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Abstract

In the maximum coverage problem, we are given subsets T1, . . . , Tm of a universe [n] along with an
integer k and the objective is to �nd a subset S ⊆ [m] of size k that maximizes C(S) :=

∣∣⋃
i∈S Ti

∣∣. It
is a classic result that the greedy algorithm for this problem achieves an optimal approximation ratio
of 1− e−1.

In this work we consider a generalization of this problem wherein an element a can contribute by
an amount that depends on the number of times it is covered. Given a concave, nondecreasing function
ϕ, we de�ne Cϕ(S) :=

∑
a∈[n] waϕ(|S|a), where |S|a = |{i ∈ S : a ∈ Ti}|. The standard maximum

coverage problem corresponds to taking ϕ(j) = min{j, 1}. For any such ϕ, we provide an e�cient
algorithm that achieves an approximation ratio equal to the Poisson concavity ratio of ϕ, de�ned by

αϕ := minx∈N∗
E[ϕ(Poi(x))]
ϕ(E[Poi(x)]) . Complementing this approximation guarantee, we establish a matching

NP-hardness result when ϕ grows in a sublinear way.
As special cases, we improve the result of [4] about maximum multi-coverage, that was based on

the unique games conjecture, and we recover the result of [14] on multi-winner approval-based voting
for geometrically dominant rules. Our result goes beyond these special cases and we illustrate it with
applications to distributed resource allocation problems, welfare maximization problems and approval-
based voting for general rules.

1 Introduction

Coverage functions are central objects of study in combinatorial optimization. Problems related to op-
timizing such functions arise in multiple �elds, such as operations research [12], machine learning [17],
algorithmic game theory [15], and information theory [3]. The most basic covering problem is the max-

imum coverage one. In this problem, we are given subsets T1, . . . , Tm of a universe [n], along with a
positive integer k, and the objective is to �nd a size-k subset S ⊆ [m] that maximizes the coverage func-
tion C(S) :=

∣∣⋃
i∈S Ti

∣∣. A fundamental result in the �eld of approximation algorithms establishes that an
approximation ratio of 1− e−1 can be achieved for this problem in polynomial-time [19] and, in fact, this
approximation guarantee is tight, under the assumption that P 6= NP [16].

Note that in the maximum coverage problem, an element a ∈ [n] is counted at most once in the
objective, even if a appears in several selected sets. However, if we think of elements a ∈ [n] as goods
or resources, there are many settings wherein the utility indeed increases with the number of copies of a
that get accumulated. Motivated, in part, by such settings, we consider a generalization of the maximum
coverage problem where an element a can contribute by an amount that depends on the number of times
it is covered.
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Given a function ϕ : N → R+, an integer k ∈ N, a universe of elements [n], positive weights wa for
each a ∈ [n], and subsets T1, . . . , Tm ⊆ [n], the ϕ-MaxCoverage problem entails maximizing Cϕ(S) :=∑

a∈[n]waϕ(|S|a) over subsets S ⊆ [m] of cardinality k; here |S|a = |{i ∈ S : a ∈ Ti}|.
This work focuses on functions ϕ that are nondecreasing and concave (i.e., ϕ(i + 2) − ϕ(i + 1) ≤

ϕ(i+1)−ϕ(i) for i ∈ N). We will also assume that the function ϕ is normalized in the sense that ϕ(0) = 0
and ϕ(1) = 1.1 Our approximation guarantees are in terms of the Poisson concavity ratio of ϕ, which we
de�ne as follows:

αϕ := inf
x∈N∗

E[ϕ(Poi(x))]

ϕ(E[Poi(x)])
= inf

x∈N∗
E[ϕ(Poi(x))]

ϕ(x)
. (1)

Here Poi(x) denotes a Poisson-distributed random variable with parameter x. We will write αϕ(x) :=
E[ϕ(Poi(x))]

ϕ(x) , with αϕ(0) = 1, and hence (see Proposition A.3), αϕ = minx∈N∗ αϕ(x) = infx∈R+ αϕ(x).2

Our main result is that the ϕ-MaxCoverage problem admits an e�cient αϕ-approximation algo-
rithm, when ϕ is normalized nondecreasing concave, and this approximation guarantee is tight when ϕ
grows sublinearly. Formally,

Theorem 1. For any normalized nondecreasing concave function ϕ, there exists a polynomial-time αϕ-
approximation algorithm for the ϕ-MaxCoverage problem. Furthermore, for ϕ(n) = o(n), it is NP-hard
to approximate the ϕ-MaxCoverage problem within a factor better than αϕ+ε, for any constant ε > 0.

Before detailing the proof of the theorem, we provide a few remarks and connections to related work.

Applications and related work We can directly reduce the standard maximum coverage problem to
ϕ-MaxCoverage by setting ϕ(j) = min{j, 1}. In this case αϕ = 1 − e−1. One can also encapsulate,
within our framework, the `-MultiCoverage problem studied in [4] by instantiating ϕ(j) = min{j, `}.
In this setting, we recover the approximation ratio αϕ = 1 − ``e−`

`! , which matches the approximation
guarantee obtained in [4] (see Proposition B.1). Note that the hardness result in [4] was based on the
Unique Games Conjecture, whereas the current work proves that this guarantee is tight under P 6= NP.

Another application of ϕ-MaxCoverage is in the context of multiwinner elections that entail selecting
k (out ofm) candidates with the objective of maximizing the cumulative utility of n voters; here, the utility
of each voter a ∈ [n] increases as more and more approved (by a) candidates get selected. One can reduce
multiwinner elections to a coverage problem by considering subset Ti ⊆ [n] as the set of voters that approve
of candidate i ∈ [m] and ϕ(j) as the utility that an agent achieves from j approved selections.3 Addressing
multiwinner elections in this standard utilitarian model, Dudycz et al. [14] obtain tight approximation
guarantees for some well-studied classes of utilities. Speci�cally, the result in [14] applies to the classic
proportional approval voting rule, which assigns a utility of

∑j
i=1

1
i for j approved selections. This voting

rule corresponds to the coverage problem with ϕ(j) =
∑j

i=1
1
i . Section 4.1 shows that Theorem 1 holds for

all the settings considered in [14] and, in fact, applies more generally. In particular, the voting version of
`-MultiCoverage (studied in [27]) can be addressed by Theorem 1, but not by the result in [14]. Such
a separation also arises when one truncates the proportional approval voting rule to, say, ` candidates,
i.e., upon setting ϕ(j) =

∑min{j,`}
i=1

1
i . Given that multiwinner elections model multiple real-world settings

(e.g., committee selection [27] and parliamentary proceedings [6]), instantiations of ϕ-MaxCoverage in
such social-choice contexts substantiate the applicability of our algorithmic result.

1One can always replace a generic ϕ to a normalized one without changing the optimal solutions through a simple a�ne

transformation.
2We require ϕ to be de�ned for nonnegative integers and will extend it over R+ by considering its piecewise linear

extension.
3Indeed, for a subset of candidates S ⊆ [m], the utility of a voter a ∈ [n] is equal to ϕ(|S|a), with |S|a = |{i ∈ S : a ∈ Ti}|.
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Coverage functions arise in numerous resource-allocation settings, such as sensor allocation [22], job
scheduling, and plant location [12]. The goal, broadly, in such setups is to select k subsets of resources
(out of m pre-speci�ed ones) such that the welfare generated by the selected resources is maximized�each
resource's contribution to the welfare increases with the number of times it is selected. This problem can
be cast as ϕ-MaxCoverage by setting n to be the number of resources, {Ti}i∈[m] as the given collection of
subsets, and ϕ(j) to be the welfare contribution of a resource when it is covered j times.4 Here, we mention
a speci�c allocation problem to highlight the relevance of studying ϕ beyond the standard coverage and `-
coverage formulations (see Section 4.3 for details): in the Vehicle-Target Assignment problem [23, 25]

the resources are n targets and covering a target j times contributes ϕp(j) = 1−(1−p)j
p to the welfare; here,

p ∈ (0, 1) is a given parameter. Interestingly, we �nd that for this problem, the approximation ratio αϕ we
obtain can outperform the price of anarchy (PoA), which corresponds to the approximation ratio of any
method whereing the agents sel�shly maximize their utilities (see Section 4.3 for further discussion of this
point). By contrast, in the resource allocation problem with ϕ(j) = min{j, `}, the price of anarchy is equal
to αϕ; see [10] for details. Another allocation problem studied in [25] corresponds to ϕ-MaxCoverage
with ϕ(j) = jd, for a given parameter d ∈ (0, 1). We refer to this instantiation as the d-Power function.

Theorem 1 gives us a tight approximation bound of αϕ for all the above-mentioned applications of
ϕ-MaxCoverage. The values of αϕ for these instantiations are listed in Table 1.

ϕ-MaxCoverage ϕ(j) αϕ Derivation
MaxCoverage min{j, 1} 1− e−1 Prop. B.1

`-MultiCoverage min{j, `} 1− ``e−`

`! Prop. B.1
Proportional Approval Voting

∑j
i=1

1
i αϕ(1) ' 0.7965 . . . Prop. A.13

Proportional Approval Voting capped at 3
∑min{j,3}

i=1
1
i αϕ(1) ' 0.7910 . . . Prop. A.6

p-Vehicle-Target Assignment 1−(1−p)j
p

1−e−p

p Prop. B.2

0.1-Vehicle-Target Assignment 1−(1−0.1)j

0.1
1−e−0.1

0.1 ' 0.9516 . . . Prop. B.2

0.1-Vehicle-Target Assignment capped at 5 1−(1−0.1)min{j,5}

0.1 αϕ(5) ' 0.8470 . . . Prop. A.6

d-Power jd e−1
∑+∞

k=1
kd

k! Prop. B.3

Table 1: Tight approximation ratios for particular choices of ϕ in the ϕ-MaxCoverage problem.

It is relevant to compare the approximation guarantee, αϕ, obtained in the current work with the
approximation ratio based on the notion of curvature of submodular functions. Note that if ϕ is nonde-
creasing and concave, then Cϕ is submodular. One can show, via a direct calculation, that for such a
submodular Cϕ the curvature (as de�ned in [11]) is given by c = 1− (ϕ(m)−ϕ(m− 1)) for instances with
at most m cover sets; see Proposition A.4. Therefore, the algorithm of Sviridenko et al. [28] provides an
approximation ratio of 1− ce−1 for the ϕ-MaxCoverage problem. We note that the Poisson concavity
ratio αϕ is always greater than or equal to this curvature-dependent ratio (Proposition A.7). Speci�cally,
for p-Vehicle-Target Assignment, it is strictly better for all p /∈ {0, 1} and for `-MultiCoverage,
it is strictly better for all ` ≥ 2 as remarked in [4]. Therefore, for the setting at hand, the current work
improves the approximation guarantee obtained in [28].

Remarks on the Poisson concavity ratio αϕ. By Jensen's inequality along with the nonnegativity
and concavity of ϕ, we have that αϕ ∈ [0, 1]. We show that αϕ can be computed numerically up to any

4Formally, to capture speci�c welfare-maximization problems in their entirety we have to a consider ϕ-MaxCoverage
with a matroid constraint, and not just bound the number of selected subsets by k. Details pertaining to matroid constraints

and the reduction appear in Section 2.1 and 4.2, respectively.
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precision ε > 0, in time that is polynomial in 1
ε . In fact, Proposition A.2 shows that αϕ(x) ≥ 1 − ε for

all x ≥ Nε := d
(

6
ε

)4e. Thus, we can iterate over all x ∈ {1, 2, . . . , Nε} and �nd minx∈[Nε] αϕ(x) up to ε
precision (under reasonable assumptions on ϕ). This gives us a method to overall compute αϕ, up to an
absolute error of 2ε: if αϕ ≤ 1−ε, then computing minx∈[Nε] αϕ(x) (up to ε precision) su�ces. Otherwise,
if αϕ ≥ 1 − ε, then αϕ(1) ≤ 1 provides the desired bound. Furthermore, we note that Proposition A.1
shows that even if we consider αϕ(x) over all x ∈ R+, an in�mum (i.e., the value of αϕ) is achieved at an
integer.

Further hardness under Gap-ETH Theorem 1 shows that, under the assumption P 6= NP, no
polynomial-time algorithm can approximate ϕ-MaxCoverage within a better ratio than αϕ for sublinear
ϕ. One natural question that arises is whether relaxing the running time constraint helps. More precisely,
since there are

(
m
k

)
= O(mk) choices of k cover sets among the m available, a simple exhaustive search

algorithm works in time O(mk). We can ask if FPT algorithms with respect to k, running in time
f(k) ·mo(k) with f an arbitrary function, can do better. As in [14], we use the result of [21] to show in
Theorem 5 that such algorithms cannot approximate ϕ-MaxCoverage within a better ratio than αϕ for
sublinear ϕ, under the Gap-ETH hypothesis [9]; see Section 3.3 for more details. This means that the
brute-force strategy is essentially the best, if one wants to get a better approximation ratio than αϕ.

Proof techniques and organization In Section 2, we present our approximation algorithm for the
ϕ-MaxCoverage. The algorithm is an application of pipage rounding, a technique introduced in [1], on
a linear programming relaxation of ϕ-MaxCoverage. We show that the multilinear extension Fϕ of Cϕ

is e�ciently computable and thus, we can compute an integer solution xint from the optimal fractional
one x∗ satisfying Cϕ(xint) ≥ Fϕ(x∗). Using the notion of convex order between distributions, we show
that Fϕ(x∗) ≥

∑
a∈[n]waE[ϕ(Poi(|x∗|a))], where |x|a =

∑
i∈[m]:a∈Ti xi. Comparing this to the value∑

a∈[n]waϕ(|x∗|a) taken by the linear program, we get a ratio given by the Poisson concavity ratio αϕ.
The concavity of ϕ is crucial at several steps of the proof: it guarantees that the natural relaxation can
be written as a linear program, it is used to relate between sums of Bernouilli random variables and a
Poisson random variable via the convex order, as well as for the fact that we can restrict the in�mum in
the de�nition of αϕ to integer values of x. The generalization to matroid constraints follows in a standard
way and is presented in Section 2.1.

In Section 3, we present the hardness result for ϕ-MaxCoverage. For this, we de�ne a generalization
of the partitioning gadget of Feige [16], extending also [4]. Roughly speaking, for an integer xϕ ∈ N, it is
a collection of xϕ-covers of the set [n] (an x-cover is a collection of subsets such that each element a ∈ [n]
is covered x times, or in other words, its ϕ-coverage is ϕ(x)n) that are incompatible in the sense that if
we take an element from each one of these xϕ-covers, then the ϕ-coverage is bounded approximately by
E[ϕ(Poi(xϕ))]n. Then, we construct an instance of ϕ-MaxCoverage from an instance of the NP-hard
problem Label Cover (as in [14]) using such a gadget with xϕ ∈ argminx∈Nαϕ(x). Having set up the
partitioning gadget, the analysis of the reduction can be obtained by carefully generalizing the reductions
of [4] and [14].

In Section 4, we present di�erent domains of application of our result.

2 Approximation Algorithm for ϕ-MaxCoverage

Fix a function ϕ : N → R+ that is normalized, nondecreasing and concave. The ϕ-MaxCoverage
problem is de�ned as follows. The input to the problem is given by positive integers n,m, t and m subsets
T1, . . . , Tm of the set [n] (described as characteristic vectors), the weights wa ∈ Q∗+ for a ∈ [n] (described
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as a couple of bitstring of length t), as well as an integer k ∈ {1, . . . ,m}. The output is a subset S ⊆ [m]
of size k that maximizes Cϕ(S) =

∑
a∈[n]waϕ(|S|a), where |S|a = |{i ∈ S : a ∈ Ti}|.

Note that the input to this problem can be speci�ed using n(m + 2t) + O(log nmt) bits. To reduce
the number of parameters, we will assume that t is polynomial in n and m, so that a polynomial time
algorithm for this problem means an algorithm that runs in time polynomial in n and m. The counting
function ϕ is �xed and does not depend on the instance of the problem, but for a given instance the
problem only depends on the values ϕ(0), ϕ(1), . . . , ϕ(m). We assume that we have black box access to ϕ
and to ensure that all the algorithms run in polynomial time, we assume that ϕ(j) can be described with
a number of bits that is polynomial in j and that this description can be computed in polynomial time.

We now describe the approximation algorithm for ϕ-MaxCoverage that we analyze. As described
above, we follow the standard relax and round strategy, as in [4]. First, we de�ne a natural convex
relaxation.

De�nition 2.1 (Relaxed program).

maximize
∑
a∈[n]

waca

subject to ca ≤ ϕ(|x|a),∀a ∈ [n], with |x|a :=
∑

i∈[m]:a∈Ti

xi

0 ≤ xi ≤ 1, ∀i ∈ [m]
m∑
i=1

xi = k .

(2)

As previously mentioned, ϕ is de�ned on R+ by extending it in a piecewise linear fashion on non-
integral points. As such, the constraint ca ≤ ϕ(|x|a) is equivalent to m linear constraints. In fact, we can
de�ne ϕj to be the linear function ϕj(t) = (ϕ(j)− ϕ(j − 1))t− (j − 1)ϕ(j) + jϕ(j − 1) for j ∈ [m]. Since
ϕ is concave, we have that for all t ∈ [0,m], ϕ(t) = minj∈[m] ϕj(t). As such, the constraint ca ≤ ϕ(|x|a)
is equivalent to ca ≤ ϕj(|x|a) for all j ∈ [m] and so the program from De�nition 2.1 is a linear program.
Overall there are n+m variables and (n+1)m+1 linear constraints, and by assumptions all the coe�cients
can be described using a number of bits that is polynomial in n and m. Hence an optimal solution of this
linear program can be found in polynomial time.

Also observe that the program from De�nition 2.1 is indeed a relaxation of the ϕ-MaxCoverage
problem. To see this, given a set S of size k, consider the characteristic vector x ∈ {0, 1}m de�ned by
xi = 1 if and only if i ∈ S. Then for all a ∈ [n], we can set ca = ϕ(|x|a) = ϕ(|S|a), and we get an objective
value of

∑
a∈[n]waϕ(|S|a) which is exactly Cϕ(S). When solving the program from De�nition 2.1, we get

an optimal x∗ ∈ [0, 1]m which is in general not integral. Next, we describe a method to round it to an
integral vector xint ∈ {0, 1}m.

Rounding For a submodular function f : {0, 1}m → R , one can use pipage rounding [1, 30, 7] to
transform, in polynomial time, any fractional solution x ∈ [0, 1]m satisfying

∑m
i=1 xi = k into an integral

vector xint ∈ {0, 1}m such that
∑m

i=1 x
int
i = k and F (xint) ≥ F (x), where F corresponds to the multilinear

extension of f , provided that F (x) is computable in polynomial time for a given x; see e.g., [30, Lemma
3.4]. The multilinear extension F : [0, 1]m → R of f is de�ned by F (x1, . . . , xm) := E[f(X1, . . . , Xm)],
where Xi are independent random variables with Xi ∼ Ber(xi), i.e., Xi ∈ {0, 1} with P(Xi = 1) = xi.
Note that F (x) = f(x) for an integral vector x ∈ {0, 1}m.

We apply this strategy to Cϕ, which is shown to be submodular in Proposition A.4, and the solution
x∗ of the LP relaxation from De�nition 2.1. Note that overall the algorithm is polynomial time, since here
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F (x) is computable in polynomial time for a given x (see Proposition A.8). We now analyze the value
returned by the algorithm. Using the property of pipage rounding, with the notation X = (X1, . . . , Xm)
and Ber(x) = (Ber(x1), . . . ,Ber(xm)), we get

Cϕ(xint) = EX∼Ber(xint)[Cϕ(X)] ≥ EX∼Ber(x∗)[Cϕ(X)] .

Then it su�ces to relate EX∼Ber(x∗)[Cϕ(X)] to the optimal value of the LP relaxation 2.1, which can only
be larger than the optimal value of the ϕ-MaxCoverage problem.

Theorem 2. Let x, c be a feasible solution of the program from De�nition 2.1 and X ∼ Ber(x). Recalling
the de�nition of αϕ and αϕ(j) from (1), we have

EX∼Ber(x)[C
ϕ(X)] ≥

(
min
j∈[m]

αϕ(j)

) ∑
a∈[n]

waca .

In particular, this implies that the described polynomial time algorithm has an approximation ratio of αϕ:

Cϕ(xint) ≥ αϕ
∑
a∈[n]

wac
∗
a ≥ αϕ max

S⊆[m]:|S|=k
Cϕ(S) .

In order to prove this theorem, we need the following lemma:

Lemma 2.2. For ϕ concave, and p ∈ [0, 1]m, we have:

E
[
ϕ
( m∑
i=1

Ber(pi)
)]
≥ E

[
ϕ
(
Poi

( m∑
i=1

pi

))]
.

Proof. The notion of convex order discussed in [26] allows us to prove this result. We say that X ≤cx

Y ⇐⇒ E[f(X)] ≤ E[f(Y )] for any convex f . Thanks to Lemma 2.3 of [4], we have that for p ∈ [0, 1]:

Ber(p) ≤cx Poi(p) .

Since this order is preserved through convolution (Theorem 3.A.12 of [26]), and the fact that
∑m

i=1 Poi(pi) ∼
Poi

(∑m
i=1 pi

)
, we have:

m∑
i=1

Ber(pi) ≤cx Poi
( m∑
i=1

pi

)
.

Applying this result to −ϕ, which is convex, concludes the proof.

Proof of Theorem 2. By linearity of expectation and the fact that the weights wa are positive, it is su�cient
to show that for all a ∈ [n]:

E[Cϕa (X)] ≥
(

min
j∈[m]

αϕ(j)

)
ca ,

where Cϕa (S) := ϕ(|S|a). Note that |X|a =
∑

i∈[m]:a∈Ti Xi, and thus:

E[Cϕa (X)] = E
[
ϕ
( ∑
i∈[m]:a∈Ti

Xi

)]
= E

[
ϕ
( ∑
i∈[m]:a∈Ti

Ber(xi)
)]

≥ E
[
ϕ
(
Poi

( ∑
i∈[m]:a∈Ti

xi

))]
thanks to Lemma 2.2

= E[ϕ(Poi(|x|a))] ≥ min{αϕ(b|x|ac), αϕ(d|x|ae)}ϕ(|x|a) thanks to Proposition A.1

≥
(

min
j∈[m]

αϕ(j)

)
ϕ(|x|a) ≥

(
min
j∈[m]

αϕ(j)

)
ca .

(3)
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2.1 Generalization to Matroid Constraints

Instead of taking a cardinality constraint k on the size of the subset S, we look now at general matroid
constraints on S. Speci�cally, as input, instead of k, we take a matroidM de�ned on [m] and given by a
set of linear constraints describing its base polytope B(M). The output is a set S ∈ M that maximizes
Cϕ(S). Note that the cardinality constraint considered above is the special case whereM is the uniform
matroid of all subsets of size at most k and the base polytope B(M) = {x ∈ [0, 1]m :

∑m
i=1 xi = k}.

We �rst note that in the order to establish Theorem 2, the cardinality constraint
∑m

i=1 xi = k is not
used. Thus, since the pipage rounding strategy applies to matroid constraintsM (see [30, Lemma 3.4]),
the strategy and the analysis of its e�ciency generalize immediately when applied to the following linear
program:

De�nition 2.3 (Relaxed program for matroid constraints).

maximize
∑
a∈[n]

waca

subject to ca ≤ ϕ(|x|a),∀a ∈ [n]

0 ≤ xi ≤ 1, ∀i ∈ [m]

x ∈ B(M) the base polytope ofM .

(4)

Theorem 3. Let x, c a feasible solution of the program from De�nition 2.3 and X ∼ Ber(x). Then:

EX∼Ber(x)[C
ϕ(X)] ≥

(
min
j∈[m]

αϕ(j)

) ∑
a∈[n]

waca .

In particular, this implies that the described polynomial time algorithm has an approximation ratio of αϕ:

Cϕ(xint) ≥ αϕ
∑
a∈[n]

wac
∗
a ≥ αϕ max

S∈M
Cϕ(S) .

3 Hardness of Approximation for ϕ-MaxCoverage

In this section, we establish an inapproximability bound for the ϕ-MaxCoverage problem with weights
1 under cardinality constraints. Throughout this section we use Γ to denote the universe of elements
and, hence, an instance of the ϕ-MaxCoverage problem consists of Γ, along with a collection of subsets
F = {Fi ⊆ Γ}mi=1 and an integer k. Recall that the objective of this problem is to �nd a size-k subset
S ⊆ [m] that maximizes Cϕ(S) =

∑
a∈Γ ϕ(|S|a).

We establish the following theorem in this section:

Theorem 4. It is NP-hard to approximate the ϕ-MaxCoverage problem for ϕ(n) = o(n) within a
factor greater that αϕ + ε for any ε > 0.

Our reduction is based on a problem called h-AryLabelCover, which is equivalent to the more
standard GapLabelCover problem as will be shown in Appendix C.
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De�nition 3.1 (h-AryLabelCover). An instance G = (V,E, [L], [R], {πe,v}e∈E,v∈e) of h-AryLabelCover
is characterized by an h-uniform regular hypergraph (V,E) and constraints πe,v : [L] → [R]. Here, each
h-uniform hyperedge represents a h-ary constraint. Additionally, for any labeling σ : V → [L], we have
the following notions of strongly and weakly satis�ed constraints:

• An edge e = (v1, . . . , vh) ∈ E is strongly satis�ed by σ if:

∀x, y ∈ [h], πe,vx(σ(vx)) = πe,vy(σ(vy)) .

• An edge e = (v1, . . . , vh) ∈ E is weakly satis�ed by σ if:

∃x 6= y ∈ [h], πe,vx(σ(vx)) = πe,vy(σ(vy)) .

Proposition 3.2 (δ, h-AryGapLabelCover). For any �xed integer h ≥ 2 and �xed δ > 0, there exists
an R0 such that for any integer R ≥ R0, it is NP-hard for instances G = (V,E, [L], [R], {πe,v}e∈E,v∈e) of
h-AryLabelCover with right alphabet [R] to distinguish between:

YES: There exists a labeling σ that strongly satis�es all the edges.

NO: No labeling weakly satis�es more than δ fraction of the edges.

3.1 Partitioning System

The key ingredient to prove Theorem 4 is a constant size combinatorial object called partitioning system,
generalizing the work of Feige [16] and [4]. For any set [n], Q ⊆ 2[n], we overload the de�nition Cϕ(Q) :=∑

a∈[n] ϕ(|Q|a) with |Q|a := |{P ∈ Q : a ∈ P}| and Cϕa (Q) := ϕ(|Q|a). Let us take xϕ ∈ argminx∈N∗αϕ(x),
thus αϕ = αϕ(xϕ).

We say that Q is an x-cover of x ∈ N if every element of [n] is covered x times, so Cϕ(Q) = nϕ(x).

De�nition 3.3. An ([n], h,R, ϕ, η)-partitioning system consists ofR collections of subsets of [n], P1, . . . ,PR ⊆
2[n], that satisfy xϕn

h ∈ N, xϕ ≥ h and:

1. For every i ∈ [R],Pi is a collection of h subsets Pi,1, . . . , Pi,h ⊆ [n] each of size xϕn
h which is an

xϕ-cover.

2. For any T ⊆ [R] and Q = {Pi,j(i) : i ∈ T} for some function j : T → [h], we have
∣∣∣Cϕ(Q)− ψϕ|T |,hn

∣∣∣ ≤
ηn where:

ψϕk,h := E
[
ϕ
(
Bin

(
k,
xϕ
h

))]
. (5)

Remark. In particular, for any Q = {Q1, . . . , Qk} with Qi of size xϕn
h , we have that Cϕ(Q) ≤ nϕ(k

xϕ
h ).

Indeed Cϕ(Q) =
∑

a∈[n] ϕ(|Q|a) with
∑

a∈[n] |Q|a =
∑

i∈[k] |Qi| = k · xϕnh . By concavity of ϕ and Jensen's

inequality, this function is maximized when all |Q|a are equals, where we get nϕ(k
xϕ
h ).

Proposition 3.4. For every choice of R, h ∈ N with h ≥ xϕ, η ∈ (0, 1), n ≥ η−2Rϕ(R)2 log(20(h+ 1))
such that xϕn

h ∈ N, there exists an ([n], h,R, ϕ, η)-partitioning system, which can be found in time
exp(Rn log(n)) · poly(h).

The proof can be found in Appendix D.
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3.2 The Reduction

Proof of Theorem 4. Let ε > 0. Without loss of generality, we can assume that ε < 1. We show that
it is NP-hard to reach an approximation greater than αϕ + ε for the ϕ-MaxCoverage problem, via a
reduction from δ, h-AryGapLabelCover.

• η =
ϕ(xϕ)
4xϕ

ε, so 0 < η ≤ ε < 1,

• h ≥ xϕ such that
∣∣∣ψϕh,h − αϕϕ(xϕ)

∣∣∣ ≤ η (see (5) for the de�nition of ψϕ); such a choice exists thanks

to Proposition A.9,

• θ such that for all x ≥ θ, ϕ(x)
x ≤ η, which exists since ϕ(x) = o(x),

• ξ =
xϕ
θ ,

• δ = η
2
ξ3

h2
,

• R ≥ h large enough for Proposition 3.2 to hold.

Then, given an instance G = (V,E, [L], [R],Σ, {πe,v}e∈E,v∈e) of δ, h-AryGapLabelCover, we con-
struct an instance (Γ,F , k) of the ϕ-MaxCoverage problem with:

• n a large enough integer to have the existence of ([n], h,R, ϕ, η)-partitioning systems using Proposi-
tion 3.4. Note that the size of these partitioning systems is independent of the size of the instance
G, and that one can �nd one of those in constant time, with relation to the size of the instance G,
thanks to Proposition 3.4.

• Γ = [n]× E,

• k = |V |,

• Consider a ([n], h,R, ϕ, η)-partitioning system, and call P = {P1, . . . ,PR} the corresponding set of
collections. De�ne sets T

e,vj
β = Pπe,vj (β),j × {e} for e = (v1, . . . , vh) ∈ E, j ∈ [h], β ∈ [L]. Then,

choose as cover sets F vβ :=
⊔
e∈E:v∈e T

e,v
β and take F := {F vβ , v ∈ V, β ∈ [L]}.

We will now prove that if we are in a YES instance, we have that there exists T of size k such
that Cϕ(T ) ≥ ϕ(xϕ)|Γ| (completeness). Moreover, if we are in a NO instance, then we have that for
all T of size k = |V |, Cϕ(T ) ≤ (αϕ + ε)ϕ(xϕ)|Γ| (soundness). Establishing these two properties would
conclude the proof. In fact, an algorithm for ϕ-MaxCoverage achieving a factor strictly greater than
αϕ + ε would allow us to decide whether we have YES or a NO instance of the NP-hard problem δ, h-
AryGapLabelCover.

In order to achieve this, let us de�ne Cϕ,e :=
∑

a∈[n]×{e}C
ϕ
a . In particular, Cϕ =

∑
a∈ΓC

ϕ
a =∑

e∈E C
ϕ,e. For T ⊆ F , we de�ne the relevant part of T on e by:

Te := {T e,vβ : v ∈ e, β ∈ [L], F vβ ∈ T } = {F vβ ∩ ([n]× {e}), F vβ ∈ T } .

Note that Cϕ,e(T ) = Cϕ,e(Te), and in particular Cϕ(T ) =
∑

e∈E C
ϕ,e(Te).

3.2.1 Completeness

Suppose the given h-AryLabelCover instance G is a YES instance. Then, there exists a labeling
σ : V 7→ [L] which strongly satis�es all edges. Consider the collection of |V | subsets T := {F vσ(v) : v ∈ V }.
Fix e = (v1, . . . , vh) ∈ E. Since e is strongly satis�ed by σ, there exists r ∈ [R] such that πe,vi(σ(vi)) = r for
all i ∈ [h]. Thus, Te = {T e,viσ(vi)

}i∈[h] = {Pr,i×{e}}i∈[h] is an xϕ-cover of [n]×{e}, and so Cϕ,e(Te) = nϕ(xϕ).
Thus Cϕ(T ) =

∑
e∈E C

ϕ,e(Te) = |E|ϕ(xϕ)n = ϕ(xϕ)|Γ|.
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3.2.2 Soundness

Suppose the given h-AryLabelCover instance G is a NO instance. Let us prove the contrapositive of
the soundness: we suppose that there exists T of size k = |V | such that Cϕ(T ) > (αϕ + ε)ϕ(xϕ)|Γ|. Let
us show that there exists a labeling σ that weakly satis�es a strictly larger fraction of the edges than δ.

For every vertex v ∈ V , we de�ne L(v) := {β ∈ [L] : F vβ ∈ T } to be the candidate set of labels that can
be associated with the vertex v. We extend this de�nition to hyperedges e = (v1, . . . , vh) where we de�ne
L(e) :=

⋃
i∈[h] L(vi) to be the multiset of all labels associated with the edge. Note that |Te| = |L(e)|.

We say that e = (v1, . . . , vh) ∈ E is consistent if and only if ∃x 6= y ∈ [h], πe,vx(L(vx))∩πe,vy(L(vy)) 6= ∅.
We then decompose E in three parts:

• B is the set of edges e ∈ E with |L(e)| ≥ h
ξ .

• N is the set of consistent edges e ∈ E with |L(e)| < h
ξ .

• I = E − (B ∪N) is the set of inconsistent edges e ∈ E with |L(e)| < h
ξ .

We want to show that the contribution of N is not too small, which we will use to construct a labeling
weakly satisfying enough edges. This comes from the following lemmas:

Lemma 3.5.
∑

e∈E |L(e)| = |E|h

Proof. Recall that our h-uniform hypergraph is regular; call d its regular degree. In particular, we have
that d|V | = |E|h. Note also that

∑
v∈V |L(v)| = |T | = |V |. Thus:∑

e∈E
|L(e)| =

∑
e∈E

∑
v∈V :v∈e

|L(v)| =
∑
v∈V

∑
e∈E:v∈e

|L(v)| = d
∑
v∈V
|L(v)| = d|V | = |E|h . (6)

Next, we bound the contribution of B:

Lemma 3.6.
∑

e∈B C
ϕ,e(Te) ≤ ε

4ϕ(xϕ)|Γ|.

Proof. We have:∑
e∈B

Cϕ,e(Te) ≤
∑
e∈B

nϕ
(
|L(e)|xϕ

h

)
by the remark on De�nition 3.3 and |Te| = |L(e)|

≤ |B| · nϕ
(∑

e∈B |L(e)|
|B|

xϕ
h

)
by Jensen's inequality on concave ϕ

≤ |B| · nϕ
( |E|h
|B|

xϕ
h

)
since ϕ nondecreasing and

∑
e∈B
|L(e)| ≤ |E|h by Lemma 3.5

=
ϕ
( |E|xϕ
|B|

)
|E|xϕ
|B|

xϕ|Γ| .

(7)

We have seen that
∑

e∈B |L(e)| ≤ |E|h, but
∑

e∈B |L(e)| ≥ |B|hξ by de�nition of B, so we have that
|B|
|E| ≤ ξ. Thus

|E|xϕ
|B| ≥

xϕ
ξ = θ. By de�nition of θ, we get that

∑
e∈B C

ϕ,e(Te) ≤ ηxϕ|Γ| = ε
4ϕ(xϕ)|Γ|.

In order to bound the contribution of I, we will prove a property on inconsistent edges:
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Proposition 3.7. Let e = (v1, . . . , vh) ∈ E be an inconsistent hyperedge with respect to T . Then we

have that
∣∣∣Cϕ,e(Te)− ψϕ|L(e)|,hn

∣∣∣ ≤ ηn.
Proof. Since e is inconsistent, ∀x 6= y ∈ [h], πe,vx(L(vx)) ∩ πe,vy(L(vy)) = ∅. Therefore, for every i ∈ [R],
there is at most one v ∈ e such that i ∈ πe,v(L(v)), i.e., Te intersects with Pi × {e} in at most one subset.
This gives us a subset T ⊆ [R] and a function j : T → [h] such that Te = {Pi,j(i) × {e} : i ∈ T}. As
a consequence, |T | = |Te| = |L(e)| and by the second condition of the partitioning system, we get the
expected result.

Now, we can bound the contribution of I:

Lemma 3.8.
∑

e∈I C
ϕ,e(Te) ≤ (αϕ + ε

2)ϕ(xϕ)|Γ|.

Proof. Thanks to Proposition 3.7, we have:∑
e∈I

Cϕ,e(Te) ≤
∑
e∈I

(ψϕ|L(e)|,h + η)n ≤
∑
e∈E

(ψϕ|L(e)|,h + η)n , (8)

since I ⊆ E and ψϕ|L(e)|,h ≥ 0. But
∑

e∈E |L(e)| = |E|h by Lemma 3.5 and x 7→ ψϕx,h is concave thanks

to Proposition A.11, so we can use Jensen's inequality to get
∑

e∈E ψ
ϕ
|L(e)|,h ≤ |E|ψ

ϕ∑
e∈E |L(e)|
|E| ,h

= |E|ψϕh,h
and thus: ∑

e∈I
Cϕ,e(Te) ≤ (ψϕh,h + η)n|E| ≤ (αϕϕ(xϕ) + 2η)|Γ| , (9)

by de�nition of h. This implies that the total contribution of inconsistent edges I is at most
∑

e∈I C
ϕ,e(Te) ≤

(αϕϕ(xϕ) + 2η)|Γ| ≤ (αϕ + ε
2)ϕ(xϕ)|Γ| by de�nition of η.

Lemma 3.9.
|N |
|E| ≥ ξη.

Proof. Since we have supposed that
∑

e∈E C
ϕ,e(Te) = Cϕ(T ) > (αϕ + ε)ϕ(xϕ)|Γ|, and with the help of

Lemmas 3.6 and 3.8, we have that the contribution of N is:∑
e∈N

Cϕ,e(Te) >
ε

4
ϕ(xϕ)|Γ| .

However, we have that for e ∈ N that Cϕ,e(Te) ≤ nϕ
(
|Te|xϕh

)
= nϕ

(
|L(e)|xϕh

)
≤ nϕ

(
xϕ
ξ

)
≤ nxϕ

ξ

thanks to the remark on De�nition 3.3 and the bound |L(e)| < h
ξ . This implies that:

|N |
|E|
≥ ξ

xϕ

εϕ(xϕ)

4
= ξη .

Finally, we construct a randomized labeling σ : V 7→ [L] as follows: for v ∈ V , if L(v) 6= ∅, set σ(v)
uniformly from L(v), otherwise set it arbitrarily. We claim that in expectation, this labeling must weakly
satisfy δ fraction of the hyperedges.

To see this, �x any e = (v1, . . . , vh) ∈ N . Thus ∃x 6= y ∈ [h], πe,vx(L(vx)) ∩ πe,vy(L(vy)) 6= ∅.
Furthermore |L(vx)|, |L(vy)| ≤ h

ξ . Thus, we have that πe,vx(L(vx)) = πe,vy(L(vy)) with probability at least

1
|L(vx)||L(vy)| ≥

(
ξ
h

)2
.
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Therefore:
EσEe∼E [σ weakly satis�es e]

≥ ξηEσEe∼E [σ weakly satis�es e|e ∈ N ] by Lemma 3.9

>
η

2

ξ3

h2
= δ .

(10)

In particular there exists some labeling σ such that Ee∼E [σ weakly satis�es e] > δ, and thus the
soundness is also proved.

3.3 Further hardness under Gap-ETH

The Gap Exponential Time hypothesis states that, for some constant δ > 0, there is no 2o(n)-time algorithm
that, given n-variable 3-SAT formula, can distinguish whether the formula is fully satis�able or that it is
not even (1−δ)-satis�able. Gap-ETH is a standard assumption in proving FPT hardness of approximation
(see e.g. [9]). Under such hypothesis, Manurangsi showed the following theorem:

Theorem 3.10 ([21], adapted to (δ, h)-AryGapLabelCover). Assuming Gap-ETH, for every δ > 0,
every h ∈ N, h ≥ 2 and any su�ciently large R ∈ N (depending on δ, h), no f(k) · No(k)-time algorithm
can solve (δ, h)-AryGapLabelCover with right alphabet [R], where k denotes the number of vertices
in h-AryLabelCover, N is the size of the instance, and f can be any function.

Such a statement can be made in terms of the (δ, h)-AryGapLabelCover problem, since it can be
shown to be equivalent to δ-Gap-Label-Cover(t, R) (see Appendix C for more details).

Furthermore, in the previous reduction, the constructed instance (Γ, k,F) sizes are |Γ| = n|E| (with n
a constant independent of the size of the instance), k = |V |, and |F| = k · L. Therefore, plugin Theorem
3.10 in the previous reduction leads to the following hardness result:

Theorem 5. Assuming Gap-ETH and ϕ(n) = o(n), we cannot achieve an (αϕ + ε)-approximation for the
ϕ-MaxCoverage problem, even in f(k) ·mo(k)-time, for any function f , with m the number of cover sets
and k the cardinality constraint.

4 Applications

This section shows that instantiations of ϕ-MaxCoverage encapsulate and generalize multiple problems
from �elds such as computational social choice [5] and algorithmic game theory [24].

4.1 Multiwinner Elections

As mentioned previously, multiwinner elections (with a utilitarian model for the voters) entail selection
of k (out of m) candidates that maximize the utility across n voters. Here, the utility of each voter
a ∈ [n] increases with the number of approved (by a) selections. The work of Dudycz et al. [14] study
the computational complexity of such elections and, in particular, address classic voting rules in which�
for a speci�ed sequence of nonnegative weights (w1, w2, . . .)�voter a's utility is equal to

∑j
i=1wi, when

she approves of j candidates among the selected ones. One can view this election exercise as a coverage
problem by considering subset Ti ⊆ [n] as the set of voters that approve of candidate i ∈ [m] and
ϕ(j) =

∑j
i=1wi. Indeed, for a subset of candidates S ⊆ [m], the utility of a voter a ∈ [n] is equal to

ϕ(|S|a), with |S|a = |{i ∈ S : a ∈ Ti}|.
Dudycz et al. [14] show that if the weights satisfy w1 ≥ w2 ≥ . . . (i.e., bear a diminishing returns

property) along with geometric dominance (wi · wi+2 ≥ w2
i+1 for all i ∈ N∗) and limi→∞wi = 0, then a

tight approximation guarantee can be obtained for the election problem at hand. Note that the diminishing
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returns property implies that ϕ(j) =
∑j

i=1wi is concave and limi→∞wi = 0 ensures that ϕ is sublinear
(see Proposition A.12). Hence, Theorem 1, together with Proposition A.13, can be invoked to recover the
result in [14] where we get αϕ = αϕ(1). In fact, Theorem 1 does not require geometric dominance among
the weights and, hence, applies to a broader class of voting rules. For instance, the geometric dominance
property does not hold if one considers the voting weights induced by `-MultiCoverage, i.e., wi = 1,
for 1 ≤ i ≤ `, and wj = 0 for j > `. However, using Theorem 1, we get that for this voting rule we can

approximate the optimal utility within a factor of αϕ = 1− ``e−`

`! (see Proposition B.1). Another example
of such a separation arises if one truncates the proportional approval voting. The standard proportional
approval voting corresponds to wi = 1

i , for all i ∈ N (equivalently, ϕ(j) =
∑j

i=1
1
i ) and falls within the

purview of [14]. While the truncated version with ϕ(j) =
∑min{j,`}

i=1
1
i , for a given threshold `, does not

satisfy geometric dominance, Theorem 1 continues to hold and provide a tight approximation ratio that
can be computed numerically (see Proposition A.6 and Table 1 for examples).

4.2 Resource Allocation in Multiagent Systems

A signi�cant body of prior work in algorithmic game theory has addressed game-theoretic aspects of
maximizing welfare among multiple (strategic) agents; see, e.g., [25]. Complementing such results, this
section shows that the optimization problem underlying multiple welfare-maximization games can be
expressed in terms of ϕ-MaxCoverage.

Speci�cally, consider a setting with n resources, k agents, and a (counting) function ϕ : N 7→ R+. Every
agent i is endowed with a collection of resource subsets Ai = {T i1, . . . , T imi

} ⊆ 2[n] (i.e., each T ij ⊆ [n]).
The objective is to select a subset Ai ∈ Ai, for all i ∈ [k], so as to maximize Wϕ(A1, A2, . . . , Ak) :=∑

a∈[n]wa ϕ(|A|a). Here, wa ∈ R+ is a weight associated with a ∈ [n] and |A|a := |{i ∈ [k] : a ∈ Ai}|. We
will refer to this problem as the ϕ-Resource Allocation problem.

While ϕ-Resource Allocation does not directly reduce to ϕ-MaxCoverage, the next theorem
shows that it corresponds to maximizing ϕ-coverage functions subject to a matroid constraint. Hence,
invoking our result from Section 2.1, we obtain a tight αϕ-approximation for ϕ-Resource Allocation
(see Appendix E for the proof):

Theorem 6. For any normalized nondecreasing concave function ϕ, there exists a polynomial-time αϕ-
approximation algorithm for ϕ-Resource Allocation. Furthermore, for ϕ(n) = o(n), it is NP-hard to
approximate ϕ-Resource Allocation within a factor better than αϕ + ε, for any constant ε > 0.

4.3 Vehicle-Target Assignment

Vehicle-Target Assignment [23, 25] is another problem which highlights the applicability of coverage
problems, with a concave ϕ. In particular, Vehicle-Target Assignment can be directly expressed
as ϕ-Resource Allocation: the [n] resources correspond to targets, the agents correspond to vehicles

i ∈ [k], each with a collection of covering choices Ai ⊆ 2[n], and ϕp(j) = 1−(1−p)j
p , for a given parameter

p ∈ (0, 1). As limit cases, we de�ne ϕ0(j) := limp→0 ϕ
p(j) = j and ϕ1(j) := 1. Since ϕp(j) is concave,

by Proposition B.2 and Theorem 6, we obtain a novel tight approximation ratio of αϕp = 1−e−p

p for this
problem. Also, one can look at the capped version of this problem, ϕp` (j) := ϕp(min{j, `}). In particular,
we recover the `-MultiCoverage function when p = 0. In Figure 1, we have plotted several cases of the
tight approximations αϕp

`
in function of ` for several values of `:

Paccagnan and Marden [25] study the game-theoretic aspects of Vehicle-target assignment. A
key goal in [25] is to bound the welfare loss incurred due to strategic selection by the k vehicles, i.e., the
selection of each Ai ∈ Ai by a self-interested vehicle/agent i ∈ [k]. The loss is quanti�ed in terms of
the Price of Anarchy (PoA). Formally, this performance metric is de�ned as ratio between the welfare
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Figure 1: Tight approximation ratios αϕp
`
, where ` is the rank of the capped version of the p-Vehicle-

Target Assignment problem. When p = 0, we recover the `-coverage problem.

of the worst-possible equilibria and the optimal welfare. Paccagnan and Marden [25] show that, for
computationally tractable equilibrium concepts (in particular, for coarse correlated equilibria), tight price
of anarchy bounds can be obtained via linear programs.

Note that our hardness result (Theorem 1) provides upper bounds on PoA of tractable equilibrium
concepts�this follows from the observation that computing an equilibrium provides a speci�c method for
�nding a coverage solution. In [10] and in the particular case of the `-MultiCoverage problem, it is
shown that this in fact an equality, i.e., PoA = αϕ if ϕ(j) = min{j, `} for all values of `. However,
numerically comparing the approximation ratio for Vehicle-Target Assignment, αϕp = 1−e−p

p , with
the optimal PoA bound, we note that αϕp can in fact be strictly greater than the PoA guarantee; see
Figure 2.

Another form of the current problem, considered in [25], corresponds to ϕd(j) = jd, for a given param-
eter d ∈ (0, 1). We refer to this instantiation as the d-Power function and for it obtain the approximation
ratio αϕd = e−1

∑+∞
k=1

kd

k! (Proposition B.3). In this case, the question whether the inequality PoA ≤ αϕ
is tight remains open; see Figure 3.

4.4 Welfare Maximization for ϕ-Coverage

Maximizing (social) welfare by partitioning items among agents is a key problem in algorithmic game
theory; see, e.g., the extensive work on combinatorial auctions [24]. The goal here is to partition t items
among a set of k agents such that the sum of values achieved by the agents�referred to as the social
welfare�is maximized. That is, one needs to partition [t] into k pairwise disjoint subsets A1, A2, . . . , Ak
with the objective of maximizing

∑k
i=1 vi(Ai). Here, vi(S) denotes the valuation that agent i has for a

subset of items S ⊆ [t].
When each agent's valuation vi is submodular, a tight (1−e−1)-approximation ratio is known for social

welfare maximization [30]. This section shows that improved approximation guarantees can be achieved
if, in particular, the agents' valuations are ϕ-coverage functions. Towards a stylized application of such
valuations, consider a setting in which each �item� b ∈ [t] represents a bundle (subset) of goods Tb ⊆ [n] and
the value of an agent increases with the number of copies of any good a ∈ [n] that get accumulated. Indeed,
if each agent's value for j copies of a good is ϕ(j), then we have a ϕ-coverage function and the overall

optimization problem is �nd a k-partition, A1, A2, . . . , Ak, of [t] that maximizes
∑k

i=1

(∑
a∈[n] ϕ (|Ai|a)

)
,

where |Ai|a := {b ∈ Ai : a ∈ Tb}.
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Figure 2: Comparison between the PoA and αϕ for the Vehicle-Target Assignment problem. Using
the linear program found in [25], we were able to compute the blue curve PoA20, the Price of Anarchy of
this problem for m = 20 players. Since the PoA only decreases when the number of players grows, this
means that PoA < αϕ in that case. As a comparison, the red curve Curv depicts the general approximation
ratio (see [28]) obtained for submodular function with curvature c, with c = 1− ϕp(m) + ϕp(m− 1) here.
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Figure 3: Comparison between the PoA and αϕ for the d-Power problem. Using the linear program found
in [25], we were able to compute the blue curve PoA20, the Price of Anarchy of this problem for m = 20
players. Here, the question whether the inequality PoA ≤ αϕ is tight remains open. As a comparison, the
red curve Curv depicts the general approximation ratio (see [28]) obtained for submodular function with
curvature c, with c = 1− ϕd(m) + ϕd(m− 1) here.

In the current setup, one can obtain an αϕ approximation ratio for social-welfare maximization by
reducing this problem to ϕ-coverage with a matroid constraint, and applying the result from Section 2.1.
Speci�cally, we can consider a partition matroid over the universe [t]× [k]: for a bundle/item b ∈ [t] and an
agent i ∈ [k], the element (b, i) in the universe represents that bundle b is assigned to agent i, i.e., b ∈ Ai.
The partition-matroid constraint is imposed to ensure that each bundle b is assigned to at most one agent.
Furthermore, we can create k copies of the underlying set of goods [n] and set T(b,i) := {(a, i) : a ∈ Tb}
to map the ϕ-coverage over the universe to the social-welfare objective. This, overall, gives us the desired
αϕ approximation guarantee.
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Conclusion

We have introduced the ϕ-MaxCoverage problem where having c copies of element a gives a value ϕ(c).
We have shown that when ϕ is normalized, nondecreasing and concave, we can obtain an approximation
guarantee given by the Poisson concavity ratio αϕ := minx∈N

E[ϕ(Poi(x))]
ϕ(E[Poi(x)]) and we showed it is tight for

sublinear functions ϕ. The Poisson concavity ratio strictly beats the bound one gets when using the
notion of curvature submodular functions, except in very special cases such as MaxCoverage where the
two bounds are equal.

An interesting open question is whether there exists combinatorial algorithms that achieve this ap-
proximation ratio. As mentioned in [4], for the `-MultiCoverage with ` ≥ 2, which is the special case
where ϕ(x) = min{x, `}, the simple greedy algorithm only gives a 1 − e−1 approximation ratio, which
is strictly less than the ratio αϕ = 1 − ``e−`

`! in that case. Also, for any geometrically dominant vector
w = (ϕ(i+1)−ϕ(i))i∈N which is not p-geometric, such as Proportional Approval Voting, the greedy
algorithm achieves an approximation ratio which is strictly less than αϕ (see Theorem 18 of [14]).

Another open question is whether the hardness result remains true even when ϕ(n) 6= o(n). A good
example is given by ϕ(0) = 0 and ϕ(1 + t) = 1 + (1 − c)t with c ∈ (0, 1). We know that the problem is
hard for c = 1 but easy for c = 0. One can show that the approximation ratio achieved by our algorithm
is αϕ = 1 − c

e in that case (which is the same approximation ratio obtained from the curvature in [28]),
but the tightness of this approximation ratio remains open.
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A General properties

In this section, we will assume that ϕ is speci�ed over the nonnegative integers (i.e., ϕ : N → R+) and
it is nondecreasing, concave, and normalized: ϕ(0) = 0 and ϕ(1) = 1. We will consider its piecewise
linear extension on R+ by de�ning ϕ(x) := λϕ(bxc) + (1 − λ)ϕ(dxe); here, parameter λ ∈ [0, 1] satis�es
x = λbxc+ (1− λ)dxe. Note that the piecewise linear extension is also nondecreasing and concave.

Proposition A.1. For all x ∈ R+, we have αϕ(x) ≥ min{αϕ(bxc), αϕ(dxe)}; here, αϕ(0) := lim
x→0

αϕ(x) = 1.

Proof. For any x ≥ 1, consider parameter λ ∈ [0, 1] such that x = λbxc+(1−λ)dxe. Since x 7→ E[ϕ(Poi(x))]
is concave (Proposition A.10), the following bound holds for all x ≥ 1:

E[ϕ(Poi(x))] ≥ λE[ϕ(Poi(bxc))] + (1− λ)E[ϕ(Poi(dxe))]
= λαϕ(bxc)ϕ(bxc) + (1− λ)αϕ(dxe)ϕ(dxe) by de�nition of αϕ(x)

≥ min{αϕ(bxc), αϕ(dxe)} (λϕ(bxc) + (1− λ)ϕ(dxe))
= min{αϕ(bxc), αϕ(dxe)}ϕ(x) since ϕ linear between integer points.

Therefore, αϕ(x) = E[ϕ(Poi(x))]
ϕ(x) ≥ min{αϕ(bxc), αϕ(dxe)}.

Next we will show that αϕ(x) is non-increasing from 0 to 1, which implies that for x ∈ [0, 1), we have
αϕ(x) ≥ min{αϕ(bxc), αϕ(dxe)}. Recall that ϕ, by de�nition, is linear between integers. Hence, the fact
that ϕ(0) = 0 and ϕ(1) = 1, gives us ϕ(x) = x for all x ∈ [0, 1]. Therefore,

αϕ(x) =
E[ϕ(Poi(x))]

x
= e−x

+∞∑
k=1

ϕ(k)

k

xk−1

(k − 1)!
= e−x

+∞∑
k=0

ϕ(k + 1)

k + 1

xk

k!
.

In particular, αϕ(x) is well-de�ned at 0 and αϕ(0) = e−0
∑+∞

k=0
ϕ(k+1)
k+1

0k

k! = 1. Now, consider the derivative

α′ϕ(x) = e−x

(
−

+∞∑
k=0

ϕ(k + 1)

k + 1

xk

k!
+

+∞∑
k=1

ϕ(k + 1)

k + 1

xk−1

(k − 1)!

)
= e−x

+∞∑
k=0

(
ϕ(k + 2)

k + 2
− ϕ(k + 1)

k + 1

)
xk

k!
.

Note that ϕ(k+2)
k+2 −

ϕ(k+1)
k+1 = ϕ(k+2)−ϕ(0)

(k+2)−0 − ϕ(k+1)−ϕ(0)
(k+1)−0 ≤ 0; the last inequality follows from the concavity

of ϕ. Hence, α′ϕ(x) ≤ 0. That is, αϕ(x) is non-increasing from 0 to 1.

Proposition A.2. For any ε > 0, the bound 1− αϕ(x) ≤ ε holds for all x ≥
(

6
ε

)4
.

Proof. Write X ∼ Poi(x) and note that P(X ≤ x(1− δ(x))) ≤ exp
(
− xδ(x)2

2(1+δ(x))

)
, for any positive function

δ(·) which satis�es δ(x) < 1, for all x > 1; see, e.g., [8]. Therefore,

E[ϕ(X)] ≥ e−x
+∞∑

k=dx(1−δ(x))e

ϕ(k)
xk

k!
since ϕ nonnegative (11)

≥ ϕ(x(1− δ(x)))

+∞∑
k=dx(1−δ(x))e

e−x
xk

k!
since ϕ nondecreasing (12)

≥ ϕ(x(1− δ(x)))(1− P(X ≤ x(1− δ(x)))) (13)

≥ ϕ(x(1− δ(x)))

(
1− exp

(
− xδ(x)2

2(1 + δ(x))

))
. (14)
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Next, we will show that ϕ(x(1−δ(x)))
ϕ(x) ≥ 1− δ(x)+ 1

x
1−δ(x) . Towards this end, we will �rst bound ϕ(x+y)−ϕ(x)

in terms of wxk = ϕ(x+k)−ϕ(x+k−1), which constitutes a non-increasing sequence (since ϕ is concave):

ϕ(x+ y)− ϕ(x) ≤ ϕ(x+ byc+ 1)− ϕ(x+ byc) +

byc∑
k=1

wxk ≤ (byc+ 1)wx1 .

Applying this bound to x(1− δ(x)) and xδ(x) gives us

1− ϕ(x(1− δ(x)))

ϕ(x)
=
ϕ(x)− ϕ(x(1− δ(x)))

ϕ(x)
≤ (bxδ(x)c+ 1)w

x(1−δ(x))
1

ϕ(x)

≤ xδ(x) + 1

ϕ(x)

ϕ(x(1− δ(x)))

x(1− δ(x))
≤ xδ(x) + 1

x(1− δ(x))
=
δ(x) + 1

x

1− δ(x)
. (15)

Here, wx(1−δ(x))
1 = ϕ(x(1−δ(x))+1)−ϕ(x(1−δ(x)))

(x(1−δ(x))+1)−(x(1−δ(x))) ≤
ϕ(x(1−δ(x)))−ϕ(0)

x(1−δ(x))−0 = ϕ(x(1−δ(x)))
x(1−δ(x)) follows from the concav-

ity of ϕ and ϕ(x(1−δ(x)))
ϕ(x) ≤ 1 from the fact that ϕ is nondecreasing.

Inequalities (14) and (15) lead to following upper bound on 1− αϕ(x) in terms of δ(x):

1− αϕ(x) = 1− E[ϕ(Poi(x))]

ϕ(x)
≤ 1−

(
1−

δ(x) + 1
x

1− δ(x)

)(
1− exp

(
− xδ(x)2

2(1 + δ(x))

))
≤
δ(x) + 1

x

1− δ(x)
+ exp

(
− xδ(x)2

2(1 + δ(x))

)
. (16)

Speci�cally setting δ(x) = x−
1
4 , we have (for all x ≥ 16): δ(x) ≤ 1

2 ,
1
x ≤ x−

1
4 , and exp

(
− xδ(x)2

2(1+δ(x))

)
≤

exp
(
−
√
x

4

)
≤ 2x−

1
4 . Hence, inequality (16) reduces to

1− αϕ(x) ≤ 2x−
1
4

1− 1
2

+ 2x−
1
4 ≤ 6x−

1
4 for all x ≥ 16.

If ε ≥ 1, we have 1 − αϕ(x) ≤ 1 ≤ ε. Otherwise, we have that
(

6
ε

)4 ≥ 64 ≥ 16. Therefore, given any

ε > 0, for all x ≥
(

6
ε

)4
we have 1− αϕ(x) ≤ ε.

Proposition A.3. We have that αϕ = infx∈R+ αϕ(x) = minx∈N∗ αϕ(x).

Proof. Thanks to Proposition A.1, we have that infx∈R+ αϕ(x) = infx∈N∗ αϕ(x), and thanks to Proposition
A.2, since αϕ(x) ≤ 1, we have that infx∈N∗ αϕ(x) = minx∈N∗ αϕ(x).

Proposition A.4. Cϕ is submodular, its curvature is at most c = 1− (ϕ(m)− ϕ(m− 1)) and it cannot
be improved for a general instance with m cover sets.

Proof. We use the following lemma which is trivial to prove:

Lemma A.5 (Properties of |S|a = |{i ∈ S : a ∈ Ti}|.). We have:

1. |S|a ≤ |S|,

2. |S ∪ S′|a ≤ |S|a + |S′|a. In particular, if S ⊆ T then |S|a ≤ |T |a and |S ∪ {x}|a ≤ |S|a + 1,

3. If S ⊆ T , x 6∈ T then |S|a = |T |a ⇒ |S ∪ {x}|a = |T ∪ {x}|a.
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Let us show �rst the submodularity of Cϕ. Let S ⊆ T ⊆ [m] and x 6∈ T :

Cϕ(S ∪ {x})− Cϕ(S)− (Cϕ(T ∪ {x})− Cϕ(T )) =

=
∑
a∈[n]

wa[ϕ(|S ∪ {x}|a)− ϕ(|S|a)− (ϕ(|T ∪ {x}|a)− ϕ(|T |a))] . (17)

Let us call g(a) := ϕ(|S ∪ {x}|a)− ϕ(|S|a)− (ϕ(|T ∪ {x}|a)− ϕ(|T |a)):

1. If |T |a = |S|a then thanks to Lemma A.5, we have that |T ∪ {x}|a = |S ∪ {x}|a, so g(a) = 0

2. Else, we have that |T |a > |S|a:

(a) If |S ∪ {x}|a = |S|a, then we add elements of T − S using Lemma A.5 to get that |T ∪ {x}|a =
|T |a, so g(a) = 0 in that case.

(b) Else |S ∪ {x}|a 6= |S|a. So with |S|a = k, we get that |S ∪ {x}|a = k + 1 and |T |a > |S|a so
|T |a ≥ k + 1.

i. If |T ∪ {x}|a = |T |a, then g(a) = ϕ(k + 1)− ϕ(k) ≥ 0 since ϕ is nondecreasing.

ii. Else |T ∪ {x}|a 6= |T |a so with |T |a = ` with ` ≥ k + 1, we get that |T |a = ` + 1. So we
have that:

g(a) = ϕ(k + 1)− ϕ(k)− (ϕ(`+ 1)− ϕ(`))

=
ϕ(k + 1)− ϕ(k)

(k + 1)− k
− ϕ(`+ 1)− ϕ(`)

(`+ 1)− `
≥ 0 ,

(18)

by concavity of ϕ: its slopes are nonincreasing.

So in all cases, we have g(a) ≥ 0 so Cϕ(S∪{x})−Cϕ(S)−(Cϕ(T ∪{x})−Cϕ(T )) ≥ 0: Cϕ is submodular.
Let us now compute its curvature:

c = 1− min
i∈[m]

Cϕ([m])− Cϕ([m]− {i})
Cϕ({i})− Cϕ(∅)

.

Let i ∈ [m] �xed:

Cϕ([m])− Cϕ([m]− {i})
Cϕ({i})− Cϕ(∅)

=

∑
a∈[n]wa[ϕ(|[m]|a)− ϕ(|[m]− {i}|a)]∑

a∈[n]wa[ϕ(|{i}|a)− ϕ(|∅|a)]

=

∑
a∈Ti wa[ϕ(|[m]|a)− ϕ(|[m]− {i}|a)]∑

a∈Ti wa

=

∑
a∈Ti wa[ϕ(|[m]|a)− ϕ(|[m]|a − 1)]∑

a∈Ti wa
since a ∈ Ti .

(19)

But |[m]|a ≤ m and ϕ concave, so ϕ(|[m]|a)) − ϕ(|[m]|a − 1) ≥ ϕ(m) − ϕ(m − 1) for all a ∈ [n]. As a
consequence we have that:

Cϕ([m])− Cϕ([m]− {i})
Cϕ({i})− Cϕ(∅)

≥ ϕ(m)− ϕ(m− 1) .

and this lower bound is true for its minimum over i. Thus we get that c ≤ 1− (ϕ(m)− ϕ(m− 1)). Also
one can �nd instances for all m such that this bound is tight: take T1 = {a} and ∀j ∈ [m], a ∈ Tj for
instance.
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Proposition A.6. Let ` ∈ N∗. if ∀x ≥ `, ϕ(x) = ϕ(`) + a(x− `) for some 0 ≤ a ≤ ϕ(`)− ϕ(`− 1), then
αϕ(x) is nondecreasing from ` to +∞ and:

αϕ(x) =
ϕ(`) + a(x− `)

ϕ(x)
− e−x

ϕ(x)

(∑̀
k=0

(ϕ(`) + a(x− `)− ϕ(k))
xk

k!
− ax

`+1

`!

)
.

In particular, αϕ = minx∈[`] αϕ(x), and the argmin can be computed numerically.

Proof. One can compute a closed form value for αϕ(x) using the fact that ϕ is linear from `:

αϕ(x) =
e−x

ϕ(x)

+∞∑
k=0

ϕ(k)
xk

k!
=

e−x

ϕ(x)

(∑̀
k=0

ϕ(k)
xk

k!
+

+∞∑
k=`+1

(ϕ(`) + a(k − `)) x
k

k!

)

=
ϕ(`)− a`
ϕ(x)

+
e−x

ϕ(x)

(∑̀
k=0

(ϕ(k)− ϕ(`) + a`)
xk

k!
+ ax

+∞∑
k=`+1

xk−1

(k − 1)!

)

=
ϕ(`) + a(x− `)

ϕ(x)
+

e−x

ϕ(x)

(∑̀
k=0

(ϕ(k)− ϕ(`) + a(`− x))
xk

k!
+ ax

x`

`!

)
,

and thus we get:

αϕ(x) =
ϕ(`) + a(x− `)

ϕ(x)
− e−x

ϕ(x)

(∑̀
k=0

(ϕ(`) + a(x− `)− ϕ(k))
xk

k!
− ax

`+1

`!

)
.

Let us show that it is nondecreasing from ` to +∞ by computing its derivative. Indeed, for x ≥ `, we
have that ϕ(x) = ϕ(`) + a(x− `) and ϕ′(x) = a, so:

αϕ(x) = 1− e−x
(∑̀
k=0

xk

k!
− 1

ϕ(x)

(∑̀
k=0

ϕ(k)
xk

k!
+ a

x`+1

`!

))
.

Thus:
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α′ϕ(x) = e−x

(∑̀
k=0

xk

k!
− 1

ϕ(x)

(∑̀
k=0

ϕ(k)
xk

k!
+ a

x`+1

`!

))

− e−x
(
`−1∑
k=0

xk

k!
− 1

ϕ(x)

(
`−1∑
k=0

ϕ(k + 1)
xk

k!
+ a(`+ 1)

x`

`!

)
+

a

ϕ(x)2

(∑̀
k=0

ϕ(k)
xk

k!
+ a

x`+1

`!

))

= e−x

(
x`

`!
− 1

ϕ(x)

(
`−1∑
k=0

(ϕ(k)− ϕ(k + 1))
xk

k!
+ ϕ(`)

x`

`!
+ (a(x− `)− a)

x`

`!

))

− e−x
(

a

ϕ(x)2

(∑̀
k=0

ϕ(k)
xk

k!
+ a

x`+1

`!

))

= e−x

(
x`

`!
+

1

ϕ(x)

(
`−1∑
k=0

(ϕ(k + 1)− ϕ(k))
xk

k!

)
− ϕ(x)− a

ϕ(x)

x`

`!
− a

ϕ(x)2

(∑̀
k=0

ϕ(k)
xk

k!
+ a

x`+1

`!

))

= e−x

(
1

ϕ(x)

(
`−1∑
k=0

(ϕ(k + 1)− ϕ(k))
xk

k!

)
+

a

ϕ(x)2

(
ϕ(x)

x`

`!
−
∑̀
k=0

ϕ(k)
xk

k!
− ax

`+1

`!

))
.

If a = 0, then it is nonnegative since ϕ nondecreasing and nonnegative. Otherwise, suppose that a > 0.
Then:

αϕ(x) =
ae−x

ϕ(x)2

(
`−1∑
k=0

(
ϕ(x)

ϕ(k + 1)− ϕ(k)

a
− ϕ(k)

)
xk

k!
+ (ϕ(x)− ϕ(`)− ax)

x`

`!

)

≥ ae−x

ϕ(x)2

(
`−1∑
k=0

(ϕ(x)− ϕ(k))
xk

k!
− a x`

(`− 1)!

)
,

since ϕ(k+1)−ϕ(k)
a ≥ ϕ(k+1)−ϕ(k)

ϕ(`)−ϕ(`−1) ≥ 1 by concavity of ϕ. Thus:

αϕ(x) ≥ ae−x

ϕ(x)2

(
`−1∑
k=0

(ϕ(`)− ϕ(k))
xk

k!
+ a

(
(x− `)

`−1∑
k=0

xk

k!
− x`

(`− 1)!

))
,

but:

(x− `)
`−1∑
k=0

xk

k!
− x`

(`− 1)!
= `

∑̀
k=1

xk

k!
− `

`−1∑
k=0

xk

k!
− x`

(`− 1)!
= −` ,
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so:

α′ϕ(x) ≥ ae−x

ϕ(x)2

(
`−1∑
k=0

(ϕ(`)− ϕ(k))
xk

k!
− a`

)

≥ ae−x

ϕ(x)2

(
`−1∑
k=0

(ϕ(`)− ϕ(k))
xk

k!
− (ϕ(`)− ϕ(`− 1))`

)

≥ ae−x

ϕ(x)2

(
`−1∑
k=0

(ϕ(`)− ϕ(k))
xk

k!
−

`−1∑
k=0

(ϕ(`)− ϕ(`− 1))
xk

k!

)
since

xk

k!
≥ `k

k!
≥ 1 for k ≤ `

=
ae−x

ϕ(x)2

(
`−1∑
k=0

(ϕ(`− 1)− ϕ(k))
xk

k!

)
≥ 0 since ϕ nondecreasing .

Thus, αϕ(x) is nondecreasing from ` to +∞, and we get that αϕ = minx∈[`] αϕ(x).

Proposition A.7. The Poisson concavity ratio αϕ is always greater than or equal to the curvature-
dependent ratio de�ned in [28]: if ϕ is linear from m with slope 1− c = ϕ(m)− ϕ(m− 1), then we have
αϕ ≥ 1− ce−1.

Proof. Note that by Proposition A.4, the curvature of Cϕ is equal to c, so the e�ciency of the algorithm
described in [28] is indeed 1− ce−1. Thanks to Proposition A.6, we have that αϕ = minx∈[`] αϕ(x), so we
only have to show that:

min
`∈[m]

αϕ(`) ≥ 1− ce−1 .

Let us denote by ϕ(`,a) the function which is equal to ϕ for k ≤ ` and linear from ` with nonnegative
coe�cient a: ∀k ≥ `, ϕ(`,a)(k) = ϕ(`) + a(k − `). Note that we ask that 0 ≤ a ≤ ϕ(`)− ϕ(`− 1) in order
to ϕ(`,a) to be nondecreasing concave, and ` ≥ 1.

This is done in two steps:

1. Let 1 ≤ ` ≤ m, then:

αϕ(`) =
E[ϕ(Poi(`))]

ϕ(`)
=

E[ϕ(Poi(`))]

ϕ(`,1−c)(`)
≥ E[ϕ(`,1−c)(Poi(`))]

ϕ(`,1−c)(`)
= αϕ(`,1−c)(`) ,

since ϕ(`,1−c)(x) ≤ ϕ(x) for all x. Note that we have ϕ(`)− ϕ(`− 1) ≥ ϕ(m)− ϕ(m− 1) = 1− c by
concavity of ϕ. So, we only have to show that for all 1 ≤ ` ≤ m, we have α(`,1−c) := αϕ(`,1−c)(`) ≥
1− ce−1.

2. Let us show that α(`,1−c) := αϕ(`,1−c)(`) ≥ 1− ce−1 for 1 ≤ ` ≤ m.

Using the closed-form expression of Proposition A.6 on ϕ(`,1−c) evaluated at `, one gets:

α(`,1−c) = αϕ(`,1−c)(`) = 1− e−`
(
`−1∑
k=0

(
ϕ(`)− ϕ(k)

ϕ(`)

)
`k

k!
− 1− c
ϕ(`)

``+1

`!

)
.

The worst case occurs when ϕ(`,1−c) is linear between 1 and `, which we call ϕ(`,1−c)
lin

. Indeed, if we

call b := ϕ(`)−1
`−1 , then for 1 ≤ k ≤ `, we have that ϕ(`,1−c)

lin
(k) = 1 + b(k − 1). But:
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`−1∑
k=0

(
ϕ(`)− ϕ(k)

ϕ(`)

)
`k

k!
≤ 1 +

`−1∑
k=1

(
ϕ(`)− (1 + b(k − 1))

ϕ(`)

)
`k

k!
,

since ϕ(k) ≥ 1 + b(k − 1), because ϕ(k)−ϕ(1)
k−1 ≥ ϕ(`)−ϕ(1)

`−1 = b by concavity of ϕ. In that case, the
expression can be simpli�ed:

α(`,1−c) ≥ α
ϕ
(`,1−c)
lin

(`) = 1− e−`
(

1 +
`−1∑
k=1

(
b(`− k)

ϕ(`)

)
`k

k!
− 1− c
ϕ(`)

``+1

`!

)

= 1− e−`
(

1 +
b`

ϕ(`)

`−1∑
k=1

`k

k!
− b`

ϕ(`)

`−1∑
k=1

`k−1

(k − 1)!
− 1− c
ϕ(`)

``+1

`!

)

= 1− e−`

ϕ(`)

(
ϕ(`) + b`

(
``−1

(`− 1)!
− 1

)
− (1− c)`

`+1

`!

)
= 1− e−`

ϕ(`)

(
1 + b(`− 1) + b

(
``

(`− 1)!
− `
)
− (1− c)`

`+1

`!

)
= 1− e−`

1− b+ (b− (1− c)) ``+1

`!

ϕ(`)
.

We have also that b ≥ ϕ(`)−ϕ(`−1) ≥ 1−c since ϕ concave. As a function of (b−(1−c)) for c �xed,

we get g(x) := 1−e−`
c+x

(
``+1

`!
−1

)
1+(x+(1−c))(`−1) . In particular, we have that α

ϕ
(`,(1−c))
lin

(`) = g(b− (1−c)), since

ϕ(`) = 1 + b(`− 1). We have that g′(x) = −e−`
`
(

``

`!
−1

)
+(1−c) ``+1

`!
(`−1)

(1+(x+(1−c))(`−1))2
≤ 0, so g is nonincreasing: it

is thus enough to show that g(c) ≥ 1− ce−1 to get the result, since α(`,1−c) ≥ g(b− (1− c)) ≥ g(c) ≥
1− ce−1. But:

g(c) = 1−
c `

`+1

`!

1 + `− 1
e−` = 1− c`

`

`!
e−` ≥ 1− ce−1 ,

since ``

`! e
−` is a decreasing sequence.

Proposition A.8. Let F (x) := EX∼x[Cϕ(X)] for x ∈ {0, 1}m. We have an explicit formula for F :

F (x) =
n∑
a=1

m∑
k=0

[ 1

m+ 1

m∑
`=0

ω−`km+1

∏
j∈[m]:a∈Tj

(1 + (ω`m+1 − 1)xj)
]
ϕ(k) with ωm+1 := exp

(
2iπ

m+ 1

)
.

Thus, F is computable in polynomial time in n and m.

Proof. Recall that Cϕ(S) =
∑n

a=1C
ϕ
a (S), so by linearity of expectation we can focus on EX∼x[Cϕa (X)].

But Cϕa (X) = ϕ(|X|a) where |X|a = |{i ∈ [m] : Xi = 1 and a ∈ Ti}| ∈ [0,m]. Thus:

EX∼x[Cϕa (X)] =

m∑
k=0

PX∼x(|X|a = k)ϕ(k) .
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It remains to compute the distribution of |X|a. But |X|a =
∑

i∈[m]:a∈Ti Xi and Xi ∼ Ber(xi). Thus,
|X|a ∼ PoiBin((xi)i∈[m]:a∈Ti), which is known as the Poisson binomial law. Thanks to [18], we have that:

PX∼x(|X|a = k) =
1

m+ 1

m∑
`=0

ω−`km+1

∏
j∈[m]:a∈Tj

(1 + (ω`m+1 − 1)xj) ,

where ωm+1 := exp
(

2iπ
m+1

)
, and the result is proved.

Proposition A.9. We have that

|E[ϕ(Bin(n, x/n))]− E[ϕ(Poi(x))]| ≤ xϕ(n)

2n
+
xn+1

n!
.

In particular when ϕ(n) = o(n):

lim
n→∞

E[ϕ(Bin(n, xϕ/n))] = E[ϕ(Poi(xϕ))] = αϕϕ(xϕ) .

Proof. Thanks to [2, 29], we have that the total variation distance between Bin(n, x/n) and Poi(x) is
bounded in the following way:

∆(Bin(n, x/n),Poi(x)) ≤ 1− e−x

2x
n ·
(x
n

)2
≤ x

2n
.

Thus with B ∼ Bin(n, x/n) and P ∼ Poi(x):

|E[ϕ(B)]− E[ϕ(P )]| =

∣∣∣∣∣
+∞∑
k=0

ϕ(k)P(B = k)−
+∞∑
k=0

ϕ(k)P(P = k)

∣∣∣∣∣
=

∣∣∣∣∣
+∞∑
k=0

ϕ(k)(P(B = k)− P(P = k))

∣∣∣∣∣
≤

+∞∑
k=0

ϕ(k)|P(B = k)− P(P = k)|

≤ ϕ(n)∆(Bin(n, x/n),Poi(x)) +
+∞∑

k=n+1

ϕ(k)P(P = k)

≤ xϕ(n)

2n
+ e−x

+∞∑
k=n+1

k
xk

k!
since ϕ(k) ≤ k

=
xϕ(n)

2n
+ xe−x

+∞∑
k=n

xk

k!

≤ xϕ(n)

2n
+
xn+1

n!
→

n→∞
0 when ϕ(n) = o(n) ,

(20)

by a standard upper bound on the remainder of the exponential series.

Proposition A.10. The function g : x 7→ E[ϕ(Poi(x))] on R+ is C∞ nondecreasing concave.
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Proof. Since we have that 0 ≤ ϕ(k) ≤ k for k ∈ N, in particular g(x) = e−x
∑+∞

k=0 ϕ(k)x
k

k! is C∞. It is thus
enough to compute its �rst and second derivatives:

g′(x) = − e−x
+∞∑
k=0

ϕ(k)
xk

k!
+ e−x

+∞∑
k=1

ϕ(k)k
xk−1

k!

= − e−x
+∞∑
k=0

ϕ(k)
xk

k!
+ e−x

+∞∑
k=0

ϕ(k + 1)
xk

k!

= e−x
+∞∑
k=0

(ϕ(k + 1)− ϕ(k))
xk

k!
.

(21)

But ϕ(k + 1)− ϕ(k) ≥ 0 since ϕ nondecreasing, so g′(x) ≥ 0 and g is nondecreasing.
The calculus of g′′ is the same where we replace ϕ by ψ(k) := ϕ(k+ 1)−ϕ(k) which is a nonincreasing

function by concavity of ϕ. Thus:

g′′(x) = e−x
+∞∑
k=0

(ψ(k + 1)− ψ(k))
xk

k!
≤ 0 .

since ψ(k + 1)− ψ(k) ≤ 0, and so g is concave.

Proposition A.11. The function gq : n 7→ E[ϕ(Bin(n, q))] de�ned on N is nondecreasing concave. As
a consequence, one can uses Jensen's inequality on the piecewise linear extension of gq which is also
continuous.

Proof. Bin(n, q) ≤st Bin(n+ 1, q) and we have that ϕ is nondecreasing, so E[ϕ(Bin(n, q))] ≤ E[ϕ(Bin(n+
1, q))], ie gq(n+ 1)− gq(n) ≥ 0: gq is nondecreasing.

We show then the concavity, ie. gq(n+ 2)− gq(n+ 1) ≤ gq(n+ 1)− gq(n). Call ψ(x) = ϕ(x+ 1)−ϕ(x)
which is nonincreasing since ϕ concave. Let us take Xk,q ∼ Bin(k, q). Then:

gq(n+ 1) = E[ϕ(Xn+1,q)]

=
n∑
i=0

E[ϕ(Xn,q +X1,q)|Xn,q = i]P(Xn,q = i)

=
n∑
i=0

E[ϕ(i+X1,q)− ϕ(i)]P(Xn,q = i) +
n∑
i=0

ϕ(i)P(Xn,q = i)

=
n∑
i=0

E[ϕ(i+X1,q)− ϕ(i)]P(Xn,q = i) + gq(n) .

(22)

Thus:

gq(n+ 1)− gq(n) =
n∑
i=0

E[ϕ(i+X1,q)− ϕ(i)]P(Xn,q = i)

=
n∑
i=0

q(ϕ(i+ 1)− ϕ(i))P(Xn,q = i)

= qE[ψ(Bin(n, q))] .

(23)

Then thanks to the fact that Bin(n, q) ≤st Bin(n + 1, q) and ψ is nonincreasing, we have that
E[ψ(Bin(n, q))] ≥ E[ψ(Bin(n+ 1, q))], ie. gq(n+ 2)− gq(n+ 1) ≤ gq(n+ 1)− gq(n).
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Proposition A.12. With wi := ϕ(i)− ϕ(i− 1), we have:

lim
i→+∞

wi = 0 ⇐⇒ ϕ(n) = o(n) .

Proof. • (⇒) Let ε > 0, let us �nd a rank N such that for n ≥ N , ϕ(n)
n ≤ ε. Let N0 the rank from

which wi ≤ ε
2 and N1 the rank from which 1

n

∑N0−1
i=1 wi ≤ ε

2 . We have

ϕ(n)

n
=

1

n

n∑
i=1

wi ≤
1

n

N0−1∑
i=1

wi +
1

n

n−1∑
i=N0

ε

2

≤ ε

2
+
ε

2
= ε for n ≥ max(N0, N1) =: N .

(24)

• (⇐) Since wi = ϕ(i)− ϕ(i− 1) is nonnegative and nonincreasing (respectively because ϕ is nonde-
creasing and concave), then the sequence w has a limit L ≥ 0. But

ϕ(n)

n
=

1

n

n∑
i=1

wi ≥ L .

Since the left hand side tends to 0 by hypothesis, this means that L = 0.

Proposition A.13. If wi := ϕ(i) − ϕ(i − 1) is geometrically dominant, ie. ∀i ∈ N∗, wi
wi+1

≥ wi+1

wi+2
, then

αϕ = αϕ(1).

Remark. Proposition A.13 and in particular its proof uses similar ideas to the sketch provided in [14].

Proof. Let g(k) = E[ϕ(Poi(k))], and thus αϕ(k) = g(k)
ϕ(k) . Let us show that for k ∈ N∗, αϕ(k) ≥ αϕ(1),

which will be enough to conclude. In order to show this, we will need the following lemmas:

Lemma A.14. ∀k < i ∈ N, wi ≥ wk+1wi−k and thus ∀k, j ∈ N, ϕ(k + j)− ϕ(k) ≥ wk+1ϕ(j).

Proof. We have that:

wi =
wi
wi−1

wi−1

wi−2
. . .

wi−k+1

wi−k
wi−k .

But for j ∈ [k]:

wi−j+1

wi−j
≥
w(i−1)−j+1

w(i−1)−j
≥ . . . ≥

w(k+1)−j+1

w(k+1)−j
,

since w is geometrically dominant and k + 1 ≤ i. Thus applying this bound on each term of the
previous product, we get:

wi ≥
wk+1

wk

wk
wk−1

. . .
w2

w1
wi−k =

wk+1

w1
wi−k = wk+1wi−k .

In particular, ∀k, j ∈ N, we get:

ϕ(k + j)− ϕ(k) =

k+j∑
i=k+1

wi ≥ wk+1

j∑
i=1

wi = wk+1ϕ(j) .
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Lemma A.15. The piecewise linear extension on [1,+∞[ of w, de�ned on integers by w(k) = wk, is
convex.

Proof. We will show that ∀k ∈ N∗, wk+2 −wk+1 ≥ wk+1 −wk which implies the convexity of its piecewise
linear extension on [1,+∞[. For k ∈ N∗ we have:

wk+1

wk+2
− 1 ≤ wk+1

wk+2

(wk+1

wk+2
− 1
)
≤ wk+1

wk+2

( wk
wk+1

− 1
)

=
wk − wk+1

wk+2
,

since w is nonnegative nonincreasing (respectively ϕ nondecreasing concave) and wk+1

wk+2
≤ wk

wk+1
since

w is geometrically dominant. Then, multiplying by −wk+2 ≤ 0 gives the expected result wk+2 − wk+1 ≥
wk+1 − wk.

We have g(k+ 1) = E[ϕ(Poi(k+ 1))] = E[ϕ(Poi(k) +Poi(1))] since Poi(k+ 1) ∼ Poi(k) +Poi(1). Thus:

g(k + 1)− g(k) = EX,X′∼Poi(k),Y∼Poi(1)[ϕ(X + Y )− ϕ(X ′)]

= EX∼Poi(k),Y∼Poi(1)[ϕ(X + Y )− ϕ(X)]

≥ EX∼Poi(k),Y∼Poi(1)[wX+1ϕ(Y )] by Lemma A.14

= EX∼Poi(k)[w(X + 1)]EY∼Poi(1)[ϕ(Y )] by independence of w(X + 1) and ϕ(Y ).

(25)

Since w is convex on [1,+∞[ by Lemma A.15 and Poi(k)+1 ∈ [1,+∞[, we have that E[w(Poi(k)+1)] ≥
w(E[Poi(k)+1]) = w(k+1) = wk+1 thanks to Jensen's inequality. Note that g(0) = E[ϕ(Poi(0))] = ϕ(0) =
0. Then:

g(k) =

k−1∑
i=0

g(i+ 1)− g(i) ≥
( k−1∑
i=0

wi+1

)
E[ϕ(Poi(1))] = ϕ(k)g(1) .

Therefore:

αϕ(k) =
g(k)

ϕ(k)
≥ g(1) =

g(1)

ϕ(1)
= αϕ(1) .

B Calculations of αϕ

Proposition B.1. For ` ∈ N∗ and ϕ(j) = min{j, `}, we have that αϕ = 1− ``e−`

`! .

Proof. Thanks to Proposition A.7, we have that αϕ = minx∈N∗ αϕ(x). Let us compute E[ϕ(Poi(x))]:
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E[ϕ(Poi(x))] = e−x
+∞∑
k=0

ϕ(k)
xk

k!

= e−x
∑̀
k=0

k
xk

k!
+ e−x

+∞∑
k=`+1

`
xk

k!

= e−xx

`−1∑
k=0

xk

k!
+ `e−x

+∞∑
k=`+1

xk

k!

= e−x
[
(x− `)

`−1∑
k=0

xk

k!
− `x

`

`!

]
+ `e−x

+∞∑
k=0

xk

k!

= `− e−x
[ x`

(`− 1)!
− (x− `)

`−1∑
k=0

xk

k!

]
.

(26)

Let us show that αϕ(x) takes its minimum in `, where we have indeed:

αϕ(`) =
1

`

(
`− e−`

[ ``

(`− 1)!
− (`− `)

`−1∑
k=0

`k

k!

])
= 1− e−` `

`

`!
.

Thanks to proposition A.6, αϕ(x) is nondecreasing from ` to +∞. Suppose now that ` ≥ 2 (otherwise
the result is already proved). Since αϕ(x) is di�erentiable, we have for 1 ≤ x ≤ `:

α′ϕ(x) = − `

x2
+ e−x

[ x`−1

(`− 1)!
−

`−1∑
k=0

xk

k!
+ `

`−2∑
k=0

xk

(k + 1)!
+
`

x

]
− e−x

[ x`−2

(`− 2)!
−

`−2∑
k=0

xk

k!
+ `

`−3∑
k=0

xk

(k + 2)k!
− `

x2

]
=

`

x

(
e−x
(

1 +
1

x

)
− 1

x

)
+ e−x

[( `

`− 1
− 1
) x`−2

(`− 2)!
+ `

`−3∑
k=0

( xk

(k + 1)!
− xk

(k + 2)k!

)]
=

`

x

(
e−x
(

1 +
1

x

)
− 1

x

)
+ e−x

[ x`−2

(`− 1)!
+ `

`−3∑
k=0

xk

k!

( 1

k + 1
− 1

k + 2

)]
=

`

x

(
e−x
(

1 +
1

x
+
x`−1

`!
+ x

`−3∑
k=0

xk

k!

1

(k + 1)(k + 2)

)
− 1

x

)
=

`e−x

x2

((
1 + x+

x`

`!
+

`−3∑
k=0

xk+2

(k + 2)!

)
− ex

)
=

`e−x

x2

(∑̀
k=0

xk

k!
− ex

)
≤ 0 .

(27)

since the partial sum of the exponential series is bounded by its total sum. Thus αϕ(x) is nonincreasing
from 1 to `, and nondecreasing after, so it takes indeed its minimum in ` and the proposition is proved.

Proposition B.2. For p ∈ (0, 1) and ϕ(j) = 1−(1−p)j
p , we have that αϕ = 1−e−p

p .
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Proof. By de�nition:

αϕ(x) =
E[ϕ(Poi(x))]

ϕ(x)
=

∑+∞
k=0 ϕ(k)e−x x

k

k!

ϕ(x)

=
1− e−x

∑+∞
k=0(1− p)k xkk!

pϕ(x)

=
1− e−xe(1−p)x

pϕ(x)
=

1− e−px

pϕ(x)
.

(28)

If x ≥ 1, αϕ(x) = 1−e−px

1−(1−p)x = 1−e−px

1−e−qx with q = ln
(

1
1−p

)
> 0 and:

α′ϕ(x) =
pe−px(1− e−qx)− qe−qx(1− e−px)

(1− e−qx)2
=
pe−px − qe−qx + (q − p)e−(p+q)x

(1− e−qx)2
.

Let us take t = p
q ∈ (0, 1), since q = ln

(
1

1−p

)
> p > 0, x1 = −px and x2 = −(p+ q)x. Then by strict

convexity of the exponential function, we have:

etx1+(1−t)x2 < tex1 + (1− t)ex2 =
pe−px + (q − p)e−(p+q)x

q
.

But tx1 + (1− t)x2 = −p2x
q + −(q−p)(p+q)x

q = −p2x
q + −(q2x−p2x)

q = −qx, so we get pe−px − qe−qx + (q −
p)e−(p+q)x > 0, and α′ϕ(x) > 0. Thus, αϕ(x) increases from 1 to in�nity and takes its minimum in 1:

αϕ = αϕ(1) =
1− e−p

p
.

Proposition B.3. For d ∈ (0, 1) and ϕ(j) = jd, we have that αϕ = e−1
∑+∞

k=1
kd

k! .

Proof. We have for x ≥ 1:

αϕ(x) =
E[Poi(x)d]

ϕ(x)
=
e−x

∑+∞
k=0 k

d xk

k!

ϕ(x)
= e−x

+∞∑
k=0

kd
xk−d

k!
.

Then:

α′ϕ(x) = − αϕ(x) + e−x
+∞∑
k=1

(k − d)kd
xk−d−1

k!

= − αϕ(x) + e−x
+∞∑
k=0

(k + 1− d)(k + 1)d
xk−d

(k + 1)!

= − αϕ(x) + e−x
(

(1− d)x−d +

+∞∑
k=1

(k + 1− d)(k + 1)d−1x
k−d

k!

)
= e−xx−d

(
1− d+

+∞∑
k=1

(
k + 1− d
k + 1

(k + 1)d − kd)x
k

k!

)
.

(29)

But the function f(k) = k+1−d
k+1 (k + 1)d − kd is positive on R∗+, so we get that α′ϕ(x) > 0 for x ≥ 1,

thus αϕ(x) is increasing from 1 to +∞, so αϕ = αϕ(1) = e−1
∑+∞

k=1
kd

k! .
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C NP-hardness of δ, h-AryGapLabelCover

Proof of Proposition 3.2. We reduce from the Label Cover problem described in [14] which is known to be
an NP-hard problem. The main idea of this reduction is the usual equivalence between bipartite graphs
and hypergraphs.

De�nition C.1. A Label Cover instance L = (A,B,E, [L], [R], {πe}e∈E) consists of a bi-regular bipartite
graph (A,B,E) with right degree t, alphabet sets [L], [R] and for every edge e ∈ E, a constraint πe : [L]→
[R]. A labeling of L is a function σ : A → [L]. We say that σ strongly satis�es a right vertex v ∈ B if
for every two neighbours u, u′ of v, we have π(u,v)(σ(u)) = π(u′,v)(σ(u′)). Moreover, we say that σ weakly

satis�es a right vertex v ∈ B if there exists two neighbours u, u′ of v such that π(u,v)(σ(u)) = π(u′,v)(σ(u′)).

Theorem C.2 (δ-Gap-Label-Cover(t, R) from [14]). For any �xed integer t ≥ 2 and �xed δ > 0, there ex-
istsR0 such that for any integerR ≥ R0, it is NP-hard for Label Cover instances L = (A,B,E, [L], [R], {πe}e∈E)
with right degree t and right alphabet [R] to distinguish between:

YES: There exists a labeling σ that strongly satis�es all the right vertices.

NO: No labeling weakly satis�es more than δ fraction of the right vertices.

The reduction is the following. From δ-Gap-Label-Cover(t, R), we take h = t and the same parameters
δ,R. Given an instance L = (A,B,E, [L], [R], {πe}e∈E), we take G = (A,E′, [L], [R], {π′e′,v}e′∈E′,v∈e′)
with E′ = {N(b), b ∈ B} with N(b) the set of neighbours of b in L, and π′e′,v = π′N(b),v := πv,b since
v ∈ N(b). Since (A,B,E) is bipartite and biregular, we get that our hypergraph has all hyperedges of
size h = |N(b)| = t, and that it is regular from the regular left degree of (A,B,E). By construction, the
notion of weakly and strongly satis�ed is the same in both cases, as well as the labelings, and thus we
have the NP-hardness of δ, h-AryGapLabelCover.

Note that both problems are in fact linearly equivalent since we could do the same reduction backwards.

D Proof of existence of partitioning systems

Proof of Proposition 3.4. The existential proof is based on the probabilistic method. We take Pi an h-
equi-sized uniform random xϕ-cover of [n]. Hence in the collection Pi = (Pi,1, . . . , Pi,h), each of the h
subsets is of cardinality xϕn

h . Write P = (P1, . . . ,PR). We have that for any a ∈ [n],P(a ∈ Pi,j) =
xϕ
h .

Note that these events are independent for di�erent is.
By construction, the �rst condition is ful�lled. Let us prove the second one.
Fix T ⊆ [R] and Q := {Pi,j(i) : i ∈ T} for some function j : T → [h]. We have for a ∈ [n]:

E[Cϕa (Q)] = E[ϕ(|Q|a)] = E[ϕ(
∣∣{i ∈ T : a ∈ Pi,j(i)}

∣∣)] .
But the random variables {Xa

i := 1a∈Pi,j(i)
}i∈T are independent and Xa

i ∼ Ber(xϕh ), so Xa :=∣∣{i ∈ T : a ∈ Pi,j(i)}
∣∣ =

∑
i∈T X

a
i ∼ Bin(|T |, xϕh ), and thus:

E[Cϕa (Q)] = E[ϕ(Bin(|T |, xϕ
h

))] = ψϕ|T |,h .

Since |Q|a ≤ |Q| ≤ R and ϕ nondecreasing, we have 0 ≤ Cϕa (Q) ≤ ϕ(R). We claim that we can apply
a Cherno�-Hoe�ding bound on Cϕ(Q) =

∑
a∈[n]C

ϕ
a (Q) and get:

P
(∣∣∣Cϕ(Q)− ψϕ|T |,hn

∣∣∣ > ηn
)
≤ 2exp

(
− 2
( η

ϕ(R)

)2
n
)
.
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The random variables {Cϕa (Q)}a∈[n] are not independent in general. However, they are negatively
associated [20], and this is su�cient for the Cherno�-Hoe�ding bound to hold as pointed out in [13],
provided that η ∈ (0, 1). The set of random variables {Cϕa (Q)}a∈[n] is said to be negatively associated if
for any functions f and g either both increasing or both decreasing and any disjoint index sets I, J ⊆ [n],
we have:

E[f(Cϕa (Q) : a ∈ I) · g(Cϕa (Q) : a ∈ J)] ≤ E[f(Cϕa (Q) : a ∈ I)] · E[g(Cϕa (Q) : a ∈ J)] .

Note that Cϕa (Q) = ϕ(|Q|a) = ϕ(Xa) is a nondecreasing function of {Xa
i }i∈[R], since ϕ is nondecreasing

and Xa =
∑

i∈T X
a
i . Thus in order to show that {Cϕa (Q)}a∈[n] are negatively associated, it su�ces to

show that {Xa
i }i∈[R],a∈[n] are negatively associated (see Proposition P6 of [20]).

For �xed i ∈ [R], {Xa
i }a∈[n] are negatively associated because it corresponds to a permutation distri-

bution of (0, . . . , 0, 1, . . . , 1), with n − xϕn
h zeros and xϕn

h ones, since it describes a random subset of size
xϕn
h (see De�nition 2.10 and Theorem 2.11 of [20]). Then, using the fact that the families {Xa

i }a∈[n] are
mutually independent, we obtain that {Xa

i }i∈[R],a∈[n] are negatively associated (see Property P7 of [20]).
Using [13], this establishes the claimed Cherno�-Hoe�ding bound.

Since there are at most (h+ 1)R choices of T and Q, a union bound gives:

P
(
∃C,Q :

∣∣∣Cϕ(Q)− ψϕ|T |,hn
∣∣∣ > ηn

)
≤ 2(h+ 1)Rexp

(
− 2
( η

ϕ(R)

)2
n
)
.

Thus with probability at least 9/10, we have that
∣∣∣Cϕ(Q)− ψϕ|T |,hn

∣∣∣ ≤ ηn, since we have taken n ≥
η−2Rϕ(R)2 log(20(h+ 1)). So there must exists some choice of P that satis�es the �rst and second
constraints of partitioning systems. Thus, we can enumerate over all choices of P in time exp(Rn log(n)) ·
poly(h) to �nd such a partitioning system.

E Proof of Theorem 6

Proof. We show that ϕ-Resource Allocation corresponds to ϕ-MaxCoverage under a matroid
constraint. Given an instance of ϕ-Resource Allocation, consider the partition matroid M on
[
∑

i∈[k]mi] := [m1] + . . . + [mk], where (Bi)i∈[k] := ([mi])i∈[k] is a partition of the ground set and the
cardinality constraint for each i is to di = 1.

Here, I ⊆ [
∑

i∈[k]mi] is an independent set of the matroid i� |I ∩Bi| ≤ di = 1, for all i ∈ [k]. This
corresponds to each agent i ∈ [k] selecting at most one element from the available mi choices. In other
words, we have a bijection f between tuples (A1, . . . , Ak) ∈ A1 × . . . × Ak and maximal independent
sets (bases) of M such that Wϕ(A) = Cϕ(f(A)). Therefore, Theorem 3 leads to a polynomial-time
αϕ-approximation algorithm for ϕ-Resource Allocation.

For the hardness part of the theorem, the proof is exactly the same as in Theorem 4, but instead of
F := {F vβ , v ∈ V, β ∈ [L]} and k = |V |, we take k = |V | to be the number of agents andAi := {F viβ , β ∈ [L]}
where V = {v1, . . . , vk}. Hence, instead of subsets of F of size k, we only consider one set F vβ ∈ F , for
each v ∈ V . The function we maximize in the reduction remains unchanged.

To establish completeness, we note that the subset described is already of the right form and, hence,
the arguments continue to hold. For proving soundness, the constraint on the shape of the subset of F only
helps us, since it gives more constraints on the given subset from which we want to construct a labeling.
Therefore, both parts of the proof work and the NP-hardness follows.

33


	Introduction
	Approximation Algorithm for -MaxCoverage
	Generalization to Matroid Constraints

	Hardness of Approximation for -MaxCoverage
	Partitioning System
	The Reduction
	Completeness
	Soundness

	Further hardness under Gap-ETH

	Applications
	Multiwinner Elections
	Resource Allocation in Multiagent Systems
	Vehicle-Target Assignment
	Welfare Maximization for -Coverage

	General properties
	Calculations of 
	NP-hardness of ,h-AryGapLabelCover
	Proof of existence of partitioning systems
	Proof of Theorem 6

