
HAL Id: hal-03116831
https://hal.inria.fr/hal-03116831

Preprint submitted on 20 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural-based Modeling for Performance Tuning of Spark
Data Analytics

Khaled Zaouk, Fei Song, Chenghao Lyu, Yanlei Diao

To cite this version:
Khaled Zaouk, Fei Song, Chenghao Lyu, Yanlei Diao. Neural-based Modeling for Performance Tuning
of Spark Data Analytics. 2021. �hal-03116831�

https://hal.inria.fr/hal-03116831
https://hal.archives-ouvertes.fr

Neural-based Modeling for Performance Tuning
of Spark Data Analytics

Khaled Zaouk1, Fei Song1, Chenghao Lyu2, and Yanlei Diao1,2

1 Ecole Polytechnique, France
2 University of Massachussets at Amherst, USA

{khaled.zaouk, fei.song, yanlei.diao}@polytechnique.edu
chenghao@cs.umass.edu

Abstract. Cloud data analytics has become an integral part of enter-
prise business operations for data-driven insight discovery. Performance
modeling of cloud data analytics is crucial for performance tuning and
other critical operations in the cloud. Traditional modeling techniques
fail to adapt to the high degree of diversity in workloads and system
behaviors in this domain. In this paper, we bring recent Deep Learning
techniques to bear on the process of automated performance modeling of
cloud data analytics, with a focus on Spark data analytics as representa-
tive workloads. At the core of our work is the notion of learning workload
embeddings (with a set of desired properties) to represent fundamental
computational characteristics of different jobs, which enable performance
prediction when used together with job configurations that control re-
source allocation and other system knobs. Our work provides an in-depth
study of different modeling choices that suit our requirements. Results
of extensive experiments reveal the strengths and limitations of different
modeling methods, as well as superior performance of our best performing
method over a state-of-the-art modeling tool for cloud analytics.

1 Introduction

Big data analytics has become an integral part of enterprise businesses for
obtaining insights from voluminous data being generated every day. Big data
analytics tasks often run in the public cloud or on the enterprise’s private cloud.
A recent survey reports that currently, 65% of North American enterprises rely
on public cloud platforms, and 66% run internal private clouds [8].

Performance modeling of execution runs (called jobs) of analytic tasks on a
cloud platform has become a critical technical issue. From an analytical user’s
perspective, it is important to keep the latency of analytic jobs low in order
to obtain timely insight from data, while at the same time, choose appropriate
configurations (the number of cores, memory size, etc.) to reduce cloud costs,
known to be a major part of operational expenses of companies today. From a
cloud service provider’s perspective, it needs to support serverless computing
(e.g., [3]) by estimating the latency of a user job and deciding how many resources
to allocate to offer the user a cost-performance sweet spot, as well as to use
latency estimates to govern dispatching and admissions control [4]. Therefore, at
the heart of massive-scale cloud analytics lies a critical technical issue: estimate
a performance objective (e.g., latency) of each analytic job under a specific

2 Khaled Zaouk, Fei Song, Chenghao Lyu, and Yanlei Diao

configuration (of resource allocation and other system knobs) on a cloud platform,
referred to as the performance modeling problem in this paper. Then the model
can be used to tune the configuration in order to meet cost-performance goals.

Performance modeling of cloud data analytics is a hard problem for several
reasons: First, there is a wide spectrum of analytics tasks, such as SQL queries,
user defined functions (UDFs), machine learning (ML) tasks, that have different
computational characteristics. Second, analytics jobs are run in a distributed
environment, involving highly complex, dynamic CPU, IO, memory, network
behaviors. Third, there are also many resource choices that affect performance
(e.g., over 190 combinations of resource options covering the number of compute
cores, memory, etc. in Amazon’s EC2 offerings [2]). For all of these reasons,
existing modeling methods [13,20,29] that employ manually-crafted models often
fail to adapt to new analytic workloads and resource options.

In this work, we bring large-scale machine learning to bear on the process
of automated performance modeling of cloud data analytics, with Spark ana-
lytics chosen as representative workloads that are diverse in nature and widely
deployed in the cloud. In this context, we explore the power of representation
learning of Deep Neural Networks (DNNs) to develop a unified solution to per-
formance modeling, namely, learning performance models of analytic jobs solely
from their runtime observations, irrespective of the underlying task being SQL,
machine learning, a mix of both, etc. At the core of our solution is the notion
of learning workload embeddings for different jobs, capturing their fundamental
computational characteristics. Such embeddings, when combined with a specific
configuration (of resources and other system knobs), can be used to predict the
performance of an analytic job on a cloud platform. This modeling task, however,
is nontrivial even for DNNs due to complex real-world constraints in this problem
domain, such as the entanglement of different factors that affect performance and
a limited number of observations of an analytic task in training data (discussed
in more detail in §3.) Therefore, our work provides an in-depth study of the
different modeling choices to suit the constraints of the problem domain, and
reports on their effectiveness for predicting latency of both streaming and batch
workloads on top of Apache Spark [26] as an example distributed system.

More specifically, our contributions include the following:

– We summarize complex constraints in real-world cloud analytics applications
and outline our corresponding system design (§3).

– We formulate the performance modeling problem, with an emphasis on learning
workload embeddings to enable performance prediction. In addition, we lever-
age domain knowledge to propose three desired properties of such workload
embeddings: reconstruction, independence, and invariance to job configura-
tions. Guided by these properties, we explore several families of modeling
choices to learn both the workload embeddings and prediction models for com-
plex analytic jobs. These choices include (i) the embedding architecture; (ii)
deep autoencoders augmented with customized disentanglement; (iiv) Siamese
neural networks; (v) hybrid architectures (§4).

Neural-based Modeling for Performance Tuning of Spark Data Analytics 3

– To enable large-scale evaluation, we collected runtime traces from an extension
of a stream analytics benchmark [13] as well as the TPCx-BB benchmark [27],
both of which involve a mix of SQL queries and ML tasks. Results of extensive
experiments show valuable insights, including the strengths and limitations of
different modeling methods and superior performance of our best technique
over a state of the art modeling method for data analytics [28]. Most notably,
Siamese networks, by offering the best approximation of the invariance property
of embeddings, enable the most accurate models to be learned.

– End-to-end results with the best modeling technique, siamese networks, reveal
reduction in runtime latency of 52.4% on the streaming benchmark and 52.44%
on the TPCx-BB benchmark [27].

2 Related Work

We defer the discussion of relevant DNN models to Section 4 where we present
various modeling choices. Below we discuss a few broadly related areas of research.

DBMS performance modeling and tuning. Prior work in the database
community has addressed the problem of modeling and tuning database man-
agement systems (DBMS). OtterTune [28,30] and CDBTune [31] are machine
learning based solutions to performance tuning: they determine how to set the
DBMS parameters by modeling a performance objective as a function of the
parameters and then iteratively exploring new configurations to update the model
and move the observed performance toward the optimum of the objective. As
we show in evaluation, Ottertune [28,30], by building a separate model for each
job and mapping it to the closest past job, offers inferior performance to our
approach grounded in representation learning. CDBTune [31] lacks the flexibility
of returning a performance model for any objective requested by the application.
Other performance modeling tools [13,20,29] use handcrafted models, and hence
are hard to generalize. Recent work has used neural networks to predict latency
of SQL query plans [17] or learn from existing query plans to generate better
query plans [15]. These methods, however, are applicable to SQL queries only,
but not machine learning tasks or arbitrary UDFs.

Cloud resource management. WiseDB [16,18] proposes learning-based
techniques for cloud resource management. A decision tree is trained on a set of
performance and cost related features collected from minimum cost schedules of
sample workloads. Such minimum cost schedules are not available in our problem
setting. Paragon [6] and Quasar [7] cast the tuning problem into a collaborative
filtering based recommender system. At the core of these systems are matrix
factorization techniques that learn embedding vectors for both the workload as
well as the configuration. As such, these systems do not allow to predict the
performance over new configuration knobs, which stands in contrast to our neural
network recommender approach introduced later in Section 4.2

Model search tools such as Hyperband [14] and Spearmint [24] aim to tune
the hyperparameters of ML models. Spearmint, by using Bayesian Optimization
as a core component, suffers from the cold-start problem: it requires several
rounds of actively tuning the configuration for a submitted job before being

4 Khaled Zaouk, Fei Song, Chenghao Lyu, and Yanlei Diao

able to recommend a good configuration. As a search-based tool, Hyperband
tunes many configurations of hyperparameters by allocating increasingly more
computation budget to more promising configurations. It, however, does not train
predictive models that can guide efficient search for the best configuration.

3 System Overview

In this section, we summarize requirements from real-world use cases and outline
our system design.

Real-world requirements.We model an analytic task as a dataflow program
(a directed graph of data collections flowing between operations), which is used
as the programming model in many systems like Spark [26], Flink [25], and
Tensorflow [1]. If the analytic task is a SQL query, we view the query plan
returned by the query optimizer also as a dataflow program. A dataflow program
is referred to as a workload in this paper. For distributed execution, it needs to
be transformed to a cluster execution plan with resource allocation and other
runtime knobs instantiated. When the plan is executed, we call it a job and refer
to all runtime knobs collectively as the job configuration. In this work, we focus
on four types of knobs (with examples given in Spark): (1) resource allocation
knobs: e.g., the number of executors, number of cores per executor, memory
per executor; (2) degree of parallelism: e.g., the batch interval, block interval,
parallelism; (3) data shuffling : e.g., the maximum size in flight, compression,
bypass merge threshold; (4) SQL specific knobs, as used in Spark SQL.

Practical use cases pointed to the following constraints and opportunities for
performance modeling.

1. Generality for mixed workloads. Analytics pipelines today mix SQL queries
for structured data analysis, SQL with user-defined functions (UDFs) for ETL
tasks (data cleaning, integration, etc.), and machine learning (ML) tasks for deep
analysis. In particular, UDFs and ML tasks are essentially black-box programs
with computational characteristics unknown to the system. Given the diversity of
analytic tasks, a general modeling approach is needed to capture computational
characteristics of these tasks. In our work, we use collected runtime metrics to do
so, via representation learning. Note the distinction between the computational
characteristics of a task (e.g., classifying the buying behaviors of users who
received a coupon), and the job configuration (e.g., running the task with 10
cores, 2GB per core, using compression for data shuffling). The above two factors
are orthogonal, but the collected runtime metrics reflect their combined effect.

2. Limited observations per user task. A constraint in this problem domain
is that for each user task, there are only a small number of configurations that
can be included in training data. This is because neither the service providers
nor third-party entities (e.g., the optimizer) have the privilege to run user tasks
outside their scheduled jobs, for which the user pays the cloud cost. Hence,
whenever a new job is submitted, we expect to have observed only one or a few
(around 5) of its configurations.

3. Offline sampling. To overcome the issue of limited observations, an oppor-
tunity is that the modeling tool can use a separate benchmark, e.g., TPCx-BB

Neural-based Modeling for Performance Tuning of Spark Data Analytics 5

used in our experiments [27], or a subset (e.g., 10%) of client workloads in the
private cloud setting where the cloud is designed exclusively for a client and
hence the client is likely to offer some workloads to the system for sampling.
For these workloads, called offline workloads, we seek to sample a large set of
configurations using Bayesian optimization and heuristics based on Spark best
practices. Including such offline workloads in training helps develop an accurate
model for online workloads (i.e., jobs that are triggered by the user application
and incur cloud costs). It is because many real-world workloads are parameterized,
i.e., generated from a set of common templates but with the parameters set to
specific values by each application, and hence bear similarities across workloads.

System design. The above requirements lead to our design of a modeling
system, called an Analytics Model Server (ams), as shown in Figure 1.

The left panel shows the online path as a user job is submitted. The job is
run initially with a default or user-specified configuration. During job execution,
ams collects a trace of metrics, collectively called an observation, including
(i) measures of performance objectives such as latency and cost; (ii) engine-level
metrics, e.g., Spark metrics such as time measurements of different steps, bytes
read/written, and fetch wait time; (iii) OS metrics such as CPU, IO, and network
usage. As the metrics are collected, they are written to disk for persistent storage.

The goal of modeling is to derive a job-specific prediction model, fj , based on
a global model trained using all past observations. If the workload is seen the first
time, or its previous model was built from an outdated global model, the online
inference module will use the current job observation to derive a new job-specific
model from the most recent global model. Then fj can be fed into an optimizer
that automatically recommends a new configuration for the next execution in
order to optimize the user objective (e.g., minimizing latency subject to a cost
constraint). The above process repeats in future runs of the workload.

The right panel of Figure 1 shows offline processing with two modules. Offline
sampling: ams uses heuristics from Spark best practices or Bayesian optimiza-
tion [24] to sample offline workloads, by selecting a wide range of configurations
and collecting their observations. Periodical retraining: ams periodically retrains
the global model by taking all past observations, including those from both online
and offline workloads.

4 Modeling Techniques

In this section, we formulate the modeling problem and then present an in-depth
study of various modeling choices that suit our problem.

4.1 Formulating the Modeling Problem

The main idea behind our modeling approach is that the performance of an
analytic job (without loss of generality, we use latency as an target objective in
the following discussion) is a function f of the computational characteristics of
the workload and the job configuration (under fixed hardware infrastructure).
As stated in § 3, the computational characteristics of a workload, for which we

6 Khaled Zaouk, Fei Song, Chenghao Lyu, and Yanlei Diao

Job-specific
models

Runtime
metrics

Traces of all
jobs

Online Inference

Optimizer

Trace Collection

Online processing of a user task Offline processing

Offline
workloads

Offline
Sampling

Periodic
Retraining

Runtime
metrics

Global
model

HDFS

Distributed
Runtime

{ (task, configuration) }

Runtime metrics

New job
configu-
ration

Fig. 1. Analytics Model Server (ams)

Symbol Description

N total number of training points
vij ith configuration vector (of size s) set for job j
ṽij approximation of vij using an encoder
xij metrics vector (of size p) observed from vij
x̃ij approximation of xij using auto-encoder
zij latent encoding vector (of size k) obtained

for job j using configuration i
zj latent encoding vector (of size k) for workload j
yij latency observed with the configuration vij
f regression fn outputing an approximation of yij
e/d encoder / decoder function in auto-encoder

Table 1. Notation

seek to learn a numerical representation called a workload embedding, are not
known. At the core of our work is the notion of learning the workload embeddings
automatically from runtime traces, and then combine the workload encoding and
the job configuration to predict the latency of any arbitrary configuration of a
given workload. If one bypasses the step of learning workload embeddings, the
predictive power is limited, except when traces are generated from configurations
already within training data, and otherwise suffers from inferior performance, as
our evaluation results shall show in section 5.

Therefore, our modeling problem aims to learn (1) the workload embedding
zj , for job j, and (2) a function f∗ that models latency based on the embedding
zj , and a given ith configuration, denoted as vij , of job j. The notation used in
this paper is summarized in Table 1. In other words, we want to find both f∗
and {zj} such that:

f∗ = argminf
1

N

∑
i,j

(
f(zj , v

i
j)− yij

)2 (1)

where N is the number of training points, yij is the observed latency of job j

under configuration vij , and {zj} are latent embeddings that need be learned
from the observed runtime metrics xij .

We propose a number of desired properties of the embedding, zj , to guide
the design of modeling:
– Reconstruction: For job j, the embedding zj should allow the reconstruction

of runtime metrics xij when coupled with the configurations vij . This is a typical
property in learning representations from autoencoders.

– Independence & Invariance: zj should be independent of and invariant to
the different configurations {vij} used for job j. These properties are derived
from domain knowledge that the computational characteristics of a dataflow
program do not depend on, and further, do not vary with the resources used.
We assume that under fixed data characteristics it is possible to satisfy these
properties, which in practice depends on the ability of the representation
learning method to disentangle from runtime metrics the characteristics of
(parameterized) workloads and the effect of the job configuration. These prop-

Neural-based Modeling for Performance Tuning of Spark Data Analytics 7

erties, once achieved, will enable better accuracy in predicting latency when an
arbitrary (previously never seen) configuration is applied to a new workload.

!(#$%)
FC1

FC2

#$%

'$
'$

#$%

Embeddings Matrix

Configurations Matrix

(a) Embedding architec-
ture

FC3

FC4FC1

FC2

!"# $!"#

FC1

FC2

%"

&"#
'(%", &"#)

%" =
,
|."|

/
#∈."

%"#

Autoencoder Neural Network Regressor

$&"#
%"#

(b) Autoencoder architecture
!(#$%)

Encoder

!(#$') !(#(%)

Anchor Positive Negative

Encoder Encoder

(c) Siamese neural
network with tripletsFig. 2. Three families of modeling choices.

4.2 Embedding Approach

The idea of the embedding architecture was inspired by deep recommender systems
that embed user profiles in real-valued vectors while training the architecture
to predict user rankings of movies [10]. By analogy, we aim to embed workload
characteristics in a real-valued vector so that it can be used to predict latency of
a particular workload.

The architecture, as shown in Figure 2(a), couples representation learning
and regression tasks within the same neural network. The architecture consists
of three parts: (1) An embedding layer with a weight matrix Z denoting the
latent space. Each row zj of this matrix represents a particular workload j as
its embedding vector, randomly initialized first. (2) A concatenation layer that
for a particular job j, concatenates the embedding vector zj with an input (ith)
configuration vij into, (zj ||vij). (3) Several fully connected (FC) layers that take
(zj ||vij) as the input and produce f(vij) ≡ f(vij , zj) as the final output. The
architecture is trained by minimizing the MSE between the predicted latency
f(vij) and the actual latency yij , that is,

1
N

∑
i,j(f(v

i
j)− yij)2.

This architecture satisfies the independence and invariance properties since
each workload embedding is represented by a unique row vector within the
embedding matrix. However, this approach requires incremental training every
time a new job is submitted: when the trace of a new job becomes available, we
add a random row to the embedding matrix, freeze the weights of the neural
network (except those at the embedding layer) and run incremental training using
the trace of the new workload and backpropagate to update the embeddings.

4.3 Encoder/Decoder based Approaches

This family of approaches decouples workload extraction from the end regression
task by using two neural networks, as shown in Figure 2(b). A traditional

8 Khaled Zaouk, Fei Song, Chenghao Lyu, and Yanlei Diao

autoencoder satisfies only the reconstruction property since it minimizes the
reconstruction loss while learning the encoding function:

J =
1

N

∑
i,j

||x̃ij − xij ||2

where x̃ij denotes the approximation of the runtime metrics xij as output by the
decoder. If we use e to denote the encoding function, d the decoding function,
then x̃ij = d(e(xij)).

Then the encoding in the bottleneck layer is fed to a neural network regressor
to train a prediction model for latency. The regressor takes as input the job
configuration vij and zj (the centroid of {zij}i for a particular workload j) and
tries to approximate at its output the runtime latency yij .

The loss function for the regression is simply the mean squared error:

L =
1

N

∑
i,j

(f(vij , zj)− yij)2

We can choose whether or not to fine tune the encoder layers while training the
downstream regression task.

Customized disentanglement. Traditional autoencoders are not meant
for explicitly disentangling data generation factors within the bottleneck layer.
Thus, if we train a classical autoencoder, the bottleneck layer is unlikely to satisfy
the independence and invariance properties stated above. Hence, we seek to
guide the training of the autoencoder by adding domain knowledge and explicitly
breaking the bottleneck layer into two parts. The intuition here is to force the
encoding function to extract a variant part, ev(xij), in a separated block of the
bottleneck layer that tries to guess which configuration vij yielded the observation
trace given as input to the autoencoder. Then presumably, the other part of
the bottleneck layer, eiv(xij), can become less variant for the traces coming
from the same workload. This architecture is depicted in Figure 2(b). The loss
function of the autoencoder with our customized disentanglement then balances
the reconstruction term with a configuration approximation term:

J =
1

N

∑
i,j

(||x̃ij − xij ||2 + γ||ṽij − vij ||2) (2)

where ṽij represents the encoder’s approximation of the underlying configuration
when the input is xij , and γ is a regularization coefficient. In this setting, the
encoder function e is broken into two parts, e(xij) = (ev(x

i
j)||eiv(xij)), where

ev(x
i
j) = ṽij is an approximation of the generating configuration, eiv(xij) = zij is

the workload encoding, and d(e(xij)) = x̃ij .
Augmenting custom autoencoder with a contractive term. We also

augment our customized autoencoder by adding a Jacobian term to the loss
function, as introduced earlier in the literature of contractive autoencoders [21].

Neural-based Modeling for Performance Tuning of Spark Data Analytics 9

Our intuition is to force the designated invariant part of the encoding, eiv(xij),
to become less variant to input perturbations by adding the contraction term.

J =
1

N

∑
i,j

(
||xij − x̃ij ||2 + γ||vij − ṽij ||2 + λ||Jeiv (xij)||2F

)
(3)

where Jeiv is the Jacobian of the encoding output zij = eiv(x
i
j) with respect to

the input xij .
Variational autoencoders [12] which belong to the family of generative

autoencoders, are known for their ability to automatically disentangle generating
factors within the learned representations. The disentanglement effect comes
from the independence assumption between different components of the posterior
distribution of encodings, and is embodied by forcing the covariance matrix of this
posterior distribution to be a diagonal matrix. The loss function of β-variational
autoencoders (β-VAE) [11] balances between minimizing a reconstruction term
and a KL divergence between the posterior distribution and the prior distribution.
The reconstruction term indicates how much the distribution of encodings should
trust the observed data, while the KL divergence term indicates how much this
distribution of encodings should mimic the prior imposed on these encodings. We
compare the β-VAE to the previously introduced deterministic auto-encoders.

4.4 Siamese Neural Networks

Interestingly, our problem is also related to the few-shot learning problem in
object recognition since a new workload is likely to have only a few observed con-
figurations within training data. We thus propose in this section to use a Siamese
network that has instead only an encoding part. This network aims to achieve
the similarity property, as a relaxation of the invariance property. It encourages
learning similar embeddings from different configurations corresponding to the
same workload. We first train this siamese network using a triplet loss [23]; we
then introduce in the next section the soft nearest neighbor loss [9,22] as part of
a hybrid architecture.

Training a siamese network with a triplet loss requires organizing the data
(as shown in Figure 2(c)) into triplets of:
– Anchor point: xia, which denotes the runtime metrics observed for an anchor
job a when the knob configuration is set to a particular value vi.

– Positive point: xka, which denotes the runtime metrics observed for the same
anchor job a but with a different knob configuration vk, instead of vi.

– Negative point: xij , which denotes the runtime metrics observed for a different
job j 6= a when the knob configuration is set to vi, the same as the one used
in the anchor point.
At the input of the architecture, we provide 3 runtime metrics vectors: xia,

xka, xij . The same fully connected layers are applied to get the embeddings from
the different observations, and we obtain their respective embeddings: zia, zka , zij .
The loss function on this instance of triplets is LT (x

i
a, x

k
a, x

i
j) (defined below),

and the final loss to be optimized is the sum over all the instances of triplets:

10 Khaled Zaouk, Fei Song, Chenghao Lyu, and Yanlei Diao

LT (x
i
a, x

k
a, x

i
j) = max(0, ||e(xia)− e(xka)||2 − ||e(xia)− e(xij)||2 + α)

J =

n∑
a=1

Is∑
i=1

∑
j 6=a

LT (x
i
a, x

k
a, x

i
j) (4)

where α is a margin that is tuned alongside other hyperparameters. The training
of this loss function requires Is shared configurations across all training workloads.
However, an arbitrary configuration can be observed for the new workload at
inference time.

4.5 Hybrid Architectures

In this section, we propose hybrid architectures that add decoders on top of
Siamese neural networks.

Hybrid1. We start by augmenting the previous architecture with a decoder
in order to add to the triplet loss, additional terms related to our customized
disentanglement and reconstruction. We thus minimize this loss function:

J =

n∑
a=1

Is∑
i=1

∑
j 6=a

LT (x
i
a, x

k
a, x

i
j) + γLR(x

i
a, x

k
a, x

i
j) + λLC(v

i
a, v

k
a , v

i
j) (5)

with LT as provided in Section 4.4, LR is the reconstruction of the anchor, positive,
and negative terms, and LC corresponds to the configuration approximation for
the 3 terms as well:

LR(x
i
a, x

k
a, x

i
j) = ||x̃ia − xia||2 + ||x̃ka − xka||2 + ||x̃ij − xij ||2

LC(v
i
a, v

k
a , v

i
j) = ||ṽia − via||2 + ||ṽka − vka ||2 + ||ṽij − vij ||2

Hybrid2. In contrast to the triplet loss that samples one positive and one
negative point for each anchor point in a batch of data, the Soft Nearest Neigh-
bor (SNN) loss [9,22] uses all the points in the batch to measure the separation
between classes. We apply this loss to an encoder layer of the autoencoder so
that the joint loss that we minimize has both the reconstruction term and the
SNN term.

J =
1

N

∑
i,j

||x̃ij − xij ||2 − λ log

∑
k 6=i

e−
||zij−zkj ||

2

T

∑
k,l

(k,l)6=(i,j)

e−
||zij−zkl ||

2

T

where λ is a regularization coefficient and T is a temperature hyperparameter.

Neural-based Modeling for Performance Tuning of Spark Data Analytics 11

The soft nearest neighbor term for one training point (represented by i as
index for configuration and j as index for job) is given by (assuming T = 1 for
now):

− log

∑
k 6=i

exp(−||zij − zkj ||2)∑
k,l

(k,l)6=(i,j)

exp(−||zij − zkl ||2)
= − log

numerator

denominator

The numerator is a sum of negative exponentials of distances between the
encoding zij of the current job j with the current configuration i and all other
encodings zkj for the same job j within the same batch but obtained under a
configuration k different than the initial configuration i (hence k 6= i) (so it’s
a sum of distances between all "positive pairs"). The denominator is a sum
of negative of exponentials of distances between the encoding zij and all other
encodings zkl coming from different jobs l (hence l 6= j) and under different
configuration from the current i (hence k 6= i).

We are minimizing the soft nearest neighbor term, which is equivalent to
minimizing the denominator and maximizing the numerator because log is a
monotonically increasing function. The numerator is a sum over positive terms.
We can maximize it by maximizing each of its term. Maximizing exp(−distance)
is equivalent to minimizing the distance within the exponential term. So we
are trying to minimize the distance between encodings coming from the same
workload (zij and zkj). On the other hand, we are also minimizing the denominator
which is as well a sum of positive terms. Minimizing the denominator consists of
minimizing each term. Each term is minimized if the distance inside the negative
exponential is maximized. So this corresponds to maximizing the distance between
the current encoding zij and other encodings zkl coming from different workloads
under a different configuration.

As for the temperature parameter, it controls the "radius of neighbourhood"
regarding points within the batch to take into account within both the numerator
and the denominator. If T is very high (close to infinity), then the values of
the distances will not be taken into account. Instead, the numerator will be
the number of points within the same batch that belong to the same workload,
and the denominator will be the number of points within the same batch that
belong to a different workload. This means that under very high values of T,
minimizing this loss function is not useful for learning representations that are
more tightened if they belong to the same workload but far apart if they belong
to different workloads. If T is very low, then the loss becomes extremely sensitive
to distances between the points and a small change in the distance can make a
big difference in the value of the SNN function. So T can be seen as a smoothing
parameter.

5 Experimental Results

In this section, we evaluate all of our modeling methods using benchmark data.

12 Khaled Zaouk, Fei Song, Chenghao Lyu, and Yanlei Diao

5.1 Benchmarks and Trace Collection

We developed two benchmarks of Spark workloads based on (1) an extension
of the streaming workloads from prior work [13] and (2) TPCx-BB [27]. We
collected a trace for each workload under a particular configuration, covering two
types of metrics: (i) Spark related metrics, collected within the Spark listener;
and (ii) OS related metrics, collected using the unix command nmon.

Both benchmarks cover a wide range of analytics, ranging from SQL queries to
ETL tasks (using SQL and UDFs) to ML tasks. The streaming benchmark tunes
10 knobs (dimension of vij is 10) and comprises 70 workloads, including 53 training
workloads and 17 test workloads, with 128 traces each. The TPCx-BB benchmark
tunes 12 knobs (dimension of vij is 12) and includes 30 templates, from which we
generated 1160 workloads via parameterization. Among them, 928 are used as
training workloads, including (i) 58 intensively sampled workloads with around
315 traces each, which represent the special workloads made available by the
application for offline sampling, (ii) 870 sparsely sampled workloads with around
30 traces each, representing online user workloads with fewer configurations
observed. Finally, 232 are reserved as test workloads, with 30 traces each.

Preprocessing. In each trace, we take the average of the metrics across the
execution period of the Spark workloads and then minmax-scale both the runtime
metrics xij as well as the configuration knobs vij . We drop constant metrics and
end up with 561 metrics for each streaming workloads trace and 286 metrics
for each batch workloads trace. The preprocessed traces alongside our code are
available at: https://github.com/udao-modeling/code

5.2 Evaluation Methodology

We provide the main comparative results between different modeling techniques
in Table 2 . We start with results from a baseline called "all metrics" and that
bypasses representation learning and uses the whole vector of trace xij as the
encoding for the workload (zij = xij in this case). Then, we introduce two other
baseline methods from the early literature of representation learning: PCA and
KPCA and use them as an encoding extraction tool instead of neural based auto-
encoders. Then, we list the results obtained with the previously introduced neural
network modeling techniques: (1) Embedding architecture introduced in §4.2, (2)
Custom autoencoder, (3) Custom contractive autoencoder and (4) Variational
autoencoder from §4.3, and (5) the siamese neural network from §4.4. We also
list results from the 2 hybrid methods introduced in §4.5. Finally, we compare to
a state of the art tuning tool, Ottertune [28,30].

Encoding Extraction Scheme. We consider two schemes for extracting
encodings from configurations: (a) shared scheme: zj is extracted from traces
coming from a shared pool of configurations (averaging {zij}i with i selected
from the shared pool). (b) arbitrary scheme: zj is extracted from traces coming
from an arbitrary pool of configurations (averaging {zij}i with i selected from
the arbitrary pool). We also distinguish between extracting the encoding for test
workloads with either 1 or 5 observations, under each of the above (a) and (b)
schemes, as shown in the header of Table 2.

https://github.com/udao-modeling/code

Neural-based Modeling for Performance Tuning of Spark Data Analytics 13

Fig. 3. 2D encodings obtained with different encoding/decoding techniques using the
streaming trace dataset. Different colors represent different templates of workloads.

It is worth noting that the arbitrary scheme is more practical than the shared
scheme since a cloud optimizer must expect receiving an arbitrary configuration
for a newly submitted job. The modeling problem becomes even harder when
only 1 trace is observed for the test workload. Nevertheless, we explicitly make
the comparison between the two schemes in Table 2 to better understand which
modeling technique works best under different job admission settings, and we
color the most practical case (arbitrary, 1 ob) in Table 2

Evaluation Metric. We use the Mean Absolute Percentage Error (MAPE)
metric for reporting results for the different modeling methods.

Hyper-parameter tuning. For the encoder/decoder based architectures
as well as the neural networks we tune topology, optimization and other hyper-
parameters (such as coefficients within loss functions) by using a 5 fold cross
validation scheme that simulates the same training settings as in practical cases
(observing few configurations for workloads in the left out fold).

Hardware and Implementation Details. Our workloads are deployed on
several Spark clusters, each spanning 1 node for the driver and 2 for the executors.
Each node has 2 processors (Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz)
totalling 32 cores and 754 GB of RAM for each node. The modeling approaches
have been implemented mainly in Tensorflow[1], Keras[5] and scikit-learn[19].

5.3 Comparative Results of Modeling Techniques

We make the following observations from Table 2 and profiling results in Fig. 3:
1. Baseline Methods. If we bypass representation learning techniques and

directly train a global regressor model on the runtime metrics xij (but taking their
job centroid xj) alongside the input configuration(s) vij , then we can get low errors
on the latency estimation if we guarantee having seen a job configuration from
the shared pool. Similarly, PCA and KPCA, two basic representation learning
techniques, also work well under the same shared scheme. These baseline methods,
however, fail to work when a job is admitted by the system under an arbitrary
configuration. A closer look at the encodings obtained with KPCA applied on

14 Khaled Zaouk, Fei Song, Chenghao Lyu, and Yanlei Diao

Streaming Trace TPCx-BB Trace
Shared Pool Arbitrary Pool Shared Pool Arbitrary Pool
5 obs 1 ob 5 obs 1 ob 5 obs 1 ob 5 obs 1 ob

All metrics (scaled) 11.9 10.9 34.8 34.9 7.2 7.6 8.6 29.6
PCA 11.4 11.3 24.4 60.7 11.9 16.4 70.1 50.8
KPCA 8.5 9.9 17.9 21.3 35.2 42.8 59.0 58.8

Embedding 32.8 - 22.5 - 14.7 - 12.4 -

Custom AE 16.0 13.0 20.2 21.4 16.9 22.2 19.2 49.9
Custom contractive AE 10.6 12.2 13.0 19.7 9.7 14.3 28.9 53.0

VAE 8.5 11.2 17.7 18.7 11.4 14.6 28.4 37.5
Siamese Network (triplet) 10.6 12.6 9.6 11.6 7.7 7.9 6.5 9.5

Hybrid1 11.4 12.0 27.0 11.9 7.6 8.2 6.2 9.7
Hybrid1(λ = 0) 10.3 11.5 10.5 12.6 7.6 7.6 6.3 9.6

Hybrid2 9.9 12.4 11.2 12.8 7.9 8.3 6.8 10.7

Ottertune (default) 83.7 84.0 67.6 95.5 52.1 44.6 42.2 61.2
Ottertune (tuned) 50.8 63.8 36.8 67.8 41.0 33.5 35.2 38.2

Table 2. Runtime latency MAPE computed over test sets and averaged over 10 runs

raw metrics xij in Figure 3 shows how encodings from different job templates are
scattered in the 2D space and thus clearly violate the invariance property.

2. Autoencoders. The custom autoencoder fails to provide better perfor-
mances than baseline methods under the different schemes. Its design, which
mainly focuses on reconstructing the variant part by adding a supervision term to
the reconstruction loss function, fails to offer the invariance property in the other
designated part of the bottleneck layer. This insight is verified in Figure 3: while
encodings learned from the custom autoencoder have better clustering properties,
according to different jobs, than those learned from a basic autoencoder or KPCA,
they are still scattered and not tight enough along each job’s centroid.

Further adding a contractive term on top of our custom autoencoder provides
consistently better results across all encoding schemes for the streaming trace,
but only under shared scheme for the TPCx-BB trace. The contraction is induced
by adding the Frobenius norm of the Jacobian matrix in Eq. 3. This additional
unsupervised term hence doesn’t condition the invariance of encodings according
to each specific workload, but rather affects all workloads encodings by contracting
them at once as seen in Figure 3.

On the other hand, the variational autoencoder further improves the errors
on the streaming trace, but doesn’t bring improvements on the TPCx-bb trace,
especially when it comes to the arbitrary scheme. By examining the encodings
obtained from this approach in Figure 3, we see similar clustering properties as
the one induced by our custom disentanglement.

3. Siamese neural networks focus on a relaxation of the invariance property
and achieve drastic improvements on the errors obtained in the most constrained
(challenging) setting of observing 1 arbitrary configuration for an admitted job,
under both streaming and TPCx-BB datasets. The success of this architecture
is attributed to its capacity to tightening encodings from traces of the same

Neural-based Modeling for Performance Tuning of Spark Data Analytics 15

workload and separating encodings of different workloads, and thus focusing on
learning a more invariant encoding for each workload.

4. Hybrid methods. Augmenting the triplet loss function with a reconstruc-
tion term and a custom disentanglement didn’t bring improvements beyond those
achieved with the siamese neural network alone. Indeed, while tuning the hyper-
parameters of the loss function in Hybrid1, we found that γ was assigned a small
value for the best hyperparameters chosen, which indicates that the loss function
puts less emphasize on the reconstruction term. Further, by closely examining
the results obtained with Hybrid1 and Hybrid1 (λ = 0), we can conclude that the
invariance property subsumed independence in our problem settings across the
two datasets. The supervised triplet loss function gave indeed consistent results
on the test sets no matter how many (1 or 5) and from which pool (arbitrary
or shared) configurations were sampled. The second hybrid loss function, which
combines a soft nearest neighbor term (a more recent metric learning method)
and a reconstruction term, provides error on the same scale as the first hybrid
loss function with λ set to 0.

5.Ottertune[28,30], a state-of-the-art tuning tool for RDBMS, does not
leverage traces from different workloads or use representation learning techniques
to train a single model. In contrast to our approaches, it trains one model per
workload and then maps each test workload to one of the past training workloads
in order to model its performances. This leads to higher errors across the different
training settings under both datasets.

6. Embedding. The embedding approach we introduced earlier in section 4.2
doesn’t fully use the raw metrics xij to extract an encoding upon the admission
of a new job. Instead, it learns an embedding by backpropagating the least
squares loss that focuses solely on the actual runtime latency yij to learn a unique
encoding zj . Although this approach fully satisfies the invariance property, it
remains inferior to other neural based approaches grounded in representation
learning. This is because it leverages less information while learning the workload
encoding. Despite that fact, it still outperforms Ottertune. Since the embedding
approach requires incremental training before being able to predict, it requires
a number of observed data points at least equal to the degrees of freedom (the
number of components) of the embedding vector. Therefore, we don’t apply this
approach when having only 1 observation.

5.4 End-to-End Experiments

We use our best modeling technique (siamese neural network) in order to drive
an end-to-end tuning experiment while observing a single arbitrary configuration
for each test job. This initial arbitrarily set configuration is not necessarily the
same across different test workloads. We then run an optimizer that enumer-
ates combinations of different knob choices, each with a predicted latency by
the siamese neural network, and recommends a configuration to minimize the
latency of each test job. We record the runtime latency for the recommended

16 Khaled Zaouk, Fei Song, Chenghao Lyu, and Yanlei Diao

Fig. 4. End to end performances and comparison to Ottertune.

configuration3, and then compute the average of latency improvement over the
initial configuration, (1− new latency

initial latency), across the different workloads.
Figure 4 gives us direct insights on the distribution of speedup recorded for

the runtime latency of workloads from both benchmarks. The left and center
plots show histograms for average speedups on test workloads from both datasets.
The rightmost plot shows average latency improvements obtained with our
method and the ones obtained by Ottertune [28]. On average, we achieve a
latency improvement of 52.4% on streaming workloads and 52.44% on TPCx-BB
workloads, compared to 35.96% and 43.19% for Ottertune, respectively.

After closely examining the configurations recommended by our method and
Ottertune, we noticed that both methods aggresively increase the amount of
resources allocated in most of the test workloads. Increasing the amount of
resources allocated for a workload (such as the total number of cores and the
memory per executor) yields in general better runtime latencies regardless of
the choice of the remaining knobs. This explains why the gap is not very big
between both methods when it comes to end-to-end performances. However, in
some of our test workloads, where initial configurations are already assigned
the biggest resource capacity, and where both optimization methods keep the
resource allocation knobs intact but change other knobs, our method tends to
recommend better configurations than Ottertune.

6 Conclusions and Future Work

In this paper, we presented our solution to performance modeling for cloud data
analytics, including (i) a system design that suits the constraints in real world
applications, (ii) a notion of learning workload embeddings with desired properties
for different jobs, thereby enabling performance prediction when used together
with job configurations; (iii) an in-depth study of different modeling choices that
meet our requirements. Results of extensive experiments show the strengths and
limitations of different modeling methods, reveal the best performing technique
to be the one that can best approximate the invariance property of workload

3 The optimizer’s recommendation is sometimes too optimistic due to extrapolation
in a sparse search space. If the job fails to be launched with the recommended
configuration, the optimizer recommends another one.

Neural-based Modeling for Performance Tuning of Spark Data Analytics 17

embeddings, and demonstrate our superior performance over a state-of-the-art
modeling technique for cloud analytics. In future work, we plan to extend our
analytics model server with transfer learning capabilities to efficiently learn
performance models on different hardware types, and more advanced workload
embedding techniques that can leverage logical descriptions, such as SQL query
plans, that are available to a subset of workloads.

References

1. Abadi, M., Agarwal, A., et al., P.B.: TensorFlow: Large-scale machine learning on
heterogeneous systems (2015), https://www.tensorflow.org/

2. Amazon ec2 instance types. https://aws.amazon.com/ec2/instance-types/
3. Amazon aurora serverless. https://aws.amazon.com/rds/aurora/serverless/
4. Chi, Y., Moon, H.J., et al: Sla-tree: a framework for efficiently supporting sla-based

decisions in cloud computing. In: EDBT March 21-24, 2011. pp. 129–140
5. Chollet, F., et al.: Keras. https://keras.io (2015)
6. Delimitrou, C., Kozyrakis, C.: Qos-aware scheduling in heterogeneous datacenters

with paragon. ACM Trans. Comput. Syst. 31(4) (Dec 2013)
7. Delimitrou, C., Kozyrakis, C.: Quasar: Resource-efficient and qos-aware cluster

management. SIGPLAN Not. 49(4), 127–144 (Feb 2014)
8. Forrester predictions 2020: Cloud computing. https://www.forrester.com/

report/Predictions+2020+Cloud+Computing/-/E-RES157593
9. Frosst, N., Papernot, N., et al.: Analyzing and improving representations with the

soft nearest neighbor loss. ArXiv abs/1902.01889 (2019)
10. He, X., Liao, L., et al.: Neural collaborative filtering. pp. 173–182. WWW (2017)
11. Higgins, I., Matthey, L., et al.: beta-vae: Learning basic visual concepts with a

constrained variational framework. In: ICLR (2017)
12. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. CoRR abs/1312.6114

(2014)
13. Li, B., Diao, Y., Shenoy, P.J.: Supporting scalable analytics with latency constraints.

PVLDB 8(11), 1166–1177 (2015)
14. Li, L., Jamieson, K.G., et al.: Hyperband: A novel bandit-based approach to

hyperparameter optimization. JMLR 18, 185:1–185:52 (2017)
15. Marcus, R., Negi, P., et al.: Neo: A learned query optimizer. PVLDB 12(11),

1705–1718 (Jul 2019)
16. Marcus, R., Papaemmanouil, O.: Wisedb: A learning-based workload management

advisor for cloud databases. PVLDB 9(10), 780–791 (2016)
17. Marcus, R., Papaemmanouil, O.: Plan-structured deep neural network models for

query performance prediction. Proc. VLDB Endow. 12(11), 1733–1746 (Jul 2019)
18. Marcus, R., Semenova, S., et al.: A learning-based service for cost and performance

management of cloud databases. In: ICDE 2017. pp. 1361–1362
19. Pedregosa, F., Varoquaux, G., et al.: Scikit-learn: Machine learning in python. J.

Mach. Learn. Res. 12, 2825–2830 (Nov 2011)
20. Rajan, K., Kakadia, D., et al.: Perforator: eloquent performance models for resource

optimization. In: ACM SoCC, October 5-7, 2016. pp. 415–427
21. Rifai, S., Vincent, P., et al.: Contractive auto-encoders: Explicit invariance during

feature extraction. In: ICML. pp. 833–840 (2011)
22. Salakhutdinov, R., Hinton, G.: Learning a nonlinear embedding by preserving class

neighbourhood structure. vol. 2, pp. 412–419. PMLR (2007)

https://www.tensorflow.org/
 https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/rds/aurora/serverless/
https://keras.io
https://www.forrester.com/report/Predictions+2020+Cloud+Computing/-/E-RES157593
https://www.forrester.com/report/Predictions+2020+Cloud+Computing/-/E-RES157593

18 Khaled Zaouk, Fei Song, Chenghao Lyu, and Yanlei Diao

23. Schroff, F., Kalenichenko, D., et al.: Facenet: A unified embedding for face recogni-
tion and clustering. In: IEEE CVPR June 7-12, 2015. pp. 815–823

24. Snoek, J., Larochelle, H., et al.: Practical bayesian optimization of machine learning
algorithms. In: NeurIPS 2012. pp. 2960–2968

25. Apache flink: Stateful computations over data streams. https://flink.apache.
org/ (2020)

26. Apache spark: A lightning-fast unified analytics engine. https://spark.apache.
org/ (2020)

27. TPCx-BB: (bigbench) benchmark for big data analytics. http://www.tpc.org/
tpcx-bb/

28. Van Aken, D., Pavlo, A., et al.: Automatic database management system tuning
through large-scale machine learning. pp. 1009–1024. SIGMOD ’17

29. Venkataraman, S., Yang, Z., et al.: Ernest: Efficient performance prediction for
large-scale advanced analytics. pp. 363–378. NSDI’16

30. Zhang, B., Van Aken, D., et al.: A demonstration of the ottertune automatic
database management system tuning service. PVLDB ’18 11(12), 1910–1913

31. Zhang, J., Liu, Y., et al.: An end-to-end automatic cloud database tuning system
using deep reinforcement learning. pp. 415–432. SIGMOD ’19, ACM

https://flink.apache.org/
https://flink.apache.org/
https://spark.apache.org/
https://spark.apache.org/
http://www.tpc.org/tpcx-bb/
http://www.tpc.org/tpcx-bb/

	Neural-based Modeling for Performance Tuning of Spark Data Analytics

