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Abstract

A generic method is introduced to visualize in a “Gaussian-like way”, and onto
R2, results of Gaussian or non-Gaussian based clustering. The key point is to ex-
plicitly force a visualization based on a spherical Gaussian mixture to inherit from
the within cluster overlap that is present in the initial clustering mixture. The re-
sult is a particularly user-friendly drawing of the clusters, providing any practitioner
with an overview of the potentially complex clustering result. An entropic measure
provides information about the quality of the drawn overlap compared to the true
one in the initial space. The proposed method is illustrated on four real data sets of
different types (categorical, mixed, functional and network) and is implemented on
the r package ClusVis.

Keywords: Dimension reduction, Gaussian mixture, factorial analysis, linear discriminant
analysis, model-based clustering, visualization.

1 Introduction

The exploratory field of multivariate statistics essentially encompasses the clustering and

the visualization tasks. Both are often jointly involved: either visualization is performed
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in the hope of revealing the “graphical evidence” of a cluster structure in the data set; or

clustering is performed first and the visualization task follows in the hope of providing a

better understanding of the estimated cluster structure. We are primarily interested in the

second scenario.

Clustering (Jajuga et al. 2002) serves to summarize (typically large) data sets by as-

sessing a partition among observations, the latter being thus summarized by (typically

few) characteristic classes. Model-based clustering (McLachlan & Peel 2004, McNicholas

2016, Biernacki 2017) achieves the clustering purpose in a probabilistic framework, usually

consisting of modeling the whole data distribution using a finite mixture model. Clas-

sical challenges can thereby be solved by using tools that rely on theoretical statistics,

e.g., estimating the partition using an EM algorithm (Dempster et al. 1977), selecting the

number of groups using information criteria such as BIC or ICL (Schwarz 1978, Biernacki

et al. 2000), dealing with missing values among observations (Larose 2015). Moreover,

this framework allows for the analysis of different types of data by “simply” adapting the

related cluster distribution: continuous data (Banfield & Raftery 1993, Celeux & Govaert

1995, McNicholas & Murphy 2008), categorical data (Goodman 1974, Celeux & Govaert

1991, Gollini & Murphy 2014, Marbac et al. 2016), mixed data (Kosmidis & Karlis 2015,

McParland & Gormley 2016, Punzo & Ingrassia 2016, Marbac et al. 2017, Mazo 2017),

functional data (Samé et al. 2011, Bouveyron & Jacques 2011, Jacques & Preda 2014),

networks data (Daudin et al. 2008, Zanghi et al. 2008, Ambroise & Matias 2012).

Once the clustering process has been performed, the next step is to provide a good

understanding of it to practitioners. However, a rendering based on a raw delivery of the

model parameters and/or the resulting partition (or the related conditional membership

probabilities) can be quite inefficient: understanding of the parameters requires specific

knowledge of the model at hand, and the partition can be also hard to read since it is just
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a numerical list of length equal to the sample size, which must be large enough to have

initially motivated the clustering process.

Visualization is designed to express, in a user-friendly manner, the estimated clustering

structure. Its general principle is to design a mapping of the data, or of other related

statistical results such as the cluster shape, within a “friendly” space (generally R2) while

maintaining some properties that the data, or the related statistical results, have in their

native space. The vast majority of proposed mapping relies on different variants of factorial

analysis or other distance-based methods (like multidimensional scaling). For a thorough

list of visualization methods, see Section 2.2, and references therein. However, all standard

mappings waste most clustering information that is conveyed by the probabilistic approach,

except Scrucca (2010) which uses the full model-based approach for the mapping. However,

this approach is limited to continuous data.

This paper defends the key idea that only a so-called model-based visualization output

can exploit the model-based clustering input, since both involved objects are of the same

nature (probabilistic objects). More precisely, the mixture model used for the visualization

output will inherit from the overlap of the initial mixture model. In fact, this is similar to

defining a particular mapping but without any explicit distance design. This process has

the clear advantage of being straightforwardly suitable for any type of data without any

specific definition of the mixture output since only the conditional memberships need to be

estimated. In fact, the specificity of initial data has been taken into account by the initial

clustering modeling process. The mixture output involves spherical Gaussian components,

with the same number of components as the clustering mixture. This particular Gaussian

choice is informed by both some technical arguments and some user-friendly arguments.

The resulting drawing displays meaningful spherical cluster shapes in the bivariate continu-

ous space. Finally, accuracy of this drawing is assessed by comparing the apparent overlap
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mixture on the graph and the overlap of the initial mixture. To have a good understanding

of our proposal, in particular its link with model-based clustering techniques, its general

outline can be summarized as follows:

1. select a model-based clustering technique for data at hand;

2. extract the whole distribution of the classification probabilities from the fitted model;

3. fit a multivariate spherical Gaussian mixture respecting as far as possible the distri-

bution of the previous classification probabilities;

4. (a) draw the spherical Gaussian mixture pdf on the most discriminative bivariate

map;

(b) draw a “pseudo” bivariate scatter plot representing the individual classification

probabilities on the most discriminative bivariate map.

This paper is organized as follows. Section 2 focuses on the context of model-based clus-

tering for mixed data and reviews the main existing visualization techniques of a clustering

result. Section 3 presents the central contribution of this work consisting of matching any

clustering mixture and a spherical multivariate Gaussian visualization mixture according to

their component overlap. We describe, in Section 4, how to draw this Gaussian mixture in

the most discriminative map. Like any visualization method, our proposition can introduce

a bias. However, because we propose a full model-based visualization approach, an index

measuring this bias (and thus the quality of the representation) is presented. Section 5 then

proposes a means of displaying a kind of individual plotting on the same discriminative

map to access each individual data cluster membership positioning. Section 6 illustrates

in depth the Gaussian model-based proposition on three real data sets with different types

of features (mixed data, functional data and network data). Throughout this paper, the
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proposition is also illustrated via a categorical running example. Section 7 concludes this

work.

2 Clustering: from modeling to visualizing

2.1 Model-based clustering of multi-type data

Clustering aims to estimate a partition z = (z1, . . . ,zn), composed of K clusters, of a data

set x = (x1, . . . ,xn), composed of n observations. The component membership of each

observation xi is given by zi = (zi1, . . . , ziK), with zik = 1 if xi arises from component k

and zik = 0 otherwise. Z denotes the space of any zi. In a very general situation, each

observation xi is defined on a space X described by dX variables which can be continuous,

categorical or functional.

Model-based clustering aims to solve the clustering task in a full probabilistic framework

by modeling the distribution of the full data set (x, z), z being considered as a latent part of

the data set. This framework has the decisive advantage of consolidating the exploratory

clustering result through the background of mathematical statistics (estimation, model

selection; see for instance McLachlan & Peel (2004), Biernacki (2017)). More precisely, all

couples (xi, zi) are assumed to independently arise from the distribution defined by the

probability density function (pdf)

f(xi, zi) =
K∏
k=1

[πkfk(xi)]
zik (1)

where πk is the proportion of the kth component (πk > 0 and
∑

k πk = 1) and fk is the pdf

of this component.

From such a modeling, two interesting by-product distributions are available. Firstly,

the (marginal) distribution of each xi corresponds to the so-called K component mixture
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defined by the pdf f(xi) =
∑

k πkfk(xi). Secondly, under distribution f , the probability

that xi arises from component k, denoted by tik(f), is expressed by

tik(f) = p(zik = 1|xi; f) =
πkfk(xi)∑K
`=1 π`f`(xi)

. (2)

Thus, all information about the classification probabilities for observation xi can be stored

in a K − 1 continuous vector ti(f) (because
∑K

k=1 tik(f) = 1) where

ti(f) = (ti1(f), . . . , ti(K−1)(f)). (3)

Information about the classification probabilities of sample x is given by t(f) = (t1(f), . . . , tn(f)).

Traditionally, components fk are parametrized by finite dimensional vectors and an

EM algorithm, or one of its variants (Dempster et al. 1977), is used to provide an estimate

f̂ of f (the πk’s and the parameters associated with the fk’s). Alternatively semi- or

non-parametric mixtures can be considered (Benaglia et al. 2009). Finally, an estimated

partition ẑ can be straightforwardly deduced from t(f̂) by using the rule of maximum a

posteriori (MAP) defined by ẑik = 1 iif k = arg max` ti`(f̂).

Thus, the key point to achieve this model-based clustering procedure is to define the

distributional space F where f stands for (f ∈ F). In fact, only the space of components

fk has to be defined. Clearly, choosing component pdf fk depends on X . Many proposals

already exist such as multivariate Gaussian or multivariate t-distributions for continuous

data (McLachlan & Peel 2004, McNicholas 2016), a product of multinomial distributions

for categorical data (Goodman (1974); see also the running example later), a product

of Gaussian and multinomial distributions when mixing continuous and categorical data

(Moustaki & Papageorgiou 2005, see also numerical experiments in Section 6.1), specific

models for functional data or for network data (see respectively numerical experiments in

Section 6.2 and 6.3, with references therein).
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However, because of their potential complexity, such previous mathematical features

may fail to provide a user-friendly clustering understanding. Indeed, it may be difficult

to have a useful overview of individuals in clusters through ẑ (or through t(f̂)) if n or K

is too large. Similarly, it may be difficult to get a useful overview of the whole clusters

(proportions, shapes, positioning, etc.) through f̂ if the space X involves many features

(d large) or involves features of complex types (like a mix of categorical and functional

features), a situation where the pdf of the components can be particularly hard to embrace

as a whole. As a matter of fact, the need for a user-friendly understanding of the math-

ematical clustering results (at both individual and pdf levels) is the very reason for using

some specific visualization procedures.

2.2 Overview of clustering visualization

Mapping vs. drawing Visualization is probably one of the most appealing data analysis

tasks for practitioners since its fundamental purpose is to display some potentially complex

and technically demanding statistical objects (typically a data set or a pdf) on simple and

seamlessly accessible graphs (typically a scatter plot or an isodensity curve). The whole

process can be viewed as the achievement of two different successive steps. The mapping

step transforms the initial statistical object into a simpler statistical one typically through a

dimensionality reduction of a data set or of a pdf (marginal pdf). It produces no graphical

output at all. The drawing step provides the final graphical display from the output of the

previous mapping step and usually entails the use of conventional graphical toolboxes. It

fine-tunes all the possible graphical parameters.

Individual mapping The clustering visualization task is probably thought as firstly as

visualizing simultaneously the data set x and its estimated partition ẑ. Typically, the
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corresponding mapping, designated below by M ind, transforms the data set x, defined on

X , into a new data set y = (y1, . . . ,yn), defined on a new space Y , as follows:

M ind ∈Mind : x ∈ X n 7→ y = M ind(x) ∈ Yn. (4)

Here Mind denotes a particular mapping family. This family varies according to the type

of data involved in X and also depending on whether they use only data x or additional

clustering information ẑ or t(f̂).

Methods relying on data x (thus discarding clustering information) are certainly the

most frequent. In terms of continuous data, principal component analysis (PCA; Josse

et al. (2011), Verbanck et al. (2015), Audigier et al. (2016a)) serves to represent the data

on a map by focusing on their dispersion. Similarly, categorical data can be visualized

using multiple correspondence analysis (MCA; Van der Heijden & Escofier (2003), Josse

et al. (2012), Greenacre (2017)), a mix of continuous and categorical data can be visualized

using mixed factorial analysis (MFA; Chavent et al. (2012), Audigier et al. (2016b)) and

functional data can be visualized using functional principal component analysis (FPCA;

Ramsay & Silverman (2005), Zhou & Pan (2014), Chen & Lei (2015)). Multidimensional

scaling (MDS; Young (1987), Cox & Cox (2001)) is more general since it can be used to deal

with any type of data. It relies on dissimilarities between pairs of individuals for inputs

x and also for outputs y, the resulting coordinate matrix ŷ being obtained by minimizing

a loss function. However, dissimilarities have to be defined specifically in respect of the

type of data under consideration. For just illustrating this point, the Euclidean distance

is frequent for continuous data whereas the Hamming distance is more suitably for binary

data.

In an machine learning framework, methods such as self-organized map (SOM; Kohonen

(1982)) or generative topographic mapping (GTM; Bishop et al. (1998)) have been devel-

oped to summarize the data in terms of a set of reference points having a regular spatial
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organization corresponding generally to a two-dimensional regular network. But, even if

nodes of the network are usually interpreted as clusters, these ones essentially serve as a

preprocessing step for limiting the number of prototypes to be considered at a second step

in a hierarchical clustering (Vesanto & Alhoniemi 2000).

Methods taking into account additional clustering information ẑ or t(f̂) are less com-

mon and are mostly restricted to continuous data. We can cite linear discriminant analysis

(LDA; Fisher (1936), Xanthopoulos et al. (2013)) which takes into account cluster sep-

aration by defining the mapping through to a particular factorial analysis of the cluster

means. Also, in the specific case of continuous data, Hennig (2004), Scrucca (2010) and

Morris et al. (2013) defined a specific linear mapping between X and Y . In that case, the

distribution of y is itself a (less-dimensional) Gaussian mixture or a multivariate t-mixture,

with the same number of components and the same proportions, which can be expressed

as g =
∑

k πkgk. Finally, their method aims to preserve the related conditional member-

ship probabilities t(f̂) and t(g), namely the classification probabilities of x with f̂ and

the classification probabilities of y with g, respectively. In other words, the aim is to find

a linear mapping that preserves as far as possible, through the mapping mixture g, the

cluster separation occurring in the original mixture f . Somewhat the method we proposed

in this paper is related to this idea but it is not restricted to continuous distributions in

the mixture and it does not relay on a linear mapping.

Pdf mapping Many visualizations are in practice overlaid by additional information

relating to the corresponding mapping distribution. This mapping transforms the ini-

tial mixture f =
∑

k πkfk, defined on the distributional space F , into a new mixture

g =
∑

k πkgk, defined on the distributional space G. It can be expressed as the following

9



mapping, designated here by M pdf:

M pdf ∈Mpdf : f ∈ F 7→ g = M pdf(f) ∈ G, (5)

where Mpdf denotes a particular mapping family. It is important to note that the pdf

mapping M pdf is rarely defined “from scratch” since it can be obtained as a “simple” by-

product from the previous individual mapping M ind. However, in practice, the resulting

mixture g can be particularly tedious to calculate (possibly no closed-form solution available

outside linear mappings), which can be partially overcome by displaying the empirical

mapping of a very large sample. But the resulting pdf can also have non-conventional

isodensity shape per cluster (for instance clusters with disconnected parts), undermining

somewhat all the user-friendliness that is expected when using pdf visualization.

2.3 Running example

As a running example for this paper, we consider the data set of Schlimmer (1987). It

is composed of votes for each of the n = 435 U.S. House of Representatives Congressmen

on dX = 16 key votes. For each vote, three levels are considered: yea, nay or unknown

disposition. Data are clustered by a mixture of products of multinomial distributions

(Goodman 1974). Parameter estimation is performed by maximum likelihood and model

selection is done by the BIC (Schwarz 1978), which selects K = 4 components. The r

package Rmixmod (Lebret et al. 2015) is used for inference.

As an output of this estimation step, the user is provided with a partition and a pa-

rameter. It may be not really convenient to have a detailed look at the partition of 435

individuals. In regard to the parameters, the mixing proportions can be suitable for a

quick, but partial, understanding of the clustering result. However, going further into the

clustering understanding by analyzing the multinomial parameters can be very laborious
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since it entails 192 = 16× 3× 4 values to be observed and compared.

It is also possible to analyze the clustering results graphically in a conventional way.

Figure 1 presents the scatter plot of the Congressmen and their partition on the first map

of the MCA, obtained by the r package FactoMineR (Lê et al. 2008). It appears that the

scatter plot provided by MCA is quite hard to read. Firstly, it is well-known that total

inertia is hard to interpret, and consequently the information about a possible relative

positioning of clusters can be questionable. Secondly, even if faithful, overlap between

components is not fully visible and thus does not allow for a straightforward interpretation

of f .

Figure 1: Scatter plot of the Congressmen and their partition on the first MCA map.
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3 Mapping clusters as spherical Gaussians

In this section, we focus our attention on the so-called pdf visualization. We argue that,

asymptotically on the sample size n, similar objects result from both pdf and individual vi-

sualization processes. However, we will hold a specific discussion on individual visualization

below.

3.1 Changing the mapping objects to be controlled

Traditional way: controlling the mapping family As described in Section 2.2, the

cornerstone of all traditional pdf visualization procedures is based on defining the mapping

family Mpdf (or more exactly Mind from which Mpdf is almost always deduced). As just

an example, the reader can have in mind the classical linear mapping for the continuous

case. Then, the pdf family G of g is a simple by-product ofMpdf, and thus can be denoted

by G(Mpdf). Using the general mapping expression (5), G(Mpdf) is naturally expressed as

follows:

G(Mpdf) = {g : g = M pdf(f), f ∈ F ,M pdf ∈Mpdf} . (6)

As an immediate consequence, the nature of G can depend to a great extent on the choice

ofMpdf, leading potentially to very different cluster shapes. Arguments that lead to tradi-

tionalMpdf (orMind) rely essentially on a combination of user-friendly and easy-to-compute

properties. For instance, in the continuous case, linear mappings are often retained (like

for PCA). In the categorical case, a continuous space Y is often targeted (like for MCA).

It is a similar situation for functional data with FPCA or also for mixed data with MFA or

MDS, even if MDS is a somewhat more complex procedure since it is not always defined in

closed-form. However, such choices may vary significantly from one statistician to another

one. For instance, MDS relies on defining dissimilarities both inside spaces X and Y and
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changing them could significantly affect the resulting mapping.

New proposed method: controlling the distribution family Alternatively, the

general mapping expression (5) can be seen as indexed by the distribution family G, the

mapping Mpdf being now obtained as a by-product, and thus now denoted by Mpdf(G).

This new point of view is straightforwardly expressed as:

Mpdf(G) = {M pdf : g = M pdf(f), f ∈ F , g ∈ G} . (7)

It corresponds to the reversed situation of (6) where G has to be defined instead of M pdf.

This new freedom indeed provides an opportunity to directly force G to be a user-friendly

mixture family.

3.2 Constrained spherical Gaussians as matching candidates

Spherical Gaussians One of the most simple candidate belonging to the “user-friendly

mixture family” is probably the spherical Gaussian mixture defined on Y = RdY . Its pdf

is defined for any y ∈ RdY by

g(y;µ) =
K∑
k=1

πkφdY (y;µk, I), (8)

where µ = (µ1, . . . ,µK) and φdY (.;µk, I) is the pdf of the Gaussian distribution with mean

µk = (µk1, . . . , µkdY ) ∈ RdY and covariance matrix equal to identity I.

Because clustering visualization is the central task of this work, it is expected to re-

quire that both mixtures f and g(·;µ) have the most similar clustering information. This

information is measured by the probabilities of classification (see (3)). We denote now pf

as the probability distribution function of the probabilities of classification under mixture

f and pg(·;µ) as the probability distribution function of the probabilities of classification
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under mixture g(·;µ). In this manner, a standard way for measuring the difference between

both f and g(·;µ) clustering property could be the following Kullback-Leibler divergence

(pf being the reference measure):

δKL(f, g(·;µ)) =

∫
T

pf (t) ln
pf (t)

pg(t;µ)
dt (9)

where T = {t : t = (t1, . . . , tK−1), tk > 0,
∑

k tk < 1}. Then, the set G is defined as

G = {g : g = g(·;µ), g ∈ arg min δKL(f, g), f ∈ F} . (10)

This is mimicking the idea of Scrucca (2010) and Morris et al. (2013) which imposes (as

far as possible) the retention of the overlap of mixture distributions before and after the

mapping.

More constraints on Gaussians Another requirement should be that pg(·;µ) and g

are linked by a one-to-one mapping, meaning that for one distribution f , there is a unique

distribution g(·;µ) which minimizes (9). This target is reached firstly by setting dY = K−1

and secondly by setting µK = 0, µkh = 0 if h > k, and µkk ≥ 0. This last restriction

prevents any rotation and/or translation of y from providing the same distribution pg(·;µ)

but a different distribution g(·;µ).

For technical convenience, we consider now the following one-to-one mapping Λ between

t and a classical transformation of t, which we express hereafter as t̃

Λ : t = (t1, . . . , tK−1) ∈ T 7→ t̃ = (t̃1, . . . , t̃K−1) ∈ [0,∞)K−1 with t̃k =
tk

1−
∑K−1

`=1 t`
. (11)

It is essential to note that, by considering mixture g(·;µ), there is also a one-to-one mapping

Ψ between y and t̃

Ψ(·;µ) : y 7→ t̃ with Ψ(y;µ) =

(
π1φdY (y;µ1, I)

πKφdY (y;µK , I)
, . . . ,

πK−1φdY (y;µK−1, I)

πKφdY (y;µK , I)

)
. (12)
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Moreover, we have

Ψ−1(t̃;µ) = M−1


ln
(
t̃1
πK
π1

)
+ 1

2
||µ1||2

...

ln
(
t̃K−1

πK
πK−1

)
+ 1

2
||µK−1||2

 with M =


µ′1
...

µ′K−1

 , (13)

where matrices M and M−1 are lower triangular.

3.3 Estimating the Gaussian centers

Invoking a log-likelihood From (10), we consider the distribution g(·;µ∗) where the

centers µ∗ are defined by µ∗ = arg min δKL(f, g(·;µ)). Noting that |JacΛ(t)|−1 =
∑K−1

k=1 tk,

µ∗ = arg min

∫
[0,∞)K−1

p̃f (t̃) ln
p̃f (t̃)

p̃g(t̃;µ)

(
K−1∑
k=1

tk

)
dt̃, (14)

where p̃f (·) and p̃g(·;µ) denote the pdf of t̃ by considering distribution f and g(·;µ), re-

spectively. It is possible to explicitly and easily express the previous p̃g(·;µ) distribution by

using the change of variables theorem combined with the linear transformation (13), which

leads to the following term, obtained by noting that |JacΨ−1(·;µ)(t̃)|−1 =
∏K−1

k=1 (µkk t̃k)
−1,

p̃g(t̃;µ) = g(Ψ−1(t̃;µ);µ)
K−1∏
k=1

(µkk t̃k)
−1. (15)

Unfortunately, the Kullback-Leibler divergence defined in (14) has generally no closed-form.

However, it is easy to independently draw a sample of S ratios of conditional probabilities

t̃ = (t̃
(1)
, . . . , t̃

(S)
) from p̃f . This sample can be used to estimate the previous integral such

that maximizing the following normalized (observed-data) log-likelihood function

L(µ; t̃) =
1

S

S∑
s=1

ln p̃g(t̃
(s)

;µ), (16)

is equivalent to solving (14) asymptotically on S.
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Maximizing the log-likelihood The log-likelihood (16), combined with (15), entails

the pdf of a mixture model. Thus, it can be classically broken down into a normalized

complete-data log-likelihood Lcomp and a normalized (empirical) entropy term E as follows

(Hathaway 1986):

L(µ; t̃) = Lcomp(µ; t̃) + E(t̃), (17)

where, noting Λ−1(t̃) = (Λ−1
1 (t̃), . . . ,Λ−1

K−1(t̃)) the inverse function of Λ,

Lcomp(µ; t̃) = c−
K−1∑
k=1

lnµkk −
1

2S

K−1∑
k=1

S∑
s=1

Λ−1
k (t̃

(s)
)||Ψ−1(t̃

(s)
;µ)− µk||2, (18)

E(t̃) = − 1

S

K−1∑
k=1

S∑
s=1

Λ−1
k (t̃

(s)
) ln Λ−1

k (t̃
(s)

), (19)

with a constant term c = 1
S

∑K−1
k=1

∑S
s=1 Λ−1

k (t̃
(s)

) lnπk − 1
S

∑K−1
k=1

∑S
s=1 ln Λ−1

k (t̃
(s)

). Since

the normalized entropy does not depend on µ, an estimate µ̂ of µ∗ is obtained only via the

maximization of the normalized complete-data likelihood. Note that this maximization is

straightforward if (and only if) K = 2. In such a case, we have for component 1 (remind

that for component 2 we have µ̂2 = 0 for identifiability reasons), with µ̂1 ∈ RK−1 = R:

µ̂1 =

√√√√−1 +
√

1 + 1
S2 (
∑S

s=1 Λ−1
k (t̃(s)))(

∑S
s′=1 Λ−1

k (t̃(s′))[ln(t̃(s′) π2
π1

)]2)

1
2S

∑S
s=1 Λ−1

k (t̃(s))
. (20)

If the number of components is more than two, a standard Quasi-Newton algorithm should

be run with different random initializations, in order to avoid possible local optima. In

practice, we use S = 5000 which allows for a fast estimation of the centers and stability of

the results.

Remark It can be noticed that generative topographic mapping (Bishop et al. 1998)

(GTM) could have some similarities with our approach since it is also based on a spherical

16



Gaussian mixture model of the data, estimated through an EM algorithm. However, this

fitted distribution is a mixture where the locations of the centers of the clusters on the latent

space (typically two-dimensional) are defined by advance on a regular grid avoiding any

clustering interpretation. Thus GTM is essentially a non-linear dimensionality reduction

where no particular clustering focus is taken into account.

4 Final visualization as bivariate spherical Gaussians

4.1 From a multivariate to a bivariate Gaussian mixture

Because g is defined on RK−1, it is inconvenient to draw this distribution if K ≥ 4. There-

fore, we apply an LDA to g to represent this distribution on its most discriminative map

(i.e., eigen value decomposition of the covariance matrix computed on the centers µ̂ by con-

sidering the mixture proportions π), leading to the following bivariate spherical Gaussian

mixture g̃:

g̃(ỹ; µ̃) =
K∑
k=1

πkφ2(ỹ; µ̃k, I), (21)

where ỹ ∈ R2, µ̃ = (µ̃1, . . . , µ̃K) and µ̃k ∈ R2. The (standard) percentage of inertia of LDA

serves to measure the quality of the mapping from g to g̃. In addition, the accuracy of the

mapping from the initial mixture f to the final “ready-to-be-drawn” mixture g̃ can be easily

compared through the following difference between the normalized (theoretical) entropy of

the partition related to f and the normalized (theoretical) entropy of the partition related

to g̃, namely

δE(f, g̃) = − 1

lnK

K∑
k=1

{∫
X
tk(x; f) ln tk(x; f)dx−

∫
R2

tk(ỹ; g̃) ln tk(ỹ; g̃)dỹ

}
. (22)
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The two normalized entropy terms involved in δE are well-referenced in the literature as

detailed in the book Bezdek et al. (1999). Such theoretical quantities can be easily esti-

mated using empirical values, similarly to the normalized empirical entropy E given by

Equation (19)1. Its meaning is particularly relevant: if δE(f, g̃) is close to zero then the

component overlap conveyed by g̃ (over f) is accurate; if it is close to one, then g̃ strongly

underestimates the component overlap of f ; if it is close to negative one, then g̃ strongly

overestimates the component overlap of f . Thus, δE(f, g̃) serves to evaluate the bias of the

visualization.

Remark When the initial data set x is in the continuous space X = Rd and also when the

initial clustering relies on a Gaussian mixture f whose covariance matrices are identical,

then the proposed mapping is strictly equivalent to applying a LDA to the centers of f .

4.2 Proposal for drawing the bivariate Gaussian mixture

The aim is now to draw the pdf g̃ on the most discriminative map in a manner that

highlights as much as possible the overlap between components. Indeed, it is primarily

such information that acted as a guideline to transform f into g̃. The proposed graph will

display the following elements:

• Cluster centers: the locations of µ̃1, . . . , µ̃K are materialized by vectors.

• Cluster spread: the 95% probability level is displayed by a black border which

separates the area outside the probability level in white from the area inside the

1Note that the normalized empirical entropy E could also eventually be additionally normalized by

lnK. We have not do it in order to follow the seminal definition of Hathaway. And, obviously, it has no

impact at all on the related parameter estimation in Section 3.3.
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probability level in gray levels i.e., the set Ωα is in gray where

Ωα = {ỹ : g(ỹ; µ̃) > uα} (23)

with uα such that
∫

Ωα
g(ỹ; µ̃)dỹ = 1− α (by default plots are made with α = 0.05).

The white area around the black border is designated by “outside the proba. level”

in the legend.

• Cluster overlap: curves of iso-probability of the MAP classification are also dis-

played for different levels ` (associated with a specific grayscale), a curve being com-

posed of the set of ỹ such that

max
k=1,...,K

πkφ2(ỹ; µ̃k, I)

g̃(ỹ; µ̃)
= `. (24)

Default plots are made with ` ∈ {0.8, 0.95}. Areas with gradual grayscale correspond

to different ranges of levels `. For instance, the gray area displaying the graphical

region between levels 0.8 and 0.95 is designated by “0.8 < Pr. Classif. < 0.95” in the

legend.

• Mapping accuracy: the accuracy of this representation is given by the difference

between entropies δE(f, g̃) and also by the percentage of inertia by axis. Those two

criteria provide complementary information. δE is the most important criterion. In-

deed, it indicates if the observed overlap within the visualization Gaussian mixture

(thus in the visualization space R2) is faithful or not to the overlap within the initial

mixture (thus in the initial data space X ). The percentage of inertia associated to a

given axis indicates the classical LDA accuracy value between the multivariate spher-

ical Gaussian mixture in RK−1 and the final visualization spherical Gaussian mixture

in R2. Its main interest is to rank the two axes of the final visualization, the first one

being the most discriminative axis.
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Remark When some components are highly overlapped, it is difficult to visualize their

respective cluster spreads since they are highly mixed, as expected. However, for well-

separated components, their respective cluster spreads tend to be disjointed, meaning that

Ωα ≈ ∪Kk=1Ωk,α with Ωk,α = {ỹ : πkφ2(ỹ; µ̃k, I) > uα}. In that limit and simplified case,

each gray area associated to cluster k, with k ∈ {1, . . . , K} such that Ωk,α 6= ∅, is a disc with

area Ak,α ≈ 2π(ln πk − ln(2π)− lnuα). This formula leads to the following two comments.

First, the area of the disc related to each well-separated component is directly related to

the logarithm of its mixing proportion. Consequently, it allows to visually rank populous

clusters by their visual size. Second, the threshold α has to be chosen small enough for

visualizing particularly clusters associated with a small mixing proportion πk. Indeed, it

can happen in such cases that, for the proposed value α = 0.05, Ωk,α = ∅, meaning that

the related cluster shape is not displayed on the graph2.

It has also to be noticed that alternative drawings for having simultaneously spread, overlap

and mixing proportions can be freely proposed by practitioners, eventually by using existing

graphical tools for bivariate Gaussian isodentities (see examples later in Section 4.3). As

expressed in the title of Section 4.2, this paper just offers a proposal. Indeed, the key

innovation of the paper is to offer a new mapping from any mixtures to Gaussians, the

drawing part being more incidental, even if useful.

2We never observed this event through experiments of this paper. But, in case it happens, we propose

to draw at least the center of the unobserved cluster on the graph.
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4.3 Tutorial on the bivariate spherical Gaussians visualization

We offer here a tutorial for avoiding any misinterpretation of the proposed bivariate spher-

ical Gaussians visualization. It illustrates also its potential interest for having a fast, easy,

unifying and faithful overview of the potentially complex underlying clustering structure.

The selected illustrative mixture corresponds to four bivariate Gaussians with non-spherical

covariance matrices and different mixing proportions cases. In these simple and well-known

situations, many standard bivariate illustrations of Gaussians and/or a related data set

already exist, of which users are familiar with them. By this way, users would easily un-

derstand how to properly analyze the new drawing we propose, the general understanding

principle being unchanged for more complex scenarios as the higher dimensional and/or

non-Gaussian cases that are considered in the running example or also in Section 6 later.

We decompose this tutorial into four characteristic scenarios.

Scenario 1: “reference” mixture The 1st bivariate (dX = 2) Gaussian layout is

composed of four components (K = 4) with mixing proportions π1 = π2 = 0.4 and

π3 = π4 = 0.1, with means ν1 = (−1, 3), ν2 = (3, 2), ν3 = (5,−3), ν4 = (2,−6) and with

heteroscedastic covariance matrices Σ1 = Σ3 =

 1 0.5

0.5 1

 and Σ2 = Σ4 =

 1 −0.5

−0.5 1

.

Figure 2a displays isodensity curves of the related mixture provided by the classical R

package mclust (Scrucca et al. 2016). Just the component number has been manually

overlayed on the means. Many other packages are expected to offer similar visualization

choices. Figure 2b displays the proposed bivariate spherical Gaussian visualization associ-

ated to this 1st mixture scenario. Note that this Gaussian representation is really spherical,

even if it can appear distorted due to the axes scaling. First of all the difference between

the entropies has to be checked. Its low absolute value (0.03) indicates that the cluster
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overlap displayed on the figure is globally accurate. Thus the following comments on the

initial heteroscedastic mixture we will make through this new spherical representation are

valid:

• Axes meaning: the 1st axis is the most discriminative one provided by the LDA

mapping (66.09% of the discriminant power). The first two axes sum to 66.09 +

23.41 = 89.50% of the discriminant power, thus most of the discriminant information

is present on this two dimensional mapping.

• Mixing proportions: the probability areas in gray color are directly related to the

mixing proportions as discussed at the end of Section 4.2. As a consequence, it

appears immediately that components 1 and 2 are more populous than the two others.

• Cluster overlap: it clearly appears also that components 1 and 2 overlap much more

than components 3 and 4 do. This fact does not appear clearly at all on Figure 2a

since mixing proportions are not involved in the isodensity representation. More

generally, separation of all couples of components appears to be faithful. For instance,

components 2 and 4 (and also components 1 and 3) are the most separated ones.

Scenario 2: effect of changing the centers Figure 3 considers a similar case to

Scenario 1 but where components 1 and 2 are closer with regards to their means, so their

overlap has increased. Indeed, here ν1 = (1, 3), Figure 3b has now a lower displaying

accuracy compared to Figure 2b since difference between the entropies is 0.15. However its

absolute value is sufficiently close to zero and far from one (its maximum theoretical value)

to allow faithful interpretation of the overall components displaying. Figure 3b clearly

indicates that components 1 and 2 overlap significantly more, what is really the fact in the

underlying experimental design.
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(a) mclust isodensity curves representation (b) proposed spherical-like representation

Figure 2: Representation of the clusters for Scenario 1.

(a) mclust isodensity curves representation (b) proposed spherical-like representation

Figure 3: Representation of the clusters for Scenario 2.
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(a) mclust isodensity curves representation (b) proposed spherical-like representation

Figure 4: Representation of the clusters for Scenario 3.

Scenario 3: effect of changing the covariance structure Figure 4 considers a similar

case to Scenario 1 but where components 3 and 4 are closer with regards to their covari-

ance matrices, so their overlap has increased. Indeed, here Σ4 =

 1 0.5

0.5 1

. Scenario 3 is

particularly interesting since the spherical representation is unable to distort its covariance

matrices (they are fixed to be spherical and identical). Consequently, only means of these

spherical Gaussians can be distorted to faithfully represent the corresponding new overlap.

Figure 4b shows that this means adaptation was successfully enough since the difference

between the entropies is very close to zero. And it can be seen on the same figure that

components 3 and 4 overlap very significantly, as expected. Finally, notice that the graph-

ical overlap display of clusters 1 and 2 appears to be changed between Scenario 1 and 3,

whereas the real probabilistic overlap between both is unchanged. It is the consequence

of the graphical cluster spread as defined in Equation (23) which depends on the relative

positionning of all clusters simultaneously.
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Scenario 4: effect of changing the mixing proportions Finally, Scenario 4 considers

Scenario 3 where the component proportions are now equal. Figure 5b illustrates that the

size of the gray areas around the centers has been adapted in comparison to Figure 4b.

Indeed, we see now that the gray areas are substantially equal (even if components 3

and 4 still quite overlap). As a comparison, Figure 5a is strictly the same as Figure 5a,

illustrating that the simplest isodensity curves representation from mclust we used as a

reference candidate here is unable to represent the component proportions.

(a) mclust isodensity curves representation (b) proposed spherical-like representation

Figure 5: Representation of the clusters for Scenario 4.

Remark: other competing representations Throughout previous scenarios, we have

just considered as a “reference” visualization the basic isodensity curves representation

provided by the classical R package mclust (Scrucca et al. 2016). Indeed, this one, by

its simplicity, appears to be convenient for helping to understand the main behaviour

of the new visualisation proposal. There obviously exists many other possible graphical

competitors that users can try by themselves for each previous scenario, some of them
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being good candidates for this (simple) tutorial. However each of them is expected to

have some limitations for the complex situations we will consider in the next sections.

For instance, even if mclust offers more advanced graphical outputs, all are restricted to

Gaussian mixtures. The R package fpc (Hennig 2010), through the function “weightplots”,

visualizes classification probabilities independently of the type of mixture, Gaussian or not.

However, it requires multiple figures (each figure displays one component vs. the others)

instead of a unique one, which can be less comfortable for a synthetic mixture overview

in case of multiple components. Another generic and classical graphical tool (enable to

deal with any type of data) is multidimensional scaling (MDS; Young (1987), Cox & Cox

(2001)) but, as already discussed in Section 4, specific dissimilarities have to be defined for

each type of data under consideration, thus complexifying the user task.

Remark: theoretical study with two (possibly non-Gaussian) components It

is also possible to theoretically describe the behaviour of our Gaussian-like visualization

in the case of (possibly non-Gaussian) components, but in the restricted two-component

situation. From Equation (20), it can be observed that, if the overlap between the two

components increases (i.e. t̃(s) → 1, Λ−1
k (t̃(s)) → 0.5 and π2/π1 → 1), then µ̂1 → 0.

Since µ̂2 = 0, it implies that the two Gaussians also strongly overlap in our Gaussian-like

visualization. On the contrary, if the overlap between the two components decreases (i.e.,

for some s ∈ {1, . . . , S} values, t̃(s) → 0 while Λ−1
k (t̃(s)) → 0 and, for other s ∈ {1, . . . , S}

values, t̃(s) → +∞ while Λ−1
k (t̃(s)) → 1), then µ̂1 → +∞. In that case, the two Gaussians

are more and more separated.
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4.4 Continuation of the running example

We now illustrate the previous visualization proposition on the running example. Figure 6

is the component interpretation graph obtained for the congressional voting records. It

presents the Gaussian-like component overlap on the most discriminative map. In this way,

it provides in a more visual way than a traditional confusion table the overlap information of

the initial mixture f . We also graphically observe the ranking between the different cluster

spreads, indicating some variety in mixing proportions (numerically speaking, we have

π̂1 = 0.21, π̂2 = 0.05, π̂3 = 0.35 and π̂4 = 0.39). Note that the mapping of f on this graph

is accurate because the difference between entropies is almost zero (i.e., δE(f, g̃) = −0.08).

For instance, this figure also shows that the components with most observations (i.e.,

components three and four) are composed of strongly different Congressmen. Indeed, the

overlap between these components is almost zero. Moreover, component one contains

Congressmen which are more moderate that Congressmen of components three and four.

5 Proposal for drawing a pseudo bivariate scatter plot

5.1 From pdf visualization to individual visualization

We have limited our attention to the mapping of the initial cluster pdf f , described by (5),

intentionally discarding the mapping of the initial individual data set x, described by (4).

We have already discussed that the pdf mapping (5) can be a by-product of the individ-

ual mapping (4). However, the reverse is mathematically impossible, the distributional

information being weaker than the random variable information.

Nevertheless, a pseudo scatter plot y of x can be mapped onto RK−1 by transforming

the ratios of probabilities Λ(ti(f)), associated with xi by f , into values yi through the
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Figure 6: Component interpretation graph of the congressional voting records.

reverse application of Ψ−1(·; µ̂) associated with g(·; µ̂), namely yi = Ψ−1(Λ(ti(f)); µ̂) (i =

1, . . . , n). Then, each observation yi is projected on the LDA map, leading to a pseudo

scatter plot ỹ = (ỹ1, . . . , ỹn), with each ỹi ∈ R2.

We use the term “pseudo” for ỹ (or for y) because some caution has to taken in order

to avoid misunderstanding. Indeed, the distribution of ỹ is expected to be different from
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g(·; µ̃), the essential property of ỹ being to respect as far as possible the conditional prob-

abilities t(f) associated to x, but not to respect as far as possible the distribution f itself.

In fact, only when f corresponds to a spherical Gaussian mixture do distributions of ỹ and

of g(·; µ̃) match.

Such remarks strongly affect the related drawing we propose for the scatter plot ỹ:

• Data drawing: display ỹ on the LDA best discriminative map as dots of different

colors representing the partition membership z.

• Conditional probabilities: information about the uncertainty of classification is

given by the curves of iso-probability of classification.

• Mapping accuracy: again, the accuracy of this representation is given by the dif-

ference between entropies δE(f, g̃) and also by the percentage of inertia by axis.

• No pdf overlay: do not display ỹ simultaneously with g̃(.; µ̃) to avoid misunder-

standing; therefore use another graph.

5.2 Tutorial on the pseudo bivariate scatter plot visualization

Figure 7a displays, in a classical way, a sample of size n=1000 from Scenario 3 described

in Section 4.3. Figure 7b displays the related pseudo scatter plot we propose. The LDA

map is exactly the same between this figure and Figure 4b. However, some comments are

required for avoiding misinterpretation of this new plot.

Here the scatter plot is not necessarily Gaussian (spherical or other), phenomenon that

appears clearly. Indeed, remember that the only property of the initial mixture which is

preserved through the procedure we propose is the conditional membership distribution (or
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(a) classical bivariate scatter plot (b) proposed bivariate pseudo scatter plot

Figure 7: Scatter plot related to Scenario 3.

in short its “overlapping”) under the constraint that this conditional distribution is a by-

product of a spherical Gaussian mixture. Thus, each data sample drawn on Figure 5b has to

be seen as a faithful representation of its conditional membership representation under the

spherical constraint, but absolutely not a faithful representation of its mixture distribution.

The interest is to quicky access to the membership uncertainty of each individual, what

becomes also clearer by the borderlines displayed on the figure. Notice obviously that this

membership interpretation is accurate as soon as the difference between the entropies is

not far from zero (in absolute value), what is the case for this particular scenario.

5.3 Continuation of the running example

Figure 8 displays the scatter plot of the observation memberships obtained on the con-

gressional voting records. It overlays on the most discriminative map the curve of iso-

probabilities of classification and the cloud of observations. Three levels of probabilities
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of classification are considered (0.95, 0.80 and 0.50) and observations are represented with

the label of the component maximizing the posterior probability of classification. This plot

serves to focus on specific observations and, for instance, to detect observations classified

with a high uncertainty of classification. Note that some points which are classified in

component two (the blue points) are located in the area containing the observations of

component three. This is a standard phenomenon in LDA. Indeed, in such a case, if the

maximum a posteriori rule is applied on the native space (i.e., RK−1) than its results can

be different to the results of maximum a posteriori rule when applied on the low-dimension

space (i.e., R2).

6 Numerical illustrations for complex data

We present applications of the visualization method on three real data sets composed of

complex features (mixed, functional and network data). They illustrate the ability of the

method to deal with extremely different kinds of data and of mixtures, without any new

specific development. Results are obtained by the r package ClusVis which implements

the visualization method.

6.1 Mixed data: Contraceptive method choice

Data This dataset x is a subset of the 1987 National Indonesia Contraceptive Prevalence

Survey (Lim et al. 2000). It describes 1473 Indian women with two numerical variables

(age and number of children) and eight categorical variables (education level, education

level of the husband, religion, occupation, occupation of the husband, standard-of-living

index and media exposure).
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Figure 8: Scatter plot of the observation memberships of the congressional voting records.

Model used to cluster These mixed data are clustered by a mixture f assuming that

variables are independent within components (Moustaki & Papageorgiou 2005). Within a

component, the continuous variables follow Gaussian distributions and categorical variables

follow multinomial distributions. Maximum likelihood inference is performed by the r

package Rmixmod (Lebret et al. 2015). Model selection is done by the BIC criterion
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which detects six components.

Model drawing Figure 9 presents the component interpretation graph obtained for the

contraceptive method choice data. It shows overlaps between component one, two and

three. Moreover, components four and five are significantly different from component six.

Such a visualization is in accordance with a fine study of Table 1, which presents the

parameters of the continuous variables. Indeed, we can see that components one, two and

three are all composed of middle-age women who have many children. On the contrary,

components four and five are composed of young women who have few children. Finally,

component six is composed of the oldest women. Therefore, the first axis can be interpreted

as the age of the women (left side is composed of older women than on the right side).

Finally, the second axis distinguishes components two, four and six from the others. As

shown in Table 2, these three components have the same mode for the eight categorical

variables.

Age Number of children

Mean Variance Mean Variance

Component 1 35 30 4 4

Component 2 35 22 3 2

Component 3 40 42 5 9

Component 4 25 10 1 1

Component 5 24 13 2 1

Component 6 45 7 5 8

Table 1: Parameters of the continuous variables for the Contraceptive method choice.
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Figure 9: Component interpretation graph of the Contraceptive method choice.

Scatter plot drawing The scatter plot of the observation memberships is presented in

Figure 10. The overlap between components one and three is obvious. Note that, on this

figure, some observations classified under component one are projected on a location where

the MAP rule would classify them under component three. However, on the space R5, the

probabilities of classification are respected precisely. But this well-known phenomenon is
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education husband’s religion occupation husband’s standard-of- media

level education level occupation living index exposure

Component 1 3 3 2 2 3 4 1

Component 2 4 4 2 2 1 4 1

Component 3 1 2 2 2 3 3 1

Component 4 4 4 2 2 1 4 1

Component 5 3 3 2 2 3 3 1

Component 6 4 4 2 2 1 4 1

Table 2: Modes of the categorical variables for the Contraceptive method choice.

due to the projection of the observations yi from R5 to R2 when projecting a discriminative

rule.

6.2 Functional data: Bike sharing system

Data We consider now the study of the Bike sharing system data presented by Bouveyron

et al. (2015). We analyze station occupancy data collected over the course of one month on

the bike sharing system in Paris. The data were collected over 5 weeks, between February,

24 and March, 30, 2014, at 1 189 bike stations. The station status information, in terms of

available bikes and docks, were downloaded every hour during the study period for the seven

systems from the open-data APIs provided by the JCDecaux company. To accommodate

the varying stations sizes (in terms of the number of docking points), Bouveyron et al.

(2015) normalized the number of available bikes by station size and obtained a loading

profile for each station. The final data set contains 1 189 loading profiles, one per station,

sampled at 1 448 time points. Note that the sampling is not perfectly regular; there is

one hour, on average, between the two sample points. The daily and weekly habits of

inhabitants introduce a periodic behavior in the BSS station loading profiles, with a natural
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Figure 10: Scatter plot of the observation memberships of the Contraceptive method choice.

period of one week. It seems thus suitable to use a Fourier basis to smooth the curves, with

basis functions corresponding to sine and cosine functions of periods equal to fractions of

this natural period of the data. Using such a procedure, the profiles of the stations were

projected on the basis of 25 Fourier functions.
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Model used to cluster We conduct a model-based clustering of these functional data

(Bouveyron et al. 2015) using the r package FunFEM (Bouveyron 2015) . The parameters

of the model presented by Bouveyron et al. (2015) (i.e., K = 10 and DFM[αkjβ] model) are

estimated. Figure 11 presents the curves for the 10 components based on the MAP rule.

Model drawing Figure 12 presents the component interpretation graph obtained for the

bike sharing system data. The representation has good accuracy, because the difference

between entropies is small (i.e., δE(f, g̃) = −0.05). It shows a strong similarity between

components three and four. In Figure 11, we can see that the curves classified in these

components are similar (high values with the same phase). Component two and six overlap

because they have a very low amplitude. Moreover, Figure 12 shows that component seven

is the most isolated one. This component corresponds to the group that Bouveyron et al.

(2015) called empty stations. Finally, components eight and nine are significantly different

because they have a phase opposition. Indeed, these components are at opposite locations

on this figure. The same remark applies for components one and eight as well. In fact,

the reader can easily “plays” with Figure 11 and Figure 12 for checking similarities and

differences between all components.

Scatter plot drawing The scatter plot of the observation memberships is presented in

Figure 13. It confirms the interpretation of Figure 12. Indeed, the observations classified

in components three and four are well-mixed. Similarily, one can observe an overlap be-

tween components two and six. Finally, the observations classified in component seven are

isolated.
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6.3 Network data: French political blogosphere

Data We consider the clustering of the French political blogosphere network (Zanghi et al.

2008). Data consist of a single day snapshot of over 1 100 political blogs automatically ex-

tracted on October, 14th, 2006 and manually classified by the “Observatoire Presidentielle”

project. This project is the result of collaborative work by RTGI SAS and Exalead and

aims at analyzing the French presidential campaign on the web. In this data set, nodes

represent hostnames (a hostname contains a set of pages) and edges represent hyperlinks

between different hostnames. If several links exist between two different hostnames, Zanghi

et al. (2008) subsum them into a single one. Note that intra-domain links can be considered

if hostnames are not identical. Finally, in this experiment we consider that edges are not

directed, which is not realistic but which does not affect the interpretation of the groups.

This network presents an interesting community-based organization due to the existence

of several political parties and commentators. We assume that authors of these blogs tend

to link, blogs with similar political positions as a result of their political affinities.

Model used to cluster We use the graph clustering via Erdös-Rényi mixture proposed

by Zanghi et al. (2008) and implemented on the r package mixer. As proposed by these

authors, we consider K = 6 components. The confusion matrix between the component

memberships and the political party memberships is given in Table 3.

Model drawing Figure 14 presents the component interpretation graph obtained for the

French political blogosphere data. The graph moderately over-represents the component

overlaps (i.e., δE(f, g̃) = −0.17). Indeed, the (normalized) entropy of f is equal to 0.016

while the entropy of the projection of g into the most discriminative space is equal to

0.221. Note that this difference between entropies is due to the projection of the data
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Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6

Cap21 2 0 0 0 0 0

Commentateurs Analystes 10 0 0 1 0 0

FN - MNR - MPF 2 0 0 0 0 0

Les Verts 7 0 0 0 0 0

PCF - LCR 7 0 0 0 0 0

PS 31 0 0 0 26 0

Parti Radical de Gauche 11 0 0 0 0 0

UDF 1 1 0 30 0 0

UMP 2 25 11 2 0 0

liberaux 0 1 0 0 0 24

Table 3: Confusion matrix between the component memberships and the political party

memberships.

from R5 to R2. Indeed, the entropy of g (in R5) is closed to those of f with a value of

0.004. The loss of information due to the data projection can also be detected by the

inertia, because only 56.76% of the inertia is represented by this most discriminative map.

Therefore, the components overlaps should be interpreted with more caution than in the

previous examples, where the differences between entropies were close to zero.

The graph shows that components three and six overlap significantly. This result is

expected because component three mainly comprises UMP members (“French Republican”)

and component six is composed of supporters of economic-liberalism. Finally, component

one, which comprises politicians from different political parties, is the most isolated.

Scatter plot drawing Figure 15 presents the scatter plot of the observation member-

ships. It confirms the proximity between components three and six.
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7 Conclusion

We presented a generic method for visualizing the results of a model-based clustering in a

“Gaussian way”. This method allows for visualization of any model-based clustering made

on any type of data, because it is only based on the distribution of classification probabil-

ities. It permits to interpret the results of a model-based clustering but not to select the

best clustering method (choosing a clustering method has to be performed before through

a classical model selection process). In this way, it is not an exploratory visualization

method, as such methods are often dedicated to.

This method produces two graphs. The first graph allows for the component interpre-

tation through all component overlaps. The second graph represents a scatter plot of the

observations and many curves of iso-probabilities of classification. It serves to focus on the

classification of specific observations and to quantify the risk of misclassification related to

the conditional probability of membership. Finally, the accuracy of the procedure can be

measured by taking the difference between the normalized entropies obtained by the model

used to cluster and by the model defined on the visualization map.

The proposed procedure has been developed by considering that the model used to vi-

sualize is a constrained Gaussian mixture. Obviously, other continuous distributions could

be considered. However, these distributions must define a one-to-one relation between the

space of the probability of classification and the continuous space. If several distributions

compete, then the best distribution could be the distribution that leads to minimization of

the Kullback-Leibler divergence δKL(f, g). Alternatively, because there is a step of LDA-like

projection, the best distribution could be the distribution that minimizes the difference be-

tween the normalized entropies obtained by f and by the projected distribution g̃, namely

δE(f, g̃). Finally, if non-Gaussian mixtures are considered, it is crucial that the resulting
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graph presenting the component overlaps is still meaningful and does not entail exces-

sively time consuming calculus (visualization should be a fast step). In particular, it could

be meaningful to explore non-unimodal component candidates, like mixture of mixtures,

sometimes called also multilayer mixture (see for instance Hennig (2010)).
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Figure 11: Partition among the 1 189 bike stations in Paris (each row corresponds to a

single component and gives the mean curve in bold and observations belonging to this

component in thin).
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Figure 12: Component interpretation graph of the bike sharing system.
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Figure 13: Scatter plot of the observation memberships of the bike sharing system.
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Figure 14: Component interpretation graph of the French political blogosphere.
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Figure 15: Scatter plot of the observation memberships of the French political blogosphere.
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