
HAL Id: hal-03109992
https://hal.inria.fr/hal-03109992

Submitted on 14 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Runtime Monitoring for Executable DSLs
Dorian Leroy, Pierre Jeanjean, Erwan Bousse, Manuel Wimmer, Benoit

Combemale

To cite this version:
Dorian Leroy, Pierre Jeanjean, Erwan Bousse, Manuel Wimmer, Benoit Combemale. Runtime Moni-
toring for Executable DSLs. The Journal of Object Technology, Chair of Software Engineering, 2020,
19 (2), pp.1-23. �10.5381/jot.2020.19.2.a6�. �hal-03109992�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/373294515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03109992
https://hal.archives-ouvertes.fr


Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Runtime Monitoring for Executable
DSLs

Dorian Leroya Pierre Jeanjeanb Erwan Boussec

Manuel Wimmera Benoit Combemalebd

a. JKU Linz, Austria
b. Inria, Univ. Rennes, CNRS, IRISA, France
c. Univ. Nantes, LS2N, France
d. Univ. Toulouse, IRIT, France

Abstract Runtime monitoring is a fundamental technique used throughout
the lifecycle of a system for many purposes, such as debugging, testing, or
live analytics. While runtime monitoring for general purpose programming
languages has seen a great amount of research, developing such complex
facilities for any executable Domain Specific Language (DSL) remains a
challenging, reoccurring and error prone task. A generic solution must
both support a wide range of executable DSLs (xDSLs) and induce as
little execution time overhead as possible. Our contribution is a fully
generic approach based on a temporal property language with a semantics
tailored for runtime verification. Properties can be compiled to efficient
runtime monitors that can be attached to any kind of executable discrete
event model within an integrated development environment. Efficiency is
bolstered using a novel combination of structural model queries and complex
event processing. Our evaluation on 3 xDSLs shows that the approach is
applicable with an execution time overhead of 121% (on executions shorter
than 1s), to 79% (on executions shorter than 20s) making it suitable for
model testing and debugging.

Keywords runtime monitoring, temporal property language, executable
modeling, domain-specific languages

Keywords Executable DSLs, Runtime Monitoring

1 Introduction
A large amount of Domain-Specific Languages (DSLs) are used to represent behavioral
aspects of systems in the form of behavioral models (e.g., [BCCG07, HLN+90, OAS07,
Obj13b]). To enable the dynamic analysis of such models, a lot of efforts have been

Dorian Leroy, Pierre Jeanjean, Erwan Bousse, Manuel Wimmer, Benoit Combemale. Runtime
Monitoring for Executable DSLs. Licensed under Attribution 4.0 International (CC BY 4.0). In Journal
of Object Technology, vol. 19, no. 2, 2020, pages 6:1–23. doi:10.5381/jot.2020.19.2.a6

http://www.jot.fm/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5381/jot.2020.19.2.a6
http://dx.doi.org/10.5381/jot.2020.19.2.a6
http://dx.doi.org/10.5381/jot.2020.19.2.a6


2 · D. Leroy, P. Jeanjean, E. Bousse, M. Wimmer, B. Combemale

made to facilitate the design of so-called xDSLs (e.g., [CCP12, EHHS00, MLWK13,
TCGT14]), which enable the execution of conforming models. Two approaches are
commonly used to define the execution semantics of xDSLs, namely operational
semantics (i.e., interpretation) and translational semantics (i.e., compilation). While
we consider both kinds of semantics in this paper 1 , we focus our work on discrete-event
semantics.

When designing or using executable models, a wide range of cases require observing
and analyzing the execution of models at runtime, such as the detection of breakpoints
when debugging, the evaluation of oracles when testing, or controlling the health
of a running system (i.e., live analytics). Producing an analysis while observing an
execution is achieved by what is commonly called runtime monitoring, a fundamental
technique that ascertains whether a running system fulfills or violates temporal
properties. Providing support for runtime monitoring for xDSLs is therefore of great
importance in order to face the aforementioned situations.

While the topic of runtime monitoring for general purpose languages has seen a
sizable amount of research [CFAI17], providing such facilities for any existing or new
xDSL remains a challenging task. First, xDSLs come in many shapes and forms. Thus,
for each new xDSL, corresponding tooling must be developed or adapted from existing
tooling, which is tedious and error-prone. Second, a general challenge of runtime
monitoring is to maintain a low execution time overhead.

To face these challenges we propose an approach to create runtime monitors that
can be attached to models conforming to any xDSL, in the context of their execution
in an integrated development environment. We define a temporal property language
where temporal aspects are based on Property Specification Patterns (PSPs) by
Dwyer et al. [DAC98], and where structural aspects are based on the Viatra Query
Language (VQL) model querying language [BURV11]. We provide a compiler for
our language that adapts the semantics of the PSPs to the particularities of runtime
monitoring, thereby compiling properties into efficient synchronous runtime monitors
based on Complex Event Processing (CEP). Finally, we introduce a property manager
that both integrates at runtime the structural and temporal concerns of our runtime
monitors, and enables direct use of the monitors with xDSLs considered in our scope.

We provide an implementation of the proposed approach as part of the GEMOC
Studio [BDV+16], an Eclipse-based language and modeling workbench for xDSLs.
The monitors compiled from the temporal properties are executed using Esper2 for
temporal aspects and VQL [BDH+15] for structural aspects.

We perform a quantitative evaluation of the overhead induced by the approach
with regard to the kind of property monitored, the size of the models, the footprint of
the properties (i.e., the number of observed model elements) and the base execution
time of the models, on 3 xDSLs. We show that the approach is applicable with an
average execution time overhead ranging from 121% (for very short execution times,
inferior to 1s) to 79% (for longer execution times, inferior to 20s). We conclude that
the approach is well-suited for model testing and debugging, where such an average
execution time overhead is reasonable.

The remainder of this paper is structured as follows. Section 2 presents the
background and the motivation for this work. Section 3 provides an overview of our
contributions. Section 4 presents the temporal property language. Section 5 presents

1More precisely, we only consider translational semantics that include a mapping back in the
source model (i.e., a simulation of the execution back in the source model, while the real execution
happens in the model or code produced by the compiler).

2http://www.espertech.com/esper/

Journal of Object Technology, vol. 19, no. 2, 2020

http://www.espertech.com/esper/
http://dx.doi.org/10.5381/jot.2020.19.2.a6


Runtime Monitoring for Executable DSLs · 3

its execution semantics. Section 6 explains the implementation of the approach in the
GEMOC Studio. Section 7 presents the evaluation. Section 8 discusses related work.
Finally, a conclusion and future research directions are presented in Section 9.

2 Background and Motivation
In this section, we first scope the xDSLs considered in our approach, i.e., xDSLs
defined by a metamodel-based abstract syntax and a discrete-event execution semantics.
We then briefly introduce two core foundations of the proposed approach: runtime
monitoring and complex event processing. Finally, we motivate the approach using an
illustrative example.

2.1 Background
Executable DSLs. An xDSL is composed of both an abstract syntax defining the
concepts of the considered domain, and an execution semantics defining the meaning
of these concepts3. In this paper, we focus on DSLs where (1) the abstract syntax
is provided as a metamodel defined using an object-oriented metamodeling language
(e.g., MOF [Obj16] or Ecore [SBPM08]), and (2) the execution semantics is provided
as an operational semantics (i.e., an interpreter) or a translational semantics (i.e., a
compiler). In both cases, we consider that the semantics contains a data structure
representing the (domain-specific) model state during the execution. In the case of an
operational semantics, the model state is directly modified by the execution rules of the
semantics. In the case of a translational semantics, the model state is reconstructed
from the actual state of the execution—i.e., the state of the executed model or code
produced by the compiler.

More precisely, we consider the model state to be defined in an execution metamodel
that extends the abstract syntax metamodel using a non-intrusive extension mechanism,
such as package merge [Obj13a] or aspect weaving [JCB+13]. Then, an in-place
endogenous transformation is performed by the semantics on this model state, either
on its own for operational semantics or as a result of receiving feedback on the actual
execution for translational semantics. This transformation results in the execution of
the model.

While this transformation may result in a broad range of reachable model states,
we consider that only a subset of these states are observable, the rest being temporary,
inconsistent states. For instance, an execution semantics may define that the state
is only observable in between the application of execution rules. It is thus up to the
execution semantics to both allow components to register as observers of the execution,
and to notify observing components of either the occurrence of observable states or
the applications of atomic rules.

Figure 1 shows an example of an Activity Diagram DSL with an operational
semantics. This example is a simplified version of the part of fUML [Obj13b] related
to the control flow of activities. At the top left, the abstract syntax defines an
Activity as a set of inter-connected Node and Edge objects, with several types of nodes.
InitialNode and FinalNode mark the beginning and the end of the Activity. A ForkNode
starts concurrent execution branches, which can be joined back in a JoinNode. An
Action represents an opaque action realized in the process. At the top right, the
execution metamodel defines what is the model state of an activity by introducing a

3As our approach is agnostic to concrete syntax, we do not consider it in this paper

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a6


4 · D. Leroy, P. Jeanjean, E. Bousse, M. Wimmer, B. Combemale

AD abstract syntax AD execution metamodel

«abstract»
NamedElement

«abstract»
Node

Activity

Edge
source
1target
1

outgoing
1incoming
1

* node *edges

InitialNode Action ForkNode JoinNode FinalNode

«abstract»
Node

Edge

heldTokens
*

«abstract»
TokenHolder Token

merge

imports

Node::sendOffers(Token[*])
Node::receiveOffer()

Node::fire(Token[*])

: offers tokens via outgoing activity edges.
: consumes all tokens offered via incoming

: executes the activity node.
activity edges.

Figure 1 – Activity Diagram DSL with an operational semantics.

new metaclass called TokenHolder. This metaclass enables Node and Edge elements to
contain Token elements. Lastly, the operational semantics of the DSL is defined by a
set of execution rules, and is broadly based on a token flow starting in the initial node
and ending in the final node. Three execution rules for the Node metaclass are shown
at the bottom: receiveOffers and sendOffers that respectively take and put tokens
from edges, and fire that (1) triggers receiveOffers, (2) performs the opaque action of
the node, (3) triggers sendOffers.

Runtime Monitoring. Runtime monitoring consists in observing the internal state
of a system during its execution to check whether the system satisfies or violates a
correctness specification—usually provided as a temporal property [LS09]—on this
particular execution. In this paper, we focus on a refined category of online monitoring
called synchronous monitoring [CFAI17]. With synchronous monitoring, the runtime
monitor is tightly coupled with the system. More precisely, the execution of the
system is suspended whenever the monitor checks whether a received event violates the
property or not. Compared to asynchronous monitoring, this allows timely (as opposed
to late) detection of property violation or satisfaction, at the cost of performance
decrease.

In [BSVV18, BSVV19], Búr et al. successfully used the Viatra Query Language
(VQL) for runtime monitoring of distributed safety properties over models@runtime.
VQL is a declarative graph query language which allows to directly express queries using
the domain-specific concepts expressed in metamodels. Its successful use emphasizes
its relevance and motivates our use of this technology to realize our approach.

Complex Event Processing. The goal of CEP is to identify meaningful events
over streams of simpler events with queries on both the data carried by the events and
the before and after relationships between them. Essentially, CEP systems allow to
perform temporal pattern matching over streams of events and produce a new stream
of complex events as a result. An example of well-known CEP framework is Esper,
which is an open-source Java-based system that provides a DSL for event processing
called Event Processing Language (EPL). This DSL allows to write queries—called
EPL statements—that continuously analyze events within a stream to detect situations
of interest and produce a new stream of events containing properties selected from
the matching events. Java objects can then subscribe to this new event stream to be
notified each time an event is inserted into the stream.

2.2 Motivational Example
Figure 2 shows an example Activity conforming to the Activity Diagram DSL shown
in Figure 1. The shown activity is a simplified process of withdrawing cash at an

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a6


Runtime Monitoring for Executable DSLs · 5

Withdraw 
Cash

ValidatePIN
[invalidPIN]

[validPIN]

[cancel]

[tries < 3]

[tries >= 3]

WrongPIN

CorrectPIN

Account 
Compromised 

GetWithdrawal 
Amount 

[invalidAmount]

[cancel or validAmount]

[cancel]EjectCard

OutputCash UpdateBalance

PrintReceipt

InsertCard

[validAmount]

Figure 2 – The Withdraw Cash Activity of an ATM.

ATM. First, the card is inserted into the ATM. Then, the PIN entered by the user
is checked. If invalid, a new PIN is requested and checked, until the correct PIN is
entered, the number of failed attempts reaches 3, or the user cancels the process. If no
successful attempt is made in 3 tries, the card is swallowed and the account flagged as
compromised. On a successful attempt, the user is asked for a withdrawal amount until
she or he enters a valid amount (with regard to her or his account balance, the amount
being a multiple of 10, etc.). Alternatively, the user can choose to cancel her or his
withdrawal. Should the user choose to cancel the process at the PIN validation stage or
at the withdrawing stage, the card is ejected and the activity ends. However, if a valid
amount has been entered, the ATM first ejects the card, then concurrently outputs
the correct amount of cash and updates the account balance of the user. Finally, the
ATM prints a receipt indicating the amount withdrawn and the new account balance.

There are several temporal properties one might want to monitor on such an
activity. For instance, it would be interesting to monitor whether the card always
ends up being ejected once the correct PIN has been entered (P1). Another interesting
property that can be monitored is that the card is always ejected before cash is
distributed, to prevent people from forgetting their card in the ATM (P2). A last
property one can monitor is that an invalid PIN is not entered more than two times
between the moment a card is inserted and a correct PIN is entered (P3). Monitoring
these properties can be achieved by instrumenting the execution semantics of the
Activity Diagram DSL. However, it requires to design an instrumentation technique
that is tightly coupled to the Activity Diagram language and the metalanguage used
to write its execution semantics. This hampers reusing this instrumentation technique,
requiring an adaptation for each new xDSL or metalanguage to support.

In Section 3 we provide an overview of the proposed approach, before detailing its
inner workings in Sections 4 and 5.

3 Approach Overview
In this section, we provide an overview of the approach from the modeler’s point of
view, both at design time and at runtime. This overview is illustrated by Figure 3.

Design Time At design time, modelers define temporal properties using the temporal
property language proposed as part of the approach, as shown at the top of Figure 3.
Modelers first specify what are the states of interest to detect in the execution, and

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a6


6 · D. Leroy, P. Jeanjean, E. Bousse, M. Wimmer, B. Combemale

Runtime Monitor

notifies of 
observable 
states 

Executed
Model

Property Manager

updates 
model state 

Execution 
Semantics Runtime Monitor

Temporal Monitor

1.2 deployed

delivers temporal 
property verdict 

 
Runtime

Design Time

2. runs

Modeler

Temporal 
Property 

1. defines

Temporal Monitor

retrieve & forward
matching states

observe and  
update matches 

1.1 compiled to

Exists (a & (b | c)) After (!d)

Exists P After Q P := a & (b | c) 
Q := !d

Structural Monitors

Structural Monitors

Debugger

Test Runner

Analytics
Dashboard

3. uses

Figure 3 – Overview of the approach.

then define the temporal pattern that must be observed with these states during the
execution for the property to be satisfied. For the definition of the states of interest,
the approach relies on structural patterns written in VQL [BURV11] by the modeler
using domain concepts, thereby allowing her to leverage her domain knowledge. For
the definition of the temporal pattern, the approach relies on the PSPs, which makes
it easy to express the most-used kinds of temporal properties [BGPS12]. The resulting
abstract syntax of the proposed property language is presented in Section 4.1.

The compiler will then process a temporal property by separating the structural
concern of a property from its temporal concern, and respectively produce structural
monitors that are each able to detect when a specific structural pattern is encountered,
and a CEP-based temporal monitor able to reason over time on states detected by
structural monitors. An overview of the execution semantics of the proposed property
language is presented in Section 4.2, and a focus on the translation scheme used to
derive runtime monitors from temporal patterns is given in Section 5.

Runtime At runtime, the runtime monitors derived from temporal properties are
deployed into a property manager, as illustrated at the bottom of Figure 3. This
property manager handles the connection between the structural and temporal moni-
tors, the execution semantics, the running model and the various property listeners
(e.g., debugger, test runner, analytics dashboard, etc.).

At the start of the execution, the structural monitors are configured to update
their matches whenever changes occur in the state of the running model, as shown on
the lower left part of Figure 3. These matches are however only retrieved when an
observable model state is reached, of which the property manager is notified by the
execution semantics of the DSL, as earlier explained in Section 2.1. This is to avoid
evaluating the property on inconsistent model states.

Pattern matches are then sent to the temporal monitor, as shown on the lower
middle part of Figure 3. The temporal monitors take these new matches (or absence
thereof) into consideration to evaluate whether the property is satisfied or violated,
or if no verdict can be rendered yet. Then, in case a final verdict is rendered, it is
delivered to the property manager, which relays it by notifying the potential property
listeners, as shown on the right lower part of Figure 3.

How structural and temporal monitors work together with the property manager
is described in Section 4.2.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a6


Runtime Monitoring for Executable DSLs · 7

vql (excerpt)

scope 
1 

temporal property language for executable DSLs

TemporalProperty
«abstract» 
Scope

«abstract» 
TemporalPattern

pattern 
1 

«abstract» 
LowerBound

«abstract» 
UpperBound

After AfterUntil Between Before

Globally

PropositionalVariable
+ name: String 

structural pattern 
1 

Universality

Existence

Absence

Precedence

otherVariable 
1 

Response

+ min: Integer 
+ max: Integer 

variable 
1

1 upperBound1lowerBound

+ name: String 

Pattern
+ name: String 

Variable
+ name: String 

variables 
* 

PatternBody

Type
+ name: String 

1type

*parameters

+ name: String 

*bodies

Constraint
1constraints

Expression

Figure 4 – Abstract syntax of the proposed temporal property language.

4 Temporal Property Language for xDSLs
In this section, we present our temporal property language for xDSLs, and how this
language can be used for the runtime monitoring of executable models. The proposed
language is based on VQL for expressing structural patterns, and on the PSPs for
expressing temporal patterns. We first define the abstract syntax of the language, and
then give an overview of the translation scheme used to derive runtime monitor from
properties defined with the language.

4.1 Abstract Syntax
The abstract syntax of the property language is shown as a metamodel on Figure 4,
and is presented thereafter.

Propositional variables and structural patterns. A temporal property lan-
guage must be able to describe propositional variables that each represents some truth
about the state of the executed model. Such a variable may equal either true or false
for a given state of the model, i.e., it must behave as a predicate taking the state of the
model as parameter. In this paper, we choose to define such predicates using structural
patterns. A structural pattern is a partial description of a model that returns true
if a given model—here, the state of the executed model—matches what it describes,
and false otherwise. Instead of redefining a structural patterns description language,
our temporal property language relies on the existing VQL model querying language.
In Figure 4, this is represented by the PropositionalVariable metaclass, which has a
name and an associated VQL Pattern. Such Pattern elements can be defined using the
domain concepts of any DSL whose metamodel is imported, by using its metaclasses
as Type elements. Due to space limitations, we do not present further VQL in this
paper, and we refer the reader either to examples shown at the end of the section, or
to the paper presenting VQL [BURV11].

Scopes. Next, a temporal property language must be able to specify the scope of
a given property. A scope determines a segment of the execution where a temporal
pattern (see below) is expected to be satisfied. On each scope activation, the temporal
pattern of the property must be observed, otherwise the property is violated. Instead
of reinventing such concept, we adapt the different kinds of scopes used for the PSPs.

In Figure 4, this is represented by the Scope abstract metaclass, which is subdivided
in different subclasses. The Global scope is active during the whole execution. The
Before scope is active until its upperBound propositional variable becomes true.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a6


8 · D. Leroy, P. Jeanjean, E. Bousse, M. Wimmer, B. Combemale

1 import "http://org.tetrabox.activitydiagram/ad/"
2
3 pattern activeNode(nodeName : java.lang.String) {
4 ActivityNode.name(node, nodeName);
5 check(node.heldTokens.empty() = false);
6 }
7
8 pattern InsertCard() {activeNode("InsertCard");}
9

10 pattern CorrectPIN() {activeNode("CorrectPIN");}
11
12 pattern WrongPIN() {activeNode("WrongPIN");}
13
14 pattern OutputCash() {activeNode("OutputCash");}
15
16 pattern EjectCard() {activeNode("EjectCard");}

Figure 5 – Structural patterns for Figure 2.

P1 exists 1 EjectCard
after CorrectPIN

P2
EjectCard precedes OutputCash
globally

P3
exists [0,2] WrongPIN
between InsertCard and
CorrectPIN

Table 1 – Example properties for Figure 2.

Conversely, the After scope is active after its lowerBound propositional variable
becomes true, and until the end of the execution. The AfterUntil scope becomes
active after its lowerBound propositional variable becomes true until the end of the
execution or its upperBound propositional variable becomes true, whichever comes
first. Finally, the Between works similarly, except that a scope becomes potentially
active after the lowerBound propositional variable becomes true and will retro-actively
become active only once its upperBound propositional variable becomes true. This
means that a verdict cannot be rendered before the scope is confirmed to have been
active, and that, as opposed to the AfterUntil scope, the end of the execution is not a
valid upper bound for a Between scope.

Temporal patterns. Finally, a temporal property language must be able to specify
temporal patterns, i.e., how propositional variables should take their values when
the scope of the corresponding temporal property is active. Like scopes, instead of
reinventing temporal patterns, we reuse and adapt the PSPs.

In Figure 4, this is represented by the TemporalPattern abstract metaclass, which is
subdivided in different subclasses. The Universality (resp. Absence) pattern indicates
that its associated propositional variable must be and remain true (resp. false)
during each active scope of the property. The Existence pattern indicates its associated
propositional variable must be true on a number of execution states that is within the
lower and upper bounds of the pattern represented by its min and max attributes. The
Precedence pattern indicates that its associated propositional variable must become
true before another does during each active scope. The Response pattern indicates
that during each active scope, when its associated propositional variable becomes
true, its other propositional variable eventually becomes true as well. While the
PSPs feature two more patterns, namely the chained response and chained precedence
patterns, we leave them for future work as they are among the least used patterns.

Example Properties. To define the temporal properties introduced in Section 2.2,
we first need to define the propositional variables corresponding to when specific
activity nodes are reached, specifically the CorrectPIN, WrongPIN, EjectCard and
OutputCash activity nodes. This can be done by defining a general, parameterized
structural pattern looking for an ActivityNode whose name is passed as a parameter
and whose heldTokens property contains at least one Token, as shown on Figure 5.
Each propositional variable can then be defined using this general structural pattern.

Once the propositional variables are defined, the temporal properties can be written

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a6


Runtime Monitoring for Executable DSLs · 9

as shown on Table 1. P1 is defined as an Existence pattern over an After scope. P2 is
expressed through a Precedence pattern over a Global scope. Finally, P3 is written as
an Existence property with an upper bound, over a Between scope.

4.2 Overview of the Translation Scheme
We provide a translational semantics for the proposed temporal property language
consisting in separately compiling the structural and temporal patterns of properties
into structural and temporal runtime monitors. The resulting monitors are then
integrated using a property manager.

Structural patterns. As explained in Section 4.1, the structural patterns of the
proposed temporal property language are directly defined using VQL. Since VQL
already has well defined semantics, our translation scheme simply extracts structural
patterns from our temporal properties, allowing them to be executed with the semantics
of VQL. At runtime, all structural patterns to be monitored are registered as observers
of the execution. From then on, the VQL query engine incrementally updates the
matches to its registered patterns when modifications are made to the running model.
The resulting structural monitors are integrated with the temporal ones by retrieving
the current matches of the former and forwarding them to the latter (see below).

Temporal patterns. Aside from a small variation on the existence pattern, the
intended semantics for the temporal patterns is identical to the existing semantics of the
PSPs, which was originally expressed in 3 languages, 2 of which are suitable for runtime
monitoring: Linear Temporal Logic (LTL) and Quantified Regular Expressions (QRE).

However, this semantics, expressed as a mapping from pattern/scope combinations
to QREs, is defined for finite state verification of infinite traces (e.g., model checking),
whereas in our case we seek to provide a semantics for finite execution traces to
enable runtime monitoring. While there is existing work providing a semantics to LTL
properties on finite traces [BLS11], the ecosystem of tools leveraging this semantics
focuses on very specific approaches that do not interface well with our envisioned
approach, nor with our technological space. We therefore opted for a different and
novel approach: providing QRE-based mappings for the PSPs for finite execution
traces, which can then be implemented using widely available CEP frameworks.

Accordingly, we adapted the existing QRE semantics of the PSPs to the needs of the
approach. The result is a translation scheme compiling temporal patterns into CEP-
based runtime monitors. Such monitors wait for events from the structural monitors
(e.g., matches for the model queries of the propositional values) and eventually deliver
their final verdict to the property manager. This substantial adaptation of the original
mappings of the PSPs to QREs is detailed in Section 5.

Integration using the property manager. In order to integrate structural and
temporal monitors obtained using the translation scheme, we defined a property
manager that acts as a bridge between the two kinds of monitors. Figure 6 illustrates
how this works with an example execution of the activity shown in Figure 2, where P3
is being monitored. A total of four monitors are deployed in the property manager,
three of which are structural monitors evaluating the results of the InsertCard,
WrongPIN and CorrectPIN structural patterns. The last monitor is the temporal
monitor evaluating the Existence temporal pattern on the Between scope.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a6


10 · D. Leroy, P. Jeanjean, E. Bousse, M. Wimmer, B. Combemale

:Property
Listeners

Loop

Opt

:Temporal
Monitor

:Property
Manager

:InsertCard
Monitor

:WrongPIN
Monitor

:CorrectPIN
Monitor

:Activity Diagram
Semantics

fire
run

notifyChangenotifyChangenotifyChange
notifyObservable
State retrieveQuery

Results
retrieveQuery

Results
retrieveQuery

Results

sendUpdate
Eventverdict

matchingStates

matchingStates

matchingStates

[verdict ≠ ?]

deliverVerdict

[running]

:Withdraw
Cash Activity

updateState 1
2

3

4

5

6

notifyEoE
notifyEoE

verdictdeliverVerdict
7

Figure 6 – Sequence diagram of a monitored execution of the Withdraw Cash Activity.

As the execution unfolds, the operational semantics of the Activity Diagram DSL
repeatedly applies the fire execution rule, which makes changes to the model (1 on
Figure 6). Changes are detected by structural monitors, causing them to update
their structural pattern result (2). Once the execution rule has been applied, the
execution semantics notifies the property manager that an observable state has been
reached (3). This causes the property manager to retrieve the current result of each
deployed structural monitor (4). From these results, the property manager sends
an event containing the new values for each propositional variable of the temporal
pattern to the temporal monitor. After updating its state, the temporal monitor
returns its verdict for the temporal pattern it is monitoring (5). If this verdict is a
final verdict —i.e., it is either a violation or a satisfaction of the property— then the
property manager delivers it to the registered property listeners, and the temporal
and structural monitors are unplugged from the execution (6). If the end of the
execution is reached without a final verdict being delivered, the execution semantics
sends the corresponding notification to the property manager (7). This notification is
forwarded to the temporal monitor, automatically triggering a final verdict which is
then delivered to property listeners.

5 Translation Scheme of Temporal Patterns for Runtime Veri-
fication

In this section, we present the translation scheme used to derive temporal monitors
from the temporal constructs of our property language.

5.1 Specificities of Runtime Verification
A core difference between our temporal property language and the PSPs is that we
evaluate temporal properties at runtime and on finite executions. Therefore, a final
verdict can only be rendered when an execution state that is permanently satisfying or
violating the property is reached. In the context of scoped properties, such execution
states come in four kinds: (1) states violating the temporal pattern of the property,
(2) states satisfying the temporal pattern for the current scope in the case of single

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a6


Runtime Monitoring for Executable DSLs · 11

scope activation properties (e.g., Globally, Before, etc.), (3) states marking the end
of the execution, and (4) states marking the end of a scope activation. Note that a
single execution state can belong to the last two kinds, for instance the state marking
the end of a Globally scope activation also marks the end of the execution.

While a verdict can always be rendered for the first three kinds of execution states,
the fourth kind (states marking the end of a scope activation) does not guarantee this.
Reaching the end of a scope activation means that no violation or satisfaction was
detected on the basis of a single execution state. This in turn means that a verdict
must be rendered based on the states collected by the temporal pattern over the scope
activation. One of two outcomes is possible: either a definitive verdict can be rendered
(property violated or satisfied), or no definitive verdict can be rendered.

In the first case, a final verdict has been reached, thus the monitoring can be
stopped and observers notified of the verdict. In the second case, since the temporal
pattern is evaluated independently from one scope activation to another, the resources
held about the now inactive scope are not needed to render future verdicts. Therefore,
we opted for a monitoring strategy at the scope scale, instead of encompassing the
complete execution. As a result, we define the semantics of pattern/scope combinations
to encompass individual scope activations instead of the whole execution.

5.2 Considered Target Languages
Our semantics relies on identifying matches of temporal patterns among finite sequence
of states reached by an executed model, a match being a collection of execution states
of interest gathered over a scope activation. Once a match has been found, it is then
necessary to analyze the execution states it carries to render a verdict, i.e., whether
the temporal pattern is permanently satisfied (noted >), violated (noted ⊥) or no
definitive verdict can be rendered yet (noted ’?’). We therefore need to cover two
different concerns: the expression of what states to match, and the expression of verdict
procedures that analyze matches. For our approach, a temporal pattern is translated
into two objects: a quantified regular expression to express what states to match, and
a decision tree to express the verdict procedure.

Quantified regular expressions From a CEP perspective, matches translate well
in terms of complex events, where the role of events is taken by propositional variables,
each being defined beforehand by a structural pattern. A match can be computed as
a complex event emitted upon the reception of a specific pattern of events, and that
carries a set of properties whose values are computed from the received set of events.

CEP engines support multiple languages to define complex events, among which
QREs. While QREs are more known for the definition of patterns of characters for
string searching, they can also be used to search within a sequence of execution states.
For example, given three propositional variables Q, P and R, "Q ¬[P,R]∗ P" will search
for a match where Q is true in an execution state, followed directly by a possibly empty
sequence of states where P and R are false, followed directly by a state where P is true.

As Dwyer et al. originally expressed the semantics of the PSPs using QREs, relying
on QREs to describe our own temporal monitors makes it easier to reuse and adapt
the semantics of Dwyer et al..

Decision Trees Since verdict procedures are sequences of tests made on matches,
we express them in this paper using decision trees. A decision tree is a tree where
each internal node represents a test on an analyzed object, each branch represents the

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a6


12 · D. Leroy, P. Jeanjean, E. Bousse, M. Wimmer, B. Combemale

Pattern/scope combinations QRE semantics and verdict procedure

exists P between Q and R

EoE | Q ¬[P,R]∗ (P ¬[P,R]∗)∗ (R | EoE)

match

>EoE 6= null ?

|P| ∈[exists.min, exists.max]

⊥
|P| 6∈[exists.min, exists.max]

EoE = null

always P before Q

P∗ (EoE | Q | ¬[P])

match

⊥¬[P] 6= null

>¬[P] = null

S precedes P after Q until R

EoE | Q ¬[EoE,P,R,S]∗ (EoE | P | R | S)

match

>EoE 6= null ?

P = null

⊥
P 6= null

EoE = null

Table 2 – Excerpt of Pattern/Scope combinations and their corresponding semantics as
QREs and verdict procedures.

outcome of a test, and each leaf node represents an outcome of the procedure. In our
case, tests focus on specific propositional variables of interest of the corresponding
QRE. We later show such variables of interest of a QRE as underlined.

5.3 A Translation Scheme for Temporal Patterns
In this part, we use one example of pattern/scope combination to explain how we
adapted the QRE-based semantics of the PSPs to runtime verification. This adaptation
consists both in changing the QREs proposed by Dwyer et al., and on supplementing
each QRE with a verdict procedure written as a decision tree.

Table 2 shows an excerpt of the translation scheme we defined for the temporal
patterns of our property language, with only 3 rules out of 25 in total. Each line
shows a pattern/scope combination to the left, and both the QRE and accompanying
verdict procedure resulting from compilation to the right. Due to space limitation,
we only focus in this part on the first row of this table, which corresponds to the
Existence/Between combination. We refer the reader to the companion webpage of the
paper for the complete 25 rules of the semantics4.

5.3.1 Example of Adaptation of a QRE
Figure 7 illustrates with the Existence/Between combination how we rendered the
semantics of the PSPs compatible with runtime verification. The original QRE from
Dwyer et al. is shown at the top, then each arrow is an adaptation step.

As a first step, we restrict the QRE to a single scope activation. This is done by
keeping only the part of the expression that is bound by Q and R (both included). As
a second step, we ensure that the QRE is able to capture violations of the property.

4Companion webpage: http://gemoc.org/ecmfa20/

Journal of Object Technology, vol. 19, no. 2, 2020

http://gemoc.org/ecmfa20/
http://dx.doi.org/10.5381/jot.2020.19.2.a6


Runtime Monitoring for Executable DSLs · 13

exists P between Q and R:
(¬[Q]∗ Q ¬[P,R]∗ P ¬[R]∗ R)∗ ¬[Q]∗ (Q ¬[R]∗)?

⇓ 1
Q ¬[P,R]∗ P ¬[R]∗ R

⇓ 2
Q ¬[P,R]∗ (P ¬[R]∗)? R

⇓ 3
Q ¬[P,R]∗ (P ¬[P,R]∗)∗ R

⇓ 4
EoE | Q ¬[P,R]∗ (P ¬[P,R]∗)∗ (R | EoE)

Figure 7 – Example of step-by-step adaptation of the semantics from Dwyer et al. [DAC98]
to runtime verification.

In our example, this is achieved by making the P ¬[R]∗ pattern optional, which
yields (P ¬[R]∗)?. This way, the QRE can capture scope activations where P does
not occur. The third step, is specific to the Existence temporal pattern: we want
this pattern to gather all occurrences of P happening while the scope is active. This
allows us to support lower- and upper-bounded Existence patterns by comparing the
number of occurrences of P contained by a match to the min and max properties of
the temporal pattern. This is achieved by changing the (P ¬[R]∗)? sub-expression
from the previous step into (P ¬[P,R]∗)∗. This way, additional occurrences of P
that would have been captured by ¬[R]∗ instead lead the (P ¬[P,R]∗) pattern to be
matched repeatedly. The fourth and final step consists in introducing an EoE (end
of execution) event into the QRE. This event must first be added as an alternative
to the whole pattern, so that when no scope is currently active, a complex event is
still generated, triggering the rendering of a verdict. The second place where EoE
must be added is as an alternative to R, in order to trigger the verdict rendering
during a potentially active scope. To obtain our complete semantics, we repeated
these adaptation steps for each of the QREs part of the semantics from Dwyer et
al. [DAC98].

5.3.2 Example of Verdict Procedure
As we previously explained, for the purpose of runtime verification, each QRE requires
a companion verdict procedure to compute an outcome from a sequence of matched
execution states. A verdict procedure is executed each time its QRE finds a match, and
delivers a verdict based on the properties of the complex event representing the match.
These properties contain the values of a set of propositional variables of interest.

In what follows, we focus on the first row of Table 2, which corresponds to the
same Existence/Between example, whose variables of interest are P and EoE (shown
as underlined). The verdict procedure first checks if it was triggered by the end of
the execution. If that is the case, as evidenced by the EoE event not being null, the
temporal property is satisfied. This is because the Between scope does not consider the
end of the execution as a valid scope upper bound, contrary to the AfterUntil scope. If
the end of the execution was not reached, this means that the verdict rendition was
triggered by a R event. In this case, the procedure counts the number of occurrences
of P and checks that it is within the lower and upper bounds of the Existence temporal
pattern. If the number of occurrences of P stays within these bounds, the property
is neither satisfied nor violated. Otherwise, the property has been violated, and a
verdict is rendered accordingly. To obtain our complete semantics, we wrote a verdict
procedure for each QRE defined.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a6


14 · D. Leroy, P. Jeanjean, E. Bousse, M. Wimmer, B. Combemale

1 2 3 4 5

1

EoE | Q ¬[P,R]* (P ¬[P,R]*)* (R | EoE)

2 3 4 5

InsertCard 
Q

ValidatePIN 
¬[P,R] 

WrongPIN 
P 

ValidatePIN 
¬[P,R] 

CorrectPIN 
R 

6

EoE

EoE | Q ...

6

EoE = null

⊤EoE ≠ null

⊥

?|WrongPIN| ∈ [0, 2]

|WrongPIN| ∉ [0, 2] EoE = null

⊤EoE ≠ null

matchmatch

"Between InsertCard and CorrectPIN" Scope Activation

Figure 8 – Evaluation of P3 on an execution of the Withdraw Cash activity from Figure 2.

Example of an Execution of a Temporal Monitor. Figure 8 shows the evalua-
tion of P3 on an example execution of the Withdraw Cash activity shown in Figure 2.
The upper part of the figure shows an excerpt of the execution trace resulting from the
execution. Here, an incorrect PIN is entered the first time, eventually followed by the
correct PIN, thereby constituting a full scope activation for P3, as depicted between
execution states 1 and 5 on the upper left part of Figure 8. Once execution state 5
is reached, the QRE semantics of the Existence/Between combination captured a full
match, as shown on the middle left part of the figure. This match in turn triggers the
associated verdict procedure, shown on the lower left part of the figure. As the end
of the execution has yet to be reached and the number of WrongPIN occurrences is
within the bounds of the Existence pattern, no final verdict is produced (’?’).

After the verdict is rendered, the execution resumes, as shown on the upper right
part of Figure 8. For this execution, no additional scope activation are encountered
until the end of the execution. When the end of the execution is reached, the temporal
monitor receives a corresponding notification. As the QRE of the temporal monitor
is not currently matching anything, it directly captures the EoE occurrence, thereby
completing a match as shown on the middle right part of the figure. This match
triggers the execution of the verdict procedure, which this time returns a satisfied
verdict (>), as shown on the lower right part of the figure.

6 Tool Support
We implemented our approach as part of the GEMOC Studio [BDV+16], a language
and modeling workbench atop the Eclipse platform [ML05]. The language workbench
of the GEMOC Studio offers multiple metaprogramming approaches to define the
operational semantics of a DSL (e.g., Java/Kermeta [JCB+13], xMOF [MLWK13] or
Henshin [ABJ+10]), as well as one execution engine for each approach. Each execution
engine sends notifications when observable states are reached in the execution, which
is the main prerequisite of our approach. Our implementation is thus decoupled from
Kermeta and should work with other metaprogramming approaches by providing an
execution engine for them.

We implemented the metamodel of the proposed temporal property language using
Ecore. The structural patterns of a temporal property must be defined using the
VQL language. Regarding target languages, EPL is used for QREs while nested Java
conditionals are used for decision trees. Each pattern/scope combination is given a
semantics as an EPL statement and a Java method to be called whenever a complex
event is matched by the EPL statement. The property manager integrating the VQL

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a6


Runtime Monitoring for Executable DSLs · 15

engine and the Esper engine is written in Java and Xtend. The GUI of the property
manager allows to register properties to monitor and provides real-time feedback on
the verdict of each registered property. The source code is open-source and accessible
through the companion webpage of the paper.

7 Evaluation
In this section, we leverage the implementation described in the previous section
to evaluate the execution overhead induced by monitoring temporal properties on a
selection of xDSLs. Thereby, we seek to investigate how different factors influence this
overhead and seek to answer the following research questions:

RQ#1 How does each property influence the execution overhead?
RQ#2 How does model size influence the execution overhead?
RQ#3 How does the footprint of properties influence the execution overhead?
RQ#4 How does execution length influence the execution overhead?

The evaluation material (models, code, data) is available on the companion web page4.

Considered xDSLs For this evaluation, we considered three xDSLs: an extension of
the Activity Diagram DSL presented in Section 2.1, MiniJava [Rob01] and ThingML5.
Our Activity Diagram implementation was initially proposed as a solution for the
Model Execution case of the Transformation Tool Contest 2015 [CDB+14]. In addition
to what is shown in Figure 1, it comprises the concepts of Variable and Expression.
Global variables can be declared in an activity, and the values of these variables can
be changed by action nodes using integer or boolean expressions. Guards can also
be used in the control flow using boolean expressions. MiniJava is a subset of Java
created for teaching purposes. ThingML is a DSL for designing and implementing
distributed reactive systems. It combines asynchronously communicating statecharts
and components, an imperative platform-indenpendent action language and constructs
targeting IoT applications. All three DSLs were implemented with the GEMOC Studio
using Ecore for the abstract syntax and Kermeta for the operational semantics.

Considered Models To evaluate how the approach scales with regards to different
factors, we generated models covering two factors: model size and execution length.
This allows to evaluate the impact on the induced overhead of an increased search
space and execution length. Models for Activity Diagram and MiniJava are generated
from the same template: a loop performing calculations on integer variables for a
number of iterations. For these DSLs, we modulate model size by replicating both
the integer variables that are part of the structural patterns used by the evaluated
temporal properties, and the calculations made on these variables. We cover models
containing around 15, 150 and 1500 integer variables, referred to as factors S, M and
L, respectively. To modulate execution length, we increase the number of executed
iterations. We cover models iterating 10 and 100 times, thereafter referred to as
short and long execution lengths, respectively. Models for ThingML consist of clients
sending registration notices and signal to servers. When servers receive a signal from
all of their registered clients, they send them a signal in response. Clients can switch
to another server or shutdown depending on the total number of received signals.

5https://github.com/TelluIoT/ThingML

Journal of Object Technology, vol. 19, no. 2, 2020

https://github.com/TelluIoT/ThingML
http://dx.doi.org/10.5381/jot.2020.19.2.a6


16 · D. Leroy, P. Jeanjean, E. Bousse, M. Wimmer, B. Combemale

For ThingML, we modulate model size by adding more clients to the system, and we
modulate execution time by changing the number of signals sent by clients. We cover
models containing 5, 25 and 75 (resp. S, M, and L) each sending 3 to 20 (resp. short
and long execution lengths) signals to the servers.

Considered Temporal Properties In order to evaluate how the approach scales
with regard to property footprint, we generated temporal properties whose structural
patterns cover portions of the models of various sizes. For Activity Diagram and
MiniJava, we consider temporal properties that focus on the variables of the models.
These variables are designed so that each structural pattern featured in temporal
properties has its corresponding variables. For instance, the structural pattern tied to
the Existence temporal pattern searches for a variable named "existVar_0". The
footprint of Existence properties is multiplied by 10 by generating structural patterns
that require matches on existVar_0 through existVar_9. For these 2 DSLs, we cover
structural patterns matching 1, 10 and 100 variables, thereafter referred to as S, M and
L, respectively. In the case of ThingML, temporal properties are based on patterns that
check the current state of specific clients. For example, one type of client is expected
to receive 5 events between 2 register notices, so we can check that the state Waiting,
reached after receiving a signal, exists 5 times between the states Registered and
Register. For this DSL, we cover structural patterns matching 1 (S), 5 (M ) and 10
clients (L). Finally, all temporal properties are designed to be validated at the end of
the execution only, to measure their overhead during the complete execution.

Experimental Protocol The execution overhead of each combination of temporal
property, model size, execution time and property footprint is measured as follows.
First, a warm-up phase consisting of 10 executions of the model while monitoring the
property takes place. We then collect the execution time of 20 additional executions,
still while monitoring the property, and compute the average execution time. We
do the same for the mean base execution time of the model, without monitoring.
Summaries of the resulting measurements are presented in Table 3.

Execution length Short Long
Model size S M L S M L mean
Property footprint S S M S M L S S M S M L

Baseline execution time (in s) / Mean execution time (in s) / Mean relative execution overhead (in %)

0.05 0.21 1.44 0.25 1.15 11.98 0.61
MiniJava 0.11 0.27 0.31 1.77 1.84 12.03 0.34 1.87 1.89 16.22 15.72 26.98 1.95

134 .5 23 .5 45 .0 21 .1 24 .9 725 .8 38 .7 63 .0 63 .7 34 .7 30 .1 122 .4 56 .5

0.10 0.73 5.10 0.31 2.17 15.35 1.27
ThingML 0.19 1.20 1.25 9.30 9.30 9.17 0.49 3.66 3.62 24.49 24.02 24.03 4.08

77 .1 62 .6 69 .4 82 .0 82 .0 79 .3 59 .3 68 .8 66 .8 59 .3 56 .2 56 .4 67 .6

0.03 0.05 0.08 0.17 0.19 0.60 0.12
Activity Diagram 0.09 0.11 0.16 0.23 0.26 10.36 0.24 0.35 0.40 1.52 1.60 12.06 0.56

168 .7 120 .4 230 .5 194 .3 234 .9 13053 .6 40 .2 83 .2 105 .0 150 .9 164 .2 1891 .0 244 .6

All 3 DSLs 120 .1 79 .6 97 .8

Table 3 – Average execution overhead for each factor (using geometric mean, all properties
combined, S=small, M=medium, L=large).

Analysis Table 3 shows, for each combination of factors and for each DSL, the base
execution times of the models, the (geometric) mean execution times while monitoring

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a6


Runtime Monitoring for Executable DSLs · 17

1 2 3 4
0.00

10.00

20.00

30.00

40.00

y = 4.45 x + 1.14
R² = 0.99

y = 4.73 x + 15.06
R² = 0.89

long executionsshort executions

number of structural patterns

ex
ec

ut
io

n 
tim

e 
w

ith
 m

on
ito

rin
g 

(s
)

(a) MiniJava

1 2 3 4
0.00

5.00

10.00

15.00

20.00

y = 4.41 x − 0.29
R² = 0.99

y = 4.41 x + 1.32
R² = 0.97

number of structural patterns

ex
ec

ut
io

n 
tim

e 
w

ith
 m

on
ito

rin
g 

(s
)

long executionsshort executions

(b) Activity Diagram

Figure 9 – Execution time per number of structural pattern in properties (model size L,
property footprint L).

across all properties, and the resulting relative execution overheads.
The results show that the average overhead ranges from 56% (for MiniJava) to

244% (for Activity Diagram). A more detailed look shows that, for Activity Diagram,
runtime monitoring on short executions induces a very high (and even extremely high,
in the case of the highest property footprint) overhead: from 168% to 13053% in the
most extreme case, whereas the overhead on longer executions is more reasonable on
property footprint S (40% to 150%) and M (105% to 164%), but still very high on
property footprint L, with 1891% execution overhead. In comparison, the overhead
measured for ThingML stays within a reasonable range for all factors (from 56% to
82%), whereas in the case of MiniJava, both model sizes S and L show, respectively,
high (134%) to very high (725%) overhead on the shortest execution time. Using
Table 3, we answer each of the considered research questions in the following.

Answering RQ#1 From Table 3, one can observe that for both execution
lengths, the execution times while monitoring properties with footprint L are between
10s and 15s higher (i.e., one order of magnitude higher) than the baseline execution time
for MiniJava and Activity Diagram, while staying closer to the baseline (i.e., within
the same order of magnitude) for footprint S and M. The same discrepancy between
footprint L and S/M cannot be observed for ThingML.

Looking at the detailed data (available on the companion web page) reveals that the
overhead induced by property footprint L for MiniJava and Activity Diagram is highly
dependent on the number of structural patterns contained in the properties. This is
illustrated by Figures 9a and 9b, which provide a more detailed look at these two
outliers and show that there is a highly-correlated (with R2 going from 0,89 to 0,99)
relationship between the number of structural patterns contained in the properties
and the resulting overhead. This relationship estimates the absolute induced overhead
per structural pattern to be situated between 4,41s and 4,73s.

We thus explain the difference between the 3 DSLs as follows: there is a steep
initial overhead depending on the amount and size of structural patterns on a property,
that gets compensated by longer execution times. For ThingML, the induced overhead
is reasonable because, on one hand structural patterns for our ThingML models are
smaller by an order of magnitude and thus their initialization has less impact on the
induced overhead, and on the other hand, ThingML is the slowest of all 3 languages,
as evidenced by the baseline execution times shown in Table 3.

In the end, the most salient source of overhead from the kind of property being
monitored comes from the number of structural patterns a property contains. This
source of overhead appears to be confined to the initialization phase of structural
patterns, and therefore is smoothed out on longer executions. Identifying the influence

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a6


18 · D. Leroy, P. Jeanjean, E. Bousse, M. Wimmer, B. Combemale

of each pattern and scope making up temporal properties requires a more in-depth
statistical analysis focused solely on this aspect, which we reserve for future work.

Answering RQ#2 For MiniJava, increases in model size greatly increase
the execution time, resulting in a reduced relative overhead: without monitoring any
property, going from model size S to L results in around 28 times longer executions. For
ThingML, increases in model size have even more impact on the execution time (going
from size S to L results in executions around 51 times longer), further compensating
the initial overhead. Finally, for Activity Diagram, increases in model size do not
sufficiently increase the execution time to have noteworthy compensating effects.

From these observation, and especially by comparing the respective overheads of
the 3 DSLs, it appears that increase in model size has a relatively small influence on
the induced overhead due to the search space increase for structural patterns, which
in the case of MiniJava and ThingML is compensated by the increased execution time
resulting from increased model size. In future work, we plan to further investigate if
pattern search space is tied to structural pattern initialization time.

Answering RQ#3 Due to the steep initial overhead from structural patterns
identified above, increasing property footprint by an order of magnitude can have a
drastic effect on the induced overhead, especially on the shorter execution times. This
initial influence of property footprint is compensated on longer execution time. Due to
the high initial overhead induced by structural patterns, our data does not allow us to
conclude on the role of increased model footprint on the overhead, past the initial one.

Answering RQ#4 Finally, the results show an average overhead of 120% on
short executions, and of 79% on longer executions. Looking at the detailed data also
shows that longer executions smooth out the difference of overhead between temporal
properties. This again hints at an absolute overhead induced by using the approach at
all, both compensated and smoothed out across the properties on longer executions.

Summary We conclude that the approach is well-suited for testing and interactive
debugging, where an average execution overhead of 79% for middle length executions,
and of 120% for very short executions are reasonable. While this seems high compared
to existing language-specific approaches, we argue that state-of-the-art approaches rely
on language-specific, low-level optimizations whose reproduction in a generic approach
raises new scientific challenges. For scenarios such as live analytics, an asynchronous
variant of the approach would be more suitable, and is left for future work.

8 Related Work
In this section, we explore three threads of related work: (i) works on DSLs designed
to facilitate the definition of runtime monitors, (ii) runtime monitoring approaches
for specific xDSLs, and (iii) approaches enabling CEP for dynamic models. To
our knowledge, we provide the first generative approach applicable to a wide range
of discrete-event xDSLs, and therefore compare these works qualitatively and not
quantitatively to our approach.

Several works take inspiration in the PSPs to design usable languages to define
runtime monitors, or to evaluate their expressiveness. Li et al. [LJH06] propose a
language based on the PSPs to define constraints for web service interactions. A
translational semantics to finite state automata is provided for each scope and temporal
pattern, allowing to obtain runtime monitors from the constraints. Simmonds et al.
[SGC+09] propose a property specification language based on Sequence Diagrams to
express conversations between web services. They provide a formal semantics for their

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a6


Runtime Monitoring for Executable DSLs · 19

language, allowing them to derive runtime monitors from properties defined with it.
They evaluate the expressiveness of the language by using it to reproduce the PSPs.

Closer to our work, Drey et al. [DT16] propose a design pattern for integrating
runtime monitors with the execution semantics of xDSLs. In contrast with our
approach, a monitoring semantics must be provided, whereas our approach comes with
a monitoring semantics of its own. Other approaches focus on specific existing DSLs.
For instance, Barnawi et al. [BAE+15] propose a runtime monitoring approach for
BPMN. In this work, the authors rely on Esper to check for violations of compliance
patterns, which are derived from the PSPs. In [İA18], the authors present an approach
of runtime monitoring for IoT systems. They define an event calculus describing
IoT system constraints together with an event processing algebra using Esper at
runtime to detect violations of the constraints of the system. While not strictly
runtime monitoring, Meyers et al. [MDDV16] propose a generative approach to obtain
testing support for an xDSL. This approach extends their previous work, proposing a
generative approach to obtain, from an xDSL, a domain-specific property language
inspired from the PSPs [MDL+14]. It also requires placeholder rules in the execution
semantics to be replaced at runtime by calls to the testing engine.

In [DRV14, DRV18], the authors use Viatra for CEP, defining both structural
and temporal patterns in an extended version of VQL comprising complex, possibly
temporal patterns. While Viatra-CEP could have been our choice for the temporal
aspect of the approach, we chose Esper as it is better suited for some of our planned
future work, such as including, in the temporal properties, the reception or emission
of specific stimuli by the model, which are not necessarily defined as model changes.
In [BBTV18], the authors propose an extension of CEP in the context of graph queries,
mainly by incorporating spatial windows, which allow to restrict the matching process
to a subset of the whole space. However, with this approach, the definition of the
structural aspect of temporal properties is done with GraphX, an API of Apache
Spark, which offers a lower level of abstraction than VQL. Yet, investigating how
an approach leveraging spatial windows fares, performance-wise, in comparison to
incremental query evaluation is an interesting direction to take for future work.

9 Conclusion and Future Work
We have presented a generic approach for xDSLs to turn temporal properties into
runtime monitors. While the approach already shows promising benefits, several
future lines of research are ahead. First, various optimization techniques for reducing
the runtime overhead should be investigated. Performing more in-depth analysis on
the performances of the approach, specifically using statistical analysis to determine
the relations between the various factors is also envisioned. Lastly, extending the
approach to include the missing temporal patterns, time windows, and the support of
parameterized and asynchronous monitoring are also left for future work.

References
[ABJ+10] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause,

and Gabriele Taentzer. Henshin: advanced concepts and tools for in-
place EMF model transformations. In MODELS’10. Springer, 2010.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a6


20 · D. Leroy, P. Jeanjean, E. Bousse, M. Wimmer, B. Combemale

[BAE+15] Ahmed Barnawi, Ahmed Awad, Amal Elgammal, Radwa El Shawi, Ab-
duallah Almalaise, and Sherif Sakr. BP-MaaS: A Runtime Compliance-
Monitoring System for Business Processes. In BPM (Demos), 2015.

[BBTV18] Gala Barquero, Loli Burgueño, Javier Troya, and Antonio Vallecillo.
Extending complex event processing to graph-structured information. In
MODELS’18, 2018.

[BCCG07] Réda Bendraou, Benoit Combemale, Xavier Crégut, and Marie Pierre
Gervais. Definition of an executable SPEM 2.0. In APSEC’07. IEEE,
2007.

[BDH+15] Gábor Bergmann, István Dávid, Ábel Hegedüs, Ákos Horváth, István
Ráth, Zoltán Ujhelyi, and Dániel Varró. Viatra 3: A Reactive Model
Transformation Platform. In ICMT’15, 2015.

[BDV+16] Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer,
Julien Deantoni, and Benoit Combemale. Execution Framework of the
GEMOC Studio (Tool Demo). In SLE’16, 2016.

[BGPS12] Domenico Bianculli, Carlo Ghezzi, Cesare Pautasso, and Patrick Senti.
Specification patterns from research to industry: a case study in service-
based applications. In ICSE’12. IEEE, 2012.

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime ver-
ification for LTL and TLTL. ACM Transactions on Software Engineering
and Methodology (TOSEM), 2011.

[BSVV18] Márton Búr, Gábor Szilágyi, András Vörös, and Dániel Varró. Dis-
tributed graph queries for runtime monitoring of cyber-physical systems.
In FASE’18. Springer, 2018.

[BSVV19] Márton Búr, Gábor Szilágyi, András Vörös, and Dániel Varró. Dis-
tributed graph queries over models@ run. time for runtime monitoring
of cyber-physical systems. STTT, 2019.

[BURV11] Gábor Bergmann, Zoltán Ujhelyi, István Ráth, and Dániel Varró. A
Graph Query Language for EMF Models. In ICMT’11, 2011.

[CCP12] Benoît Combemale, Xavier Crégut, and Marc Pantel. A Design Pattern
to Build Executable DSMLs and Associated V&V Tools. In APSEC’12,
2012.

[CDB+14] Benoit Combemale, Julien Deantoni, Olivier Barais, Arnaud Blouin,
Erwan Bousse, Cédric Brun, Thomas Degueule, and Didier Vojtisek. A
solution to the ttc’15 model execution case using the gemoc studio. In
8th Transformation Tool Contest. CEUR, 2014.

[CFAI17] Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. A
Survey of Runtime Monitoring Instrumentation Techniques. EPTCS,
2017.

[DAC98] Matthew B Dwyer, George S Avrunin, and James C Corbett. Property
specification patterns for finite-state verification. In FMSP’98. ACM,
1998.

[DRV14] István Dávid, István Ráth, and Dániel Varró. Streaming model trans-
formations by complex event processing. In MODELS’14. Springer,
2014.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a6


Runtime Monitoring for Executable DSLs · 21

[DRV18] István Dávid, István Ráth, and Dániel Varró. Foundations for streaming
model transformations by complex event processing. SoSyM, 2018.

[DT16] Zoé Drey and Ciprian Teodorov. Object-oriented design pattern for DSL
program monitoring. In SLE’16. ACM, 2016.

[EHHS00] Gregor Engels, Jan Hendrik Hausmann, Reiko Heckel, and Stefan Sauer.
Dynamic Meta-Modeling: A Graphical Approach to the Operational
Semantics of Behavioral Diagrams in UML. In UML’00. Springer, 2000.

[HLN+90] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnuelli, Michal
Politi, Rivi Sherman, Aharon Shtull-trauring, and Mark Trakhtenbrot.
STATEMATE: a working environment for the development of complex
reactive systems. TSE, 1990.

[İA18] Koray İnçki and Ismail Ari. A novel runtime verification solution for IoT
systems. IEEE Access, 2018.

[JCB+13] Jean-Marc Jézéquel, Benoit Combemale, Olivier Barais, Martin Mon-
perrus, and François Fouquet. Mashup of metalanguages and its imple-
mentation in the Kermeta language workbench. SoSyM, 2013.

[LJH06] Zheng Li, Yan Jin, and Jun Han. A runtime monitoring and valida-
tion framework for web service interactions. In Australian Software
Engineering Conference (ASWEC’06). IEEE, 2006.

[LS09] Martin Leucker and Christian Schallhart. A brief account of runtime
verification. The Journal of Logic and Algebraic Programming, 2009.

[MDDV16] Bart Meyers, Joachim Denil, István Dávid, and Hans Vangheluwe. Auto-
mated testing support for reactive domain-specific modelling languages.
In SLE’16. ACM, 2016.

[MDL+14] Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani, Hans
Vangheluwe, and Manuel Wimmer. Promobox: a framework for generat-
ing domain-specific property languages. In SLE’14. Springer, 2014.

[ML05] Jeff McAffer and Jean-Michel Lemieux. Eclipse Rich Client Platform:
Designing, Coding, and Packaging Java(TM) Applications. Addison-
Wesley Professional, 2005.

[MLWK13] Tanja Mayerhofer, Philip Langer, Manuel Wimmer, and Gerti Kappel.
xMOF: Executable DSMLs based on fUML. In SLE’13. Springer, 2013.

[OAS07] OASIS. Web Services Business Process Execution Language Version
2.0, 2007. URL: https://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html.

[Obj13a] Object Management Group. OMG Unified Modeling Language (OMG
UML), V 2.5, September 2013. http://www.omg.org/spec/UML/2.5.

[Obj13b] Object Management Group. Semantics of a Foundational Subset for
Executable UML Models, V 1.1, August 2013. https://www.omg.org/
spec/FUML/1.1.

[Obj16] Object Management Group. Meta Object Facility (MOF) Core Specifi-
cation, V 2.5, June 2016. http://www.omg.org/spec/MOF/2.5.

[Rob01] Eric Roberts. An overview of MiniJava. ACM SIGCSE Bulletin, 2001.

Journal of Object Technology, vol. 19, no. 2, 2020

https://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/UML/2.5
https://www.omg.org/spec/FUML/1.1
https://www.omg.org/spec/FUML/1.1
http://www.omg.org/spec/MOF/2.5
http://dx.doi.org/10.5381/jot.2020.19.2.a6


22 · D. Leroy, P. Jeanjean, E. Bousse, M. Wimmer, B. Combemale

[SBPM08] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework, 2nd Edition. Eclipse Series. Addison-
Wesley Professional, 2008.

[SGC+09] Jocelyn Simmonds, Yuan Gan, Marsha Chechik, Shiva Nejati, Bill
O’Farrell, Elena Litani, and Julie Waterhouse. Runtime monitoring
of web service conversations. TSC, 2009.

[TCGT14] Jérémie Tatibouët, Arnaud Cuccuru, Sébastien Gérard, and François
Terrier. Formalizing Execution Semantics of UML Profiles with fUML
Models. In MODELS. Springer, 2014.

About the authors
Dorian Leroy (First Author) is a PhD student doing an international PhD between
the JKU Linz (Austria) and the University of Rennes 1 (France), currently in the
DiverSE team in Rennes. His research interests lie in the field of Software Language
Engineering and include metaprogramming approaches and generic V&V facilities.
Contact him at dorian.leroy@jku.at, or visit https://d-leroy.github.io/.

Pierre Jeanjean is a PhD student at Inria (France), currently working in the DiverSE
team in Rennes. His research interests include Software Language Engineering and
Domain-Specific Languages, and more specifically interactive language interpreters
(REPLs) and IDE features. Contact him at pierre.jeanjean@inria.fr.

Erwan Bousse is an Associate Professor at the University of Nantes (France). He
obtained his PhD in France in 2015 at the University of Rennes 1 for his work on
execution traces and omniscient debugging of executable models. His current research
interests include Software Language Engineering (SLE), Model Driven Engineering
(MDE), Domain-Specific Languages (DSLs), model execution and simulation, and the
debugging and testing of models. Contact him at erwan.bousse@ls2n.fr, or visit
https://bousse-e.univ-nantes.io/.

Manuel Wimmer is Full Professor leading the Institute of Business Informatics
- Software Engineering at the Johannes Kepler University Linz and he is the head
of the Christian Doppler Laboratory CDL-MINT. His research interests comprise
foundations of model engineering techniques as well as their application in domains
such as tool interoperability, legacy modeling tool modernization, model versioning
and evolution, and industrial engineering. Contact him at wimmer@jku.at, or visit
https://www.se.jku.at/manuel-wimmer/.

Benoit Combemale is Full Professor of Software Engineering at the University of
Toulouse, and a Research Scientist at Inria. His research interests are in the field
of software engineering, including Model-Driven Engineering, Software Language
Engineering and Validation & Verification; mostly in the context of (smart) Cyber-
Physical Systems and Internet of Things. He is also teaching worldwide in various
engineering schools and universities. Contact him at benoit.combemale@irisa.fr,
or visit http://combemale.fr.

Journal of Object Technology, vol. 19, no. 2, 2020

mailto:dorian.leroy@jku.at
https://d-leroy.github.io/
mailto:pierre.jeanjean@inria.fr
mailto:erwan.bousse@ls2n.fr
https://bousse-e.univ-nantes.io/
mailto:wimmer@jku.at
https://www.se.jku.at/manuel-wimmer/
mailto:benoit.combemale@irisa.fr
http://combemale.fr
http://dx.doi.org/10.5381/jot.2020.19.2.a6


Runtime Monitoring for Executable DSLs · 23

Acknowledgments This work has been partially supported by the Austrian Federal
Ministry for Digital and Economic Affairs, the National Foundation for Research,
Technology and Development (CDG), and by the FWF under the grant numbers
P28519-N31 and P30525-N31.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a6

	Introduction
	Background and Motivation
	Background
	Motivational Example

	Approach Overview
	Temporal Property Language for xDSLs
	Abstract Syntax
	Overview of the Translation Scheme

	Translation Scheme of Temporal Patterns for Runtime Verification
	Specificities of Runtime Verification
	Considered Target Languages
	A Translation Scheme for Temporal Patterns
	Example of Adaptation of a QRE
	Example of Verdict Procedure


	Tool Support
	Evaluation
	Related Work
	Conclusion and Future Work
	Bibliography
	About the authors

