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Abstract 
 
Solutions proposed for the longstanding problem of automatic decomposition of Petri nets into concurrent processes, as 
well as methods developed in Grenoble for the automatic conversion of safe Petri nets to NUPNs (Nested-Unit Petri 
Nets), require certain properties to be computed on Petri nets. We notice that, although these properties are 
theoretically interesting and practically useful, they are not currently implemented in mainstream Petri net tools. 
Taking into account such properties would open fruitful research directions for tool developers, and new perspectives 
for the Model Checking Contest as well. 
 
1. The Dead Places Problem 
 
Definition: A place p is dead iff there exists no reachable marking M such that p is marked in M. 
 
Definition: Given a Petri net, the Dead Places Problem consists in finding all the dead places. Equivalently, if P is the 
set of places, this problem consists in computing a vector of |P| bits, each of which is 1 iff the corresponding place is 
dead. 
 
This problem is the equivalent, for Petri nets, of the dead code problem in software engineering. This is a practically 
relevant problem: dead code is a nuisance for maintenance, and most software methodologies require to get rid of dead 
code. Moreover, many global properties of a network can be changed to true or to false just by adding dead places, so it 
is important to detect and eliminate such places to only consider a truly-minimal Petri net. For instance, in industrial 
automation, the Grafcet specification prohibits Sequential Function Charts containing "unreachable" branches (i.e., Petri 
nets with dead places or transitions). 
 
In model-checking verification, dead places are likely to increase the memory cost of verification. Moreover, even if 
nets contain only a few dead places in practice, these may cause trouble when performing structural analyses or 
transformations of Petri nets, as they may invalidate certain "good" properties (e.g., free choice) and thus lead to 
incorrect transformations, or prevent the application of efficient algorithms relying on such properties. 
 
2. The Dead Transitions Problem 
 
Definition: A transition t is dead iff there exists no reachable marking M such that t is enabled in M. 
 
Definition: Given a Petri net, the Dead Transitions Problem consists in finding all the dead transitions. Equivalently, if 
T is the set of transitions, this problem consists in computing a vector of |T| bits, each of which is 1 iff the 
corresponding transition is dead. 
 
This problem is relevant for the same reasons as for the Dead Places Problem.  
 
It is different from another problem : "is the Petri net quasi-live?", since that latter problem only requires a Boolean 
answer, whereas the Dead Transitions Problem asks for a vector of Booleans. In fact, the Dead Transitions Problem is 
more general, as the network is quasi-live iff the answer to the Dead Transitions Problem is the vector of zeros. In 
practice, when debugging a complex network, the quasi-liveness property does not suffice: knowing the existence of 
dead transitions is not enough, one needs to have the list of dead transitions. 
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3. The Concurrent Places Problem 
 
Definition: Two places p and p' are concurrent iff there exists a reachable marking M such that both p and p' are marked 
in M. 
 
Definition: Given a Petri net, the Concurrent Places Problem consists in finding all pairs of concurrent places. 
Equivalently, if P is the set of places, given that the concurrency relation is symmetric, this problem consists in 
computing a half matrix of |P|.(|P|+1)/2 bits, each of which is 1 iff the corresponding pair of places are concurrent. 
 
This problem generalizes the Dead Places Problem. Indeed, a place is dead iff it is not concurrent with itself. 
 
This problem is practically relevant, since the concurrency relation characterizes those net parts that can be 
simultaneously active. It is mentioned in many publications under various names, such as: coexistency defined by 
markings [Jan84, Sect. 9], concurrency graph [Kar12] [WKAK14], or concurrency relation [Kov92] [SY95] [KE96] 
[Kov00] [GS06], etc. These definitions slightly differ by minor details, such as the kind of Petri nets considered, or the 
handling of reflexivity, i.e., whether and when a place is concurrent with itself or not.  
 
4. Comparison with temporal logics 
 
Interestingly, the three above problems can be expressed using temporal logics (e.g., CTL or LTL) as reachability 
formulas following the same pattern. Given a set of places M, let R (M) be the predicate: "does it exist a reachable 
marking containing all places of M?". 
 

• Dead Places Problem: for each place p, compute R ({p}). 
• Dead Transitions Problem: for each transition t, compute R (•t). 
• Concurrent Places Problem: for each pair (p, p') of places, compute R ({p, p'}). 

 
It would be therefore tempting to express these problems as particular cases of the evaluation of CTL or LTL formulas. 
However, we believe that such reduction is not the best option or, at least, it is not the only option: 
 

• For tool users, it is much easier to directly invoke a Petri-net tool that has built-in options (such as -dead-
places, -dead-transitions, or -concurrent-places) rather that building a set of temporal-logic formulas, 
invoking a model checker on each of these formulas, then collecting and aggregating the results of all these 
invocations in one single file ― keeping in mind that the number of these formulas is linear or even quadratic 
in the size of the Petri net, thus leading to a huge input file or to a large number of input files. 
 

• For tool developers who plan to solve these three problems by means of LTL or CTL model checking, it is 
more efficient to have built-in options (such as -dead-places, etc.) and internally generate and evaluate the set 
of temporal-logic formulas: so doing, the tool avoids parsing costs, as the formulas can be directly generated in 
abstract syntax rather than concrete syntax; moreover, the tool knows that all these formulas are correct by 
construction and, thus, can avoid checking their correctness, which would not be possible if these formulas 
were provided by a human user. 
 

• Also, the existence of built-in options opens the way to strategies that would not be fruitful when evaluating 
temporal-logic formulas one by one. If a tool knows it has to evaluate thousands of formulas on the same 
model, then it can profitably try applying preliminary simplifications (e.g., structural transformations) or 
sophisticated analyses to this model. Similarly, the tool may profitably consider using global model checking 
(i.e., explicitly building the reachable state space first, then evaluating all formulas on this state space) 
whereas, for a single formula, local model checking (i.e., on the fly evaluation) might be preferred. One may 
also consider combined aproaches, e.g., first performing global model checking to get as many results as 
possible, then spotting the missing results and using local model checking to get them one by one, or two by 
two, etc. 

 



3 

Thus, although the three above problems can be reduced to the evaluation of a set of temporal-logic formulas, it is better 
to express these problems at a higher level (namely, equip Petri-net tools with built-in options for these problems) and 
let tool developers choose which approaches solve these problems best. Said otherwise, temporal logic is a possible way 
to express and solve these problems, but it should not be the mandatory way. 
 
5. An example: Implementation in the CAESAR.BDD tool 
 
CAESAR.BDD [Cae19] is a Petri-net verification tool that is part of the CADP toolbox [Cad19]. The recent versions of 
CAESAR.BDD provide three options -dead-places, -dead-transitions, and -concurrent-places that address the three 
aforementioned problems. In practice, the -dead-transitions option is used to simplify large interpreted Petri nets 
automatically generated from specifications written using higher-level languages such as LOTOS, LNT, AADL, etc. 
The -concurrent-places option is used to automatically convert ordinary, safe Petri nets into NUPNs (Nested-Unit Petri 
Nets) [Gar19] by inferring concurrency, locality, and hierarchy information from any given net [BGP20]. 
CAESAR.BDD does not support temporal-logic formulas, but provides many other features, among which a -mcc 
option that automatically generates LaTeX model forms for the Model Checking Contest. 
 
CAESAR.BDD. explores the reachable state space of a Petri net using the BDD package CUDD [Cudd19]. Once the 
state space has been generated, the results of -dead-places, -dead-transitions and -concurrent-places are computed by 
checking the predicate R defined in Section 4. If the state space has been incompletely generated, "unknown" results are 
returned for certain places, transitions, or pairs of places. Additional algorithms are implemented to reduce the 
proportion of "unknown" results. 
 
The -dead-transitions and -concurrent-places options of CAESAR.BDD have been assessed in 2019 on a large base 
of 13556 Petri nets or NUPNs from diverse origins, including many nets taken from the model collection of the Model 
Checking Contest. These experiments have been conducted on Grid 5000, a French national grid. More than 530 years 
of CPU have been used (including other experiments, failed runs due to mistakes, runs halted on timeout, etc.). 
CAESAR.BDD was able to solve the Dead Transitions Problem for 13225 models (97.6%) and to solve the Concurrent 
Places Problem completely for 13176 models (97.2%); on 363 of the remaining models (2.68%), CAESAR.BDD could 
produce approximate results (true, false, or unknown) for the Concurrent Places Problem.  
 
6. Potential interest for the Model Checking Contest 
 
It would be interesting to know whether other tools, possibly implementing different techniques, could perform better 
than CAESAR.BDD on these challenging problems, either by tackling models that could not be handled by 
CAESAR.BDD, or by computing solutions with less "unknown" results, or by providing equivalent results in shorter 
time with a lower  computation cost. 
 
Should enough Petri-net tools implement algorithms for the three above problems (which should be easy, at least for the 
tools supporting temporal-logic formulas), then the Model Checking Contest (MCC) [Mcc19] could include these 
problems ― most likely in its "Global Properties" competition category, which has been recently introduced and is 
currently limited to the "Deadlock" problem. So doing, the MCC would foster research on new problems and allow a 
fair comparison of the tool performances on these problems.  
 
At present, all the tools regularly participating in the MCC have converged to give nearly 100% of correct answers. 
Time has come to propose new challenges. For the MCC itself, the advantages would be multiple: 
 

• Closer to user needs: The current situation, where tools have to evaluate only 16 formulas for each problem, 
is merely an approximation of the real needs of the user. Considering, for instance, the Dead Transitions 
Problem, a tool user will not be satisfied by knowing that a net is not quasi-live, nor by knowing whether 16 
transitions taken randomly in this net are quasi-live or not; the user expects the tool to provide the complete list 
of dead transitions (or, at least, as much as possible dead transitions within a given lapse of CPU time). 
 

• Beyond temporal logics: the MCC is currently very much oriented towards temporal logics (actually, state-
based logics, as action-based logics with transition-oriented properties are not supported). The proposed 
challenges, which would be expressed as global problems without explicit reference to temporal logics, might 
attract new tools that, like CAESAR.BDD, perform state-space exploration to answer useful queries not 
expressed in temporal logic. 
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• Beyond local model checking: the MCC currently favors local (i.e., on-the-fly) model checking, where only 
the fragment of the state space relevant to evaluate a given property is evaluated. Global model checking is 
implicitly discouraged, as exploring the state space entirely may be too expensive if only 16 formulas are to be 
evaluated on this state space. However, global model checking may be of interest when evaluating a larger 
number of formulas: for instance, global model checking has been recently used during the RERS 2019 contest 
to evaluate 360 temporal-logic formulas in about 10 hours using the CADP toolbox [Rers19]. The proposed 
evolution of the MCC would address this issue by proposing a better balance between local and global model 
checking, the former no longer being the default approach. 
 

• Enabling structural reductions: for the same reasons, the proposed evolution of the MCC would provide tool 
developers with greater incentive to perform structural reductions, so as to simplify the state space, still 
preserving its key properties, before evaluating temporal logic formulas. Currently, some tools prefer restarting 
from scratch the state-space exploration everytime a new property is evaluated. Such a strategy is only possible 
if the number of temporal logic formulas for the same model is low. 

 
Technically, the introduction of the three aforementioned problems would not change the MCC rules. As for the other 
competition categories, each tool would produce a vector of values (False, True, Unknown, Crash, Timeout), the only 
difference being that the size of this vector is not constant (i.e., 16 when 16 formulas are evaluated) but depends on the 
size of the model itself (e.g., linear in the number of transitions or quadratic in the number of places). 
 
7. Proposed output format for the Dead Places and Dead Transitions Problems  
  
In order to allow a simple comparison of the outputs of the various tools, we suggest to adopt a precisely-defined file 
format for the outputs of the Dead Places and Dead Transitions Problems. 
 
This format should be kept as simple as possible, avoiding XML-like syntax, which is likely to cause file-size explosion 
in the case of the Concurrent Places Problem (see Section 8 below). 
 
For the Dead Places Problem, all the places of the PNML file should be sorted in unambiguous order and numbered 
from 1 to |P|, e.g., according to their order of declaration in the input PNML file. Then, the output of  the Dead Places 
Problem should be a text file containing one line of |P| characters. The i-th character should be '1' if the i-th place is 
dead, '0' if it is not dead, or '.' if this information is unknown because the state space was incompletely explored (e.g, 
halted due to a timeout). 
 
Note 1: We prefer using '.' rather than '?' since the latter character has the same height as '0' and '1', and was found to be 
visually painful and error-prone for human readers. 
 
Note 2: Initially, each of the |P| characters was on a separate line, because some editors (e.g., vi) and text processors  
(such as awk, grep, or sed) have fixed-size buffers and may face problems handling long lines. Yet, putting all 
characters on one single line was later preferred, since it provides human readers with a global overview of the output 
contents. 
 
Finally, the output line of |P| characters is compressed using the simple algorithm based on run-length encoding: if a 
given character c is repeated n times, with n > 3, the n consecutive occurrences of this character c are replaced with the 
abbreviated notation c(n).  This algorithm is detailed in the section entitled "COMPRESSION SECTION" of the 
following Web page: http://cadp.inria.fr/man/caesar.bdd.html. In practice, this compression achieves significant savings 
for large Petri nets having thousands of places, only a few of which are dead. 
 
For the Dead Transition Problem, we propose the same format, replacing "place" by "transition" and |P| by |T|. 
 
 
8. Proposed output format for the Concurrent Places Problem 
  
Given that the concurrency relation between places is symmetric, it is sufficient to represent this relation as a lower half 
of a matrix, whose lines and columns are indexed by the unique numbers assigned to each place (see Section 7). This 
half matrix has |P|.(|P|+1)/2 cells. Each cell of the matrix contains a single character: '1' if the corresponding places are 
concurrent, '0' if they are not, or '.' if the information is unknown. 
 

http://cadp.inria.fr/man/caesar.bdd.html
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Note: The -concurrent-places option currently implemented in CAESAR.BDD is slightly different, as matrix cells may 
contain other character values, e.g., '=', '<', and '>', which mean "non-concurrent" with the extra information that the two 
places are located in the same NUPN unit or in parent NUPN units. 
 
Experiments conducted with CAESAR.BDD on large Petri nets taken from the MCC collection have shown that the 
half matrix can become quite large (files of several gigabytes). For this reason, each output line of the half matrix is 
compressed using the aforementioned algorithm described in the section entitled "COMPRESSION SECTION" of the 
Web page: http://cadp.inria.fr/man/caesar.bdd.html. The table given in Annex A shows an uncompressed matrix (left) 
and its compressed version (right). Measured on 12671 models, the average compression factor was 214; on large 
models, the compression factor reached higher values; for instance, a 8.6-Gbyte file was compressed to a 2-Mbyte file 
(compression factor: 4270). 
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Appendix A 
 
The table below gives the half matrix for the Concurrent Places Problem. The uncompressed matrix is shown on the left 
and its compressed version on the right. 
 

1        1 
11        11 
111        111 
0111        0111 
10011        10011 
100111        100111 
0111111        01(6) 
00011001       00011001 
100111111       1001(6) 
1001111111       1001(7) 
10011110111       1001(4)0111 
100111110011       1001(5)0011 
1001111100111       1001(5)00111 
10011110111111       1001(4)01(6) 
100111100011001      1001(4)00011001 
0000000011111111      0(8)1(8) 
00000000111111111      0(8)1(9) 
100111101111110111      1001(4)01(6)0111 
1001111011111110011      1001(4)01(7)0011 
10011111111111100111      1001(12)00111 
100111100000110111111      1001(4)0(5)1101(6) 
0000000000110000000011     0(10)110(8)11 
00000000001100000000111     0(10)110(8)111 
100111110011110111111001     1001(5)001(4)01(6)001 
1001111011111111111110011     1001(4)01(13)0011 
10011110111111111111011111     1001(4)01(12)01(6) 
100111111111110111111001111     1001(11)01(6)001(4) 
1001111100111101111101111111     1001(5)001(4)01(5)01(7) 
10011111001111011111011111111    1001(5)001(4)01(5)01(8) 
100111100000111111110001001111    1001(4)0(5)1(8)0001001(4) 
1001111000001111111100010011111    1001(4)0(5)1(8)0001001(5) 
00000111111111000110100111011111    0(5)1(9)00011010011101(5) 
000001111111110001101001110111111    0(5)1(9)00011010011101(6) 
0111111011111110011110011111111111    01(6)01(7)001(4)001(11) 
01111111111111100111100111111110011    01(14)001(4)001(8)0011 
011111111111111001111001111111100111   01(14)001(4)001(8)00111 
1001111100111111111101111111100111111   1001(5)001(10)01(8)001(6) 
10011110111111111111100111111001111111   1001(4)01(13)001(6)001(7) 
100111101111110111111001111111111111111   1001(4)01(6)01(6)001(16) 
1001111011111101111110011111111111111111   1001(4)01(6)01(6)001(17) 
10011111111111011111100111111110011111111   1001(11)01(6)001(8)001(8) 

 


