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Abstract—In practice, it is quite common to face combinatorial
optimization problems which contain uncertainty along with non
determinism and dynamicity. These three properties call for
appropriate algorithms; reinforcement learning (RL) is dealing
with them in a very natural way. Today, despite some efforts,
most real-life combinatorial optimization problems remain out
of the reach of reinforcement learning algorithms.

In this paper, we propose a reinforcement learning approach to
solve a realistic scheduling problem, and apply it to an algorithm
commonly executed in the high performance computing com-
munity, the CHOLESKY factorization. On the contrary to static
scheduling, where tasks are assigned to processors in a predeter-
mined ordering before the beginning of the parallel execution,
our method is dynamic: task allocations and their execution
ordering are decided at runtime, based on the system state and
unexpected events, which allows much more flexibility. To do so,
our algorithm uses graph neural networks in combination with an
actor critic algorithm (A2C) to build an adaptive representation
of the problem on the fly.

We show that this approach is competitive with state-of-the-art
heuristics used in high performance computing runtime systems.
Moreover, our algorithm does not require an explicit model of
the environment, but we demonstrate that extra knowledge can
easily be incorporated and improves the performance. We also
exhibit key properties provided by this RL approach, and study
its transfer abilities to other instances.

Index Terms—Reinforcement learning, scheduling, task graph,
DAG, high performance computing, combinatorial optimization.

I. INTRODUCTION

Combinatorial Optimization Problems (COP) constitute an
important family of fundamental problems: path finding (i.e.
traveling salesman problem, vehicle routing problem), stable
marriage problem, graph coloring, task scheduling, and many
others. There are various algorithmic approaches, ranging from
(provably) exact methods (e.g. based on tree search, linear pro-
gramming, etc.) to non (provably) exact/approximate methods
(heuristics and meta-heuristics). Those methods are able to
solve large scale COPs, but they require a careful investigation
of the problem. On the other hand, real world applications
bring another set of challenges: inherent uncertainty in the
definition of the problem and randomness in the process dy-
namics. For instance, considering a task scheduling problem,
tasks duration and communications delays between tasks are
uncertain, and even the very set of tasks to be scheduled may

not be known in advance like in an operating system. If we
want to tackle real world applications, considering COPs with
uncertainty in the settings and the dynamics is necessary.

Reinforcement learning (RL) is designed to deal with se-
quential decision making under uncertainty [28]. RL algo-
rithms are able to adapt to their environment: in a changing
environment, they adapt their behavior to fit the change.
This property opens the door to tackle COPs which contain
uncertainty, COPs which are not completely defined when their
resolution is initiated. Another potential benefit is the ability
to generalize to unseen settings, a necessary step toward real
world applications.

In this paper, we will investigate the potential of RL
on a real application, the dynamic scheduling of a set of
tasks on a distributed computing system. Modern computer
systems contain a variety of resources, interconnected in order
to support parallel and distributed computationally intensive
applications. Efficiently executing parallel applications on
such systems is critical in many scientific domains. In a
high performance computing (HPC) environment, it is very
common for an application to be split into several sub-tasks
which may be executed in parallel. There usually are some
dependencies between those tasks as the results provided by
some may be necessary to start others. This structure may
naturally be modeled using a Directed Acyclic Graph (DAG):
nodes of the DAG are sub-tasks, and directed edges represent
dependencies. Task-based runtime systems internally represent
the application as a DAG to execute it on a parallel machine.
In this case, one of the main duty of such runtime systems is
to schedule the different tasks of the DAG onto the available
computing resources. The DAG scheduling problem consists in
finding the best way of assigning tasks to processing units, so
that the task dependencies are respected and the total duration
of execution (the makespan) is minimal.

Scheduling a DAG on a set of resources is a combinatorial
problem, known to be NP hard in the strongest sense [29]. It
is a sequential, stochastic and dynamic problem. Stochasticity
intervenes at two levels: on the one hand, the exact computa-
tion times of tasks and transfer times of data are unknown,
although we can have good prior estimates. On the other
hand, the whole DAG is not necessarily known from the start.
This requires that the scheduling algorithm implemented in the

nathan.grinsztajn@inria.fr
olivier.beaumont@inria.fr
emmanuel.jeannot@inria.fr
philippe.preux@inria.fr


runtime system is dynamic. Moreover, in order to be generic,
it is important that the proposed solution is able to schedule
unknown graphs onto any number of computing resources.

In this paper, we suppose that different types of tasks
can have different durations, but we assume that communi-
cations can be neglected (either because the target platform
is a shared-memory system or because communications and
computations can be overlapped). This allows to simplify the
problem formulation while keeping its NP hardness.

Our contributions are as follows:
1) We formalize the dynamic DAG scheduling problem as

a Markov Decision Process (MDP).
2) We introduce a practical deep RL algorithm able to build

a graph representation sequentially and on the fly.
3) In a set of experiments, we demonstrate that our RL

approach obtains schedules competitive with state-of-
the-art heuristics, even when no explicit knowledge
of the environment is available at the cost of more
computation time.

4) We further show that our RL approach is able to
generalize, by scheduling yet unseen instances.

II. RELATED WORKS

Among COPs, task scheduling has attracted a lot of research
and presents a rich taxonomy [19]. Roughly, it consists in
assigning a set of tasks (whose interdependency is represented
by a Directed Acyclic Graph – DAG–) to a set of resources
while managing different constraints (a resource cannot exe-
cute several tasks at the same time, a task cannot start before
its predecessor(s) dependencies have been completed, etc.). In
the literature, several classes of scheduling problems have been
studied [15]. In static problems, the DAG is assumed to be
completely known in advance while in dynamic problems, part
of the DAG is unveiled as the scheduling algorithm progresses.
In the homogeneous setting, all resources are identical while in
the heterogeneous case, resources are different and the same
task can have different duration depending on the resource
it is allocated on. Depending on the input (graph topology,
number or type of resources) the problem can be either
polynomial or NP-Hard. But even simple cases (e.g. tasks
with no dependencies and two resources) turn out to be NP-
Hard [14].

Applying reinforcement learning to combinatorial optimiza-
tion has been studied in several articles [1], [11], [20], [24],
[32] and compiled in this tour d’horizon [7]. However, per-
formance of RL algorithms facing combinatorial optimization
problems remain very far from what traditional approaches and
dedicated heuristics achieve. They are mainly distinguished by
the graph representation model, the reinforcement algorithm,
and the possible use of additional heuristics to help the agent
(e.g. graph pruning in [20]). The problems studied are classical
NP-hard problems, such as the Traveling Salesman Problem
(TSP), Minimum Vertex Cover (MVC), and the Max-Cut
problem.

Few works focus on reinforcement learning for task schedul-
ing in computational graphs. Most of them [18], [21] consider

tasks arriving sequentially and randomly, without a DAG
structure. The two papers closest to ours are [23], [31]. The
first one uses a very realistic environment (communication
time, storage capacity of the nodes...), but relies on a basic
tabular Q-learning technique, which cannot scale to real-life
applications, and does not allow generalization. The second
one uses deep reinforcement learning, but does not allow
online scheduling. Moreover, these two papers preprocess the
DAG in ways which do not allow the agent to use its whole
structure.

Recently, [26] used reinforcement learning to guide a ge-
netic algorithm. However, the scheduling is static, and the en-
vironment necessarily deterministic, which are two important
limitations with regards to practical constraints.

In [22], the authors present a reinforcement learning ap-
proach to map jobs onto a parallel machine. In contrast to our
problem, there are no dependencies between jobs and the goal
is to minimize job slowdown.

In [23], the authors study the task mapping of Deep
Graph Neural Network. Their approach is based on the policy
gradient algorithm. [13] tackles the same problem as [23]
by modeling it as a Markov decision process and using
a reinforcement learning approach called proximate policy
optimization [27]. However, both approaches are not suited for
transfer learning as the proposed solutions can only improve
the mapping of the input problem.

In [2], the authors provide a general approach for mapping
task graph using a graph embedding approach called Placeto.
In [33], the authors introduce GDP, which uses the same
approach as Placeto but outperforms it in their experiments.
These two approaches allow transfer learning for new graphs
but not for new machines (the target platform must be the
same as the training one). They also provide the mapping of
all tasks at the same time, which is not suitable in case the
duration of the tasks are imperfectly known.

Overall, there is yet no generic RL approach that deals with
dynamic task graphs and enable generic transfer for both new
graphs and new machines.

III. TASK MODELING

In this paper, we focus on the CHOLESKY factorization
problem. The CHOLESKY factorization is a very common
linear algebra routine along with QR and LU [9], [10]. The
tiled version is used in several task-based runtime systems
such as StarPU [5]or PARSEC [8]. These runtime systems
are in charge of scheduling the tasks onto homogeneous
or heterogeneous platforms based on the description of the
application by means of a DAG (as depicted in Fig. 1). Hence,
being able to efficiently schedule the CHOLESKY DAG is
of utmost importance. It is indeed characteristic of many
applications in linear algebra and scientific computing, in
the sense that CHOLESKY factorization involves (i) a large
number of tasks, (ii) complex but regular dependencies and



(iii) a small number of different kernels 1. It is therefore
a very good benchmark for scheduling algorithms [3], [4],
[16] and designing a scheduling algorithm for the dense tiled
CHOLESKY factorization is paramount, both practically and
theoretically.

A. Tiled CHOLESKY Factorization

In this paper we focus on the task graph induced by the
tiled dense CHOLESKY factorization depicted in Algorithm 1

Algorithm 1: Tiled version of the CHOLESKY factor-
ization.

1 for k = 0...T − 1 do
2 A[k][k]← POTRF(A[k][k])
3 for m = k + 1...T − 1 do
4 A[m][k]← TRSM(A[k][k], A[m][k])

5 for n = k + 1...T − 1 do
6 A[n][n]← SYRK(A[n][k], A[n][n])
7 for m = n+ 1...T − 1 do
8 A[m][n]← GEMM(A[m][k], A[n][k], A[m][n])

For a given symmetric positive definite matrix A, the
CHOLESKY algorithm computes a lower triangular matrix
L such that A = LLT . In the tiled version, the matrix
is decomposed into T × T square tiles. Each tile is hence
a sub-matrix of the original matrix. We denote A[i][j] the
tile corresponding to row i and column j: the reader should
be careful that this A[i][j] is a N × N sub-matrix of the
original matrix, made of the elements of rows and columns
(i.e. spanning rows from N×i to N×(i+1)−1). N is usually
several hundreds (typically 380× 380 for standard CPUs and
960× 960 for GPUs). At each step k, the algorithm performs
a CHOLESKY factorization of the tile A[k][k] located on the
diagonal (with the POTRF kernel). Then it updates all the tiles
below it (A[k][k+ 1 : T − 1]) using a triangular solve (TRSM
kernel). The trailing sub-matrix is updated using the SYRK
kernel for tiles on the diagonal and matrix multiply (GEMM
kernel) for the remaining tiles (of the lower triangular part).

Each kernel POTRF, TRSM, SYRK and GEMM is therefore
executed several times during the CHOLESKY factorization by
different task instances. Each task instance requires input data
produced by other tasks. This leads to a DAG in which nodes
are task instances and directed edges are (data) dependencies
between two task instances. For example, for k = 0 the POTRF
kernel updates tile A[0][0]. This tile is then used by all the
TRSM kernel to update tiles A[1 : T − 1][k]. Hence, in the
graph there are T − 1 edges between the task that instantiate
the POTRF kernel and T−1 tasks that each instantiate a TRSM
kernel. Fig. 1 illustrates graphically the CHOLESKY DAG for
T = 5 (i.e. 5 by 5 tiles).

The advantage of the tiled version of the CHOLESKY factor-
ization is three-fold. First, by working on tiles, the computation

1in this paper, a “kernel” is a basic operation performed on a sub-matrix.
The CHOLESKY factorization algorithm is expressed as a combination of 4
different kernels.

of the kernels is very fast and optimized using BLAS (Basic
Linear Algebra Subroutine) kernels. Second, tiles enable to
deal with large size problems with relatively small DAGs.
Third, the tiled version expresses a lot of parallelism which
facilitates its execution on modern parallel system.

POTRF(0)

TRSM(0,1)

TRSM(0,2)TRSM(0,3) TRSM(0,4)SYRK(0,1)

GEMM(0,2,1)GEMM(0,3,1) GEMM(0,4,1)

SYRK(0,2)

GEMM(0,3,2) GEMM(0,4,2)POTRF(1)

TRSM(1,2)TRSM(1,3) TRSM(1,4)SYRK(0,3)

GEMM(0,4,3)

SYRK(1,2)GEMM(1,3,2) GEMM(1,4,2)

SYRK(0,4)

SYRK(1,3) GEMM(1,4,3)

POTRF(2)

TRSM(2,3) TRSM(2,4)

SYRK(1,4)

SYRK(2,3) GEMM(2,4,3)

POTRF(3)

SYRK(2,4)

TRSM(3,4)

SYRK(3,4)

POTRF(4)

Figure 1. DAG of the CHOLESKY Factorization for T = 5. The indices of
POTRF(k), TRSM(k,m), SYRK(k, n) and GEMM(k, n,m) correspond to the
loop indices of Algorithm 1.

B. Problem Definition

Our scheduling problem can be formalized as follows.
For a given value of T , the CHOLESKY factorization is
represented by a DAG, G = (V,E), where the set of vertices
V corresponds to the set of n tasks in the application, and
E is the set of directed edges between tasks, expressing
dependencies between the result of the execution of a task, and
its use by a subsequent task. One vertex corresponds to the
beginning of the factorization process, while an other vertex
corresponds to its completion. Each task can be either one
among the four types (of kernels) that determine its duration.
The duration of a task can be deterministic or stochastic.
For simplicity, we will consider them deterministic, although
our optimization method works the same way for stochastic
durations. We denote by d(v) the duration of the task v, and
by W =

∑
v∈V d(v) the total work needed to complete the

instance. In what follows, we assume that the communication
cost due to dependencies is zero. This is justified by the two
following use-cases. First, if the target machine is a multi-
core system with shared memory, each core can execute one
kernel at a time and the whole matrix is stored in a memory
shared by all the cores. Hence, communication between task is
done through memory access and such accesses are negligible
compared to kernel computation time. Second, if the target
machine consists of GPUs, we can notice that for a tile of
size N , the amount of data to transfer is of the order of N2

while the complexity of the different kernels is of the order of
N3, so that one generally chooses a tile size N large enough



to overlap computations and communications, while allowing
an efficient use of computation resources (cache,...).

The makespan is defined as the completion time of the last
task to be executed. Two notions are of importance in what
follows. The critical path CP of a DAG is the longest distance
between the start node and the end node, including all the tasks
and their duration. The total work ratio is equal to W

P (where p
is the number of computing resources of the parallel machine).
CP and W

P are both lower bounds of the optimal makespan.
Our objective is to minimize the makespan.

C. Reinforcement Learning Formulation

We model the problem as a Markov Decision Process
(MDP). Given a state s, an agent chooses an action a to
maximize a reward function R. A MDP can thus be broken
into four parts:
• a set of states S,
• a set of actions, A,
• Pa(s, s

′) = P(st+1 = s′ | st = s, at = a) is the
probability of the transition from state s to state s′ under
the action a.

• Ra(s, s
′) is the immediate reward after the transition from

s to s′ with the action a.
Given S, A, P , and R, resolving the MDP consists in

finding a policy that optimizes a certain objective function.
We now define S, A, R, and the objective function used to
model the DAG scheduling problem.

State Space: The goal is to give the agent as much in-
formation about the task DAG as necessary. Computing the
optimal solution requires the whole graph, and therefore the
“state” should embed the whole graph. However, the whole
DAG being potentially arbitrary large and too cumbersome to
be handled in practice, we consider an approximate represen-
tation. Hence, we restrict the information represented in a state
to information about running tasks and available tasks, along
with their descendants: “running” tasks are those currently
executed, “available” those that may be executed but can not
because of a lack of computing resources, “descendants” are
all the tasks that have to wait for running and available tasks
to be completed to be run, because they depend on their
results. The depth of descendants being considered is left as
a parameter in our algorithm; it is denoted by the window
w. This choice of w corresponds to a trade-off between
computational time and accuracy.

Each node is represented by a set of raw features: these
features are expected to encode and summarize the DAG
information at the node level. The representation Xi of node
i can be written:

Xi = [succi, predi, typei, availi, runi, cpi]

where succi is the number of successor nodes of i, predi is
the number of predecessor nodes of i, typei is the type of the
task encoded as an one-hot vector, availi is a binary variable
indicating if the task is available, runi is a binary variable
indicating if the task is currently running, and cpi contains the
portion of critical path ahead of the task. CNNs are commonly

used to process images in deep RL. CNNs exchange infor-
mation between neighboring pixels, resulting in smoothing
pixels. Likewise, we use a particular convolution tailored for
graphs to exchange information between neighboring nodes
of a graph, namely graph convolution networks (GCN) [17]
which have been shown to perform well on several graph-
related task benchmarks. Stacking such (graph) convolution
layers mixes the information of nodes located always further
from each other. At the output of the last convolution layer, we
obtain an internal representation of the input of the network;
an embedding has been computed for each node. We refer the
interested reader to the description of GCN [17] for further
details.

To summarize, from the input state of the network which is
a sub-DAG, an internal state representation is computed by a
set of stacked graph convolution layers.

Action Space: An action consists in selecting an available
task or in doing nothing (pass). If a task t is selected, it is
immediately scheduled on a ready-for-use processor. If all
processors are ready, it is not possible to pass.

Reward and objective function: There is no reward (i.e
rt = 0) except when the final state is reached, or equivalently
when the whole input DAG has been computed. Indeed, there
is no relevant information available before the whole DAG has
been scheduled that could be used as an immediate reward.
The reward uses the final makespan given by the whole
scheduling trajectory, normalized by a baseline duration. We
use a heuristic (the ASAP algorithm, detailed in Section V-A)
to get a baseline duration in this work.

Thus, the reward can be written as:

R(makespan) =
makespanASAP −makespan

makespanASAP

The lower the makespan the better; therefore the reward
becomes positive as soon as the learned policy becomes more
efficient than ASAP.

IV. ALGORITHM

A. Actor Critic

We train an agent to schedule tasks using synchronous actor
critic (A2C, [25]). A2C is a policy gradient method which
aims at maximizing the objective function directly by gradient
ascent:

J(θ) = Eτ∼πθ

(∑
t

γtr(st, at)

)
where τ is a trajectory sampled according to the policy π
parametrized by θ, and γ a discount factor.

To compute a single update, we first run the current policy
up to tmax steps or until a terminal state is reached.

A2C uses a policy network (the actor) πθ(at | st), parame-
terized by θ, which computes a distribution of probability over
the actions, and a value network (the critic) which estimates
the value of a state Vθv (st | θv), and is used to lower the
variance in the computation of the advantage function.

The policy update takes the form ∇θ log πθ(at |
st)A(st, at, θ, θv), where the advantage function



A(st, at, θ, θv) can be written
∑k−1
i=0 γ

ir(st+i, at+i) +
Vθv (st+k) − Vθv (st). k is either the time when a terminal
state is reached, or tmax. In the first case, Vθv (st+k) = 0.
The critic is simply updated in order to minimize the mean
square error between the predicted value Vθv (st) and the real
return

∑k−1
i=0 γ

ir(st+i, at+i) + Vθv (st+k).
Adding the entropy of the policy in the objective function

has been shown to improve exploration [30]. We therefore add
the term β∇θH(πθ(st)) to the actor gradient, where H is the
entropy and β a hyper-parameter which controls the influence
of the entropy regularization.

In practice, many parameters of the actor and the critic are
shared, as we will detail in the next section.

B. Architecture

The network architecture is kept as simple as possible in
order to minimize the scheduling computation overhead (see
Fig. 2).

feature-wise
mean pooling

source to target graph convolution
ReLU

1 2

target to source graph convolution
ReLU

FC(64, 1)

FC(64, 1) ∅ +

21

softmaxFC(64, 1)

Figure 2. Overview of the agent architecture. At the bottom, a sub-DAG is
input into a stack of 1+w graph convolution layers. An internal representation
of the sub-DAG is output in which node information has been mixed. For this
current state, an estimate of the value V and an action to perform (either do
nothing (∅) or begin the execution of one of the available tasks - in green,
either 1 or 2) are generated. FC(64, 1) is a fully connected layer with an input
size of 64 and an output size of 1.

A sub-DAG is input in the neural network (bottom of Fig. 2)
and goes through a series of graph convolution layers. The
number of layers is a parameter of the algorithm; it should
be related to the size of the window w: at least w layers are
required to let the necessary information flow among the nodes
of the sub-DAG. Empirically, we found that using exactly
w iterations is enough. Between these layers, we use ReLU
functions as non-linear activations.

As already mentioned above, these stacked convolution
layers produce an internal representation of the input sub-
DAG. This representation is used to produce an estimation
of the value of the current state (the input sub-DAG), and an
action to perform. A set of 3 1-layer fully-connected networks
(FC) produce these two results.

This architecture being quite complex and impossible to
present with all the details needed to re-implement it, we pro-
vide our own implementation. Please refer to the experiment
section.

C. Scheduling

The scheduling process is done iteratively by placing the
available task chosen by the agent on an available device. Once
every device has been assigned a task or the agent has decided
to pass, there is no environment-agent interaction until the next
event, the moment when one or more tasks are completed, and
the corresponding computing units become available. Then the
agent can choose a new action, and the process goes on until
the whole DAG has been computed.

V. EXPERIMENTS

A. Reference Algorithm

In this paper, our goal is to analyze the performance of
a reinforcement learning based algorithm for the dynamic
scheduling of CHOLESKY factorization tasks. The dynamic
nature of factorization is in practice imposed by the difficulty
of accurately predicting computational costs and communica-
tion durations in an HPC environment in which the various
operations unpredictably influence execution times. Since it
is not possible to schedule and allocate tasks in advance, in
practice, dynamic runtimes rely solely on the description of
the machine state and on the tasks already performed, using
a task priority system to define which tasks to perform in
the event that the number of available resources is less than
the number of available tasks. In these dynamic systems, task
placement decisions are made a little in advance, taking into
account the placement of input data, and this delay is used to
transfer task input data if necessary to overlap communication
and computation. We have already discussed in Section III-B
how to overlap communications and computations in both the
CPU multicore and the GPU cases.

To perform dynamic scheduling, ASAP is a strategy of
choice which is the de facto standard in most dynamic
schedulers. ASAP never leaves a resource inactive if there
is an executable task and ASAP chooses among several
candidate tasks the one that is the farthest from the end of
the computation (the one with the longest critical path). It



has been demonstrated in [6] that despite its simplicity, this
strategy gives excellent results for CHOLESKY factorization,
especially in the case where execution times are similar to
what is observed in practice on GPUs. This is therefore the
strategy that we use as a baseline to evaluate the performance
of the reinforcement learning based algorithm that we propose:
the reader should keep in mind that it is difficult to beat
ASAP, or even to perform as well as ASAP. However, ASAP
requires the whole DAG: ASAP cannot cope with a dynamic
environment in which the DAG is unknown. Our approach
does not suffer from this limitation.

We add two other baselines, Random and Greedy. We call
Greedy the baseline which prioritizes the tasks which have
the largest number of successors. Random consists simply in
choosing the task to schedule uniformly among the available
tasks. Both baselines are very simple, hence computed very
quickly.

For reproducibility purposes, the code used to perform the
experiments is available freely on the web at https://github.
com/nathangrinsztajn/DAG-scheduling.

B. Simulated Model

In order to be able to iterate rapidly over runs, we do not
evaluate the agent performance on a real device but on a
simulated environment. We use a different mean duration for
each type of task, as shown in table I, according to the data
gathered in [6] for GPU computations.

Table I
TASK DURATIONS USED IN THE DAG MODEL.

POTRF SYRK TRSM GEMM
11 2 8 3

C. Results

We perform different types of simulations:
1) performance comparison of our RL approach with sev-

eral baselines, using CHOLESKY factorization with dif-
ferent numbers of tiles.

2) a closer look at the performances if we remove the
critical path of the node embedding and vary the window
parameter w.

3) transfer learning: we perform different kinds of transfers:
a) having learned to schedule the DAG of tasks of

a CHOLESKY factorization for a given number of
tiles T , how does this transfer to other numbers of
tiles?

b) having learned to schedule the DAG of tasks of
a CHOLESKY factorization for a given number of
computing devices p, how does this transfer to
other numbers of computing devices?

As our approach is not deterministic, we train 10 agents for
each configuration with 10 different seeds. The graph neural
network policy was developed using PyTorch Geometric pack-
age [12] and trained on the 8 cores of a CPU (no GPU were

Table II
DAG CHARACTERISTICS FOR SEVERAL NUMBER OF TILES T IN THE

CHOLESKY FACTORIZATION.

T |V | W Critical Path
4 21 116 74
8 121 536 158

16 817 3056 326

used), a run taking approximately 1 hour to complete. In the
tables, we provide the results of the best of the 10 agents.

Using the notations introduced in section IV-A, we set β =
0.02, tmax = 40, and γ = 1 in all our experiments. Each
agent is trained for 10,000 steps and only the best version
encountered during the process is kept. Training was done
using Adam optimizer, with a learning rate of 0.01 and ε =
0.1. As some parameters of the actor and the critic are shared,
we give the actor update more importance by down-weighting
the critic learning rate by 1/2.

Unless specified otherwise, we take w = 1 for training and
testing.

We use 3 different DAG obtained for three different numbers
of tiles T : 4, 8 and 16. These graphs have very distinct
characteristics, as shown in Table II. |V | is the number of
nodes in the DAG. Please refer to section III-B for the
definition and meaning of W and critical path.

Table III
MAKESPAN COMPARISON (LOWER IS BETTER). FOR STOCHASTIC

BASELINES, THE RESULT IS A MEAN OVER 10 TRAJECTORIES, AND THE
STANDARD DEVIATION IS GIVEN IN PARENTHESES.

T p Agent ASAP Greedy Random
4 4 74 74 74 74.8 (0.87)
8 4 163 160 173 196.5 (5.57)

16 4 792 787 814 832.9 (6.09)
8 2 280 282 286 300.2 (5.39)
8 6 158 158 174 174.2 (3.24)

1) RL vs. ASAP: performance comparison: Table III reports
the performance of the baselines and our RL approach for
different numbers of tiles T and processors p. Performance
is measured as the makespan of the scheduling computed by
a given algorithm. We can see that our RL approach is very
competitive with ASAP, and outperforms consistently the other
baselines. Again, the reader should keep in mind that ASAP
is a very good and hard to beat heuristic.

2) A closer look at w and our initial embedding: The length
of the critical path ahead added in the initial node embeddings
gives information about all the tasks remaining at each step,
and supposes an accurate model of the DAG and of the sub-
task durations. As this information is not always available, we
investigate the performance of our algorithm without such a
help: the results are given in Table IV. We choose to compare
those configurations with T = 8, p = 4 as it is one of the most
difficult RL settings, according to Table III.

We observe that when the critical path is included in
the embedding, there is no benefit in enlarging w. In fact,

https://github.com/nathangrinsztajn/DAG-scheduling
https://github.com/nathangrinsztajn/DAG-scheduling


w = 0 is already almost optimal. On the contrary, without
this information, we note that enlarging w greatly improves
the performances and seems to have a stabilizing effect on
the training. When w = 4, the makespan is almost as good
as those of agents trained with the critical path. On the other
hand, rising w increases the computation time, as can be seen
in Fig. 3. w should therefore be tuned adequately to ensure a
suitable time-performance trade-off for the current case of use.
ASAP cannot be used when the critical path is not available.

Table IV
PERFORMANCE COMPARISON OF SEVERAL SETTINGS. THE CP COLUMN

CONTAINS + IF WE INCLUDED THE CRITICAL PATH IN THE NODE
EMBEDDINGS, AND − OTHERWISE. WE RUN EACH CONFIGURATION 10

TIMES AND KEEP FOR EACH ONE THE RESULTS OF BEST AGENT. THE
STANDARD DEVIATION OF THE MAKESPANS OF THE 5 BEST AGENTS IS

WRITTEN IN PARENTHESES.

T p CP w makespan
+ 0 163 (3.28)
+ 1 163 (4.54)
− 0 173 (40.13)

8 4 − 1 170 (16.53)
− 2 171 (0.89)
− 3 166 (0.83)
− 4 164 (10.58)

0 500 1000 1500 2000 2500 3000
|V|

0.005

0.010

0.015

0.020

tim
e 

(s
)

w=0
w=1
w=2
w=3
w=4

Figure 3. Mean computation time per action at inference, for several w
and several DAG sizes. The computation time per action increases with the
number of nodes in the graph and with w, as in both cases there are more
message-passings to compute during the updates of the node embeddings.

3) Experiments on transfer learning: Table V reports
makespans achieved with transfer learning: we train our agent
on a given number of tiles T , and we measure the makespan
achieved for two other values. When Ttrain and Ttest are
equal, the results are those reported in table III. We can see
that the transfer is very effective: the makespan obtained with
this 0-shot transfer is only slightly worse than the one of a
dedicated agent, and still not much worse than ASAP. We
conduct the same experiments with the number of computation
units p. We notice that our agent exhibits good transfer abilities
across p, beating the Greedy baseline almost in every case .
While training a RL agent takes time, this experiment shows

that once trained, the RL agent has the ability to schedule
different DAGs, something ASAP cannot do.

Table V
TRANSFER LEARNING EXPERIMENTS THROUGH T (NUMBER OF TILES)
AND p (NUMBER OF PROCESSING UNITS). THE RL AGENT LEARNS ON
TTRAIN AND pTRAIN AND IS TESTED AT INFERENCE ON TTEST AND

pTEST .

Ttest Ttrain ptest ptrain makespan
4 74

4 8 74
16 74
4 215

8 8 4 4 163
16 175
4 911

16 8 805
16 792

2 280
2 4 285

6 296
2 172

8 8 4 4 163
6 178
2 158

6 4 159
6 158

VI. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the use of reinforcement
learning as a principled approach to solve scheduling problems
involving the need of being able to adapt to a dynamic
(runtime) environment. Solving scheduling problems is known
to be NP-hard, and remains a challenge for RL. In this
paper, we focused on dynamic scheduling on homogeneous
resources without communication costs. We conducted our
experiments on a well-known, heavily used numerical proce-
dure, the CHOLESKY factorization. Experiments show that we
can achieve schedules that are as efficient as those obtained
by dedicated heuristics; they also show the benefit of using
a RL approach to transfer the policy learned on a certain
hardware configuration to another or to transfer the scheduling
policy learned on a certain graph of tasks to another. To the
best of our knowledge, our paper is the first to present such
an adaptive/RL approach featuring dynamic scheduling and
transfer learning, and to study the effect of the node-level
information available.

There are numerous directions to go further. As we only
considered homogeneous computing resources, examining het-
erogeneous devices such as CPUs and GPUs would be interest-
ing. Considering other types of tasks, such as LU factorization,
which is more complex than CHOLESKY because of the
repeated selection of a pivot, is also a path to investigate. Yet
another direction is the integration of our RL approach in a
runtime system.
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