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Abstract

Textual style transfer involves modifying the style of a text while preserving its content. This
assumes that it is possible to separate style from content. This paper investigates whether this
separation is possible. We use sentiment transfer as our case study for style transfer analysis.
Our experimental methodology frames style transfer as a multi-objective problem, balancing
style shift with content preservation and fluency. Due to the lack of parallel data for style transfer
we employ a variety of adversarial encoder-decoder networks in our experiments. Also, we use
a probing methodology to analyse how these models encode style-related features in their latent
spaces. The results of our experiments which are further confirmed by a human evaluation reveal
an inherent trade-off between the multiple style transfer objectives and indicate that style cannot
be usefully separated from content within these style-transfer systems.

1 Introduction

Style transfer can be defined as a Natural Language Generation (NLG) task where an input word se-
quence (a text, a sentence, an utterance. . . ) from an original style is rephrased in order to fit a target
style while keeping its semantic information, leading to a style-transferred sequence. This task can be
applied to many facets of the natural language: sentiment, complexity, authorship, formality, and so on.
The primary use-case of textual style transfer is to improve language understanding between humans or
between humans and machines by adapting messages to the social context or abilities of an interlocutor.
However, work on style transfer can also provide insight into language more generally, for example by
providing insight into the relationship between style and content. Indeed, a pre-requisite of style trans-
fer is the presumed ability to separate style from content, and so research on style transfer can inform
whether computational models can usefully learn this distinction.

Research on style-transfer often focuses on one specific aspect of textual productions, (e.g., preserving
the meaning of the original sequence) and disregards the others (e.g., how present is the target style in
the generated output, and the fluency of the generated sentences). However, this paper highlights the im-
portance of evaluating style transfer systems in terms of multiple objectives where fitting the target style
is counter-balanced by the needs to generate a linguistically fluent output sequence and at the same time
preserving the original meaning. Furthermore, based on an analysis of a number of evaluation experi-
ments of style-transfer systems, including a probing experiment that analyses the latent space of these
systems, we identify an inherent trade-off in style-transfer between transfer strength, fluency and content
preservation. We conclude that style and content cannot be usefully disentangled by these systems (at
least not for the task of sentiment transfer), and so a holistic perspective on style and content that focuses
on finding a suitable trade-off for the target application is likely the best approach to developing a useful
style-transfer system.

The paper structure is as follows. Section 2 reviews related work on style-transfer and distinguishes
between: (i) systems that conceive of style as being encoded in a set of explicitly identifiable features that
can be removed and replaced, and (ii) systems that do not explicitly identify stylistic features. Section 3
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introduces the style transfer evaluation objectives we use; Section 4 describes the models we evaluate in
our experiments, and Section 5 describes the dataset and our experimental methodology. In Section 6 we
evaluate the style-transfer models, and in Section 7 probe their representations of the input to examine
what stylistic information they encode. In Section 8 we set out our conclusions and future work.

2 Literature review

To deal with textual style transfer, a first group of approaches consider a two-step process where markers
of the source style are removed before generating the target style output sequence. Marking and removing
the original style features can be achieved through frequency-based methods (Li et al., 2018) or neural
networks that integrate attention modules (Leeftink and Spanakis, 2019). The generation step relies on
techniques such as the retrieval of textual segments from a corpus of the target style (Ramos, 1999;
Leeftink and Spanakis, 2019), or employing neural network generation techniques (Li et al., 2018).

The second group of approaches which have been mostly implemented in the literature focus on end-
to-end learning strategies to frame the task of style transfer. End-to-end learning approaches enable
learning of a latent representations of an input (Kelleher, 2019), encoding potentially both the input con-
tent and style. Historically, such style transfer approaches have been inspired by the Neural Machine
Translation techniques, basically a sequence-to-sequence encoder-decoder architecture based on recur-
rent neural networks (Sutskever et al., 2014; Bahdanau et al., 2015). Ma and Sun (2017) applied this
approach to text simplification and summarization (considering the style here as “verbosity”). The key
idea is that the text embedding vector generated by the encoder is a style-free representation of the input
text (Rabinovich et al., 2017). A major limitation of this approach is the need for parallel data. In some
scenarios this data challenge can be addressed by either relying on intermediate resources–e.g., using
“zero-shot translation” (Johnson et al., 2017; Carlson et al., 2017)–or monolingual data–e.g. using “back
translation” (Sennrich et al., 2016; Prabhumoye et al., 2018).

Alternatively, Generative Adversarial Networks (Goodfellow et al., 2014) have been implemented for
style transfer, removing the need for parallel data. These models include a generator block which gener-
ates two sequences for each input sequence (a style transferred sequence and a reconstructed sequence),
and a discriminator block (a classifier) which tries to guess whether a given sequence is style transferred
or reconstructed. Generators are usually standard encoder-decoders (Shen et al., 2017; Singh and Palod,
2018; Fu et al., 2018; Romanov et al., 2019), but various refinements have been proposed. For instance,
several generators (decoders) can be used, one for each style (Fu et al., 2018), or a variational encoder can
be used for encoding (Hu et al., 2017; John et al., 2018). In most cases, the decoders are conditioned on
a latent representation (embedding) of the input sequence concatenated with an embedding of the target
output style. The concept of discriminator can also be extended, for instance in order to force encoded
representations of the input to either focus on its style or meaning or both (Romanov et al., 2019; John
et al., 2018).

3 Evaluation aspects

This section introduces the evaluation methodologies we use in our experiments. Each of these meth-
ods is taken from the literature and each focuses on a different aspect of textual style transfer: content
preservation, style transfer strength and fluency.

Style shift power Style shift power investigates how well the output of a model fits with the target
style. One approach is to employ a pre-trained classifier to measure the percentage of the style-shifted
sequences which are labeled with the desired style (Fu et al., 2018; Li et al., 2018; Leeftink and Spanakis,
2019; Singh and Palod, 2018; Prabhumoye et al., 2018; Shen et al., 2017; John et al., 2018; Hu et al.,
2017).

Here, we employ the same classifier type as (Shen et al., 2017), the TextCNN model (Kim, 2014) and
train it on the Yelp dataset. It achieves an accuracy of %97 on predicting sentiment (positive and negative
classes) on the test set of the Yelp dataset.



Content preservation Many approaches, usually inherited from historical NLG tasks, have been em-
ployed to compare how well the generated output preserves the meaning of the original sequence.

We compute a content preservation rate between an input sequence and a generated sequence as the
cosine similarity between their embedded representations. The process we use to generated the em-
bedding of a sequence follows the method proposed by Fu et al. (2018). Given a sequence of words
x = [x1 . . . wN ], each token xi is represented by an embedding ei ∈ R100. These embeddings are gener-
ated using a pre-trained 100-dimensional GloVe model (Pennington et al., 2014). Then, we calculate the
min, mean and max pooling of these word embeddings, namely m, µ, M as follows:

m =

(
min

1≤i≤N
ei,j

)
1≤j≤100

(1)

µ =

(∑
1≤i≤N ei,j

N

)
1≤j≤100

(2)

M =

(
max

1≤j≤100
ei,j

)
1≤i≤N

(3)

The embedding of the sequence x is then created by the concatenation of m, µ and M . In practice,
sentiment markers1 are removed from the sequence x to make sure the content preservation metric indeed
measures the content similarity. Finally, when processing a dataset, content preservation is averaged over
all its sentences.

Fluency Following Zhao et al. (2018) and John et al.(2018), we measure the fluency of an output
sequences using language model perplexity. For our experiments, we trained an RNN-based language
model, consisting of single-layer RNN with GRU cells (Chung et al., 2014), on the Yelp dataset. Again,
tokens are embedded using a 100-dimensional layer which was initialized at training time with a pre-
trained GloVe model (Pennington et al., 2014).

4 Models

This section introduces three models employed in this work to deal with textual style transfer: a state-
of-the-art adversarial network, which we refer to as the base model (Section 4.1); an encoder extension
of the base model employing a novel type of encoder (in Section 4.2); a generator extension of the base
model employing multi-generators (Section 4.3).

4.1 Base model
The base model is the adversarial style transfer model proposed by Shen et al. (2017). As depicted in
Figure 1, this model is composed of the following components:

Encoder An encoder E which reads a sequence x of style s ∈ {1, 2}, denoted as x(s) and outputs an
embedded representation denoted as z.

Generator A generator G which is initialized with z and the desired output style s. The output is a
sequence of words where the content is supposed to be the same as in x and style should be s.

E and G are based on a standard sequence-to-sequence architecture (Sutskever et al., 2014). In the
case where s is the original style, the model forms an auto-encoder. During training, G is used twice for
each input: once to generate a reconstructed sequence (i.e., in the same style as the input), and once to
generate a style-transferred sequence (i.e., in the opposite style to the input).

Discriminators Two discriminators, D1 and D2, one for each style s1, and s2. The style-specific
discriminator, Ds takes a generated sequence and predicts the probability that this sequence has the
style s. In other words, depending on whether s is the same as the original style of the input sequence
or different from it, it predicts whether the style of the generated sequence has been “preserved” or
“transferred”.

1The sentiment dictionary is the one from Fu et al. (2018)



Figure 1: Given input sequences x with an original style s, E encodes x(s) in a latent representation z.
G is initialized with z and the desired output style, 1 or 2, leading to x̃(1) or x̃(2), respectively. Discrim-
inators D1 and D2 aim at detecting whether the styles of their inputs (i.e., the sequences generated by
G) are “preserved” or “transferred” relative to s.

This architecture is designed to be trained in an adversarial manner: the generator, G when conditioned
with style s, aims at generating a sequence that should convince the discriminator, Ds, that the generated
sequence has the style s, whereas Ds aims at detecting style-shifted sequences.

The training process involves processing two differently styled input sequences in parallel x(s1)
1 and

x
(s2)
2 , where s2 = s1. This results in four generated output sequences, one output sequence per style for

each input sequence, leading to two reconstructed sequences of x̃(s1)
1 , x̃(s2)

2 , and two style-transferred
sequences x̃(s1)

2 , and x̃
(s2)
1 .

The adversarial training relies on 3 elementary losses. For simplification, we assume that training data
has the two sequences x(s1)

1 and x
(s2)
2 .

• The reconstruction loss, Lrec, is the negative log probability of the training data, and is computed
as the cross-entropy between an original sentence, and the reconstructed sentence (equation 4).
Backpropagation is carried out for the couple (E, G) using this loss.

Lrec = − log Pr(x̃
(s1)
1 |x(s1)

1 )− log Pr(x̃
(s2)
2 |x2

(s2)) (4)

• The adversarial loss is defined such that minimising this loss requires minimising the precision of
the discriminators in detecting that the input sentence has been transferred. Equation 5 lists this
loss, note that it is computed solely on the transferred sequences. This loss is the log of the inverse
probability predicted by the discriminator and so minimising this measures causes the generation
block to generate style-shifted sequences with lower probability of being detected as transferred.
Ladv,s2 is defined symmetrically to Equation 5.

Ladv,s1 = log(1−Ds1(x̃
(s1)
2 )) (5)

• Equation 6 lists the discrimination loss, LDs, for a given style s. This loss is defined as the binary
cross-entropy over “transferred” and “preserved” classes where the true labels of style-shifted and
reconstructed outputs are considered as “transferred” and “preserved” respectively. For each style
s, we train Ds to maximize the probability of assigning these true labels to the output sequences by
minimizing this loss.

LDs = − logDs(x̃
(s)
1 )− log(1−Ds(x̃

(s)
2 )) (6)

The backpropagation for the encoder-generator couple (E, G) is carried out using the following:

Ltotal = Lrec + Ladv,s1 + Ladv,s2 (7)



Figure 2: Detail of the ELMo-based encoding.

4.2 Encoder variant: ELMo-based encoder
ELMo is a state-of-the-art NLP framework which provides deep contextualized word representations (Pe-
ters et al., 2018) and has proved efficient in many NLP-related tasks recently. Here, we focus on the
encoder architecture of the baseline model and replace it with a pre-trained ELMo model. As shown by
Figure 2, in this model embeddings for the tokens in the input sequence are generated using a pre-trained
ELMo model (Peters et al., 2018) and the embedding for the sequence is the generated from these token
embeddings using the min-mean-max representation described in Section 3. The training of this model
is the same as for the base model, except that the encoder (the pre-trained ELMo model) is not modified
during training. Hence, reconstruction and total losses are only used to update G.

4.3 Generator variant: style-specific generators
We propose a multi-generator extension of the base model which employs style-specific generators G1,
G2 (one for each style). The generators share the encoder component and given a z generated by this
shared encoder, each generator generates a sequence in its corresponding style. Therefore, unlike the
base model, in this framework, there is no need to condition the generation on the desired style vector.
The role and functioning of the discriminators in this model are the same as those of the base model.

In this model, there are two reconstruction losses, one for each generator (equations 8 and 9). Ad-
versarial loss, discriminator losses, and total loss are the same as those of the base model (equations 5,
6 and 7) and Lrec in equation 7 is the summation of the Lrec1 and Lrec2. The training process of this
model is also the same as the base model apart from the fact that the backpropagations following the
reconstruction losses and total loss are carried out for the the couples (E, G1) and (E, G2).

Lrec1 = − log PrG1(x̃
(s1)
1 |x(s1)1 ) (8)

Lrec2 = − log PrGs2
(x̃

(s2)
2 |x(s2)2 ) (9)

5 Datasets and experimental setup

Datasets For this work we limit the style transfer task to sentiment and opinion polarity transfer in text
and evaluate the proposed frameworks using the Yelp dataset of restaurant reviews. It is a large-scale
review dataset (4.7 million reviews) where text reviews are annotated by the stars (on a scale of 5) given
by users. The reviews with rating above three and below three are considered as positive and negative
corpora respectively, and three-starred reviews are discarded.

The dataset is annotated at a review level. However, since the unit of analysis in our experiments
is sentence, we must project the review level annotations to the sentence level. This involves a one to
many mapping of labels: one review label to multiple sentences. A question that arises here is whether
it is appropriate to label every sentence in a review with the overall sentiment label of the review. For
example, a review may have an overall sentiment rating that is very positive but certain sentences in
the review may be quite neutral. To address this problem, and following the process of Shen et al.
(2017), we first filtered all reviews that had more than 10 sentences, and then we removed all sentences
that had more than 15 tokens. The intuition behind these filtering processes is that longer reviews are
more likely to have neutral sentences, and that longer sentences are more likely to be neutral. We split
the resulting dataset, including 250K negative, and 350K positive sentences, into training (70% of the
sentences), development (10%) and test (20%) sets while maintaining the relative distributions of positive



and negative instances within each split. Finally, we created a balanced training dataset by upsampling
the negative sentences in the training split, by randomly selecting negative sentences without replacement
for repetition within the training split. Upsampling was not applied in the development or test set. The
vocabulary size of the final dataset is 10K after replacing words occurring less than 5 times with the
<unk> token.

Model settings The encoder and generator cells of the models in this work are single-layer RNNs with
GRU and the size of hidden cells is set to 700 in base model and multi-generator model, whereas this
is 3072 when using ELMo in the encoder part. Token vectors are initialized by pre-trained GloVe (Pen-
nington et al., 2014) and their size is set to 100. Discriminators are TextCNN classifiers from Kim(2014).

6 Multi-Dimensional System Evaluation

This section reports on four multi-dimensional experiments on sentiment transfer. Firstly, a comparison
between the standard and ELMo-based encoders is presented (Section 6.1). Then, attention shifts to the
generator component (Sections 6.2 and 6.3). Section 6.2 evaluates the benefits of using multiple style
specific generators, and Section 6.3 evaluates the effects on content preservation of reinforcing the latent
representation of the input throughout the output generation process. Finally, Section 6.4 validates our
multi-dimensional experimental framework for style-transfer against human evaluations. In the following
sections, we will discuss the results of each of these experiments which are listed in Table 1.

6.1 Experiment 1: ELMo-based encoder

Given the many recent examples of ELMo embeddings being used in state-of-the-art NLP systems, our
first experiment evaluated whether using an ELMo-based encoder would improve the performance of the
baseline style-transfer model. The ELMo-based variant of the base model was introduced in Section 4.2.
The performance of the base model and its ELMo-based variant are reported in rows a and b of Table 1.

The results of these two models reveals that using ELMo-based representations of the input sequences
reduces the performance of the model in all three aspects of evaluation. To better understand these results,
we designed a probing experiment to see how much the latent representations of the input sequences
generated by each system encoder (i.e., the z-vectors) encodes source stylistic information. We will
introduce the probing experiments in detail in section 7; however, for now, the results of this probing
experiment for the base model and ELMo variant are listed in rows a and b of Table 2.

Comparing rows a and b of Table 2 reveals that ELMo does appreciably worse in encoding stylis-
tic features compared to a style transfer-specific encoder. We hypothesise that the role of encoders in
style transfer models is not only encoding the information, but also, distinguishing between stylistic and
content-related features which helps the style-shifting generation process. In more detail, we hypothe-
sise that the performance of the ELMo-based model drops because relative to the style-transfer specific
encoders the ELMo-base z-vector representations have encoded less information relating to the input
style and this makes it more difficult for the generator to decide whether it is reconstructing the input or
style-shifting the input. When a z-vector strongly encodes the input style the model has information re-
lating to both the input style and the target style (it receives this through the style vector fed directly into
the generator) and so has a comparative signal as to whether the generation task involves reconstructing
or style-shifting the input. However, as stylistic information is stripped from the z-vector this signal is
weakened and the task of the generator becomes less well defined and so more difficult.

The main finding of this experiment is that there is a need for style transfer-specific encoders. Given
this result, in the next experiment we will test whether it is possible to improve style transfer by adjusting
the generator component of the pipeline.

6.2 Experiment 2: Style-specific generators

We aim at modifying the generator component of the architecture by implementing style-specific gener-
ators and investigate their effect on the the style-shift strength. The style-specific generator variant of the
baseline architecture evaluated in this experiment was described in Section 4.3.



Model Style-shift Fluency Content
power preservation

(a) Base model 78.8% 43.5 0.925
(b) ELMo-based encoder 39.3% 134.5 0.895
(c) Multi-generator 94.4% 39.1 0.910
(d) Base model (reinforce) 66.0% 49.6 0.930
(e) Multi-generator (reinforce) 90.7% 83.0 0.860

Table 1: Fluency, style shift strength and content preservation of transferred sequences. The higher the
style-shift power and content preservation power are the better it is, but for the fluency (perplexity) the
lower results show the better performance.

The performance of the model with multiple style-specific generators is listed in row c of Table 1.
Comparing these results with the performance of the baseline system reveals an improvement in the
style-shift power and also fluency. The increase in style-shift power is due to the fact that in the multi-
generator structure, each generator can learn a specific style. Also, the increase in fluency is due to the
fact that each generator learns the distribution of one corpus (i.e., the distribution over the samples in
the relevant style). This can provide further explanation for the increase of style-shift power in multi-
generator frameworks (an increase from 78.76% to 94.41% in rows a and c of Table 1).

Furthermore, results of probing classification task from Table 2 indicates that multi-generator archi-
tectures (rows c and e) encode less source stylistic features compared to single-generator systems (rows
a and d). As noted above, in a single generator model encoding input style in z-space provides a signal
to the generator relating to whether it is reconstructing or style-shifting the input. However, the fact
that multi-generator systems have style-specific generators obviates the need for this signal and this is
reflected in the multi-generator system encoding less source stylistic features in z-vectors compared to
single-generator models while avoiding the deterioration in style-shift and fluency performance observed
with the ELMo encoder system. However, in spite of an increase in style-shift power and fluency, we lose
content preservation power in this framework compared to base model. To deal with this, in section 6.3
we implement techniques to reinforce content throughout the generation process.

6.3 Experiment 3: Reinforcing the content

In this section, we investigate whether reinforcing the latent representation of the input sequence (z-
vectors) during generation improves the content preservation power of a model. We do this experiment
for both the base model and the multi-generator model.

In the standard setup of the base model and also the multi-generator model z is provided once to the
generator at the start of of the generation process, i.e. x̃(s)1 = G(z, x̃

(s)
0 , s) but x̃(s)i>1 = G(hi−1, x̃

(s)
i−1, s)

with hi−1 being the hidden state of the generator, x̃0 a special <start> token, and x̃i the token gener-
ated at step i. The strategy we test for reinforcing content involves z being provided to the generator at
the start of the generation process and also being reinforced at each generation step by concatenating z
to the GRU logits output vector prior to passing it to the softmax layer (this concatenation method was
proposed by Tanti et al. (2018)).

Table 1 row d shows that reinforcing the content throughout generation slightly improves content
preservation in the base model but also results in a drop in style-shift power and fluency. For the multi-
generator model (Table 1 row e), reinforcing content negatively affects all three aspects of evaluation. To
provide an overall baseline for the content preservation of these systems for each system we calculated
the cosine distance between the style shifted sentences generated by each system when applied to the
test set and randomly selected sentences from the training set with the same style. The average of these
scores across different frameworks can be considered as lower bound of content preservation rate and is
0.817. This shows that all the models perform better in content preservation than the lower bound.

Intuitively, the effect of reinforcing z throughout the generation process is dependent on what infor-
mation is encoded in z. For example, if z only encodes content information then reinforcing z should not



diminish style shift power; however, if z encodes both style and content information then reinforcing z
may help with content preservation but this will likely be at the cost of a loss in style shift power. Also, if
z encodes information from a distinct distribution of language (e.g., positive versus negative sentiment)
reinforcing z may inhibit the fluency of the language model. The results of our probing experiment in
Section 7 provide some insight into these dynamics.

The results of the probing task in rows d and e of Table 2 illustrates that z-reinforcement leads the
models to embed less style-specific information in z. Our hypothesis for what causes this is that the
generator component is trying to output a sequence in a specific style; however, if a lot of stylistic
information is encoded in z and this stylistic information is repeatedly reinforced during generation then
z interferes with the ability of generators to shift to a new style. In order to overcome this dynamic the
systems learn to encode less stylistic information in z, thereby reducing the interference in the generator
between the source style and desired style. This leads the single-generator model to lose more power
to transfer the style compared to the multi-generator model (a drop of 12.8% in style-shift strength in
single-generator models versus 3.7% in multi-generator frameworks in rows d and e of Table 1). The
reason is the former was relying more on style-specific information in z than the latter, as we noted
earlier the single-generator model may use the style information in z to determine whether to reconstruct
or style shift the input. Overall, there is an inherent trade-off for single-generator models with respect
to encoding stylistic information in z: reducing stylistic information in z makes the initial decision
between reconstruction and style-shift more difficult, but increasing the stylistic information in z makes
style-shifted generation more difficult. Multi-generator models do not need source style signals for their
style-specific generators; therefore, they drop more source style in their z-space compared to single-
generator models (7% versus 2% ). However, this negatively affects the content preservation power of
these models, since, seemingly, dropping more source style in z-space leads to losing some features
which are either content or the type of features which can be considered as the intersection between
content and style.

6.4 Experiment 4: Validating the Methodology with Human Evaluations

To investigate whether the results of our automatic evaluation correlate with the human judgment, we
did a manual test considering style-shift, content preservation and fluency. The tests were conducted
in a strictly blind fashion by shuffling samples and models to avoid biases while answering the ques-
tions. To do the test, 450 samples were considered: 150 samples randomly selected from the Yelp test
set and their corresponding style-transferred sequences of the base and multi-generator models. Each
sample was evaluated at least 3 times and at most 8 times. The final scores are reported as the propor-
tions for each answer, averaged over all testers and all samples. Moreover, Krippendorff’s inter-rater
agreements (Krippendorff, 1980) is reported. Below are the details for each aspect.

Style shift power In this test the testers considered one style-shifted sample at a time, and labelled it as
“positive”, “negative”, or “neutral”. There were 29 participants with an inter-rater agreement of 0.752.
The results indicate that base model is successfully transferring the style of the sequences in 58.3% of
the cases while this is 67.6% for the multi-generator model.

Content preservation This test was conducted in a comparative manner, i.e. evaluators were shown
a source sentence and two style-shifted sentences from the two models and were asked which sequence
most closely resembles the source sentence in terms of content (disregarding the sentiment). Possible
options were “equally good”, “equally bad”, “first sample is better”, or “second sample is better”. There
were 22 participants in this study with an the inter-rater agreement of 0.772. In 52.2% of the cases, the
base model appears to preserve the content, while this is 41.6% for the multi-generator model.

Fluency This test was evaluated in a similar way as style transfer. The evaluators judged the structural
correctness of generated samples as “incorrect”, “partly correct” and “correct”. As a post-processing
step, the ”partly correct” answers were discarded since the task appeared as ambiguous for the annotators.
The were 25 participants with inter-rater agreement of 0.568. The results show that the multi-generator
performs slightly better than the base model ( 67.6% versus 64.2% of ”correct” answers).



Model Accuracy
(a) Base model 99.97%
(b) ELMo-based encoder 93.84%
(c) Multi-generator 97.56%
(d) Base model (reinforce) 98.39%
(e) Multi-generator (reinforce) 91.85%

Table 2: The accuracy of the classifiers trained for each of the sentiment-transfer frameworks.

In conclusion, these results are in line with the rows a and c of the Table 1 and so we interpret them as
confirming the validity of the automatic metrics selected in our work.

7 Probing the Relationship between Style and Content

In Section 6.3 we observed that reinforcing the latent representation of the input (z) during generation
could result in improved content preservation but also consistently resulted in a deterioration in style-
shift power. In this section we examine whether this trade-off is a result of stylistic information being
encoded within the latent representation of the input. Inspired by the probing experiments described by
Conneau et al. (2018), we designed a probing experiment to examine what style information each of our
models encoded in their latent representations.

To do the probing classification experiment, for each style-transfer framework we trained a classifier
that took the z representation generated by the encoder of the framework and predicted the style of the
input sequence that had been feed into the encoder. The idea here is that if we can train a classifier to
accurately predict the style of an input from the z representation of an input sequence generated by the
encoder, then this z vector must have information related to the style of the input sequence. Therefore,
by examining the accuracy of the style classifier for each style-transfer framework we can get an insight
into the amount of stylistic information the framework encodes in its z space. For each style-transfer
framework, we trained a separate feed-forward network with a single hidden layer and a sigmoid output
layer as the classifier using pairs of z vectors (embedded representations) of the input sequences and
their original style. We employed the Yelp review dataset for training where the distribution of the
“positive” and “negative” labels are balanced. Table 2 shows the performance of each classifier. For
all style-transfer frameworks we were able to train accurate input style classifiers. This indicates that
all the encoders include style information in the z state. There is, however, variations across the style-
transfer frameworks in terms of the amount of style information they encode in their z state. In particular,
reinforcing the input during generation leads to a reduction in stylistic information being encoded in z.
As discussed earlier we believe this is caused by the systems attempting to ameliorate the interference
caused by reinforcing the input style when attempting to generate in another style.

8 Further discussion and future steps

Our results indicate that style cannot be totally separated from content. This is because encoders mistak-
enly strip out content when attempting to remove source stylistic features. This is most clearly seen in
the interaction between the results of the probing experiment and the content preservation results for the
different systems. The probing experiment revealed that reduction in encoding the stylistic features in the
latent representation of the inputs as a result of reinforcing the content (table 2) can lead to a reduction in
content preservation of the model. This indicates a direct relationship between the content preservation
power of a model and how much of source style the model encodes in its latent space. Therefore, it can
be inferred that style and content are entangled elements, which suggests that style should be consid-
ered as an integral component of a text which cannot totally be separated from the content of the text.
This raises questions about the conceptual basis of the computational modelling of style which considers
style as independent from content and fragmentizes style into a set of explicit linguistic elements such as
specific words, markers, or syntactic structures (Li et al., 2018; Leeftink and Spanakis, 2019).



To summarize, the results of this study show the necessity of employing style transfer-specific en-
coders as opposed to pre-trained embeddings. Furthermore, the results indicate that each of the tested
frameworks has its own strength and weaknesses. Indeed, our result indicate the benefits of framing
style-transfer as a multi-dimensional task: given the trade-off we observed in terms of style-shift and flu-
ency versus content preservation it is important to consider all of these aspects when evaluating a system
as understanding the trade-off systems make can inform the design of improved style-transfer systems.
Finally, our results suggest that stylistic and contextual features cannot really be separated or at least not
in the case context of framing sentiment as a style.

Overall, we consider the multi-generator framework as a good basis for future research, and we plan
to implement alternative techniques to improve content preservation power in this architecture. Further-
more, considering the significance of doing the evaluation in a comprehensive manner, we would like to
focus on introducing a single evaluation metric for this task which takes the three evaluation aspects of
style-shift, content maintenance and fluency into consideration.
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Appendix A. Samples of the style-shifted sequences

From negative to positive
1. so nasty .
2. so awesome .
3. ugh delicious
4. so delicious .
5. so fun .
6. so awesome ! .

1. my goodness it was so gross .
2. my husband was so delicious .
3. my experience was great .
4. my goodness it was amazing .
5. my goodness was amazing .
6. my , it was also

1. the cake portion was extremely light and a bit dry .
2. the prime rib was very smooth and very reasonable .
3. the pizza is fresh and a very nice .
4. the tuna was a bit dry and satisfying .
5. the portion was extremely tasty and reasonably priced .
6. the crust was very dry and dry a bit .
From positive to negative
1. i highly recommend this place !
2. i wo n’t be it .
3. i do n’t even go back .
4. i do not recommend this place !
5. i highly recommend this place place !
6. i loved not recommend this place .

1. my appetizer was also very good and unique .
2. my chicken was just a little hot and texture .
3. my pie is just thin and just like pie .
4. my boyfriend was n’t and had a very dry .
5. my entree was very unique and also very good .
6. my appetizer was also very good and lacked lacked lacked lacked .

1. the food is fresh and the environment is good .
2. the food was tasty and the quality is pretty expensive .
3.the food was rude and do n’t waste the time .
4. the food is fresh and the sandwich was too salty .
5. the food is good and the food is not good .
6. the food is the food and the food is the food comes .

Table 3: Considering the input sentences in lines 1, lines 2-6 represent the style transferred sequences as
the output of the following frameworks: 2: Multi-generator model, 3: Reinforced multi-generator model
4: Base model 5: Reinforced base model and 6: ELMo-based encoder model.


