
1

Deep Learning-based Transmitter identification

on the physical layer

Cyrille Morin, Leonardo S. Cardoso, Jakob Hoydis, Senior Member, IEEE,and

Jean-Marie Gorce

Abstract

An essential part of most wireless communications systems is the identification of a transmitter by

a receiver. Being able to identify a transmitter at the physical layer gives context to the communication

itself, but is also an important building block for more advanced techniques such as physical layer

security. It can also be used to reduce overhead in the transmission of small packets. Previous works

have shown the usefulness of applying deep learning to this task, however, as seen in those works,

channels characteristics tend to capture the fingerprinting abilities of deep learning systems, rendering

them very sensitive to changes in the radio propagation environment. This work focuses on reducing

the impact of channel effects on identification performance and generalisation to changing conditions,

something that has been little addressed in the literature, and show that increasing channel variations in

the data used to train a neural network can increase its resiliency to channel modifications, leading to a

gain of up to 21.3 percentage points in accuracy compared to the naive approach found in the literature.

The datasets collected for this paper are available online, as well as the tools to collect new ones, in

the hope that they can be reused by the community.

Index Terms

Fingerprint identification, Learning systems, Radio transmitters, Data acquisition, Test facilities

I. INTRODUCTION

Transmitter identification has been a crucial topic since the dawn of radio communications. Un-

like wired communications, where communication integrity is ensured by the physical medium,

the broadcast nature of electromagnetic waves requires to securely identify the transmitter of

a signal. Since World War II, radio identification is mainly based on cooperation with the

transmitter, thanks to an identification code. This method of identifying transmitters is inherently

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/373294113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

prone to problems since it depends on decoding a portion of the signal itself and also on trusting

that the actual source of the signal is not trying to impersonate a trusted transmitter.

The problem of identifying a transmitter has become even more important nowadays due

to two factors. First, the widespread availability of low cost, programmable radios, such as

software defined radios (SDR), has opened the radio spectrum to a large public. While still not

very widespread, security attacks such as man-in-the-middle (MITM) are utterly possible with

SDR technology [1], or simply by altering medium access control (MAC) layers of popular radio

devices [2]. Second, the sheer number of radio devices accessing the spectrum is enormous and

tends to become even greater with the undergoing massive deployment of internet of things (IoT)

devices. To identify all these devices with unique identification codes means that very long codes

must be used. Such codes will take up valuable resources and, as already stated, are prone to

attacks by malicious transmitters, see for instance [3].

To solve these problems, other means of identifying transmitters must be sought. Preferably,

these identification techniques should not depend solely on transmitted identification codes but

rather rely on physical characteristics of the transmitting hardware. This is indeed possible since

transmitters are built with discrete components which are produced to a certain tolerance around

their nominal values, creating a slight but perceivable variation of the radio signal, even between

devices of the same brand and model. The compound effect of these and other factors can be

seen as a fingerprint of the transmitter, that could be effectively recognised by a receiver.

There are two main strategies available to perform an identification task, relative to the way

known signals are memorised to be identified later:

• Comparison: The identifying system has 2 inputs: the signal to identify, and a known one.

It then outputs a score, rating how close the two signals are to each other. This is repeated

with several known signals to find the closest match. In that case, users are recalled by

their stored reference signals, not by the system itself. If characteristics tend to change

over time, the reference signals can be updated regularly to keep up with the changes. This

approach makes it simpler to work with new users, simply by storing new reference signals,

that might require large amounts of memory, scaling with the number of transmitters to be

identified.

• Classification: The identifying system has only one input: the signal to identify. It then

outputs a score rating how much each possible candidate matches to the received signal. In

this case, users are recalled by the identification system itself (e.g. as weights in a NN), so

3

updates are harder to accomplish to accommodate for variations of characteristics or new

users. On the other hand, identification is done in one step instead of computing a score

for every reference signal, hence shortening the processing time and amount of memory

required.

TABLE I

COMPARISON OF LITERATURE PAPERS

Paper Approach Channel

effects

Main feature Preprocessing Devices Algorithm Type Dataset

[4] Analytical No Transient No 28 N/A VHF Exp

[5]–[9]

C
om

pa
ri

so
n

Used CSI
N/A 2 Expert N/A Simu

[10] Chan features ? GMM USRP Exp

[11] No IQ imbalance No 5 CNN N/A Simu

[12] Yes Steady state AoQ 15 DNN Wifi Exp

[13]

C
la

ss
ifi

ca
tio

n

No

Transient
Hilbert 8 PNN Wifi Exp

[14] Bispectrum 3 SVM

USRP

Both

[15] Many Feat. extraction 4 NN,SVM Exp

[16] Amplifier FFT 7 NN Both

[17]

St
ea

dy
St

at
e

Hilbert 5 CNN N/A
Simu

[18] Feat. extraction 10000 DNN N/A

[19] VMD 20 LSVM Phones

E
xp

[20] Handcrafted 6 Expert Custom

[21] STFT 4 SVM

USRP[22] Minkowski 9 SVM,k-NN

[23] Recurrence plot 11 CNN

[24]

No

5 ML USRP

[25] 6 NN Zigbee

[26] 6 ML
USRP

[27] 8 k-NN

[28] Error signal 7

CNN
Zigbee

[29] Denoiser 27

[30] Multisampling 52

[31] Yes1 CTF 54 NN

[32], [33]

Yes No

16

CNN USRP[34] 20

[Ours] 21

1In this case, channel effects are observed but not corrected or accounted for.

4

The literature on physical layer transmitter identification covers both of these strategies, as

can be seen in Table I. On the comparison side, most approaches directly use the channel effects

for identification [5]–[10], while [11] does not include them in their simulation. Most interesting

in the scope of the present paper, the authors of [12] introduce a new feature: Amplitude of

Quotient (AoQ) that looks at the variation of a Wifi preamble signal over two consecutive frames.

This allows to greatly reduce the channel dependency since, from one channel to the other, the

variation between two concurrent frames stays the same. Unfortunately, this approach is difficult

to implement in an Internet of Things (IoT) scenario where devices can transmit isolated packets

with potentially big time gaps in between them. For this case, a one-shot identification system

is needed.

Most of the works on the subject focus rather on classifiers, with many experimental setups,

over a wide range of hardware platforms (phones, USRPs, Wifi, IoT and Zigbee devices), using

a variety of preprocessing techniques and mostly using the steady state features of transmitted

packets. Although the range of demonstrated applications seems very promising for real-life

usage cases, the vast majority of studies do not consider the effects of a non-static channel

on the identification performance. The effects of channel variations can be first seen in [31],

where, even though the authors show the stability of learned features (involving 54 transmitters)

by testing their network with new data 18 month after it was trained, they encounter a drop

in performance when changing the location of the transmitters, due to a drastic change of the

channel.

The authors of [32], [33] created a dataset using 16 USRP devices in a realistic room used

to train a convolutional neural network (CNN) with good results. Unfortunately, any change in

the environment (position of chairs or people moving) prevents the generalisation of the neural

network to a new dataset. To counter this effect, additional artificial impairments are embedded

in the transmitted signals to improve performance and a protocol is devised to choose those

impairments, in a similar manner as for cryptographic keys. To the best of our knowledge, this

paper is the only one that provides the dataset they use in their experiments. To the same end,

the authors in [34] introduce a FIR filter in each transmitter and use a feedback link from the

receiver to optimise their parameters to increase identification accuracy at the receiving CNN.

The latter two approaches effectively increase robustness to channel changes, but they reduce

the strength of their security claims: as with the current approach, a malicious user could tune

its own system as easily as a registered one.

5

Two papers that stand out from Table I are [4] which is a study of possible characteristic

features of transient signal in VHF radio, and [35], where the authors, instead of focusing on

getting the best possible accuracy on their dataset, attempt to predict the size needed for said

dataset. The precise numbers reached in that paper are specific to their neural network design

and scenario but they provide a rule-of-thumb for choosing dataset sizes.

The approach proposed in this paper is to train a CNN classifier using raw IQ samples without

preprocessing and from experimental datasets to ensure that all possible features in the signal can

be used by the neural network. The network is made to cope with the channel variations effects

natively, without having to introduce any form of additional information at the transmitter, by

purposely introducing channel variations in the training dataset.

The remainder of this paper is divided as follows: Section II specifies the problem herein ad-

dressed, then Section III describes the implementation chosen to tackle it, from the experimental

dataset gathering, to the neural network (NN) architecture used for identification. Section IV

shows the results obtained using this implementation, and Section V analyses some specific

effects of synchronisation between transmitter and receiver. Finally, Section VI concludes this

paper and elaborates on possible future contributions.

II. PROBLEM FORMULATION AND CLASSIFIER SELECTION

A. Problem statement

The transmitter identification problem consists of a set of N transmitter nodes2, and a set of

M identification receivers3. The k th node sends a complex discrete sequence, xk(t) and the ith

identification receiver receives a complex discrete sequence yi(t). Throughout this work, we refer

to "MonoRX" in the case where M = 1 and "MultiRX" in the case where M = N . In regular

systems, a part of xk(t), namely the identification field in the packet header, is used to identify

the node. Unlike those systems, here we consider that xk(t) does not contain any information

enabling the identification of the node, so x can be considered independent of k and we define

x(t) = xk(t) ∀k.

The sequence x is then processed by the radio frequency (RF) chain of the k th radio device,

whose overall RF transfer function gk is unknown and can be non-linear. This RF transfer

2Henceforth all transmitters are called nodes.

3Henceforth the receivers are called identification receiver.

6

g1

gN

hk,i

r1

rM

gk ri

RF transfer
 function Channel

RF transfer
 function

x y

C
la

ss
ifi

er

p1

pk

pN

Activity
estimation

Fig. 1. System model

function corresponds to the compound effect of all signal formatting such as conversion from

digital to analog domain, mixing, filtering and amplification.

The produced signal is transmitted through a channel hk,i between node k and the identification

receiver i, all channels having unknown input responses. The identification receiver then applies

an RF transfer function ri which, as for the node, can be non-linear. This leads to the observation

of a sampled baseband signal y(t), from which a decision the Id of the active node has to be

taken. The overall model can be seen in Fig. 1. Note that in this setup, possible collisions are

not considered and during each slot only one node and one identification receiver are active,

chosen randomly, leading to the following system equation:

y(t) = ri(hk,i ∗ gk(x(t))) (1)

With k from K ∼ UN(0,N) the active node and i from I ∼ UN(0,M) the active receiver.

Now the question addressed in this paper can be stated: Is there enough information in the

observed signal y(t) to blindly find k without using the channel signature, but exploiting only

the signature of the RF transfer functions gk ?

The objective is then to design a system able to compute classification functions p̃k = fk(y(t))

where p̃k the estimated probability that the k th node is active. To evaluate the performance of

such a multi-class classification system, it is standard practice to use the categorical crossentropy

loss function [36]:

L = −

N∑
a=1

1[a=k] · log (p̃k) . (2)

7

B. DL based classifier

A system able to minimise (2) can answer to the first half of the question at hand: Is there

enough information in the observed signal y to blindly learn about the ID of the active node?

The other half comes from a careful choice of dataset, as described later.

To do that, the approach chosen is to train a NN classifier operating on the raw observed

signal y and directly outputting estimated activity probabilities p̃k for all possible nodes. The

use of deep learning is fully justified: first the features of the function gk we want to rely on are

unknown and expected to be non linear, and an experimental setup using the Future Internet of

Things / Cognitive Radio Testbed [37] (FIT/CorteXlab), as described in the next section, allows

to get a large database of real signals for training, which is the first of its kind at the best of

our knowledge.

No preprocessing is done on the raw data to avoid filtering any unexpected, but useful feature

that may be present in the dataset.

The selection of a network architecture type relates to the assumptions made on the character-

istics of the input signal. In this case, with the same reasoning as with preprocessing, the only

assumption is that the signal is correlated in time, leading to the selection of a 1D CNN type

network. This is because small scale memory effects can be expected, e.g. in the amplification

stages. On the other hand, that assumption reduced by having the last layers of the network be

general purpose dense neural network (DNN).

The network is trained using the loss function (2), but the use of that loss function alone does

not allow to discriminate between the effects of gk and hk,i since they both depend on k. To

permit such a discrimination, a training dataset will be specifically built in the next section to

reduce the impact of hk,i in the learning process.

III. IMPLEMENTATION

To properly train a neural network for the identification task, a large dataset that is properly

unbiased and correctly labelled is required. In this section, the data collection methodology used

to achieve a suitable sample set for our identification needs is described: first, the experimentation

room is presented, then the overall system architecture controlling the operation of the nodes

and receivers. This is followed by the description of the scenarios for gathering data, allowing

to study the impact of different parameters on the identification performance. Finally, the exact

NN architecture and training on the obtained datasets is presented.

8

A. Experimentation setup

1) Experimentation room: The complete system, comprised of a full set of nodes and the

identification receiver, is tested within the FIT/CorteXlab testbed deployed in an isolated and

semi-anechoic experimentation room (which shields the experiment from any external interfer-

ence), of about 180 m2. Using FIT/CorteXlab allows to control the propagation environment as

well as the interference profile, which in turn enables full control of the generated datasets. The

nodes, as well as the identification receiver, are implemented on a software defined radio (SDR) of

the NI USRP-2932 type. An optional synchronisation can be achieved over all SDRs, effectively

synchronising all sampling clocks of all SDRs to evaluate the impact of synchronisation errors as

detailed in Section V. Since the propagation environment of the FIT/CorteXlab experimentation

room is rather static, a metallic covered Turtlebot robot, as seen in Figure 2, can be activated

and moves according to a random-walk model. This allows to create time varying alternative

propagation paths leading to channel diversity inside the room.

Fig. 2. The Turtlebot robot with the metallic sheets, inside of FIT/CorteXlab

The nodes are distributed as in Figure 3, where the position of all USRP nodes’ antennas

are indicated by the crosses with the node numbers, and the footprint of the FIT/CorteXlab

experimentation room is delimited by the dotted line. The nodes’ antennas are distributed onto

a grid with a step size of 1.8 m2. Among all active USRPs in the experimentation room, one

9

Fig. 3. FIT/CorteXlab experimentation room plan and node locations

takes the role of the identification receiver while the remaining behave as nodes. The choice of

which node takes which role can be defined in the experimentation scenario description file.

Previous works characterised the channels in FIT/CorteXlab, such as [38] and [39]. The work

in [38] has shown that the channels inside the FIT/CorteXlab experimentation room are indeed

static with respect to the fading scenario as a whole (path-loss, shadowing and small-scale fading).

This result is expected since all nodes have fixed positions and there is no interference from

outside environmental changes. In [39], the authors provide a measurement of the power-delay

profiles observed in the room. Measurements made at a sampling frequency of 10 MHz (low

resolution measurements for the dimensions of the room) showed that the channels are essentially

flat fading, with very little delay spread. However, even if the FIT/CorteXlab experimentation

room is partially covered with electromagnetic (EM) absorbing foam (roof and walls), reflections

off the floor and metallic structures occur, creating multipath but with limited delay.

2) System architecture: In each data collection experiment, 22 or 23 devices are involved:

one scheduler, one identification receiver and 20 or 21 nodes, as depicted in Figure 4.

The scheduler, as the name implies, orchestrates the transmission of packets over all transmit-

ting nodes, guaranteeing an interference free scenario. It sends a trigger signal to a specific node

that initiates a packet transmission. While the scheduler is assigned to a SDR node, it does not

10

Fig. 4. Overall data collection topology (MonoRX)

need a radio transmitter. Wired Ethernet connections are used to trigger the transmitting nodes.

The scheduler sends a trigger signal every millisecond to a randomly chosen node via UDP,

which ensures that transmissions are made temporally close to each other. This is essential for

dynamic channels settings. As such, packets from a single node are spread over the duration of

the experiment, and one specific realisation of the channel sees transmissions from more than

one node.

The nodes’ USRPs are set to "burst mode", to largely reduce the possibility of the oscillator

leakage noticed in [16]. This means that the amplifier of an USRP is turned off when not

transmitting. Consequently, the radio frequency (RF) circuitry needs time to wake up and stabilise

before transmission. Hence, a frame is prepended with 3000 zeros, corresponding to a delay of

0.6 ms.

On the identification receiver side, the USRP remains in listening mode for the duration of the

experiment. In order to properly separate the packets from noise, and properly label the received

packets’ transmitter a robust detection mechanism is required. This detection mechanism is

based on a time synchronisation scheme coupled with an identification header implemented as

described next.

At the nodes, the packets to be transmitted are encapsulated into a carrier frame with the

following elements:

11

• A Zadoff-Chu sequence preamble for frame detection and time synchronisation;

• An orthogonal frequency-division multiplexing (OFDM) frame header created using the

standard GNU Radio OFDM blocks and containing the node index for data labelling;

• A user-defined payload made from a known quadrature phase shift keying (QPSK) modu-

lated sequence, random modulated bits or uniform noise, as detailed in Subsection III-B1.

This part of the overall frame never contains transmitter specific information.

A guard sequence longer than the delay spread of the channel is added between these parts to

prevent interference. The overall transmitter GNU Radio scheme is presented in Figure 5.

Fig. 5. Simplified transmitter flowgraph

At the receiver side, frame detection and time synchronisation are done with a correlator that

sweeps the signal looking for the Zadoff-Chu sequence. The next 1040 samples, corresponding to

the header, payload, and guard intervals are then forwarded to the header and payload extraction

blocks. A standard OFDM receiver then decodes the header and forwards it to a block that uses

the transmitter index to send the payload to the corresponding file. The overall receiver chain is

presented in Figure 6. Finally, the recorded signal, henceforth denoted example, is 600 complex

samples long, larger than the payload, whose size is 560 complex samples. This oversized cut is

exploited to record a small amount of background noise before and after the payload, to ensure

recording the start and end of the payload. A standard size dataset is comprised of about 50000

recorded examples for each of the 21 nodes. The authors in [35] suggest, as a rule-of-thumb,

to have a number of examples at least 10000 to 30000 times the number of transmitters. So a

standard size dataset is comprised of about 50000 recorded examples for each of the 21 nodes.

12

Fig. 6. Reception flowgraph.

B. Dataset scenarios

Each experiment is characterised by a tuple of parameters: the payload type, the transmission

setup and the number of identification receivers. Such a tuple is referred as a Scenario in the

rest of this paper.

1) Payload: Three types of payload (x(t) in the system model) are studied:

• Static: A predefined sequence of bits modulated in QPSK as defined as the 802.15.4 protocol

preamble. A fixed sequence reduces the variability in the examples the CNN trains on, thus

reducing the difficulty of its task, while remaining a realistic setup: in such a case, the

frame preamble would be used, as it still needs to be transmitted.

• Random: Bits from a random source modulated in QPSK. This represents the case where

the identification is made using the frame section that contains user data.

• Noise: A complex random uniform sample sequence as a worst case scenario. In this case,

no pattern coming from a modulation scheme can be used as reference to help measure

impairments. It is used as a lower bound on what is achievable by the network architecture

regardless of the actual type of modulation used.

2) Transmission setup: As explained previously, the propagation channel inside FIT/CorteXlab

is static and the various devices are fixed on the ceiling and distant from each other, so the channel

is quite different from one node to the next. Yet the goal is to be able to identify nodes based on

13

their hardware characteristics and not the channel effects. To remedy this, 3 transmission setups

are defined:

• Plain: The basic case where nothing is done to mitigate the channel biases. Everything is

static, the experimentation room and transmission parameters, thus the amount of variability

in the system is reduced and the identification task is made easier. This mode serves mostly

as a benchmark to compare to the other modes and measures the tradeoff between scenario

complexity and learning ability.

• Varying: In this case, the amplitude of the payloads to be transmitted by the nodes is scaled

by a factor that changes over time before emission by the USRP. This method is preferred

over changing gain values for the amplifier in the USRP because it eliminates the need

to wait for amplifier stabilisation. It allows the emulation of path loss variations for every

node without having to physically move anything in the experimentation room.

• Robot: The robot described previously is introduced and set to randomly move around. This

mode also include amplitude variation and is the most complex and realistic scenario but

is also the most time demanding to run, and so is only used with the static payload.

3) Number of receivers: In order to increase even more the channel variations and to reduce

the possibility for the receiver to learn from the channel properties, the MultiRx setup is proposed

where we merge the signals observed from several devices acting alternatively as identification

receivers. This MultiRx setup, in contrast to the MonoRx setup, allows the collection of payloads

from 20 different receivers for each transmitting node. It is done by collecting the equivalent

of a set of 21 MonoRx experiments, each with a different single receiver. That means that one

specific payload is recorded only by one receiver, and not the 20 possible. The neural network

defined in the next subsection always uses only one payload, from one receiver whose Id is not

given, and it does not know what mode was used.

Practically speaking, another difference between the two modes is the fact that the node

number 3 is not used in MultiRx. FIT/CorteXlab contains 22 USRPs devices, so, in MonoRx,

21 act as transmitting nodes while one preselected USRP acts as the receiver. But in MultiRx, the

roles are permuted and so the 22 devices act alternatively as transmitters or receiver. However,

to facilitate the comparisons between the two modes, the same number of transmitters is used,

namely 21.

The datasets collected and used in this paper are available online [40] in the hope that they

can be reused by the community.

14

TABLE II

CONSIDERED PAYLOAD CHARACTERISTICS

Parameter Value

N 21

M 1 (MonoRX), 21 (MultiRX)

Frequency band ISM 433 MHz

Signal bandwidth 2.5 MHz

Waveforms QPSK (RRC filtering), Uniform

Samples/symbols (QPSK) 2

Total samples 560

Fig. 7. Frame samples sent to USRP for emission, with zeroes for amplifier wake up, preamble, header, and payload with guard

intervals.

C. Learning architecture

1) Network architecture: As shown in Fig. 8, the neural network used is based on a CNN

architecture: five 2D convolution layers with a max pooling layer between each of them, a

flattening step and six fully connected layers before the final softmax output. The chosen method

for handling the complex-valued input samples is to represent them by their Cartesian coordinates,

treating the real and imaginary parts as independent input dimensions. The vector of 600 complex

values becomes a matrix of 600× 2 real numbers used as a 2D image by the convolution layers.

The network outputs a probability vector over the 21 possible transmitters.

2) Training phase: Each dataset is randomly shuffled before training and split in a standard

70/10/20 distribution for training, validation and testing. These will be called Training slice,

15

Fig. 8. Neural network architecture

Validation slice, and Test slice in this paper instead of the usual term set to reduce confusion with

dataset and set of datasets. Each scenario is used to train a different instance of the architecture

presented above. Training examples are presented in mini-batches of 128 examples over 30

epochs for the MonoRx scenarios and 100 epochs for the MultiRx ones. The Adam optimiser

is used with a learning rate of 0.001, tasked with minimising a categorical crossentropy loss

between labels and predictions.

Hyperparameter tuning was done using a hard to learn dataset: MultiRx setup with amplitude

variation and random payload. for this, a ten epoch long training was done for various parameters

(learning rate, batch-sizes, layers) and the best performing hyperparameter set was retained.

IV. RESULTS

A. Payload type

In this section, the impact of the payload type on the classification performance is assessed

experimentally. We perform a series of test corresponding to different scenarii as described in

Section III. The three kind of payloads (static, random, noise) are tested, combined with the

two channel conditions (plain or variable) and with the MonoRx or MultiRx configuration. The

results are presented in Fig. 9. These graphs provide the identification accuracy over the test slice

16

TABLE III

DETAILED NETWORK LAYERS DESCRIPTION

Layer Size Kernel Activation

Conv_0 8 [6,2] Elu

MaxPool_0 [2,1]

Conv_1 16 [4,1] Elu

MaxPool_1 [2,1]

Conv_2 32 [4,1] Elu

MaxPool_2 [2,1]

Conv_3 64 [4,1] Elu

MaxPool_3 [2,1]

Conv_4 128 [4,1] Elu

MaxPool_4 [2,1]

Flatten 1920

Dense_0 512 Elu

Dense_1 256 Elu

Dense_2 128 Elu

Dense_3 64 Elu

Dense_4 32 Elu

Dense_5 16 Elu

Output 21 Softmax

of the training dataset for each combination (payload,channel,receiver). Clearly the learning is

more accurate when the payload is static (left figure). This result indicates that such identification

task on ambient signals,would be more efficient if performed on a fix preamble or header, rather

than on the data payload.

When the channel variability is increased by using varying channel gains (var) and MultiRx,

a significant accuracy loss is observed (last column in left figure), but the accuracy remains high

at 86%.

With the two other payloads (middle and right figures), the learning capability reduces dras-

tically when channel varying and MultiRx setups are used (last column, with 38%). Clearly,

the high accuracy observed with plain and MonoRx setup with these payloads may be achieve

thanks to the channel signature rather than the radio node itself, explaining why when MultiRx

and variable channel are used, the accuracy collapses (it still remains an order of magnitude

above random guess). It is worth mentioning that the scenarios with the Random and Noise

17

Plain Var Plain Var
0

20

40

60

80

100 99
.8

98
.3

99
.1

86
.2

MonoRX MultiRX

A
cc

ur
ac

y
(%

)
Static

Plain Var Plain Var

98
.4

85 85
.1

42
.9

MonoRX MultiRX

Random

Plain Var Plain Var

94
.5

85
.4

59

38
.4

MonoRX MultiRX

Noise

MonoRx Plain MonoRx Varying MultiRx Plain MultiRx Varying Random guess

Training performance

Fig. 9. Accuracy reached by networks trained on plain or varying amplitude scenarios and the 3 signal types. Accuracy is

measured on the test set from the training dataset.

payload need a dataset twice as large to avoid overfitting on the training slice. This behaviour

is not surprising since these scenarios combine the most variability in payload, channel and also

receiver impairments.

For all these reasons, in the rest of this work, a Static payload will be used.

B. Impact of the transmission setup

In this section we assess the impact of the transmission setup on the identification capability.

According to the results of the former section, the payload is static in these experiments.

The identification performance over three scenarios, corresponding to three channel conditions

referred as Plain, Varying or Robot, are evaluated. Note that in the scenario labelled Robot, the

varying channel conditions are used. Three learning dataset are thus built, one for each of the

18

Plain Varying Robot

0

20

40

60

80

100

120

99
.8

99
.9

99
.8

61
.5

99
.2

98
.3

54
.1

91
.9 98
.4

Training scenario

A
cc

ur
ac

y
(%

)
MonoRx

Plain Varying Robot

Plain Varying Robot

95
.7

89
.5

77
.582
.1 91
.4

79
.1

59
.4

61
.7

79
.1

Training scenario

MultiRx

Plain Varying Robot

Generalisation to other scenarios

Fig. 10. Accuracy of the networks trained on three different scenarios (x axis legend) and tested on other datasets of the three

kinds (resp Plain, Varying, Robot) as indicated by the bars’ colors. In these experiments, the payload of all packets was static

and the environment in the shielded room remained unchanged.

three scenarios, and used to train three networks. Then, the three networks are used independently

on new datasets and the identification accuracy is presented in Figure 10.

The left Figure presents the results for the MonoRx scenario. The blue bars correspond to

the accuracy obtained on the test set Plain, with the networks learned respectively on the three

learning sets: Plain, Varying and Robot. The identification accuracy is high in all cases. On the

opposite, the network trained in Plain conditions is not able to efficiently identify the transmitters

when used on the other scenarios (only 61.5% and 54.1% are obtained). It is likely because when

the network is learned on Plain conditions the static channels contribute to the learning and the

network is not able to focus on the radio properties themselves.

As expected however, the networks trained on more complex scenarios, is more robust and

is efficient on less complex scenarios. Typically, the network trained on the Varying dataset

performs as well on the Plain and the Varying dataset. And the network trained on the Robot

dataset performs equivalently on the three test datasets.

On the right Figure, the same behaviour are observed with MultiRx scenarios. But in addition,

19

Plain Varying Robot

0

20

40

60

80

100
99.8 99.2 98.4

73.6
86.7

94.9

Training scenario

A
cc

ur
ac

y
(%

)

MonoRx

Training After channel change Random guess

Plain Varying Robot

97.4
84 89.2

60.4 63 68.8

Training scenario

MultiRx

Dependency on channel state

Fig. 11. Accuracy of networks trained on one scenario with static payloads and tested, either on data from the training dataset

or on a dataset with the same scenario but with a modified environment.

with the Robot, an accuracy loss is observed. When the signals are perturbed simultaneously

by the channel gains, the robot and the receiver position, the learning conditions are the hardest

ones. The fact that it is still possible to learn on these signals with an accuracy of 79% is quite

encouraging.

C. Channel variations

All the previous results were obtained in FIT/CorteXlab under fixed conditions. As the human

access to the shielded room is controlled, the environment was guaranteed unchanged during the

experimentation.

Now, to evaluate the NN sensitivity to the environment, we introduce new test datasets. The

environment in the shielded room is modified by adding a metallic chair in the room thus

creating additional propagation paths. The formerly trained networks are then evaluated on these

new datasets.

Fig. 11 presents the corresponding results where the accuracy obtained from the datasets

before the environment perturbation are given in blue () and the accuracy obtained on the

20

datasets obtained after the perturbation are given in red () for respectively MonoRx and MultiRx

conditions.

Clearly, these results show the sensitivity of the network to the environment, especially when

it learned on the Plain scenario. This kind of loss in accuracy has been already reported by other

authors in [32], where they introduced artificial impairments to cope with it.

In our work, especially in MonoRx, we see how learning in more complete conditions (i.e.

Robot scenario) allows to reduce significantly the accuracy loss. This is fully true in the MonoRx

scenario, where the network learned with the Robot scenario is almost not sensitive to the

environment perturbation. However, in MultiRx, the loss is reduced but remains present. Note

that the 89.2% accuracy with the Robot-Robot test was obtained when the same dataset was

split and used to learn and test, while the former section (see Fig. 10), the Robot-Robot test

was using two different dataset but without deliberate environment perturbation. Unfortunately,

the gathering of a Robot dataset currently requires human intervention to setup the robot and

and this can lead to small involuntary channel perturbations. This means that the robot results

from the previous section cannot be directly compared to the training results of Fig. 11 but this

the channel change results. Therefore, in the result herein obtained we may assume that some

information related to the channel is still used by the network to learn. However, we believe

that the remaining accuracy clearly indicates that a part of the learning is performed on the RF

signature and not on the channel conditions.

This is an encouraging result as it motivates the development of identification techniques based

on RF signatures, and the dataset built in this work is unique in the sens that channel conditions

are carefully controlled.

V. ADDITIONAL NOTES ON SYNCHRONISATION

The FIT/CorteXlab platform contains a synchronisation system based on four octoclocks [41]

in a tree structure (not used in the previous section). The activation of said system produces

a important reduction in generalisation performance, for every studied scenario, from 20pp to

60pp in accuracy. The goal of this section is to study the source of this performance drop. This

synchronisation has two main components: at sample level, where packet start can be detected

by the software an integer number of samples early or late, and sub-sample level where the

hardware sampling time of the receiver doesn’t match the one of the transmitting node.

21

−20 −10 0 10 20
0

0.2

0.4

0.6

0.8

Offset (sample)

A
cc

ur
ac

y

Accuracy over sample synchronisation offset

MonoRx
MultiRx
Random

Fig. 12. Accuracy attained when the frame detector produces a timing offset

A. Sample level synchronisation

For both MonoRx and MultiRx, a standard Static Varying Scenario is gathered with no timing

offset, and a network is trained on it. Then, a series of small datasets of the same scenario with

various offsets is created. This is done by explicitly telling the payload extractor to record early

or late.

Fig. 12 presents the effects of these synchronisation errors on a NN not trained to cope

with them. Both settings clearly show a sharp decrease in accuracy. For MultiRx scenario, the

accuracy level drops out even for an offset of 1 sample, while for MonoRx, the accuracy remains

significant up to an offset of 3 samples. This effect may impact the performance in low SNR

conditions, where sample synchronisation errors are more frequent.

B. Sub-sample synchronisation

Sub-sample synchronisation is a hardware effect so it needs to be simulated to allow study. A

MonoRx Static Varying Scenario is gathered, with a payload oversampled by a factor of 16. To

stay inside the signal processing capabilities of the hardware used, this is done by reducing the

baud rate instead of increasing sample rate. Before feeding it to the neural network, this signal

is separated into 16 undersampled time series with one sample taken every 16 and a starting

22

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.2

0.4

0.6

0.8

Offset (1
16 th of sample)

A
cc

ur
ac

y

Accuracy over sampling time offset

DS1
DS2
DS3
DS4

Random

Fig. 13. Accuracy of a network trained on dataset 2 with an offset of eight and tested over the four datasets and 16 possible

offsets

TABLE IV

ACCURACY OF NETWORKS TRAINED ON ONE SYNCHRONISATION POSSIBILITY AND TESTED ON THE OTHERS

Synced radio Tx Both Rx None

Tx 81.2% 34.5% 19.2% 38.3%

Both 54.4% 45.6% 38.2% 38.2%

Rx 21.1% 28.5% 80.2% 22.3%

None 41.3% 43.8% 34.6% 81.1%

offset between 0 and 15. Then, a network is trained on the undersampled series with an offset

equal to 8 and tested on all the other offsets for four different datasets of the same scenario.

The decrease in classification accuracy with sampling time offset seen in Fig. 13 shows that a

synchronised "naive" system is indeed unable to cope with sampling time variations. The small

accuracy difference on offset 8 between the training dataset (2) and the others can be attributed

to an additional, non artificial, offset smaller than the sampling time.

The output of this section is that when all nodes and Rx are synchronised, the NN cannot

generalise. The reason follows: when the nodes are synchronised to the Rx, a timing offset exists

that is constant over a dataset. But this static timing offset changes by a random amount when a

new acquisition starts. The NN learned on a dataset with a fixed sampling offset and is not able

23

to adapt to a different one. On the other hand, as long as there is no synchronisation between

nodes and receiver, the network can generalise since there, the offsets change even in the training

data, and the network can learn to cope with it.

VI. CONCLUSION

A. Conclusion

This work explored a range of signal parameters that can impact the ability of a neural

network to identify transmitters based on their physical layer characteristics and to generalise to

more realistic environment, such as changing channel characteristics. The resulting guidelines

to get a good transmitter identification is as follows: The part of a transmitted packet used for

identification should be as much deterministic as possible, the physical preamble being a prime

candidate. The channel encountered in the training dataset should have as much randomness as

possible to force the network to learn to cope with a more realistic situation, and finally, it is

not necessary to perfectly synchronise transmitters and receiver since this will only result in a

poor generalisation performance.

The reader is invited to reproduce and extend these result by reusing the generated datasets

and creating new ones in the FIT/CorteXlab or elsewhere using the data collection process [40]

developed for this work and available online alongside the datasets.

B. Future works

To envision an industry grade implementation, several additional aspects still need to be

studied:

QPSK modulation was chosen in this work as a realistic modulation example for the envi-

sioned IoT usage of this technology. Perhaps other modulation schemes allow a more effective

classification by exposing more dependable patterns or forcing amplifiers into less linear parts of

their operating range such as a high peak-to-average power ratio (PAPR) OFDM setup. A study

of what makes the best modulation scheme for this task could help improve the community’s

understanding on the matter.

Similarly, the bit sequence for the Static payload was chosen as a realistic example of an

IoT type preamble bit sequence. Custom preambles could be crafted to simultaneously optimise

classification accuracy and generalisation and frame detection and synchronisation performance.

24

The influence of the example size in term of number of samples has seen some attention

in [16], but, apart from that, all the works in the literature use a different sample amount in

examples. A more detailed study of this factor could help in comparing the existing works and

provide guidelines and trade-offs for future implementations.

The current system setup is relevant in cases where all the users are known in advance, but it

cannot handle the arrival of a new node, or the use of samples from new receivers. Architectures

able either to detect intruders or erroneous users, or to add new users to the pool of known ones

would be more versatile and allow for more dynamic use cases. A system able to agnostically

use samples from any new receiver would greatly improve on the scalability and ease of field

implementation.

The present paper purposely avoids reliance on channel effects to allow identification regardless

of position, movements and environment changes. But these can be of use in the related task of

location verification [42], and could be coupled with authentication in slow varying environments

or very short-term identity verification.

Finally, one of the main promises of this technology is an increase in security from a reduced

ability for attackers to spoof the identity of legitimate users. However, neural networks have been

shown to easily suffer from adversarial examples, both in general [43], and on the specific topic

of wireless communications [44]. So, to allow real implementation, any candidate architecture

needs to show some adversarial robustness both in simulation and in the field.

REFERENCES

[1] D. Rupprecht, K. Jansen, and C. Pöpper, “Putting LTE security functions to the test: A framework to evaluate implementation

correctness,” in 10th USENIX Workshop on Offensive Technologies (WOOT 16). Austin, TX: USENIX Association, 2016.

[2] F. Fund. Run a man-in-the-middle attack on a wifi hotspot. [Online]. Available: https://witestlab.poly.edu/blog/

conduct-a-simple-man-in-the-middle-attack-on-a-wifi-hotspot/

[3] M. Mitev, A. Chorti, M. Reed, and L. Musavian, “Authenticated secret key generation in delay-constrained wireless

systems,” EURASIP Journal on Wireless Communications and Networking, vol. 2020, no. 1, pp. 1–29, 2020.

[4] K. Ellis and N. Serinken, “Characteristics of radio transmitter fingerprints,” Radio Science, vol. 36, no. 4, pp. 585–597,

2001.

[5] Y. Chen, H. Wen, J. Wu, H. Song, A. Xu, Y. Jiang, T. Zhang, and Z. Wang, “Clustering based physical-layer

authentication in edge computing systems with asymmetric resources,” vol. 19, no. 8, p. 1926. [Online]. Available:

https://www.mdpi.com/1424-8220/19/8/1926

[6] L. Senigagliesi, M. Baldi, and E. Gambi, “Statistical and machine learning-based decision techniques for physical layer

authentication.” [Online]. Available: http://arxiv.org/abs/1909.07969

https://witestlab.poly.edu/blog/conduct-a-simple-man-in-the-middle-attack-on-a-wifi-hotspot/
https://witestlab.poly.edu/blog/conduct-a-simple-man-in-the-middle-attack-on-a-wifi-hotspot/
https://www.mdpi.com/1424-8220/19/8/1926
http://arxiv.org/abs/1909.07969

25

[7] X. Wang, P. Hao, and L. Hanzo, “Physical-layer authentication for wireless security enhancement: Current challenges

and future developments,” IEEE Communications Magazine, vol. 54, no. 6, pp. 152–158, jun 2016. [Online]. Available:

http://ieeexplore.ieee.org/document/7498103/

[8] L. Xiao, L. J. Greenstein, N. B. Mandayam, and W. Trappe, “Using the physical layer for wireless authentication in

time-variant channels,” IEEE Transactions on Wireless Communications, vol. 7, no. 7, pp. 2571–2579, 2008.

[9] L. Xiao, L. Greenstein, N. Mandayam, and W. Trappe, “Fingerprints in the ether: Using the physical layer for wireless

authentication,” in 2007 IEEE International Conference on Communications. IEEE, 2007, pp. 4646–4651.

[10] A. Weinand, M. Karrenbauer, R. Sattiraju, and H. Schotten, “Application of machine learning for channel based message

authentication in mission critical machine type communication,” in European Wireless 2017; 23th European Wireless

Conference. VDE, 2017, pp. 1–5.

[11] L. J. Wong, W. C. Headley, and A. J. Michaels, “Emitter identification using cnn iq imbalance estimators,” arXiv preprint

arXiv:1808.02369, 2018.

[12] G. Li, J. Yu, Y. Xing, and A. Hu, “Location-invariant physical layer identification approach for WiFi devices,” vol. 7, pp.

106 974–106 986.

[13] O. Ureten and N. Serinken, “Wireless security through RF fingerprinting,” vol. 32, no. 1, pp. 27–33.

[14] X. Wang, J. Duan, C. Wang, G. Cui, and W. Wang, “A radio frequency fingerprinting identification method based on energy

entropy and color moments of the bispectrum,” in 2017 9th International Conference on Advanced Infocomm Technology

(ICAIT), pp. 150–154, ISSN: null.

[15] N. Hu and Y.-D. Yao, “Identification of legacy radios in a cognitive radio network using a radio frequency fingerprinting

based method,” in 2012 IEEE International Conference on Communications (ICC), pp. 1597–1602, ISSN: 1550-3607.

[16] S. S. Hanna and D. Cabric, “Deep learning based transmitter identification using power amplifier nonlinearity,” in 2019

International Conference on Computing, Networking and Communications (ICNC). IEEE, 2019, pp. 674–680.

[17] Y. Pan, S. Yang, H. Peng, T. Li, and W. Wang, “Specific emitter identification based on deep residual networks,” vol. 7,

pp. 54 425–54 434.

[18] B. Chatterjee, D. Das, and S. Sen, “Rf-puf: Iot security enhancement through authentication of wireless nodes using in-situ

machine learning,” in 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). IEEE,

2018, pp. 205–208.

[19] A. Aghnaiya, A. M. Ali, and A. Kara, “Variational mode decomposition-based radio frequency fingerprinting of bluetooth

devices,” vol. 7, pp. 144 054–144 058.

[20] A. Candore, O. Kocabas, and F. Koushanfar, “Robust stable radiometric fingerprinting for wireless devices,” in 2009 IEEE

International Workshop on Hardware-Oriented Security and Trust, pp. 43–49, ISSN: null.

[21] S. Chen, F. Xie, Y. Chen, H. Song, and H. Wen, “Identification of wireless transceiver devices using radio frequency (RF)

fingerprinting based on STFT analysis to enhance authentication security,” in 2017 IEEE 5th International Symposium on

Electromagnetic Compatibility (EMC-Beijing), pp. 1–5, ISSN: null.

[22] G. Baldini, G. Steri, R. Giuliani, and C. Gentile, “Imaging time series for internet of things radio frequency fingerprinting,”

in 2017 International Carnahan Conference on Security Technology (ICCST), pp. 1–6, ISSN: 2153-0742.

[23] G. Baldini, R. Giuliani, and F. Dimc, “Physical layer authentication of internet of things wireless devices using convolutional

neural networks and recurrence plots,” vol. 2, no. 2, p. e81. [Online]. Available: http://doi.wiley.com/10.1002/itl2.81

[24] S. Riyaz, K. Sankhe, S. Ioannidis, and K. Chowdhury, “Deep learning convolutional neural networks for radio identification,”

IEEE Communications Magazine, vol. 56, no. 9, pp. 146–152, 2018.

[25] H. Jafari, O. Omotere, D. Adesina, H.-H. Wu, and L. Qian, “IoT devices fingerprinting using deep learning,” in MILCOM

2018 - 2018 IEEE Military Communications Conference (MILCOM), pp. 1–9, ISSN: 2155-7578.

http://ieeexplore.ieee.org/document/7498103/
http://doi.wiley.com/10.1002/itl2.81

26

[26] K. Youssef, L. Bouchard, K. Haigh, J. Silovsky, B. Thapa, and C. Vander Valk, “Machine learning approach to rf transmitter

identification,” IEEE Journal of Radio Frequency Identification, vol. 2, no. 4, pp. 197–205, 2018.

[27] I. O. Kennedy, P. Scanlon, F. J. Mullany, M. M. Buddhikot, K. E. Nolan, and T. W. Rondeau, “Radio transmitter

fingerprinting: A steady state frequency domain approach,” in 2008 IEEE 68th Vehicular Technology Conference, pp.

1–5, ISSN: 1090-3038.

[28] K. Merchant, S. Revay, G. Stantchev, and B. Nousain, “Deep learning for rf device fingerprinting in cognitive

communication networks,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 160–167, 2018.

[29] J. Yu, A. Hu, F. Zhou, Y. Xing, Y. Yu, G. Li, and L. Peng, “Radio frequency fingerprint identification based on denoising

autoencoders,” in 2019 International Conference on Wireless and Mobile Computing, Networking and Communications

(WiMob). IEEE, 2019, pp. 1–6.

[30] J. Yu, A. Hu, G. Li, and L. Peng, “A robust RF fingerprinting approach using multisampling convolutional neural network,”

vol. 6, no. 4, pp. 6786–6799.

[31] L. Peng, A. Hu, J. Zhang, Y. Jiang, J. Yu, and Y. Yan, “Design of a hybrid RF fingerprint extraction and device classification

scheme,” vol. 6, no. 1, pp. 349–360.

[32] K. Sankhe, M. Belgiovine, F. Zhou, S. Riyaz, S. Ioannidis, and K. Chowdhury, “Oracle: Optimized radio classification

through convolutional neural networks,” in IEEE INFOCOM 2019-IEEE Conference on Computer Communications. IEEE,

2019, pp. 370–378.

[33] K. Sankhe, M. Belgiovine, F. Zhou, L. Angioloni, F. Restuccia, S. D’Oro, T. Melodia, S. Ioannidis, and K. Chowdhury, “No

radio left behind: Radio fingerprinting through deep learning of physical-layer hardware impairments,” IEEE Transactions

on Cognitive Communications and Networking, vol. 6, no. 1, pp. 165–178, 2019.

[34] F. Restuccia, S. D’Oro, A. Al-Shawabka, M. Belgiovine, L. Angioloni, S. Ioannidis, K. Chowdhury, and T. Melodia,

“DeepRadioID: Real-time channel-resilient optimization of deep learning-based radio fingerprinting algorithms,” in

Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing, ser. Mobihoc

’19. Association for Computing Machinery, pp. 51–60. [Online]. Available: https://doi.org/10.1145/3323679.3326503

[35] T. Oyedare and J.-M. J. Park, “Estimating the required training dataset size for transmitter classification using deep

learning,” in 2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE, pp. 1–10.

[36] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.deeplearningbook.org.

[37] A. Massouri, L. Cardoso, B. Guillon, F. Hutu, G. Villemaud, T. Risset, and J.-M. Gorce, “Cortexlab: An open FPGA-

based facility for testing SDR & cognitive radio networks in a reproducible environment,” in Computer Communications

Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on. IEEE, 2014, pp. 103–104.

[38] L. Sampaio Cardoso, O. Oubejja, G. Villemaud, T. Risset, and J. M. Gorce, “Reliable and Reproducible Radio

Experiments in FIT/CorteXlab SDR testbed: Initial Findings,” in Crowncom, Lisbon, Portugal, Sep. 2017. [Online].

Available: https://hal.inria.fr/hal-01598491

[39] A. Mouaffo, L. Cardoso, H. Boeglen, G. Villemaud, and R. Vauzelle, “Radio link characterization of the CorteXlab

testbed with a large number of software defined radio nodes,” in Antennas and Propagation (EuCAP), 2015 9th European

Conference on , Lisbon, Portugal, Apr. 2015. [Online]. Available: https://hal.inria.fr/hal-01245107

[40] C. Morin. Datasets and data gathering code. [Online]. Available: https://wiki.cortexlab.fr/doku.php?id=tx-id

[41] E. Research. Octoclock product overview. [Online]. Available: https://www.ettus.com/wp-content/uploads/2019/01/

Octoclock_Spec_Sheet.pdf

[42] S. Tomasin, A. Brighente, F. Formaggio, and G. Ruvoletto, Physical-Layer Location Verification by Machine Learning.

John Wiley & Sons, Ltd, 2019, ch. 20, pp. 425–438.

https://doi.org/10.1145/3323679.3326503
http://www.deeplearningbook.org
https://hal.inria.fr/hal-01598491
https://hal.inria.fr/hal-01245107
https://wiki.cortexlab.fr/doku.php?id=tx-id
https://www.ettus.com/wp-content/uploads/2019/01/Octoclock_Spec_Sheet.pdf
https://www.ettus.com/wp-content/uploads/2019/01/Octoclock_Spec_Sheet.pdf

27

[43] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, “Intriguing properties of neural

networks.” [Online]. Available: http://arxiv.org/abs/1312.6199

[44] B. Flowers, R. M. Buehrer, and W. C. Headley, “Evaluating adversarial evasion attacks in the context of wireless

communications,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 1102–1113, 2019.

http://arxiv.org/abs/1312.6199

	Introduction
	Problem Formulation and classifier selection
	Problem statement
	DL based classifier

	Implementation
	Experimentation setup
	Experimentation room
	System architecture

	Dataset scenarios
	Payload
	Transmission setup
	Number of receivers

	Learning architecture
	Network architecture
	Training phase

	Results
	Payload type
	Impact of the transmission setup
	Channel variations

	Additional notes on synchronisation
	Sample level synchronisation
	Sub-sample synchronisation

	Conclusion
	Conclusion
	Future works

	References

