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COVID-19 is affecting healthcare resources worldwide, with lower and middle-income

countries being particularly disadvantaged to mitigate the challenges imposed by the disease,

including the availability of a sufficient number of infirmary/ICU hospital beds, ventilators,

and medical supplies. Here, we use mathematical modelling to study the dynamics of COVID-

19 in Bahia, a state in northeastern Brazil, considering the influences of asymptomatic/non-

detected cases, hospitalizations, and mortality. The impacts of policies on the transmission

rate were also examined. Our results underscore the difficulties in maintaining a fully

operational health infrastructure amidst the pandemic. Lowering the transmission rate is

paramount to this objective, but current local efforts, leading to a 36% decrease, remain

insufficient to prevent systemic collapse at peak demand, which could be accomplished using

periodic interventions. Non-detected cases contribute to a∽55% increase in R0. Finally, we

discuss our results in light of epidemiological data that became available after the initial

analyses.
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In December 2019, clusters of a respiratory disease attributed to
a potentially novel coronavirus were identified. This hypoth-
esis was rapidly confirmed, and the virus was named as severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the
causal agent of coronavirus disease 2019 (COVID-19). This novel
coronavirus rapidly spread across Asia, Europe, and other con-
tinents, achieving pandemic status, as determined by the World
Health Organization, on March 11, 2020. As of October 2020, all
parts of the world were, to varying degrees, impacted by the
COVID-19 epidemic, with more than 40 million cases and 1.1
million deaths reported globally1, in what can be construed as the
worst pandemic since the Spanish flu (1918–1920).

A prominent feature of the current pandemic is the high person-
to-person transmissibility of the virus, with a basic reproduction
number (R0) estimated at 2.2–2.5 in Wuhan, China, where initial
cases were detected2,3. Other worrying aspects are the severity of
clinical complications and the lack of vaccines or effective drugs to,
respectively, prevent disease and accelerate the patient’s recovery.
Consequently, the only effective mechanisms currently available to
dampen viral spread are non-pharmaceutical interventions (NPI),
and the population’s adherence thereof. Among these are social
isolation and distancing, quarantine, travel restrictions, and chan-
ges in individual behavior, such as the widespread usage of face
masks and heightened preoccupation with hygiene4.

The sudden increase in demand for hospitalization during the
pandemic, leading to collapse in health systems due to insufficient
medical infrastructure and healthcare resources, has particularly
impacted countries with limited healthcare infrastructure, such as
those in Latin America. Brazil, the largest country in this region,
provides a cautionary example of the profound impacts of
COVID-19 on health systems. The first confirmed case of
COVID-19 in Brazil occurred on February 26, 2020, in the state
of São Paulo, although multiple independent introductions have
occurred, fueled by returning international travelers5, and
nationwide community transmission was declared on March 20.
As of October, 2020, the number of confirmed COVID-19 cases
exceeded 5.2 million nationally, with over 150,000 deaths repor-
ted. Bahia, located in northeast Brazil, has a population of 14.8
million throughout its 417 municipalities, with a territorial
extension of 567,295 km2, comparable to that of France. In spite
of its economic importance (with the sixth highest gross domestic
product among all Brazilian states), the state of Bahia presents
marked intra-regional disparities in terms of access to health,
with hospitals and healthcare investments unequally distributed
around the state6. Thus, Bahia is a representative example of how
COVID-19 impacts health resources in low and middle-income
countries, and the effects of measures implemented in an attempt
to mitigate damaging consequences.

Mathematical models are proving instrumental in studying the
current COVID-19 pandemic7, as well as in driving governmental
policy. A hallmark of the latter was the radical shift in actions of
some governments defending “herd immunity” strategies, as
models produced by the Imperial College London projected
massive death tolls before reaching this objective8. Substantial
insights into the dynamics of disease spread can be gained by
using compartmentalized models, such as 3-compartment SIR
(susceptible-infected-recovered)9. Models that build on these
principles have flourished in the recent literature, even extending
the number of compartments to study other key aspects of
COVID-19, including the role of asymptomatic transmission10,11,
social distancing, and quarantine strategies3,12–15, as well as post-
epidemic scenarios, e.g. the probability of novel outbreaks16,17.
The need for hospitalization under various conditions has also
been evaluated using mathematical modeling18–20.

In this work, we further explore hospitalization needs in a low-
resource state during the COVID-19 pandemic, with particular

emphasis given to hospital ward (throughout the text referred to
as clinical) and intensive care unit (ICU) bed requirements.
Particularly, we describe an 8-compartment model with variable
disease transmissibility over time, considering transmission by
asymptomatic/mild cases, which usually go undetected, hospita-
lization of severe cases (requiring clinical/ICU beds) and mor-
tality. The parameters of this model are partially locally informed
using data from hospitals dedicated to treating COVID-19
patients in the region, and partly calibrated against the data
(cases, deaths) provided by local health authorities, with optimal
parameters identified using particle swarm optimization meta-
heuristics. This model was applied to study the ongoing COVID-
19 outbreak in the state of Bahia, Brazil, an example of a low-
resource setting with pronounced inequalities in healthcare
access, but could be extended and is directly applicable to other
regions, offering the potential to aid in setting targets that may
guide to the analysis of the evolving COVID-19 pandemic, in
addition to informing the extent of governmental measures
required. Finally, we performed an ex-post evaluation of the
COVID-19 epidemic in Bahia using data that became available
after the initial analysis, focusing on the actual clinical/ICU beds
usage during the period, the number of COVID-19 cases and
deaths, and the utility of the proposed model to describe the
epidemic in real-time.

Results
Model sensitivity analysis. We first conducted a sensitivity
analysis to evaluate the most influential parameters of the model.
Of note, the variance-based method used accounts for interac-
tions among the model variables. These results revealed the factor
that reduces the infectivity of the asymptomatic/non-detected, δ,
to be among the most influential parameters to every model
output during the whole period evaluated. Also, the transmission
rate β was identified as exerting an important role in the model
dynamics, as expected. Particularly, during the first 30 days β0 is
the most important parameter in the system, as indicated by
higher values of the total effect index (ST). After this period, the
importance of β0 decreases as that of β1 increases, eventually
superseding the former as the most important parameter in the
system. For H, U, and D, the most influential parameter during
the initial stages of the simulation (before day 15) is the pro-
portion of symptomatic needing hospitalization or ICU, h,
together with the transmission rate (Supplementary Figs. 1, 2).
The full analysis is presented in Supplementary Note 2.

Effects of social distancing and governmental interventions on
disease transmissibility were observable shortly after onset. We
started our analyzes by assessing the effects in disease transmis-
sibility that local non-pharmaceutical interventions (NPI) have
produced in the Bahia state, in its capital Salvador, as well as in
the remaining cities (all municipalities in the state except the
capital). For this, the model was fitted using the number of
confirmed cases as declared by local authorities (Fig. 1) and we
estimated parameters related to the transmission rate (β0, β1), the
time point when it changes, and the factor that reduce the
infectivity of the asymptomatic/non-detected, δ. We observed
that the initial (pre-intervention) transmission rate was β0= 1.28
([1.26–1.30] 95% CI). A reduction of 36% on the transmission
rate, yielding β1= 0.92 ([0.91, 0.93] 95% CI), is evidenced around
April 2 (27 days after the first confirmed case in the state). In
Salvador (with a population of 2.6 million people), this reduction
was of 54.7% (on March 26), while the remaining cities displayed
a decrease of approximately 40.6% (on April 3, 2020). The
factor that reduces the infectivity of the asymptomatic/non-
detected was determined to be δ= 0.34 ([0.33, 0.35] 95% CI) at
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the state level, δ= 0.71 ([0.69, 0.72] 95% CI) in the capital and
δ= 0.62 ([0.60, 0.64] 95% CI) in the remaining cities. The basic
reproduction numbers for Bahia, Salvador and the other 416
municipalities were, respectively, of R0= 2.25 ([2.19–2.31] 95%
CI), 3.56 ([3.44–3.69] 95% CI) and 2.45 ([2.36–2.55] 95% CI).

These results show that the combined effects of changes in
human behavior with the governmental policies of movement
restriction resulted in significant decreases of the transmission
rate, as measured by the β parameter. However, these efforts are
still insufficient to curb the epidemic in the state, as the basic
effective reproduction number still exceeds 1 (see Fig. 2),
indicating a scenario of continuing growth. Next, we present
the results of the consequence of this growth in local health
resources.

Projecting hospitalization requirements in Bahia, Brazil:
challenges for low-resource settings. We evaluated the burden
on hospitalization needs imposed by the COVID-19 epidemic at
the state level, as well as the effects of NPI strategies on these
requirements. We also estimated the total number of deaths
projected by the model in the absence and during the enforce-
ment of distancing measures. Our results, presented in Fig. 3,
show that, in the absence of interventions, the state level avail-
ability of clinical beds would be exhausted by April 24, 2020.
With the maintenance of the current level of interventions, this
depletion is shifted in time and would occur by May 9. Analo-
gously, the demand for ICU beds would exceed the installed
capacity by April 26 in the absence of interventions, and by May
13 with the current rate of interventions.

The real-world, state-level data obtained for May 4, the last day
with available bed occupancy observations, shows that 240
(51.5%) clinical beds were occupied, while 176 (41.7%) ICU beds

were in use. Our model-based analysis yields an increase in these
numbers by 6.5 (1581 beds) and 6.4 (1131 beds) times for clinical
and ICU beds, respectively, if interventions had not been adopted
in the state. On the other hand, measures enforced decreased the
number of cases and deaths by 7 and 4 times, respectively,
compared to the scenario where no measures are in place.

These results underscore the impact that the ongoing COVID-
19 epidemic imposes on hospital resources and mortality, and
particularly explicit the challenges faced by countries with more
limited healthcare systems. Even if we consider overestimation of
the prediction results, the simple doubling of the current real-
world bed occupancy data would already result in exceeding the
current availability of clinical and ICU beds in the state.

The obtained R0 is as before and the effective reproduction
number is presented in Fig. 2. We can notice a trend of reduction
on the effective reproduction number, althoughRðtÞ is above one
throughout most of the time series for the state of Bahia.
Interestingly, our analysis of how non-detected cases (asympto-
matic/mild infections) influence the course and dynamic of
transmission revealed that these individuals contribute to an
increase of 55.03% on the basic reproduction number.

A model-informed strategy of periodic interventions to reduce
COVID-19 transmissibility in an effort to protect health sys-
tems. The previous results revealed the favorable effects that
interventions resulting in decreased transmission rate have on
shifting the peak of hospitalization saturation (complete occu-
pancy of available beds), and in decreasing the number of cases
and deaths. However, these results showed that complete
saturation is inevitable under our local conditions. We next
evaluated to what extent more vigorous restriction policies, and
their duration/periodicity, would be useful in order to prevent the

Fig. 1 Projection of the the number of cases with a changing transmission rate. (a) in Bahia; (b) in Salvador, and (c) in the remaining 416 municipalities.
The parameters κ= 1/4, p= 0.2, γa= 1/3.5, γs= 1/4 were fixed and h was set to zero for the capital and inland cities. The black dots correspond to the
actual number of cases. The vertical dashed red lines are the dates of transition from β0 to β1. The blue dashed and full lines represent the evolution of the
epidemic with a fixed transmission rate β0 and with both β0 and β1, respectively. The shaded error bands represent 95% confidence intervals of the mean
calculated using the weighted non-parametric bootstrap method. Raw data from March 6 to May 4, 2020 are shown in this graph.
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complete collapse of the state-level health system. To address this
question, we used the SEIIHURD model to study the epidemic
dynamics under various scenarios.

Initially, and in order to assert that disease transmissibility is
the driving factor leading to increased hospitalization require-
ments, we considered a scenario where the transmission rate of
asymptomatic/non-detected individuals was increased by 50%
starting in May 5 (Fig. 4). After 20 days, we noticed an increase of
cumulative cases and deaths of, respectively, 50%, and 37%.
Accordingly, clinical and ICU bed requirements increase by 75%
and 87.5%, respectively. This scenario is illustrative of a situation
where the movement restriction of individuals asymptomatic or
having only mild symptoms (non-detected infections) is eased.

By accounting for non-detected cases, our modeling-based
approach allowed the estimation of the infection fatality ratio
(IFR), which considers deaths as a proportion of the total number
of cases irrespective of severity or symptomatology. Our
simulations of the SEIIHURD model yielded an overall IFR of
0.69% ([0.67, 0.71] 95% CI) for the state of Bahia, in line with
preliminary findings from a literature meta-analysis that reported
an estimated IFR of 0.68% ([0.52, 0.82] 95% CI), characterized by
extensive heterogeneity across countries21,22. In addition, model-
ing allows the estimation of the overall fraction of infected in the
population exposed to the virus, allowing to investigate whether
decreases in the transmission rate are driven more by a decreased
pool of susceptibles or as a result of effective control policies. We
estimated that, by May 4, 2020, around 0.1% of the population
had been infected (either symptomatic or asymptomatic/non-
detected) (Supplementary Fig. 3), in line with seroprevalence
studies for the region23, reinforcing the benefits of control policies
to contain the viral spread, at least in the initial epidemic phase.

The previous results confirmed the importance of controlling
disease transmissibility. Then, we turned to set targets that would

allow for an increase in the protection of the healthcare system.
These scenarios are illustrated in Table 1. We show that an
intervention that reduces the transmission rate by 25%, enforced
on May 2, 2020 (7 days before the predicted collapse of the
system), for 30 days, would not yield significant improvements,
resulting in a gain of only 2 days until clinical beds collapse, and
8 days until ICU bed capacity is exhausted. Similar results can be
achieved by a more punctual (7 days period), but more vigorous
intervention reducing transmission rate by 50% (Table 1). More
interestingly, a delay of about 40 days for clinical and ICU bed
exhaustion can be achieved in a scenario where a 50% reduction
on the transmission is sustained for 30 days, or when a 75%
reduction is endured for 14 days (Supplementary Fig. 4).

The timing of interventions is also crucial under our model. If a
vigorous intervention is only adopted on the day when clinical
bed occupancy reaches its maximum availability (on May 9), a
time lag will be needed in order to allow for patient turnover in
hospitals. Once occupancy is below the total availability,
interventions can be continued or suspended. In the latter case,
hospitalization requirements recommence to rise until reaching
the health system’s capacity once again. Under this scenario, an
intervention that reduces the transmission rate by 25% will not be
enough to protect health resources, even if policies are
maintained for long periods of time (Supplementary Fig. 5).
Similar results are seen when we consider the reduction of the
transmission rate by 50%, as shown in Table 2. Thus, harsher
efforts to contain disease transmissibility, and for more extended
periods, are necessary to allow for a full recovery of the healthcare
system.

The previous results, combined, show that intense efforts to
decrease COVID-19 transmissibility are needed in order to
overcome a complete collapse of the healthcare system in a low-
resource setting such as that encountered in Bahia, Brazil. Of

Fig. 2 Effective reproduction number. Results for (a) Bahia, (b) Salvador, and (c) the remaining 416 municipalities up to May 4, 2020. The black solid lines
represent theRt calculated with reported number of new cases; the blue dashed lines represent theRt calculated with the new number of simulated cases
obtained from the model. The red dashed lines indicate Rt ¼ 1.
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note, under some of the presented scenarios full re-establishment
of the hospitalization capacity may not be achieved if the timing
to enforce more strict measures to decrease the transmission rate
is not optimal. Accordingly, periodic interventions may be needed
to control secondary waves of the outbreak. In Fig. 5 we illustrate
the behavior of the spread dynamics of COVID-19 in Bahia if
measures are periodically adopted. We present the behavior of
implementing measures for a period of 30 days, followed by an
easing of 30 days, and this being repeated periodically. These
results show that even a reduction of 50% of the current
transmission rate is insufficient to remain below the actual
availability of health resources. Nevertheless, this implementation
may be combined with the expanding of health capacities,
limiting the need of more intense interventions.

Real-time modeling. The previous analyses comprised data
available up to May 4, 2020. By leveraging the most current
epidemiological data available for the on-going epidemic, we were
able to juxtapose the original predictions of the SEIIHURD model
with the COVID-19 epidemic unfolded in Bahia up to September
13, 2020. For this ex-post assessment, we first compared 30 days
predictions of the original model (calibrated on May 4) with
actual data for the period (Fig. 6), reasoning that homogeneous
models, such as ours, have a limited long-term prediction capa-
city for the state as a whole, and in a real-world situation where

the model is used for predicting the allocation of healthcare
resources, re-calibration with more current data would improve
the accuracy of predictions while providing a reasonable time-
frame for the management of resources by policy-makers.

The 30 days prediction of the original model (calibrated on May
4, 2020) was able to satisfactorily predict the number of reported
cases, deaths, and ICU requirements, with real-world values falling
within our predicted confidence intervals (Fig. 6). Confirming our
original predictions, under a scenario where interventions were
maintained, the ICU bed availability would be exhausted by May
13, while this capacity was actually reached on May 24, 2020
(11 days later) as indicated by the data, also within the range of the
estimated confidence interval. A less accurate result is shown for
the hospitalization requirements. With a collapse estimated to
occur on May 9, the data related to clinical beds occupations only
reached its capacity on May 29. It is possible that hospitalization
parameters may have changed during the period, however, we
were not able to obtain updated data of the hospitalization
dynamics in ICM to confirm whether this actually occurred.

Lastly, to describe the most up-to-date transmission dynamics
in Bahia, we re-estimated our model with data available up to
September 13, 2020 (Fig. 7). We maintained the parameters
conditions as described in “Methods”, while allowing for a new
transmission rate variability. The new estimates showed a
reduction of the transmission rate on June 11, hinting on an
increased control of the epidemic in Bahia.

Fig. 3 Effects of the implemented interventions in Bahia. Effects on the number of (a) cases, (b) deaths, (c) clinical hospitalization, and (d) ICU bed
requirements at the state level. The horizontal red dashed lines are, respectively, the current capacity for beds for clinical hospitalization (466 beds) and
ICUs (422 beds). The blue dashed and full lines represent the evolution of the epidemic with a fixed transmission rate β0 and with both β0 and β1,
respectively. The shaded error bands represent 95% confidence intervals of the mean calculated using the weighted non-parametric bootstrap method.
Residual analysis to visualize a tendency between the data and simulations are presented in Supplementary Fig. 7. The assumed parameter values are
shown in Supplementary Table 3. Raw data from March 6 to May 4, 2020 are shown in this graph.
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Discussion
The COVID-19 pandemic poses unprecedented challenges to
healthcare resources worldwide. Our results based on actual
epidemic data and on the generalization of the SEIR model,
taking into account non-detected infections, hospitalization
demands, and mortality, highlight some relevant scenarios for
COVID-19 in Bahia, a Brazilian state with exacerbated inequal-
ities in health coverage and access. The trajectory of the epidemic
can be characterized by the basic reproduction number (R0>1),
which reflected the exponential growth of cases at the beginning
of the epidemic in Salvador, the capital of Bahia, as well as its
remaining 416 municipalities. We show that a reduction in

disease transmission rate, as a result of non-pharmaceutical
governmental interventions initiated on March 17, led to
decreases in the number of cases, hospitalization demands and
mortality up to May 4, which is represented in the model by a
step function of transmission rate. We further show a reduction
of 36% in the transmission rate in the 2 months since the first
case was confirmed in Bahia. This may be partly attributed to
population adherence to social distancing recommendations and
convergent actions taken by local government authorities at the
state and municipal levels. The effect of social distancing also
became apparent in the time series modeling of the effective
reproduction number, RðtÞ, which continued to be greater than 1

Fig. 4 Effect of easing the social distancing for individuals with asymptomatic/mild infections in Bahia. Impact on the (a) number of cases, (b) deaths,
(c) clinical hospitalization, and (d) ICU bed requirements at the state level. Here, the value of δ has been increased by 50% (δ= 0.51 in this simulation).
The black dots correspond to the actual number of cases (a), deaths (b), and hospital bed occupancy (c)–(d). The assumed parameter values are shown in
Supplementary Table 3. Raw data from March 6 to May 4, 2020 are shown in this graph.

Table 1 Scenarios of an immediate intervention in May 2, 2020, with variations of the transmission rate and intervention length.

Percentage of transmission rate
reduction

Intervention length (days) Date of hospitalization beds
collapse (delay, in days,
compared to baseline scenario)

Date of ICU beds collapse
(delay, in days, compared to
baseline scenario)

7 05/11/20 (2) 05/17/20 (4)
25% 14 05/11/20 (2) 05/20/20 (7)

30 05/11/20 (2) 05/21/20 (8)
7 05/15/20 (6) 05/21/20 (8)

50% 14 05/24/20 (15) 05/31/20 (18)
30 06/17/20 (39) 06/23/20 (41)
7 05/22/20 (13) 05/27/20 (14)

75% 14 06/08/20 (30) 06/13/20 (31)
30 07/17/20 (69) 07/21/20 (69)
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(RðtÞ> 1), despite the implementation of governmental
measures.

Several measures to control the spread of the disease have been
enforced by local governments, some of them even before the
notification of the first cases of community spread, on March 19.
From 17–28 March, measures were gradually applied and inclu-
ded the ban of public gatherings of over 50 people, closure of
schools, mandatory home isolation for people with respiratory
symptoms, adoption of teleworking for individuals of risk groups,
and the reduction of circulation of interstate buses and intercity
transportation between places where SARS-CoV-2 community

transmission was declared. Concerning the latter, it is possible
that the transmission rate decrease observed for the capital led to
a corresponding reduction in the remaining municipalities due to
decreased transportation flux of individuals.

Given the extent of measures adopted from March 17 onward,
our results show that the reduction of the demand for clinical and
ICU beds possibly avoided an immediate surge in hospitalization
needs leading to system collapse, at least up to May 15. However,
the simulated scenarios revealed that easing social distancing
measures abruptly, which will result in increased transmission
rates, should not be considered due to the non-linear transmission

Table 2 Scenarios of critical interventions adopted exactly when total clinical beds availability is reached (05/09/20), with
variations of the transmission rate and intervention length.

Percentage of
transmission rate
reduction

Intervention length
(days)

Date when the
hospitalization threshold
is re-achieved (days)

Date of second
hospitalization collapse
(days of delay)

Date when the ICU
threshold is
re-achieved (days)

Date of second ICU
collapse (days of
delay)

7 does not occura – b 05/18/20 (5)
14 does not occura – b 05/26/20 (13)

50% 30 does not occura – b 06/21/20 (39)
60 06/17/20 (39) 07/30/20 (43) b 08/04/20 (83)
90 06/17/20 (39) 09/10/20 (86) b 09/15/20 (125)
7 does not occura – b 05/25/20 (12)
14 05/26/20 (17) 06/05/20 (10) b 06/12/20 (30)

75% 30 05/26/20 (17) 07/17/20 (52) b 07/21/20 (69)
60 05/26/20 (17) 09/26/20 (123) b 09/30/20 (140)

–, does not apply.
aHospitalization is not reduced enough to reach the actual capacity.
bICU did not collapsed.

Fig. 5 Effect of periodic interventions in Bahia. Simulated impact on the (a) number of cases, (b) deaths, (c) clinical hospitalization, and (d) ICU bed
requirements at the state level. The transmission function β, as in Eq. (1), is defined by considering a reduction of 25% (yellow curves), 50% (blue curves),
and 75% (green curves) on the β1 parameter. The red curves consider a scenario of no reduction in β1, and the period is the intervention window of 30 days.
The dashed horizontal lines in (c) and (d) indicate the total number of clinical and ICU beds available in the state, respectively, in that moment. The black
dots correspond to the actual number of cases (a), deaths (b), and hospital bed occupancy (c)–(d). The assumed parameter values are shown in
Supplementary Table 3. Raw data from March 6 to May 4, 2020 are shown in this graph.
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of the disease and the significant number of non-detected infec-
tions, which have been considered as the source for the majority of
cases in the previous studies10.

Our results reinforce the negative effects on healthcare
resources related to the circulation of asymptomatic/mild cases,
which usually go undetected. Accordingly, policies aiming at
relaxing the current level of social distancing measures, in a
scenario where the majority of the population does not have
access to diagnostic tests, could pose an additional burden on an
already limited health system infrastructure. These results are in
line with a recent study suggesting early self-isolation as a strategy
to cope with the increasing demand for COVID-19-related
hospitalization18.

Bounds for δ (a factor associated with the infectivity of
asymptomatic/non-detected) were defined based on the previous
studies10,17,24, which suggest that it is lower than that of symp-
tomatic individuals (thus, δ < 1). However, based on the search
interval for δ between 0 and 0.75, simulations of a greater
transmission by non-documented infections due to an increased
circulation of individuals presenting with asymptomatic/mild
disease can also be indicated by values of δ ≥ 1. The sensitivity
analysis presented in our modeling results revealed the impor-
tance of increased knowledge of the extent to which infected
individuals, with varying degrees of symptoms, are able to
transmit the disease.

The consequences of the spread of the disease are even worse
when the healthcare system is no longer able to support the

number of patients needing specialized assistance–a situation
referred to as a health system collapse. Our results point that non-
pharmaceutical measures should be implemented in order to
reduce the transmission rate of the disease, and consequently gain
time to create new hospitals, acquire protective equipment
material and guarantee human resources. But what can be done
when faced with an already collapsed health system? We per-
formed simulations to address this question, presenting different
scenarios in order to determine an efficient strategy, by con-
sidering the period and intensity of interventions. The interven-
tions can be applied at a single moment in time and kept until a
decrease of the number of cases is observed, or a combination of
interventions can be enforced at different time intervals, as pro-
posed in other works25,26, depending on testing and monitoring
capacities and/or local social-economical conditions. Our results
show that, when faced with an already collapsed system, only
vigorous measures (that reduce the transmission rate by at least
50%) enforced over at least two months or, alternatively, mea-
sures capable of reducing transmission by at least 75% over a 2-
week period, are capable of re-establishing hospitalization
operation capacity. Albeit harsh, other countries have successfully
managed to reduce transmission at such figures by employing a
myriad of public health measures (including intra-city and
intercity travel restrictions, social distancing, home confinement,
and centralized quarantine and expansion of available medical
resources)27. Of note, even in the event that the transmission rate
is decreased at these levels, a further, second collapse on

Fig. 6 Real-time comparison between the modeling analysis in Bahia and reported data updated up to June 4, 2020. (a) Cumulative number of cases;
(b) cumulative number of deaths; daily (c) clinical, and (d) ICU bed requirements in the state of Bahia. The model was fitted based on data up to May 4,
2020, represented by black dots, as shown in Fig. 3. The shaded error bands represent 95% confidence intervals of the mean calculated using the weighted
non-parametric bootstrap method. Gray dots depict the newly available data up to June 4, 2020. The horizontal red dashed lines in panels c and d
represent, respectively, the number of beds for clinical hospitalization (466 beds) and ICUs (422 beds) available on May 4, 2020. Raw data from March 6
to June 4, 2020 are shown in this graph.
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hospitalization needs cannot be completely averted, a result which
evidences the importance of timely enforcement of interventions.

By performing an ex-post assessment of the model calibrated
on May 4, 2020 compared with the actual epidemic dynamics in
Bahia, the usefulness of the SEIIHURD model to predict the peak
demand for ICU beds in the state was illustrated, with real-world
values falling within our confidence intervals. Longer-term pre-
dictions, however, are hampered by the inherent complexities of
an unfolding epidemic, where human behavior, timing of
deployment and lifting of governmental policies and related
parameters cannot be fully expressed by modeling strategies
alone. Ultimately, these will all be reflected as changes in the
transmission rate over time. It should also be stressed that some
of these factors may also impact directly the demand for hospi-
talization beds in the months following the start of the epidemic,
leading to a different range of clinical hospitalizations, which may
help explain the differences in the results obtained for clinical bed
usage. A re-calibrated model with epidemiological data up to
September 13, 2020 showed that a third decrease in the trans-
mission rate occurred around June 11, in line with a further
strengthening of state measures that took place at the end of May
that could have had a positive impact on the epidemic control28.

Our findings have some limitations. First, this study was car-
ried out with reported confirmed cases, which may result in an
underestimation of the real incidence of COVID-19, a problem
also common to other diseases29, as mass testing is still not
performed in the country. However, the currently available
national surveillance data can be considered adequate for the

identification of trends of the disease, as this system is standar-
dized and implemented in all municipalities in the country.
Nevertheless, we were able to parametrize our model to a more
realistic setting by using hospitalization data from a local refer-
ence infectious disease hospital currently dedicated to the care of
COVID-19 patients, and the results were compared to key epi-
demiological parameters obtained from the literature. Thus, our
modeling strategy has as an advantage being locally informed,
yielding more realistic results. The implemented model does not
consider the transmission by infected individuals undergoing
hospitalization, although it is known that healthcare workers are
more at-risk of many airborne infections, and transmission is
particularly high during procedures that generate aerosols30. The
model presented in this work is not optimal to address possible
case-clustering effects, although the qualitative behavior of our
results remains unaltered with respect to varying population sizes
(Supplementary Note 3). Heterogeneous models can further be
used to address this question, which would also require data with
increased granularity. In spite of these limitations, given the
general character of the mathematical model described herein, it
may be readily applied to other places currently tackling the
COVID-19 epidemic with simple re-estimation of the assumed
values for parameters, and by taking into account the local
COVID-19 epidemic situation. Notably, our predictions of
the infection fatality ratio, estimated at an overall 0.69%
in Bahia, are in line with current estimates drawn from multiple
studies worldwide (of 0.68%)21, reinforcing the utility of the
obtained model.

Fig. 7 COVID-19 dynamics in Bahia. Projection of the (a) number of cases, (b) deaths, (c) clinical hospitalization, and (d) ICU bed requirements with a
changing transmission rate in Bahia up to September 13, 2020. The horizontal red dashed lines in plots c–d, are, respectively, the number of beds for clinical
hospitalization (466 beds) and ICUs (422 beds) available on May 4, 2020. The shaded error bands represent 95% confidence intervals of the mean
calculated using the weighted non-parametric bootstrap method. The assumed parameter values are shown in Supplementary Table 4. Raw data from
March 6 to September 13, 2020 are shown in this graph.
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By drawing on different modeling scenarios, this work
attempted to determine an efficient strategy to be employed in an
effort to avoid a collapse in the local healthcare system, taking
into account the length and the intensity of governmental inter-
ventions. A compromise between the availability of hospital/ICU
beds and the pool of susceptible individuals was identified, for
which modeling indicates the eventual occurrence of subsequent
waves of infection, leading to further shortages in hospital/ICU
beds. Our results underscore the crucial need for policy-makers to
take into account the results of data-informed modeling when
considering the lifting of restrictive measures.

Methods
Data sources and case definition. The models produced in this study were
informed by data from multiple sources: The daily series of the cumulative con-
firmed COVID-19 cases and the daily mortality series for the state of Bahia, its
capital Salvador and the remaining cities were obtained from publicly available data
provided by the Secretary of Health of the State of Bahia (SESAB). Throughout our
analyses, we consider separately the state capital (which concentrates the number
of cases in the region and is an important touristic destination) and the remaining
416 municipalities. Local health authorities use the following case definition of
COVID-19, based on two criteria: (i) clinical/epidemiological, namely a case of
suspected flu-like syndrome or severe acute respiratory syndrome (SARS) who had
contact with a laboratory-confirmed COVID-19 case in the last 7 days prior to
symptoms onset; or (ii) clinical/laboratory, a suspected case of flu-like syndrome or
SARS with a positive SARS-CoV-2 serology (IgM and/or IgG) or real-time PCR
result.

Additionally, state-level daily hospital bed occupancy of clinical and ICU beds
were provided by SESAB. By May 2020, the state of Bahia had a total of 888
hospital beds dedicated to the treatment of COVID-19 patients, of which 466 are
clinical hospitalization and 422 are ICU beds. This data was not available at the
municipal level; rather, due to the Brazilian administrative division of health
regions, hospital bed occupancy was evaluated at the state level only. Data was
available throughout the period of March 6 to May 4, 2020 for the initial analysis
and up to September 13, 2020 for the ex-post assessment.

We also had access to administrative data from a reference infectious disease
hospital located in Salvador (Instituto Couto Maia; ICM), in cooperation with the
Rede CoVida consortium team. ICM is the leading public hospital in the state of
Bahia for the treatment of COVID-19 patients. The collected hospital
administrative data, aggregated across 231 patients followed from admission to
discharge/death in the period of March 23 to April 16, 2020, were used to inform
the hospitalization-related model parameters, including the search intervals for
optimization procedures, as described in Section “Evaluation and estimation of
model parameters”.

The estimated population of Bahia in 2020 was obtained from the Brazilian
Institute of Geography and Statistics (IBGE).

Assumptions and model construction. In this section, we present the SEIIHURD
model that subdivides the population into eight compartments, as follows: sus-
ceptible (S), those who are not exposed to the disease; exposed (E), individuals who
have been exposed to the virus and are in a latent, non-infectious period; (I)
infectious, those currently infected and capable of transmitting the disease to
contacts; recovered (R), those who were previously infected and recovered from the
disease; deaths (D) those that resulted from death due to COVID-19, after passing
for a period of hospitalization or ICU. The infectious individuals are further
separated into asymptomatic/non-detected infections, denoted Ia, and sympto-
matic, denoted by Is. Of note, COVID-19 transmission by undocumented infec-
tions, which encompasses truly asymptomatic (individuals that never develop
symptoms) as well as those that present with very mild symptoms, has been shown
to facilitate the spread of SARS-CoV-210. Thus, individuals in the Ia compartment
represent this group of persons that usually do not require hospitalization, are not
accounted for in the official data, and define a subset of non-detected infections.
However, a proportion of the infected will present with severe symptoms requiring
hospitalization (clinical beds) (H), while those in critical conditions will eventually
require ICU admission (U). For simplicity, we have neglected the transmission of
individuals in compartments H and U, assuming that hospital containment
decreases the chances of contact with susceptible individuals. We also consider a
flux of patients between the H and U compartments, as individuals initially
admitted to a clinical ward may worsen their condition and require an ICU bed.
Furthermore, all patients in U are transferred to H prior to discharge and recovery.
This assumption was based on the analysis of the administrative data from ICM, in
which we observed that all patients requiring ICU beds had one of two outcomes:
They were moved to hospitalization wards (H) before recovery and discharge; or
they died as a result of disease. In addition, this administrative patient flow is also
reported to be more common in the literature than a discharge directly home31. In
Supplementary Fig. 6 we present the flow diagram of the proposed model. Similar
works can be found in refs. 10,14,19,32.

To account for local interventions of movement restriction (such as
governmental stay-at-home orders), we consider the transmission rate as a
function of time, varying according to local measures. To define β, let {t1, t2,…, tn}
be a set of points in time defining the change in the transmission rate. Then, we can
write β as a function of time t as

βðtÞ ¼ β0Hðt1 � tÞ þ
Xn�1

i¼1

β1Hðtiþ1 � tÞHðt � tiÞ þ β0Hðt � tnÞ; ð1Þ

where HðtÞ ¼ limk!1
1

1þexpð�2ktÞ is a Heaviside step function, βi are transmission

rates that can be obtained by the fitting of the data to the time interval defined by
the ti’s. The system of differential equations then reads:

dS
dt

¼ �βðtÞSðIs þ δIaÞ
N

; ð2Þ

dE
dt

¼ βðtÞSðIs þ δIaÞ
N

� κE; ð3Þ

dIa
dt

¼ ð1� pÞκE � γaIa; ð4Þ

dIs
dt

¼ pκE � γsIs; ð5Þ

dH
dt

¼ hξγsIs þ ð1� μU þ ωUμU ÞγUU � γHH; ð6Þ

dR
dt

¼ γaIa þ ð1� hÞγsIs þ ð1� μHÞð1� ωHÞγHH; ð7Þ

dR
dt

¼ γaIa þ ð1� hÞγsIs þ ð1� μHÞð1� ωHÞγHH; ð8Þ

dD
dt

¼ ð1� ωHÞμHγHH þ ð1� ωU ÞμUγUU; ð9Þ

where the key epidemiological parameters are described in Table 3. More details on
the system of equations are provided in Supplementary Note 4.

Analytical evaluation of R0 and RðtÞ in the SEIIHURD model. The basic
reproduction number, R0, is a threshold parameter estimated in the beginning of
the outbreak. It is defined by the average number of secondary infections caused by
a single infective in a fully susceptible population. Under these conditions, with the
model proposed here, the primary cases are generated under the initial pre-
interventions transmission rate β(t)= β033.

The basic reproduction number R0 has been derived within the general next
generation operator framework32,34. It considers the unstable disease-free
equilibrium point of the model, where S corresponds to the whole population and all
other compartments are identically set to 0. Following Van den Driessche et al.
(2002)34, the value ofR0 results from a balance between the infectious and transition
terms of the sub-model composed of the variables (E, Ia, Is) associated with the
transmission of the disease, which are gathered in the corresponding 3 × 3 matrices

Table 3 Key epidemiological parameters used in the
SEIIHURD model.

Parameter Description

β0 Pre-intervention transmission rate
β1 Post-intervention transmission rate
t1 Time of transmission rate change
δ Asymptomatic/non-detected infectivity factor
p Proportion of latent (E) that proceed to symptomatic

infective
κ Mean exposed period (days−1)
γa Mean asymptomatic period (days−1)
γs Mean symptomatic period (days−1)
h Proportion of symptomatic needing hospitalization (clinical

beds) or ICU
1− ξ Proportion of symptomatic that proceed to ICU
γH Mean hospitalization (clinical beds) period (days−1)
γU Mean ICU period (days−1)
μH Death rate of hospitalized individuals
μU Death rate of ICU individuals
ωH Proportion of hospitalized that goes to ICU
ωU Proportion of ICU that goes to hospitalization
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K and T , given by

K ¼
0 β0δ β0
0 0 0

0 0 0

0
B@

1
CA; ð10Þ

T ¼
κ 0 0

�ð1� pÞκ γa 0

�pκ 0 γs

0
B@

1
CA: ð11Þ

Thus, given the above matrices, R0 corresponds to the largest eigenvalue of the
matrix KT �1 and represents the sum of the contribution of the symptomatic and
asymptomatic/non-detected transmission, being expressed by

R0 ¼
β0p
γs

þ β0δð1� pÞ
γa

: ð12Þ

The effective reproduction number RðtÞ provides a measure of how the newly
infected part of the population will further transmit the pathogen as the epidemic
evolves over time. Indeed, as reminded above, the evaluation of R0 considers that
the whole population is initially susceptible, a condition that is strictly valid only
when the pathogen is first introduced into the system. As time evolves, the
susceptible fraction of the population always decreases with time for models where
the R compartment does not feed S. It is still unknown whether re-infection by
SARS-CoV-2 can occur, but initial evidence suggests against this possibility35. Here
we assume that only a single COVID-19 infection event can occur in any single
person.

The epidemiological meaning ofRðtÞ is the same as forR0, namely, it represents
the average number of secondary infections that an individual, who became infected
at time t, is able to generate. The series of RðtÞ values indicates the current trend of
the epidemic and captures changes caused by recently-introduced interventions
(such as governmental policies) or by natural decrease of the susceptible population.
Accordingly, it provides a quantitative evidence of whether further measures are
needed to control the epidemic. Here RðtÞ has been estimated following the
assumptions introduced in Wallinga, Jacco, and Marc Lipsitch (2007)36. It is based
on the series of daily infected individuals, that is considered here as the source to
insert into the general renewal equation for a birth process

RðtÞ ¼ JðtÞR1
0 Jðt � xÞgðxÞdx

; ð13Þ

with J(t)= b(t + ℓ) where b(t) is the number of daily reported cases.
In an epidemiological context, J(t) represents the daily number of new

infections, while g(x) is the disease probability distribution function for the time an
individual takes to infect secondary cases, in accordance with the ideas in the
original infection-age model by Kermack and McKendrick9. In this case, the
function g(x) receives contributions that depend on the dynamics of the same three
compartments E, Ia, Is that impact the evaluation of R0. The population flow
through these compartments consists of a first sequential step (E) followed by a
bifurcation event leading either to the asymptomatic/non-detected (Ia) or the
symptomatic (Is) compartments. Therefore, it is first necessary to separately
evaluate the composite functions ga(x) and gs(x) that account, respectively, for the
sequential contributions of the flows E→ Ia→O and E→ Is→O, where O
indicates any compartment not responsible for infectious steps. Here we follow the
framework developed by Brauer37 to obtain the following expressions:

gaðtÞ ¼
κγa

γa � κ
ðe�κt � e�γatÞ; gsðtÞ ¼

κγs
γs � κ

ðe�κt � e�γs tÞ: ð14Þ

Subsequently, these two contributions are combined, leading to the expression:

gðxÞ ¼ gsðxÞpβ=γs þ gaðxÞð1� pÞβδ=γa
pβ=γs þ ð1� pÞβδ=γa

: ð15Þ

The details of the evaluation of Eqs. (14) and (15) are available in Supplementary
Note 5, where we also detail how the expressions in Equation (14) should be
replaced when κ= γa or κ= γs. It is noteworthy to see that the weights in factors
multiplying ga(x) and gs(x) correspond to the contributions of the corresponding
flow paths to R0 in Eq. (12), with the difference that the value of β0 is replaced by
the value of β at the current time t.

In order to overcome the fluctuations of the confirmed number of cases (which
is influenced by testing capacity and its associated increase, even if momentarily,
such as when pending tests accumulate), we present two series of Rt , one
calculated from the daily number of confirmed cases, as informed by local health
authorities; and another Rt series where this data is informed by the predictions of
the model. More details are given in Supplementary Note 5.

Parameter sensitivity analysis. Sensitivity analysis was conducted to assess the
effects of model parameters in the dynamics of Ia, Is, U, H, and D over time. By
using an statistical variance-based method, described by Sobol (2001)38, the sen-
sitivity analysis of the system described by Eqs. (2)–(9) considers the following
parameter vector

θ :¼ β0; β1; γH ; γU ; δ; h; t1; k
� �

2 R8; ð16Þ

and assumes that its elements are uniformly distributed in proper intervals as
follows:

β0 � Uð0; 2Þ; β1 � Uð0; 2Þ; γH � Uð1=12; 1=4Þ; γU � Uð1=12; 1=3Þ;
δ � Uð0; 0:75Þ; h � Uð0:05; 0:25Þ; t1 � Uð0; 30Þ; k � Uð0; 100Þ:

ð17Þ

This method is divided into two steps, described in more detail in
Supplementary Note 2. The numerical simulations were performed using the SALib
library39, and the experiments were conducted generating N= 12,000 parameter
combinations, totaling 120,000 simulations of the model. The influence of each
parameter on the model dynamics was evaluated using the total effect index, which
takes into account higher-order interactions amongst the variables of the model.

Evaluation and estimation of model parameters. The estimation of the para-
meters occurred within a chosen range based on literature and data collected
locally, as described in Supplementary Tables 1 and 2. The initial conditions
(S0, Ia,0, Ia,0, E0, R0,H0,U0,D0) is given by (1− Ia,0− Is,0− E0, Is,0, Ia,0, Is,0, E0, 0, 0,
0, 0).

The parameters p, κ, γa, γs, ξ, ωU, ωH, μU, μH were kept fixed and the remaining
were obtained by estimating the best values that fit the model to the data. To define
the fixed parameters and the search intervals to use for the estimations, we
performed a literature review of published papers and collected the data regarding
key epidemiological parameters that inform our model (see Supplementary
Table 1).

As an additional guide to obtain a locally-informed model, administrative data
from a reference infectious disease hospital (ICM; see Data Sources section) were
used in order to capture plausible ranges for the hospitalization-related model
parameters: Mean hospitalization period (γH), mean ICU period (γU), death rate of
hospitalized individuals (μH), death rate of ICU individuals (μU), proportion of
clinically hospitalized transferred to ICU (ωH) and proportion of ICU individuals
that return to clinical hospitalization (ωu) (see Supplementary Table 2).

Based on the search ranges, optimized model parameters were estimated using
the Particle Swarm Optimization (PSO) metaheuristic40. Under the PSO
framework, we used a multi-optimization function to simultaneously optimize the
model to the series of daily confirmed cases, deaths, clinical hospitalization, and
ICU occupations in the whole state, and to daily confirmed cases and deaths for the
capital city Salvador and the remaining 416 municipalities (given that the
hospitalization series were only available aggregated at the statewide level) up to
May 4, 2020. PSO was implemented using pyswarms library version 1.1.0 for
Python 341, and was executed with 300 particles through 1,000 iterations with
cognitive parameter 0.1, social parameter 0.3, inertia parameter 0.9, evaluating five
closest neighbors through Euclidean (or L2) distance metric. In addition to the
point estimates obtained by the PSO method for the parameters β0, β1, δ, h, γH and
γU, percentile confidence intervals were also estimated for these parameters. The
intervals were constructed using the weighted non-parametric bootstrap method42,
considering 500 replicates of the original series St, t= 1,…, n, which represents the
number of new cases observed at time t. The proportion of observed cases at time t
(number of cases at time t/total number of cases in the analyzed period) was used
as a weight in the re-sampling process to obtain the bootstrap replicates. Then, the
SEIIHURD model was adjusted for each replicated series and the estimates
obtained for the model parameters were stored in vectors, generating the empirical
distribution for each parameter.

Given the complexity of the proposed model, we performed an identifiability
analysis in terms of the number of parameters and possible correlations between
them. A simulation study was carried out in order to assess the identifiability of the
model presented. The study was conducted based on the approach developed by
Roosa and Chowell43, which makes use of the parametric bootstrap method to
generate data from a system of dynamic equations, in order to quantify the
uncertainty and assess the identifiability of the indicators of the model. More
information is given in Supplementary Note 6.

Modeling scenarios. We present our analysis as follows: First, we study the effects
of previously enforced interventions in the state of Bahia, its capital city Salvador
and the remaining 416 municipalities. For this, we considered the SEIIHURD
model with the proportion of symptomatic needing hospitalization or ICU
(parameter h) equals to zero, so that the resulting model does not consider the
compartments of hospitalization, ICU, and death, effectively resembling an SEIR
model with asymptomatic/non-detected transmission.

Then, we analyze these effects on the number of deaths and hospitalization
requirements in the state level. We show the impact of the non-detected individuals
on the dynamics of COVID-19 transmission.

Lastly, to study the future behavior of the transmission of the disease in Bahia,
we simulated different scenarios that may impact the number of cases, mortality,
and healthcare demands. The following scenarios were considered: (1) An
immediate intervention taking place on May 5, sustained for a period of 7, 14, or
30 days, and resulting in a reduction of the transmission rate by 25%, 50%, or 75%;
(2) A critical intervention, adopted when the collapse of clinical bed occupancy
occurs (on May 14, 2020, the predicted date of peak demand), maintained for a
period of 7, 14, 30, 60, 90 days and leading to a reduction of the transmission rate
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by 25%, 50% or 75%; and (3) implementations of more than two interventions in
sequence.

Ethics statement. This study was conducted with publicly available data from the
COVID-19 epidemic in Bahia, obtainable from the periodic epidemiological bul-
letins published by the Secretary of Health of the State of Bahia (SESAB), as well as
with aggregated administrative data from Instituto Couto Maia hospital (Salvador,
Bahia), and therefore no approval by an ethics committee was required, according
to Resolutions 466/2012 and 510/2016 (article 1, sections III, and V) from the
National Health Council (CNS), Brazil.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The series of COVID-19 cases and deaths and hospital occupancy are publicly available
from the State Secretary of Health of Bahia (SESAB) at https://infovis.sei.ba.gov.br/covid19/
and are also available as CSV files. All other data, including the list of parameters used to
inform the model, are presented within the Supplementary Material and in the GitHub
repository at https://github.com/cidacslab/Mathematical-and-Statistical-Modeling-of-
COVID19-in-Brazil.git44. Raw data is included within Figs. 1, 3, 4, 5, 6, and 7. Source data
are provided with this paper.

Code availability
Codes used to produce the results presented herein are available in a public GitHub
repository at https://github.com/cidacslab/Mathematical-and-Statistical-Modeling-of-
COVID19-in-Brazil.git44, as well as in the Supplementary Material.
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