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ABSTRACT

Keywords: Multivariate rational interpolation, multivariate adaptive sampling, model-based

parameter estimation, surrogate modelling, computer-aided design.

A robust and efficient adaptive sampling algorithm for multivariate, multiple output rational

interpolation models, based on convergents of Thiele-type branched continued fractions, is

presented. A variation of the standard branched continued fraction method is proposed that uses

approximation to establish a non-rectangular grid of support points. Starting with a low order

interpolant, the technique systematically increases the order by optimally choosing new support

points in the areas of highest error, until the desired accuracy is achieved. In this way, accurate

surrogate models are established by a small number of support points, without assuming any a

priori knowledge of the microwave structure under study. The technique is illustrated and

evaluated on several passive microwave structures, however it is general enough to be applied to

many modelling problems.

OPSOMMING

Sleutelwoorde: Multi-veranderlike rasionale interpolasie, multi-veranderlike aanpasbare

monstememing, model-gebaseerde parameter afskatting, surrogaat modelering, rekenaargesteunde

ontwerp.

'n Robuuste en effektiewe aanpasbare monstememingsalgoritme vir multi-veranderlike, multi-

uittree rasionale interpolasiemodelle, gegrond op konvergente van Thiele vertakte volgehoue

breukuitbreidings, word beskryf. 'n Variasie op die konvensionele breukuitbreidingsmetode word

voorgestel, wat 'n nie-reghoekige rooster van ondersteuningspunte gebruik III die

funksiebenadering. Met 'n lae orde interpolant as beginpunt, verhoog die algoritme stelselmatig die

orde van die interpolant deur optimal verbeterde ondersteuningspunte te kies waar die grootste fout

voorkom, totdat die gewensde akuraatheid bereik word. Hierdeur word akkurate surrogaat modelle

opgebou ten spyte van min inisiele ondersteuningspunte, asook sonder voorkennis van die

mikrogolfstruktuur ter sprake. Die algoritme word gedemonstreer en geevalueer op verskeie

passiewe mikrogolfstrukture, maar is veelsydig genoeg om toepassing te vind in meer algemene

modelleringsprobleme.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

The increasing need of a first-pass success level to reduce the cost of the design of microwave

circuits has placed enhanced demands on computer-aided design (CAD) tools. Furthermore, the

stringent design specifications and the inclusion of effects such as manufacturing tolerances in the

design necessitates the use of optimisation-based computer algorithms and statistical analysis

methods such as Monte Carlo analysis and yield-driven optimisation. This leads to a highly

repetitive computational process, i.e. numerous evaluations of a model of the physical structure

being designed. Hence, a model of the microwave structure is required that is not only highly

accurate, but also computationally effective.

Computational electromagnetic (CEM) analysis techniques, which are computer solutions of

Maxwell's equations, can provide models with high accuracy for a microwave structure over a

certain range of frequency and/or physical dimensions. However, the computational effort required

can become excessive, especially for large and complex structures. Empirical circuit-theoretic

models, if they exist, are computationally very effective, but their accuracy over a wide band and

particularly at higher frequencies becomes questionable due to their inability to model all parasitic

and coupling effects. New modelling techniques that establish surrogate models for microwave

structures provide a solution to this predicament. Since surrogate models directly fit data from

CEM simulations, their model accuracy is high, and the evaluation of surrogate models is fast,

allowing highly repetitive model evaluations in optimisation and yield-driven design. Current

models include look-up tables, interpolation techniques and artificial neural networks [1], [2].

Look-up tables require the generation of a database, where data points are determined in a multi-

dimensional (usually uniform) grid, and the amount of storage space increases exponentially as the

dimension increases. The number and selection of these data points may not be optimal, which

leads to inaccurate modelling or oversampling. Usually low order polynomial interpolation

techniques are employed to determine values between grid points and hence only mild non-

linearities can be handled [3], [4].

Artificial neural networks are massively connected parallel networks of simple processing units

called neurons, with an input/output mapping being represented in the form of interconnection

weights. Their design mimics the organisation and performance of biological neural networks in

the nervous system of the brain. Artificial neural networks can learn and generalise from data, are
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easy to implement and ar~ very fast to evaluate. Once properly selected and trained, they have the

ability to model highly non-linear functions with high dimensionality, since the size of the neural

network does not increase exponentially with dimension. However, they require networks with the

right topology, high numbers of training and testing examples, and often excessive training times

[5], [6].

Interpolation techniques, as artificial neural networks, reqUIre only storage of the interpolant

coefficients, and in addition normally require the smallest amount of data, i.e. CEM analyses, to

establish a model. Therefore, model building can be much faster than look-up table or neural

network models. Interpolation models are fast to evaluate and hence are well suited for circuit

optimisation and statistical design [7]-[10].

1.2 Interpolation models

While polynomial functions are often used as interpolants, rational functions yield better results for

functions containing poles or for meromorphic functions. Polynomial interpolation is prone to wild

oscillations and an acceptable accuracy is sometimes achieved only by polynomials of intolerably

high degree [11], [12].

A rational function can be constructed by calculating the explicit solution of a system of

interpolatory conditions, by starting a recursive algorithm, or by calculating the convergent of a

continued fraction [13], [14]. The use of continued fractions as interpolants is a computationally

efficient method [15] and gives accurate numerical results [16], [17]. Recursive algorithms on the

other hand, are accurate, but determine a value of the interpolant directly from tabulated data

without calculating the coefficients. Hence, they become computationally inefficient for a large

number of function evaluations. This method was applied in [18] using the Bulirsch-Stoer

algorithm [19]. The technique of solving a system of interpolatory conditions, while used most

often [18], [20]-[28], is generally accepted to be the least accurate method. Usually a least squares

fit is used. In [21] and [29] the authors used the total least squares method, which allows for some

suppression of the effects of noise in the data. Several authors have applied the interpolation

technique to the method of moments, for which derivatives with respect to frequency can be

calculated and integrated into the interpolation model [20]-[22].

The orders of interpolants are generally determined heuristically or estimated. With no a priori

knowledge of the problem, this can easily lead to over-determined interpolants, requiring high

numbers of support points. When CEM techniques are used for the generation of the support
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points, it is of utmost importance to minimise the required number, especially for the multi-variable

case. This can only be achieved by the use of adaptive sampling schemes, where the order of the

function is gradually increased until a desired accuracy is reached. In tum, this requires that a

suitable error function exists and that unequally spaced support points can be used [30]. Published

error functions include the difference between two interpolation models that either use different

data sample sets and/or are of different rational polynomial orders [18], [23], [25], [26].

The extension of a single variable rational interpolant to a multi-variable rational interpolant is not

trivial since a large degree of freedom in the choice for the numerator and denominator polynomials

exists. Only a few multivariate sampling algorithms have been published. In [18] the authors use a

rectangular grid of support points and recursive univariate interpolation to establish the

multidimensional interpolation space. They also mention establishing a multivariate function by

solving a linear system of equations. In [26] multivariate polynomials are used to build a model for

the geometrical parameters at a single frequency and rational interpolation is used to combine these

polynomials to determine the entire interpolation space.

In this dissertation a novel adaptive sampling algorithm for general multivariate interpolation

models is presented. The interpolation model is based on a Thiele-type branched continued fraction

representation of a multivariate rational function. The coefficients of the rational interpolant and

the evaluation of the function values are determined in a recursive manner, providing a

computationally efficient and numerically accurate interpolation technique. The standard branched

continued fraction interpolation technique, which requires a fully filled rectangular grid of support

points, is adapted here to allow sampling on a non-rectangular grid. Support points can therefore be

placed optimally in the interpolation space, which will result in a reduction of the number of CEM

analyses. An error estimate is obtained as a natural consequence of the recursion formulas. The

proposed technique constructs sets of single parameter interpolants at optimal points in a (D-l)-

variable space. The univariate interpolants are in tum used to form bivariate, trivariate and finally

D-variable functions. Starting with low order interpolants, the adaptive sampling algorithm

systematically increases the order by optimally choosing new support points in the areas of highest

error, until a mathematical model with the required accuracy is achieved.

To model multi-port microwave discontinuities, a multiple output interpolation model is defined,

which consists of a set of rational interpolants, where each interpolant models one of the output

parameters/ports. For this case, a single global error function is defined incorporating all the output

parameters, and is used for the selection of the same set of support points for all the interpolants.

3



The algorithm is fully automatic, does not require derivatives and is widely applicable. The

technique is evaluated on several passive microwave structures with errors of less than 0.25 % being

achieved in all cases. This model accuracy is more than adequate for the purposes of designing

most microwave circuits.

1.3 About the dissertation

The aim of this dissertation is to develop the theory for an adaptive sampling algorithm for

multivariate, multiple output rational interpolation models and to investigate the numerical

performance. Use is made of several CEM analysis techniques, which are referenced, but are not

discussed as the mathematical derivations of these techniques are beyond the scope of this

dissertation.

The primary original contributions of this work are [31]-[35]:

• the development of a robust adaptive sampling algorithm for interpolation models,

• the extension to multivariate interpolation models,

• the extension to multiple output interpolation models.

The secondary contributions are:

• the adaptation of the standard branched continued fraction to allow a non-rectangular grid of

support points,

• the application of accurate and computationally efficient multivariate rational interpolants,

represented by Thiele-type branched continued fractions, to the modelling of electromagnetics-

based devices,

• the application of the method to aggressive space mapping [31],

• the application of the method to root-finding [32].

The theory of Thiele-type branched continued fractions has been presented for the bivariate case in

[36] and it is generalised for the multivariate case in chapter 2 of this dissertation. The multivariate

adaptive sampling algorithm for the interpolant presented in chapter 2 is expounded in chapter 3.

The proposed technique is evaluated in chapter 4 for the univariate case and in chapter 5 for the

multivariate case by applying it to several electromagnetics-based device modelling problems.

Finally, chapter 6 contains possible extensions to the theory presented here and a conclusion.
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CHAPTER 2: RATIONAL INTERPOLATION

The multivariate interpolation used in this dissertation, has as starting point the more simple

univariate rational interpolation. In order to ease understanding of the former, a detailed exposition

of the latter is first given.

2.1 Univariate Rational Interpolation

Rational interpolation defines an analytic function ffi of the complex variable r as a quotient of two
polynomials N((r) and Du(r),

(1)

with C;; the order of the numerator, u the order of the denominator, and Pk and qk the polynomial

coefficients. The rational interpolant ffi provides an approximation on an interval [r(O), r(l)] of the

function S(r) that we are trying to model. Since there are C;;+u+ I unknown coefficients (qo is

chosen arbitrarily), a set ofN+l=C;;+u+l support points (r(i); Si), with i=O, 1, "',N and Si=S(r(i)),

are required to completely determine ffi(r). ffi(r) is then a curve passing through the ordinates Si at

the abscissas r(i) for i=O, 1 , ... ,N. It is assumed that ffi(r) exists and has no unattainable support

points [37], [38].

Equation (1) is represented by a convergent of a corresponding Thiele continued fraction, as shown

in equation (2). Each rational expression ffikCr) is a kth order partial fraction expansion of

equation (1), together constituting a set of interpolants which exhibit increasing accuracy as k

increases, reaching a convergent value at k =N.

r _riO)
91ir) = So + (I)

(
(I) (0») r - r

rp I r , r + «2) (I) (0»)rp2 r ,r,r + ...
r - r(k-I)

... + (k) (k-I) (0)rp k(r , r , ... , r )

k=O,l,"',N (2)

The inverse differences qJk, are the partial denominators of equation (2), and are essentially the

coefficients that define ffik(r). The inverse differences are determined recursively from the support
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points and are defined in equation (3) [19].

(i) (k-I)

(
(i) (k-I) (0)) _ y - y

qJk Y , Y , ... , Y = (i) (k-2) (0)) (k-l) (k-2) (0)) ,qJk-1Y,Y , ... ,y -qJk-1 Y ,Y , ... ,y

i=I,2, ... ,N

(3)

i=k, k+ 1, ... , N; k=2, 3, ... , N

The interpolation function 91k(y) can be evaluated numerically with the three-term recurrence

relations given in equation (4) initialised with No(Y) = So, N\(Y)=qJ\(y(l), y(O»)No+ (y_y(O»),

Do(y)=l, and D\(y)=qJ\(y(l),y(O») [39]. As a consequence of the continued fraction formulation

s= v =k/2 for keven and S=(k+1)/2 and v =(k-1)/2 for kodd.

Nk (y) = qJ/ y(kl, y(k-I), ... , y(O)) Nk_1(y)+ (y_ y(k-I)) Nk_2 (y)}

D () (k) (k-l) (0)) D () ( (k-l)) D ()k Y = qJk Y , Y , ... , Y k-l Y + Y - Y k-2 Y

9tk(y) = Nk(y)
Dk(y)

k = 2, 3, ... , N

k = 0, 1, ... , N

(4)

The derivative of 91k(y) with respect to y can be calculated recursively by taking the derivatives of

equation (4) initialised with 8No(Y) = 0 8Do(Y) = 0 8N,(y) = 1 and 8Dl(y) = 0 i.e.
, 8y' 8y , 8y 8y'

k = 2, 3, ... , N

(5)

k =1,2, ... , N.

Similarly, all higher order derivatives of 91k(Y) can be calculated.

The computational effort in determining the coefficients qJk(Yk,Yk-l,'.', Yo) for k= 1,2,"', N using

the recurrence relations in equation (3), is YzN(N+1) divisions and N(N+ 1) subtractions. To

evaluate NN(y) or DN(y) with the recurrence relations in equation (4), requires 2N-1

multiplications, N additions and N subtractions. In total, to evaluate 91N(y) requires 4N-2

multiplications, 1 division, 2N additions and 2N subtractions.

As the accuracy of 91(y) over a certain y range is required to increase, the order of the interpolating

rational polynomial increases. This increase in the degree of freedom of 91(y) can cause a zero in

the numerator and a zero in the denominator polynomials to occur at almost precisely the same

position. At these pole/zero combinations L'Hospital's rule is applied for the evaluation of the

interpolation function, i.e. 91k(y)-+ 8Nk (Y)/8Dk (y) .
8y 8y
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2.2 Multivariate Rational Interpolation

The multivariate rational function is defined in equation (6), where Yd, with d = 1,2, ... , D,

represents the D complex variables. The interpolation function 9{(YI, Y2, ... , Yo) will be equal at

the support points to the function S(y I, Y2, ... , Yo), that is being modelled, and will approximate

S(n, Y2, , Yo) between the support points. The set of support points are represented by

( (i,) (i, ) Y (io) . S ). . = 0 1 ... N d = 1 2 ... Dad S - S( (i,) (i, ) ... (io)) F
YI 'Y2 , , 0 ' il,;,,"',;o ' ld " , d, "" n il,;,,.",io - Yl 'Y2 , ,Yo . or

the moment it is assumed that the support points are placed on a fully filled, not necessarily

equidistant, rectangular grid, and hence the full set is given by the Cartesian product of the support

Points for each variable i e {y(O) y(1) ... y(NIl} x {y(O) y(1) ... y(N,)} x ... x {y(O) y(1) ... y(No)} A
, •. 1'1"1 2'2"2 0'0"0.

method analogous to the univariate case for determination and evaluation of the multivariate

rational interpolant is used. In the following paragraphs the generic equations for the multivariate

rational interpolation technique are given. In the literature these equations are given exclusively for

the bivariate case.

(6)

The interpolation function 9{(YI , Y2, ... , Yo) is represented by the convergent of a multivariate

Thiele-type branched continued fraction of the form

(7)

Note the use of I(}} IYi) to indicate a function I of variable }}with Yi being defined for the function

fiYi,}}).

Compared to the univariate continued fraction, equation (2), each of the constant partial

denominators is replaced with a multivariate function 9{;J Y 2' Y 3' ... , Yo I Yl(iIl), which has one less

variable than 9{(Yl , Y2, ' .. , Yo) and is defined with YI constant and equal to YI(i,). Each

9{i,(Y2' Y3'.", Yo I yii,») can in tum be represented by a continued fraction as shown in equation (8),

where 9{ (y Y ... Y I y(ill y(i,») is defined at Y = y(ill and Y = y(i,);, 3' 4' , 0 1 , 2 1 1 2 2.

The substitution of the partial denominators by continued fractions IS repeatedly performed
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according to equation (9). The number of variables of 9tid(rd+l,rd+2,"',rD Irl(iI),rii2),"',r~d»)

decreases with every step until this function becomes a univariate function

9tid(rD I r?') ,rii2), ... , r6~lJl), in which case equation (3) is used to determine its coefficients and

equation (4) is used to evaluate it.

id_I=O, 1,"',Nd_l, d=2,3,"',D-1 (9)

The computation of the above multivariate continued fraction follows a tree-like structure, and is

therefore called a branched continued fraction (BCF). Different forms of BCFs can be constructed,

depending on the way in which the list of support points is enumerated [40]-[42]. The BCF used in

this dissertation was defined by Siemaszko [36].

Similar to the univariate case, each of the BCFs of equations (7), (8) and (9) can be evaluated by

using three-term recurrence relations given in equation (10) for d = 1, 2, ... , D-l, initialised with:

Nk(Yd' Yd+I'"'' Yo)=

9ik(y d+I' Y d+2' ... , Yo I y;id ,y;i,), ... , y~k») Nk-I (y d' Yd+I' ... , Yo)+ (y d - y~k-I»)N k-2 (y d' Y d+I' ... , Yo)

Dk (y d' Y d+I' ... , Yo) =
9i/y d+I' Yd+2' ... , Yo I YI(it

) ,y;i,), ... , y~k») Dk_1(y d' Yd+I' ... , Yo)+ (y d - y~k-I») Dk_2 (y d' Y d+I' ... , Yo)

k = 2, 3, ... , N d

(10)

k = 0, 1, ... , N d

In this case sets of support points are combined to define sets of univariate interpolation functions

with D-l variables constant. The union of these univariate interpolation functions then generates

sets of bivariate functions. Sets of bivariate functions combine to form three-variable interpolation

functions. The process is repeated until a multivariate interpolation function with D variables is

determined.
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From the above formulation it follows that the determination of the coefficients for the multivariate

interpolant is equivalent to the determination of coefficients for a set of univariate functions. These

univariate functions are determined by repeatedly applying the set of recurrence relations given in

equation (11) for d= 1,2, ... , D-l.

j: ( (i). ) - S( (i,) (i,) (i) )
':>0 Yd 'Yd+!' Yd+2' ... , YD = YI , Y2 , ... , Yd' Yd+I' ... ' YD ,

i= 1,2, ... ,Nd (11)

i=k, k+ 1, ... , Nd; k=2, 3, ... , Nd

Then,

Note that the evaluation of equation (11) requires all the support points in {y?),y~l),. .. ,Yt')}x

{ Y(O) y(l) ..• y(N2) } x ... x {y(O) y(l) ••. y(No)} as assumed at the start of this section This
2'2"2 0'0"0' .

constriction of a rectangular grid of support points, which is an inherent characteristic of BCFs, is

not suited for an adaptive sampling algorithm that requires the freedom to choose arbitrary support

points in the interpolation space. Furthermore, it is expected that a number of the support points in

the grid are redundant. This point marks the end of the exposition of standard branched continued

fractions.

An important step to enable an adaptive scheme to be applied can now be taken. The constriction

of the rectangular grid is removed by approximating certain function values with the previously

determined interpol ants for those functions when evaluating the function
J= ( Ud) UrI) (0). ) E f (11) fI d-l 2 D 1 th fI b'=>i

d
Yd 'Yd ' ... 'Yd 'Yd+l'Yd+2' ... 'Yo. qualOn , or - , , ... , -, ereore ecomes

i=I,2, ... ,Nd (13)

y~i) _ r~k-I)

c;k-lYY), r~k-2), ... , r~O);Yd+" rd+2' ... , rD) -ffik-lrd+" rd+2' ... , rD I r,(il) ,r~;2), ... , r~k-I»)

i=k, k+ 1, ... , Nd; k=2, 3, ... , Nd,

9
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and equation (12) becomes

This simple procedure allows the rectangularly spaced support points required by the BCF to

effectively be calculated from mathematical functions constructed from non-rectangularly spaced

support points. A few important points should be noted.

(i) Since the number of support points for each univariate function may be different according to

equation (13), the orders of the BCFs, Nd, for d=2,3,"',D are now functions of their

positions, i.e. N~l,i,;.,id-Il, and for implementation, equations (8), (9), (10), (13) and (14) need to

be adapted.

(ii) Since each multivariate interpolant is the construct of a set of lower dimensional interpolants, it

is important to ensure that the accuracy of these lower dimensional interpolants increases as the

number of variables decreases.

(iii) The degree sets of the numerator and the denominator polynomials are completely determined

by the form of the BCF, which in tum is determined by the structure of the support points.

(iv) Different numberings of the support points produces different interpolants with dissimilar

accuracies [16]. Interpolants are more accurate when the support points are renumbered so that

the orders of the BCFs decrease for increasing branches of the BCF.
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CHAPTER 3: ADAPTIVE SAMPLING ALGORITHMS

The determination of an accurate rational interpolant m(y) requires that enough support points, in

the case of microwave circuits, normally CEM analyses, be used. In order to calculate the

minimum number and the optimal positions of these support points, an adaptive sampling algorithm

is proposed for application to the rational function approximation. In section 3.1 the adaptive

sampling algorithm for univariate models with a single output parameter is given. The theory is

extended in section 3.2 to allow multivariate sampling and in section 3.3 the formulation is given

for multiple output models.

3.1 Univariate Adaptive Sampling

A natural residual term emerges from the univariate rational interpolation formulation as
I 1

2
9l (y) - 9l (y) . . . . . . . .

Ek (y) = k I HI ' whIch provIdes an estImate of the mterpolatIOn error. ThIS IS the relatIve
(1 + 9lk (y))2

squared error between the current estimate of the interpolant and the previous estimate of the

interpolant i.e. before adding the last support point. The residual decreases as k (or the degree of

freedom of the function) increases and is zero at k-l support points. The interpolation method

formulated in chapter 2 is suitable for an adaptive sampling algorithm, since it produces an error

estimate in a very natural way, and it works for unequally spaced support points.

The adaptive algorithm is defined to work in the interval [y(O), y(l)]. As a first step, an arbitrary

third support point y(2) is selected which lies in the interval [y(O), y(l)]. This point is required since

the residual E 1(y) cannot produce an appropriate error estimate. The coefficient qJ 1 for m 1(y) is

determined from the support points (y(O), So) and (y(2), S2), while qJ2 for m2(y) is recursively

updated using equation (3) and the support point (y(l), SI). The values for Sk at the points y(k) are

determined by a CEM analysis. Define h as the interval [y(O), y(2)]. The residual E2(y) is evaluated

at a large number of equi-spaced sample points in the interval h using equation (4). At the

maximum of the evaluated sample points a new support point y(3) is selected.

For iteration k the characteristic equation is evaluated at y(k) in order to determine Sk. Equation (3)

calculates qJk recursively. The residual Ek(y) is determined recursively at a large number of equi-

spaced sample points on the interval Ik by using equation (4). Assuming the last support point

(y(k), Sk) was selected in the interval [y(i), y(j)], Ik is defined as both the intervals [y(O), y<i)] and

[y(j), y(l)]. The interval [y(i), y(j)] is excluded since it does not provide a suitable error estimate.

This interval's size generally decreases as the number of support points increases and it varies on

alternate iterations. At the maximum of the evaluated residual a new support point (y(k+I), Sk+l) is
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chosen, thereby minimizing the residual. The process is repeated until the residual becomes

arbitrarily small. Fig. 1 shows a step in the execution of the algorithm, with the new sample point

indicated with an asterisk. It is important to note that for a full iteration, only one point is

determined via a CEM analysis. As all the other computation steps only require the evaluation of

the interpolation function, the computational effort is decreased substantially.

(2)
l .

]'-aXlS

Fig.1. Illustration ofthe univariate adaptive sampling technique. The interpolants 9t3(y), 9t4(y) and the residual
E4(y) are shown. The asterisk indicates the new support point.

The adaptive sampling algorithm automatically selects and minimises the number of support points,

and it does not require any a priori knowledge of the dynamics of the function in order to define an

interpolation model 9t(r). A few important points should be noted.

(i) The number of equi-spaced evaluations of the residual is not crucial, as long as it is of an order

larger than the number of support points. Placing the support points precisely at the successive

maxima of the residuals may sometimes slightly decrease the number of support points of the

final model. However, the determination of such points through an iterative search algorithm is

computationally expensive.

(ii) For highly non-linear funct~ons over the parameter space of interest, the number of support

points can become large, causing the order of the rational polynomial to become large and the

algorithm to become numerically unstable. Therefore, the number of support points

automatically selected by the adaptive sampling algorithm is limited to Nbd. If the sampling

algorithm has not converged when this limit is reached, the support points in that interval are
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sorted in ascending order and subdivided into two new intervals. Each interval is initialised

with Y2(Nbd+1) support points ifNbd is odd, or Y2Nbd+1 and Y2Nbdsupport points otherwise. The

support point at the cut is used as the last support point in the first interval and also as the first

support point in the second interval. Hence all previously determined support points are

reused, and more support points will be placed where needed. The intervals become smaller

where the errors are larger. The adaptive sampling algorithm is repeatedly applied to each

subdivided interval until the interpolant for each interval has attained convergence. The result

is a set of interpolants each defined on a specific interval of the complete band that is being

modelled. Decreasing Nbd produces a more accurate model at the expense of an increased

number of interpol ants, an increased number of support points and increased computation time.

(iii) Equi-ripple error can only be achieved if the function is known, in which case economisation

[12], or specifically a Remes-type algorithm [43] can be used.

(iv) As the accuracy of the model is required to increase, the accuracy of the CEM analysis

technique needs to increase. Otherwise, the interpolation process will try to model the error of

the CEM analysis and this will lead to an excessive number of support points being selected.

3.2 Multivariate Adaptive Sampling

The multivariate rational interpolation formulation given in section 2.2 is essentially univariate in

nature. Therefore, an adaptive sampling algorithm can be applied that is similar to that used for the

univariate case. Two different adaptive sampling algorithms are considered. The first algorithm,

based on equations (11) and (12), determines a set of support points in the interpolation space

placed on a fully filled, not necessarily equispaced, rectangular grid. The second algorithm places

support points on a non-rectangular grid and is based on equations (13) and (14). The interpolation

space is defined in rd E [r~O),r~I)] for d= 1,2, .'.,D. At initialisation an arbitrary set of points r~2)

are selected in the intervals [r~O), r~l)] .

An estimate of the interpolation error for the partial interpolants of equation (9) IS gIVen III

equation (15).

(15)
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The function Ek(Yd' Yd+I' ... , YD I Yl(il) ,yii2), ... , Y~~) is defined for the variable Yd, with Yd+l, Yd+2, ... ,

YD defining the position at which the error function can be evaluated. To reduce the computational

effort required in evaluating equation (15), especially for a larger number of variables,

Ek(Yd'Yd+I'''''YDly?),yii2), ... ,y~J) is only evaluated at Yd+l=Y~~, Yd+2=Y~~2,"',YD=yg).

Practical examples have shown that Ek (y d' Yd+l' ... , YDiY?) ,yii2), ... , Y~~) is largely independent of

th . bl 'd d th t OJ ( I (il) (i2) (k») . t ~e vana es Yd+l,Yd+2,''',YD, prOVI e a nk Yd'Yd+1'''''YD YI 'Y2 '''''Yd-I IS accurae lor

all k. Due to the renumbering of the support points, as mentioned in section 2.2, it is necessary that

an error function be zero at all of the support points in order to be able to place a new support point

at the maximum of this error function. Evaluation of the error function in equation (15), with the

support points in the series {y~O) ,y~l),"', y~Nd)}, will determine a function which is zero at all of the

support points except at y~Nd). A different error function can be defined, which is zero at all of the

support points except at y~Nrl) , when the last two support points in the series are swapped around.

A new error function, defined as the product of the square root of the above two error functions, is

zero at all of the support points. Although the same method can be applied to the univariate case,

this has no benefit.

The first multivariate adaptive sampling algorithm, denoted ASAt, constructs the multivariate

rational interpolant as follows:

1. Using the univariate adaptive sampling algorithm, construct a univariate model of each
variable Yd over the interval [y~O) ,y~I)], with all other variables set to their midpoint values,
. - (0) 1 ((I) (0») ~ -1 2 D d d I thO D"l.e. Ym -Ym +"2 Ym -Ym lor m- , , ... , an m=t:-. n IS way, umvanate
interpolants and their respective sets of support points, each lying on a line crossing through
the centre of the interpolation space, are established.

2. Sort the variable positions, d, in the multivariate interpolant 9t( Yl, Y2, ... , YD) so that the
orders Nd of the interpolants determined in step 1 decrease as d increases.

3. Generate a rectangular grid of support points from the points determined in step 1, i.e. all the

Points in {y(O) y(I) ... y(N1)} x {y(O) y(l) ... y(N2) } x ... x {y(O) y(l) ... y(ND)}
1'1"1 2'2"2 D'D"D'

4. Create a multivariate rational interpolant from the grid of support points defined in step 3
using equations (11), (12) and (3).

ASAI is expounded by means of a bivariate example exemplified in Fig. 2. Step 1 of the algorithm

determines the star-shaped support points by means of a univariate interpolation along the

dimensions Yi and Y2 at Yi2) and Y?) respectively. Since N1 = 6 is smaller than N2 = 7 in the

example, Yl and Y2 are exchanged in the interpolant. Hence, the interpolant 9t(Y2,Yl) consists ofa

union of univariate interpolants 9t( Yi). In step 3 a grid of support points is generated by adding the

circle-shaped support points as shown in Fig. 2. 9t(Y2,Yd is created from this rectangular grid of
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support points.

n(l) -0 -------0------ -'tl- - -0 0- ---- ---0
I I
I I

6 0 * 00 6
Q 0 * 00 Q
I I

o 0 * 00 0
rP) ~ * * * * *

I I

Q 0 * 00 Q
I I
I I
I I
I I
I I
I I

nCO) -« -------0-------'tl- - -0 0- -------?
rICO) n(2) n(l)

Fig. 2. Illustration ofthe support point placement using ASA I.

The second multivariate adaptive sampling algorithm, denoted ASA2, constructs the multivariate

rational interpolant as follows:

1. Same as for ASA1.
2. Same as for ASA1.
3. Initialise a model with a rectangular grid of support points with three support points along

every dimension, i.e. 3D support points in {rl(0),r?),rl(2)}x{r~0),r~]),r~2)}x"'x

{ r(O) r(l) r(2)}o , 0 , 0 .

4. Construct a multivariate rational interpolant from the support points using equations (13),

(14) and (3).
5. Select a dimension rd for selection of new support points. Iterate for d= D,D-l,"', 1.
6. Select new support points at the maxima of the error function, equation (15), at positions

along rd.
7. Renumber the support points so that N~lh; ..,id-tl decrease as the numberings id increases.

8. Repeat steps 4 thru 8 until convergence.

ASA2 is expounded by means of a bivariate example illustrated in Fig. 3. Step 1 and step 2 are the

same as in ASA1. Assume N2 is smaller than N\. In step 3 an initialisation grid of9 support points

is generated as shown by the star-shaped support points in Fig. 3(a). 91(YI,r2) is created from these

9 support points. Using the univariate adaptive sampling algorithm 910 (r 2 I rl(O») is completely

determined with a predefined accuracy by placing support points at rl(O). Then 91](r 2 I rIO») is

determined at r](l). Since N~O) = 7 is bigger than N~I) = 6, the algorithm continues by determining

912 (r 2 I rl(2») at r?). With N~2) = 8, the support points are renumbered so that the support points at
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rl(2) determine 9io, the support points at rl(O) determine 9i1 and the support points at rl(l) determine

9i2 in equation (7), and hence r~O), r~l) , r?) become r~l), rl(2) , rl(O) respectively, as shown in

Fig. 3(b). Then the error function is evaluated for rl at r?) and r?) is determined at the

maximum of this error. 9i3 (r 2 I rl(3») is initialised with three support points at r~O), r~1) and r~2),

shown by the star-shaped support points in Fig. 3(b). Using the univariate adaptive sampling

algorithm 9i3(r21 r?») is completely determined at r?). The process is repeated until the error

function has reached its required accuracy.

rP) ~ - - - - - - - - - - - -- -",* - - - - - - - - - - - -- ---:r
I I

1066 I
I IQ 0 :
100o I

r}~ t * +
I I

Q :
I 0 I
I I

: 0 6I I
I I

r}O) --t --------------",* - - - - - - - - - - - - - - -t
rl(O) rl(2) rl(1)

(a)

rP) ~ - - ---~ - - - - - - -",* --- - - - - - - - - - - ---:r
I I

106601
I I

Q 0 :
100
001

r}~ t * * +
I I

Q :
100 I
I I

: 0 6
I I
I I

n(O) --t -----~-------"'* - - - - - - - - - - - - - - - t
n(1) n(3) n(O) r 1(2)

(b)

Fig. 3. Illustration of the support point placement using ASA2. (a) After three steps. (b) After the fourth step.

If required, interval subdivision as mentioned in section 3.1 for the univariate case is applied to the

variable ro.
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3.3 Multiple output interpolation models

For the modelling of functions with more than one complex numbered output parameter, I.e.

Si i ...i being multi-dimensional complex numbered vectors, the model mCYI, Y2, ... , Yo) consists
I' 2, ,D

of a set of interpolants, where each interpolant models one of the output parameters. Hence,

(16)

where m(e>C Y I, Y2, .'., Yo), e = 1,2, .'., E, are interpolants that model entries in the E-dimensional

output vector.

A CEM analysis generally produces all the output parameters, usually scattering parameters, with

little more effort than it needs to determine one output parameter. In order to select the support

points for the model mCn, Y2, .'., Yo) efficiently in the parameter space, the same set of support

points are selected for all of the interpolants m(e)c y), e = 1,2, ... , E. This will lead to a reduction in

the total number of CEM analyses compared to the case where separate sets of support points are

determined for each interpolant.

The basis of this technique lies in the definition of a global error function incorporating all the

output parameters. Define an error function as:

e = 1,2, ... , E. (17)

Th fi. (e) (i) (i) (k) h' h' h f h. d..d Ie error unctIOn Ek (Yd'Yd+I""'YDIYI' ,Yz"""Yd-I)' W IC IS t e error 0 eac In IVI ua

interpolant, was defined in section 3.2 and is zero at all of the support points.

The adaptive sampling algorithm for the multiple output interpolation models, denoted ASA3, is

identical to ASA2 defined in section 3.2 with the difference that the error function in equation (17)

is used and new support points are placed at the maxima of this error function. Therefore all the

error functions of the individual interpolants are taken into account when selecting a new support

point.
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CHAPTER 4: RESULTS- UNIVARIATE ADAPTIVE SAMPLING

In this chapter the results are shown for two applications of the univariate adaptive sampling

algorithm. Firstly, it was implemented into an aggressive space mapping optimisation technique for

the design of a rectangular waveguide filter with capacitive step discontinuities [31]. Secondly, it

was applied to the calculation of transmission line characteristics by the two-dimensional Method-

of-Lines of two- and three-layer shielded planar structures [32].

4.1 Rectangular waveguide filter with capacitive step discontinuities

Aggressive space mapping (ASM) is well-known as a technique to optimise a microwave circuit

using the minimum number of fine model (CEM) simulations and transferring the bulk of CPU

intensive optimisation to the coarse model (empirical circuit-theoretic model) parameter space [44],

[45]. The ASM technique iteratively establishes a mapping between the spaces of the design

parameters of the two models. Define the vectors Xos and Xem as the design parameters of the coarse

and the fine models respectively, and Ros(xos) and Rem(xem) as the corresponding model responses.

Parameter extraction is used to determine Xos, whose response matches the fine model response at

Xem for every space mapping iteration. A brief review of ASM is given in Appendix A.

The number of frequency points used to do the parameter extraction in the ASM technique is

usually chosen arbitrarily. It is important that this number be kept as small as possible to minimise

the CEM evaluation time. However, choosing this number too small can cause the parameter

extraction procedure to fail, which in tum causes the ASM algorithm to converge slowly, oscillate

or even diverge [46]. Failure of the whole ASM procedure may result if the parameter extraction is

not unique, falls into a local minimum due to severe response misalignment at initialisation, or if the

coarse model cannot adequately model the fine model response. Normally, the way to guarantee

good parameter extraction is to use a sufficiently large number of frequency points. The integration

of the univariate adaptive sampling algorithm into the ASM optimisation ensures that for every

ASM iteration (i) the number of CEM analyses are minimised and (ii) enough frequency points can

be used for the parameter extraction.

The adaptive sampling algorithm creates the model 91(fl xem) with the mlllimum number of

frequency support points. 91(fl xem) is an approximation of the fine model response Rem(xem), which

is valid for the parameter vector Xem over the desired interpolation interval. Given 91(fl xem), an

arbitrarily large number of frequency points can be chosen to ensure the non-failure of the

parameter extraction step. Note that the ASM technique combined with the adaptive sampling
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algorithm requires the convergence of three iterative processes, namely (i) adaptive sampling to

establish 91(fl xem); (ii) parameter extraction to determine Xos, whose response matches 91(fl xem);

and (iii) space mapping to find Xem that produces the optimal response according to design

specifications.

The design of a rectangular waveguide filter with eight capacitive steps as shown in Fig. 4 is

considered. The design specification for the filter is a reflection coefficient IS III~-25 dB in the

range [9 GHz, 11GHz]. The design is for a standard WR90 rectangular waveguide and the

capacitive step lengths are all chosen to be 2 mm. The filter is symmetric with eight optimisation

variables (LI, L2, L3, L4, C1, C2, C3, C4) as defined by the coarse (transmission line) model in

Fig. 4(a). The fine model is a mode-matching solution combined with the generalised scattering

matrix [47]. The parameter extraction optimisations are driven by a BFGS quasi-Newton method

with a mixed quadratic and cubic line search procedure [48]. £1 norm objectives are used

throughout the ASM algorithm. The input parameter x:s' which produces the optimal response, is

determined by a minimax optimisation on the coarse model, also using the BFGS quasi-Newton

method. The response Ros( x:s ) is shown in Fig. 5 (dotted line).

(a)

(b)

Fig. 4. The coarse model (a) and the physical structure (b) of the rectangular waveguide filter with capacitive step
discontinuities.

Standard ASM assumes that Xos and Xem describe the same physical parameters, which is not the

case here. The capacitance and the transmission line length for a waveguide step can be calculated

using the mode-matching technique for several values of the gap opening. Interpolation of these

values establishes a mapping from the circuit model variables Xem to the physical waveguide

dimensions. Since the ASM technique compares Ros(xos) and Rem(xem) this mapping is incorporated

into the ASM.
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Fig. 5. Response 91(fl xem) (solid line) at initialisation with 19 support points (diamonds) and the optimal response
(dotted line). Support points smaller than -45 dB are shown at -45 dB.

Table 1. Convergence of 91(fl xem) determined by the univariate adaptive sampling algorithm.
I91k(f I xcm)-91k-l(fl xcm)1 [dB]

k Support points [GHz]
3 [8, 10, 12]
4 9.22
5 1\.10
6 9.66
7 8.82
8 1\.68
9 8.88
10 1\.20
II 8.42
12 10.34
13 9.48
14 1\.36
15 10.90
16 8.22
17 8.54
18 8.10
19 10.68

Mean
-20.0
-16.0
-16.7
- 18.7
- 23.9
-22.1
- 4.5
-10.0
-5.3
- 24.4
-26.4
- 35.1
- 42.3
- 29.7
- 4\.6
- 59.1
- 89.2

Max
-5.4
- \.6
30.3
10.6

- 16.1
3.7
10.3
- 0.9
34.0
13.9

-11.2
- 11.1
- 34.2
-28.4
- 29.7
- 34.7
-42.9

As a first step a univariate model 91(fl x~~) with x~~= X:s was created with the adaptive sampling

algorithm for the reflection coefficient S 11. The interpolation interval is defined for

fE [8GHz, 12GHz] and the initial support points were chosen at 8GHz, 10GHz (arbitrary) and

12GHz. The convergence of the adaptive sampling algorithm is shown in Table 1. After several

iterations, i.e. when the order of the interpolation polynomial is sufficiently large to model the

response adequately, the residual converges very quickly. Convergence was assumed when the

maximum absolute error between the current estimate of the interpolant and the previous estimate

of the interpolant was smaller than -40 dB. The absolute error was evaluated at 500 equi-spaced

points over the interpolation interval. Fig. 5 (solid line) shows the response of the model 91(fl x~~)

with only 19 support points (diamonds). The fine and the coarse model responses differ

significantly due to the evanescent modes coupling between capacitive steps.
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For the parameter extraction step 30 frequency points equally spaced over the frequency band were

used. The ASM optimisation converged to the solution within 2 iterations. The result is shown in

Fig. 6. Table 2 and Table 3 show Xos and Xem respectively after every ASM iteration. Table 4 lists

Xem transformed to the physical waveguide dimensions (Fig. 4(b)). The adaptive sampling

algorithm converged with 19, 19 and 20 iterations for every ASM iteration. Therefore, in total 58

CEM evaluations were required.
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20.911
64.257
54.138
21.014
43.259
32.366
62.152
100.580

21.119
61.865
52.472
20.915
42.599
31.968
62.945
101.093

Fig. 6. Response lR(fl xem) (solid line) after the second ASM iteration with 20 support points (diamonds) and the
optimal response (dotted line).

Table 2. ASM iterations of the coarse model.

Parameter

20.332 21.262
65.196 65.631
54.559 55.316
20.783 21.326
44.434 42.772
33.380 31.783
62.340 61.224
100.474 100.194

Capacitance values in pF,
length values in degrees relative to 10 GHz

Table 3. ASM iterations of the fine model.

Parameter

20.911 21.490
64.257 63.318
54.138 53.717
21.014 21.245
43.259 42.084
32.366 31.351
62.152 61.964
100.580 100.686

Capacitance values in pF,
length values in degrees relative to 10 GHz
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Table 4. ASM iterations of the fine model physical dimensions.

Parameter x~~ x~~ x~~
B, 3.8608 3.7844 3.8332
Bb 1.2875 1.3099 1.3457
Be 1.5702 1.5842 1.6271
Bd 3.8471 3.8165 3.8602
L, 6.2494 6.1251 6.1734
Lb 5.2796 5.1640 5.2240
Le 8.3058 8.2867 8.3862
Ld 12.3140 12.3318 12.3680

All values in mm

The design was repeated using the ASM algorithm without the adaptive sampling algorithm with

the number of equally spaced frequencies Ns for the parameter extraction step set to 19. The

parameter extraction did not properly align the two responses at initialisation as shown in Fig. 7

(resonance at about 10.1 GHz should have been at about 11GHz) causing the ASM algorithm to

converge slowly. To compare this with the previous example, the result is shown in Fig. 8 after 2

ASM iterations. It is clear that the ASM is far from achieving convergence. The ASM converged

after 8 iterations requiring 171 CEM evaluations. The adaptive sampling algorithm shows a

significant improvement over this result.
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Fig. 7. The fine model response (solid line) and the response determined by the parameter extraction optimisation
(dotted line) with 19 equally spaced frequency points (diamonds) at initialisation.

The design was then repeated for various values of Ns. The results are tabulated in Table 5. The

ASM error is the sum of the difference between x~~)and x:s normalised with respect to x:s'
Failure of convergence is indicated by 00. With Ns chosen large (70, 50 and 30) the parameter

extraction optimisation converged and the ASM algorithm converged quickly. In this case, Ns is

proportional to the number of CEM evaluations. Decreasing Ns causes the ASM optimisation to

diverge or converge slowly, due to the parameter extraction step falling into local minima.
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Fig. 8. The fine model response (solid line) after the second ASM iteration with the parameter extraction optimisation
using 19 equally spaced frequency points (diamonds). The'dotted line represents the optimal response.

Table 5. ASM iterations for various Ns in the parameter extraction step,
ASM error < 10-" ASM error < lO-lO

Number of Number ofCEM Number ofCEM
frequencies, N, ASM iterations evaluations ASM iterations evaluations

70 2 210 2 210
50 2 150 2 150
30 2 90 3 120
25 00 00 00 00

23 46 9 230
22 00 00 00 00

19 8 171 8 171
15 5 90 9 150
10 00 00 00 00

4.2 Modal propagation constants of shielded planar structures

The calculation of the propagation constants of modes in quasi- TEM microwave structures is a

well-known problem in literature [49]-[53], and increasingly of interest in hybrid numerical analysis

techniques incorporating Mode-Matching [54]-[56]' In the case of shielded planar structures, the

two-dimensional Method-of-Lines (MoL) offers a very efficient analysis option, as it involves

discretization of the two-dimensional Helmholz equation in only one direction [57]-[60]. This

results in a number of coupled differential equations, which are de-coupled using matrix techniques.

The result is a number of uncoupled differential equations, each describing a transformed field or

potential along a line instead of at a single point, hence the name Method-of-Lines. The elimination

of discretization in one dimension is the key feature of the MoL and results in reduced computer

storage requirements and reduced run-times. The two-dimensional MoL has been shown by

numerous authors to be fast, accurate and effective. However, in this method, as in many other

formulations, the propagation constants of the modes are calculated by solving the function in
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equation (18), a severely non-linear function with an infinite number of solutions, normally

interspersed with an infinite number of poles, together with very sharp non-zero local minima. For

loss-less problems, the zeros can be purely real, purely imaginary or complex.

fCy) = det[YCy)] = 0 (18)

As the existence of poles in the equation to be solved creates significant problems for most root-

finding algorithms, a number of attempts to find pole-free solutions have been published. These

include pole-free formulations [61], the use of a singular-value decomposition method (SVD) [62],

and finding the pole-positions analytically and either removing them, as reported in [57], or

searching between them [56]. Of these, the SVD method seems to produce the best results, at the

cost of creating a function with a discontinuous first derivative, making the use of fast gradient root-

finding algorithms difficult.

The adaptive sampling algorithm establishes, with the minimum number of evaluations of the

characteristic equation (18), an accurate approximation iR(y) to the characteristic function f(y).

The approximation can be written as the ratio of two polynomials, of which only the pole-free

numerator needs to be solved for the zeros of the function according to equation (4). An added

advantage of the polynomial representation is that the derivatives of the function can easily be

calculated using equation (5), enabling the use of gradient root-finding algorithms. Neither the

evaluation of the numerator nor its derivative are computationally expensive. Two sets of models

are created, one for the real axis iR(y= a) and one for the imaginary axis iR(y= jf3) to determine all

the propagation constants for both the propagating and evanescent modes respectively. Although it

is possible to create a model iR(y) in the complex y-plane using the theory of section 2.1, such a

model requires a large number of support points in order to achieve the required accuracy. As

typical problems exhibit small numbers of zeros in the complex y-plane, a constrained root finding

algorithm is applied directly to the characteristic equation.

A first order Newton-Raphson root-finding method is applied to the models iR(y) and a bisection

search is used when the former failed [63]. The maximum Newton-Raphson step size was limited

to 10% of the search interval. The zero suppression technique [64] is used to prevent the root

finding algorithm to converge to the same root twice. It implies that the derivative used in the

Newton-Raphson method is changed to:

(19)

where ~i are the Nr previously found roots. The advantage of this technique, as opposed to deflation
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where the polynomial N(y) is divided by Y-C;i explicitly so as to give a lower order polynomial, is

that the accuracy of a new root is not sensitive to the errors incurred in calculating the previous

roots. The root finding algorithm is initialised at the lowest Y value in the interval and forced to

search in the positive Y direction until it reaches the highest y value in the search interval. To

ensure that roots on the border of the interval are found, the root finding algorithm is allowed to

search past the highest y value by I % of the band.

The accuracy of the models 91(y) is required to be high to ensure that the root positions of 91(y) are

accurate and that 91(y) does not miss any roots, which are found in the characteristic equation (18).

As described in section 2.1, this demand on accuracy can cause the adaptive sampling algorithm to

produce pole/zero combinations, with the result that more zeros are determined than are present in

the characteristic equation. We therefore test the validity of all zeros found by the root finding

algorithm. If a root is closer than 10-3 to a pole, it is eliminated. The poles are found by doing a

first order Newton-Raphson search ofD(y) in the vicinity of the roots.

The complex conjugate roots, i.e. the complex propagation constants, in the complex y-plane are

found directly from the characteristic equation (18) by using a secant search method, which requires

two characteristic equation evaluations per iteration. The search space is divided into a number of

areas in the P direction. In each area the search is constrained within that area by dividing the

characteristic equation by the following equation

(a)( a - all)(fJ - fJ,)(fJ - fJlI)' (20)

and limiting the Newton-Raphson step size to fall within this area. au is the upper limit on the real

axis, and PI and flu are respectively the lower and upper limits on the imaginary axis. Since the

imaginary part of the complex roots is generally small, the size of the areas is progressively

increased further away from the a-axis. The areas were allowed to slightly overlap to ensure that

roots on the border are found.

The maximum step size was limited to 20 % of the diagonal of the search area and zero suppression

as mentioned above is used. In the a direction the algorithm was started at Nst different positions to

prevent it from converging to local minima and to allow it to search the whole area. The following

starting positions were used:

2i + 1 . ( )--au + JO.05 fJlI - fJ, + fJlI ,
2Nst

i=O, 1, "',Nst-l (21)

The technique was tested on two examples: a shielded microstrip line structure and a centred slot
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unilateral fin line structure. For the adaptive sampling algorithm we limited the maximum order of

the rational polynomial in an interval (Nbd) to 29. The residual Ek(r) as defined in section 3.1 in an

interval was evaluated at 500 points and convergence was assumed when the maximum value of

this residual was smaller than -80 dB. For the root finding algorithms the maximum number of

iterations allowed until convergence was 30 and convergence was assumed when the step size was

smaller than 10-5. For the complex root finding algorithm the number of divisions in the p direction

was chosen to be 3 and Nst was chosen as 15 (closest to a-axis), 10 and 5 (furthest from a-axis) for

the three areas.

4.2.1 Shielded microstrip line

The loss-less shielded microstrip line structure is shown in Fig. 9. The region searched for roots

was chosen as [0,j2.979] on the imaginary axis and [0,2] on the real axis. Only the even order

modes were calculated and uniform discretization was used. Table 6 shows the support points

selected by the adaptive sampling algorithm after every iteration for the microstrip line at 20 GHz.

The propagation constants are normalised with respect to the free space wave number ko, i.e.

rlko = alko +jplko. On the real axis the interval was automatically divided into two intervals, al

and a2, when the number of support points reached 29. The shaded areas show the 29 support

points before interval division. Both the mean and the maximum relative errors after every

iteration, as well as the roots found in each interval are shown.

Fig. 9. Cross-section of the shielded microstrip line. All dimensions are given in millimetres.

Fig. 10 shows the interpolation model response and the support points for the model constructed

over interval a2. Fig. 11 shows the residual Ek(r) at convergence of the adaptive sampling

algorithm and the relative error between the characteristic equation response and the interpolation

model response, i.e. idet[Y(Y)][- ffikiY)I. Fig. 12 shows the calculated numerator and denominator
1+ det Y(y)

polynomials and their respective derivatives of the function given in Fig. 10.
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Table 6. Adaptive sampling algorithm iterations for shielded microstrip line (Fig. 9) at 20 GHz. The shaded areas
show the support points used for initialisation on the f3-axis, and those determined before interval division on the a-axis.

Propagation constants are normalised with respect to the free space wave number ko.
jj3 E [0; j2.979] a, E [0; 1.463] a2 E [1.463; 2]

Support Ek(y) [dB] Support Ek(y) [dB] Support Ek(y) [dB]
k points Mean Max points Mean Max points Mean Max
I .••.., ••0 .....•.•:] ....0. ., 1.463

"'1
~

)2 jI.489 .. . 0.136 I 1.495.
3 j2.979:) 4.8 41.1 0.497 I 1.559
4 j1.110 -22.6 11.8 0.589 1 1.583. \15 j2.877 -47.9 -34.4 0.625 , 1.595

1
6 j 1.098 -11.9 4.5 0.733 I 1.603 ,.,

'j
7 j2.955 -5.0 34.7 1.000 1.623 ~
8 j2.782 27.2 75.7 1.034 1.876 .1
9 j1.260 6.3 30.1 1.066 1.940'

,
~ ,

110 j2.633 3.0 39.2 1.106 1 1.956 j

11 jO.680 -38.6 -6.6 1.194

j
1.960

"I12 j2.394 -2.7 37.7 1.351 1.968
13 jO.836 -4.2 35.2 1.367 1.972 j

14 jO.573 -19.8 20.5 .1.387 1.996 ; 1
15 jO.704 -13.4 24.7 1.463 I -50.2 -35.6 2.000 :1 -13.9 32.51
16 jO.495 16.7 68.2 0.551 -18.8 25.0 1.828 -\.3 35.9
17 jO.597 -18.9 5.5 0.243 -48.4 -0.9 1.476 3.2 43.2
18 jO.490 -47.8 -0.8 1.460 -67.4 -48.7 1.610 -2.9 40.6
19 jl.904 -6.9 27.5 0.067 -81.9 -62.0 1.756 -64.8 -33.0
20 jO.304 -81.7 -47.0 1.445 -81.5 -65.7 1.601 -54.5 -14.3
21 jO.806 -55.5 -9.9 0.023 -72.4 -55.4 1.792 -84.8 -59.5
22 jO.472 -65.6 -40.3 0.138 -84.7 -70.5 1.751 -40.1 2.3
23 jO.066 -96.0 -53.4 0.334 -104.0 -83.0 1.759 -101.8 -58.6
24 jO.424 -105.0 -67.3 1.794 -139.2 -108.7
25 jl.988 -130.8 -95.9

jO.59457 1.4978
Roots jO.72511 0.55192 1.6102
found j 1.1027 1.7589

j2.7106 1.8744

0.8

-0.6
<> Support points

-0.8

-1
1.5 155 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

a/ko

Fig. 10. Response 9{(y) with 25 support points (diamonds) for the structure of Fig. 9 at 20 GHz. This is the second
interval, i.e. az, on the a-axis as chosen by interval division. Support points larger than +/_1071 are shown at +/_1071

respectively.
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Fig. 11. The relative error estimated by the adaptive sampling algorithm at convergence and the relative error between
the characteristic equation response and the interpolation model response (Fig. 10).
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Fig. 12. The interpolation model response (Fig. 10) split into its (a) numerator N(a) and denominator D(a)
components and (b) their respective derivatives.

The even order propagation constants y/ko of the first six modes at 20 GHz are listed in Table 7

together with Huang's results [53]. Huang used the singular integral equation method to determine

the propagation constants. Fig. 13 shows all the even order modes versus frequency. Evanescent

modes y/ko = a/ko are plotted in the opposite direction.

Table 7. Propagation constant y/ko of the first six even order modes for the microstrip line (Fig. 9) at 20 GHz.
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Huang [53) j2.7086 jl.l031 jO.72499 jO.59418 0.55274 0.77162:tjO.15345
This Method j2.7106 jl.lOn jO.72511 jO.59457 0.55192 0.75304:tjO.14338
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The number of characteristic equation evaluations to determine all the propagation constants versus

frequency is shown in Fig. 14 evaluated in increments of 0.1 GHz. The complexity of the function

increases as frequency increases and so the number of characteristic equation evaluations increase.

From 16.4 GHz the number of divisions on the a-axis increases to two, and at 22.3 GHz and

23.0 GHz and from 23.2 GHz the number of divisions is three. Fig. 15 shows that between 3 and 15

evaluations are required per determination of an imaginary or a real root over the interval of

interest. The calculation of roots via a previously published technique [56] required between 100

and 300 evaluations of the characteristic equation to determine the roots between adjacent poles.

Note that the number of poles over the interval of interest is between 3 and 8, resulting in a typical

reduction of a factor 100 in computational effort.

3

252015
-2
10

-1.5

-1

,
, '2.5 ---------..-------------------------------t -----------------------..-------------------r--- ------- ------ ------- ------- ------------
, ', ,, ', ,, ,, ', '2 --------------..----------------..----------~-----..--..----------------------------------t----- --- --- ------------ ------------- ..-. ,

--+- Complex Roots! !. ,1.5 --- ---------- ------ ---------- ---------- ..--t ------- --- ------- ------ -------------- --- ---1--- ------ ..--- ---------- ..---
, ', ', ,, ,, '

1 --------.--------..-----.....-------------1-------- ------- .------------ - '

-0.5

o

0.5

Frequency [GHz]

Fig. 13. Even order propagation constants y= a+j/3 normalised with ko versus frequency for the shielded microstrip line
structure (Fig. 9).
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Fig. 14. The number of characteristic equation evaluations versus frequency required by the adaptive sampling
algorithm to establish a model for the shielded microstrip line structure with (a) y=jjJ and y= a, and (b) y=a+jjJ.
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Fig. 15. The number of characteristic equation evaluations per number of roots found versus frequency for both y= jjJ
and y= a for the shielded microstrip line structure (Fig. 9).

4.2.2 Unilateral fin line

The guide wavelength A is evaluated for the unilateral fin line with a centred slot as shown in

Fig. 16. The wavelength inside the guide is 2n/ Po, where Po is the dominant mode. Fig. 17 shows

the guide wavelength A normalised with the free space wavelength 10 versus frequency for different

values of the slot width, w. Table 8 compares the computed results with those given in [65,

Table 4.4], where spectral domain formulas and modal analysis were used.
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Fig. 16. Cross-section ofthe centred slot unilateral fin line. All dimensions are given in millimetres.
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Fig. 17. Normalised guide wavelength AIAo versus frequency for the centred slot unilateral fin line structure (Fig. 16).
The slot width w is given in millimetres.

Table 8. Comparison of the guide wavelength ,1,/,1,0 for the unilateral fin line structure (Fig. 16) with w = 0.5 mm.
».10

Frequency [GHz] Modal analysis [65] Spectral domain [65] This Method
26.0 1.1096 1.0200 1.0192
30.0 0.9791 0.9794 0.9789
35.0 0.9491 0.9494 0.9490
40.0 0.9302 0.9304 0.9301

4.3 Conclusions

The examples presented in this chapter illustrate the use of the adaptive sampling algorithm for the

modelling of univariate problems. In the first example, the adaptive sampling algorithm was

integrated into the ASM optimisation technique, which provided an automatic and efficient way to

minimise the CEM frequency evaluations. An arbitrary number of frequency points required by the

parameter extraction optimisation can be calculated from the surrogate model, which ensured the
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non-failure of the parameter extraction step. The new technique worked well when applied to the

design of a low-pass compact rectangular waveguide filter with capacitive step discontinuities.

In the second example, the adaptive sampling algorithm was applied to the two-dimensional

Method-of-Lines technique for the calculation of transmission line characteristics of two- and three-

layer shielded planar structures. An efficient selection of a minimum number of propagation

constant support points defined an accurate rational function model for the characteristic equation to

which a fast root finding algorithm was applied. The application of the method to the analyses of a

shielded microstrip line structure and a unilateral fin line structure required typically between 3 and

15 evaluations ofthe characteristic function to determine an imaginary or a real zero.
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CHAPTER 5: RESULTS - MULTIVARIATE ADAPTIVE SAMPLING

A number of two- and three-dimensional models were created for standard microwave circuits for

verification of the adaptive sampling algorithms. To determine the accuracy of the models, they

had to be evaluated on an independent evaluation data set, similar to the validation procedures

applied to neural network models. In the following examples, the relative squared error Em between

the function and the model was calculated on rectangular equi-spaced grids with 302 grid points for

the bivariate cases and a 203 grid points for the trivariate cases. In all cases, both the mean and the

maximum errors in dB are shown for models of varying size. None of these models were reduced

in size after a fit was obtained, in contrast to techniques where the order of the interpolant is

guessed beforehand, and the interpolation function (calculated by a high number of CEM analyses)

is systematically reduced afterwards. Section 5.1 illustrates results of the adaptive sampling

algorithms, ASAI and ASA2 [33]-[35], for the multivariate single output models, and section 5.2

shows the results of the adaptive sampling algorithm, ASA3, for the multivariate multiple output

models all of which are applied to several passive microwave structures.

5.1 Single output models

5.1.1 Stripline characteristic impedance - 2 variables

A bivariate model m(w/h,Er) was created with the adaptive sampling algorithm for the characteristic

impedance Zo(w/h,Er) of a homogeneous symmetric strip line as shown in Fig.. 18. The variables

are: the strip width-to-height ratio w/h and the relative dielectric constant Er of the substrate. The

strip conductor was assumed to be infinitesimally thin, thus ZO(w/h,Er) can be computed using the

exact formula, which is derived using a conformal transformation [66]. Note that in practice, a

CEM analysis will be used. The model is established for the parameters w/h E [0.05,1] and

ErE [1,25], which define the interpolation space. At initialisation, the 9 chosen support points

produce m(w/h,Er) with the maximum error equal to -16.4dB. Table 9 shows the convergence of

the models using ASA 1 and ASA2 as the number of support points increase. With equivalent

accuracies (-57 dB) the model constructed by ASA2 required 7 fewer support points than ASAI.

The response of the interpolation model m(w/h,Er) with 36 support points constructed with ASAI

and its relative squared error Em(w/h,Er) are shown in Fig. 19. Fig. 20 represents the response of

the interpolation model m(w/h,Er) with 29 support points constructed with ASA2 and its relative

squared error Em(w/h,Er), which is less than -56 dB in the interpolation space.
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Fig. 19. ASAI: Strip line example. (a) Response m(w/h,Er) and (b) error Em(w/h,Er) with 36 support points .
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Number of
support points

12
16
20
30
42

Number of
support points

12
15
25
35
42

Table 9. Convergence of~(w/h, E,-) determined by ASAI and ASA2 for the stripline example.
ASAI ASA2

Number of £m(W/h,E,) [dB] Number of £m(W/h,E,) [dB]
support points Mean Max support points Mean Max

9 -29.3 -16.4 9 -29.3 -16.4
16 -40.4 -25.9 14 -33.0 -18.5
24 -42.4 -30.0 21 -42.4 -29.1
36 -74.5 -58.8 29 -72.3 -56.9

5.1.2 Capacitive step in rectangular waveguide - 2 variables

Bivariate models 91II(f, h) and 9121(f,h), and 9111(f,/) and 9121(f,/), were created for the reflection

and transmission coefficients, i.e. SIl(f,h) and S21(f,h), and SII(f,/) and S21(f,I), ofa capacitive step

in a rectangular waveguide as illustrated in Fig. 21. The variables are: frequency f and gap height

h; and frequency f and gap length I. The models were constructed for a standard WR90 rectangular

waveguide. The capacitive step was analysed using the mode matching method combined with the

generalised scattering matrix [47]. The models 911l(f,h) and 9121(f,h) are established with

f E [7 GHz, 13 GHz], hE [2 mm, 8mm] and 1=2 mm. The convergence of the models using ASAI

and ASA2 as the number of support points increases is tabulated in Table 10 and Table 11. The

responses of the interpolation models 9111(f,h) and 9121(f,h) with 44 support points each determined

with ASA2 and their relative squared errors are shown in Fig. 22 and Fig. 23 respectively.

Table 10. Convergence Of~ll(f, h) determined by ASA I and ASA2 for the capacitive step example.
ASAI ASA2

£,,([, h) [dB] Number of £ll(f, h) [dB]
Mean Max support points Mean Max
-34.4 -20.3 IS -52.5 -35.4
-54.5 -45.7 20 -61.4 -44.9
-57.5 -45.0 22 -62.5 -48.2
-68.2 -50.5 37 -76.2 -51.1
-81.0 -70.1 44 -93.2 -82.3

Table 11. Convergence of ~21(f, h) determined by ASAI and ASA2 for the capacitive step example.
ASAI ASA2

£21([, h) [dB] Number of £21(f, h) [dB]
Mean Max support points Mean Max
-51.3 -38.0 13 -52.3 -44.8
-52.3 -38.0 18 -61.8 -51.9
-65.3 -53.6 22 -64.6 -28.4
-82.2 -61.2 37 -91.5 -71.3
-90.1 -78.5 44 -94.1 -80.7
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Fig. 21. Cross sectional view and side view of the capacitive step.
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Fig. 22. ASA2: Capacitive step example. Magnitude (a) and phase (b) responses Of9{lI(f, h) with 44 support points
and its error EII(f, h) (c).
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Fig. 23. ASA2: Capacitive step example. Magnitude (a) and phase (b) responses Of9\21(f, h) with 44 support points
and its error £21(f, h) (c).

The models 9111(f,1) and 9121(f,1) are established with fE [7GHz, 13GHz], IE [0.5 mm, 5mm] and

h = 5 mm. Table 12 shows the convergence of the models using ASA2 as the number of support

points increases. The responses of the models 9111(f, I) and 9121(f, I) with 45 and 42 support points

and their relative squared errors are shown in Fig. 24 and Fig. 25 respectively. With equivalent

number of support points the errors of the models determined by ASA2 tend to be less by up to

10 dB compared to those determined by ASA1.
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Number of
support points

12
17
21
45

Table 12. Convergence of91df, l) and 9121(f, l) determined by ASA2 for the capacitive step example.
9111(f, l) 912,(f, l)

£1I(f, l) [dB] Number of £,,(f, l) [dB]
Mean Max support points Mean Max
-42.3 -22.1 12 -54.8 -38.0
-57.1 -40.2 16 -56.7 -36.2
-61.1 -50.7 19 -65.6 -51.8
-82.5 -63.8 42 -89.3 -71.1
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Fig. 24. ASA2: Capacitive step example. Magnitude (a) and phase (b) responses of 9111(f, l) with 45 support points
and its error Ell(f, l) (c).
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Fig. 25. ASA2: Capacitive step example. Magnitude (a) and phase (b) responses of9l21(f, l) with 42 support points
and its error E21(f, l) (c).

5.1.3 Inductive posts in rectangular waveguide - 2 variables

Bivariate models mll(f, w) and m21(f,w) were created for the reflection and transmission

coefficients, i.e. Sll(f, w) and S21(f,w), of two perfectly conducting round posts centred in the E-

plane of a rectangular waveguide as shown in Fig. 26. The variables are: frequency f and post-

spacing w. The diameter of the posts d was set to 2 mm and the model was constructed for a

standard WR90 rectangular waveguide with f E [7 GHz, 13 GHz] and w E [4 mm, 18mm]' A

moment method technique is used to analyse this structure [67]. Table 13 and Table 14 exemplify

the convergence of the models m11(f,w) and m21(f,w) using ASAI and ASA2 as the number of

support points increase. The responses of the interpolation models 91II(f, w) and 9121(f, w) with 53

and 57 support points respectively established with ASA2 and their relative squared errors are

shown in Fig. 27 and Fig. 28.
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Fig. 26. Cross sectional view and top view of the inductive posts.
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Fig. 27. ASA2: Inductive post example. Magnitude (a) and phase (b) responses of9lI,(f, w) with 53 support points
and its error £I,(f, w) (c).
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Number of
support points

18
36
48

Table 13. Convergence of9l11(f, w) determined by ASAI and ASA2 for the inductive posts example.
ASAI ASA2

£Il(f, w) [dB] Number of £Il(f, w) [dB]
Mean Max support points Mean Max
-32.4 -16.8 18 -38.1 -23.7
-39.8 -13.8 28 -67.2 -49.2
-88.4 -73.8 53 -91.5 -73.7

Number of
support points

18
36
48
56

Table 14. Convergence of 9l21(f, w) determined by ASA I and ASA2 for the inductive posts example.
ASAI ASA2

£21(f, w) [dB] Number of £'I(f, w) [dB]
Mean Max support points Mean Max
-38.1 -25.1 23 -59.1 -41.6
-39.6 -9.2 30 -52.1 -27.4
-89.8 -68.6 51 -76.8 -51.3
-90.4 -64.9 57 -87.9 -72.5
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Fig. 28. ASA2: Inductive post example. Magnitude (a) and phase (b) responses of 9l21(f, w) with 57 support points
and its error E21(f, w) (c).
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5.1.4 Capacitive step in rectangular waveguide - 3 variables

A trivariate model mll(f,h,l) was constructed for the reflection coefficient, l.e. SII(f,h,l) of a

capacitive step in a rectangular waveguide as shown in Fig. 21. The variables are: frequency f, gap

height h and step length l. The model was created for a standard WR90 rectangular waveguide.

The capacitive step is analysed using the mode matching method [47]. Two sets of models were

established with different interpolation spaces, i.e. a) f E [8 GHz, 12 GHz], h E [3 mm, 7 mm] and

l E [1 mm, 4mm]; and b) f E [7 GHz, 13 GHz], hE [2mm, 8 mm] and l E [0.5 mm, 5 mm]. Table 15

and Table 16 show the results using ASAI and ASA2 respectively. For the smaller interpolation

space the models constructed by ASAI and ASA2 attain an error smaller than -95 dB with

approximately 920 support points. ASA2 has a faster convergence than ASAI. For the larger

interpolation space ASA 1 failed to produce a model with good accuracy, due to the non-optimal

placement of the support points, while ASA2 achieved an error of smaller than -58 dB with 2142

support points.

Table 15. Convergence of 9111(f, h, l) determined by ASAI for the capacitive step example.
f E [8 GHz, 12 GHz], f E [7 GHz, 13 GHz],
h E [3mm,7mm], h E [2mm,8mm],
I E [I mm,4mm] IE [0.5mm,5mm]

Number of E,,(f, h, l) [dB] Number of E,,(f, h, l) [dB]
support points Mean Max support points Mean Max

64 -65.1 -49.5 150 -56.6 -31.1
180 -82.2 -55.5 294 -62.0 -30.1
294 -85.3 -59.5 576 -59.3 -15.1
512 -100.8 -63.1 1300 -81.0 -32.1
832 -108.2 -76.6 1716 -83.2 -35.0
936 -109.3 -96.8 2730 -70.0 -26.7

Table 16. Convergence of911,(f, h, l) determined by ASA2 for the capacitive step example.
f E [8 GHz, 12 GHz],
h E [3mm,7mm],
IE [1mm,4mm]

Number of E,,(f, h, l) [dB]
support points Mean Max

115 -70.7 -21.9
164 -75.5 -46.7
300 -86.6 -57.8
379 -89.9 -75.8
496 -107.3 -86.0
645 -108.3 -94.4
917 -109.1 -97.5

f E [7 GHz, 13 GHz],
h E [2mm,8mm],
I E [0.5mm,5mm]

Number of E,,(f, h, l) [dB]
support points Mean Max

343 -55.5 -15.3
593 -67.0 -31.4
737 -76.5 -40.0
871 -79.5 -47.0
1375 -91.7 -47.7
1758 -96.1 -54.7
2142 -97.2 -58.1

5.1.5 Iris in rectangular waveguide - 3 variables

A trivariate model m21(f, a, b) was created for the transmission coefficient, i.e. S21(f, a, b) of an iris

in a rectangular waveguide as illustrated in Fig. 29. The variables are: frequency f, gap width a

and gap height b. The model was constructed for a standard WR90 rectangular waveguide with
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f E [8 GHz, 12 GHz], a E [8 mm, 15 mm], b E [1 mm, 3 mm] and 1= 1mm. The iris is analysed using

the mode matching method [47]. Table 17 and Table 18 show the results using ASA 1 and ASA2.

ASAI failed to produce a model with good accuracy, due to the non-optimal placement of the

support points, while ASA2 achieved an error of smaller than -52 dB with 736 support points.

Fig. 29. Iris in rectangular waveguide.

Table 17. Convergence of 9\2I(f, a, b) determined by ASA 1 for the iris example.
Number of £21(f, a, b) [dB]

support points Mean Max
252 -37.9 -3.6
1120 -46.2 -7.4
1440 -44.3 -1.5

Table 18. Convergence of 9\21(f,a, b) determined by ASA2 for the iris example.
Number of £2,(f, a, b) [dB]

support points Mean Max
168 -50.0 -18.0
247 -56.9 -19.5
328 -63.2 -31.1
560 -66.5 -33.1
736 -72.7 -52.6

5.2 Multiple output models

Bivariate, multiple output models were constructed for the same structures as given in section 5.1,

where single output interpolation models were constructed for each of the scattering parameters.

This was done in order to illustrate the efficiency of the multiple output models relative to that of

the single output models.

5.2.1 Capacitive step in rectangular waveguide - 2 variables

A bivariate, multiple output model 91(f,h) was created for the reflection and transmission

coefficients, i.e. SII(f,h) and S21(f,h), of a capacitive step in a rectangular waveguide as shown in

Fig. 21 and the results are tabulated in Table 19. Table 20 shows the results for the model 91(f, l),
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which models SII(f, l) and S21(f,l). The parameters for both models 91(f,h) and 91(f, l) are the same

as those given in section 4.2.2. Comparison of these results with those of Table 10, Table 11 and

Table 12, where separate models were constructed for the reflection and the transmission

coefficients, shows that with equivalent model accuracies the total number of support points is

halved.

Table 19. Convergence of9{(f, h) determined by ASA3 for the capacitive step example.
Number of £ll(f, h) [dB) £2I(f, h) [dB)
support points Mean Max Mean Max

15 -52.5 -35.4 -54.8 -37.0
20 -61.3 -44.6 -66.1 -47.2
22 -62.5 -48.3 -65.0 -36.4
37 -76.3 -51.2 -89.9 -65.0
42 -96.4 -85.2 -98.5 -85.7

Table 20. Convergence of 9{(f, l) determined by ASA3 for the capacitive step example.
Number of £,,(f, l) [dB) £2I(f, l) [dB)
support points Mean Max Mean Max

12 -42.8 -22.1 -54.0 -36.6
18 -59.0 -47.9 -65.0 -55.2
22 -61.1 -51.2 -65.4 -55.2
46 -82.4 -63.8 -86.3 -69.0

5.2.2 Inductive post in rectangular waveguide - 2 variables

A bivariate, multiple output model 91(f,w) for an inductive post in a rectangular waveguide as

shown in Fig. 26 was created for the reflection and transmission coefficients, i.e. SII(f, w) and

S21(f,w). The results are shown in Table 21. The parameters for the models 91(f,w) are the same

as those given in section 4.2.3. Comparison of these results with those of Table 13 and Table 14,

where separate models were constructed for the reflection and the transmission coefficients, shows

that with equivalent model accuracies the total number of support points is approximately halved.

Table 21. Convergence of9{(f, w) determined by ASA3 for the inductive post example.
Number of £ll(f, w) [dB) £2I(f, w) [dB)
support points Mean Max Mean Max

23 -61.7 -43.4 -58.7 -41.2
29 -69.3 -54.5 -67.2 -51.6
45 -77.8 -59.6 -78.4 -67.2
56 -87.8 -64.1 -85.7 -70.1
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5.2.3 Longitudinal slot in common broad wall of two rectangular waveguides -
3 variables

A multivariate, multiple output model m(f, I,d) was created to characterise a longitudinal slot in the

common broad wall of two rectangular waveguides as illustrated in Fig. 30. The scattering

parameters that completely define such a discontinuity are SII(f, I,d), S21(f,I, d) and S31(f,I,d). The

port numbers are shown in Fig. 30 with port 1 being the incident port. The variables are: frequency

f, slot length I and slot distance from the waveguide sidewall d. The model was established for a

standard WR90 rectangular waveguide with fE[8GHz,12GHz], IE [3.5mm,10mm],

dE [1 mm, 11mm], slot height t = 2.54mm and slot width w = 0.5 mm. The structure is analysed

using the method of moments [68]. Table 22 shows the accuracy of the model as the number of

support points increase. An error of smaller than -58dB was achieved for all of the scattering

parameters with only 577 support points. Fig. 31 shows the maximum relative errors

Eil(f,!) = max Eil(f, I,d) for all of the modelled scattering parameters of the multiple output
dE[l,11]

interpolation model with 577 support points.

CD CD
II ft :::::J c::

} 0 0)
I. • I

a
d

n
-H-

w

Fig. 30. Cross sectional view, top view and side view of the longitudinal slot in the common broad wall of two
rectangular waveguides.

Table 22. Convergence of9\(f, I, d) determined by ASA3 for the capacitive step example.
Number of £11(f, I, d) [dB] £21(f, I, d) [dB] £31(f, I, d) [dB]

support points Mean Max Mean Max Mean Max
301 -58.2 -14.2 -62.8 -39.4 -60.3 -17.7
403 -66.0 -35.9 -73.5 -51.8 -70.0 -38.8
536 -71.3 -47.8 -70.6 -48.8 -74.0 -48.0
577 -73.6 -57.7 -78.5 -63.3 -76.8 -59.8
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support points for the scattering parameter Sil (f, I, d), (a) i = 1, (b) i = 2, (c) i = 3.

5.3 Conclusions

In this chapter the adaptive sampling algorithm applied to multivariate, multiple output models was

evaluated on a number of passive microwave circuits. Errors of smaller than 0.25 % in the

interpolation space were achieved in all cases. This model accuracy, which depends on the number

of support points, is more than adequate for the purposes of designing most microwave circuits. It

is shown that the adaptive sampling algorithm, which places support points on a non-rectangular

grid, converges faster than an algorithm that places support points on a rectangular grid. The

adaptive sampling algorithm for the multiple output models requires approximately the same

number of support points as by the adaptive sampling algorithm for the single output model.

In summary, the results show clearly that the adaptive sampling algorithm can be used to good

effect in the modelling of microwave circuits.
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CHAPTER 6: EXTENSIONS AND CONCLUSIONS

6.1 Extensions

Different rational interpolants can be constructed from a single set of support points with varying

degrees of accuracy. The method presented in this dissertation is general in the sense that it was not

tuned for specific problems. However, different numberings of the support points may produce

better results especially if knowledge of the function being modelled can be incorporated into the

modelling algorithm.

In this dissertation the support points are essentially selected for a number of single variable

functions in a multivariable interpolation space, which is computationally efficient. However, a

multivariate interpolation technique that has the ability to choose support points totally arbitrarily in

the interpolation space may be more optimal. This requires a different type of interpolant from the

one used in this dissertation. Such a method will be computationally less efficient, because the

whole interpolation space needs to be searched for the selection of new support points.

The modelling of highly non-linear functions can cause the order of the interpolant to become large,

which can cause the interpolant to become numerically unstable. In this case the interpolation space

needs to be subdivided into smaller interpolation spaces. The univariate adaptive sampling

algorithm automatically divides the interpolation interval into smaller intervals when the order of

the interpolant becomes too large. In the multivariate case subdivision is only applied to the set of

univariate interpolants from which the multivariate interpolant is established. A possible extension

would be to automatically divide the whole multivariate interpolation space into smaller

interpolation spaces when required.

The most important extension to the multivariate adaptive sampling algorithm presented here would

be the development of a method that can handle CEM analyses with significant numerical errors.

An interpolant will create a curve that passes through all of the support points. Therefore,

numerical errors will be incorporated into the model, which implies a high order interpolant. For

these cases an approximant to the function being modelled would need to be found so that it be

approximated rather than replicated.

6.2 Conclusions

In this dissertation an accurate and robust adaptive sampling algorithm was developed that used

multivariate rational interpolants based on Thiele-type branched continued fractions to map a multi-

47



dimensional complex numbered input vector to a multi-dimensional complex numbered output

vector. The multivariate interpolant was established from a combination of a set of univariate

interpolants. Starting with low order interpolants, the technique systematically increased the order

by optimally choosing new support points in the areas of highest error, until an accurate

mathematical model with the desired accuracy was achieved.

The standard branched continued fraction interpolation technique, which required a fully filled

rectangular grid of support points, was adapted to allow sampling on a more optimal non-

rectangular grid. The coefficients of the rational interpolant and the evaluation of the function

values were determined in a recursive manner, which made the sampling algorithm fast and

efficient. An error estimate was obtained as a natural consequence of the recursion.

The adaptive sampling algorithm automatically and efficiently selected and minimised the sample

points, which allowed model development without any a priori knowledge of the microwave

structure under study.

The method was evaluated on a number of passive microwave circuits. In all cases an error of less

than 0.25 % in the interpolation space was achieved. It was shown that the adaptive sampling

algorithm, which placed support points on a non-rectangular grid, was superior to an algorithm that

placed support points on a rectangular grid. Comparison of the adaptive sampling algorithms for

single and multiple output models showed that the number of support points determined for a

multiple output model was equivalent to that determined for a single output model.

In conclusion, the method presented here offers a viable technique for the creation of multi-input

multi-output surrogate mathematical models for physical problems. Although the method was

applied only to the CEM field, it is widely applicable and is in no way restricted to the specific

examples shown here.
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ApPENDIX A: SPACE MAPPING OPTIMISATION

A.I Introduction

Different models, a "coarse" model and a "fine" model, may often describe a microwave circuit.

The fine model is considered very accurate but computationally very intensive, while the coarse

model is simple and fast but less accurate or has limited validity range. The coarse model may be

an empirical circuit-theoretic model or a coarse-resolution CEM model. The fine model typically is

a CEM field-theoretic model, or it can be a lab measurement. Coarse models are suitable for

iterative design optimisation, while fine models are often limited to design validation due to their

high computational cost.

Space mapping provides a link between the coarse and the fine models. The technique combines

the accuracy of the fine model with the speed of the coarse model. The bulk of CPU intensive

optimisation is done in the coarse model parameter space.

A.2 Space Mapping Theory [44]

Let the coarse model and fine model input parameters be denoted by vectors Xos and Xem

respectively. Xos is defined in the optimisation space Xos. Xem is defined in the CEM space Xem.

The Xos space and the Xem space model response vectors are denoted by Ros(xos) and Rem(xem)

respectively. Rem(xem) is considered very accurate but computationally very intensive while

Ros(xos) is fast but less accurate.

Space mapping (SM) needs to find a mathematical link between the input parameters of the coarse

model and the input parameters of the fine model. Define a non-linear vector function P that maps

the input parameters of the fine model onto the input parameters of the coarse model as follows:

(22)

The Space mapping problem is then, to find the mapping so that the responses of the two models

are the same, i.e.

(23)

The input parameter x:s' which produces the optimal response in Xos, is determined by performing

conventional design optimisation entirely in the Xos space [69]. The inverse mapping p-1 is used to

find the SM solution in Xem from x:s' as shown in equation (24). The mapped solution xem may
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not be the true optimum X:m•
(24)

The analytical form of P is not available and has to be found by an iterative process, starting from

the point x~~= x:s. At the lh iteration, x~~ is obtained by applying p-l using the current estimate
of P namely p(j)-l, . ,

XU) = pcwl(x' )
em os •

The SM solution is reached when the CEM analysis at x~~ produces the desired response, i.e.

(25)

(26)

where 11.11 indicates a suitable norm and E is a small positive constant. The two models are now

aligned and equation (24) is used to determine the input parameter in Xem,

- - U)Xem - Xem ,

With no solution reached, parameter extraction is used to determine x~~) as follows:

(27)

(28)

In words, parameter extraction determines the input parameters of the coarse model, x~~),whose

response matches the fine model response at x~~. x~) is determined through optimisation in Xos

from the data provided by the CEM analysis at x~~ .

Having determined x~~ and x~~),the mapping P at the lh iteration is calculated. Various methods

have been proposed to determine P [70]. In this dissertation the aggressive space mapping

technique (ASM) is used and is discussed in section A.3. The ASM optimisation process is

illustrated graphically in Fig. AI.

A.3 Aggressive Space Mapping [45]

The aggressive space mapping algorithm aggressively uses every CEM analysis to optimise the

design. A quasi-Newton iteration in conjunction with first-order derivative approximations updated

by the classic Broyden formula refines the mapping.
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Define a set of non-linear equations:

f(xem) = P(xem) - X:s .

As the 8M algorithm converges to a 8M solution, x~) ~ x:s• The goal is X~~+l) = x:s or

(29)

(30)

A quasi-Newton iteration is used to solve the set of non-linear equations in (30). Assuming f can be

linearised locally, the next iterate is:

where hU)solves the linear system

X(j+I) = xU) + h(j)
em em , (31)

(32)

This follows from the Taylor series expansion of (28) about x~~ (ignoring higher order

derivatives): f(x~.:1+h (j) ):::::f(x~~ )+ J(x~~)h (j). BU) approximates the Jacobian matrix

(33)

Adapting the Broyden formula [71], B is updated according to equation (34) and initialised with

B(O) equal to the identity matrix.

A.4 ASM assumptions

f( (j+I)) h (j)I"
B(j+I) = B(j) +_x_em _

h (j)I" h (j)
(34)

• A coarse model and a fine model are available

• Xos and Xem have the same dimensionality

• Xos and Xem describe the same physical parameters

• P exists and is one-to-one within some local modelling region encompassing the 8M solution

• for a given Xem its image Xos can be found by a suitable parameter extraction procedure and this

process IS umque

56



x, x, x, x,

X~
•

XI XI X I
COARSE \IODEL FIXE ~10DEL COARSE ~lODEL n:\E ),fODH

(a) (b)
X, X, X, X,

-I x~~: x~~pll'
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Fig. At. Illustration of aggressive space mapping: (a) initialisation, (b) performing coarse model parameter extraction
to match the fine model response, (c) applying the inverse transformation to obtain the fine model point, (d) performing

coarse model parameter extraction, (e) applying the updated inverse transformation.

A.S Implementation of the ASM algorithm

(I) _ •Initialise: xem - xos

B(l) = I (the identity matrix)

f( (I»)_p( (I») •xem - xem - xos

j=1

Stop if Ilf(x~~)11 ~ f/
Iteration j: Solve BU)hU) = -f(x~~) for hU)

Set xU+J) = xU) + hU)
em em

Compute f(xU+1»)= p(xU+1»)_ X.
em em os

Stop if Ilf(x~~+I))11 ~ f/
Update BU) to BU+l)

Setj=j+ 1; Next iteration.

'7 is a small positive constant.

57


	lehmensiek_efficient_2001
	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014

	lehmensiek_efficient_2001 1
	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014

	lehmensiek_efficient_2001 2
	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015

	lehmensiek_efficient_2001 3
	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015

	lehmensiek_efficient_2001 4
	00000001
	00000002
	00000003
	00000004
	00000005


