
HAL Id: hal-03116958
https://hal.inria.fr/hal-03116958

Submitted on 20 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Faust2FPGA for Ultra-Low Audio Latency: Preliminary
work in the Syfala project

Tanguy Risset, Romain Michon, Yann Orlarey, Stéphane Letz, Gero Müller,
Adeyemi Gbadamosi

To cite this version:
Tanguy Risset, Romain Michon, Yann Orlarey, Stéphane Letz, Gero Müller, et al.. Faust2FPGA for
Ultra-Low Audio Latency: Preliminary work in the Syfala project. IFC 2020 - Second International
Faust ConferenceInternationnal Faust Conference, Dec 2020, Paris, France. pp.1-9. �hal-03116958�

https://hal.inria.fr/hal-03116958
https://hal.archives-ouvertes.fr

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

FAUST2FPGA FOR ULTRA-LOW AUDIO LATENCY: PRELIMINARY WORK IN THE
SYFALA PROJECT

Tanguy Risset,a Romain Michon,b,c Yann Orlarey,b Stéphane Letz,b

Gero Müller,a Adeyemi Gbadamosi,a Luc Forget,a and Florent de Dinechina

aCITI, Insa, Lyon, France
bGRAME, Lyon, France

cCCRMA, Stanford University, USA
tanguy.risset@insa-lyon.fr ∗

ABSTRACT
FPGAs are increasingly present in every field of computer science.
The generalization of High Level Synthesis (HLS) improves the
productivity of the FPGA programmer. However, even with HLS,
FPGA configuration requires advanced engineering. This paper
investigates the use of FPGA in the context of very low latency
(less than 500µs) audio digital signal processing. We propose a
methodology to compile FAUST programs on FPGA platforms to-
wards ultra-low latency. We expose the challenges it raises and
report about the first steps of a future faust2FPGA compiler.

1. INTRODUCTION

Embedded systems for audio and multimedia are increasingly used
in the arts and culture (e.g., interactive systems, musical instru-
ments, virtual and augmented reality, artistic creation tools, musi-
cal composition and performance, etc.). However, programming
them can be out of reach of artists, creators, or non-specialized en-
gineers. In parallel with the emergence of the “maker culture,”1

progress have been made to make these types of systems more ac-
cessible, bringing more flexibility in digital approaches to artistic
creation. Domain Specific programming Languages (DSL) such as
FAUST [1] facilitated the implementation of real-time audio Digi-
tal Signal Processing (DSP) algorithms.

However, many limitations remain, especially for real-time ap-
plications where latency plays a crucial role (e.g., efficient active
control of sound where audio processing should be faster than the
propagation of sound [2], digital musical instruments playability
[3], digital audio effects, etc.). While latency can be potentially
reduced on “standard” computing platforms such as personal com-
puters based on a CPU (Central Processing Unit), going below the
“one millisecond threshold” is usually impossible due to buffering.

FPGAs (Field Programmable Gate Arrays) can help solve this
problem as well as most of the limitations of traditional computing
platforms used for musical and artistic applications. These chips
are known for their high computational capabilities [4, 5] and very
low-latency performances [6]. They also provide a large number
of GPIOs (General Purpose Inputs and Outputs) which can be ex-
ploited to implement modern real-time multi-channel processing
algorithms (e.g. sound fields capture using lots of digital micro-
phones [7], active sound control over a large spatial region [8],
etc.).

∗ This work was supported by FIL https://fil.cnrs.fr/ and
Inria ADT program. Ousmane Touat has also contributed to it during his
internships.

1https://makerfaire.com/maker-movement (All URLs
were verified on Oct. 23, 2019).

But FPGAs remain extremely complex to program, even with
state-of-the-art high-level tools, making them largely inaccessible
to musicians, digital artists and makers communities. FPGAs are
configured/programmed using a Hardware Description Language
(HDL) such as VHDL or Verilog. The learning curve and the elec-
trical engineering skills required to master these types of environ-
ments make them out of reach of the real-time audio DSP com-
munity. Solutions exist to program FPGAs at a higher level (i.e.,
LabVIEW, Vivado HLS, etc.), but none of them is specifically ded-
icated nor adapted to real-time audio DSP.

This paper describes the work-in-progress occurring in the
Syfala2 project [9]. The goal of Syfala is to design an FPGA-
based platform for multichannel ultra-low-latency audio Digital
Signal Processing programmable at a high-level with FAUST and
usable for various applications ranging from sound synthesis and
processing to active sound control and artificial sound field/room
acoustics. The questions addressed in this paper are the follow-
ing: What would be an ideal faust2FPGA compiler? What is
achievable and what is not? Can we achieve such a project with
reasonable engineering efforts?

Section 2 presents in more details the context and the problem
we’re addressing. Section 3 presents the challenges to overcome
in order to obtain a real compiler from FAUST to FPGA. Section 4
presents our prototype system: using high level synthesis to map
FAUST programs on Xilinx FPGA. Then we briefly present some
performance results in section 5.

2. CONTEXT AND PROPOSAL

Low-latency and real-time audio implied sustained efforts since
the advent of the first digital audio systems. However, ultra-low
latency has recently opened doors to new applications. We refer
to ultra-low latency when the delay between the input signal sam-
pling and the output response is less than 500µs. If sampled at
48kHz, a delay of one sample sample costs approximately 20µs,
hence we are seeking for systems with a reaction time standing
between 1 and 25 samples.

Ultra-Low Audio Latency for What? This type of system has
a wide range of applications in multiple domains. Music technol-
ogy is in high demand for low latency because it helps increas-
ing the playability of musical instruments on stage. In that con-
text, the computational power of the FPGA can be exploited to run

2Syfala (for “Synthétiseur Faible Latence sur FPGA”) is a local project
between GRAME-CNCM and Citi-lab funded by the Fédération Informa-
tique de Lyon (FIL).

IFC-1

http://www.citi-lab.fr/
http://grame.fr
https://ccrma.stanford.edu
mailto:tanguy.risset@insa-lyon.fr
https://fil.cnrs.fr/
https://makerfaire.com/maker-movement

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

complex algorithms (e.g., physics-based models of musical instru-
ments, modal reverbs [10], etc.) that are too costly to run on a
traditional platform (i.e., laptop, etc.).

Another field of application for the platform is active control
of acoustical spaces (e.g., noise cancellation in rooms, car passen-
ger compartment, etc.) and virtual room acoustics (e.g., to apply
the acoustical properties of a space to another, etc.). Sound field
rendering systems are in high demand for low audio latency (i.e.,
to beat acoustical waves traveling at the speed of sound in the air)
and high computational power (i.e., to implement Finite Difference
Time Domain [11]). While FPGAs have been used in the past for
this type of applications [12], there is a lack of a high level tool
to program and implement these types of algorithms. Similarly,
FPGAs should allow to run in real-time room acoustics simulation
algorithms such as modal reverbs [13] in the time domain, which
is hardly possible on regular computers. Such experiments have
been attempted in the past at the Center for Computer Research
in Music and Acoustics (CCRMA)3 at Stanford University. For
instance, the acoustics of the Hagia Sophia cathedral in Istanbul
has been recreated in Stanford’s Bing Concert Hall for a series of
concerts centered around the idea of “archeoacoustics” [10].

Finally, ultra-low audio latency on FPGA has direct industrial
applications outside of the field of audio (e.g., aircraft jet engine
vibration control, etc.) [7].

Barriers to Low Latency Real-time audio can be reached by
means of dedicated real-time operating systems or bare-metal im-
plementations. Bare-metal – i.e., without OS – audio applica-
tions have a considerably lower latency and offer new opportuni-
ties [14]. High performance DSPs of GPUs can be used to improve
bandwidth (i.e., computed number of samples per second), but la-
tency is directly linked to the size of the buffer used by the audio
driver.

In general, computation is performed by audio drivers using a
buffer of a given number of samples (between 8 and 4096 samples,
typically). This is because memory accesses have to be grouped in
order to take advantage of the cache hierarchy present on all com-
puters. This is a fundamental limitation of the use of software com-
puters for ultra-low latency audio processing and has been studied
for a long time [15, 16].

Existing FPGA-Based Audio Systems FPGAs are known for
their high computational capabilities [4, 5] and very low-latency
performances [6]. They also provide a large number of GPIOs
(General Purpose Inputs and Outputs) which can be exploited to
implement modern real-time multi-channel processing algorithms
(e.g., sound fields capture using a very large number of digital mi-
crophones [7, 17], active sound control over a large spatial region
[8], various signal processors for audio [18, 19]). The resulting
FPGA designs are seldomly open source.

There are currently only a few examples of professional
FPGA-based real-time audio DSP systems (i.e., Antelope Audio,4

Korora Audio,5 Focusrite Pro,6 etc.) and in these applications, FP-
GAs are dedicated to a specific task, limiting creativity and flexi-
bility.

3https://ccmra.stanford.edu
4https://en.antelopeaudio.com
5https://www.kororaaudio.com
6https://pro.focusrite.com/

designing-the-ultimate-interface

Recently Vaca et al. presented an open audio processing plat-
form based on the Zybo board [20] for a dedicated purpose such
as, for instance, collecting analog frequencies of a musical instru-
ment. They had very similar engineering issues as presented in
this paper, but they did not target ultra-low latency (250ms) and
they did not use HLS to have a fast compilation flow.

HLS Comes of Age Programming FPGA is usually done with a
hardware description language (VHDL or Verilog). Developing a
VHDL IP7 is extremely time consuming. Hence, FPGA program-
mers have two possibilities: re-using existing IPs and assemble
them to compose a circuit solving their problem (as proposed by
LABVIEW8), or use High-Level Synthesis to compile a VHDL
specification from a higher-level description.

High Level Synthesis (HLS) [21] has been referred to for
decades as the means to enable fast and safe circuit design for
programmers. However, the design space offered to a hardware
designer is so huge that no automatic tool is able to capture all
the constraints and come up with the optimal solution. Many
HLS tools have been proposed (e.g. Pico [22], CatapultC [23],
Gaut [24], to cite a few) dedicated to specific target application
domains. Most of the existing tools start from a high-level rep-
resentation which is based on a programming language (C, C++,
or Python) which is instrumented using pragmas to guide the HLS
process.

Using HLS today still requires very specific skills [25] to write
a source description that is correctly processed by the HLS tools,
but we believe that this technology has reached a certain maturity
and can now be foreseen as a valuable tool for audio designer.
For faust2FPGA, we have been focusing on vivado_hls ,9

developed by Xilinx for Xilinx platforms.

FAUST as Source Audio Language FAUST is a DSL for real-
time audio signal processing primarily developed at GRAME-
CNCM and by a worldwide community. FAUST is based on a com-
piler translating DSP specifications written in FAUST into a wide
range of lower-level languages (e.g., C, C++, Rust, Java, WASM,
LLVM bitcode, etc.). Thanks to its “architecture” system, gener-
ated DSP objects can be embedded into template programs (wrap-
pers) used to turn a FAUST program into a specific ready-to-use
object (e.g., standalone, plug-in, smartphone app, Web page, etc.).

As a data-flow language, FAUST could be naturally translated
into a hardware description language simply by translating each
box of its graphical representation. Moreover the high flexibil-
ity of its compiler enables the generation of C++ code dedicated
to a specific HLS tool. Hence, the faust2FPGA compilation
flow is split into several successive steps: FAUST compilation to
C++ (using the FAUST compiler), HLS flow using vivado_hls,
FPGA synthesis, implementation, and bitstream generation using
vivado (if the FPGA targeted is from Xilinx).

3. FPGA COMPILATION FOR AUDIO CHALLENGES

This section reviews the challenges that an audio programmer
might face when generating FPGA configuration. The required

7IP stands for Intellectual Property, it is the common denomination for
hardware library, i.e., a circuit design that can be re-used as for instance a
software library

8https://www.ni.com/fr-fr/shop/labview.html
9https://www.xilinx.com/HLS

IFC-2

https://ccmra.stanford.edu
https://en.antelopeaudio.com
https://www.kororaaudio.com
https://pro.focusrite.com/designing-the-ultimate-interface
https://pro.focusrite.com/designing-the-ultimate-interface
https://www.ni.com/fr-fr/shop/labview.html
https://www.xilinx.com/HLS

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

technical skills span a wide area from, of course, audio signal
processing to embedded system programming, through advanced
compilation techniques and hardware design.

Audio Chip Interface The first difficulty is to choose an FPGA
with the right features and an audio chip (i.e., audio codec) with
specific requirements compatible with the chosen FPGA. It should
be large enough to handle large programs and cheap enough to
make the final device affordable. Also, as we will see in the fol-
lowing sections, the audio processing algorithm type has conse-
quences on the choice of the FPGA.

Selecting the appropriate audio chip for the type of applica-
tion that we target is also an important step. Audio chips are used
to sample analog signals and perform analog and digital filtering
to limit aliasing effects. Many audio chips are not designed for
ultra-low latency and might induce a latency of several hundred
micro-seconds (a feature called group delay in audio chip data
sheets [16]). This latency is usually dependent on the sampling
frequency. Other audio chips (more expensive) such as the Analog
Devices ADAU17710 limit latency to 50µs.

Another more technical solution is to get rid of the audio chip
and to "design" an ADC and a DAC on the FPGA itself. This
would allow a much higher sampling rate and open many design
opportunities but it would also imply some electronic work to im-
plement the missing analog filters.

While there exists many FPGA boards that can be used for
real-time audio applications, designing a custom board is often the
only solution as existing boards almost never fit specific needs.
Once a development board has been selected (i.e., with an audio
chip accessible directly from the IO pins of the FPGA), it must be
configured for a use where the FPGA (and not the processor next
to it) controls the audio chip.

The FPGA communicates with the audio chip by a serial pro-
tocol. Many audio chip use the I2C and I2S protocols. Open-
source VHDL code can be found for these protocols,11 but their
integration and debugging process can be tedious.

The I2C IP is used to configure the audio chip with the correct
parameters (e.g., sampling rate, bit-width of samples, etc.), while
the I2S is used for serializing the 24 bit stereo audio samples on
the serial link used to communicate with the audio chip. Once
these IPs are integrated, one should be able to run a design such as
the one represented on Fig. 1, where a FAUST IP (i.e., performing
signal processing on 24 bit wide audio samples) is connected to
the I2S IP, itself connected to the audio chips (sd_tx and sd_rx
are serial data transmitted to SSM2603 audio chip).

Note that this part of the process only concerns classical en-
gineering, but the debugging process of this first design can be
quite long because simple audio streams such as DC offsets (i.e.,
constant values) will be suppressed by the audio chip. This phase
implies the use of a logic analyzer for debugging I2C and I2S pro-
tocols using some additional GPIOs of the FPGA.

Hardware and Software Control Interface Once the I2C/I2S
interface is working, a mean of interacting with the FAUST IP must
be selected. Assuming that we are processing stereo signals with

10https://www.analog.com/en/products/adau1777.
html

11I2C and I2S from Digikey for instance https://www.digikey.
com/eewiki/pages/viewpage.action?pageId=10125324

24 bit-width such as what is shown on Fig. 1, choosing other pa-
rameters – say for instance: compute on two parallel stereo sig-
nals – will lead to other HDL designs which cannot be parame-
terized. In that case, the whole design process would have to be
re-engineered because it would contain additional IO ports.

It seems acceptable to recompile a hardware design when the
number of audio channel is changing, but FAUST programs have
other parameters such as the ones created by UI elements (e.g.,
hslider, button, etc.). Hence the question is: how to allow
the user to modify them and how to provide a generic design al-
lowing DSP parameters to vary?

There are many possibilities for interacting with the design
on modern FPGAs. Controllers – basically integers or floating
points whose values can be changed from the outside, but which
is not bound by the same low latency constraints – can be stored
in many places: block RAMs, dedicated IP registers, in external
memory, etc. Modification of these values can be controlled by an
embedded OS sitting next to the FPGA or using GPIOs connected
to sensors (e.g., potentiometers, etc.) through an ADC requiring
some kind of I2C implementation, etc. Again, the “default” de-
sign will probably have a fixed maximal number of such physical
controllers (the design of Fig. 1 does not implement any controller
interface).

Fixed Point vs. Floating Point Since FAUST usually targets
CPUs, it uses floating point to encode audio samples and com-
putations on these samples. However, floating point arithmetic on
FPGA is terribly more expensive than using fixed point. Integrated
DSPs can perform fixed point operation at low cost and there are
dedicated tools [26] that implement all operators used in FAUST
programs in a highly optimized manner on FPGAs. This is even
more true when the operator can be specialized, for instance if one
of its operands is constant.

However, it is not sufficient to simply change all the types in
the C code from float to a fixed point type. Care should be taken
to preserve enough dynamic range to avoid over/underflow of in-
termediate results. Failing doing so could result in a dramatical
degradation of computation precision [27, 28]. This is clearly a
problem that requires more than simple engineering to be tackled.

Usually 24 bits for input and output are sufficient, but how
wide intermediate computations should be is not always clear. As
this is not currently included in the FAUST semantics, this has to
be either fixed with automatic tools [29], or cleverly engineered
and simulated to find a correct (but yet cheap) encoding of fixed
points integers.

Having a better understanding of output precision require-
ments could also improve the overall architecture.

Storing Samples: External Memory of Block RAMs This is
probably the most challenging problem that will have to be solved
by the audio FPGA compiler.

Figure 2 presents a simple echo FAUST program and a excerpt
of the generated C++ code using floating point representation for
computations (i.e., the interface of the IP that will be generated).
Since 64536 float samples are needed (which corresponds to more
than 2Mbits), it cannot be done using FPGA Block RAM (60
Block RAM of 36 Kbits in the FPGA of the Zybo board). A bus
must be used to access external memory that is usually available
on the FPGA board to address this type of problem (Xilinx will
use an AXI bus, and connect to SDRAM through system memory
controller for instance).

IFC-3

https://www.analog.com/en/products/adau1777.html
https://www.analog.com/en/products/adau1777.html
https://www.digikey.com/eewiki/pages/viewpage.action?pageId=10125324
https://www.digikey.com/eewiki/pages/viewpage.action?pageId=10125324

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

Figure 1: Snapshot of the Vivado block design obtained by connecting FAUST IP, I2C, and I2S IPs

//File echo.dsp
myecho = par(i, 2, echo(delay, fback))
with {
echo(d,f) = + ~ (@(d) : *(f));
delay = hslider("delay", 22500, 1, 30000, 1) - 1;
fback = hslider("feedback", 0.7, 0, 0.99, 0.01);
};

process = myecho;

//file echo.cpp generated from echo.dsp
[...]
// Control arrays
static int icontrol[1];
static FAUSTFLOAT fcontrol[1];
static int izone[1];
static FAUSTFLOAT fzone[65536];

void faust_v3(ap_int<24> in_left, ap_int<24> in_right,
ap_int<24> *out_left, ap_int<24> *out_right,

FAUSTFLOAT *fzone)
{
#pragma HLS interface m_axi port=fzone
[...]

Figure 2: A simple echo FAUST program with two controllers
(top), and an excerpt of the generated code for input to HLS using
one AXI bus for the fzone array. The memory needed to store
the samples is more than 2Mbits, it cannot be done using FPGA
Block RAM.

On Figure 3, the same echo.dsp has been compiled in a
different manner: the four arrays (fzone, izone, fControl,
and iControl have been each assigned to a different AXI bus
(Zync IP proposes up to 4 AXI accesses). Of course, this is not
a good choice, because all arrays except fzone are limited to 1
element (see Fig. 2). But looking at the generated code (function
computemydsp), we can see that many memory accesses are is-
sued by this simple program (actually 14 read accesses and 3 write
accesses). These memory accesses can be quite time-consuming

(more than 100 cycles). Even if the FPGA is clocked at 100MHz
(10ns clock period), sequential access – there are four buses but
only one memory – should last more than 100*14*10ns=14µs
which is almost the time between two samples (20µs). In prac-
tice, the C++ code represented in Fig. 3 will not be synthesized
correctly by HLS. This illustrates how a bad assignment of vari-
ables to memory buffer can be disastrous, and it reminds us that
HLS is still a very manual process: we have to find the right way
to assign variables to memory and indicate to the HLS tool how
memory accesses should be processed.

This memory problem requires thorough attention, there are
FPGA chips that include more embedded memory on the FPGA,
but one has to bear in mind that, in FAUST, delays can vary from
one sample to another. For instance, the delay in Fig. 2 can itself
be a signal, hence it is very difficult in that case to pipeline memory
accesses and prefetch samples from the memory to hide memory
access latency.

4. THE SYFALA PROJECT: FAUST COMPILATION ON
THE ZYBO

The goal of the Syfala project was to implement a first proof of
concept of a VHDL compilation of a FAUST program. We chose
to target a Xilinx platform given our experience with Xilinx tools.
Xilinx provides an HLS tool (vivado_hls) that can generate IP
designs easily importable in vivado block designs. The chosen
FPGA platform was the Zybo-Z7 1012 – successor of the ZedBoard
– that contains a Xilinx Zynq-7000 family FPGA (xc7z010clg400-
1) and the recent SSM2603 Audio Codec [30].

12https://reference.digilentinc.com/reference/
programmable-logic/zybo-z7/

IFC-4

https://reference.digilentinc.com/reference/programmable-logic/zybo-z7/
https://reference.digilentinc.com/reference/programmable-logic/zybo-z7/

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

[...]
void computemydsp(mydsp* dsp, FAUSTFLOAT* inputs,

FAUSTFLOAT* outputs, int* iControl,
FAUSTFLOAT* fControl, int* iZone,
FAUSTFLOAT* fZone) {

fZone[0+(iZone[0] & 32767)] =
((float)inputs[0] +
(fControl[0] * fZone[0+((iZone[0] - iControl[0]) & 32767)]));

outputs[0] = (FAUSTFLOAT)fZone[0+((iZone[0] - 0) & 32767)];
fZone[32768+(iZone[0] & 32767)] = ((float)inputs[1] +
(fControl[0] * fZone[32768+((iZone[0] - iControl[0]) & 32767)]));

outputs[1] = (FAUSTFLOAT)fZone[32768+((iZone[0] - 0) & 32767)];
iZone[0] = (iZone[0] + 1);

}

[...]

void faust(ap_int<24> in_left, ap_int<24> in_right,
ap_int<24> *out_left,ap_int<24> *out_right,

int *icontrol, FAUSTFLOAT *fcontrol, int *izone,
FAUSTFLOAT *fzone, bool bypass_dsp, bool bypass_faust)

{
#pragma HLS interface m_axi port=icontrol
#pragma HLS interface m_axi port=fcontrol
#pragma HLS interface m_axi port=izone
#pragma HLS interface m_axi port=fzone
[...]

Figure 3: Example of the same echo.dsp file compiled with
4 AXI accesses, the computemydsp function is the one to be
synthesized by HLS, it performs the computations on streams, one
sample at a time.

4.1. Possible Design Flows

The first choice to make is the compilation flow. There are several
possibilities involving more or less engineering. They are illus-
trated in Fig. 4.

Faust.dsp

Faust compilerFaust Compiler
+

Bitwidth analysis

Faust Compiler
+

Bitwidth analysis
Faust.cpp

Vivado HLS

Faust.vhd

Vivado

Faust IP

FloPoCo FloPoCo

Figure 4: The different possible compilation flows for a
faust2VHDL compiler, round boxes are files (i.e., format),
squared boxes are tools. Dashed boxes are tools outside from the
compilation flow used to tune the architecture.

The easiest path is the central one: the FAUST compiler is
tuned to output C++ code that fits into vivado_hls tools. The
type used for the samples in this flow is float. Then, the gen-
erated VHDL code is packed as an IP and integrated into a block
design, connected to I2C/I2S and AXI buses if needed, as shown
on Fig. 5. As mentioned before, an important optimization of this
design flow is to choose a memory access organization adapted to
the compiled FAUST program.

The left flow of Fig. 5 adds the fixed-point optimization. Here,
the type chosen for the computation is fixed point of any width.
First, an analysis of the FAUST data-flow graph should indicate
what the required bit-width for each signal is, then the C++ code is
generated accordingly and sent to vivado_hls using dedicated
arithmetic operators. The FloPoCo tool [26] will help to perform
such analysis and to optimise filter design.

Finally (right flow), one could think of a direct compiler from
FAUST to VHDL. Indeed, the FAUST flow graph representation is
close to a structural representation of the computations. The main
difficulty here lies in the inference of memory accesses. If simple
FIFOs (First In First Out) can be used, it will be easy, but we must
keep in mind that delays can be controlled by signals, and change
for each sample.

4.2. First Syfala Compilation Flow Choices

The first stable Syfala compilation flow follows the schematics of
Figure 6. The choices that have been made are the following:

• Implement a one sample flag in the FAUST compiler
(-os) that generates a computemydsp function of the
faust.cpp file that computes only one sample. It implies
that the FPGA signal processing treatment is not pipelined
among the audio samples.

• Have a fixed interface of the faust function that will be
synthesized by vivado_hls. This interface is shown in
the architecture file FPGA.cpp on Fig. 7, with the follow-
ing conventions:

– Stereo input and output (i.e., in_left, in_right,
out_left, out_right) are 24 bits wide signed
integers encoding floating point values between -1
and 1, as explained later, which are to be sent and
received from the I2S transceiver, which itself inter-
faces with the audio chip.

– There are four memory zones identified: the
i/fcontrol are used to store control parame-
ters, the {i/f}zones are used to store samples
(fzone) or sample index (izone). The FAUST
compiler ensures coherent access in these different
memory zones in the generated C++ code.

– In the first version of the compiler, for simplicity,
these four memory arrays are stored on the external
RAM of the Zybo board and hence need an AXI bus
interface IP to be accessed from the FPGA.

The FPGA.cpp file is the FAUST architecture file correspond-
ing to the FPGA target architecture (currently only Xilinx architec-
tures are supported by Syfala). As mentioned above, four pragmas
are used to indicate that the four memory zones are all placed in
external memory and accessed with a different AXI bus.

The controlmydsp and computemydsp functions are
executed at each sample. The underlying assumption it that the
generated IP will be triggered by a start signal (i.e., a basic
hand shake protocol), indicating that the next sample is ready to
be processed.

The scaleFactor value (i.e., 8388608.Of) is exactly 223.
The input/output of the faust function are arrays of type
ap_int<24>, i.e., signed integer of 24 bits (vivado fixed point
library), they are interpreted as decimal part of signed samples be-
tween -1 and 1.

IFC-5

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

Figure 5: The complete block design obtained after FAUST IP integration (4 AXI buses used here).

The following table shows the correspondence between the
floating point values output by the computemydsp function and
the corresponding sample input to the I2S transceiver:

FAUST output Float value truncated value stored in
sample value (a) for 24 bits (b) out_left (c)

0.12345678123456 0.1234567 c = a × 223 = 1035630

−0.12345678123456 −0.1234567 c = a × 223 = −1035630

4.3. The I2C/I2S IPs

The I2C and I2S VHDL IPs have been implemented from Scott
Larson’s IP proposed at DigiKey eewiki.13 The i2cemu IP is
the first one activated after reboot. It configures the registers of
the SSM2603 chip with the values indicated in the SSM2603
datasheet (see [30], p20). It also proposes an output volume adap-
tation connected to two buttons of the Zybo board. i2cemu IP
implements the I2C protocol for configuring the SSM2603 regis-
ter, then waits for a given period of time (75ms), and activates the
start signal sent to the IPs faust and i2s_transceiver.

The i2s_transceiver is the one that actually transmits
the bits between the FPGA and the audio codec. The protocol
used in our design is the one illustrated in Fig. 8: the 24 bits
are serially transmitted along the bclk clock (see also [30]).
The ws signal chooses between left and right channel. The
i2s_transceiver is then connected to the faust IP as ex-
plained in Fig. 7.

13https://www.digikey.com/eewiki/pages/viewpage.
action?pageId=10125324

4.4. Time, Clocks, and the Ordering of Ticks in the Syfala Sys-
tem

It is important to understand the origin and value of the different
clocks in the system. The generation of the different clocks is sim-
plified by the use of the Clocking Wizard IP, which itself in-
puts the FPGA system clock (sys_clk) and outputs the required
clocks.

• FPGA system Clock: 125Mhz The internal FPGA clock
that triggers every register of the FPGA depends on the
complexity of the design (i.e., the complexity of the longest
combinatorial path), it is called sys_clk in the Vivado
block design. We usually impose this clock to be 125Mhz
(i.e., setting a 8ns clock when creating vivado and
vivado_hls projects). If vivado fails in synthesizing a
design that can be clocked at that speed, it will issue an er-
ror message, however it should be easy to change this clock
to another value as all other clocks are generated indepen-
dently of this one.

• Audio codec internal Master Clock: mclk = 256 × fs
The clock regulating the SSM2603 should be a multiple of
the sampling frequency. In the I2C configuration [30], we
have configured the chip to run with fs = 48kHz sampling
rate, hence:

mclk = 256× fs = 256× 48kHz = 12.288MHz

In our design, this clock is generated with the clocking
Wizard IP and transmitted to both i2s_transceiver
and ssm2603 codec to ports name mclk).

IFC-6

https://www.digikey.com/eewiki/pages/viewpage.action?pageId=10125324
https://www.digikey.com/eewiki/pages/viewpage.action?pageId=10125324

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

Faust.dsp

Faust compilerfpga.cpp

Faust.cpp

Vivado HLS

block design

Faust.vhd

Vivado

I2C.vhd

I2S.vhd

bistream.bit

Zybo board

Figure 6: Compilation flow of the first Syfala version
syfala-v1.0 targeting the Zybo board with vivado.

• Vivado IP’s clocks The AXI bus and the Zynq processing
system require a 100Mhz clock. The Zynq processing sys-
tem requires also a 50Mhz clock.

• The i2cemu clocks The clock used in i2cemu to clock
the I2C communication with the codec is independent from
the clocks used in I2S. We have hardwired (with a generic
parameter of the VHDL component) the main I2C clock
to 400Mhz. This clock is also called sclk in the Vivado
block design, but it is not to be confused with the sclk of
I2S. If the FPGA system clock (125MHz) is changed, the
VHDL code f i2cemu should be modified accordingly.

• The i2s_transceiver clocks The I2S transceiver is
using two more clocks: the sclk clock, sometimes called
bclk (bit clock because it is clocking each bit as illustrated
in Figure 8) and the ws clock (word select) which selects
the left or right channel (illustrated as reclrc/pblrc in
Fig. 8).
There is a fixed ratio between these two clocks and the
mclk mentioned above: mclk/sclk=4 (i.e., mclk is 4
times faster sclk) and sclk/ws=64. Again, this is hard-
coded in i2s_transceiver generic VHDL parameters.
Hence, one ws period is Tws = 4 × 64 × Tmclk =
256× Tmclk = Taudio = 1

48kHz
= 20.83µs.

5. PERFORMANCE AND CONCLUSION

Designs generated by the current version of the Syfala tool-chain
are quite complex and they are not completely operational yet: the
echo example make sound some samples are lost because of the
memory access latency through AXI busses. The only valid FAUST
programs produced with the Syfala V4 design flow, are obtained by
using only Block RAMs (i.e., no AXI bus) for memory accesses.
Table 1 shows the usage of FPGA resources for each IP. Version
1 of Syfala, which used four AXI buses for the four I/O arrays of

#define FAUSTFLOAT float
typedef struct {

FAUSTFLOAT fHslider0;
FAUSTFLOAT fHslider1;
int fSampleRate;

} mydsp;
[...]
static char initialized = 0;
static mydsp DSP;

void faust(ap_int<24> in_left, ap_int<24> in_right, ap_int<24> *out_left,
ap_int<24> *out_right, int *icontrol, FAUSTFLOAT *fcontrol,
int *izone,FAUSTFLOAT *fzone, bool bypass_dsp, bool bypass_faust)

{
#pragma HLS interface m_axi port=icontrol
#pragma HLS interface m_axi port=fcontrol
#pragma HLS interface m_axi port=izone
#pragma HLS interface m_axi port=fzone

if (initialized == 0) {
initmydsp(&DSP, SAMPLE_RATE, izone, fzone);
initialized = 1;

}

// Update control
controlmydsp(&DSP, icontrol, fcontrol, izone, fzone);

// Allocate ’inputs’ and ’outputs’ for ’compute’ method
FAUSTFLOAT inputs[FAUST_INPUTS], outputs[FAUST_OUTPUTS];

const float scaleFactor = 8388608.0f;

// Prepare inputs for ’compute’ method
#if FAUST_INPUTS > 0

inputs[0] = in_left.to_float() / scaleFactor;
#endif
#if FAUST_INPUTS > 1

inputs[1] = in_right.to_float() / scaleFactor;
#endif

computemydsp(&DSP, inputs, outputs, icontrol, fcontrol, izone, fzone);

// Copy produced outputs

*out_left = ap_int<24>(outputs[0] * scaleFactor);
#if FAUST_OUTPUTS > 1

*out_right = ap_int<24>(outputs[1] * scaleFactor);
#else

*out_right = ap_int<24>(outputs[0] * scaleFactor);
#endif
}

Figure 7: The architecture file used by FAUST on Syfala v1.0

the IP was the first prototype to run a realistic echo (although some
samples were lost as we noticed afterwards). We simplified it in
Syfala V3 to only have one AXI access. These versions are not
allowing to change controller values yet. Table 1 is shown here to
illustrate the fact that the design of the integration of the FAUST IP
has an important impact on the complexity of the resulting circuit.
Indeed both designs V1 and V3 are using exactly the same FAUST
initial program and their resulting complexity are quite different.

On Table 1, it can be seen that the FAUST IP in V1 approxi-
mately uses 20% of the LUT (100 ∗ 3477/17600 = 19.75) and 4
Block RAMs while the V3 uses only 12% of the LUTs and 1 block
RAM. The (constant) complexity of the I2C and I2S transceivers
(approximately 2% of the LUTs) is a useful information too. The
V1 design size is quite important (about 45% of the FPGA re-
sources), because of the used 4 AXI bus and of the use of an in-
tegrated logic analyser (ILA) for debugging purposes. This com-
plexity will be probably easily reduced.

What is more problematic is the fact that despite the simple
FAUST program (echo program of Fig. 2), the Faust_v3 IP ac-
counts for about 10% of the FPGA of the Zybo board. There are
two reasons for that:

• First, the float type used for computations is using a lot of
resources. We should move to a fixed point version.

• Many unnecessary computations are implemented in hard-
ware, such as the initialization of signals and data. They
should be implemented in software on the ARM processor,
because there is no latency pressure on them.

Syfala runs on Linux, compilations of these designs have been
completely scripted [9] and are activated using make. Vivado

IFC-7

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

Name Slice LUTs Slice Registers Block RAM Tile DSPs
17600 35200 60 80

Syfala V1 (Four AXI)
main_wrapper 7584 10742 10 13
axi_interconnect_0 175 262 0 0
axi_interconnect_1 175 262 0 0
axi_interconnect_2 175 262 0 0
axi_interconnect_3 175 262 0 0
faust_v1 3477 4657 4 13
i2cemu 182 178 0 0
i2s_transceiver 180 212 0 0
ila 2543 3883 6 0
proc_sys_reset 17 37 0 0

Syfala V3 (One AXI)
main_wrapper 2703 3443 1 13
axi_interconnect 175 262 0 0
faust_v3 2119 2742 1 13
i2cemu 213 190 0 0
i2s_transceiver 180 212 0 0
proc_sys_reset 17 37 0 0

Table 1: FPGA resources usage for Syfala V1 (with four AXI and one integrated logic analyzer – ila – for debug purpose) and Syfala V3
(one AXI) for the simple echo FAUST program (Fig. 2). The Faust_v3 IP still accounts for about 10% of the FPGA of the Zybo board.

Figure 8: I2S mode used as protocol between
i2s_transceiver and the audio codec SSM2603 (from [30])
for 24 bits samples (N = 24).

allows us to export a script for every tool, however the manual
changes on these scripts to make them portable to a git repository
are quite complex. The compilation time of these design took be-
tween 10 and 20 minutes using Vivado 19.1.

The latency achieved between inputs and outputs of audio
samples of this first generated design is about 820µs. As men-
tioned earlier, 800µs are introduced by the audio chip, the FAUST
IP itself has a delay of approximately 20µs (1 sample which is the
minimum delay as I/O of the IP are synchronised).

We are now studying solutions to improve design complex-
ity using fixed point arithmetic and ways to interact with the con-
trollers.

6. ACKNOWLEDGMENTS

This work was supported by the FIL https://fil.cnrs.fr/
and the Inria ADT program. Ousmane Touat has also contributed
to this project during an internship.

7. REFERENCES

[1] Yann Orlarey, Stéphane Letz, and Dominique Fober, New
Computational Paradigms for Computer Music, chapter
“Faust: an Efficient Functional Approach to DSP Program-
ming”, Delatour, Paris, France, 2009.

[2] Stephen Elliott, Signal Processing for Active Control, Else-
vier, 2000.

[3] Nelson Lago and Fabio Kon, “The quest for low latency,”
in Proceedings of the International Computer Music Confer-
ence (ICMC-04), Miami, USA, 2004.

[4] Jiwon Choi, Myeongsu Kang, Yongmin Kim, Cheol-Hong
Kim, and Jong-Myon Kim, “Design space exploration in
many-core processors for sound synthesis of plucked string
instruments,” Journal of Parallel and Distributed Comput-
ing, vol. 73, no. 11, pp. 1506–1522, 2013.

[5] Florian Pfeifle and Rolf Bader, “Real-time finite differ-
ence physical models of musical instruments on a field pro-
grammable gate array (fpga),” in Proceedings of the 15th In-
ternational Conference on Digital Audio Effects (DAFx-12),
York, UK, 2012.

[6] Math Verstraelen, Jan Kuper, and Gerard J.M. Smit, “Declar-
atively programmable ultra low-latency audio effects pro-
cessing on fpga,” in Proceedings of the 17th International
Conference on Digital Audio Effects (DAFx-14), Erlangen,
Germany, 2014.

[7] Edouard Salze, Emmanuel Jondeau, Antonio Pereira, Si-
mon L. Prigent, and Christophe Bailly, “A new MEMS mi-
crophone array for the wavenumber analysis of wall-pressure
fluctuations: Application to the modal investigation of a
ducted low-Mach number stage,” in Proceedings of the 25th
AIAA/CEAS Aeroacoustics Conference, Delft, Netherlands,
2019.

[8] Jihui Zhang, Thushara D. Abhayapala, Wen Zhang,
Prasanga N. Samarasinghe, and Shouda Jiang, “Active noise
control over space: A wave domain approach,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing,
vol. 26, no. 4, pp. 774–786, April 2018.

[9] “Syfala gitlab,” https://gitlab.inria.fr/risset/syfala.

[10] Jonathan S Abel, Wieslaw Woszczyk, Doyuen Ko, Scott
Levine, Jonathan Hong, Travis Skare, Michael J Wilson,
Sean Coffin, and Fernando Lopez-Lezcano, “Recreation of
the acoustics of hagia sophia in Stanford’s Bing concert hall

IFC-8

https://fil.cnrs.fr/

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

for the concert performance and recording of cappella ro-
mana,” in Proceedings of the International Symposium on
Room Acoustics, Toronto, Canada, 2013.

[11] Stefan Bilbao, Numerical Sound Synthesis: Finite Difference
Schemes and Simulation in Musical Acoustics, John Wiley
and Sons, Chichester, UK, 2009.

[12] Yiyu Tan and Toshiyuki Imamura, “An fpga-based accelera-
tor for sound field rendering,” in Proceedings of the 22nd In-
ternational Conference on Digital Audio Effects (DAFx-19),
Birmingham, UK, 2019.

[13] Jonathan S Abel, “Method and system for artificial reverber-
ation using modal decomposition,” Apr. 16 2019, US Patent
App. 10/262,645.

[14] Romain Michon, Yann Orlarey, Stéphane Letz, and Do-
minique Fober, “Real time audio digital signal processing
with faust and the teensy,” in Proceedings of the Sound and
Music Computing Conference (SMC-19), Malaga, Spain,
2019.

[15] Michael Lester and Jon Boley, “The effects of latency on live
sound monitoring,” 2007.

[16] Yonghao Wang, Ryan Stables, and Joshua Reiss, “Audio la-
tency measurement for desktop operating systems with on-
board soundcards,” in Audio Engineering Society Convention
128. Audio Engineering Society, 2010.

[17] Dimitris Theodoropoulos, Catalin Bogdan Ciobanu, and
Georgi Kuzmanov, “Wave field synthesis for 3d audio: Ar-
chitectural prospectives,” in Proceedings of the 6th ACM
Conference on Computing Frontiers, New York, NY, USA,
2009, CF ’09, p. 127–136, Association for Computing Ma-
chinery.

[18] Mihalis Psarakis, Aggelos Pikrakis, and Giannis Dendri-
nos, “Fpga-based acceleration for tracking audio effects in
movies,” 04 2012, pp. 85–92.

[19] Jingbo Zhang, Ganggang Ning, and Shufang Zhang, “Design
of audio signal processing and display system based on soc,”
in 2015 4th International Conference on Computer Science
and Network Technology (ICCSNT). IEEE, 2015, vol. 1, pp.
824–828.

[20] K. Vaca, M. M. Jefferies, and X. Yang, “An open audio pro-
cessing platform with zync fpga,” in 2019 IEEE Interna-
tional Symposium on Measurement and Control in Robotics
(ISMCR), Sep. 2019, pp. D1–2–1–D1–2–6.

[21] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T.
Chen, H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and
K. Bertels, “A survey and evaluation of fpga high-level syn-
thesis tools,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 35, no. 10, pp. 1591–
1604, Oct 2016.

[22] Robert Schreiber, Shail Aditya, Scott A. Mahlke, Vinod
Kathail, B. Ramakrishna Rau, Darren C. Cronquist, and
Mukund Sivaraman, “PICO-NPA: high-level synthesis of
nonprogrammable hardware accelerators,” VLSI Signal Pro-
cessing, vol. 31, no. 2, pp. 127–142, 2002.

[23] Thomas Bollaert, Catapult Synthesis: A Practical Introduc-
tion to Interactive C Synthesis, pp. 29–52, Springer Nether-
lands, Dordrecht, 2008.

[24] Farhat Thabet, Philippe Coussy, Dominique Heller, and Eric
Martin, “Exploration and rapid prototyping of DSP appli-
cations using systemc behavioral simulation and high-level
synthesis,” Signal Processing Systems, vol. 56, no. 2-3, pp.
167–186, 2009.

[25] R. Kastner, J. Matai, and S. Neuendorffer, “Parallel Program-
ming for FPGAs,” ArXiv e-prints, May 2018.

[26] Florent de Dinechin and Bogdan Pasca, “Designing custom
arithmetic data paths with FloPoCo,” IEEE Design & Test of
Computers, vol. 28, no. 4, pp. 18–27, July 2011.

[27] Anastasia Volkova, Matei Istoan, Florent de Dinechin, and
Thibault Hilaire, “Towards hardware IIR filters computing
just right: Direct form I case study,” IEEE Transactions on
Computers, vol. 68, no. 4, Apr. 2019.

[28] Karthick Parashar, Daniel Menard, and Olivier Sentieys, “A
polynomial time algorithm for solving the word-length opti-
mization problem,” in IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), San Diego, United
States, Nov. 2013.

[29] O Sentieys, D Menard, and N Simon, “Id. fix: an eda tool for
fixed-point refinement of embedded systems,” Design Au-
tomation and Test in Europe (DATE) 2014 University booth.

[30] Analog Devices, “Low power audio codec ssm2603 data
sheet,” https://www.analog.com/en/products/ssm2603.html.

IFC-9

	1 Introduction
	2 Context and Proposal
	3 FPGA Compilation for Audio Challenges
	4 The Syfala Project: Faust Compilation on the Zybo
	4.1 Possible Design Flows
	4.2 First Syfala Compilation Flow Choices
	4.3 The I2C/I2S IPs
	4.4 Time, Clocks, and the Ordering of Ticks in the Syfala System

	5 Performance and Conclusion
	6 Acknowledgments
	7 References

