binomial series can be applied to yield

(1−B)d =
∞∑
k=0

(
d

k

)
(−B)k

using generalized binomial coefficients defined as(
d

k

)
= d(d− 1) · · · (d− k + 1)

k! .

The infinite series would terminate when k exceeds d if the exponent d were an integer. Compared

to an ARMA model, the FI model’s autocorrelation function exhibits slow hyperbolic decay

instead of exponential decay (Baillie, 1996). Due to the slower decay, the FI processes are long-

range dependent, which allows us to model persistence. Intuitively, the fractionally integrating

parameters d1 and d2 steer the return and volatility persistence, respectively, whereas higher

values of d1 or d2 correspond to stronger persistence.

Four scenarios are considered to analyze the impact of return and volatility persistence: only

the return being persistent, only the standard deviation being persistent, both being persistent,

or neither. In each scenario, 100,000 paths of daily returns are simulated for two years and

the correlation-based persistence measure Pcor is computed between years one and two. As

mentioned previously, return and volatility persistence can be steered using the parameters d1

and d2, respectively. If neither should be persistent, we set d1 = d2 = 0. If only volatility should
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be persistent, we choose d1 = 0 and d2 = 0.42 such that the simulated volatility persistence

coincides with the volatility persistence of the mutual fund data in Table 3.7. To simulate a

scenario without volatility persistence but with strong return persistence, we choose d2 = 0 and

d1 = 0.25 resulting in a return persistence of 0.32, which is strong compared to 0.10 in Table 3.7.

When both return and volatility should persist, both non-zero choices of d1 and d2 are used

accordingly.

To obtain realistic choices for the remaining parameters, we compute daily log returns of the

mutual fund data. The average daily return is 0.000261 (annualized 6.55%), and the standard

deviation is 0.01278 (annualized 20.20%). As µ1 directly determines the daily return of the

process, we set it to 0.000261. To obtain the desired standard deviation, we set σ1, σ2, and µ2 as

follows. Observe that ṽt is the true variance process that is transformed with the exponential

function to yield vt, thus ensuring that the variance process is strictly positive. Reasonably sized

volatility ṽt after the transformation is obtained by setting µ2 to −10. Next, total volatility is

split such that the volatility process contributes 75% and the mean process contributes 25%.13

Moreover, the choice of d1 or d2 for each scenario slightly affects the standard deviation because

higher persistence induces higher volatility. We correct for this effect by choosing σ1 and σ2 such

that each process contributes the required amount to the total standard deviation.

The results for the four scenarios strongly support the previous findings on the drivers of drawdown

persistence and are illustrated in Figure 3.3. For each scenario, the figure contrasts how MDDt−1

predicts MDDt+1 (henceforth called MDD persistence) against how StdDevt−1 predicts MDDt+1

(henceforth called SD-MDD persistence), analogously for ADD instead of MDD. First, return and

volatility persistence are strongly underscored as drivers of drawdown persistence because, in the

scenario without return and volatility persistence, there is neither MDD persistence nor SD-MDD

persistence. This result also suggests that higher-order effects do not play a significant role.

Second, return persistence sharply increases MDD persistence but ignores SD-MDD persistence.

This result demonstrates a strong positive link between return persistence and MDD persistence.

While the mutual fund data set also suggests this relationship, the simulation result here is

more straightforward to interpret. In the third scenario, with volatility persistence only, the

MDD is strongly persistent, but SD-MDD persistence is stronger by a significant margin. This

result supports the evidence of volatility persistence being the driver of both MDD and SD-MDD

13Splitting total volatility is straightforward in our model, as the mean process mt and the volatility process vt
are stochastically independent.
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3.6 The Role of Volatility and Return Persistence

persistence. Naturally, SD-MDD persistence is affected more strongly than MDD persistence

when the standard deviation itself is persistent. In the fourth scenario, both return and standard

deviation are persistent. As MDD persistence exceeds SD-MDD persistence, the additional

return persistence (which promotes MDD persistence) compared to the third scenario appears to

turn the tide in favor of MDD persistence. The higher return persistence seems to dilute the

volatility information and, thus, cause lower SD-MDD persistence compared to the third scenario.

The right-hand side of Figure 3.3 contains the corresponding results for the ADD, which are

qualitatively similar. Relatively, the effect of the return persistence is stronger here compared to

the effect of the volatility persistence. Congruently, the return effect dominates in the fourth

scenario, driving ADD persistence further ahead of SD-ADD persistence.
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Figure 3.3: Summary of the effect which persistence in returns and standard deviation exert on drawdown

persistence. The four scenarios – only return persistence, only standard deviation persistence, neither, or both –

differ only in the prescribed model parameters for the corresponding persistence. From the simulated time series,

the persistence between MDDt−1 and MDDt+1 (displayed in gray) and the persistence between StdDevt−1 and

MDDt+1 (displayed in blue) are computed using the correlation of relative ranks, i.e., the persistence measure Pcor.

Substitute MDD with ADD to obtain the right set of bar plots.

How do the simulated results fit to the results from the mutual fund data? To relate both

analyses, recall that in the mutual fund data the standard deviation is much more persistent

(rank correlation between t−1 and t+1 of 0.720) than the return (0.103). Hence, the fund data

relates best to the third simulated scenario with a slight tilt toward scenario four. Therefore, we

would expect from the simulations that MDD persistence trails SD-MDD persistence slightly,

which is exactly what Table 3.7 reports.
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In summary, the simulations support many interesting results. Return and volatility persistence

appear to drive MDD and SD-MDD persistence (all analogous for the ADD), whereas return

persistence only affects MDD persistence, and volatility persistence affects both but favors

SD-MDD persistence. In settings in which the volatility persistence is dominant (as in scenario

three or the mutual fund data), the standard deviation is the better MDD predictor. When

strong return persistence is present in scenario four, the MDD predicts more accurately. Hence,

the choice of the most adequate drawdown predictor depends on assumptions regarding return

persistence. When investors feel confident in assuming high return persistence, relying on

drawdown persistence may be warranted. If return persistence is largely absent, going for the

standard deviation may be advantageous.

3.7 Does Managing Drawdowns Sacrifice Returns?

The empirical results virtually serve on a silver plate a straightforward strategy with which

to manage future drawdown risk: if low future drawdown is desired, choose funds with low

drawdown or low volatility in the past; if high future drawdown is desired, choose funds with

high historical drawdown or volatility. What are the implications of pursuing such a strategy?

In practice, the first question would regard returns: does managing drawdown risk lead to

lower returns? Addressing this question is relevant because, depending on this relationship, our

previous results have a different flavor. If low14 future drawdown goes hand in hand with low

returns, investors have to weight any decrease in future drawdown risk with a potential reduction

in returns. If managing drawdown were to substantially sacrifice returns, managing drawdown

might be impractical altogether. Conversely, if low drawdown coincided with higher returns,

managing drawdown would be even more appealing in practice.

Before turning to the empirical analysis, let us consider what relationship may be expected.

On the one hand, the usual risk–return trade-off, where higher risk is compensated with higher

returns, suggests that funds with low drawdown should exhibit low returns. On the other hand,

low-risk anomalies have been documented, for example, in Haugen and Heins (1975), Ang et al.

(2006), Baker et al. (2011), and Frazzini and Pedersen (2014), where the effect is reversed.

Regarding the volatility shortcut, the low volatility anomaly specifically suggests the contrary

relationship between past standard deviation and future returns. While the empirical evidence is

14Of course, building portfolios with low drawdown is not always desirable. Instead, the goal is usually to steer

the drawdown level depending on the individual risk appetite. We choose the case of low drawdown for illustrative

purposes because we deem it most intuitive.
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usually based on stocks, a similar anomaly for mutual funds may be hypothesized. With regard

to exploiting drawdown persistence, support for a reverse relationship arises from the fact that

drawdown is not ignorant of returns; in fact, high returns often coincide with low drawdown

(see Table 3.7) such that maneuvering an investment toward low drawdown should also coincide

with higher returns. Considering these conflicting arguments, relationships in both directions are

conceivable.

Therefore, we leverage the mutual fund data set to address the relationship empirically. Instead

of the persistence question, i.e., how MDDt−1 affects MDDt+1, we observe how MDDt−1 affects

average daily log returns during t+1 (analogously for ADDt−1 or StdDevt−1). The results in

Table 3.8 suggest that there is no systematic relationship between managing drawdown and future

return. All correlations Pcor between MDDt−1 and subsequent returns are close to zero. Similarly,

the average returns of the quantile portfolios neither monotonically increase nor decrease (except

for international funds sorted on ADD or standard deviation). If at all, there is evidence that

managing drawdown leads to slightly higher returns during t+1 because all correlations Pcor are

slightly negative, and returns more often decrease than increase for higher deciles. For sector

equity, the smallest category group, historical drawdowns in the highest deciles strongly signal

lower future returns. Overall, managing drawdowns does not sacrifice returns. These results hold

for managing drawdown with MDDt−1, ADDt−1, and StdDevt−1 (see Table 3.8) as well as for

three-month and three-year periods (see Table 3.19 in the appendix).

Even in the absence of positive or negative returns as a consequence of managing drawdown, high

or low drawdown funds differ in risk; therefore, they potentially earn different α with respect to

a factor model. For example, despite having similar returns, high drawdown funds may earn

higher α than low drawdown funds. Similarly, high and low drawdown funds may differ in how

much of their return can be attributed to the different factors. For instance, in comparison to low

drawdown funds, high drawdown funds may contain more stocks of small firms, such that more

of their excess return is explained by the size factor. To investigate both points, Fama-French

5-factor alphas are computed by regressing the mutual fund returns on the factor portfolios of the

Fama-French 5-factor (FF5) model.15 The necessary daily return time series of the five factors

15The FF5 factor model consists of five factor portfolios: the value-weighted market portfolio in excess of the

risk-free rate, the SMB long–short portfolio of small minus big size stocks, the HML long–short portfolio of high

minus low book-to-market stocks, the RMW long–short portfolio of robust minus weak operating profitability

stocks, and the CMA long–short portfolio of conservative minus aggressive investment stocks (Fama and French,

2015).

109



3 Drawdown Persistence and a Convenient Shortcut to Predicting Mutual Fund Drawdown

Persistence Quantile Portfolios

Category Group Pcor 1 2 3 4 5 6 7 8 9 10 incr. decr.

MDD:

All Equity −0.032 0.078 0.076 0.078 0.082 0.081 0.079 0.077 0.077 0.074 0.052 x x

U.S. Equity −0.002 0.081 0.082 0.082 0.084 0.086 0.085 0.085 0.086 0.084 0.073 x x

Int. Equity −0.055 0.074 0.069 0.065 0.063 0.059 0.057 0.052 0.049 0.043 0.044 x x

Sector Equity −0.082 0.097 0.094 0.078 0.084 0.092 0.096 0.090 0.067 0.033 −0.012 x x

ADD:

All Equity −0.070 0.083 0.082 0.081 0.081 0.080 0.078 0.075 0.073 0.071 0.049 x x

U.S. Equity −0.043 0.087 0.086 0.085 0.086 0.083 0.083 0.083 0.084 0.081 0.071 x x

Int. Equity −0.071 0.077 0.070 0.066 0.063 0.059 0.055 0.053 0.047 0.047 0.041 x X

Sector Equity −0.108 0.097 0.095 0.091 0.099 0.092 0.088 0.082 0.055 0.030 −0.008 x x

Std Dev.:

All Equity −0.003 0.078 0.076 0.077 0.077 0.076 0.075 0.077 0.079 0.079 0.059 x x

U.S. Equity −0.017 0.083 0.086 0.085 0.084 0.082 0.084 0.084 0.083 0.081 0.077 x x

Int. Equity −0.061 0.079 0.070 0.063 0.060 0.056 0.056 0.054 0.050 0.048 0.040 x X

Sector Equity −0.080 0.095 0.093 0.077 0.087 0.093 0.093 0.085 0.053 0.028 0.017 x x

Table 3.8: Effect of managing drawdown on fund returns. Sorting funds on MDDt−1, ADDt−1, or StdDevt−1, we

report rank correlations with future return (Pcor) and average annual returns for each quantile portfolio. As trends

across quantile portfolios are mostly absent, we omit computing P10/1. Instead, we add a column that indicates

whether returns are monotonically decreasing.

are obtained from Kenneth French’s website.16 In detail, we first sort all funds by MDDt−1 into

decile portfolios before we regress each fund’s excess returns during t+1 on the returns of the FF5

factors during t+1.17 We collect the resulting factor loadings βi and intersect α for each fund

as well as the factor risk premium for each period and factor. The product of factor loading βi
and the average factor return can be interpreted as the contribution of the factor to the average

return. The resulting factor contributions and alphas are averaged across funds and time with

one-year rolling windows at a monthly frequency.18 To allow for a better interpretation, the daily

results are annualized to arrive at Table 3.9 and its visualization in Figure 3.4.

In general, all alphas are fairly close to zero and mostly negative. Across decile portfolios, there

are no significant trends to be observed. Hence, future α is largely unaffected by managing

drawdown. Regarding factor contributions, the market factor β has the highest contribution

16http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html (last access: 31.03.2020)
17We restrict our analysis to the U.S. data set because the FF5 factors constitute an appropriate benchmark for

this data; the average R2 for the multiple linear regressions is 0.899.
18We omit time series from the analysis when the fund is terminated during t+1 because otherwise obscure

regression coefficients may skew the results.
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3.7 Does Managing Drawdowns Sacrifice Returns?

Quantile Portfolios

1 2 3 4 5 6 7 8 9 10 incr. decr.

MDD:

Return 0.0614 0.0627 0.0626 0.0655 0.0658 0.0660 0.0664 0.0673 0.0666 0.0588 x x

α −0.0011 −0.0065 −0.0074 −0.0069 −0.0073 −0.0072 −0.0068 −0.0051 −0.0029 −0.0056 x x

β 0.0596 0.0670 0.0680 0.0688 0.0695 0.0697 0.0709 0.0723 0.0748 0.0787 X x

SMB 0.0001 0.0004 0.0008 0.0023 0.0024 0.0028 0.0034 0.0040 0.0045 0.0060 X x

HML 0.0018 0.0010 0.0007 0.0015 0.0023 0.0023 0.0018 0.0008 −0.0009 −0.0043 x x

RMW −0.0004 −0.0003 −0.0001 −0.0006 −0.0014 −0.0016 −0.0026 −0.0041 −0.0076 −0.0136 x x

CMA 0.0014 0.0011 0.0006 0.0005 0.0003 0.0001 −0.0003 −0.0005 −0.0013 −0.0023 x X

ADD:

Return 0.0669 0.0662 0.0648 0.0665 0.0639 0.0633 0.0637 0.0655 0.0640 0.0582 x x

α 0.0018 −0.0061 −0.0066 −0.0064 −0.0077 −0.0060 −0.0064 −0.0042 −0.0049 −0.0103 x x

β 0.0601 0.0671 0.0680 0.0690 0.0692 0.0700 0.0713 0.0727 0.0749 0.0769 X x

SMB 0.0015 0.0020 0.0021 0.0030 0.0018 0.0009 0.0024 0.0026 0.0041 0.0061 x x

HML 0.0040 0.0036 0.0019 0.0019 0.0016 0.0003 −0.0006 −0.0009 −0.0020 −0.0028 x x

RMW −0.0018 −0.0017 −0.0010 −0.0009 −0.0011 −0.0016 −0.0026 −0.0041 −0.0070 −0.0105 x x

CMA 0.0012 0.0014 0.0004 0.0000 0.0000 −0.0003 −0.0003 −0.0006 −0.0011 −0.0012 x x

Std Dev.:

Return 0.0640 0.0663 0.0652 0.0646 0.0632 0.0658 0.0651 0.0648 0.0636 0.0607 x x

α 0.0008 −0.0058 −0.0093 −0.0101 −0.0094 −0.0073 −0.0062 −0.0050 −0.0037 −0.0009 x x

β 0.0567 0.0657 0.0680 0.0695 0.0704 0.0711 0.0716 0.0727 0.0747 0.0790 X x

SMB 0.0009 0.0008 0.0011 0.0011 0.0008 0.0022 0.0028 0.0044 0.0059 0.0067 x x

HML 0.0036 0.0030 0.0021 0.0015 0.0005 0.0010 0.0011 0.0000 −0.0016 −0.0041 x x

RMW 0.0004 −0.0002 0.0008 0.0008 0.0005 −0.0012 −0.0040 −0.0054 −0.0088 −0.0153 x x

CMA 0.0016 0.0028 0.0025 0.0017 0.0004 0.0000 −0.0002 −0.0019 −0.0029 −0.0045 x x

Table 3.9: Average factor contributions to the mean excess return during t+1 in the Fama-French 5-factor model

for funds sorted on MDDt−1, ADDt−1, or StdDevt−1. Decile portfolio 1 contains the low drawdown funds.

by far compared to the other FF5 factors whose contributions are close to zero. Across decile

portfolios, most of the factors’ contributions remain fairly constant. Subtle trends across decile

portfolios can be identified for the market factor and the robust minus weak operating profitability

factor whose contributions slightly rise or fall, respectively, with increasing MDDt−1, ADDt−1,

or StdDevt−1. Broadly speaking, however, the factors’ contributions to the return do not differ

substantially between funds sorted on high and low drawdown. In summary, exploiting historical

drawdown information about mutual funds sacrifices neither future returns nor future FF5 α,

and does not alter the FF5 factors’ contribution to the returns.
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(a) Portfolios sorted according to MDDt−1.
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(b) Portfolios sorted according to ADDt−1.
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(c) Portfolios sorted according to StdDevt−1.

Figure 3.4: Illustration of the average FF5 factor contributions to the excess return as provided in Table 3.9. For

the 10 quantile portfolios, the diamonds indicate the excess return, the blue line indicates the market β, the dots

refer to α, and the gray lines depict the contributions of the other FF5 factors (SMB, HML, RMW, CMA).
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3.8 Conclusion

3.8 Conclusion

Choosing a mutual fund might be an individual’s or institution’s most far-reaching financial

decision. It is likely to be informed by the fund’s performance track record, both in terms of risk

and returns. If these quantities are persistent, incorporating them into the investment decision

makes immediate sense. However, if they are not persistent, reporting them offers no value in

the first place. Although the literature on drawdown risk measures has been expanding, this

important question of persistence has not yet been addressed. We fill this gap by analyzing

the persistence of more than 7,000 mutual funds. Our principal finding is that the drawdown

of mutual funds is highly persistent. For example, on average, funds in the highest ADD

decile exhibit twice as much drawdown in the following year than funds in the lowest decile.

Drawdown-based fund rankings between subsequent years are significantly positively correlated

at approximately 0.40. Considerable differences in the average drawdown quantities between

quantile portfolios underscore the economic significance of drawdown persistence. Not only is

drawdown persistent for the full sample; similar results are observed for partitions with only U.S.

funds, international funds, or sector funds. Further subdivision into fund categories (e.g., U.S.

mid-cap growth funds) reveals that drawdown persists in all categories. Moreover, persistence

holds for drawdown that is computed for three months, one year, and three years; it is also

present irrespective of the period under investigation. Probing along different dimensions, we

find ample and robust evidence of persistence.

The most obvious implication when drawdown persists is to predict future drawdown. However,

is exploiting drawdown persistence the best option to infer future drawdown? Several alternatives

are analyzed, and among them past standard deviation is found to be the best drawdown

predictor. Although its outperformance (e.g., a rank correlation of 0.493 instead of 0.436) is not

gargantuan, it is significantly present across all fund categories. As the standard deviation is

often readily available, it may serve as a quick – and even more accurate – shortcut for estimating

future drawdown. In conclusion, if you want to pick a fund with low future drawdown, the

standard deviation should guide your choice. Further analysis of the mutual fund data and

additional simulations help explain why these results occur. First, volatility persistence breeds

drawdown persistence. Second, if returns were significantly persistent, the power of historical

drawdown to predict future drawdown would increase strongly, while the power of historical

standard deviation to predict future drawdown would not. Consequently, if the data at hand can

be expected to exhibit significant return persistence, the drawdown measures themselves would

constitute the superior indicator. Since strong return persistence cannot be expected in most
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finance settings, using the shortcut will provide better results in most applications.

The additional analysis in Section 3.7 does not immediately relate to persistence. However, it

addresses a pressing question when one decided to exploit drawdown persistence or the volatility

shortcut. In such a case, an obvious question would be whether the choice to manage drawdown

affects risk and return. We document that there is not a substantial effect on either returns or

Fama-French 5-factor alphas. Therefore, there do not seem to be costs associated with reducing

drawdown risks.

As this article is the first to investigate drawdown persistence, there is plenty of room for further

research. Most obviously, the analysis may be expanded to include other drawdown measures, as

we have restricted our analysis to two of the most common drawdown measures. Additionally,

an analysis in conjunction with other types of risk measures may yield interesting results. The

question of persistence, in which the same quantity is used during t−1 and t+1, is always closely

linked to the question of predictability, in which other t−1 information may be exploited to

improve the forecast of the quantity in t+1. By also considering other risk measures to predict

drawdown, this article has moved toward improving drawdown prediction. However, much more

extensive optimization is possible to improve how to choose funds with low future drawdown.

This analysis focuses on mutual funds, which we deem a realistic use case. Usually, only a

small number of funds are chosen by both institutional and private investors. Limiting risk and

considering drawdown when making investment decisions can be advantageous, especially for

important goals like retirement savings or college education funds. Nonetheless, our analysis may

be replicated for other investment vehicles or stocks. As few people pick single stocks, examining

portfolios of stocks may be of interest.
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C Appendix

Panel A: Evaluation period: three months

Persistence Quantile Portfolios

Category Group Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr. # funds

MDD:

All Equity 0.413 1.84 0.062 0.069 0.072 0.074 0.077 0.080 0.083 0.087 0.093 0.114 X 7263

U.S. Equity 0.465 1.68 0.062 0.068 0.071 0.072 0.075 0.077 0.081 0.085 0.091 0.104 X 4636

Int. Equity 0.381 1.64 0.066 0.073 0.075 0.077 0.079 0.080 0.083 0.088 0.094 0.108 X 2064

Sector Equity 0.481 2.59 0.059 0.070 0.080 0.083 0.085 0.090 0.096 0.111 0.128 0.153 X 781

ADD:

All Equity 0.353 1.91 0.023 0.025 0.026 0.027 0.029 0.030 0.031 0.033 0.035 0.044 X 7263

U.S. Equity 0.399 1.77 0.022 0.024 0.025 0.026 0.027 0.028 0.030 0.031 0.034 0.039 X 4636

Int. Equity 0.327 1.68 0.025 0.028 0.029 0.029 0.030 0.031 0.032 0.034 0.037 0.042 X 2064

Sector Equity 0.396 2.74 0.023 0.028 0.030 0.032 0.032 0.033 0.038 0.045 0.051 0.063 X 781

Panel B: Evaluation period: three years

Persistence Quantile Portfolios

Category Group Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr. # funds

MDD:

All Equity 0.448 1.62 0.216 0.230 0.234 0.240 0.248 0.259 0.269 0.281 0.298 0.350 X 7263

U.S. Equity 0.445 1.49 0.211 0.223 0.227 0.230 0.237 0.245 0.256 0.269 0.283 0.314 X 4636

Int. Equity 0.403 1.48 0.238 0.255 0.265 0.269 0.276 0.277 0.283 0.302 0.327 0.352 X 2064

Sector Equity 0.463 1.98 0.219 0.237 0.256 0.266 0.276 0.294 0.312 0.339 0.374 0.434 X 781

ADD:

All Equity 0.422 1.91 0.066 0.069 0.072 0.075 0.079 0.084 0.087 0.091 0.098 0.126 X 7263

U.S. Equity 0.417 1.63 0.062 0.066 0.067 0.070 0.072 0.076 0.081 0.083 0.088 0.101 X 4636

Int. Equity 0.384 1.68 0.077 0.084 0.087 0.090 0.092 0.094 0.098 0.108 0.119 0.129 X 2064

Sector Equity 0.392 2.58 0.071 0.084 0.092 0.092 0.090 0.093 0.101 0.119 0.146 0.183 x 781

Table 3.10: Drawdown persistence results for the full sample as in Table 3.1. Instead of one year, the evaluation

period is three months (Panel A) and three years (Panel B).
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Panel A: Persistence of MDD

Persistence Quantile Portfolios

Category Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr. # funds

Large Value 0.407 1.43 0.056 0.062 0.065 0.066 0.068 0.069 0.070 0.072 0.074 0.080 X 956

Large Blend 0.381 1.39 0.059 0.066 0.068 0.069 0.069 0.070 0.071 0.073 0.075 0.082 X 1641

Large Growth 0.384 1.44 0.068 0.073 0.076 0.077 0.080 0.081 0.083 0.086 0.090 0.098 X 1144

Mid-Cap Value 0.448 1.51 0.057 0.064 0.066 0.069 0.071 0.072 0.073 0.075 0.078 0.086 X 456

Mid-Cap Blend 0.449 1.56 0.062 0.069 0.072 0.075 0.076 0.078 0.079 0.081 0.086 0.097 X 647

Mid-Cap Growth 0.419 1.49 0.074 0.080 0.084 0.088 0.090 0.093 0.096 0.098 0.102 0.110 X 723

Small Value 0.472 1.58 0.060 0.069 0.073 0.075 0.077 0.079 0.081 0.082 0.086 0.095 X 408

Small Blend 0.374 1.41 0.073 0.078 0.080 0.083 0.086 0.087 0.088 0.089 0.091 0.103 X 617

Small Growth 0.403 1.53 0.078 0.087 0.092 0.095 0.099 0.100 0.102 0.106 0.108 0.119 X 596

Foreign Large Value 0.387 1.29 0.070 0.077 0.081 0.082 0.083 0.084 0.084 0.086 0.088 0.090 X 206

Foreign Large Blend 0.304 1.25 0.069 0.074 0.076 0.077 0.078 0.079 0.079 0.081 0.082 0.086 X 544

Foreign Large Growth 0.301 1.26 0.076 0.081 0.082 0.083 0.085 0.086 0.086 0.088 0.090 0.096 X 245

Div. Emerging Mark. 0.338 1.29 0.084 0.093 0.098 0.100 0.101 0.102 0.102 0.104 0.105 0.108 X 351

World Stock 0.350 1.45 0.060 0.067 0.069 0.071 0.073 0.075 0.078 0.080 0.081 0.087 X 555

Real Estate 0.357 1.42 0.065 0.083 0.085 0.086 0.087 0.087 0.088 0.089 0.089 0.092 X 133

Technology 0.427 1.52 0.095 0.110 0.115 0.118 0.119 0.120 0.124 0.126 0.133 0.144 X 165

Panel B: Persistence of ADD

Persistence Quantile Portfolios

Category Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr. # funds

Large Value 0.345 1.45 0.020 0.022 0.023 0.024 0.024 0.024 0.025 0.025 0.027 0.029 X 956

Large Blend 0.325 1.43 0.021 0.023 0.024 0.024 0.024 0.025 0.025 0.026 0.027 0.030 X 1641

Large Growth 0.294 1.44 0.025 0.027 0.028 0.028 0.029 0.030 0.030 0.031 0.032 0.036 X 1144

Mid-Cap Value 0.379 1.60 0.020 0.023 0.024 0.024 0.025 0.026 0.026 0.027 0.029 0.032 X 456

Mid-Cap Blend 0.384 1.64 0.022 0.025 0.026 0.027 0.028 0.028 0.029 0.030 0.031 0.036 X 647

Mid-Cap Growth 0.349 1.56 0.027 0.030 0.031 0.032 0.033 0.035 0.035 0.037 0.038 0.042 X 723

Small Value 0.381 1.64 0.022 0.025 0.027 0.028 0.029 0.029 0.030 0.031 0.032 0.036 X 408

Small Blend 0.320 1.48 0.027 0.028 0.030 0.030 0.031 0.032 0.032 0.033 0.034 0.040 X 617

Small Growth 0.348 1.55 0.029 0.032 0.034 0.036 0.037 0.038 0.039 0.040 0.041 0.045 X 596

Foreign Large Value 0.324 1.30 0.027 0.030 0.031 0.031 0.031 0.031 0.032 0.033 0.034 0.035 X 206

Foreign Large Blend 0.251 1.27 0.026 0.028 0.029 0.029 0.030 0.030 0.031 0.031 0.031 0.033 X 544

Foreign Large Growth 0.231 1.23 0.030 0.031 0.031 0.032 0.033 0.034 0.033 0.033 0.034 0.037 x 245

Div. Emerging Mark. 0.263 1.30 0.033 0.037 0.039 0.039 0.040 0.041 0.041 0.041 0.042 0.043 X 351

World Stock 0.271 1.48 0.023 0.025 0.026 0.027 0.028 0.028 0.029 0.030 0.030 0.034 X 555

Real Estate 0.309 1.44 0.025 0.031 0.033 0.033 0.033 0.034 0.034 0.034 0.034 0.036 X 133

Technology 0.358 1.47 0.038 0.043 0.045 0.045 0.047 0.048 0.049 0.050 0.053 0.056 X 165

Table 3.11: Detailed drawdown persistence results for single fund categories as in Table 3.2. Instead of one year,

the evaluation period is three months.
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Panel A: Persistence of MDD

Persistence Quantile Portfolios

Category Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr. # funds

Large Value 0.313 1.21 0.195 0.207 0.212 0.217 0.218 0.219 0.222 0.225 0.226 0.236 X 956

Large Blend 0.313 1.25 0.199 0.213 0.218 0.219 0.218 0.221 0.221 0.227 0.233 0.248 x 1641

Large Growth 0.360 1.30 0.224 0.236 0.239 0.241 0.248 0.253 0.256 0.264 0.274 0.291 X 1144

Mid-Cap Value 0.333 1.25 0.207 0.222 0.226 0.230 0.232 0.236 0.240 0.244 0.243 0.258 x 456

Mid-Cap Blend 0.359 1.31 0.217 0.229 0.240 0.245 0.244 0.247 0.249 0.257 0.269 0.285 x 647

Mid-Cap Growth 0.380 1.32 0.251 0.264 0.272 0.284 0.291 0.299 0.300 0.307 0.312 0.331 X 723

Small Value 0.421 1.38 0.216 0.238 0.245 0.249 0.254 0.260 0.263 0.263 0.278 0.298 X 408

Small Blend 0.311 1.23 0.251 0.266 0.267 0.272 0.277 0.278 0.283 0.286 0.288 0.308 X 617

Small Growth 0.373 1.32 0.271 0.291 0.304 0.310 0.321 0.327 0.327 0.334 0.341 0.357 X 596

Foreign Large Value 0.329 1.15 0.263 0.272 0.282 0.286 0.284 0.295 0.292 0.297 0.307 0.303 x 206

Foreign Large Blend 0.262 1.16 0.244 0.261 0.269 0.267 0.267 0.268 0.275 0.272 0.279 0.283 x 544

Foreign Large Growth 0.286 1.17 0.287 0.305 0.306 0.306 0.308 0.311 0.311 0.310 0.318 0.336 x 245

Div. Emerging Mark. 0.293 1.19 0.327 0.359 0.368 0.370 0.372 0.373 0.379 0.386 0.377 0.389 x 351

World Stock 0.366 1.33 0.215 0.226 0.235 0.242 0.249 0.250 0.255 0.269 0.275 0.285 X 555

Real Estate 0.188 1.17 0.246 0.279 0.276 0.273 0.273 0.266 0.274 0.275 0.279 0.288 x 133

Technology 0.389 1.35 0.311 0.356 0.364 0.375 0.374 0.374 0.384 0.385 0.391 0.419 x 165

Panel B: Persistence of ADD

Persistence Quantile Portfolios

Category Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr. # funds

Large Value 0.268 1.31 0.054 0.058 0.060 0.061 0.061 0.062 0.063 0.064 0.064 0.071 X 956

Large Blend 0.301 1.34 0.059 0.063 0.065 0.065 0.065 0.066 0.068 0.070 0.072 0.079 X 1641

Large Growth 0.326 1.45 0.071 0.076 0.077 0.080 0.081 0.084 0.086 0.089 0.092 0.103 X 1144

Mid-Cap Value 0.312 1.37 0.054 0.061 0.060 0.060 0.063 0.065 0.065 0.066 0.069 0.074 x 456

Mid-Cap Blend 0.311 1.43 0.060 0.065 0.066 0.068 0.068 0.071 0.072 0.072 0.077 0.086 X 647

Mid-Cap Growth 0.372 1.56 0.075 0.082 0.087 0.092 0.094 0.098 0.099 0.102 0.107 0.117 X 723

Small Value 0.347 1.49 0.059 0.064 0.066 0.069 0.071 0.071 0.075 0.076 0.080 0.088 X 408

Small Blend 0.254 1.39 0.072 0.076 0.078 0.076 0.078 0.079 0.081 0.083 0.084 0.100 x 617

Small Growth 0.365 1.61 0.082 0.092 0.099 0.103 0.104 0.107 0.110 0.114 0.117 0.132 X 596

Foreign Large Value 0.299 1.24 0.083 0.086 0.090 0.092 0.094 0.093 0.096 0.095 0.099 0.103 x 206

Foreign Large Blend 0.249 1.28 0.079 0.088 0.089 0.090 0.089 0.090 0.092 0.092 0.094 0.101 x 544

Foreign Large Growth 0.222 1.17 0.099 0.103 0.105 0.108 0.109 0.112 0.113 0.111 0.115 0.116 x 245

Div. Emerging Mark. 0.276 1.25 0.116 0.126 0.132 0.136 0.136 0.137 0.140 0.141 0.142 0.145 X 351

World Stock 0.335 1.56 0.064 0.071 0.075 0.077 0.080 0.078 0.082 0.089 0.089 0.100 x 555

Real Estate 0.231 1.27 0.075 0.086 0.089 0.091 0.089 0.091 0.089 0.090 0.093 0.095 x 133

Technology 0.357 1.41 0.117 0.134 0.141 0.145 0.145 0.147 0.151 0.152 0.162 0.165 X 165

Table 3.12: Detailed drawdown persistence results for single fund categories as in Table 3.2. Instead of one year,

the evaluation period is three years.
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Panel A: Persistence of MDD

Persistence Quantile Portfolios

Time Period Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr. # funds

All Equity

1990–1999 0.465 2.34 0.044 0.051 0.053 0.056 0.057 0.061 0.066 0.072 0.080 0.103 X 2667

2000–2009 0.444 1.77 0.080 0.089 0.094 0.096 0.100 0.103 0.107 0.111 0.118 0.142 X 5019

2010–2019 0.364 1.59 0.059 0.065 0.067 0.069 0.071 0.073 0.075 0.076 0.080 0.094 X 4979

U.S. Equity

1990–1999 0.494 2.14 0.043 0.050 0.053 0.054 0.056 0.059 0.063 0.069 0.078 0.092 X 1811

2000–2009 0.466 1.62 0.081 0.088 0.092 0.094 0.098 0.101 0.104 0.109 0.116 0.131 X 3388

2010–2019 0.451 1.48 0.058 0.063 0.065 0.066 0.069 0.071 0.073 0.076 0.078 0.086 X 2992

Int. Equity

1990–1999 0.383 2.00 0.053 0.055 0.056 0.058 0.060 0.060 0.061 0.072 0.082 0.106 X 586

2000–2009 0.436 1.55 0.082 0.092 0.097 0.099 0.101 0.104 0.108 0.111 0.117 0.127 X 1094

2010–2019 0.342 1.41 0.063 0.069 0.071 0.073 0.074 0.075 0.076 0.079 0.082 0.089 X 1561

Sector Equity

1990–1999 0.611 3.41 0.041 0.048 0.059 0.064 0.069 0.076 0.083 0.099 0.115 0.140 X 266

2000–2009 0.490 2.38 0.076 0.091 0.105 0.108 0.108 0.114 0.124 0.141 0.161 0.181 X 544

2010–2019 0.429 2.34 0.058 0.068 0.073 0.075 0.076 0.078 0.080 0.089 0.105 0.136 X 543

Panel B: Persistence of ADD

Persistence Quantile Portfolios

Time Period Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr. # funds

All Equity

1990–1999 0.375 2.60 0.015 0.017 0.018 0.019 0.020 0.021 0.023 0.025 0.029 0.039 X 2667

2000–2009 0.364 1.78 0.032 0.035 0.037 0.038 0.040 0.041 0.043 0.045 0.047 0.057 X 5019

2010–2019 0.335 1.67 0.021 0.022 0.023 0.024 0.025 0.026 0.027 0.027 0.029 0.035 X 4979

U.S. Equity

1990–1999 0.402 2.29 0.014 0.016 0.017 0.018 0.019 0.020 0.022 0.024 0.027 0.032 X 1811

2000–2009 0.397 1.62 0.032 0.035 0.036 0.037 0.038 0.040 0.042 0.043 0.046 0.052 X 3388

2010–2019 0.399 1.58 0.019 0.021 0.021 0.022 0.023 0.024 0.025 0.026 0.027 0.030 X 2992

Int. Equity

1990–1999 0.332 2.11 0.019 0.020 0.020 0.020 0.022 0.022 0.023 0.028 0.032 0.040 X 586

2000–2009 0.325 1.50 0.034 0.037 0.039 0.040 0.041 0.042 0.044 0.044 0.046 0.051 X 1094

2010–2019 0.327 1.59 0.022 0.025 0.026 0.027 0.028 0.028 0.029 0.030 0.032 0.035 X 1561

Sector Equity

1990–1999 0.513 3.93 0.015 0.018 0.021 0.024 0.026 0.027 0.031 0.038 0.046 0.059 X 266

2000–2009 0.416 2.34 0.032 0.038 0.042 0.044 0.043 0.045 0.052 0.060 0.067 0.075 x 544

2010–2019 0.336 2.50 0.022 0.026 0.026 0.026 0.027 0.027 0.030 0.034 0.040 0.055 X 543

Table 3.13: Subperiod analysis of the persistence results as in Table 3.3. Instead of one year, the evaluation period

is three months.
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Panel A: Persistence of MDD

Persistence Quantile Portfolios

Time Period Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr. # funds

All Equity

1990–1999 0.462 1.94 0.173 0.184 0.186 0.192 0.201 0.218 0.231 0.249 0.273 0.335 X 2667

2000–2009 0.382 1.40 0.292 0.312 0.318 0.320 0.328 0.333 0.342 0.351 0.364 0.409 X 5019

2010–2019 0.530 1.76 0.160 0.169 0.176 0.184 0.193 0.202 0.210 0.218 0.233 0.282 X 4547

U.S. Equity

1990–1999 0.473 1.79 0.164 0.172 0.179 0.183 0.190 0.198 0.216 0.233 0.256 0.293 X 1811

2000–2009 0.359 1.30 0.293 0.310 0.310 0.312 0.318 0.325 0.330 0.342 0.353 0.380 X 3388

2010–2019 0.557 1.61 0.152 0.162 0.168 0.171 0.179 0.187 0.198 0.207 0.217 0.244 X 2758

Int. Equity

1990–1999 0.420 1.81 0.203 0.209 0.225 0.229 0.237 0.237 0.247 0.287 0.327 0.368 X 586

2000–2009 0.356 1.26 0.311 0.336 0.344 0.345 0.352 0.353 0.359 0.361 0.377 0.392 X 1094

2010–2019 0.445 1.53 0.178 0.196 0.201 0.209 0.216 0.218 0.220 0.234 0.253 0.272 X 1362

Sector Equity

1990–1999 0.526 2.29 0.179 0.189 0.205 0.219 0.243 0.264 0.293 0.329 0.364 0.410 X 266

2000–2009 0.434 1.70 0.281 0.311 0.343 0.347 0.343 0.363 0.381 0.405 0.432 0.479 x 544

2010–2019 0.473 2.23 0.180 0.189 0.195 0.208 0.219 0.233 0.233 0.255 0.301 0.401 X 507

Panel B: Persistence of ADD

Persistence Quantile Portfolios

Time Period Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr. # funds

All Equity

1990–1999 0.400 2.28 0.050 0.051 0.051 0.054 0.058 0.064 0.069 0.073 0.081 0.114 X 2667

2000–2009 0.341 1.54 0.101 0.109 0.114 0.117 0.121 0.125 0.127 0.129 0.134 0.156 X 5019

2010–2019 0.544 2.82 0.034 0.036 0.039 0.041 0.045 0.049 0.053 0.059 0.068 0.096 X 4547

U.S. Equity

1990–1999 0.387 1.82 0.045 0.047 0.046 0.049 0.052 0.055 0.061 0.064 0.070 0.082 x 1811

2000–2009 0.344 1.46 0.099 0.107 0.109 0.112 0.115 0.119 0.124 0.125 0.131 0.145 X 3388

2010–2019 0.543 2.14 0.029 0.031 0.032 0.034 0.036 0.039 0.042 0.045 0.048 0.062 X 2758

Int. Equity

1990–1999 0.415 2.11 0.064 0.065 0.066 0.068 0.070 0.073 0.081 0.103 0.122 0.135 X 586

2000–2009 0.284 1.32 0.110 0.122 0.125 0.128 0.131 0.132 0.133 0.136 0.140 0.145 X 1094

2010–2019 0.472 2.06 0.048 0.053 0.060 0.063 0.066 0.067 0.070 0.075 0.084 0.099 X 1362

Sector Equity

1990–1999 0.376 3.22 0.058 0.070 0.078 0.081 0.076 0.074 0.079 0.096 0.143 0.187 x 266

2000–2009 0.363 1.86 0.099 0.119 0.130 0.126 0.121 0.124 0.141 0.162 0.173 0.184 x 544

2010–2019 0.440 3.69 0.048 0.051 0.053 0.056 0.064 0.071 0.071 0.088 0.110 0.177 X 507

Table 3.14: Subperiod analysis of the persistence results as in Table 3.3. Instead of one year, the evaluation period

is three years.
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Persistence Quantile Portfolios

Category Group Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr.

MDD:

All Equity
0.504 2.10 0.058 0.067 0.070 0.073 0.076 0.079 0.082 0.088 0.096 0.122 X

0.413 1.84 0.062 0.069 0.072 0.074 0.077 0.080 0.083 0.087 0.093 0.114 X

U.S. Equity
0.560 1.85 0.059 0.066 0.069 0.072 0.074 0.077 0.081 0.086 0.094 0.109 X

0.465 1.68 0.062 0.068 0.071 0.072 0.075 0.077 0.081 0.085 0.091 0.104 X

Int. Equity
0.460 1.79 0.062 0.071 0.074 0.077 0.079 0.081 0.084 0.088 0.096 0.111 X

0.381 1.64 0.066 0.073 0.075 0.077 0.079 0.080 0.083 0.088 0.094 0.108 X

Sector Equity
0.609 3.02 0.053 0.062 0.072 0.079 0.085 0.092 0.101 0.117 0.135 0.160 X

0.481 2.59 0.059 0.070 0.080 0.083 0.085 0.090 0.096 0.111 0.128 0.153 X

ADD:

All Equity
0.438 2.33 0.021 0.025 0.026 0.027 0.028 0.029 0.031 0.033 0.036 0.049 X

0.353 1.91 0.023 0.025 0.026 0.027 0.029 0.030 0.031 0.033 0.035 0.044 X

U.S. Equity
0.497 2.00 0.021 0.023 0.024 0.026 0.027 0.028 0.030 0.032 0.035 0.042 X

0.399 1.77 0.022 0.024 0.025 0.026 0.027 0.028 0.030 0.031 0.034 0.039 X

Int. Equity
0.404 1.96 0.023 0.027 0.028 0.029 0.030 0.031 0.032 0.035 0.038 0.045 X

0.327 1.68 0.025 0.028 0.029 0.029 0.030 0.031 0.032 0.034 0.037 0.042 X

Sector Equity
0.532 3.53 0.019 0.023 0.027 0.030 0.032 0.035 0.039 0.047 0.056 0.067 X

0.396 2.74 0.023 0.028 0.030 0.032 0.032 0.033 0.038 0.045 0.051 0.063 X

Table 3.15: Analysis of how the standard deviation predicts drawdown as in Table 3.5. Instead of one year, the

evaluation period is three months.
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Persistence Quantile Portfolios

Category Group Pcor P10/1 1 2 3 4 5 6 7 8 9 10 incr.

MDD:

All Equity
0.480 1.73 0.211 0.228 0.232 0.239 0.245 0.254 0.265 0.281 0.304 0.365 X

0.448 1.62 0.216 0.230 0.234 0.240 0.248 0.259 0.269 0.281 0.298 0.350 X

U.S. Equity
0.529 1.62 0.204 0.217 0.221 0.226 0.234 0.243 0.254 0.273 0.293 0.331 X

0.445 1.49 0.211 0.223 0.227 0.230 0.237 0.245 0.256 0.269 0.283 0.314 X

Int. Equity
0.405 1.47 0.237 0.252 0.261 0.271 0.279 0.281 0.287 0.302 0.326 0.349 X

0.403 1.48 0.238 0.255 0.265 0.269 0.276 0.277 0.283 0.302 0.327 0.352 X

Sector Equity
0.600 2.26 0.199 0.209 0.238 0.255 0.272 0.291 0.313 0.362 0.416 0.449 X

0.463 1.98 0.219 0.237 0.256 0.266 0.276 0.294 0.312 0.339 0.374 0.434 X

ADD:

All Equity
0.444 2.28 0.061 0.067 0.069 0.073 0.076 0.080 0.084 0.092 0.104 0.139 X

0.422 1.91 0.066 0.069 0.072 0.075 0.079 0.084 0.087 0.091 0.098 0.126 X

U.S. Equity
0.517 2.11 0.056 0.060 0.062 0.065 0.070 0.073 0.078 0.087 0.097 0.118 X

0.417 1.63 0.062 0.066 0.067 0.070 0.072 0.076 0.081 0.083 0.088 0.101 X

Int. Equity
0.391 1.87 0.071 0.080 0.085 0.090 0.094 0.096 0.101 0.109 0.120 0.133 X

0.384 1.68 0.077 0.084 0.087 0.090 0.092 0.094 0.098 0.108 0.119 0.129 X

Sector Equity
0.547 3.35 0.057 0.062 0.076 0.081 0.087 0.097 0.108 0.140 0.172 0.191 X

0.392 2.58 0.071 0.084 0.092 0.092 0.090 0.093 0.101 0.119 0.146 0.183 x

Table 3.16: Analysis of how the standard deviation predicts drawdown as in Table 3.5. Instead of one year, the

evaluation period is three years.

Panel A: Correlations of relative ranks with MDD

t−1 t+1

t−1 Return Std Dev. MDD Return Std Dev. MDD

Return 1 0.023 −0.350 0.078 0.069 0.010

Std Dev. 1 0.671 0.030 0.746 0.504

MDD 1 0.005 0.509 0.413

Panel B: Correlations of relative ranks with ADD

t−1 t+1

t−1 Return Std Dev. ADD Return Std Dev. ADD

Return 1 0.023 −0.517 0.078 0.069 −0.050

Std Dev. 1 0.574 0.030 0.746 0.438

ADD 1 −0.024 0.419 0.353

Table 3.17: Correlations between different measures within the period or with the consecutive period as in Table 3.7.

Instead of one year, the evaluation period is three months.
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Panel A: Correlations of relative ranks with MDD

t−1 t+1

t−1 Return Std Dev. MDD Return Std Dev. MDD

Return 1 −0.001 −0.358 0.137 0.087 0.026

Std Dev. 1 0.684 −0.064 0.626 0.480

MDD 1 −0.089 0.424 0.448

Panel B: Correlations of relative ranks with ADD

t−1 t+1

t−1 Return Std Dev. ADD Return Std Dev. ADD

Return 1 −0.001 −0.512 0.137 0.087 −0.041

Std Dev. 1 0.600 −0.064 0.626 0.444

ADD 1 −0.114 0.364 0.422

Table 3.18: Correlations between different measures within the period or with the consecutive period as in Table 3.7.

Instead of one year, the evaluation period is three months.
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Panel A: Evaluation period: three months

Persistence Quantile Portfolios

Category Group Pcor 1 2 3 4 5 6 7 8 9 10 incr. decr.

MDD:

All Equity 0.005 0.020 0.020 0.020 0.020 0.020 0.019 0.019 0.019 0.017 0.011 x x

U.S. Equity 0.000 0.022 0.022 0.021 0.021 0.022 0.021 0.021 0.020 0.019 0.016 x x

Int. Equity −0.023 0.019 0.017 0.016 0.015 0.013 0.013 0.011 0.010 0.010 0.009 x x

Sector Equity −0.037 0.025 0.024 0.020 0.022 0.023 0.025 0.023 0.015 0.003 −0.007 x x

ADD:

All Equity −0.024 0.022 0.022 0.020 0.020 0.020 0.019 0.019 0.018 0.016 0.009 x x

U.S. Equity −0.028 0.024 0.023 0.022 0.022 0.021 0.021 0.021 0.020 0.019 0.015 x x

Int. Equity −0.046 0.020 0.017 0.016 0.015 0.014 0.013 0.012 0.010 0.010 0.007 x X

Sector Equity −0.050 0.025 0.026 0.025 0.024 0.025 0.022 0.018 0.011 0.006 −0.008 x x

Std Dev.:

All Equity 0.030 0.019 0.018 0.019 0.019 0.018 0.018 0.020 0.020 0.020 0.014 x x

U.S. Equity 0.026 0.021 0.021 0.021 0.020 0.020 0.021 0.021 0.021 0.021 0.020 x x

Int. Equity −0.013 0.019 0.016 0.015 0.014 0.013 0.013 0.013 0.012 0.010 0.009 x x

Sector Equity −0.018 0.024 0.022 0.018 0.021 0.023 0.023 0.020 0.013 0.007 0.002 x x

Panel B: Evaluation period: three years

Persistence Quantile Portfolios

Category Group Pcor 1 2 3 4 5 6 7 8 9 10 incr. decr.

MDD:

All Equity −0.089 0.238 0.234 0.235 0.233 0.222 0.219 0.216 0.217 0.217 0.166 x x

U.S. Equity −0.029 0.234 0.239 0.240 0.240 0.236 0.232 0.237 0.237 0.242 0.219 x x

Int. Equity −0.099 0.228 0.214 0.200 0.184 0.172 0.171 0.162 0.153 0.139 0.152 x x

Sector Equity −0.117 0.243 0.266 0.239 0.248 0.258 0.262 0.256 0.234 0.143 0.044 x x

ADD:

All Equity −0.114 0.242 0.240 0.234 0.230 0.221 0.216 0.219 0.217 0.216 0.161 x x

U.S. Equity −0.042 0.239 0.241 0.239 0.236 0.230 0.230 0.232 0.242 0.242 0.226 x x

Int. Equity −0.123 0.234 0.212 0.201 0.188 0.177 0.165 0.167 0.152 0.142 0.138 x x

Sector Equity −0.130 0.246 0.254 0.233 0.244 0.260 0.268 0.269 0.223 0.133 0.064 x x

Std Dev.:

All Equity −0.064 0.245 0.241 0.236 0.227 0.222 0.218 0.217 0.214 0.207 0.169 x X

U.S. Equity −0.055 0.244 0.251 0.249 0.244 0.240 0.239 0.235 0.228 0.223 0.203 x x

Int. Equity −0.093 0.240 0.211 0.196 0.181 0.169 0.168 0.156 0.154 0.156 0.145 x x

Sector Equity −0.125 0.258 0.285 0.242 0.256 0.283 0.271 0.244 0.164 0.078 0.113 x x

Table 3.19: Average returns for funds sorted on MDDt−1, ADDt−1, or StdDevt−1 as in Table 3.8. Instead of one

year, the evaluation horizon is three months (Panel A) and three years (Panel B).
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Conclusion

The complexity of drawdown measures should not be underestimated. Both predicting their

properties and making sense of results after an empirical analysis may be challenging. Drawdown

properties with regard to return moments may serve as an example: Since drawdown measures

are asymmetric and explicitly focused on losses, it is quite surprising that left-skewness does

not significantly drive up all drawdown measures. No less surprising is that increased kurtosis

leads to higher CED0.95 but lower MDD. Even more, the finding that autocorrelation exerts

diminishingly little influence on all drawdown measures – despite drawdown’s explicit path

dependence – is rather counter-intuitive. In other cases, plausible explanations can be found for

at first glance startling findings: For example, the analysis within the third paper reveals that it is

not the drawdown measure itself that predicts future drawdown best but the historical standard

deviation. Further analysis helps understand this astonishing finding as a consequence of (lacking)

return and (present) volatility persistence in the data. Similarly, the skill detection of drawdown

performance ratios in the second paper seems peculiar at first, yet it can be explained as a

consequence of unreliable performance ratios in periods of negative returns. Overall, intuitions

about drawdown should be verified adequately instead of jumping to conclusion too quickly.

Without repeating the results from each chapters’ conclusion, what can be learned about

drawdown? In contrast to the standard deviation, drawdown is highly sensitive to expected

returns. Since risk measures are usually associated only with variability and uncertainty, this

relation undermines the clear distinction between risk and return, which is implicitly used in

ratios such as the Sharpe ratio. For drawdown measures, both numerator and denominator of

such risk–return ratios are sensitive to the return. As detailed in the second paper, this amplifies

problems inherent in all performance ratios. Since performance ratios assume a rather peculiar

structure in general19, and all drawdown ratios are found to be fairly similar, the use of drawdown

19It takes a small difference (0.095) in risk but a much larger difference (0.95) in return to get a realistic risk–return

ratio of 0.05
0.1 = 0.5 up to a ratio of 10.
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performance ratios is questionable in principle.

Understanding the influence of autocorrelation on drawdown measures is non-trivial. Autocorre-

lation on short horizons is found to exert no effect on drawdown measures; autocorrelation on

long horizons on the other hand is found to strongly influence drawdown persistence. Crucially,

the assessment of autocorrelation requires controlling for volatility because both are closely

intertwined, and – without adequate controls – possible results differ drastically. Although

autocorrelation is assessed using different models, all results remain dependent on the choice of

the simulation model. In order to thoroughly grasp the relationship between autocorrelation

and drawdown, more research is needed, where models, time horizons, and control variables are

varied systematically.

Some applications of drawdown measures are more promising than others. Due to their path

dependence, their focus on downside risk and the intuitive reference point, drawdown measures

can theoretically improve how risk is assessed. Either by themselves or in addition to standard

risk measures, they can potentially help quantify what human beings truly perceive as risk.

Consequentially, the application of drawdown measures is suitable for money management, where

anticipating and managing risk perceptions is vital. For example, funds could state that they have

experienced particularly little drawdown historically, and investing with them would, thus, have

induced little pain. Drawdown could also be used by fund managers internally by incorporating

drawdown information into fund management decisions to maximize client satisfaction and

minimize the likelihood of sudden withdrawals or fund closure. Managers could devise strategies

to minimize the probability of breaching a drawdown constraint or include drawdown measures

into the objective function when optimizing portfolios. Apart from intuitive risk assessment, are

drawdown measures a means to improve investment decisions along other dimensions? So far,

there is little evidence that historical drawdown might be useful indicator either to improve other

risk measures, market timing, or asset allocation. However, a lack of predictive power for other

quantities does not invalidate the use of drawdown measures in other applications.

Despite adhering to the same fundamental structure, quite different risk measures belong to the

class of drawdown measures. These differences reflect in highly different weighting schemes in the

wDD framework, different moment behavior, different skill detection, and different ranking of

investments. Considering the entirety of results, what drawdown measure could be recommended

for applications in practice? According to the rank correlation results in the second paper,

ADD, lwDD, and ADD2 are highly correlated. Of these particularly robust measures, which all
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incorporate the entire drawdown graph, the ADD is arguably the most intuitive and established

measure. It may be complemented by either MDD or eopDD with which it is rather weakly

correlated. The CED cannot be recommended because it is not applicable whenever ex-post

evaluation is required. Moreover, like the CDD with any confidence level α other than zero

or one, the CED always needs justification why a particular α is used. As it is rarely a good

idea to put all one’s eggs into one basket, utilizing several drawdown measures to grasp such

an important and diverse concept as risk can be recommended. Moreover, the wDD framework

provides practitioners with an accessible tool to devise a drawdown risk measure that suits their

personal preferences.

As drawdown measures are underrepresented in the literature, this dissertation can only begin to

shed light on the mechanics of drawdown risk measures. Hence, the potential for future research

is abundant. As discussed already, numerous and conflicting definitions of drawdown measures

exist in the literature. For instance, the definition of Schuhmacher and Eling (2011) based on

absolute losses derived from monthly uncompounded cumulative excess returns bears almost no

similarity to the drawdown defined in this dissertation. One might assume that differences in

definition are limited to special drawdown measures, but the opposite is true: even for the most

standard maximum drawdown, definitions from different sources potentially result in different

sizes and locations of the MDD. Therefore, it might be interesting to assess empirically how

much of a difference the choice of a drawdown definition actually makes for a given asset path.

Arguably, some definitions are objectively better than others, for example, because they are more

robust. Hence, it may be worthwhile to sift through all definitions in the literature, weight their

strengths and weaknesses, and compile a list of well-defined and useful drawdown measures.

Not only for drawdown definitions but also for different drawdown measures, theoretical properties

might be worth a systematic assessment. Usually, when new drawdown measures are defined

in the literature, some properties such as homogeneity, subadditivity, or convexity are tested.

However, the sets of properties and their definitions vary, making results from different sources

hard to compare. Moreover, some properties are more relevant for drawdown measures than

others; for example, some of the coherence axioms of Artzner et al. (1999), such as monotonicity,

are rather meaningless for drawdown measures, while some axioms of generalized deviation

measures of Rockafellar et al. (2006), such as shift invariance, are arguably more appropriate. It

might be worthwhile to first discuss which properties are most desirable for drawdown measures,

then test these properties for a broad set of drawdown measures using identical definitions, and

compare the results for different measures systematically.

127



Conclusion

When drawdown statistics for several investments, say mutual funds, are compared in practice,

the absolute size of the drawdown strongly depends on the market phase. Most mutual fund

drawdowns tend to be large during a downturn, and small in a bull market. To eliminate

this market effect, Bradford and Siliski (2016) define the so-called active drawdown measure

where each asset’s drawdown is calculated with respect to a suitable benchmark index. Such a

benchmark-relative measure might be fairer to fund managers because their individual influence on

the market phase is negligible. The computation of the active drawdown is fairly straightforward

because the drawdown graph is simply computed not from the asset price but instead from the

difference between cumulative returns of the asset and its benchmark. As Bradford and Siliski

(2016) only provide an unnecessarily laborious explanation how to compute the active drawdown,

its properties are still unexplored. Potential new research might, for example, investigate the

persistence of the maximum active drawdown.

Regarding behavioral finance, further research is certainly needed to substantiate the common

claim that drawdown measures capture risk more intuitively than other risk measures. Although

there are many plausible reasons why an asymmetric, loss-focused, reference-based drawdown

measure should capture risk perceptions of human investors more accurately than other risk

measures, thorough empirical evidence has not yet been collected. A first attempt in this

direction is the study by Harris et al. (2015), who analyze crowd-sourced data of preferences

between two asset paths. They observe that the drawdown ratios’ choice of the more desirable

path particularly often coincides with the human choice. Many other experimental setups are

conceivable: Study participants could be asked to rank more than two asset paths according

to risk or “attractiveness”. More actively, study participants could trade in an artificial stock

market where they see track records, drawdown figures, or both, and their decisions to buy or sell

a stock could be correlated with implicitly present or explicitly stated drawdown properties. In

such a setting, traders could also be asked to indicate their satisfaction with past decisions, which

could be expected to deteriorate in situations of high drawdown. Variations of the experimental

setup could help understand the different psychological components of drawdown and address

which drawdown measures best capture risk preferences and perceptions.

Instead of altogether new approaches, parts of the three papers could, of course, be modified

to extend or replicate their findings. As all setups were chosen deliberately, these following

modifications are – from the author’s perspective – usually slightly less suitable. In the first

paper, an analysis of the relation between a stock’s true moments and its drawdown becomes

possible by simulations. The same assessment with real-world data would have to be based
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on correlations between realized moments and realized drawdown, which might be interesting

nonetheless. When it comes to assessing stock picking skill in the second paper, no adequate

alternative seems available to replace the simulation model in which skill can be added via the

hit ratio. Rank correlations between different investments could, however, be computed for

alternative data sets. Yet, both too extreme differences between assets (e.g., a bond fund vs. an

equity fund) and too little differences between assets (e.g., two index funds with slightly different

weighting schemes) are unlikely to yield relevant comparisons between risk measures. When it

comes to persistence in the third paper, utilizing different data might be interesting because

the presence of drawdown persistence in other asset classes is still an open question. In order

to assess persistence via simulations, different processes or at least different parametrizations

would have to be chosen to mirror the heterogeneity of funds. In other words, since persistence

is measured relative to a cross section, the simulations would have to create some meaningful

cross section. When drawdown measures are deemed relevant in practice, strategies become

necessary on how to choose assets or construct portfolios such that drawdown quantities are met.

Although the assessment of persistence is a step in this direction, more research could be directed

at finding an efficient drawdown frontier, or identifying strategies to limit future drawdown in

different asset classes. In the third paper, a quick analysis is performed on the relation between

drawdown and return. It may be extended to a thorough analysis of a potential low risk anomaly

with drawdown measures, i.e., low drawdown risk coinciding with high returns. Since several low

risk anomalies have been documented for other risk measures (e.g., in Schneider et al. (2020)), it

is not entirely unlikely that some form of low drawdown anomaly exists.

If this dissertation had to be condensed into three sentences, it might be these: Various intuitive

and versatile drawdown risk measures can be defined in the wDD framework. Most of them are

able to detect stock picking skill, and they are highly persistent for mutual funds, but their use

in drawdown performance ratios is problematic. Interesting and sometimes counter-intuitive

results occur when analyzing drawdown measures and higher return moments, autocorrelation,

and the prediction of future drawdown.
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