
HAL Id: hal-03113398
https://hal.inria.fr/hal-03113398

Submitted on 18 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From global choreographies to verifiable efficient
distributed implementations

Mohamad Jaber, Yliès Falcone, Paul Attie, Al-Abbass Khalil, Rayan Hallal,
Antoine El-Hokayem

To cite this version:
Mohamad Jaber, Yliès Falcone, Paul Attie, Al-Abbass Khalil, Rayan Hallal, et al.. From global
choreographies to verifiable efficient distributed implementations. Journal of Logical and Algebraic
Methods in Programming, Elsevier, 2020, 115, pp.1-24. �10.1016/j.jlamp.2020.100577�. �hal-03113398�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/373294314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03113398
https://hal.archives-ouvertes.fr

From Global Choreographies to Verifiable Efficient
Distributed Implementations

Mohamad Jabera,, Yliès Falconeb, Paul Attiec, Al-Abbass Khalila, Rayan
Hallala, Antoine El-Hokayemb

aComputer Science Department, American University of Beirut, Beirut, Lebanon
bUniv. Grenoble Alpes, CNRS, Inria, Grenoble INP, Laboratoire d’Informatique de

Grenoble, 38000 Grenoble, France
cSchool of Computer and Cyber Sciences, Augusta University, Augusta, Georgia, USA

Abstract

We define a method to automatically synthesize efficient distributed implemen-
tations from high-level global choreographies. A global choreography describes
the execution and communication logic between a set of provided processes
which are described by their interfaces. At the choreography level, the opera-
tions include multiparty communications, choice, loop, and branching. A chore-
ography is master triggered: it has one master to trigger its execution. This
allows us to automatically generate conflict-free distributed implementations
without controllers. The behavior of the synthesized implementations follows
the behavior of choreographies. In addition, the absence of controllers ensures
the efficiency of the implementation and reduces the communication needed at
runtime. Moreover, we define a translation of the distributed implementations
to equivalent Promela versions. The translation allows verifying the distributed
system against behavioral properties. We implemented a Java prototype to
validate the approach and applied it to automatically synthesize micro-service
architectures. We also illustrate our method on the automatic synthesis of a
verified distributed buying system.

1. Introduction1

Developing correct distributed software is notoriously difficult. This is mainly2

due to their complex structure that consists of interactions between distributed3

processes. We mainly distinguish two possible directions to cope with the com-4

plexity of the interaction model: (1) high-level modeling frameworks [7]; and5

(2) session types [6, 22, 8, 37, 18, 11]. The former facilitates expressing the6

communication models but makes efficient code generation difficult. High-level7

Email addresses: mj54@aub.edu.lb (Mohamad Jaber),
ylies.falcone@univ-grenoble-alpes.fr (Yliès Falcone), pattie@augusta.edu (Paul Attie),
aak103@mail.aub.edu@aub.edu.lb (Al-Abbass Khalil), rah74@aub.edu.lb (Rayan Hallal),
antoine.el-hokayem@univ-grenoble-alpes.fr (Antoine El-Hokayem)

Preprint submitted to Journal of Logical and Algebraic Methods in ProgrammingJune 25, 2020

and expressive communication models require the generation of controllers to8

implement their communication logic. For instance, if we consider multiparty9

interactions with non-deterministic behavior that may introduce conflicts be-10

tween processes, such conflicts would be resolved by creating new processes11

(controllers). Additionally, it is easier to develop distributed systems by reason-12

ing about the global communication model and not local processes. For these13

reasons, session types were introduced. Session types feature the notions of (i)14

global protocol which describes the communication protocol between processes15

and (ii) local types which are the projections of the global protocol on processes.16

Session types are generally developed following the steps below:17

1. design of the global protocol;18

2. automatic synthesis of the local types;19

3. development of the code of processes;20

4. static type checking of the local code of the processes w.r.t. their local21

protocols.22

As a result, the obtained distributed software follows the stipulated global pro-23

tocol. However, the current approach to developing session types suffers from24

several limitations. First, there is redundancy in the code of local processes:25

even though the code skeleton of the local processes can be inferred from the26

local types, the programmer has to explicitly write the full code of the pro-27

cesses. Second, the communication logic is tangled as modifying the global28

protocol requires reimplementing some of the local code of the affected pro-29

cesses. Moreover, it suffers from the absence of facilities to handle and combine30

both communication and computation concerns.31

Contributions. In this paper, we introduce a new framework which allows the32

automatic synthesis of the local code of the processes starting from a global33

choreography. First, inspired from the Behavior Interaction Priority framework34

(BIP) [5], we consider a set of components/processes with their interfaces and35

a configuration file that defines the variables of each component as well as the36

mapping between ports and their computation blocks. Then, given a global37

choreography, which is defined on the set of ports of the components and which38

models coordination and composition operators, we automatically synthesize39

the local code of the processes, which embeds all communication and control40

flow logic. The choreography allows us to define: (1) multiparty interaction;41

(2) branching; (3) loop; (4) sequential composition; and (5) parallel composi-42

tion. Without loss of generality, as in most distributed system applications,43

we consider master-based protocols. In master-based protocols, each interac-44

tion has a master component deciding whether it can take place and what are45

the components involved in the interaction. This allows for the generation of46

fully distributed implementations, i.e., without the need of controllers, hence47

reducing the need for communication at runtime. Moreover, we discuss some48

correctness arguments about the behavior of the synthesized implementations49

2

following the semantics of choreographies. Furthermore, we define a transla-50

tion of the distributed implementations to equivalent Promela versions. Such a51

translation allows us to verify user-defined properties on the implementations.52

We use the SPIN model-checker to verify properties. Our transformations are53

implemented in a Java tool that we applied to automatically synthesize micro-54

service architectures starting from global protocols.55

Differences with HPC 4PAD paper. This paper revises and extends a paper56

that appeared in the proceedings of the International Symposium on Formal57

Approaches to Parallel and Distributed Systems (HPCS 4PAD 2018) [17]. The58

additional contributions can be summarized as follows. First, we defined a for-59

mal semantics for choreographies, using structured operational semantics rules.60

Second, we defined a translation of the distributed implementations to equiv-61

alent Promela processes. This permits the verification of the implementations62

against (safety and liveness) behavioral properties and thus provides additional63

confidence in the behavior of the distributed implementation. Third, we added64

a synthesis example of a micro-service for a buying system, inspired from the65

examples tackled in collaboration with Murex Services S.A.L. industry [29].66

Fourth, we revisited and extended the related work. Finally, we improved the67

presentation and readability by adding more details and examples.68

Paper organization. The remainder of this paper is structured as follows. Sec-69

tion 2 fixes some notation used throughout the paper. Section 3 introduces some70

preliminary notions, common to choreography and distributed component-based71

systems. To illustrate our approach, we present a toy example of a variant of72

producer-consumer in Section 4. In Section 5, we define the syntax and the73

semantics of the choreography model. In Section 6, we present an illustrating74

example by modeling the two-phase commit protocol using our choreography75

model. In Section 7, we introduce a distributed component-based model that76

is used to define the semantics of our choreography model. In Section 8, we77

transform choreographies to distributed component-based systems and infor-78

mally argue about its correctness. In Section 9, we provide an efficient code79

generation of the obtained distributed component-based model and present a80

real case study. In Section 10, we present one of the case studies on a micro-81

service architecture to automatically derive the skeleton of each micro-service,82

in collaboration with Murex Services S.A.L. industry [29]. In Section 11, we83

define a translation of the code generated from a choreography into Promela for84

the purpose of verifying the generated code. In Section 12, we present a case85

Study to synthesize an implementation of a buying system. We present related86

work in Section 13. We draw conclusions and outline future work in Section 14.87

2. Notation88

We denote by N the set of natural numbers with the usual total orders89

≤ and ≥ ; N+ denotes the set N \ {0}. Given two natural numbers a and b90

such that a ≤ b, we denote by [a, b], the interval between a and b, i.e., the set91

3

{x ∈ N | x ≥ a∧ x ≤ b}. A sequence of elements over a set E of length n ∈ N is92

formally defined as a (total) function from [1, n] to E. The empty sequence over93

E (function from ∅ to E) is denoted by εE (or ε when clear from the context).94

The length of a sequence s is denoted by |s|. The set of (finite) sequences over95

E is denoted by E∗. The (usual) concatenation of a sequence s to a sequence96

s′ is the sequence denoted by s · s′. Given two sets E and F , we denote by97

[E → F] the set of functions from E to F . Given some function f ∈ [E → F]98

and an element e ∈ E, we denote by f(e) the element in F associated with e99

according to f .100

3. Preliminary Notions101

To later construct a system, we assume an architecture with n components102

{Bi}ni=1, with n ∈ N+. At this stage, components are just interfaces with103

ports for communication. To each port of a component is attached a (unique)104

variable. In this section, we define these notions common to choreographies and105

component-based systems, later defined in Section 5 and Section 7 respectively.106

Types, variables, expressions, and functions. We use a set of data types, DataTypes,107

including the set of usual types found in programming languages {int, str, bool, . . .}108

and a set of (typed) variables Vars. Variables are partitioned over components,109

i.e., Vars =
⋃n
i=1 Varsi and ∀i, j ∈ [1, n] : i 6= j =⇒ Varsi ∩ Varsj = ∅. Vari-110

ables take values in a general data domain Data containing all values associated111

with the types in DataTypes plus a neutral communication element denoted112

by ⊥d. We call any function with codomain Data a valuation. Moreover, for113

two valuations v and v′, v′/v denotes the valuation where values in v′ have114

priority over those in v. For a set of variables X ⊆ Vars, we denote by G(X)115

(resp. Expr(X)) the set of boolean (resp. all, i.e., boolean and arithmetic)116

expressions over X, constructed in the usual manner. Expressions can be used117

as function descriptions, and, for an expression e ∈ Expr(X) and a valuation118

v ∈ [X → Data], we note e(v) the value in Data of expression e according to v.119

Types and ports. We define the notion of port type, and then of port.120

Definition 1 (Port type). The set of port types, denoted by PortTypes, is121

{ss, as, r, in}, where ss (resp. as, r, in) denotes a synchronous send (resp.122

asynchronous send, receive, internal) communication type.123

Definition 2 (Port). A synchronous send, asynchronous send or internal port124

is a tuple (p, xp, dtype, ctype) where: p is the port identifier; xp ∈ Vars is the port125

variable; dtype ∈ DataTypes is the port data type; and ctype ∈ PortTypes is the126

port communication type. Similarly, a receive port is a tuple (p, xp, dtype, ctype, buff)127

where buff ∈ Data∗ is the port buffer (used to store values).128

Ports are referred to by their identifier. In the rest of the paper, we use the dot129

notation:130

4

• for a (a)synchronous send or internal port (p, xp, ptype, ctype) or a receive131

port (p, xp, ptype, ctype, buff), p.var (resp. p.dtype, p.ctype, p.buff)132

refers to xp (resp. dtype, ctype, buff);133

• for a set of ports P , P.var denotes {p.var | p ∈ P}, the set of variables of134

the ports in P .135

Given a port p, we define the predicate isSSend(p) (resp., isASend, isRecv,136

isInternal) that holds true iff (the communication type of) p is a synchronous137

send (resp., asynchronous send, receive, internal) port, i.e., iff p.ctype = ss138

(resp. as, r, in).139

To later construct a system, we assume a set of ports P and a partition of140

the ports over components: P = ∪ni=1Pi. We define Pss = {p ∈ P | isSSend(p)}141

(resp. Pas = {p ∈ P | isASend(p)}, Pr = {p ∈ P | isRecv(p)}) to be the set of142

all synchronous send port (resp. asynchronous send ports, receive ports) of the143

system. Moreover, we denote by Pss
i (resp. Pas

i , Pr
i) the set of all synchronous144

send (resp., asynchronous send, receive) ports of atomic component Bi.145

Update functions. Update functions serve to abstract internal computations146

performed by atomic components.147

Definition 3 (Update function). An update function f over a set of vari-148

ables X ⊆ Vars is a sequence of assignments, where each assignment is of the149

form x := exprX , where x ∈ X and exprX ∈ Expr(X). The set of update150

functions over X is denoted by F(X).151

For an update function f and a valuation v, executing f on v yields a new152

valuation v′, noted v′ = f(v), such that v′ is obtained in the usual way by the153

successive applications of the assignments in f taken in order and where the154

right-hand side expressions are evaluated with the latest constructed temporary155

valuation.156

4. Illustrating Example157

To illustrate our approach, we consider a toy example of a variant of producer-158

consumer. The example begins by modeling producer-consumer using chore-159

ographies (described along with their semantics in Section 5). Then, we show the160

corresponding component-based distributed implementation (detailed in Sec-161

tion 7) which is synthesized from the choreographies using transformations de-162

scribed in Section 8.163

Choreography. The system consists of two components: a producer (P) and a
consumer (C). Initially, P has a certain number B of messages to send asyn-
chronously through its interface s. The number of messages that remain to
be sent is stored in variable n of port p. P sends its messages asynchronously
through interface s and C receives messages through interface r. While P has
messages to send (n > 0), it applies some computation function f on the mes-
sage and decrements the value of n. After P has finished (•) sending (→), C

5

q11

q12q14

q15

q16

pcr

ack

n > 0

cond

∅

¬(n > 0)

condf

∅

q13

true

s

f()

ε

ss

condf

ss

cond

r

pcr

r
ack

as
s

P1

q21

q22q24

q25

q26

pcs

ack

condcondf

q23

r

ε

r

condf

r

cond

ss

pcs

ss
ack

r
r

C1

q11

q12q14

q15

q16

pcr

ack

n > 0

cond

∅

¬(n > 0)

condf

∅

q13

true

s

f()

ε

ss

condf

ss

cond

r

pcr

r
ack

as
s

P2

q21

q22q24

q25

q26

pcs

ack

condcondf

q23

r

ε

r

condf

r

cond

ss

pcs

ss
ack

r
r

C2

Figure 1: A toy example of a variant of producer-consumer.

sends an acknowledgment message to P. We consider two instances of producers
(resp. consumers) P1 and P2 (resp. C1 and C2), where the two pairs are running
in parallel. Below is the choreography modeling (in a simplified syntax) the
above scenario and realizing the transmission of message from P to C.

(while(P1.cond[n > 0]){P1.s[true, f()] {C1.r[∅]}} • C1.ack {P1.ack})
‖ (while(P2.cond[n > 0]){P2.s[true, f()] {C2.r[∅]}} • C2.ack {P2.ack})

Synthesized distributed system. The corresponding distributed component-based164

model is depicted in Figure 1. The system is composed of four components.165

Component P1 has three basic interfaces ack (for receive), s (asynchronous166

send) and cond (synchronous cond). Two other interfaces are generated for167

control: condf and pcr. Condition condf is enabled when the condition of the168

while does not hold. pcr is used to implement the sequential primitive (•). The169

two parallel choreographies are independent and correspond of the parallel ex-170

ecution of P1 with C1 and P2 with C2. As can be noticed, there is no need of171

controllers and one can use a process or thread for each component.172

Promela model. From the above description of the distributed implementation,173

we can synthesize Promela processes (one per componenent). Interactions will174

be modeled as channels in Promela. See Listing 7 for an example.175

6

ch ::= nil # empty choreography
| snd {rcv list} : 〈t〉 # typed send / receive
| B⊕{cont list} # conditional master branching
| while(snd) ch end # iterative composition
| ch • ch # sequential composition
| ch ‖ ch # parallel composition

snd ::= psas[g, f] # synchronous/asynchronous send ports
with guard & update function

rcv list ::= pr [f] | pr [f], rcv list # list of receive ports with update function
cont list ::= snd : ch | snd : ch, cont list # list of continuations

t ∈ DataTypes # types
B ∈ {B1, . . . , Bn} # available components

psas ∈ Pss ∪ Pas # synchronous/asynchronous
send ports identifiers

pr ∈ Pr # receive ports
g ∈ G(X) # guards
f ∈ F(X) # update function

Figure 2: Abstract grammar defining the syntax of the choreography model.

5. Global Choreography176

In this section, we define the global choreography model. Recall that compo-177

nents are seen as interfaces and a choreography serves the purpose of coordinat-178

ing the communications and computations of components. In choreographies,179

ports are used with guards and update functions.180

We start by defining the syntax and then the semantics of choreographies.181

Syntax of choreographies. We introduce the abstract syntax of the global chore-182

ography model.183

Definition 4 (Abstract syntax of the choreography model). The abstract184

grammar in Figure 2 defines the syntax of the choreography model. We denote185

by Chors the set of choreographies defined by this grammar.186

The definition of choreographies relies on the previously defined concepts such187

as update functions in F(X), guards in G(X), the existing types in DataTypes,188

available components in {B1, . . . , Bn}, and the various types of ports (syn-189

chronous and asynchronous send ports in Pss and Pas and receive ports in Pr).190

It also relies on the definitions of send port augmented with guard and update191

function and lists of receive ports and continuations. A send port augmented192

with guard and update function is of the form psas[g, f] where psas is a syn-193

chronous or asynchronous send port, g a guard, and f an update function. In194

a list of receive ports, each element is of the form pr [g] where pr is a receive195

port identifier and g a guard. In a list of continuations, each element is of the196

form psas:ch where psas is a synchronous or asynchronous send port and ch is197

7

a choreography. We extend the dot notation to choreographies and, for a send198

or receive port augmented with guard and update function, i.e., of the form199

psas[g, f] or pr [g], we note psas.guard and pr .guard for g and psas.ufct for f .200

Base choreographies include the empty choreography (nil) and the send/re-201

ceive communication primitive. Send/receive communications are of the form202

snd {rcv list} : 〈t〉 where snd is a (synchronous or asynchronous) send203

port, rcv list is a list of receive ports and : 〈t〉 is a type annotation with204

t ∈ DataTypes.205

Composite choreographies include the conditional master branching, the it-206

erative, sequential and parallel compositions. Conditional master branching are207

of the form B⊕{cont list} where B is a component taking the branching208

decision and cont list a list of continuations, that is, a list of choreographies209

guarded by send ports. The iterative composition of a choreography ch is of the210

form while(snd) ch end where snd defines a send port with a guard and an up-211

date function. The component of the send port guides the loop condition. Given212

two choreographies ch1 and ch2, the sequential (resp. parallel) composition of213

ch1 and ch2 is noted ch1 • ch2 (resp. ch1 ‖ ch2).214

Remark 1. Guards are not attached to receive ports so as to always permit the215

reception of data. Such a choice also allows for generating more efficient code216

with less communication overhead, and, as communication are master triggered,217

it avoids deadlock situations.218

Typing constraints. Additionally, for a choreography to be well defined, it should219

respect the following typing constraints:220

• In a synchronous/asynchronous send port with guard and update func-221

tion psas[g, f], the variables used in the guard g should belong to the222

component of port psas.223

• In a conditional master branching, the send ports in the continuation list224

should belong to the component.225

Semantics of choreographies. In the following, we consider well-typed chore-226

ographies built with the syntax in Definition 4. We define the (structural op-227

erational) semantics of choreographies. For this, we consider that states of a228

choreography are valuations of the component variables in [X → Data]. Re-229

call that variables and ports are partitioned over components. We denote by230

ChorState the set of choreography states.231

Before actually defining the semantics, we need to model the effect of com-232

munication on the choreography state. We model the sending through a port to233

a set of ports with a function send : ChorState × (Pas ∪ Ps)× 2P
r → ChorState234

that takes as input a choreography state and outputs a choreography state when235

a communication occurs from the (synchronous or asynchronous) send port of236

a component to the receive ports of some components: send(σ, snd , {rcv list})237

is state σ where the value of variable of port snd is used to update the vari-238

ables attached to ports in {rcv list}. Formally: send(σ, snd , {rcv list}) =239

8

(nil, σ)
τ
=⇒ σ

(nil)

snd ∈ Pss σ |= g rcv list = pr1[f1], . . . , prk[fk]

(snd [g, f] {rcv list}, σ) {snd,pr1,...,prk}===========⇒ f ◦ fk ◦ · · · ◦ f1 ◦ send(σ, snd , {pr1, . . . , prk})
(synch-sendrcv)

snd ∈ Pas σ |= g

(snd [g, f] {rcv list}, σ) {snd}====⇒ ({rcv list}, f ◦ send(σ, snd , rcv list))
(asynch-sendrcv-1)

pr [f] ∈ {rcv list}

({rcv list}, σ) {pr}===⇒ ({rcv list} \ {pr [f]}, f(σ))
(asynch-sendrcv-2)

σ |= gj

(B ⊕ {snd1[g1, f1] : ch1, . . . , sndk[gk, fk] : chk}, σ)
{sndj}
=====⇒ (chj , fj(σ))

(master-branching)

σ |= g

(while(snd [g, f]) ch end, σ)
{snd}
====⇒ (ch • while(snd [g, f]) ch end, f(σ))

(iterative-tt)

σ 6|= g

(while(snd [g, f]) ch end, σ)
τ
=⇒ σ

(iterative-ff)

(ch1, σ)
l1=⇒ (ch ′1, σ

′)

(ch1 • ch2, σ)
l1=⇒ (ch ′1 • ch2, σ

′)
(sequential-1)

(ch1, σ)
l1=⇒ σ′

(ch1 • ch2, σ)
l1=⇒ (ch2, σ

′)
(sequential-2)

(ch1, σ1)
l1=⇒ (ch ′1, σ

′
1)

(ch1 ‖ ch2, σ1)
l1=⇒ (ch ′1 ‖ ch2, σ

′
1)

(parallel-1)

(ch2, σ2)
l2=⇒ (ch ′2, σ

′
2)

(ch1 ‖ ch2, σ2)
l2=⇒ (ch1 ‖ ch ′2, σ

′
2)

(parallel-2)

(ch1, σ1)
l1=⇒ σ′1

(ch1 ‖ ch2, σ1)
l1=⇒ (ch2, σ

′
1)

(parallel-3)

(ch2, σ2)
l2=⇒ σ′2

(ch1 ‖ ch2, σ2)
l2=⇒ (ch1, σ

′
2)

(parallel-4)

Figure 3: Rules defining the transitions in the semantics of choreographies.

σ [{rcv list}.var 7→ σ(snd .var)], it is state σ where we apply the substitution240

that assigns all the variables in {rcv list}.var to σ(snd .var).241

Additionally, to model asynchronous communication, we utilise two rules:242

the first to execute the send function, and the second to execute the receive243

function on each port. This requires a transient configuration, which contains244

the remaining ports for which the receive function needs to be executed. This245

configuration corresponds to the asynchronous message being “in transit”. This246

state is modeled as a set of pairs of ports with their functions (i.e., 2P
r×F(X)).247

We are now able to define the semantics of choreographies.248

9

Definition 5 (Semantics of choreography model). The semantics of chore-249

ographies is an LTS (ChorConf ,ChorLab,⇒) where :250

• ChorConf ⊆ (Chors × ChorState) ∪ ChorState ∪ 2P
r×F(X) is the set of251

configurations and ChorState ⊆ ChorConf is the set of final configura-252

tions;253

• ChorLab ⊆
(
2P \ {∅} ∪ {τ}

)
is the set of labels where each label is either254

a set of ports or label τ for silent transitions;255

• =⇒⊆ ChorConf × ChorLab × ChorConf is the least set of (labelled) tran-256

sitions satisfying the rules in Figure 3;257

Whenever for two configurations c, c′ ∈ ChorConf and a label l ∈ ChorLab,258

(c, l, c′) ∈=⇒, we note it c
l
=⇒ c′. The rules in Figure 3 can be intuitively under-259

stood as follows:260

• Rule (nil) states that choreography nil terminates in any state σ and261

produces the terminal configuration σ.262

• Rule (synch-sendrcv) describes the synchronous send/receive primitive.263

The component of port snd transfers data to the components with the264

receive ports in rcv list whenever the guard g attached to snd holds265

true from the starting state σ. If the list of receive ports (with update266

functions) is pr1[f1], . . . , prk[fk], the choreography terminates in a state267

obtained after the data transfer defined by send(σ, snd , {pr1, . . . , prk})268

and the applications of the update functions f, f1, . . . , fk of the send and269

receive ports. Note that the application order does not influence the re-270

sulting state as these update functions apply to disjoint variables.271

• Rule (asynch-sendrcv-1) describes the first part of an asynchronous send/re-272

ceive primitive. As in the synchronous send/receive primitive, the compo-273

nent of port snd transfers data to the components with the receive ports274

in rcv list whenever the guard g attached to snd holds true from the275

starting state σ. However, the state of the receiving component is only276

updated with the transferred data (with send(σ, snd , {pr1, . . . , prk})) and277

the receiving components do not apply their update functions.278

• Rule (asynch-sendrcv-2) describes the second part of an asynchronous279

send/receive primitive. A receive port pr [f] in the list of receive ports280

to be executed rcv list applies the attached updated function f to the281

current state and is removed from the list of received ports to be executed.282

• Rule (master-branching) describes the (conditional) master branching from283

component B on one of its continuations snd j [gj , fj] : chj whenever the284

guard gj attached to port snd j holds true. The resulting configuration285

consists of the choreography chj and the state fj(σ) (resulting from the286

application of the attached update function fj to σ).287

10

• Rule (iterative-tt) describes the first case of the iterative composition of288

a choreography ch under the condition snd [g, f] (which consists of a send289

port snd , a guard g, and an update function f). When g holds true in290

σ, the resulting configuration consists of the choreography ch sequentially291

composed with the same starting choreography to be executed in state σ292

updated by f .293

• Rule (iterative-ff) describes the second case of the iterative composition294

of a choreography ch under the condition snd [g, f]. When g holds false in295

σ, the choreography terminates in the (unmodified) state σ.296

• Rules (sequential-1) and (sequential-2) describe the possible evolu-297

tions of two sequentially composed choreographies ch1 and ch2. Rule298

(sequential-1) describes the case where the execution of choreography299

ch1 does not terminate and evolves to a configuration (ch1, σ
′
1) which300

leads to the global configuration (ch ′1 • ch2, σ
′
1). Rule (sequential-2) de-301

scribes the case where the execution of choreography ch1 terminates and302

evolves to a final configuration σ′1 which leads to the global configuration303

(ch2, σ
′
1) (where the second choreography ch2 is to be executed in state304

σ′1).305

• Rules (parallel-1) to (parallel-4) describe the possible evolutions of two306

choreographies ch1 and ch2 composed in parallel. Rules (parallel-1) and307

(parallel-2) describe the evolutions where ch1 performs a computation308

step and terminates or not. Rules (parallel-3) and (parallel-4) describe309

the evolutions where ch2 performs a computation step.310

6. Example: Two-Phase Commit311

Overview. The two-phase commit protocol (2PC) is a distributed algorithm312

that allows distributed processes to perform a transaction atomically. To do313

so, one process is designated to be the coordinator, the rest we refer to them314

as workers. The coordinator initiates the transaction by notifying all workers315

to begin. Each worker then takes the necessary steps to perform the transac-316

tion answering the coordinator with either an acknowledgement or requesting317

an abort on failure. Once all workers have voted, the coordinator then sends318

the final request to commit or abort the transaction, after which all works ac-319

knowledge the commit or rollback.320

Components. We model the following protocol using global choreographies (Sec-321

tion 5). In our setting, we have n workers and 1 coordinator.322

For each worker i ∈ [1..n] we associate a worker component Wi. Component323

Wi has the following variables: oki and idi. The variable oki is a boolean used324

to convey the positive or negative acknowledgement, it is initially set to false,325

while the variable idi contains a unique identifier of the worker. Additionally,326

for each worker component, we associate the ports: votei(idi, oki), preparei,327

acki, and faili. Port votei is used to send to the coordinator the identifier328

11

and a positive or negative acknowledgment. Port starti is used to prepare the329

transaction, port acki is used to request the final commit, while port faili is330

used to request a rollback.331

The coordinator component is denoted by C and has the following variables:332

rok, rid, cs, and res. Variables rok and rid are used to receive a worker’s333

vote, and are used to store its acknowledgment and identifier. Variable cs is a334

set of worker identifiers, and is used to keep track of which worker(s) voted, it is335

initialized to the empty set. Variable res is a boolean, it contains the result of336

the vote, it is initially set to true. The interface of the coordinator component337

consists of the following ports: begin, proceed, cond, and recv(rid, rok). Port338

begin is used to notify workers to prepare the transaction, while port proceed339

is used to notify them of a commit or failure. Port cond is used for branching340

between either requesting a commit or a rollback. Port recv is used to receive341

a worker’s vote. To simplify the state reset between communication, we define342

update function reset() = [res = true; cs = ∅].343

Choreographies. In order to be general, we assume for each worker process three344

choreographies: stagei, commiti, and rolli. Choreography stagei performs345

the operation before committing, and sets a variable oki to true if the operation346

succeeded or false otherwise. Choreography commiti is performed when all347

workers have committed, while choreography rolli is executed whenever at348

least one worker failed. We assume the three choreographies do not interfere349

with oki and idi in any other way.350

The protocol is expressed as a sequential composition of two phases, where351

the second phase depends on the vote of the first phase. For each phase, the352

coordinator interacts with each worker in parallel.353

354 phase11 ‖
...
‖ phase1n

 • C⊕ {C.cond[|cs| = n ∧ res, reset] :

 phase2a1 ‖
...
‖ phase2an

 ,

C.cond[¬(|cs| = n ∧ res,), reset] :

 phase2b1 ‖
...
‖ phase2bn

}
355

∀i ∈ [1..n] :
phase1i = {C.begin[true, ∅] {Wi.preparei[oki := false]}} • stagei•

{Wi.votei[true, ∅] {C.recv[res = res ∧ rok; cs = cs ∪ {rid}]}}
phase2ai = {C.proceed[true, ∅] {Wi.acki[oki = true]}} • commiti•

{Wi.votei[true, ∅] {C.recv[res = res ∧ rok; cs = cs ∪ {rid}]}}
phase2bi = {C.proceed[true, ∅] {Wi.faili[oki = true]}} • rolli•

{Wi.votei[true, ∅] {C.recv[res = res ∧ rok; cs = cs ∪ {rid}]}}

356

357

In the first phase (phase1i), the coordinator initiates the transaction (C.begin358

Wi.preparei). Then the worker performs the staging choreography (stagei),359

and once it is complete, communicates its’ result (stored in oki) and its’ iden-360

12

tifier to the coordinator (using its interface Wi.votei). Upon reception, the361

coordinator updates the vote by performing a conjunction (res = res ∧ rok),362

so as to ensure all workers vote to commit, and updates the workers list by363

adding the worker identifier (cs = cs ∪ {rid}). We note here, that while there364

is overlap on the port C.begin and the receiving variables cs and res, that it is365

easy to resolve such overlap, as the variables are updated using an associative366

and commutative operators (∧ and ∪) which are not affected by order of recep-367

tion. (Something to be said about the variables rok and rid being that each368

receive binds those, and they cannot be overritten.)369

When initiating the second phase, the coordinator branches to verify that370

all workers voted (|cs| = n), and that their vote was true (res = true). If the371

condition is satisfied, the coordinator initiates parallel composition of chore-372

ographies to commit (phase2ai). Otherwise it initiates a parallel composition373

of choreographies to rollback (phase2bi). For both branches, the coordinator374

resets the state of the vote (reset), to refresh acknowledgments. Each choreog-375

raphy phase2ai notifies the port acki which is followed by worker performing376

commiti and returning an acknowledgement. Alternatively, phase2bi notifies377

the port faili which is followed by worker performing rolli and returning an378

acknowledgement.379

7. Distributed Component-based Framework380

In this section, we introduce a component-based framework, inspired from381

the Behavior Interaction Priority framework (BIP) [5]. In the BIP framework,382

atomic components communicate through an interaction model defined on the383

interface ports of the atomic components. Moreover, all ports have the same384

type. Unlike BIP, we distinguish between four types of ports: (1) synchronous385

send; (2) asynchronous send; (3) asynchronous receive; and (4) internal ports.386

The new port types allow to (1) easily model distributed system communication387

models; (2) provide efficient code generation, under some constraints, that does388

not require to build controllers to handle conflicts between multiparty interac-389

tions.390

7.1. Atomic Components391

Atomic components are the main computation blocks. Atomic components392

are endowed with a set of variables used in their computation. An atomic393

component is defined as follows.394

Definition 6 (Atomic component - syntax). An atomic component B is a395

tuple (P, X,L, T), where P is a set of ports; X is a set of variables such396

that X ⊆ Vars and P.var ⊆ X; L is a set of control locations; and T ⊆397

(L× P × G(X)×F(X)× L) is a set of transitions.398

Transitions make the system move from one control location to another by399

executing a port. Transitions are guarded and are associated with the execution400

of an update function. In a transition (`, p, g, f, `′) ∈ T , ` and `′ are respectively401

13

the source and destination location, p is the executed port, g is the guard, and402

f is the update function.403

The semantics of an atomic component is defined as an LTS. A state of the404

LTS consists of a location ` and valuation v of the variables where a valuation405

is a function from the variables of the component to a set of values. The atomic406

component can transition from state (`, v) to state (`′, v′) using a transition407

(`, p, d, g, f, `′) ∈ T if (i) the guard of the transition holds (g(v) holds true) (ii)408

the application of update function f to valuation vpd/v yields v′ where vpd is the409

valuation associating p.var with d ∈ Data, which is a value possibly received410

from other components.411

Definition 7 (Atomic component - semantics). The semantics of an atomic412

component (P,X,L, T) is a labelled transition system, i.e., a tuple (Q,P ×413

Data,→), where:414

• Q ⊆ L× [X → Data] is the set of states,415

• P × Data is the set of labels where a label is a pair made of a port and a416

value, and417

• →⊆ Q× P ×Data ×Q is the set of transitions defined as:418

{((`, v) , (p, d) , (`′, v′)) | ∃ (`, p, g, f, `′) ∈ T : g(v) ∧ v′ = f(vpd/v)}.

When (q, (p, d), q′) ∈ T , we note it q
p/d−−→ q′. Moreover, we use states as419

functions: for x ∈ X and q = (l, v), q(x) is a short for v(x).420

To later construct a system, we shall use a set of n atomic components421

{Bi = (Pi, Qi, Ti)}ni=1422

Synchronization between the atomic components is defined using the notion423

of interaction.424

Definition 8 (Interaction). An interaction from component Bi to compo-425

nents {Bj}j∈J , where i /∈ J , is a pair (pi, {pj}j∈J), where:426

• pi is its send port (synchronous or asynchronous) that belongs to the send427

ports of atomic component Bi, i.e., pi ∈ Pss
i ∪ Pas

i ;428

• {pj}j∈J is the set of receive ports, each of which belongs to the receive429

ports of atomic component Bj, i.e., ∀j ∈ J : pj ∈ Prj .430

An interaction (pi, {pj}j∈J) is said to be synchronous (resp. asynchronous) iff431

isSSend(pi) (resp. isASend(pi)) holds.432

7.2. Composite Components433

A composite component consists of several atomic components and a set of434

interactions. The semantics of a composite component is defined as a labeled435

transition system where the transitions depend on the interaction types.436

14

isSSend(pi)
a = (pi, {pj}j∈J) ∈ γ
d = qi(pi.var) ∈ Data

∀k ∈ J ∪ {i} : qk
pk/d−−−→ q′k

∀k /∈ J ∪ {i} : qk = q′k
∀j ∈ J : qj(pj .buff) = ε

(q1, . . . , qn)
a−→ (q′1, . . . , q

′
n)

(synch-send)

isASend(pi)
a = (pi, {pj}j∈J) ∈ γ
d = qi(pi.var) ∈ Data

∀k ∈ J \ {i} : q′k = qk

qi
pi/d−−−→ q′i

∀j ∈ J :
q′j(pj .buff) = qj(pj .buff) · d

(q1, . . . , qn)
a−→ (q′1, . . . , q

′
n)

(asynch-send)

isRecv(pj) qj
pj/d−−−→ q′j

∀k 6= j : qk = q′k

qj(pj .buff) = d ·D d ∈ Data
q′j(pj .buff) = D D ∈ Data∗

(q1, . . . , qn)
τ−→ (q′1, . . . , q

′
n)

(recv)

isInternal(pi) qi
pi/⊥d−−−−→ q′i ∀k 6= i : qk = q′k

(q1, . . . , qn)
τ−→ (q′1, . . . , q

′
n)

(internal)

Figure 4: Semantic rules defining the behavior of composite components.

Definition 9 (Composite component). A composite component built over437

atomic components B1, . . . , Bn and parameterized by a set of interactions γ,438

noted γ(B1, . . . , Bn), is defined as a transition system (Q, γ ∪ {τ},→), where :439

• Q =
⊗n

i=1Qi is the set of configurations,440

• γ ∪ {τ} is the set of labels which consist of interactions and τ for silent441

transitions, and442

• → is the least set of transitions satisfying the rules in Figure 4.443

The semantic rules in Figure 4 can be intuitively understood as follows:444

• Rule (synch-send) describes synchronous interactions, i.e., the interactions445

of the form (pi, {pj}j∈J) where isSSend(pi), where some component Bi446

synchronously sends to some components Bj , j ∈ J . The variable attached447

to port pi of Bi (pi.var) gets evaluated to some value d ∈ Data, which448

is transmitted. All components Bk, k ∈ J ∪ {i}, perform a transition449

qk
pk/d−−−→ q′k, and other components do not move (qk = q′k for k /∈ J ∪ {i}).450

The rule requires that all the corresponding receive ports have no pending451

messages (their buffers are empty, i.e., ∀j ∈ J : qj(pj .buff) = ε). The452

states of all the involved components are simultaneously updated through453

the transition qk
pk/d−−−→ q′k, for j ∈ J ∪ {i}.454

• Rule (asynch-send) describes asynchronous interactions, i.e., the interac-455

tions of the form (pi, {pj}j∈J) where isSSend(pi), where some component456

15

Bi asynchronously sends to some components Bj , j ∈ J . The rule resem-457

bles the previous one, except that it does not require the participation458

of the receiving components. Only the sending component performs a459

transition qi
pi/d−−−→ q′i and the receiving components (as well as the other460

components) do not move. Value d ∈ Data is appended to the buffer of461

the corresponding receive ports (∀j ∈ J : q′j(pj .buff) = qj(pj .buff) · d).462

• Rule (recv) describes the autonomous execution of receive port pj of some463

component Bj . The rule requires that the buffer of port pj is non-empty464

(qj(pj .buff) = d · D, with d ∈ Data and D ∈ Data∗). The execution of465

this interaction makes component Bj perform a transition qj
pj/d−−−→ q′j and466

consumes value d in buffer pi.buff.467

• Rule (internal) describes the autonomous execution of an internal port pi468

of component Bi where only the local state of Bi is updated by performing469

the transition qi
pi/⊥d−−−−→ q′i.470

Finally, a system is defined as a composite component where we specify the471

initial states of its atomic components.472

Definition 10 (System). A system is a pair (γ(B1, . . . , Bn), init), made of473

a composite component and init ∈
⊗n

i=1Qi its initial state.474

8. Transformations475

We start with a composite component consisting of n atomic components476

{B1, . . . , Bn} with their interface ports and variables. That is, the behaviors of477

the input atomic components are empty. Atomic components can be considered478

as services with their interfaces but with undefined behaviors.479

In this section, we define how to automatically synthesize the behavior of480

atomic components corresponding to a global choreography model ch. The481

distributed system associated with ch is noted [[ch]], and is inductively defined482

over ch. To realize choreographies as atomic components we follow the syntactic483

structure of the choreography. This facilitates the definition of the transforma-484

tion from choreographies to components and lead to a clearer implementation.485

8.1. Preliminary Notions and Notation486

We introduce some preliminary concepts and notations that will serve the487

realization of choreographies as components. As we are inductively transforming488

choreographies to components, we need to synchronize the execution of the489

independently generated choreographies. For this, we define three auxiliary490

functions that takes a choreography as input and give the components that:491

• are involved in the realization of the choreography – function C.492

• need to be notified for the choreography to start – function start,493

16

• need to terminate for the choreography to terminate – function end,494

The definitions of the two latter functions follow from the semantics of chore-495

ographies (Definition 5). Note, in the following definitions, when referring to a496

port p with a guard and/or update function involved in a choreography, we note497

p[−] when the guard and/or update function is irrelevant to the definition.498

Function C. We define C(ch) as the set of indexes of all components involved499

in choreography ch.500

Definition 11 (Function C). Function C : Choreographies → 2[1,n] \ {∅} is501

inductively defined over choreographies as follows:502

C(psas) = {i} if ∃i ∈ [1, n] : psas ∈ Pss
i ∪ Pas

i

C(pr [−]) = {i} if ∃i ∈ [1, n] : pr ∈ Pr
i

C(pr [−], rcv list) = C(pr [−]) ∪ C(rcv list)
C(nil) = ∅

C(snd {rcv list}) = C(snd) ∪ C(rcv list)
C(Bi ⊕ {cont list}) = {i} ∪ C(cont list)
C
(
while(snd) ch end

)
= C(snd) ∪ C(ch)

C(ch1 • ch2) = C(ch1) ∪ C(ch2)
C(ch1 ‖ ch2) = C(ch1) ∪ C(ch2)

Function start. We define start(ch) as the set of indexes of the components503

in ch that should be notified to trigger the start of ch.504

Definition 12 (Function start). Function start : Choreographies→ 2[1,n]\505

{∅} is inductively defined over choreographies as follows:506

start(nil) = ∅
start(snd {rcv list}) = C(snd)

start(B ⊕ {cont list}) = C(B)
start

(
while(snd) ch end

)
= C(snd)

start(ch1 • ch2) = start(ch1)
start(ch1 ‖ ch2) = start(ch1) ∪ start(ch2)

Intuitively, to start a simple synchronous or asynchronous send/receive, the507

component of its corresponding send port should be notified. Conditional master508

branching choreographies can be started by notifying their corresponding master509

component. Iterative choreographies can be started by notifying the component510

of its corresponding send port. A choreography consisting of the sequential511

composition of two choreographies can be started by notifying the components512

that can start the first choreography. A choreography consisting of the parallel513

composition of two choreographies can be started by notifying the components514

that can start the two choreographies of the composition.515

17

Function end. Similarly, we define end(ch) as the set of indexes of the compo-516

nents involved in ch that need to terminate so that ch terminates.517

Definition 13 (Function end). Function end : Choreographies→ 2[1,n]\{∅}518

is inductively defined over choreographies as follows:519

end(nil) = ∅
end(snd [−] {rcv list}) = C(rcv list) if snd ∈ Pss

end(snd [−] {rcv list}) = C(snd) if snd ∈ Pas

end(B ⊕ {cont list}) = C(cont list)
end
(
while(snd) ch end

)
= C(snd)

end(ch1 • ch2) = end(ch2)
end(ch1 ‖ ch2) = end(ch1) ∪ end(ch2)

We consider that a synchronous send/receive is terminated when all the com-520

ponents involved in the sending and receiving ports are terminated. However,521

if the send part is asynchronous, any subsequent choreography can start af-522

ter the sending is complete. Conditional master branching choreographies are523

terminated when the corresponding master component has terminated. Itera-524

tive choreographies are terminated when the component of the send port (with525

its guard used as condition) has terminated. A choreography consisting of the526

sequential composition of two choreographies has terminated when the second527

choreography in the composition has terminated. A choreography that consists528

of the parallel composition of two choreographies has terminated when the first529

and second choreographies have terminated.530

Representing components. In the sequel, we represent receive ports (resp. syn-531

chronous send, asynchronous send) using dashed square labeled with r (resp.532

circle with solid border labeled with ss, circle with dashed border labeled with533

as). We also omit the border for send ports when synchrony is out of context534

and label it with s.535

8.2. Generation of Distributed CBSs536

We consider a global choreography ch defined over the set of ports P =537

∪ni=1Pi of a given set of atomic components (with empty behavior) with their538

corresponding variables. Given a choreography ch, we define a set of transforma-539

tions that allows to generate the behaviors and the corresponding interactions540

of the distributed components S = (B, init). Moreover, as we progressively541

build system S, we consider that it has a context to denote the current state542

where a choreography should be appended. For this, S = (S, context) denotes543

a system with its corresponding context where context is a function that takes544

an atomic component as input and returns a location, i.e., context(Bi) ∈ Li545

to denote the current context of atomic components Bi. The building of the546

final system is done by induction, following the syntactic structure of the input547

choreography and uses the continuously updated context. Any step for con-548

structing the component ensures that the context of each component consists549

of a unique state.550

18

Initially, we consider a system skeleton S = (S, context), where B =551

γ(B1, . . . , Bn) with: (1) γ = ∅; (2)Bi = (Pi, ∅, {li}, ∅); (3) init = (linit1 , . . . , linitn);552

and (4) context(Bi) = liniti ; for i ∈ [1, n]. The initial location of the obtained553

system remains unchanged, i.e., it is init . As such, for the sake of clarity, we554

omit it in our construction. Moreover, all variables are initialized to their default555

value.556

8.2.1. Send/Receive557

Send/receive choreography updates the participating components by adding558

a transition from the current context and labeling it by the corresponding send559

or receive port from the choreography. In order to avoid inconsistencies between560

same ports but from different choreographies, we create a copy of each port of561

the choreography (copy). copy(p) is a new port that has the same function and562

guard, but a different name. We also add the corresponding interaction between563

the send and the receive ports. Finally, we update the context of the participants564

to be the corresponding new added states. As such, if the initial context of each565

component consists of one state, then the resulting system (after applying the566

send/receive choreography) also guarantees that each of its components also567

consists of one state. Note that an interaction connected to a synchronous568

send port and receive ports can be considered as a multiparty interaction with569

a master trigger, which is the send port. As such, this allows to efficiently570

implement multiparty interactions.571

Remark 2. Creating a copy for each port per choreography is necessary to572

generate efficient and correct distributed implementation. As for efficiency,573

consider the choreography p1 {p2} • p1 {p3}. Its corresponding dis-574

tributed implementation would require to create two interactions (p1, {p2}) and575

(p1, {p3}). As such, the component that corresponds to p1 (B1) needs to interact576

B2 and B3 to know which interaction must be executed (depending on their cur-577

rent enable ports). However, if we create a copy of the ports, each port will be578

connected to one and only interaction, hence component B1 can locally decide,579

without interacting with other components, on the interaction to be executed. As580

for correctness, consider the choreography p1 {p2, p3}•p1 {p2}. Accord-581

ing to the choreography semantics, we should first execute p1 {p2, p3} then582

p1 {p2}. Consider that we are in a state where p1 and p2 are enabled but583

p3. This may happen when the component that corresponds to p3 is still exe-584

cuting the function of the previous transition. In this case, B1 would interact585

with B2 and B3 to know which interaction to execute. As p3 is not currently en-586

abled, component B1 will execute the interaction connected with p2 only, hence587

violating the sequential semantics.588

Definition 14 (Send/Receive).

Jpsas[g, f] {rcv list}K(γ(B1, . . . , Bn), context) = (γ′(B′1, . . . , B
′
n), context′),with:

• B′k =

{
(Pk, L

′
k, T

′
k) if k ∈ C(psas[g, f]) ∪ C(rcv list)

Bk otherwise
, where:589

19

q11

q12

b1S

s

b1S

q21

q22

b2R

r

b2R

q31

q32

b3R

r

b3R

Figure 5: Send/Receive Transformation

– L′k = Lk ∪ {lnewk }590

– T ′k = Tk ∪

{
{context(Bk)

copy(psas),g,f−−−−−−−−−→ lnewk } if psas[g, f] ∈ Bk.Pss ∪Bk.Pas

{context(Bk)
copy(pk),true,pk.ufct−−−−−−−−−−−−−→ lnewk } if pk ∈ rcv list

591

• γ′ = γ ∪ {(copy(psas), {copy(pi) | pi ∈ rcv list})},592

• context′(B′k) =

{
lnewk if k ∈ C(psas[g, f]) ∪ C(rcv list)
context(Bk) otherwise

.593

Atomics components that do not participate in the send/receive choreography594

remain unchanged. Atomic components that participate in the send/receive are595

updated by adding a transition from their context location to a new location596

(lnewk). We label this transition with a copy of the corresponding port. We597

create an interaction that connects the send ports to the receive ports. The new598

context becomes the new created location.599

Example 1 (Send/Receive). Figure 5 shows an abstract example on how to600

transform a simple send/receive choreography, b1S −−→ {b2R, b3R}, into an601

initial system consisting of three components with interfaces: b1S (send, syn-602

chronous or asynchronous), b2R (receive), and b3R (receive), respectively.603

8.2.2. Branching Composition604

Recall that conditional master branching of the form Bi⊕{pli[gi, fi] : chl}l∈L,605

allows for the modeling of conditional choice between several choreographies.606

The choice is made by a specific component (Bi), which depending on its in-607

ternal state would enable some its guards (gi). Accordingly, it notifies the608

appropriate components by sending a label (pli), to follow the taken choice (i.e.,609

the corresponding choreography, chl). We apply branching by independently610

integrating the choreography for each choice. This can be done by letting Bi611

notifying the participants, i.e., C(Bi ⊕ {pli[−] : chl}l∈L) \ {i}, of the choreog-612

raphy (chl) of that choice (pli). For that purpose, we create new receive ports613

({pcrlk }k∈K) to be able to receive the corresponding choice.614

For this, we define a union operator, noted union, that takes a set of systems615

with their contexts and (1) unions all of their locations, transitions and ports;616

then (2) updates the contexts of the obtained components by joining each of their617

20

input contexts with internal transitions. Therefore, after applying branching618

we guarantee that each component will have one and only one context location.619

Formally, operator union is defined as follows.620

Definition 15 (Union). The union of systems with their contexts {(Sl, contextl)}l∈L,621

where Sl = γl(Bl1, . . . , B
l
n) and Bli = (P li , Xi, L

l
i, T

l
i) for i ∈ [1, n] and l ∈ L,622

noted union({(Sl, contextl)}l∈L), is defined as the system with context (γ(B1, . . . , Bn), context),623

where:624

• γ =
⋃
l∈L γ

l;625

• Bi = (
⋃
l∈L P

l
i ,
⋃
l∈LX

l
i ,
⋃
l∈L L

l
i ∪ {lui }l∈L,

⋃
l∈L T

l
i ∪ T merge

i) with lui a626

new location and T
merge
i = {contextl(Bli)

ε−→ qci | l ∈ L};627

• context(Bi) = lui for i ∈ [1, n].628

Then, branching as described by independently applying each choice, then doing629

the union.630

Definition 16 (Branching).

[[Bi ⊕ {pli[gl, fl] : chl}l∈L]](S, context)
= union

(
{JchlKJpli[gl, fl] {pcrlk [∅]}k∈KK(S, context)}l∈L

)
Where, K = C(Bi ⊕ {pli[−] : chl}l∈L) \ {i}.631

Remark 3. Note that we require to notify all the participants of a choice and632

not only the start components. Consider the following choreography (where α633

and β denote some choreographies):634

B1 ⊕ {pl1[−] : p2[−] p3[−] • α; pl2[−] : p2[−] p3[−] • β}

In this choreography, if we would have not sent the choice made by component635

1 to component 3, then component 3 cannot know about the decision that was636

taken by component 1. Hence, it cannot decide whether to follow choreography637

α or β afterwards.638

Example 2 (Branching). Figure 6 shows an abstract example on how to apply639

a branching operation that consists of two choices B1⊕{b1l1 [g1, f1] : ch1, b2
l2 [g2, f2] :640

ch2}. First, we add choice transitions to component B1 and synchronize them641

with the participants of ch1 and ch2, e.g., B2 and B3. Then, we apply the chore-642

ographies accordingly. Finally, we merge the contexts with internal transitions.643

8.2.3. Loop Composition644

Loop while(snd [g, f]){ch}, allows for the modeling of a conditional repeated645

choreograph ch. The condition is evaluated by a specific component, which will646

notify, through the port snd , the participants of the choreography to either647

re-execute it or break.648

21

q11

q12 q13

g1

b1l1

f1

g2

b1l2

f2

q14 q15

ch1 ch2

q16

ε ε

ss

b1l1

ss

b1l2

q21

q22 q23

b2cr1 b2cr2

q24 q25

ch1 ch2

q26

ε ε

r

b2cr1
r

b2cr2

q31

q32 q33

b3cr1 b3cr2

q34 q35

ch1 ch2

q36

ε ε

r

b3cr1
r

b3cr2

Figure 6: Branching transformation

Definition 17 (Loop).

let K = C(ch) \ {i}
let (γt (Bt

1, . . . , B
t
n) , contextt) = JchKJsnd [g, f] {prcont

k [∅]}k∈KK(S, context)
let (P t

i ,−, Lt
i , T

t
i) = Bt

i , for i ∈ [1, n]
in Jwhile(snd [g, f])ch endK(S, context) = (γ′ (B′1, . . . , B

′
n) , context′)

where:
let pfjand lcj be new synchronous ports and locations, for j ∈ K ∪ {i}

• P ′j = P t
j ∪

{
{pfj} if j ∈ K ∪ {i}
∅ otherwise

;649

• L′j = Lt
j ∪
{
{lcj} if j ∈ K ∪ {i}
∅ otherwise

;650

• T ′j = T t
j ∪

{contextt(Bj)

ε−→ context(Bj), context(Bj)
pfj ,true,∅−−−−−−→ lcj} if j = i

{contextt(Bj)
ε−→ context(Bj), context(Bj)

pfj ,¬g,∅−−−−−→ lcj} if j ∈ K \ {i}
∅ otherwise

;651

• γ′ = γt ∪ {(pfi , {pfj}j∈K)};652

• context′(B′j) =

{
lcj if j ∈ K ∪ {i}
context(Bj) otherwise

.653

Transitions are updated by adding the reset and loop transitions. The condition654

is evaluated by a specific component, which will notify, through the port pi, the655

participants of the choreography to either re-execute it or break. The context656

is updated to be the location associated with the end of the loop.657

22

q11

q12q14

g

b1l2

f

¬g
b1l1

q13

ch

ε

ss

b1l1

ss

b1l2

q21

q22q24

b2r2b2r1

q23

ch

ε

r

b2r1
r

b2r2

q31

q32q34

b3r2b3r1

q33

ch

ε

r

b3r1
r

b3r2

Figure 7: Loop composition transformation

Example 3 (Loop). Figure 7 shows an example of application of a loop oper-658

ation guided by component B1 and where the participants are components B1,659

B2 and B3.660

8.2.4. Sequential Composition661

The binary operator • allows to sequentially compose two choreographies,662

ch1•ch2. For this, its semantics is defined by (1) applying ch1; (2) notifying the663

start of ch2; and finally (3) applying ch2. As we require that ch1 must terminate664

before the start of ch2, we need to synchronize all the end components of ch1665

with all the start components of ch2. To do so, it is sufficient to pick one of the666

end components of ch1 and create a synchronous send port, which is connected667

to new receive ports added to the remaining end components of ch1 and start668

components of ch2. Moreover, the application of the sequential composition669

guarantees that each component of the resulting system consists of exactly one670

state, provided that the context of each component of the initial system consists671

of one state. Formally, the semantics of the sequential composition is defined672

as follows.673

Definition 18 (Sequential Composition).

[[ch1 • ch2]](S, context) = [[ch2]][[chsynch]][[ch1]](S, context),with:

chsynch = pcsi [true, ∅] {pcrj [true, ∅]}j∈J such that: (1) i ∈ end(ch1); (2)674

J = end(ch1) ∪ start(ch2) \ {i}; (3) pcsi is a new synchronous send port to be675

added to Pssi ; and (4) {pcrj }j∈J are new receive ports to be added to Prj .676

Example 4 (Sequential composition). Figure 8 shows an abstract example677

on how to transform sequential composition of two choreographies, ch1 • ch2,678

into an initial system consisting of five components. Here we only consider679

components that are involved in those choreographies, where (1) components b1,680

b2, b3 and b4 are involved in choreography ch1; and (2) components b1, b2, b3681

23

q11

q12

ch1

q13

b1cs

q14

ch2

ss

b1cs

q21

q22

ch1

q23

b2cr

q24

ch2

r

b2cr

q31

q32

ch1

q33

b3cr

q34

ch2

r

b3cr

q41

q42

ch1

q51

q52

ch2

Figure 8: Sequential composition transformation

and b5 are involved in choreography ch2. Note, components that are not involved682

are kept unchanged. The transformation requires to: (1) apply first choreography683

ch1 to its participated components (i.e., b1, b2, b3 and b4); (2) synchronize the684

end of choreography ch1 (e.g., b1) with the start of choreography ch2 (e.g., b2 and685

b3). To do so, we create a synchronous send port to one of the end components686

of ch1 (e.g., bcs1) and connect it to all the remaining end components of ch1687

(e.g., ∅ and the start components of ch2 (e.g., b2 and b3); finally (3) we apply688

choreography ch2.689

8.2.5. Parallel Composition690

The binary operator ‖ allows for the parallel compositions of two indepen-691

dent choreographies. Two choreographies are independent if their participating692

components are disjoint.693

Definition 19 (Independent Choreographies). Two choreographies ch1 and694

ch2 are said to be independent iff C(ch1) ∩ C(ch2) = ∅.695

We consider independent choreographies to avoid conflicts and interleaving of696

executions within components. In addition, this simplifies reasoning and writing697

choreographies as well as for efficient code generation. Note that parallelizing698

independent choreographies implies that each component has a single execution699

flow. In case we have overlap, e.g., p1 {p2, p3} ‖ p1 {p5}, we could700

split p1 into two different components. Moreover, it is possible to enforce any701

arbitrary order of execution. Further, we discuss other possible alternatives for702

handling this case. This would not reduce the expressiveness of our model as703

parallel execution flows can be modelled in separate components. The semantics704

of the parallel composition ch1 ‖ ch2 is simply defined by applying ch1 and ch2705

in any order, which leads to the same system as the two choreographies are706

24

q11

q12

ch1

q21

q22

ch1

q31

q32

ch2

q41

q42

ch2

Figure 9: Parallel composition transformation

independent, i.e., they behave on different set of components. Moreover, the707

application of the parallel composition guarantees that each component of the708

resulting system consists of exactly one state, provided that the context of each709

component of the initial system consists of one state.710

Definition 20 (Parallel Composition).

[[ch1 ‖ ch2]](S, context) = [[ch2]][[ch1]](S, context)

Example 5 (Parallel Composition). Figure 8 shows an abstract example on711

how to transform parallel composition of two choreographies, ch1 ‖ ch2, into an712

initial system consisting of five components. Here, we consider that ch1 (resp.713

ch2) involves components B1 and B2 (resp. B3 and B4).714

The following proposition is a straightforward consequence of the transforma-715

tion associated with the ‖ operator and the fact that the transformation of a716

choreography only modifies the component involved in this choreography.717

Proposition 1. If ch1 and ch2 are two independent choreographies, then [[ch1 ‖718

ch2]] = [[ch2 ‖ ch1]].719

Consequently, synthesizing distributed systems for parallel choreographies can720

be done concurrently.721

Remark 4. For parallelizing choreographies that have a component in common722

(i.e., not independent), we can still apply the parallel composition either by (1)723

enforcing any arbitrary order of execution. As such, in the case of independent724

choreographies, true parallelism is achieved, otherwise, we apply them in any725

order to avoid non-deterministic execution; (2) using of product automata as726

defined in [36]; (3) use of multiple execution flows (i.e., multi-threading within727

a component).728

8.3. Discussion on the Correctness of the Synthesis Method729

We conjecture that a choreography ch and its corresponding synthesized730

distributed system obtained by the transformations in this section are weakly731

bisimilar. Below we give some arguments based on the structure of the chore-732

ography. A full proof is left for future work.733

25

• In the case of send/receive choreographies. The execution of choreogra-734

phies follows rules (synch-sendrcv) for synchronous send, (asynch-sendrcv-1)735

and (asynch-sendrcv-2) for asynchronous send. The execution of dis-736

tributed systems follows rule (synch-send). The transformation is imple-737

mented by the interaction added in Definition 14; see Figure 5.738

• In the case of branching choreographies. The execution of choreographies739

follows rule (master-branching). The transformation is implemented by740

Definition 16 where we create the appropriate interactions to implement741

the master branching rule, as depicted in Figure 6.742

• In the case of looping choreographies. The execution of choreographies743

follows rules (iterative-tt) and (iterative-ff). The transformation is744

implemented by Definition 17 where we create the appropriate interactions745

and behavior to implement the looping rule, as depicted in Figure 7.746

• In the case of sequential choreographies. The execution of choreographies747

follows rules (sequential-1) and (sequential-2). The transformation is748

implemented by Definition 18 where we add an interaction and behavior749

to implement the sequential rules and guarantee the sequential execution750

of the input choreographies, as depicted in Figure 8.751

• In the case of parallel choreographies. The execution of choreographies752

follows rules (parallel-1), (parallel-2), (parallel-3), and (parallel-4).753

The transformation is implemented by Definition 20 where we transform754

each choreography independently, as depicted in Figure 9.755

9. Code Generation756

We describe the principle of how to generate a distributed implementation757

from the generated components.758

Code generation takes as input a choreography and a configuration file con-759

taining the list of components with their corresponding interfaces/ports and760

variables. Clearly, the choreography is defined with respect to the components’761

ports, with functions and guards defined with respect to the components’ vari-762

ables. We only consider independent choreographies, as described in Defini-763

tion 19. Note, if the components are not independent, we can follow the strate-764

gies described in Remark 4. Code generation then automatically produces the765

corresponding implementation of each of the components. Following our trans-766

formation into Distributed CBS in Section 8.2, the obtained components have767

the following characteristics: (1) they do not have a location with outgoing send768

and receive ports; (2) a port is connected to exactly one interaction. As such,769

there are no conflicting interactions that can run concurrently. Two interactions770

are said to be conflicting iff they share a common component. Consequently, it771

is possible to generate fully distributed implementations, with no need for con-772

trollers (unlike [7]) for managing multiparty interactions. Hence, the number of773

exchanged messages will be divided by 2 for each execution of an interaction.774

26

Algorithm 1: Pseudo-code - generated components.

1 initialization();
2 while true do
3 if all outgoing transitions are send then
4 port p = select enabled port, i.e., guard true;
5 notify all the receivers of the interaction that has port p;
6 if p is synchronous then
7 wait for ack. from the receivers;
8 end

9 end
10 else if all outgoing transitions are receive then
11 wait until a message is ready in one of the outgoing receive ports;
12 port p = select message;
13 if interaction connected is synchronous then
14 send ack. to the corresponding send port;
15 end

16 updateCurrentState();

17 end

The code structure is depicted in Algorithm 1 that requires only send/receive775

primitives. After initializing, we distinguish between two possible cases.776

Case 1. All outgoing transitions are labeled with send ports.777

• We pick a random enabled port, i.e., its guard evaluated to true.778

• Then, we notify all the receive ports that are connected to the interaction779

containing that port.780

• If the port is a synchronous send port, the component waits for an ac-781

knowledgement from the corresponding receive components.782

Case 2. All outgoing transitions are labeled with receive ports.783

• The component waits until a message is ready/received in one of the784

receive ports.785

• Upon receiving a message, we acknowledge its receipt if the port is con-786

nected to a synchronous interaction.787

Finally, we update the current state (update location and execute local function)788

of the component (updateCurrentState()) depending on the current outgoing789

transition.790

It is worth mentioning that it is possible to provide a code generation w.r.t.791

a communication library (e.g., MPI, Java Message Service). In this case, the792

code generation can benefit from the features provided by the library, e.g.,793

synchronous communication such as MPI Ssend.794

27

10. Building Micro-Services Using Choreography795

Traditionally, distributed applications follow a monolithic architecture, i.e.,796

all the services are embedded within the same application. A new trend is to797

split complex applications up into smaller micro-services, where each micro-798

service can live on its own within a container.799

We conduct a case study on a micro-service architecture to automatically800

derive the skeleton of each micro-service. We use choreographies to describe801

the interactions between services. The system consist of several communicating802

services to provide clients with system images. Typical services include load803

balancing, authentication, fault-tolerance, installation, storage, configuration,804

and deployment. The system also allows clients to request and install packages.805

The corresponding global choreography CH is defined in Listing 1.806

• CH1: A client (c) sends a request to the gateway service (gs), which is807

the only visible micro-service to the client, containing the required version,808

revision, pool name, and an identifier to the testing data. gs forwards the809

request to the deploy environment service (des). des creates an envi-810

ronment id and returns it back to gs, which in turn forwards it back to811

c.812

• CH2: des sends to the deploy application directory service (dads) and the813

deploy database service (dds) (i) required version, revision and pool name814

and (ii) testing data identifier and environment id, respectively. c keeps815

checking if the environment is ready, which is done through the gateway816

service with the help of the environment info. service (eis).817

• CH3: dads requests from the machine service (ms) and the setup service818

(ss) (i) a machine location from the pool and (ii) the package location,819

respectively. When dads receives the replies from both ms and ss, it con-820

tacts the appropriate host machine (hmi) by sending the package location.821

Then, hmi sends its status to des. des upon receiving the status update,822

it forwards it to the eis. dds requests from the dumps service (dus) and823

the Database machines services (dms) (i) testing data location, and (ii) a824

database server, respectively. When dds receives the replies from both dus825

and dbs, it contacts the appropriate database server hdj by sending the826

testing data location. Then, hdj sends its status to des. Upon receiving827

the status update, des forwards it to eis.828

For each micro-service/component m, we denote by mSS, mAS mR a correspond-829

ing synchronous send, asynchronous send and receive port, respectively.830

Given the global choreography, we automatically synthesize the code of each831

component. Note that, in practice, the above choreography may be updated832

to fulfill new requirements by updating/adding/removing new micro-services.833

This would require a drastic effort to re-implement the communication logic834

between components, which is tedious, error-prone and very time-consuming.835

Using our method, we only require to update the global choreography, and then836

automatically generate the implementation of the components.837

28

Listing 1: Global choreography� �
CH = CH1 • CH2 • CH3

CH1 = cSS −→ gsR • gsSS −→ desR • desAS −→ gsR

CH2 = CH1
2 • CH2

2

CH1
2 = gsSS −→ cR ‖ (desAS −→ dadsR • desAS −→ dadsR)

CH2
2 = while(cSS) cSS −→ gsR •

gsSS −→ eisR • eisSS −→ gsR • gsSS −→ cR end

CH3 = (CH4 ‖ CH5)• CH6

CH4 = CH1
4 • CH2

4 • CH3
4

CH1
4 = dadsAS −→ amsR • dadsAS −→ SSR

CH2
4 = amsSS −→ dadsR ‖ ssSS −→ dadsR

CH3
4 = dads⊕ {li : dadsSS −→ hmiR • hmiSS −→ desR}

CH5 = CH1
5 • CH2

5 • CH3
5

CH1
5 = ddsAS −→ dusR • ddsAS −→ SSR

CH2
5 = dusSS −→ ddsR ‖ dmsSS −→ dadsR

CH3
5 = dds⊕ {li : ddsSS −→ hdiR • hdiSS −→ desR}

CH6 = desAS −→ eisR� �� �
createPromela() {

createChannels ();

foreach Bi {

createProcess(i);

}

}� �
Listing 2: Main Code Generation from System S to Promela

11. Transformation to Promela838

Overview. Given a system S = (B, init), with B = γ(B1, . . . , Bn), produced839

by applying the set of transformations corresponding to a given choreography840

ch, we define a translation of S into Promela [21]. The Promela version of841

the system has the same behavior as S but it can be verified with respect to842

properties specified in Linear Temporal Logic (LTL).843

The transformation to Promela is realized mainly by two functions (1)844

createChannels, which generates global channels (in Promela) that are used to845

transfer messages between processes; (2) createProcess, which generates the846

code that corresponds to each of the components. We use the append call to847

add Promela code to the generated file. Listing 2 depicts code generation for a848

system S to Promela.849

Function createChannels. The main skeleton of the createChannels is de-850

picted in Listing 3. For every receive port, we create a channel (Promela’s851

29

� �
1 createChannels()

2 foreach a ∈ γ, where a = (ps, {pir}i∈I) {

3 foreach p ∈ {pir}i∈I {

4 i f (isSSend(ps))
5 append chan channelP = [0] of {ps.dtype };

6 else
7 append chan channelP = [MAX_LEN] of {ps.dtype };

8 end
9 end

10 end� �
Listing 3: createChannels Skeleton

message carrier type). The type of the channel is the data type of the corre-852

sponding send port (i.e., p.dtype). For synchronous (resp. asynchronous) ports,853

we use a channel of length 0 (resp. MAX LEN).854

Function createProcess. The main skeleton of the createProcess is depicted855

in Listing 4. For every component Bi, we create a process in Promela contain-856

ing: (1) a variable that will hold the current location of the component, which857

is initialized to the initial location of the component; a (2) the variables of858

the component; and (3) the code generated of the LTS implementation of the859

component.860

12. Case Study: Synthesizing an Implementation of a Buying System861

We consider a system consisting of four components: Buyer 1 (B1), Buyer 2862

(B2), Seller (S) and Bank (Bk).863

12.1. Specification of the Buying System864

Buyer 1 sends a book title to the Seller, who replies to both buyers by quoting865

a price for the given book. Depending on the price, Buyer 1 may try to haggle866

with Seller for a lower price, in which case Seller may either accept the new867

price or call off the transaction entirely. At this point, Buyer 2 takes Seller’s868

response and coordinates with Buyer 1 to determine how much each should pay.869

In case Seller chose to abort, Buyer 2 would also abort. Otherwise, it would870

keep negotiating with Buyer 1 to determine how much it should pay. Buyer871

1, having a limited budget, consults with the bank before replying to Buyer 2.872

Once Buyer 2 deems the amount to be satisfactory, he will ask the bank to pay873

the seller the agreed upon amount (Buyer 1 would be doing the same thing in874

parallel).875

12.2. Synthesizing the Implementation876

30

q1

q2

R

q3

cpr1

q4

S

q5

cps1

q6

cpr12

q7

R

q8

cpr4

q9

S

cpr3

q10

cps2

q11

cpr5

q12

R

q13

R

cpr6

q14

cpr7

q15

E S

q1

q2

S

q3

cps1

q4

R

q5

cpr1

q6

cps2

q7

S

q8

cps4

q9

R

cps3

q10

cpr2

q11

cpr3

q12

cpr4

q13

C

q14

cps5

q15

R

q16

cpr6

q17

C

ε

q18

cpr5

q19

cpr7

q20

MS

q21

cps6

cpr8

q22

cpr9

q23

EB1

q1

q2

R

q3

cpr1

q4

R

cpr3

q5

cpr2

q6

cps1

q7

cps2

q8

R

ε q9

cps3

q10

cps4

q11

MS

q12

cps5

cps6

q13

cpr4

q14

EB2

q1

q2

cpr1

q3

cpr2

q8

cpr4

q4

InfR

q5

cpr3

q6

InfS

q7

cps1

ε

q9

q10

cpr6

q11

MS2

MR2

q12

MR1

q13

cpr7

q14

MS1

cpr8

q15

cps2

q16

E

Bk

Figure 10: Components generated from the choreography in Listing 5.

31

� �
1 createProcess(int id) {

2 append proctype process(int id) {

3 append int currentLocation = initialLocation;

4 append currPort = _;

5 append do
6 append :: i f
7 append :: (all current outgoing trans. are send) ->

8 append ps = pickEnablePort (); // w.r.t. guard

9 append currPort = ps;
10 foreach p ∈ {pir}i∈I , where ∃a = (ps, {pir}i∈I) ∈ γ {

11 append channelP !(msg);

12 }

13 append i f
14 append :: (all outgoing are synchronous send) ->

15 foreach p ∈ {pir}i∈I , where ∃a = (ps, {pir}i∈I) ∈ γ {

16 append channelP ?(_);

17 }

18 append f i ;
19 append :: else -> // outgoing transitions are receive

20 // listening to all current channels

21 append i f

22 foreach p: currentLocation
p−→

23 append ::(channelP ?(val)) -> currPort = p;

24 i f (p is connected to synchronous send) {

25 append channelP !(ack);

26 }

27 append f i ;
28 append f i ;
29 // Update current location and execute location function

30 // of the current outoing transition.

31 append updateCurrentState ();

32 append od;
33 append }

34 }� �
Listing 4: createProcess Skeleton

Choreography. We used the specification of the buying system to write a global877

choreography ch that describes the expected interactions between the buyers878

and the seller. The choreography is given Listing 5. In the choreography, we879

prefix the names of the ports by the owning components. Each port maps to a880

different functionality in the system so that, for example, Bk.InfR and Bk.InfS881

represent an interface for handling enquiries. Bi.S and Bi.R represent simple882

message send/receive interfaces for Buyer i (similarly for S.S and S.R).883

Synthesizing the distributed component-based system. We apply our transfor-884

mation to the choreography in Listing 5 and obtain the distributed component-885

based system depicted in Figure 10. The system consists of four components,886

32

Listing 5: Global choreography of the Buyer/Seller example� �
CH = B1.S −→ S.R • S.S −→ {B1.R, B2.R} • B1 ⊕ {CH1, ε} •

CH2 • CH7

CH1 = B1.S −→ S.R • S.S −→ {B1.R, B2.R}
CH2 = B2 ⊕ {CH3, nil}
CH3 = while(B2.C) {

B1.C −→ Bk.InfR • Bk.InfS −→ B1.R • B1.C −→ B2.R

} • CH4

CH4 = CH5 ‖CH6

CH5 = B2.MS −→ Bk.MR2 • Bk.MS2 −→ S.R

CH6 = B1.MS −→ Bk.MR1 • Bk.MS1 −→ S.R

CH7 = B1.E −→ nil ‖ B2.E −→ nil ‖ Bk.E −→ nil ‖ S.E −→ nil� �� �
#define recv (ch) ch? value
#define recvAck (ch) ch ?()
#define send (ch) ch ! va lue
#define sendAck(ch) ch ! ack
#define synchRecv(ch) ch? value ; sendAck(ch)� �

Listing 6: Promela Macros

one for each process involved in the choreography. Ports prefixed with cp are887

controlled ports generated for synchronization following the transformations in888

Section 8. Interactions are used by the components to synchronize and commu-889

nicate, e.g., (1) (B1.S, {S.R}), which allows buyer B1 to request a quote from the890

seller; (2) (B2.cps1, {B1.cpr3, Bk.cpr1, S.cpr5}), which is used to broadcast the891

choice made by buyer B2. In total, we generate 27 interactions. Otherwise, the892

components evolve independently. The components do not require controllers893

to execute; this ensures the efficiency of the implementation at runtime.894

Promela version of the implementation. To verify that the distributed imple-895

mentation respects some desired properties, we apply our transformation of dis-896

tributed component-based systems to Promela which constitutes a translation897

of the choreography behavior.898

Because of the absence of procedures in Promela, we define the macros in899

Listing 6 for convenience and clarity. All of these macros accept a Promela900

channel (ch). We assume that value is a variable that contains the value that901

should be sent.902

With the macros defined in Listing 6, the Promela code generated is depicted903

in Listing 7.904

updateCurrentState is a macro that updates the current location and exe-905

cute the location function of the current outgoing transition. The result of this906

computation would then be stored in the variable value.907

33

12.3. Verifying the Implementation908

We verify the generated implementation of the buying system against LTL [33]1909

properties specifying its expected behavior. In the following descriptions of910

properties, we prefix variables local to processes with the the name of the pro-911

cess.912

Correct termination. The correct termination property require that “all pro-913

cesses terminate if any of them terminate”. Let the ports suffixed by E rep-914

resent the termination interface/port of the corresponding process. Moreover,915

we consider the following atomic propositions currPort1 = Buyer1.currPort,916

currPort2 = Buyer2.currPort, currPort3 = Bank.currPort, and currPort4917

= Seller.currPort. Then, correct termination can be expressed as the follow-918

ing LTL formula:919

G

(
4∨
i=1

(currPorti = Ei) =⇒ F

4∧
i=1

(currPorti = Ei)

)

where Ei represents the ending interface of the appropriate process.920

Uniqueness of interface calls. An interface should only be called once. In each921

run, money is only withdrawn once by each process. Let the port Bk.MS1 (resp.922

Bk.MS2) represent the withdrawal of money by process 1 (resp. process 2).923

Then, specifying that money is withdrawn once per process can be expressed as924

the LTL formula:925

2∧
i=1

G((Bank.currPort = Bk.MSi) =⇒ XG(¬Bank.currPort = Bk.MSi))

Correct transaction. Money is only withdrawn after either Buyer1 or Buyer 2926

makes a request. Let the ports Bk.MSi be as above and let Bi.MS represent927

money transfer requests by Buyer i. Then specifying the order of execution is928

represented by the following LTL formula:929

2∧
i=1

G
(
(¬(Bank.currPort = Bk.MSi)) U (Bi.currPort = Bi.MS)

)

13. Related Work930

Many coordination models exist to simplify the modeling of interactions931

in concurrent and distributed systems, such as in [1, 5]. Using these models932

requires the definition of the local behaviors of the processes and use of the933

communication model to implement the interactions between them. This is in934

1We recall the intuitive meaning of LTL operators: Gϕ (resp. Fϕ, Xϕ) stands for globally
(resp. eventually, next) ϕ, and ϕ1Uϕ2 stands for ϕ1 until ϕ2.

34

contrast to our case where we automatically synthesize the local code of the935

processes.936

Moreover, in order to reason about the correctness of coordinated processes,937

session types [6, 22, 8, 37, 18, 11] and choreographies [36] have been proposed to938

statically verify the implementations of communication protocols based on the939

following methodology: (1) define communication protocol between processes940

using a global protocol ; (2) automatically synthesize local types which are the941

projection of global protocol w.r.t. processes; (3) develop the code of processes;942

(4) statically type-check the code of the processes w.r.t. local types. Conse-943

quently, the distributed software follows the stipulated global protocol. In our944

case, we automatically generate a more refined version of processes that embeds945

all the communication and synchronization logic as well as control flows, and946

which is (conjectured to be) correct-by-construction with respect to the global947

choreography.948

In [9], the authors present a deadlock-freedom by design method for chore-949

ographies communicating using multiparty asynchronous interactions. The method950

allows to efficiently verify and reason at the choreography level. Although, (1)951

the method is not concerned about synthesizing distributed implementation;952

and (2) the communication model only supports asynchronous interactions; us-953

ing this approach can help us to verify and reason about our choreographies.954

Moreover, we can use a similar approach introduced in [35] to efficiently verify955

our choreographies.956

In [10], the notion of Linear Compositional Choreographies (LCC) is pre-957

sented. In LCC, choreographies and processes can be combined, so that, for958

example, a choreography can be combined with existing process code (e.g., from959

a software library) to produce a new choreography. LCC is a genrealization of960

intuitionistic linear logic, and proof transformations in LCC yield procedures961

of endpoint projection and also of choreography extraction (using the standard962

Curry-Howard interpretation of proofs-as-program). It is also shown that all963

internal communications can be reduced, so that LCC programs are deadlock-964

free by construction. In [34], the authors present a notion of choreography965

that permits dynamic updates at run time. These can be compiled into dis-966

tributed programs in the Jolie programming language. In [3] choreographies are967

implemented by the automatic synthesis of distributed Coordination Delegates968

(CDs), which are extra processes added to the basic participant services, and969

which enforce the choreography specification.970

In [25, 26], the authors present a method to synthesize a global choreography971

from a set of local types. The global view allows for the reasoning and analysis972

of distributed systems. In our approach, we consider the inverse of that trans-973

formation, i.e., we create a template with all the necessary communication and974

control flows of the endpoint processes starting from a global choreography.975

In [2, 16], the authors introduce syntactic transformations to refine dis-976

tributed system programs starting from high-level specifications. In [2], the977

proposed specification differs from our choreography model as it is not possible978

to express multiparty interactions, or guarded loop, which makes it impracti-979

cal in the context of distributed systems. In [16], the paper mainly targets980

35

multiparty interactions, where the main objective is to loosening synchronous981

multiparty interaction while preserving its semantics. In our case, as we auto-982

matically synthesize code for multiply interactions, there is no need for loosening983

technique. Add to that, we also support asynchronous ports that allow to loos-984

ening interactions. Additionally, in [2, 16], it is not clear how to automatically985

generate code from the refined programs.986

BPMN [31] (Business Process Model and Notation) is an industry standard987

that allows modeling process choreographies. An extension of BPMN was in-988

troduced in [20, 28] to automatically derive a local choreography from a global989

one. Nonetheless, the extension only considers exchange of messages and does990

not formally define other composition operators such as synchronous multi-991

party communications, parallelism, choice, sequential and loop. The method992

proposed in [30] allows deriving RESTful choreographies from process chore-993

ographies, whereas in this paper we synthesize the code of the processes given994

global choreography. Moreover, the model is restricted to RESTful architec-995

ture. In [19], the authors introduce a framework for the verification and design996

of choreographies, however, the communication model only allows for one send997

and one receive per interaction.998

14. Conclusion and Future Work999

Conclusion. This paper deals with the synthesis of distributed implementations1000

of local processes (control flows, synchronization, notification, acknowledgment,1001

computations embedding), starting from a global choreography. The method1002

presented in this paper allows one to automatically verify the communication1003

protocols and drastically simplify the synthesis of the distributed implemen-1004

tation. Moreover, the language is used to model a real case study provided1005

by Murex S.A.L. services industry. We used the choreography language and1006

the method to synthesize actual micro-services architectures. The synthesized1007

micro-services can be verified against any Linear Temporal Logic formula thanks1008

to a translation to Promela. We illustrated the translation and the verification1009

on a simplified version of an application at Murex for which we synthesized the1010

micro-service implementation.1011

Future work. In addition to formally prove the weak bisimilarity between chore-1012

ographies and the synthesized distributed systems (sketched in Section 8.3),1013

future work comprises several directions. First, we consider augmenting our1014

choreography model by adding fault-tolerance primitives. That is, we aim to1015

specify the number of replicas of each process and automatically embed a con-1016

sensus protocol between them such as Paxos [24] or Raft [32]. Second, we1017

consider integrating our framework with Spring Boot to allow for the automatic1018

generation of RESTful web services starting from global choreography. Third,1019

we consider augmenting our code generation with features provided by Istio [23]1020

and Linkerd [27], which are used for routing, failure handling, service discovery,1021

the integration of micro-services, the traffic-flow management and enforcing poli-1022

cies. Fourth, we consider defining a specific model checker for our distributed1023

36

component-based framework. Finally, we consider using complementary ver-1024

ification techniques operating at runtime such as runtime verification [4, 15]1025

and runtime enforcement [12] for which we defined approaches in the case of1026

non-distributed component-based systems [14, 13].1027

Acknowledgment1028

The authors warmly thank the reviewers for their helpful comments on a1029

preliminary version of this paper. The work presented in this paper is sup-1030

ported by the Murex Grant Award 103456 and University Research Board at1031

the American University of Beirut.1032

References1033

[1] Agha, G. A., Kim, W., 1999. Actors: A unifying model for parallel and1034

distributed computing. Journal of Systems Architecture 45 (15), 1263–1277.1035

URL https://doi.org/10.1016/S1383-7621(98)00067-81036

[2] Attie, P. C., Das, C., 1997. Automating the refinement of specifications for1037

distributed systems via syntactic transformations. Int. J. Systems Science1038

28 (11), 1129–1144.1039

[3] Autili, M., Inverardi, P., Tivoli, M., August 2018. Choreography realizabil-1040

ity enforcement through the automatic synthesis of distributed coordination1041

delegates. Science of computer programming, 3–29.1042

[4] Bartocci, E., Falcone, Y. (Eds.), 2018. Lectures on Runtime Verification -1043

Introductory and Advanced Topics. Vol. 10457 of Lecture Notes in Com-1044

puter Science. Springer.1045

URL https://doi.org/10.1007/978-3-319-75632-51046

[5] Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.,1047

Sifakis, J., 2011. Rigorous component-based system design using the BIP1048

framework. IEEE Software 28 (3), 41–48.1049

[6] Bejleri, A., Yoshida, N., 2009. Synchronous multiparty session types. Electr.1050

Notes Theor. Comput. Sci. 241, 3–33.1051

[7] Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J., 2012. A1052

framework for automated distributed implementation of component-based1053

models. Distributed Computing 25 (5), 383–409.1054

[8] Bonelli, E., Compagnoni, A. B., 2007. Multipoint session types for a dis-1055

tributed calculus. In: Trustworthy Global Computing, Third Symposium,1056

TGC 2007, Sophia-Antipolis, France, November 5-6, 2007, Revised Selected1057

Papers. pp. 240–256.1058

37

[9] Carbone, M., Montesi, F., 2013. Deadlock-freedom-by-design: multiparty1059

asynchronous global programming. In: The 40th Annual ACM SIGPLAN-1060

SIGACT Symposium on Principles of Programming Languages, POPL ’13,1061

Rome, Italy - January 23 - 25, 2013. pp. 263–274.1062

URL https://doi.org/10.1145/2429069.24291011063

[10] Carbone, M., Montesi, F., Schürmann, C., Feb. 2018. Choreographies, log-1064

ically. Distrib. Comput. 31 (1), 51–67.1065

URL https://doi.org/10.1007/s00446-017-0295-11066

[11] Charalambides, M., Dinges, P., Agha, G. A., 2016. Parameterized, concur-1067

rent session types for asynchronous multi-actor interactions. Sci. Comput.1068

Program. 115-116, 100–126.1069

[12] Falcone, Y., 2010. You should better enforce than verify. In: Barringer,1070

H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G. J., Rosu,1071

G., Sokolsky, O., Tillmann, N. (Eds.), Runtime Verification - First Inter-1072

national Conference, RV 2010, St. Julians, Malta, November 1-4, 2010.1073

Proceedings. Vol. 6418 of Lecture Notes in Computer Science. Springer,1074

pp. 89–105.1075

URL https://doi.org/10.1007/978-3-642-16612-9 91076

[13] Falcone, Y., Jaber, M., 2017. Fully automated runtime enforcement of1077

component-based systems with formal and sound recovery. STTT 19 (3),1078

341–365.1079

URL https://doi.org/10.1007/s10009-016-0413-61080

[14] Falcone, Y., Jaber, M., Nguyen, T., Bozga, M., Bensalem, S., 2015. Run-1081

time verification of component-based systems in the BIP framework with1082

formally-proved sound and complete instrumentation. Software and System1083

Modeling 14 (1), 173–199.1084

URL https://doi.org/10.1007/s10270-013-0323-y1085

[15] Falcone, Y., Krstic, S., Reger, G., Traytel, D., 2018. A taxonomy for clas-1086

sifying runtime verification tools. In: Colombo, C., Leucker, M. (Eds.),1087

Runtime Verification - 18th International Conference, RV 2018, Limassol,1088

Cyprus, November 10-13, 2018, Proceedings. Vol. 11237 of Lecture Notes1089

in Computer Science. Springer, pp. 241–262.1090

[16] Francez, N., Forman, I. R., 1991. Synchrony loosening transformations for1091

interacting processes. In: CONCUR ’91, 2nd International Conference on1092

Concurrency Theory, Amsterdam, The Netherlands, August 26-29, 1991,1093

Proceedings. pp. 203–219.1094

[17] Francez, N., Forman, I. R., 2018. From global choreography to efficient1095

distributed implementation. In: HPCS - 4PAD International Symposium1096

on Formal Approaches to Parallel and Distributed Systems.1097

38

[18] Gay, S. J., Vasconcelos, V. T., Ravara, A., Gesbert, N., Caldeira, A. Z.,1098

2010. Modular session types for distributed object-oriented programming.1099

In: Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Prin-1100

ciples of Programming Languages, POPL 2010, Madrid, Spain, January1101

17-23, 2010. pp. 299–312.1102

[19] Güdemann, M., Poizat, P., Salaün, G., Ye, L., 2016. Verchor: A frame-1103

work for the design and verification of choreographies. IEEE Trans. Ser-1104

vices Computing 9 (4), 647–660.1105

URL https://doi.org/10.1109/TSC.2015.24134011106

[20] Hofreiter, B., Huemer, C., 2008. A model-driven top-down approach to1107

inter-organizational systems: From global choreography models to exe-1108

cutable BPEL. In: 10th IEEE International Conference on E-Commerce1109

Technology (CEC 2008) / 5th IEEE International Conference on Enter-1110

prise Computing, E-Commerce and E-Services (EEE 2008), July 21-14,1111

2008, Washington, DC, USA. pp. 136–145.1112

URL https://doi.org/10.1109/CECandEEE.2008.1291113

[21] Holzmann, G. J., 1997. The model checker SPIN. IEEE Trans. Software1114

Eng. 23 (5), 279–295.1115

URL https://doi.org/10.1109/32.5885211116

[22] Honda, K., Yoshida, N., Carbone, M., 2008. Multiparty asynchronous ses-1117

sion types. In: Proceedings of the 35th ACM SIGPLAN-SIGACT Sympo-1118

sium on Principles of Programming Languages, POPL 2008, San Francisco,1119

California, USA, January 7-12, 2008. pp. 273–284.1120

[23] Istio, . https://github.com/istio/istio/.1121

[24] Lamport, L., December 2001. Paxos made simple, 51–58.1122

URL https://www.microsoft.com/en-us/research/publication/paxos-made-simple/1123

[25] Lange, J., Tuosto, E., 2012. Synthesising choreographies from local session1124

types. In: CONCUR 2012 - Concurrency Theory - 23rd International Con-1125

ference, CONCUR 2012, Newcastle upon Tyne, UK, September 4-7, 2012.1126

Proceedings. pp. 225–239.1127

[26] Lange, J., Tuosto, E., Yoshida, N., 2015. From communicating machines1128

to graphical choreographies. In: Proceedings of the 42nd Annual ACM1129

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,1130

POPL 2015, Mumbai, India, January 15-17, 2015. pp. 221–232.1131

[27] Linkerd, . https://linkerd.io.1132

[28] Meyer, A., Pufahl, L., Batoulis, K., Fahland, D., Weske, M., 2015. Au-1133

tomating data exchange in process choreographies. Inf. Syst. 53, 296–329.1134

URL https://doi.org/10.1016/j.is.2015.03.0081135

[29] Murex, . https://www.murex.com.1136

39

[30] Nikaj, A., Weske, M., Mendling, J., 2019. Semi-automatic derivation of1137

restful choreographies from business process choreographies. Software and1138

System Modeling 18 (2), 1195–1208.1139

URL https://doi.org/10.1007/s10270-017-0653-21140

[31] OMG, B. P. M., Notation (BPMN), V. ., 2011.1141

http://www.omg.org/spec/BPMN/2.0/.1142

[32] Ongaro, D., Ousterhout, J. K., 2014. In search of an understandable consen-1143

sus algorithm. In: 2014 USENIX Annual Technical Conference, USENIX1144

ATC ’14, Philadelphia, PA, USA, June 19-20, 2014. pp. 305–319.1145

[33] Pnueli, A., 1977. The temporal logic of programs. In: 18th Annual Sym-1146

posium on Foundations of Computer Science, Providence, Rhode Island,1147

USA, 31 October - 1 November 1977. IEEE Computer Society, pp. 46–57.1148

[34] Preda, M. D., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J., Apr.1149

2017. Dynamic choreographies: Theory and implementation. Logical Meth-1150

ods in Computer Science Volume 13, Issue 2.1151

URL https://lmcs.episciences.org/32631152

[35] Scalas, A., Yoshida, N., 2019. Less is more: multiparty session types revis-1153

ited. PACMPL 3 (POPL), 30:1–30:29.1154

URL https://doi.org/10.1145/32903431155

[36] Tuosto, E., Guanciale, R., 2018. Semantics of global view of choreographies.1156

J. Log. Algebr. Meth. Program. 95, 17–40.1157

URL https://doi.org/10.1016/j.jlamp.2017.11.0021158

[37] Vallecillo, A., Vasconcelos, V. T., Ravara, A., 2006. Typing the behavior of1159

software components using session types. Fundam. Inform. 73 (4), 583–598.1160

40

� �
proctype S e l l e r () {

int cur rentLocat ion = q1 ;
currPort = ;
int value ;
do
: : i f

: : (cur rentLocat ion == q1) −> synchRecv(S .R) ; currPort = S .R;
cur rentLocat ion = q2 ;

: : (cur rentLocat ion == q2) −> synchRecv(S . cpr1) ; currPort =
S . cpr1 ; q3 ;

: : (cur rentLocat ion == q3) −> send (B1 .R) ; send (B2 .R) ;
recvAck(B1 .R) ; recvAck (B2 .R) ; currPort = S . S ;
cur rentLocat ion = q4 ;

: : (cur rentLocat ion == q4) −> send (B1 . cpr1) ; recvAck(B1 . cpr1) ;
currPort = S . cps1 cur rentLocat ion = q5 ;

: : (cur rentLocat ion == q5) −>
i f
: : recv (S . cpr2) −> sendAck(S . cpr2) ; currPort = S . cpr2 ;

cur rentLocat ion = q6 ;
: : recv (S . cpr3) −> sendAck(S . cpr3) ; currPort = S . cpr3 ;

cur rentLocat ion = q9 ;
f i ;

: : (cur rentLocat ion == q6) −> synchRecv(S .R) ; currPort = S .R;
cur rentLocat ion = q7 ;

: : (cur rentLocat ion == q7) −> synchRecv(S . cpr4) ; currPort =
S . cpr4 ; cur rentLocat ion = q8 ;

: : (cur rentLocat ion == q8) −> send (B1 .R) ; send (B2 .R) ;
recvAck(B1 .R) ; recvAck (B2 .R) ; currPort = S . S ;
cur rentLocat ion = q9 ;

: : (cur rentLocat ion == q9) −> send (B2 . cpr2) ; recvAck(B2 . cpr2) ;
currPort = S . cps2 ; cur rentLocat ion = q10 ;

: : (cur rentLocat ion == q10) −>
i f
: : recv (S . cpr5) −> sendAck(S . cpr5) ; currPort = S . cpr5 ;

cur rentLocat ion = q11
: : recv (S . cpr6) −> sendAck(S . cpr5) ; currPort = S . cpr6 ;

cur rentLocat ion = q14
f i ;

: : (cur rentLocat ion == q11) −> synchRecv(S .R) ; currPort = S .R;
cur rentLocat ion = q12 ;

: : (cur rentLocat ion == q12) −> synchRecv(S .R) ; currPort = S .R;
cur rentLocat ion = q13 ;

: : (cur rentLocat ion == q13) −> synchRecv(S . cpr7) ; currPort =
S . cpr7 ; cur rentLocat ion = q14 ;

: : (cur rentLocat ion == q14) −> currPort = S .E; cur rentLocat ion =
end ;

: : (cur rentLocat ion == end) −> break ;
f i ;
updateCurrentState () ;

od ;
}� �

Listing 7: Seller Process in Promela

41

