
HAL Id: hal-02994177
https://hal.archives-ouvertes.fr/hal-02994177v2

Submitted on 18 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Randomised Geographic Caching and its Applications in
Wireless Networks

Anastasios Giovanidis, Bartlomiej Blaszczyszyn

To cite this version:
Anastasios Giovanidis, Bartlomiej Blaszczyszyn. Randomised Geographic Caching and its Appli-
cations in Wireless Networks. H. Vincent Poor; Wei Chen. Edge Caching for Mobile Networks,
The Institution of Engineering and Technology, 2021, 978-1-83953-122-4, 978-1-83953-123-1. �hal-
02994177v2�

https://hal.archives-ouvertes.fr/hal-02994177v2
https://hal.archives-ouvertes.fr

“GiovanidisCh-BB”
2021/1/18
page 1

Chapter 1

Randomised Geographic Caching and its
Applications in Wireless Networks

Anastasios Giovanidis1 and Bartłomiej Błaszczyszyn2

The randomised (or probabilistic) geographic caching is a proactive content place-
ment strategy that has attracted a lot of attention, because it can simplify a great
deal cache-management problems at the wireless edge. It diversifies content place-
ment over caches and applies to scenarios where a request can be possibly served by
multiple cache memories. Its simplicity and strength is due to randomisation. It al-
lows one to formulate continuous optimisation problems for content placement over
large homogeneous geographic areas. These can be solved to optimality by stan-
dard convex methods, and can even provide closed-form solutions for specific cases.
This way the algorithmic obstacles from NP-hardness are avoided and optimal solu-
tions can be derived with low computational cost. Randomised caching has a large
spectrum of applications in real-world wireless problems, including femto-caching,
multi-tier networks, device-to-device communications, mobility, mm-wave, security,
UAVs, and more. In this chapter we will formally present the main policy with its ap-
plications in various wireless scenarios. We will further introduce some very useful
extensions related to unequal file-sizes and content placement with neighbourhood
dependence.

1.1 Introduction

The idea to bring multimedia content closer to the user and offload cellular base
stations has gained momentum during the research and development phase of 5th
generation (5G) cellular networks [1], as well as in the context of Internet-of-Things
(IoT). In the seminal paper by Shanmugam et al [2] the authors introduced a novel
architecture where so called helper stations can be deployed as an additional support
to cellular communications. These “helpers” are low complexity stations with weak
connection to the backhaul, that are equipped with storage space to cache popular
multimedia content. They are seen as small local data-centres which can offload traf-
fic, that otherwise would be served over the internet through the backhaul. This way,
congestion can be avoided because each multimedia content needs to be fetched once

1Sorbonne University, CNRS-LIP6, Email: anastasios.giovanidis@lip6.fr
2Inria-ENS, Paris, France, Email: bartek.blaszczyszyn@ens.fr

“GiovanidisCh-BB”
2021/1/18
page 2

2 Randomised Geographic Caching

and stored at the local helper. Users asking for this content can be served directly by
the locally stored copy for so long as this is made available. Furthermore, the den-
sity of the helpers can allow for high quality video reception, thus improving the user
Quality-of-Experience (QoE). The original idea of installing helpers was gradually
extended to include cache-memories on multiple-tiers of the heterogeneous cellular
network [3] including the base station. E.g. cache storage space can be installed at
the Baseband Unit (BBU) or the BBU pool for Cloud-RAN architectures. Further-
more, the mobile devices [4], [5] can also make use of their own storage space to
cache content of interest for the whole network, which can be transmitted to other
users via direct device-to-device (D2D) links bypassing the cellular infrastructure.
These ideas extend in practice the concept of Content Centric Network architectures
[6], to include the wireless-edge.

In all these scenarios, it is very important to decide what content to cache where,
and for how long. There are two main types of cache-management policies, the
proactive [1] and the online [7]. The former suggests that the whole memory in-
ventory should be determined in advance based on measurements of local content
popularity, and be updated infrequently over long time-windows. The latter favours
a frequent update of the cache inventory every time a new request arrives, with the
aim to follow closely the evolution of present requests. It includes the Time-To-Live
(TTL) and the Least-Recently-Used (LRU) [8], [9] replacement principle.

1.1.1 The FemtoCaching content placement
In the FemtoCaching paper [2] the authors proposed a proactive content placement
policy resulting from a binary optimisation problem. They assume all user and sta-
tion positions are fixed and known. In a dense node deployment with frequency
reuse, since one user can be covered by several stations or helpers, the user-station
association forms a bipartite graph. Assuming further that a user can be served by
any covering station, the content placement variables xi, j ∈ {0,1} are the unknowns,
which should decide whether to place content j on the cache of station i, or not.
The aim of the placement is to minimise the expected download time for files. In
the special case of unit delay [2, eq. 3] the problem simplifies to maximising sum
hit-probability

maxx ∑
U
u=1

[
1−∑

F
j=1 a j ∏i∈H (u) (1− xi, j)

]
[BinCache]

subject to ∑
F
j=1 xi, j ≤ K, i = 1, . . . ,N

x ∈ {0,1}N×F

. (1.1)

In the above, the stations are indexed by i = 1, . . . ,N, the users by u = 1, . . . ,U , and
the content by j = 1, . . . ,F . A user asks for content j with probability a j. Also,
H (u) is the set of stations covering user u, which can eventually serve the request,
if this is available on-cache. The objective function is the expected hit rate summed
over all users. To see this, let us focus on user u covered by the station set H (u).
The user can ask for content j with some probability a j. Then his request will be
served by the local helpers (we call this a hit), if content j is stored in at least one

“GiovanidisCh-BB”
2021/1/18
page 3

A. Giovanidis and B. Błaszczyszyn 3

cache among the set H (u). This is written as 1−∏i∈H (u) (1− xi, j) ∈ {0,1}. This
expression is 0 only if xi, j = 0 for all covering stations. By taking expectation over
the user request probability, we obtain ∑

F
j=1 a j

(
1−∏i∈H (u) (1− xi, j)

)
and note that

∑
F
j=1 a j = 1. Finally, summing up over all users U we get the objective.

The constraint set limits the number of content placed in each cache-memory
i = 1, . . . ,N. The authors assume that all files are of equal size - or that these can be
broken into chunks of equal size. Then, all cache-memories have a capacity equal to
K ≥ 1 files, K being a natural number. Since the decision variables (xi,1, . . . ,xi,F) for
station i are all binary, their sum should not exceed the capacity K.

We call this problem BinCache because it is a binary cache placement prob-
lem. Its solution will place a different set of K files on each station, so that higher hit
rate is achieved through content diversity. The above is shown to be NP-hard, and
the authors propose approximation algorithms for a sub-optimal solution with some
guaranteed distance from optimality. Their algorithm is based on a continuous relax-
ation of the unknowns x̃i, j ∈ [0,1] and subsequent pipage rounding. It has complexity
of the order O((U +N)7/2F7/2), which is growing too high for realistic numbers of
users, stations and files. For the case when every user is connected to at most 4
helpers (i.e. card(H (u)) ≤ 4), their approximation ratio is 1− (1− 1/4)4 ≈ 68%
from the optimal. Extensions of the BinCache include the joint caching and as-
sociation problem [10], and the consideration of memory leasing [11], which have
similar inherited issues.

1.1.2 The randomised approach
The exploding algorithmic complexity as the number of nodes and the catalog size
increases, the sub-optimality of the solution, and the requirement for known fixed
positions of a given user set, render BinCache impractical. To overcome all these
drawbacks, we have suggested in [12] a continuous reformulation of the cache place-
ment problem. The problem and the new policy resulting from its solution are
known in the literature as randomised (or probabilistic) geographic caching. We
refer to the specific problem with cache helpers formulated in [12] and its solution
as RandCache. The formulation of the simplified problem RandCache is based
on two principal ideas. (i) The first one is the randomness in user and station posi-
tions, assuming homogeneity over the whole area. (ii) The second is the randomness
(actually independence) of content placement. These two ideas are of course very
much related.

(i) We consider a typical user rather than a specific given set of users. Assuming
that users take positions homogeneously on the plane with some density per unit
area, this representative user can be picked at random among them, and thus has a
statistical viewpoint of the network. Let us denote this sampled user by u0. Since the
user was picked at random, the cardinality of stations covering him card(H (u0))
is a random variable with some distribution. To empirically find this distribution,
we calculate the percentage p0 of users present in the system that are not covered
by any station. i.e. those users with card(H (u)) = 0, then the percentage p1 of
users covered by a single station with card(H (u)) = 1, and so on. Hence, the

“GiovanidisCh-BB”
2021/1/18
page 4

4 Randomised Geographic Caching

coverage number of the typical user is drawn from the empirical distribution {pm},
m = 0,1,2, Note that, this formulation does not need to know the exact coverage
set H (u) per user, just the statistics of the coverage number.

Another way to estimate {pm} is by a measurement campaign as follows: we
split the whole planar area with a grid. At each vertex of the grid we measure how
many stations cover this point. Then, similarly as above, we can find that approxi-
mately p0 percentage of the points in the grid are not covered by any station, p1 are
covered by exactly one, and so on. The denser the grid, the finer our estimation over
the coverage number mass function. The reason we can do so, is that we assume that
the requesting user can be selected at random over the plane, and can take uniformly
any position. We thus presume an homogeneous distribution of users on the plane.

(ii) Since only the number of covering stations is important and not in detail
which station covers which user, it is only natural to consider content placement
also probabilistically. A randomised placement ensures that content j needs to be
present in a percentage of all stations equal to 0≤ b j ≤ 1, without specifying which
stations in particular. In other words, if we pick a station at random we expect that
this station will hold content j in its cache with probability b j. It is important to note
that content should be placed independently of the user positions and independently
of station positions, in order to measure the performance of the typical user.

With the above, the problem BinCache becomes continuous and takes the
following form, called RandCache,

maxb E
[
1−∑

F
j=1 a j (1−b j)

card(H)
]

[RandCache]

subject to ∑
F
j=1 b j ≤ K,

b ∈ [0,1]F

. (1.2)

Observe here, that the new objective is in expectation, and should be compared with
the objective of BinCache after dividing the latter by the number of users U to
obtain an average expression of hit-probability over the given set of users U . The
expectation in RandCache is taken over the random variable card(H), i.e. the
cardinality of the covering set of base stations, which has probability mass function
{pm}, for m = 1, . . . ,M. Here, M is the maximum number of covering stations and
we can allow M → ∞ to include all possible scenarios. Then the objective can be
equivalently written as

fcell(b) = 1−
F

∑
j=1

a j

M

∑
m=1

pm (1−b j)
m . (1.3)

Observe that in the randomised version the product (1−b j)
m replaces the prod-

uct ∏i∈H (u)(1−xi, j) with card(H (u))=m in the binary one. The product (1−b j)
m

is due to independence of content placement among stations, i.e. if i = 1, . . . ,m sta-
tion covers the user P

({
x1, j = 0

}
∩ . . .∩

{
xm, j = 0

})
= P

(
x1, j = 0

)m
= (1− b j)

m.
The probability b j substitutes every element of the decision vector (x1, j, . . . ,xN, j).
We could interpret the probability b j as the percentage of present copies for content

“GiovanidisCh-BB”
2021/1/18
page 5

A. Giovanidis and B. Błaszczyszyn 5

j when the number of stations grows large,

lim
N→∞

1
N

N

∑
i=1

xi, j = b j ∈ [0,1] . (1.4)

A direct benefit from the independent randomisation is that the RandCache
problem has F continuous unknowns compared to the N ×F binary unknowns of
the BinCache problem, because it treats all stations in a homogeneous way, thus
removing the index i = 1, . . . ,N. It has, thus, much smaller dimension.

Furthermore, it can be shown that the new objective is concave, and the problem
is convex and separable in the variables b j, so we can find very efficient algorithms
to solve it. After having obtained the optimal solution (b∗1, . . . ,b

∗
F), however, it is

not obvious how to place content on stations, while respecting these probabilities
(frequencies). As we will see, there is a particular way to place batches of K contents
on each station, which is very different from the binary policy. We need to emphasise
that the RandCache is not just a linear relaxation of the BinCache problem.

The randomised content placement from [12] found application in the years that
followed in many interesting edge-caching scenarios, including:

• Heterogeneous (multi-tier) networks with Nakagami fading [13], two-tier [14],
and multi-tier placement [3], [15], [16], area spectral efficiency [17], coopera-
tive transmission [18].

• mm-wave communications [19], with multiple antennas [20].
• Device-to-device (D2D) communications [21], and variations with spatial con-

tent correlation [22].
• Unmanned Aerial Vehicle (UAV) communications [23], [24].
• Opportunistic spectrum access [25].
• Time-varying content popularity [26].
• Effect of retransmissions in throughput [27].
• File secrecy and physical-layer security [28].
• Joint content caching and recommendations [29].
• Content classes of unequal file-size [30].
• Networks of caches [31].

A distributed solution for the RandCache problem and its variations is pro-
posed in [32] using arguments from game theory and simulated annealing. The au-
thors in [31] have proposed the randomised vector placement approach for optimal
content placement in a network of caches, arising in ICNs, CDNs, and P2P systems.
Randomised placement has been recently applied for online recommendations [33].

In what follows, we will present in detail the randomised policy in Section 1.2.
The ingredients of the RandCache problem are given in Section 1.3 and its solu-
tion steps in Section 1.4. In Section 1.5 we extend the randomised policy, to treat
unequal file sizes. Furthermore, we present two additional applications, one for
device-to-device networks with mobility in Section 1.6, and one with competition
among several content providers for cache space, in Section 1.7. Finally, in Sec-
tion 1.8 we depart from the assumption of independent random placement among
caches to introduce policies of content placement with cache dependence.

“GiovanidisCh-BB”
2021/1/18
page 6

6 Randomised Geographic Caching

1.2 Random Independent Placement Policy

We have shown in the introduction how the randomisation of content placement al-
lowed us to move from the BinCache problem to the RandCache problem. The
random independent placement policy is in fact much more general than the specific
problem instance in RandCache. Furthermore, this policy has an interesting way
to be implemented.

More specifically, in the generic caching problem we assume that there is a set
of stations i = 1, . . . ,N, and each has a memory of size K ≥ 1 contents installed. The
catalog of possible contents is of size F and contents are indexed by j = 1, . . . ,F and
all have unit size. The memory inventory of station i contains a subset of the content
catalog with a number of elements not larger than K. To keep a general notation that
will include many cases, suppose that the decision to place content j in cache i is a
binary random variable (r.v.)

Xi, j =

{
1, with probability bi, j ∈ [0,1]
0, with probability 1−bi, j

. (1.5)

Note that each of these probabilities refers to a specific station i and can differ from
one station to the other. These probabilities generally take values within the interval
bi, j ∈ [0,1].
•Deterministic policies: To avoid mixed time-sharing policies, a way to proceed

is to enforce bi, j ∈ {0,1}. This way we can define a deterministic policy, where
Xi, j = xi, j ∈ {0,1} with probability 1. To have a feasible policy, we need to ensure
that no more than K items are installed per cache. The set of feasible deterministic
placements for our problem with N stations is then defined as

Fdeterm =

{
x | x ∈ {0,1}N×F ,

F

∑
j=1

xi, j ≤ K, i = 1, . . . ,N

}
. (1.6)

The way the set is defined guarantees that at most one item j is placed in each cache
i. The above set is the constraint set of BinCache. Depending on the objective
function of the optimisation problem, its solution will provide an optimal vector x∗
among the feasible ones of size N×F . Once this vector is determined, each cache
memory i is filled with the contents given by the solution x∗i, j = 1.
• Randomised homogeneous policies: A different category of policies results by

enforcing the same probabilistic placement for all stations. This would read bi, j = b j
for all stations i = 1, . . . ,N and we refer to it as randomised homogeneous. Each
station should place a copy of content j independently with probability b j. We write

b j = P(Xi, j = 1) , i = 1, . . . ,N. (1.7)

This would mean that a copy of content j should be present in a b j percentage of the
N stations. Of course, this interpretation makes sense for N large enough.

For a randomised policy to be feasible, each realisation should guarantee that
at most K contents are placed in each station, as in the deterministic case. This

“GiovanidisCh-BB”
2021/1/18
page 7

A. Giovanidis and B. Błaszczyszyn 7

constraint reads,

F

∑
j=1

Xi, j ≤ K, (1.8)

where the left hand-side is a random sum. All is left is to find a policy which places
content with probability (1.7) in each cache, while satisfying the constraint (1.8). Of
course, any such policy will necessarily satisfy in expectation,

E

[
F

∑
j=1

Xi, j

]
=

F

∑
j=1

P(Xi, j = 1) 1.7
=

F

∑
j=1

b j ≤ K. (1.9)

This is not a trivial task. Let us proceed naively and decide to place content
j in each cache i by a random coin toss (Bernoulli variable) with probability
b j. If we repeat this process independently for all contents j = 1, . . . ,F , although
we do respect (1.7), however we cannot guarantee constraint (1.8) that there will be
less or equal to K different files per cache. To see this, let us use an example with
size K = 2 memory slots, catalog F = 4 contents and a placement vector for the
F contents (0.5,0.5,0.5,0.5), such that ∑

4
j=1 b j = 2. If we perform an independent

coin toss, the probability to select all 4 contents and overflow the memory space is
(0.5)4 = 0.0625 (larger than zero). The independent coin toss (Bernoulli trial) will
not guarantee the constraint (1.8). So, we need to propose a different way to place
content appropriately.

The idea is as follows: Instead of deciding independently whether to place or not
content j in some cache, let us better choose an entire vector of K contents. The K-
sized vectors should be drawn independently one from the other, but should respect
that the frequency of appearance of each content j is b j as in (1.7).

Random placement policy
We are given a vector of placement probabilities b = (b1, . . . ,bF) for the F
contents of the catalog, satisfying (1.7) and (1.9), and a cache memory of size
K ≥ 1. We split the cache into K continuous memory intervals of unit length
and place them one under the other, as shown in Fig. 1.1. The F contents of
the catalog are picked one after the other without replacement and in any order.
Their values b j fill in the memory intervals without leaving a gap. When a unit
interval is full and cannot contain the entire b j, the remainder of b j fills in the
next unit memory interval below. The content probabilities b j are continuously
placed one next to the other until all contents have been selected. Due to the
constraint (1.9) the process does not exceed the memory space K. To simplify,
suppose that the memory is full up to K (although this is not necessary). In
order to randomly choose a set of exactly K contents, with a joint distribution
that follows (1.7) and (1.9), we pick uniformly at random a number within the
interval [0,1] and draw a vertical line intersecting the memory space covered
by exactly K distinct contents. The contents are distinct because b j ∈ [0,1].

“GiovanidisCh-BB”
2021/1/18
page 8

8 Randomised Geographic Caching

With the above method, the probability of appearance of content j in a memory
of size K is exactly equal to b j.

In a sense, this policy is a random vector generator of size K > 1, which gener-
alises the discrete random generator (for K = 1). Since we have found a way to place
content while respecting both (1.7) and (1.8), the feasible set for any randomised ho-
mogeneous placement problem becomes,

Frandom =

{
b | b ∈ [0,1]F ,

F

∑
j=1

b j ≤ K

}
. (1.10)

The above is just the constraint set for RandCache. We can use any objective func-
tion that treats all caches homogeneously to derive the optimal feasible solution b∗.
Once the optimal probability vector is known, the K-sized memories of all stations
can be filled in by randomly drawing vectors using the random placement policy.

In the example of Fig. 1.1 we see that the following batches of K = 3 items
can be drawn from our method: C1 = {“1”,“2”,“3”}, C2 = {“1”,“2”,“4”}, C3 =
{“1”,“2”,“5”}, C4 = {“1”,“3”,“5”}, C5 = {“2”,“3”,“5”}, and C6 = {“2”,“3”,“6”}.
What is interesting is that the frequency of each batch depends on the width occu-
pied on the unitary interval. We can observe e.g. that the most frequent batch from
the six possible is the C2 = {“1”,“2”,“4”}, because it occupies a wider interval. If
we measure the frequency of each batch (ρ1, . . . ,ρ6) we can reproduce the values
of b j, j = 1, . . . ,6. To see this, take content “1”. This content is present inside the
batches C1,C2,C3,C4. So, to shift from batch frequencies to item frequencies we
just sum-up ρ1 +ρ2 +ρ3 +ρ4 = b1. In general,

b j = ∑
k

ρk1{ j∈Ck}, (1.11)

where as explained above ρk is the frequency of the k-th possible batch, and the
indicator function 1{ j∈Ck} = 1 if content j is inside the k-th batch, otherwise 0.

The random placement policy selects independently, at random a vector of K
contents per station, thus it is not a solution tailored for some specific position, con-
trary to the deterministic policy. It only tries to statistically guarantee some perfor-
mance of the system, in expectation. This loss in detail is what brings the benefits of
continuity, and reduction in the number of unknowns. Furthermore, since the users
in real scenarios are mobile, the optimal deterministic solution is bound to change
the whole time. Hence, it might be preferable for scenarios with mobility to apply
the randomised rather than the deterministic solution. The same holds for scenarios
with device-to-device communications, where nodes are mobile and so they change
constantly position relative to each other. In both cases, the statistics of coverage
number are stable, but the actual instance of the user-station coverage bipartite graph
changes constantly. On the other hand, the random vector generator presented above
will not work well in cases where the stations are positioned inhomogeneously, i.e.
more dense at some areas and less at others. In such scenarios, the random placement
policy needs to be appropriately adapted (see also Section 1.8).

“GiovanidisCh-BB”
2021/1/18
page 9

A. Giovanidis and B. Błaszczyszyn 9

Figure 1.1 A realisation of the probabilistic placement policy for F = 6 contents
and K = 3 memory slots. We first draw uniformly a random number
within the interval [0,1], say we find 0.68. The vertical line at this point
intersects with each of the 3 memory slots at a specific content. We
conclude from the figure that contents {“1”,“3”,“5”} will be cached.

1.3 The typical user

We consider a wireless network, where stations are positioned on the two-dimensional
(2D) plane. The performance of the network is evaluated at the Cartesian origin
(0,0), which we denote as the typical user uo, following our discussion in the intro-
duction. The typical user is characterised by two distributions: one for the content
requests, and one for the number of covering stations.

In order for the typical user performance to be representative, the statistics of
the network should be unchanged whatever point we choose for the evaluation. For
the traffic, this can be achieved if requests network-wide are drawn independently
from the same probability distribution. For the coverage number, it depends on how
stations are positioned relatively to the users. Assuming that stations are placed
following a homogeneous Poisson Point Process (PPP) in 2D with constant density
λs > 0 [stations/unit area], then such process has the properties of stationarity and
isotropy [34] and the typical user approach is valid [35]. We denote the PPP of the
stations by Φs and a realisation of this process is φs = {χi}, where χi are the deter-
ministic coordinates of the i-th station in this specific realisation. We will evaluate
the performance at the typical user over all possible realisations of the process Φs.

1.3.1 Coverage number
In cellular networks a user at a random location may be covered by one or more
BSs, or may not be covered at all. The so called coverage number is a random
variable (r.v.) [36], that depends on the features of the communications scheme
and the network parameters (such as transmission power). We denote the coverage
number by M ,

pm := P [M = m] , m = 0,1, (1.12)

“GiovanidisCh-BB”
2021/1/18
page 10

10 Randomised Geographic Caching

Figure 1.2 Example of a cellular network with caching on Base Stations. A user is
covered by three different BSs. Each BS has a cache memory of size
two, where content can be temporarily saved. Hence, the user can
choose among the content in a total of six memory slots.

The maximum number of covering BSs is M ∈N+∪{∞}, where we let the coverage
number be unlimited in the general case. This probability mass function pm can
take specific expressions, which depend on the communications scheme evaluated.
Obviously, it holds for all cases

M

∑
m=0

pm = 1. (1.13)

In what follows we will present special cases of coverage, depending on the commu-
nications scenario. An example of multi-coverage is illustrated in Fig. 1.2.

1.3.1.1 SINR model
Here we consider the downlink of a cellular network and study the signal reception
at the typical user. In the most general case all stations operate on the entire available
frequency spectrum and the user experiences interference of unrelated stations upon
signal reception. The quality of coverage at the origin is described by the SINRo
(from now on SINR). SINR(χi) is the SINR at the reception, when user uo is served
by BS χi and is defined as

SINR(χi) :=
Si/`(ri)

σ2
NW + I−Si/`(ri)

. (1.14)

The constant σ2
N is the noise power per [Hertz], W is the bandwidth, I =∑χi∈Φ Si/`(ri)

is the total received power from the network, |χi| = ri is the distance of χi from o,
and `(r) = (Br)β is the path-loss function, with constants B > 0 and β > 2. We say
that the typical user is covered when SINR(χi)> T , where T is a predefined positive
threshold.

“GiovanidisCh-BB”
2021/1/18
page 11

A. Giovanidis and B. Błaszczyszyn 11

The coverage number M (T) as a function of the threshold indicates how many
stations cover the typical user simultaneously and is the r.v.

M (T) = ∑
χi∈Φ

1[SINR(χi)≥ T]. (1.15)

For the coverage of a user who can choose to be served by different BSs in some
realization of Φ, we make use of a basic result from [34, Proposition 6.2], see also
[37, lemma 5.1.2] a special case of which is given in [38, Lemma 1]. It is shown that
if m stations cover a user at SINR level T , then the following inequality holds

m < 1+1/T. (1.16)

For example, when T ≥ 1 then necessarily m < 1 + 1/T < 2 which implies that
m ∈ {0,1}. Similarly, when 1 > T ≥ 1/2, m ∈ {0,1,2}, etc. The authors in [36] (see
also [37, (5.26) and (5.35)]), have given explicit expressions for the probability that
the typical user is covered by exactly m BSs, given T and a PPP for the BS positions.
For general shadowing, they have calculated the probability

pSINR
m := P [M (T) = m] . (1.17)

The numerical values for pSINR
m can be calculated by the software developed for

MATLAB in [39].

1.3.1.2 Boolean model
For the noise-limited case, where the interference is small compared to noise, we
can use the Boolean model to calculate the probability of coverage by m BSs. This
is a seed-grain model, where the atoms of the PPP are the seeds. Centered on each
atom is a 2D sphere B (χi,Rb) which describes the area of coverage. Rb is a fixed
radius that can be expressed by communications quantities. Specifically, if we only
consider signal attenuation and no fading, the received signal at the boundary should
be larger than the threshold, in order to guarantee coverage, i.e. (B̃Rb)

−β ≥ T ⇒
Rb = T−1/β B̃−1.

It is shown in [34, Lemma 3.1] that the number of BSs covering the typical user
follows a Poisson distribution with parameter ν = λπ

(
T−1/β B̃−1

)2

pBool
m =

νm

m!
e−ν . (1.18)

1.3.1.3 Overlaid 2-Network Model
Very often in practice, it occurs that two (or more) networks of the same provider
operate in parallel over an area, using different infrastructure (nodes) and orthog-
onal resources (bandwidth). It is typical, for example, for operators to have one
network of base stations for 3G/4G technology and numerous WiFi hotspots within
a city. Given that a user may chose between the two to connect to the Internet with
his/her cellphone (and assuming for simplicity mathematically independent models
of these two networks), the coverage number at the typical user is distributed as
the convolution of the coverage probability vectors of the two individual networks

“GiovanidisCh-BB”
2021/1/18
page 12

12 Randomised Geographic Caching

p(1) =
[

p(1)0 , . . . , p(1)M

]
and p(2) =

[
p(2)0 , . . . , p(2)M

]
, that is (with p(·)m := 0 for m < 0)

p2NET = p(1) ∗p(2) ⇒ p2NET
m =

M

∑
n=0

p(1)n p(2)m−n. (1.19)

1.3.1.4 Coverage number from measurements
For general placement of wireless access nodes, the probability vector p can be es-
timated by measurements over a whole area. For example, we can imagine that a
measurement scenario samples the coverage number at several planar points, and
estimates the probability p0 as the ratio of points not covered at all divided by the
total number of samples. Similarly, p1 is estimated as the ratio of points covered by
exactly one station divided by the total number of sample points, and so on.

1.3.2 Content catalog and popularity
Each user – and consequently the typical user at the Cartesian origin – has a request
for a specific content (say video file) that he/she wants to receive. In our model, we
consider the Independent Reference Model (IRM) for the traffic [40]. This model
considers a fixed content library with cardinality F files. The set is denoted by
C := {“1”, . . . ,“F”}, where each element is an entire file, and indexing follows the
file-names j = 1, . . . ,F . We consider for now that all content has the same size, nor-
malised to 1. To apply this approach for unequal sized files, we can assume that each
file can be divided into chunks of equal size. (The general case of unequal file sizes
will be treated in Section 1.5). Furthermore, each content is related to its popularity,
which we assume known a priori. We order the content by popularity: “1” is the most
popular content, “2” the second most popular, and so on. The popularity follows a
distribution

{
a j
}

. To be consistent with the above ordering, a1 ≥ a2 ≥ . . .≥ aF . In
the IRM model, every request is independent of every other, drawn from the same
distribution. Hence, if we focus on the typical user, he/she requests for content j
with probability a j.

Although the type of distribution can be left open, in practice data from measure-
ments indicate that content popularity is Zipf distributed [41], [42]. Zipf distribution
considers the order from the most popular file with index j = 1 to the least popular
with index j = F . The probability that a user requests content j is equal to

a j = C−1 · j−γ . (1.20)

The Zipf exponent γ , is chosen often within the range γ ∈ (0,2], to limit the difference
between the two most popular files, i.e. a1/a2 ≤ 4, but it can vary depending on the
s cenario. The normalisation factor C is found by summing the mass to unity

F

∑
j=1

a j = 1. (1.21)

A value γ close to zero results in a uniform popularity distribution, whereas larger
values of γ produce distributions with increasingly lighter tails. So in Zipf, γ controls
the skewness of the popularity.

“GiovanidisCh-BB”
2021/1/18
page 13

A. Giovanidis and B. Błaszczyszyn 13

1.4 Optimal Randomised Caching in Cellular Networks

In this section, we will present the original problem of caching in cellular networks
with multi-coverage and present the optimal (independently) randomised policy pub-
lished in [12]. The solution will be described in more detail here. As mentioned in
the introduction, when searching for the optimal random placement policy, the prob-
lem obtains the RandCache formulation. The objective (1.3) aims to maximise the
probability that the typical user will find the content he/she is asking for in one of the
BSs he/she is covered from. This is 1-minus the probability that the user does not
find its content anywhere among the covering stations. More precisely, this happens
when the user is covered by m = 0 stations (i.e. no coverage), or by some number
m > 0, but the content has not been saved in the cache memory space of any of these.
We repeat at this point the optimisation problem [RandCache] (1.2),

maxb fcell (b) := 1−∑
F
j=1 a j ∑

∞
m=0 pm (1−b j)

m [RandCache]
s.t b ∈Frandom

(1.22)

where the feasible set Frandom is defined in (1.10). We can control the objective hit-
probability, by varying the content availability b j, j = 1, . . . ,F within the feasibility
region. The size of the cache memory K, plays an important role in the constraints.
We further note that, in the case that for some content j the optimal placement is
b j = 1, i.e. the content j is cached almost surely in all stations, then ∑

∞
m=0 pm(1−

b j)
m |b j=1 = p0(1−b j)

0 |b j=1 = p0, i.e. the non-coverage probability.

Remark 1: For the objective in (1.22) (same as (1.3)) we can make the following
observation. Let z j := 1−b j. Then we have

ψ (z j) := E
[
zM

j

]
=

∞

∑
m=0

pmzm
j . (1.23)

The expression is the probability-generating function (or Z -transform when using
z−1 instead of z) of the random variable M defined in (1.12) as the number of sta-
tions covering the typical user. By replacing this in (1.3) we get

fcell (b) := 1−
J

∑
j=1

a jψ (1−b j) . (1.24)

Before we move on to the general solution of [RandCache], let us first formu-
late and solve a toy version of the problem, with F = 2 different types of content,
K = 1 memory slot per BS and M = 2, meaning that the typical user can only be
in three coverage states, i.e. 0-coverage, 1- and 2-coverage, with m ∈ {0,1,2}. Its
solution will provide intuition on how to solve the most general one.

max(b1,b2) ∑
2
j=1 a j

(
1− p0− p1(1−b j)

1− p2(1−b j)
2
)

[RandK1F2]
s.t. b1 +b2 ≤ 1

b1,b2 ∈ [0,1]
.

“GiovanidisCh-BB”
2021/1/18
page 14

14 Randomised Geographic Caching

1.4.1 Solution for [RandK1F2]
The toy problem can be further simplified by making use of the equalities p0 + p1 +
p2 = 1 and a1 + a2 = 1. We also observe that the objective function is monotone
increasing in the unknowns b1 and b2 for their range of values in the feasible set.
As a consequence, the optimal solution should satisfy the constraint with equality
b1 + b2 = 1. Using these three equalities, the problem can be expressed only with
the parameter set (a1, p1, p2) and has a single unknown b1

max −p2b2
1 +b1 (2a1 (p1 + p2)− p1)+(1−a1)(p1 + p2) [RandK1F2-r]

s.t. b1 ∈ [0,1] .

We denote the objective function of [RandK1F2-r] by ftoy(b1). Now, the only
constraint is that b1 ∈ [0,1]. Let us take the first derivative of the objective function,

d ftoy

db1
= −2p2b1 +2a1 (p1 + p2)− p1.

When the derivative is positive the function is increasing, otherwise decreasing.

d ftoy

db1
≥ 0

⋂
b1 ∈ [0,1] ⇒ 0≤ b1 ≤min

{
1,

2a1 (p1 + p2)− p1

2p2

}
,

where in the above we limit the b1 inside the interval [0,1]. We observe that the
objective function is increasing in b1 until some upper value b∗1. If this upper value is
larger than 1, then the objective is increasing in the entire interval [0,1]. Otherwise,
it is increasing up to b∗1 and then decreasing in the interval [b∗1,1]. Then the solution
of the problem is simply equal to b∗1. This is because, as long as b1 moves from 0
and larger, the objective is also increasing (positive derivative). This is true until b∗1
with objective ftoy(b∗1), after which the objective value decreases. In fact, it can be
shown from the second derivative that the function is concave

d2 ftoy

db2
1

= −2p2 ≤ 0, (1.25)

so there is a unique maximum at b∗1. To sum up,

Proposition 1: The solution for the [RandK1F2-r] problem is given by the place-
ment probability for content type “1” equal to

b∗1 =

{
2a1(p1+p2)−p1

2p2
, if 0.5≤ a1 < 1− p1

2(p1+p2)
.

1 , otherwise
(1.26)

The condition for b∗1 < 1 is that the popularity of file “1” is within the inter-
val 0.5 ≤ a1 < 1− p1/(2p1 + 2p2) < 1. This results from the feasibility constraint
0 ≤ b∗1 < 1, by replacing b∗1 =

2a1(p1+p2)−p1
2p2

. The right hand-side is then found di-
rectly. The left hand-side inequality gives a1 ≥ p1/(2p1+2p2), which is always true
because p1/(2p1 + 2p2) ≥ 0.5 and the files are ordered in popularity, so for F = 2
necessarily a1 ≥ 0.5, being the most popular one.

Interestingly, as (1.26) shows, the optimal solution b∗1 is just an increasing affine
function of the popularity a1. The more popular the file “1” the more often this file

“GiovanidisCh-BB”
2021/1/18
page 15

A. Giovanidis and B. Błaszczyszyn 15

is placed. The optimal value ranges from b∗1 = 0.5 when a1 = 0.5, to b∗1 = 1 when
a1 = 1− p1

2(p1+p2)
. Obviously b∗2 = 1−b∗1.

To evaluate the solution, we first plot of the objective function ftoy(b1) over b1,
and for various values of p1 and p2. To facilitate comparison, we keep a1 = 0.6 for
the popularity of the first content and the sum p1 + p2 = 0.95, so that p0 = 0.05.
For each pair (p1, p2) we find the maximum b∗1. We denote the maximal value of
the objective function by f ∗toy = ftoy(b∗1). Our findings are summarised in the table
below:

p1 p2 b∗1 f ∗toy
0.25 0.7 0.6357 0.6629
0.55 0.4 0.7375 0.5976
0.75 0.2 0.9750 0.5701
0.85 0.1 1 0.5700

Fig. 1.3 that follows illustrates the related plots. To explain better we note that

• All curves are concave.
• For b1 = 0: ftoy(0) = (1− a1)(p1 + p2) = a2(1− p0). In our case (1− 0.6) ∗

0.95 = 0.38 for all curves.
• For b1 = 1: ftoy(1) = a1(p1 + p2). In our case 0.6∗0.95 = 0.57 for all curves.
• For b1 = b∗1 there are two cases:

- If b∗1 = 1 then ftoy(b∗1) = a1(p1 + p2).
- If b∗1 =

2a1(p1+p2)−p1
2p2

< 1, then the maximal value is equal to

ftoy (b∗1) = f2(0)+(b∗1)
2 p2. (1.27)

Figure 1.3 Four curves of the hit probability (objective of [RandK1F2-r]), for
different values of p1 and p2, but for constant sum p1 + p2 = 0.95 and
popularity a1 = 0.6. The star marks the maximum.

“GiovanidisCh-BB”
2021/1/18
page 16

16 Randomised Geographic Caching

Even in this simple toy example, the policy of placing the most popular con-
tent “1” everywhere (b1 = 1), is not necessarily optimal. When the probability of
coverage by 2 BSs is considerable, a portion of the slots should be occupied by the
second most popular content “2”. This depends also on the content popularity ratio
a2/a1. To understand this, we plot in in Fig. 1.4 (left) the optimal caching policy as a
function of p1/p2. We see that on the left part of the x-axis, where the probability of
coverage by 2 stations is much larger than by a single one, the placement frequency
is split among file “1” and “2”, whereas at the right part of the x-axis, where most
users are covered by a single station only file “1” is placed. In Fig. 1.4 (right) the
total hit is plotted, where it is clearly seen at the right part of the x-axis, that placing
both items with the appropriate frequency has important performance improvements.
The hit probability with b1 = 1 everywhere at the right part of the x-axis, is simply
equal to a1(1− p0), i.e. the probability to be covered by at least 1 station and ask for
content “1”.

Conclusions: This toy example shows that the solution can be found from a
convex program with equality constraint. The optimal policy is characterised by di-
versity of content placement, in rich multi-coverage environments. Always caching
the most popular contents is suboptimal in general.

Figure 1.4 Variation of (left) the optimal caching policy b∗1, and (right) the optimal
hit-probability objective, with respect to the coverage ratio p1/p2. The
evaluation takes five different values of a1 into consideration.

1.4.2 Problem Solution [RandCache]
We move now to the solution of the general problem. The analysis and optimisation
is very much facilitated by identifying certain properties of the problem at hand.

Lemma 1: The objective function of [RandCache] in (1.22) has the following two
properties:

“GiovanidisCh-BB”
2021/1/18
page 17

A. Giovanidis and B. Błaszczyszyn 17

• P.1: It is separable with respect to the optimisation variables b1, . . . ,bF and can
be re-written as

fcell (b) =
J

∑
j=1

a j

(
1−

∞

∑
m=0

pm (1−b j)
m

)
=

F

∑
j=1

a jg(b j). (1.28)

• P.2: It is an increasing and concave function of b j, ∀ j. Consequently it is a
concave function of the vector (b1, . . . ,bF).

Proof. Property 1 results by rewriting the objective function after replacing 1 =

∑
J
j=1 a j. The proof of Property 2 becomes trivial due to the separability property.

We can see that ∀ j:

dg
db j

=
∞

∑
m=1

pmm(1−b j)
m−1 ≥ 0,

d2g
db2

j
= −

∞

∑
m=2

pmm(m−1)(1−b j)
m−2 ≤ 0.

Hence the objective function is increasing (non-decreasing) and concave on b j, ∀ j.
Since by P.1 it is also separable, the Hessian is a diagonal matrix, with negative
entries on the diagonal equal to a j

d2g
db2

j
and hence negative semidefinite. We conclude

that the objective function is a concave function of the vector (b1, . . . ,bF).

Since the objective function is concave by P.2 and the constraint set Frandom is
linear, the optimisation problem can be solved as a convex program. We will make
use of the Lagrangian relaxation and the subgradient method (see [43] and [44]).

1.4.2.1 Lagrangian Relaxation
We first relate the dual variable µ ≥ 0 to the sum constraint inequality (1.9). This is
called a Lagrange multiplier. We write down the Lagrangian function of the optimi-
sation problem

L(b1, . . . ,bF ,µ) =
F

∑
j=1

a j

(
1−

∞

∑
m=0

pm (1−b j)
m

)
+µ

(
K−

F

∑
j=1

b j

)
. (1.29)

The remaining constraint set is

F2 :=
{

b j ∈ [0,1] , ∀ j = 1, . . . ,J
}
. (1.30)

We can systematically find the optimal primal and dual variables by solving a
min-max problem. Additionally, in our case where we deal with a convex program,
the optimal value of the min-max problem is equal to the optimal value of the original
problem [RandCache] with objective function fcell

f ∗cell := max
Frandom

fcell (b1, . . . ,bF) = min
µ≥0

max
F2

L(b1, . . . ,bF ,µ)

= fcell (b∗1, . . . ,b
∗
F) . (1.31)

“GiovanidisCh-BB”
2021/1/18
page 18

18 Randomised Geographic Caching

We then say that the duality gap between the original [RandCache] problem and
the min-max problem is zero. We should further mention that the optimal primal and
dual variables b∗j , ∀ j and µ∗ are related by the Complementary Slackness Condition
(CSC), which basically forces the dual variable to be zero when the constraint is
active.

µ
∗

(
K−

J

∑
j=1

b∗j

)
= 0 ⇒

{
µ∗ = 0, if K−∑

J
j=1 b∗j > 0.

µ∗ ≥ 0, if K−∑
J
j=1 b∗j = 0.

(1.32)

The following Lemma characterizes the solution:

Lemma 2: At the optimal solution, the sum constraint inequality (1.9) is inactive,
i.e. the optimal solution satisfies

b∗1 + . . .+b∗F = K. (1.33)

Proof. Suppose that the inequality is inactive, i.e. strictly < K for the optimal
solution. But then, for any `≤ F , we can increase b∗` → b∗` +ε , so that the constraint
is satisfied with equality. Substituting in the objective function b∗` + ε instead of
b∗` the value of the function will increase, because fcell is increasing over b` (by
property P.2). Hence the primal optimal solution cannot leave the constraint inactive
and (1.33) is true.

1.4.2.2 Relaxed Primary Problem Decomposition
Taking into account Lemma 2 and the CSC in (1.32), we first consider a fixed dual
price µ ≥ 0 and solve the relaxed primary problem of (1.31), which we rewrite as

q(µ) = max
F2

L(b1, . . . ,bF ,µ) . (1.34)

From Lemma 1 we can see that the above problem is separable in the variables
b j, i.e. given µ we should solve F separate problems, one for each content

max −µb j +a j (1− p0−∑
∞
m=1 pm(1−b j)

m) [subRand-j]
s.t. 0≤ b j ≤ 1 .

Lemma 3: Given fixed µ ≥ 0, the solution of [subRand-j] is

b j (µ) =

 1, if a j p1 > µ

ω (µ), if a j p1 ≤ µ ≤ a jE [M]
0, if a jE [M]< µ

, (1.35)

where E [M] = ∑
∞
m=1 mpm and ω (µ) is the solution over b j of the equation

a j

∞

∑
m=1

pmm(1−b j)
m−1 = µ. (1.36)

Proof. We take the first derivative of the objective function of the [subRand-j]

−µ +
dg
db j

= −µ +a j

∞

∑
m=1

mpm(1−b j)
m−1. (1.37)

We distinguish between three cases:

“GiovanidisCh-BB”
2021/1/18
page 19

A. Giovanidis and B. Błaszczyszyn 19

• if −µ + dg
db j

> 0, in the entire domain of b j, the objective function is increasing

and the optimal solution is b j = 1. Since from (P.2) it holds d2g/db2
j ≤ 0, the

function −µ + dg
db j

is decreasing in b j, taking its minimum value for b j = 1.

Hence, it suffices to verify that −µ + dg
db j
|b j=1 > 0, which from the expression

in (1.37) gives the condition a j p1 > µ .
• if −µ + dg

db j
< 0, in the entire domain of b j, the objective function is decreasing

and the optimal solution is b j = 0. With the same argument about concavity, the
maximum value of −µ + dg

db j
is obtained for b j = 0. Hence, it suffices to verify

−µ + dg
db j
|b j=0 < 0, which from (1.37) gives the condition µ > a j ∑

∞
m=1 mpm.

• In the intermediate case, there exists a point b j = ω ∈ (0,1), such that −µ +
dg
db j

= 0. The exact value ω is found by solving (1.36).

Having written the primal variables as functions of the dual b j(µ) in (1.35) we
only need to solve the dual problem over the dual variable µ , see (1.31). Using the
notation in (1.34), the dual problem is

min
µ≥0

q(µ) . (1.38)

1.4.2.3 Subgradient Method for the Dual
One of the most standard ways to solve (1.38) is by the subgradient method, which
can find the optimal µ∗ in a finite number of steps, even in the case where the function
q(µ) is non-differentiable. The method involves a sequence of updates for the value
of µ(k), k = 1, For each µ(k) the relaxed primary problem is solved and the
solution over b j

(
µ(k)

)
is used for the next update that gives µ(k+1). The method

converges when
∣∣∣µ(k+1)−µ(k)

∣∣∣ < ε or ideally
∣∣∣µ(k+1)−µ(k)

∣∣∣=0. The update steps
are described by the equation

µ
(k+1) =

[
µ
(k)+ s(k)

(
K−

F

∑
j=1

b j

(
µ
(k)
))]+

, k = 1,2, (1.39)

The term in the parenthesis is the subgradient of our problem (practically it is the
subgradient of the Lagrangian in (1.29) taking dL

dµ
), whereas the operation [. . .]+ sets

to zero the case of negative value inside the brackets, to guarantee µ(k) ≥ 0. Finally,
s(k) is the step size of the iteration, which is determined a priori. For decreasing s(k),
and more precisely for a sequence that is non-negative, non-summable and diminish-
ing, i.e s(k) ≥ 0, limk→∞ s(k) = 0 and ∑

∞
k=1 s(k) = ∞ [45], the method is guaranteed to

converge to the optimal solution, i.e. q(µ(k))
k→∞→ q(µ∗) = f ∗cell . Following the anal-

ysis in [45, par. 3.3] the optimal choice in the case of our problem is s(k) = K/
√

k.

“GiovanidisCh-BB”
2021/1/18
page 20

20 Randomised Geographic Caching

1.4.2.4 A tailored method
Our problem [RandCache] has a special structure that allows for a tailored method
for the dual problem. This may be simpler to implement and faster to converge than
the subgradient one. Specifically, from Lemma 2 we know that the optimal solution
satisfies the sum constraint with equality. We will prove the following Theorem, that
allows to build our own special algorithm

Theorem 1: As µ decreases from µhigh = a1E [M] (or increases from µ low = aK p1)
the sum ∑

F
j=1 b j(µ) crosses the horizontal line K at a unique µ∗, such that

b1 (µ
∗)+ . . .+bF (µ∗) = K, (1.40)

where b j (µ) is given in (1.35). The value µ∗ is the optimal one for the dual variable.
Furthermore, the optimal primal variables are found by replacing µ = µ∗ in Lemma
3, i.e. b∗j = b j (µ

∗), ∀ j.

We will prove this using Lemma 2 and 3, to first derive Lemma 4 and Lemma 5.

Lemma 4: The solution b j (µ), j = 1, . . . ,F of the relaxed primary problem, given
in (1.35), is non-increasing in µ .

Proof. To see this, let µ1 and µ2 be two distinct values of the dual variable. Without
loss of generality, assume µ1 > µ2. We want to show that

µ1 > µ2 ⇒ b j (µ1)≤ b j (µ2) , ∀ j. (1.41)

We write the expression of b j (µ) as a combination of all cases in (1.35) using indi-
cator functions

b j (µ) = 1{a j p1>µ}+ω (µ)1{a j p1≤µ≤a jE[M]}+1−1{a jE[M]<µ}. (1.42)

Then for µ1 > µ2 we have

1{a j p1>µ1} ≤ 1{a j p1>µ2}
1−1{a jE[M]<µ1} ≤ 1−1{a jE[M]<µ2}.

For the remaining term, we observe from (1.36) that ω(a j p1)= 1, whereas ω(a jE [M])=
0. Also, the ω (µ) is decreasing in µ . To see this,

µ1 > µ2 ⇒ a j

∞

∑
m=1

pmm(1−b(1)j)m−1 > a j

∞

∑
m=1

pmm(1−b(2)j)m−1

⇒
∞

∑
m=1

pmm
[
(1−b(1)j)m−1− (1−b(2)j)m−1

]
> 0. (1.43)

The sign of (1− b(1)j)m−1− (1− b(2)j)m−1 is the same for any m > 1, so it should

definitely hold (1− b(1)j)m−1− (1− b(2)j)m−1 > 0, for all m, hence also for m = 2.

This gives the relation b(2)j > b(1)j . This, combined with the other two observations
and the expression in (1.42) proves that (1.41). The inequality is strict ∀ j only when
a1 p1 < µ2 < µ1 < aFE [M] (worst case).

“GiovanidisCh-BB”
2021/1/18
page 21

A. Giovanidis and B. Błaszczyszyn 21

Lemma 5: For K < F, the sum function ∑
F
j=1 b j (µ) is strictly decreasing for µ ∈

[aK p1,a1E [M]]. It is equal to 0 when µ > a1E [M] and it is larger than K when
µ < aK p1.

Proof. To see this, we use the previous Lemma and the expression in (1.42) for the
b j(µ). The sum of the b js is necessarily non-increasing. To show that it is strictly
decreasing in the claimed interval, we observe that the sum will decrease as long
as at least one b j decreases. The domain of µ where no b j changes is either for
µ < min j a j p1 = aF p1 and all b j = 1 or for µ > max j a jE [M] = a1E [M] and all
b j = 0. The complement of this domain is the claimed interval.

But since there are only K < F slots available in the memory, there cannot be
more than K most popular contents with b j = 1, hence we replace the lower limit of
the interval by aK p1.

Since the sum is monotone, then the solution µ∗ is unique and we have also
identified the interval where the solution lies, i.e. µ∗ ∈ [aK p1,a1E[M]]. Using this,
we can propose an algorithmic solution.

Algorithm: The proposed numerical algorithm to find the solution b∗ with some
given precision is based on the bisection method.

• Step `= 0: Initialise the interval that contains the solution,

[µ(0,low),µ(0,high)] = [aK p1,a1E[M]].

Also, choose a desired precision ε > 0.
• Iterate for `= 0,1, . . .:

– Find the mid-point of the interval

µ
(`+1) = µ

(`,low)+
1
2

(
µ
(`,high)−µ

(`,low)
)

– Evaluate the sum

S(`+1) =
F

∑
j=1

b j

(
µ
(`+1)

)
– If S(`+1) < K then µ(`+1,high) = µ(`+1). Else µ(`+1,low) = µ(`+1).

• Repeat the iteration until∥∥∥µ
(`)−µ

(`+1)
∥∥∥ < ε.

The method converges linearly and every iteration halves the distance of µ(`) from
the optimal value µ∗. In fact, one needs at most log2 (a1E[M]−aK p1)− log2 (ε)
iterations, to achieve ε-precision.

A difficulty encountered when applying the algorithm is to find the values for
b j

(
µ(`+1)

)
. These satisfy the polynomial equalities of the form (1.36), which do

not have a closed form solution when M is large. We can also solve these equalities
over the individual b j’s by use of the bisection method.

“GiovanidisCh-BB”
2021/1/18
page 22

22 Randomised Geographic Caching

1.4.2.5 Verification for the [RandK1F2]
We can now verify the solution of [RandK1F2] in (1.4.1) using Theorem 1. Because
m ∈ {0,1,2}, the ω (µ) obtains an explicit expression and (1.35) now becomes

b1 (µ) =


1, if a1 p1 > µ

1+ a1 p1−µ

2a1 p2
, if a1 p1 ≤ µ ≤ a1(p1 +2p2)

0, if a1(p1 +2p2)< µ

, (1.44)

and similarly for b2(µ).
Since K = 1, the case b∗1 = 1, b∗2 = 0 happens only when a1 p1 > µ > a2(p1 +

2p2). The last inequality, with a1 + a2 = 1 and solving for a1 is rewritten as a1 >
1− p1

2(p1+p2)
. The case where b∗1 = 0, b∗2 = 1 holds when a2 p1 > µ > a1(p1 + 2p2)

and the inequality is rewritten as a1 <
p1

2(p1+p2)
.

In the case where b∗1 ∈ (0,1) and b∗2 ∈ (0,1) we solve the equation b1(µ) +
b2(µ) = 1 to find µ∗, i.e.

1 = 1+
a1 p1−µ∗

2a1 p2
+1+

a2 p1−µ∗

2a2 p2
⇒

µ
∗ = 2a1(1−a1)(p1 + p2), with a2 = 1−a1. (1.45)

We see from the middle condition in (1.44) that

a1 p1 ≤ µ
∗ = 2a1(1−a1)(p1 + p2)< a1(p1 +2p2) ⇒

1− p1

2(p1 + p2)
≥ a1 >

p1

2(p1 + p2)
. (1.46)

Given the value of µ∗ in (1.45) the optimal primal variables are b∗1 = b1(2a1a2(p1 +

p2)) = 1+ a1 p1−2a1a2(p1+p2)
2a1 p2

= . . . = 2a1(p1+p2)−p1
2p2

. Hence, we result in the same
solution as before (see (1.26)).

1.4.2.6 Evaluation of [RandCache]
We can now evaluate the user hit probability when the optimal randomised placement
policy is implemented. In this specific problem instance, the coverage number prob-
ability in Section (1.3.1.2), is Poisson distributed (1.18) with M = ∞, and parameter
ν = π(T−1/β)2. With fading exponent β = 4, we choose a range of Threshold values
T ∈

[
10−2,103

]
, F = 25 files in the catalog and a cache memory equal to K = 5. We

plot in Fig. 1.5 the optimal hit-probability by solving the [RandCache] problem.
Note that the popularity is Zipf, with three possible exponents γ ∈ {0.56, 0.9, 1.6}.

We observe that for all popularity distributions, the total hit probability (objec-
tive function) tends to 1 when the threshold gets smaller. A smaller threshold implies
a larger ν and hence a larger expected value E[M] = ν . So, the optimal cache place-
ment can take full advantage of a rich multi-coverage environment and offer diversity
of files to the user, so that the hit-probability reaches 1. Of course, the hit probability
tends to 0 as ν gets smaller (larger threshold), because in such cases p0 tends to 1.

We can compare the optimal randomised caching scheme with a scheme where
only the K most popular files are always placed. In such case, denoted by Pop in the

“GiovanidisCh-BB”
2021/1/18
page 23

A. Giovanidis and B. Błaszczyszyn 23

figure, the hit probability is always

fpop = (1− p0)
K

∑
j=1

a j = (1− e−ν)
K

∑
j=1

a j. (1.47)

Such policy which does not offer diversity among cache memories is strongly sub-
optimal in case of multi-coverage, as the figure illustrates.

Figure 1.5 Evaluation of the optimal [RandCache] policy and comparison with
the most popular policy [Pop] for the Boolean coverage model and
various file popularity distributions.

1.5 Treating unequal file-sizes

The randomised content placement policy and the solution of RandCache have
been based on the strong assumption that all files have equal size. Although one can
argue that files can be split into chunks of equal size, this is not true in general. If we
want to analyse more realistic cache systems, we will associate a tuple (a j,z j) per
catalog item j, where z j is the known file-size in bytes, e.g. a video can have size of
0.83 [Gbyte]. Consequently, the cache should have size Kb [bytes], in contrast to the
K [f iles] used until this point. Then, we want to place content to caches, respecting
the available memory size; the feasibility constraint (1.8) now takes the form

F

∑
j=1

Xi, jz j ≤ Kb. (1.48)

This is a binary Knapsack inequality, and every randomised placement policy satis-
fies - similarly to (1.9) - the inequality

E

[
F

∑
j=1

Xi, jz j

]
=

F

∑
j=1

b jz j ≤ Kb, (1.49)

“GiovanidisCh-BB”
2021/1/18
page 24

24 Randomised Geographic Caching

where b j = P(Xi, j = 1) is the placement probability (or frequency) of content j. We
cannot use in a straightforward way the construction in Fig. 1.1 to sample batches,
because these batches are not guaranteed to satisfy the Knapsack constraint!

The brute-force way would be to find the exhaustive set of feasible content
batches

C =
{

x | x ∈ {0,1}F , x ·b≤ K
}
. (1.50)

From the above set we should further remove the feasible vectors x̃ ∈ C , for whom
there exists x′ ∈ C , such that x̃ ≤ x′. The inequality is element-wise, meaning that
x̃ j ≤ x′j, for all j. Then, if both C1 = {“1”} and C2 = {“1”,“4”} are feasible, we keep
only the second batch, because otherwise memory space is left unused. We denote
this more fine set by C ∗, and the feasible batches by C` ∈ C ∗, where the index runs
over `= 1, . . . ,L. Here L = card(C ∗).

We can now associate a frequency ρ` per batch, `= 1, . . . ,L, which satisfies

L

∑
`=1

ρ` = 1. (1.51)

The randomised policy would be the following: select a number within the interval
(0,1) uniformly at random, and pick the batch k+1, k∈ {0, . . . ,L−1}, if the random
number is within the interval

(
∑

k
`=1 ρ`,∑

k+1
`=1 ρ`

]
, with the convention ∑

0
`=1 ρ` = 0.

But one important detail remains open: how to determine the ρ`’s from the given
(or optimal) probabilities b j’s. We can use the fact that the frequency of object j is
the sum of frequencies of batches where the b j appears, i.e.,

b j =
L

∑
`=1

ρ`1{ j∈C`}, j = 1, . . . ,F. (1.52)

There are F such equalities and L unknowns. If we could solve the system Aρ = b,
then we could determine the batch frequencies. Often, however L > F or L < F so
the system is under- or over-determined. For such cases, we could use the Moore-
Penrose pseudo-inverse, ρ =

(
AT A

)−1 AT b, but this does not guarantee that the
system actually has a solution.

In any case, an interesting observation from the brute-force method is that there
is empty space in the cache with average size equal to

E =
L

∑
`=1

ρ`

(
Kb−

F

∑
j=1

x(`)j z j

)
≥ 0. (1.53)

This observation actually motivates the following much simpler method.

1.5.1 Method: Overflow constraint
A more practical method is to replace the constraint (1.49) by the tighter constraint

F

∑
j=1

b jz j ≤ Kb−δ . (1.54)

“GiovanidisCh-BB”
2021/1/18
page 25

A. Giovanidis and B. Błaszczyszyn 25

We saw previously that most feasible batches do not fill in the Kb memory com-
pletely. The above tightened inequality guarantees that the Knapsack constraint
∑

F
j=1 Xi, jz j ≤ Kb is violated only with some small probability ε . To see this,

P

(
F

∑
j=1

Xi, jz j > Kb

)
Markov
≤

E
[
∑

F
j=1 Xi, jz j

]
Kb

=
∑

F
j=1 b jz j

Kb

(1.54)
≤ 1− δ

Kb
= ε(δ). (1.55)

We can also choose a desired violation bound ε , to determine the appropriate δ

δ (ε) = (1− ε)Kb. (1.56)

E.g., suppose we require a violation probability of 10%. Then ε = 0.1 and δ (0.1) =
0.9Kb, so that the right-hand side of (1.54) is 0.1Kb.

Now, we can use a similar construction as in Fig. 1.1, but without predefining the
number of unit memories (it was K before). We place the b j’s one next to the other,
say starting from j = 1 and on. If their sum at some point is larger than 1 then we split
and move to the next line, until all F b j’s are placed. Then, similarly as in the random
placement policy, we choose a number between 0 and 1 uniformly at random, draw
a vertical line intersecting the above construction and we pick this batch of distinct
contents. Note here, that now the number of contents can vary per batch. This
method, guarantees that the batches are drawn so that P(Xi, j = 1) = b j. Remember
that the b j’s where chosen such that the batches violate the memory constraint with
probability ε .

1.5.2 [RandCache] with cache overflow constraint
We can now formulate and solve the RandCache problem, including the unequal
file-sizes. We use the overflow constraint in (1.54), where δ (ε) is chosen based on
the desired level of Knapsack violation, as in (1.56). The new feasible set of the
random placement policy is

Frandom(z,δ) =

{
b | b ∈ [0,1]F ,

F

∑
j=1

b jz j ≤ Kb−δ

}
. (1.57)

The problem takes the form

maxb fcell (b) := 1−∑
F
j=1 a j ∑

∞
m=0 pm (1−b j)

m [Rand-z]
s.t b ∈Frandom(z,δ)

. (1.58)

In the above, the objective is the same as in the RandCache case, i.e. it is the
average cache hit-probability. The file-sizes affect only the constraints.

This variation can be solved following the standard procedure with the tailored
method we have presented for the RandCache problem. For completion, we show
here the solution for Rand-z. Following the Lagrange relaxation, the primal vari-

“GiovanidisCh-BB”
2021/1/18
page 26

26 Randomised Geographic Caching

ables are solved, similarly to Lemma 3. For fixed dual µ ≥ 0

b j(µ;z j) =


1, if a j

z j
p1 > µ

ω(µ;z j), if a j
z j

p1 ≤ µ ≤ a j
z j
E [M]

0, if a j
z j
E [M]< µ

(1.59)

where, now ω(µ;z j) is the solution over b j of the equation

a j

z j

∞

∑
m=1

pmm(1−b j)
m−1 = µ. (1.60)

Similarly, µ∗ is the unique µ such that

b1(µ
∗)z1 + . . .+bF(µ

∗)zF = Kb−δ . (1.61)

Structure of the solution: The difference compared to the equal (unit) size so-
lution RandCache is subtle, and reveals interesting design insights for the optimal
placement policy of Rand-z. When the file sizes z are taken into account, the pri-
mal solution takes the form (1.59). Compared to (1.35), it has the same structure, but
one detail: the popularities a j are replaced everywhere by the ratio a j/z j. Previously,
we had ordered the files in decreasing order of popularity and optimally cached them
with decreasing placement probability b j(µ) following that content order. Now we
should order the files by the ratio a j/z j and place them with decreasing probability
b j(µ;z j) following the new order. So, this means that the size plays a major role in
the placement decision. Even if a file is moderately popular, when its size is very
large, it will be ordered low, and hence will have low placement probability. This
is because, we want to avoid overflowing the cache memory. Instead, a very small-
sized file with moderate popularity will be ordered high, and thus will be placed very
frequently, because it is not so dangerous to overflow the cache.

1.6 Node mobility

A very common characteristic in cellular networks is node mobility. This is man-
ifested as users moving from one cell to the other. In device-to-device (D2D) or
vehicle-to-vehicle (V2V) communications, mobility plays a major role. User mo-
bility results in loss of user association with a specific station, and a shift of service
towards a different station nearby. Mobility requires an appropriate design of content
placement policies. We follow the analysis in [5].

Suppose that a user requests content j at some time t = 0. This user is covered
by a number of stations - say m. Till now, we considered the hit-probability, i.e. the
probability that the content is cached in at least one covering station. But, the objec-
tive function in RandCache assumes silently that the typical user will not change
position (and stick to its station association), until the file is completely downloaded,
something not necessarily true. Suppose, instead, that the user does find the content
cached in one of the covering stations, say station i, but at time t = τ she/he moves
and the link is lost.

“GiovanidisCh-BB”
2021/1/18
page 27

A. Giovanidis and B. Błaszczyszyn 27

If during the interval (0,τ] the signal-to-noise ratio (SNR) with the associated
station i is strong enough, then the whole file can been downloaded, i.e.,

τW log2 (1+SNR(Ri)) ≥ z j. (1.62)

The above uses the Shannon formula with bandwidth W . The SNR(Ri)= SR−β

i /Wσ2
N ,

see also (1.14). If the inequality (1.62) is not fulfilled, then the file is not completely
transmitted, so there is no hit. Hence,

Ψi, j = Xi, j ·1{τW log2(1+SNR(Ri))≥z j} ∈ {0,1} (1.63)

is the binary random variable for hit or miss, that takes into account not only con-
tent availability, but also file-size, user mobility and distance from the user. Let us
consider station positions that follow a 2-dimensional Poisson Point Process (PPP)
of density λ ≥ 0, so there is an infinity of stations positioned on the plane, indexed
by i = 1,2, The hit probability that accounts for file download completion, is
called here service success probability. It is the probability that at least one station i′

satisfies Ψi′, j = 1, so the objective now is

fd2d(b) =
F

∑
j=1

a j

∞

∑
i=1

P [Ψi, j ≥ 1]

=
F

∑
j=1

a j

(
1− e−b jλh(τ,z j)

)
, (1.64)

where h(τ,z j) = πΓ
(3

2

)√
S/Wσ

−1
N /

√
2z j/(Wτ)−1. The expression is taken from

[5, Cor. 1] and refers to the case of Rayleigh fading and error exponent β = 4. The
proof can also be found in the same reference.

The expression (1.64) satisfies the two properties from Lemma 1. It is separable
in b j. From the first and second partial derivatives, it is monotone increasing and
concave in b j. So the problem

maxb fd2d (b) := ∑
F
j=1 a j

(
1− e−b jλh(τ,z j)

)
[Rand-D2D]

s.t b ∈Frandom(z,δ)
. (1.65)

can be solved again using the method we have described for RandCache. We just
mention that the derivative of the sub-problem subD2D-j is equal to

−µz j +
dg
db j

= −µz j +a jλh(τ,z j)e−b jλh(τ,z j). (1.66)

1.7 Competition among content providers

An interesting extension of the work, presented in [46, chapter 6] is when S > 1
content providers compete to share the same cache space and place their catalog.
The providers are indexed by s = 1, . . . ,S and each catalog has no overlap with any
other, it is thus a disjoint set of contents. We index the contents of catalog s by
js = 1, . . . ,Fs. The total memory space Kb per cache, will be split among the S

“GiovanidisCh-BB”
2021/1/18
page 28

28 Randomised Geographic Caching

providers, and each will get a share ks. The following inequality holds

S

∑
s=1

ks ≤ Kb. (1.67)

Suppose that once ks space is given to a provider, the catalog is placed following the
random placement policy with placement variables bs = (bs,1, . . . ,bs,Fs). We get the
following feasible set

Frand,CP(z1, . . . ,zS,δ) =


(b1, . . . ,bS) | bs ∈ [0,1]Fs ,k ∈ [0,Kb]

S,
∑

S
s=1 ks ≤ Kb,

∑
Fs
j=1 bs, jzs, j ≤ ks−δ , s = 1, . . . ,S

 .(1.68)

This set is characterised by S+1 inequalities, that is 1 inequality for the cache-space
allocation and S inequalities for the content placement per allocated space ks. This
type of problem keeps the structure of the original RandCache problem, and its
solution can be easily derived, using similar methods.

1.8 Beyond Independent Caches

The random independent content placement and the related RandCache formula-
tion, although it has many advantages, it can still result in hit-probabilities much
lower than those derived by detailed binary placement, both for a given realisation
of user-station positions, e.g. from BinCache, as well as on average. The reason is
that the caching decisions are done independently for different stations, so that two
or more stations jointly covering a location may propose a complementary content
only by chance. A possible way of improving upon this situation would consist in
some content placement with cooperative decisions made between caches to guaran-
tee content diversity among neighbouring nodes (see related works [47] and [48]).

The randomised policies can also be tuned in this direction by relaxing the as-
sumption of independent placement. This was done in [49] where the dependence
between caching decisions of different stations is described by a Gibbs distribution.
Coming back to the setting of Section 1.1.1, with a given, finite configuration of
stations, let us define the joint probability of placing the content at different stations
according to the variables x ∈ {0,1}N×F , (with ∑

F
j=1 xi, j ≤ K (i = 1, . . . ,N)) by

πβ (x) :=
eβh(x)

Zβ

, (1.69)

where

h(x) =
∫

A

[
1−

F

∑
j=1

a j ∏
i∈H (u)

(1− xi, j)

]
du

is the total hit probability in the deployment region A replacing the discrete sum
over discrete user locations considered in (1.1), β is called the “inverse temperature”
(motivated by literature from statistical Physics), and Zβ = ∑x∈{0,1}N×F eβh(x) is the
normalizing constant called the “partition function”.

“GiovanidisCh-BB”
2021/1/18
page 29

REFERENCES 29

Note that, limβ→∞ ∑x∈argmaxx′∈{0,1}N×F h(x′)
eβh(x)

Zβ
= 1. Hence, if we choose a con-

figuration x with probability πβ (x), then, for sufficiently large β , the chosen configu-
ration will be optimal (for the given configuration of stations, on average for different
homogeneous user location in A) with probability close to 1.

In most cases, there is no closed form expression for πβ (x). Note however that
we do not need to know probabilities πβ (x). The only thing we need is to be able
to sample from this distribution (so as to place the content according to the sampled
values of x at different stations). And there are good ways of doing this. Indeed,
there are several Gibbs sampling algorithms that simulate a discrete-time Markov
chain on the space {0,1}N×F having πβ (·) as the stationary probability distribution.
In the particular case of our hit function h(x) (which is called the Hamiltonian of the
Gibbs distribution) these algorithms can be even made decentralised, in the sens that
different stations can run them by updating their content knowing only the current
choice of the content of the neighbouring stations — i.e. those with overlapping
coverage regions. Moreover, the popularity can be learned during this process, and
the parameter β can be appropriately increased to approach the optimal solution,
a technique known as Simulated Annealing. We refer the reader to [49] for more
details.

Observe that the above solution is proposed for a finite collection of stations.
Gibbs models usually do not scale very well with the number of nodes (here sta-
tions) going to infinity. Mathematically challenging problems arise in this context,
related to the long range propagation of the dependence between caching decisions
of different stations. This problem was recently studied in [50] in a general mathe-
matical context going beyond Gibbs distributions.

References

[1] Bastug E, Bennis M, Debbah M. Living on the edge: The role of proac-
tive caching in 5G wireless networks. IEEE Communications Magazine.
2014;52(8):82–89.

[2] Shanmugam K, Golrezaei N, Dimakis AG, et al. FemtoCaching: Wireless
Content Delivery Through Distributed Caching Helpers. IEEE Transactions
on Information Theory. 2013;59(12):8402–8413.

[3] Wen J, Huang K, Yang S, et al. Cache-Enabled Heterogeneous Cellular Net-
works: Optimal Tier-Level Content Placement. IEEE Transactions on Wire-
less Communications. 2017;16(9):5939–5952.

[4] Jeon S, Hong S, Ji M, et al. Wireless Multihop Device-to-Device Caching
Networks. IEEE Transactions on Information Theory. 2017;63(3):1662–
1676.

[5] Jarray C, Giovanidis A. Successful file transmission in mobile D2D networks
with caches. Computer Networks. 2018;147:162 – 179.

[6] Kurose J. Information-centric networking: The evolution from circuits to
packets to content. Computer Networks. 2014;66:112 – 120. Leonard Klein-
rock Tribute Issue: A Collection of Papers by his Students.

“GiovanidisCh-BB”
2021/1/18
page 30

30 Book title

[7] Garetto M, Leonardi E, Martina V. A Unified Approach to the Performance
Analysis of Caching Systems. ACM Trans Model Perform Eval Comput Syst.
2016 May;1(3).

[8] Jiang B, Nain P, Towsley D. On the Convergence of the TTL Approximation
for an LRU Cache under Independent Stationary Request Processes. ACM
Trans Model Perform Eval Comput Syst. 2018 Sep;3(4).

[9] Giovanidis A, Avranas A. Spatial Multi-LRU Caching for Wireless Net-
works with Coverage Overlaps. SIGMETRICS Perform Eval Rev. 2016
Jun;44(1):403?405.

[10] Poularakis K, Iosifidis G, Tassiulas L. Approximation Algorithms for Mobile
Data Caching in Small Cell Networks. IEEE Transactions on Communica-
tions. 2014;62(10):3665–3677.

[11] Krolikowski J, Giovanidis A, Di Renzo M. A Decomposition Framework for
Optimal Edge-Cache Leasing. IEEE Journal on Selected Areas in Commu-
nications. 2018;36(6):1345–1359.

[12] Blaszczyszyn B, Giovanidis A. Optimal geographic caching in cellular net-
works. In: 2015 IEEE International Conference on Communications (ICC);
2015. p. 3358–3363.

[13] Chae SH, Choi W. Caching Placement in Stochastic Wireless Caching Helper
Networks: Channel Selection Diversity via Caching. IEEE Transactions on
Wireless Communications. 2016;15(10):6626–6637.

[14] Cui Y, Jiang D. Analysis and Optimization of Caching and Multicasting in
Large-Scale Cache-Enabled Heterogeneous Wireless Networks. IEEE Trans-
actions on Wireless Communications. 2017;16(1):250–264.

[15] Li K, Yang C, Chen Z, et al. Optimization and Analysis of Probabilistic
Caching in N -Tier Heterogeneous Networks. IEEE Transactions on Wireless
Communications. 2018;17(2):1283–1297.

[16] Serbetci B, Goseling J. On Optimal Geographical Caching in Heterogeneous
Cellular Networks. In: 2017 IEEE Wireless Communications and Network-
ing Conference (WCNC); 2017. p. 1–6.

[17] Liu D, Yang C. Caching Policy Toward Maximal Success Probability and
Area Spectral Efficiency of Cache-Enabled HetNets. IEEE Transactions on
Communications. 2017;65(6):2699–2714.

[18] Wen W, Cui Y, Zheng F, et al. Random Caching Based Cooperative Trans-
mission in Heterogeneous Wireless Networks. IEEE Transactions on Com-
munications. 2018;66(7):2809–2825.

[19] Zhao J, Zhao S, Qu H, et al. Analysis and Optimization of Probabilistic
Caching in Micro/Millimeter Wave Hybrid Networks With Dual Connectiv-
ity. IEEE Access. 2018;6:72372–72380.

[20] Zhu Y, Zheng G, Wang L, et al. Content Placement in Cache-Enabled Sub-6
GHz and Millimeter-Wave Multi-Antenna Dense Small Cell Networks. IEEE
Transactions on Wireless Communications. 2018;17(5):2843–2856.

[21] Chen Z, Pappas N, Kountouris M. Probabilistic Caching in Wireless D2D
Networks: Cache Hit Optimal Versus Throughput Optimal. IEEE Communi-
cations Letters. 2017;21(3):584–587.

“GiovanidisCh-BB”
2021/1/18
page 31

REFERENCES 31

[22] Malak D, Al-Shalash M, Andrews JG. Spatially Correlated Content Caching
for Device-to-Device Communications. IEEE Transactions on Wireless Com-
munications. 2018;17(1):56–70.

[23] Lin X, Xia J, Wang Z. Probabilistic caching placement in UAV-assisted het-
erogeneous wireless networks. Physical Communication. 2019;33:54 – 61.

[24] Song F, Li J, Ding M, et al. Probabilistic Caching for Small-Cell Networks
With Terrestrial and Aerial Users. IEEE Transactions on Vehicular Technol-
ogy. 2019;68(9):9162–9177.

[25] Emara M, Elsawy H, Sorour S, et al. Optimal Caching in 5G Networks With
Opportunistic Spectrum Access. IEEE Transactions on Wireless Communi-
cations. 2018;17(7):4447–4461.

[26] Gao J, Zhang S, Zhao L, et al. The Design of Dynamic Probabilistic Caching
with Time-Varying Content Popularity. IEEE Transactions on Mobile Com-
puting. 2020;p. 1–1.

[27] Krishnan S, Afshang M, Dhillon HS. Effect of Retransmissions on Opti-
mal Caching in Cache-Enabled Small Cell Networks. IEEE Transactions on
Vehicular Technology. 2017;66(12):11383–11387.

[28] Yang Q, Wang H, Zheng T. Delivery-Secrecy Tradeoff for Cache-Enabled
Stochastic Networks: Content Placement Optimization. IEEE Transactions
on Vehicular Technology. 2018;67(11):11309–11313.

[29] Liu D, Yang C. A Learning-Based Approach to Joint Content Caching and
Recommendation at Base Stations. In: 2018 IEEE Global Communications
Conference (GLOBECOM); 2018. p. 1–7.

[30] Choi M, Kim J, Moon J. Wireless Video Caching and Dynamic Streaming
Under Differentiated Quality Requirements. IEEE Journal on Selected Areas
in Communications. 2018;36(6):1245–1257.

[31] Ioannidis S, Yeh E. Adaptive Caching Networks with Optimality Guaran-
tees. In: Proceedings of the 2016 ACM SIGMETRICS International Con-
ference on Measurement and Modeling of Computer Science. SIGMETRICS
’16. New York, NY, USA: Association for Computing Machinery; 2016. p.
113?124. Available from: https://doi.org/10.1145/2896377.2901467.

[32] Avrachenkov K, Goseling J, Serbetci B. A Low-Complexity Approach to
Distributed Cooperative Caching with Geographic Constraints. Proc ACM
Meas Anal Comput Syst. 2017 jun;1(1).

[33] Giannakas T, Giovanidis A, Spyropoulos T. SOBA: Session optimal MDP-
based network friendly recommendations. In: IEEE International Conference
on Computer Communications. INFOCOM ’21; 2021. .

[34] Baccelli F, Błaszczyszyn B. Stochastic Geometry and Wireless Networks:
Volume I Theory. Foundations and Trends in Networking. 2010;3(3-4):249–
449.

[35] Andrews JG, Baccelli F, Ganti RK. A Tractable Approach to Coverage
and Rate in Cellular Networks. IEEE Transactions on Communications.
2011;59(11):3122–3134.

“GiovanidisCh-BB”
2021/1/18
page 32

32 Book title

[36] Keeler HP, Błaszczyszyn B, Karray MK. SINR-based k-coverage probability
in cellular networks with arbitrary shadowing. In: 2013 IEEE International
Symposium on Information Theory; 2013. p. 1167–1171.

[37] Błaszczyszyn B, Haenggi M, Keeler P, et al. Stochastic geometry analysis of
cellular networks. Cambridge University Press; 2018.

[38] Dhillon HS, Ganti RK, Baccelli F, et al. Modeling and Analysis of K-Tier
Downlink Heterogeneous Cellular Networks. IEEE Journal on Selected Ar-
eas in Communications. 2012;30(3):550–560.

[39] Keeler HP. SINR-based k-coverage probability in cellular net-
works (https://www.mathworks.com/matlabcentral/fileexchange/40087-sinr-
based-k-coverage-probability-in-cellular-networks). MATLAB Central File
Exchange. Retrieved September 7, 2020;.

[40] Dan A, Towsley D. An Approximate Analysis of the LRU and FIFO Buffer
Replacement Schemes. In: Proceedings of the 1990 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems. SIGMET-
RICS ’90. New York, NY, USA: Association for Computing Machinery;
1990. p. 143?152.

[41] Newman MEJ. Power laws, Pareto distributions and Zipf’s law. Contempo-
rary Physics 46, pp 323351. 2005;.

[42] Breslau L, Pei Cao, Li Fan, et al. Web caching and Zipf-like distributions:
evidence and implications. In: IEEE INFOCOM ’99. Conference on Com-
puter Communications. Proceedings. Eighteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. The Future is Now (Cat.
No.99CH36320). vol. 1; 1999. p. 126–134 vol.1.

[43] Boyd S, Vandenberghe L. Convex Optimization. Cambridge University
Press; 2004.

[44] Bertsekas DP. Network Optimization: continuous and discrete models.
Athena Scientific; 1998.

[45] Boyd S. Subgradient Methods. Notes for EE364b, Stanford University. 2014;.
[46] Krolikowski J. Optimal Content Management and Dimensioning in Wireless

Networks. PhD Thesis Networking and Internet Architecture [csNI], NNT :
2018SACLS452, tel-02124294. 2018;.

[47] Malak D, Al-Shalash M, Andrews JG. Spatially Correlated Content Caching
for Device-to-Device Communications. IEEE Transactions on Wireless Com-
munications. 2018;17(1):56–70.

[48] Malak D, Médard M, Yeh EM. Spatial Soft-Core Caching. In: 2019 IEEE
International Symposium on Information Theory (ISIT); 2019. p. 2009–2013.

[49] Chattopadhyay A, Błaszczyszyn B, Keeler HP. Gibbsian on-line distributed
content caching strategy for cellular networks. IEEE Transactions on Wire-
less Communications. 2017;17(2):969–981.

[50] Błaszczyszyn B, Hirsch C. Optimal stationary markings. arXiv preprint
arXiv:200108074. 2020;.

