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I. INTRODUCTION

Collisional processes are inherently anisotropic, and therefore for a full understanding of

the dynamics of these scattering events it is necessary to consider the vector properties of

the system. The stereodynamics of a collision between a closed shell atom and a diatom is

completely defined by four vectors, k, k′, j and j ′, where k and k′ are the initial and final

relative velocity vectors, and j and j ′ are the initial and final rotational angular momenta

of the molecule1–6. Lower order vector correlations can be obtained by integrating over the

directions of one or more of the vectors. For example, the k-k′-j ′ distribution is obtained by

integrating over all possible directions of j7–10. The differential cross section (which quan-

tifies the k-k′ correlation) can be obtained from the three-vector correlation by integrating

over all possible directions of j ′. Analogously, integrating the initial four vector correlation

over all possible directions of k and k′ leads to the j-j ′ correlation.

The two-vector j-j ′ correlation, sometimes referred to as the rotational tilt, has been

the focus of much recent experimental and theoretical attention. Our studies have been

mainly concerned with the collisional depolarization of electronically excited 2Σ+ radicals,

including OH(A) with H2O
11 and Ar12–16, and NO(A) with He and Ar17, which we have

probed using Zeeman and hyperfine quantum beat spectroscopy techniques. This work has

been complemented by studies from McKendrick and coworkers, who have used polarization

spectroscopy to interrogate the collisional depolarization of OH(X), OH(A), and CN(A) with

a range of collision partners16,18–25. On the theoretical side there has been considerable recent

progress made on understanding the dynamics of elastic depolarization through the work of

Dagdigian and Alexander on the collisions of OH(X) with Ar26 and He27, and NO(X) + Ar28.

This work has been extended very recently by Ma et al. to the collisional depolarization of

CH2(ã) by He29.

In the following we develop the necessary machinery to calculate the k-j-j ′ distribution

using quasi-classical trajectory (QCT) methods, and show how it reduces to the well-known

expressions for the j-j ′ vector correlation which is more amenable to experimental measure-

ment. We show how these calculations can be extended to the a-j-j ′ vector correlation, in

which a represents the kinematic apse. The kinematic apse for inelastic scattering is defined

by the following equation30

â =
k′ − k

|k′ − k|
. (1)
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The a-j-j ′ vector correlation is particularly illuminating because in the case of collisions

between rigid bodies it is known that the projection of j along the kinematic apse must

be conserved31,32. We illustrate the QCT methodology by reference to rotational energy

transfer (RET) and depolarization collisions between NO(A) and He, which is a system

largely dominated by repulsive interactions at thermal collision energies33. For the j-j ′

two-vector correlation a detailed comparison is made with the results of exact closed-shell

and open-shell quantum mechanical (QM) calculations. We have previously compared the

results of an experimental study of collisional depolarization in this system with those from

QCT theory, and shown them to be in excellent agreement17. Once validated in this way, the

QCT approach can offer mechanistic insight into the dynamics of rotational energy transfer

and collision depolarization, as illustrated in the accompanying paper (see below)34. It also

has the potential to be used for much larger systems than are currently amenable to exact

quantum mechanical calculations.

The outline of the paper is as follows. Section II describes the classical theory relevant to

the description of the collisional depolarization in several frames, with a particular emphasis

on the three-vector correlations between the vectors k or a, j and j ′. Section III presents

the equations necessary to describe the polarization in the laboratory (lab) frame, and

provides the necessary formulae to apply the theory to analysis of experimental data. The

link with the analogous QM formulae is also provided in this section. Section IV briefly

presents the QCT and QM computational procedures employed. The results from the QCT

calculations are shown and discussed in Section V, where they are also compared with the

results of QM calculations of the j-j ′ two-vector correlation. The final section summarizes

our principal conclusions. In the accompanying paper, we use the theory developed here

to explore the comparative mechanisms of RET and collisional depolarization in OH(A)

and NO(A) collisions with Ar34. It should be emphasized that the theory developed here is

general, however, and could equally be used to study the dynamics of reactive collisions.

II. VECTOR CORRELATIONS

The classical theory of the k-j-j ′ correlation presented in this section is closely related

to previous work on the k-k′-j ′ and k-j-k′ distributions7,8,35, equations for which are not

reproduced here. However, the symmetry restrictions are different in the case of the k-j-
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j ′ correlation, as discussed below. The theory applies to closed shell species, for which the

total rotational angular momentum of the diatomic molecule j is equivalent to the rotational

angular momentum, N . The extension of the theory to open shell molecules in 2Σ+ electronic

states, such as NO(A) and OH(A), has been presented previously in the literature13, and

is reviewed briefly in Section IV A. Although links with the appropriate QM expressions

are provided in Section III B, the equations presented in the following section are purely

classical, and do not include the Clebsch-Gordon term which appears in recent treatments

of the classical-quantum correspondence limit36,37.

A. k-j-j ′ vector correlation

1. Bipolar moment expansion

To consider the vector correlations presented in the following sections, it is useful to use

one of the reference frames shown in Fig. 1. Fig. 1a shows the conventional k-k′ scattering

frame, used to describe the k-k′-j ′ vector correlation, in which the initial relative velocity

k is defined as lying along the z-axis, and the final relative velocity k′ lies in the zx-plane.

In the case of the k-j-j ′ vector correlation, it is more convenient to use the reference frame

shown in Fig. 1b, in which the z-axis lies along k and j lies in the zx-plane, directed towards

the +x-direction. We will denote this frame as the k-j frame. With this choice of coordinate

system, the k-j-j ′ distribution for an A + BC collision can then be expanded in a bipolar

harmonic series7

P (ωj, ωj′) =
1

16π2

∑
K,Q

∑
k1,k2

[k1][k2]h
K
Q (k1k2) [BK

Q (k1k2;ωj, ωj′)]
⋆ , (2)

where [n] = 2n + 1, ωj = (θj, ϕj), ωj′ = (θj′ , ϕj′) are the solid angles representing the

directions of j and j ′, and hK
Q (k1k2) are the bipolar moments of the correlated distribution.

The (complex conjugate) bipolar harmonics are defined

[BK
Q (k1k2;ωj, ωj′)]

⋆ =
∑
q1,q2

(−1)K−Q[K]1/2

 k1 K k2

q1 −Q q2

C⋆
k1q1

(θj, ϕj)C
⋆
k2q2

(θj′ , ϕj′)

=
∑
q1,q2

⟨k1q1, k2q2|KQ⟩C⋆
k1q1

(θj, ϕj)C
⋆
k2q2

(θj′ , ϕj′) , (3)

where (· · · ) is a 3-j symbol, ⟨· · · ⟩ is a Clebsh-Gordon coefficient, and the Ckq(θ, ϕ) are the

modified spherical harmonics38.
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The choice of the k-j plane as the reference plane implies that ϕj = 0. In addition, the

distribution given by Eq. (2) must be real,

P (ωj, ωj′) = [P (ωj, ωj′)]
⋆ . (4)

Considering the property of the spherical harmonics

C⋆
kq(θ, ϕ) = (−1)qCk−q(θ, ϕ) , (5)

it can thus be shown that Q must be zero, with

[hK
0 (k1k2)]

⋆ = (−1)k1+k2+KhK
0 (k1k2) . (6)

Specifically, Eq. (2) becomes

P (ωj, ωj′) =
1

16π2

∑
K

∑
k1,k2

[k1][k2]h
K
0 (k1k2) [BK

0 (k1k2;ωj, ωj′)]
⋆ , (7)

where the relevant bipolar harmonics are38

[BK
0 (k1k2;ωj, ωj′)]

⋆ =
∑
q

⟨k1 − q, k2q|K0⟩Ck1−q(θj, 0)C⋆
k2q

(θj′ , ϕj′) (8)

2. Symmetry considerations

Next we consider the reflection symmetry properties of the four-vector k-k′-j-j ′ correla-

tion, as illustrated in Fig. 2. In the k-k′ scattering frame, the distribution of the product

AB internuclear axes is invariant to reflection in the xz plane, containing k and k′, provided

that the collisional process is achiral. Since both j and j ′ behave as pseudo vectors, their x

and z components change sign under reflection of the nuclear coordinates in the xz plane of

the scattering frame39, whilst the y component is unchanged; i.e. jx → −jx, jy → jy, and

jz → −jz. Therefore, the effect of the reflection symmetry operation (with operator Ŝ) on

the k-k′-j-j ′ distribution is (see Fig. 2)

Ŝ[P (θ, 0, θj, φj, θj′ , φj′)] = P (θ, 0, π − θj, π − φj, π − θj′ , π − φj′) , (9)

where φj and φj′ are the azimuthal angles that define the directions of j and j ′ with respect

to the k–k′ plane. The vectors k and k′ are unaffected by reflection in the scattering plane,

whereas the pseudo vectors j and j ′ change direction, because reflection in a plane changes
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the sense of rotation. Given the above mentioned invariance, the distribution on the right

hand side of Eq. (9) is the same as the original P (θ, 0, θj, φj, θj′ , φj′) distribution.

The k-j frame is defined such that the new xz plane contains k and j, with the +x

direction lying along the direction of j. Therefore, in the k-j frame, the effect of reflection

in the scattering plane on the k-k′-j-j ′ distribution described in Eq. (9) can be obtained by

applying a frame rotation, R̂, of π − φj about the k axis, as shown in Fig. 2,

R̂[P (θ, 0, π − θj, π − φj, π − θj′ , π − φj′)] = P (θ, φj − π, π − θj, 0, π − θj′ ,−ϕj′) , (10)

where ϕj′ = φj′ − φj, and defines the azimuthal angle of j ′ in the k-j frame. Consequently,

the effect of the reflection in the k-k′ plane on the k-k′-j-j ′ distribution, as expressed in

the k-j frame, can be written (with ϕj = 0 taken as implicit)

P (θ, 0, θj, θj′ , ϕj′) = P (θ, φj − π, π − θj, π − θj′ ,−ϕj′) . (11)

Note that this rotation implies defining the +x axis such that the zx plane contains the

direction of j.

In the case of the three-vector k-j-j ′ vector correlation, the distribution of k′ is undeter-

mined. Hence, invariance of the three-vector k-j-j ′ distribution under reflection in the k-j

frame reads

P (θj, θj′ , ϕj′) = P (π − θj, π − θj′ ,−ϕj′) . (12)

Notice that in this case the transformation implies jx → jx, jy → −jy, and jz → −jz.

In order to impose invariance of the distribution under reflection in the scattering plane

we can proceed by making use the following properties of the spherical harmonics, which

can be derived from the properties of the rotation matrix elements, d k
qq′(θ)38,

C⋆
kq(π − θ,−ϕ) = (−1)k+qCkq(θ, ϕ) (13)

Ckq(π − θ, 0) = (−1)k+qCkq(θ, 0) . (14)

Hence

[BK
0 (k1k2; π − θj, 0, π − θj′ ,−ϕj′)]

⋆ = (−1)K [BK
0 (k1k2; θj, 0, θj′ , ϕj′)]

⋆ (15)

and

hK
0 (k1k2) = (−1)KhK

0 (k1k2) . (16)

That is to say, K must be even, and

hK
0 (k1k2)

⋆ = (−1)k1+k2hK
0 (k1k2) . (17)
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3. Expansion coefficients

A more convenient way of dealing with the distributions described above is to expand

them in terms of angle dependent moments, the analogues of the polarization dependent

differential cross sections (PDDCSs)7,35,40:

P (θj, θj′ , ϕj′) =
1

4π

∑
k2

q=k2∑
q=−k2

[k2]Sk2 q(θj)C
⋆
k2q

(θj′ , ϕj′) , (18)

where

Sk2 q(θj) = ⟨Ck2 q(θj′ , ϕj′)⟩ωj ′ = (−1)qS⋆
k2 −q(θj) , (19)

where ⟨...⟩ωj ′ indicates the average over the solid angle subtended by θj ′ and ϕj ′ . By

comparison with Eq. (18) and Eq. (7), it is readily shown that the angle dependent moments

are given by the expression

Sk2 q(θj) =
1

2

∑
k1≥|q|

[k1]s
k1
k2q

Ck1−q(θj, 0) , (20)

with

sk1k2 q =
∑
K

⟨k1 − q, k2q|K0⟩hK
0 (k1k) . (21)

For calculation purposes, the expression for these coefficients is given by

sk1k2 q = ⟨Ck1−q(θj, 0)Ck2 q(θj′ , ϕj′)⟩ωj ,ωj′ , (22)

where ⟨...⟩ωj ,ωj′ indicates an average over the P (θj, θj′ , ϕj′) distribution.

Note that the symmetry restrictions discussed in Section II A 2 restricts K to even terms

in Eq. (21). Furthermore, it also implies

sk1k2 q = (−1)(k1+k2)sk1⋆k2 q
= (−1)(k1+k2)sk1k2 −q (23)

so that when k1 + k2 is even, the sk1k2q moments are pure real, and when k1 + k2 is odd,

the sk1k2q moments are pure imaginary. This implies that for q = 0 only k1 + k2 even terms

contribute to sk1k20. The immediate consequence of Eq. (23) is that Eq. (22) can be written

as the expectation values

sk1k2q = ⟨Ck1q(θj, 0)Ck2q(θj′ , 0) cos qϕj′⟩ k1 + k2 even (24)

sk1k2q = i ⟨Ck1q(θj, 0)Ck2q(θj′ , 0) sin qϕj′⟩ k1 + k2 odd . (25)
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By analogy with the k-k′-j ′7,8 and k-j-k′ vector correlations35, the conditional probability

density distribution of the direction of j ′ for a given value of θj is given by

P (θj′ , ϕj′|θj) =
P (θj, θj′ , ϕj′)

P (θj)
=

1

4π

∑
k2,q

[k2]
Sk2q

(θj)

S0 0(θj)
C⋆

k2q
(θj′ , ϕj′) . (26)

4. Hertel-Stoll normalization

We now consider the equations appropriate within the Hertel-Stoll normalization41. We

can define real PDDCSs according to

Sk2q+(θj) =
1√
2

[(−1)qSk2+q(θj) + Sk2−q(θj)] (27)

Sk2q−(θj) =
1

i
√

2
[(−1)qSk2+q(θj) − Sk2−q(θj)] , (28)

with q ≥ 0. It can be readily shown that the real Skq±(θj) polarization moments can be

written as

Sk2q+(θj) =
1

2
√

2

∑
k1

[k1]Ck1q(θj, 0)sk1k2q
[
1 + (−1)k1+k2

]
(29)

Sk2q−(θj) =
1

2i
√

2

∑
k1

[k1]Ck1q(θj, 0)sk1k2q
[
1 − (−1)k1+k2

]
, (30)

where use has been made of the relationship given in Eq. (23). Furthermore, with these real

PDDCSs, Eq. (18) can be written

P (θj, θj′ , ϕj′) =
1

4π

∑
k2

[k2]

[
Sk20(θj)Ck20(θj′ , 0)

+
√

2
∑
q>0

Ck2−q(θj′ , 0)
{
Sk2q+(θj) cos qϕj′ + Sk2q−(θj) sin qϕj′

}]
. (31)

5. k-j correlation.

Integration of Eq. (18) over (θj′ , ϕj′) yields the k-j correlation. The orthonormality of

the spherical harmonics means that the equation reduces to a single term, S0 0(θj), with

k2 = q = 0. Using Eq. (20), the corresponding k-j-j ′ PDDCS with k2 = q = 0 is given by

S0 0(θj) ≡ P (θj) =
1

2

∑
k1=0

[k1]s
k1
0 0Pk1(cos θj) . (32)
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This represents the k-j ‘intrinsic’ distribution35,37; that is the (normalized) collision proba-

bility for an angle θj between k and j. Notice that this distribution should not be confused

with the ‘experimental’ or ‘extrinsic’ preparation of the rotational angular momentum, which

is discussed in Section III. The coefficients of the expansion in Eq. (32) are the moments

sk10 0 =

∫ 1

−1

Pk1(cos θj)P (θj) d cos θj = ⟨Pk1(cos θj)⟩ωj
. (33)

Taking into account Eq. (23), only the sk10 0 moments with k1 even are non-zero.

6. k-j ′ correlation.

The k-j ′ distribution in the k-j frame defined above is obtained by integrating equa-

tion (7) or equivalently equation (18) over the coordinates of j, namely θj. The result can

be written

P (θj′ , ϕj′) =
1

4π

∑
k2q

[k2] a
k2
q C⋆

k2q
(θj′ , ϕj′) , (34)

where the ak2q polarization parameters can be written

ak2q = ⟨Ck2q
(θj′ , ϕj′)⟩ωj ,ωj′ =

∫ 1

−1

Sk2q
(θj) d cos θj =

1

2

∑
k1≥|q|

[k1]s
k1
k2q

∫ 1

−1

Ck1−q(θj, 0) d cos θj . (35)

For q = 0 the integral of the right hand side of this equation is 2 · δk1,0. Hence

ak20 = s0k20 = hk2
0 (0k2) . (36)

For the distribution to be real and planar symmetric, the q = 0 moments with odd values

of k2 must be zero.

To determine the effects of planar symmetry for the q ̸= 0 moments, it is again better to

work within the Hertel-Stoll normalization. Explicitly we have

P (θj′ , ϕj′) =
1

4π

∑
k2

[k2]

{
ak20 Pk2

(cos θj′) +
√

2
∑
q>0

Ck−q(θj′ , 0)[ak2q+ cos qϕj′ + ak2q− sin qϕj′ ]

}
,

where

ak2q+ =
1

2
√

2

∑
k1

[k1]s
k1
k2q

[
1 + (−1)k1+k2

] ∫ 1

−1

Ck1q(θj, 0) d cos θj (37)

ak2q− =
1

2i
√

2

∑
k1

[k1]s
k1
k2q

[
1 − (−1)k1+k2

] ∫ 1

−1

Ck1q(θj, 0) d cos θj . (38)
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Because the integrals over Ck1q(θj, 0) are only non-zero for even values of k1 + q, this implies

that the ak2q+ moments within the Hertel-Stoll normalization are only non-zero for even values

of k2 + q, while the ak2q− moments are non-zero only for moments with odd values of k2 + q.

Finally, the expansion coefficients, akq±, can be written as the following expectation values

ak2q+ = (−1)q
√

2⟨Ck2|q|(θj′ , 0) cos qϕj′⟩ k + q even (39)

ak2q− = (−1)q
√

2⟨Ck2|q|(θj′ , 0) sin qϕj′⟩ k + q odd . (40)

In the case that the k-j plane is undefined, the k-j ′ distribution may be obtained by

integrating over ϕj′ . Trivially, this yields a Legendre polynomial, Pk(x), expansion in cos θj′ :

P (θj′) =
1

2

∑
k2

[k2] a
k2
0 Pk2(cos θj′) , (41)

with ak20 ≡ hk2
0 (0k2), which only contains k2 even terms.

7. j-j ′ vector correlation.

The j-j ′ distribution may be obtained by contracting the tensorial product implicit in

Eq. (3) when K = 0, which implies that k1 = k2 = k. The resulting expansion may be

written (using the notation in reference 13)

P (θjj′) =
1

2

∑
k

[k] a(k)(j, j′)Ck0(θjj′ , 0) , (42)

where the moments are defined

a(k)(j, j′) = ⟨Pk(cos θjj′)⟩ = (−1)k [k]1/2 h0
0(kk) , (43)

and θjj′ is the angle describing the rotational tilt of j′ with respect to j. Note that the

depolarization cross sections, determined experimentally in the accompanying paper34, can

be related to the depolarization moments via the equation14,26

σ
(k)
jj′ = σjj′

[
1 − a(k)(j, j′)

]
, (44)

where σjj′ ≡ σ
(0)
jj′ is the integral RET cross section for the collisionally induced transition

j → j′. The k odd and k even depolarization cross sections are often referred to as collisional

‘disorientation’ and ‘disalignment’ moments, respectively.
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8. a-j-j ′ correlation

In some of what follows we use the kinematic apse frame rather than a frame in which

k is taken as the z-axis. The kinematic apse was defined in Eq. (1)30, and the apse frame

is chosen such that the z-axis coincides with a, and the zx-plane contains j (see Fig. 1c).

Note that the kinematic apse, a, lies in the k-k′ scattering plane, as shown in Fig. 1a. In

the apse frame we use the notation (ωaj, ωaj′) to identify the coordinates of j and j ′. The

equations of the previous subsection are equally valid in the apse frame, since the two frames

are simply related by a rotation about an axis normal to the scattering plane. As noted in

the introduction, for an impulsive collision, there can only be a change of rotational angular

momentum imparted perpendicular to the scattering plane. This leads to the propensity

rule for the conservation of the projection of j along the kinematic apse.

III. LAB FRAME DISTRIBUTION

A. Transformation to the LAB frame

Here we consider the situation in which a molecule is initially aligned or oriented in

the laboratory (LAB) by absorption of polarized light. In the case of linearly polarized

excitation, the LAB frame is defined such that the Z-axis lies along the direction of the

electric vector of the light, and the direction of propagation lies along the X-axis. (Note

that the laboratory frame is defined differently if circularly polarized light is used.) In the

LAB frame, the distribution of relative velocities, k, may be characterized by an expansion

P (Θk,Φk) =
1

4π

∑
k′q′

[k′] gk
′

q′ Ck′q′(Θk,Φk) =
1

8π2

∑
k′q′

[k′] gk
′

q′ D
k′

q′0

⋆
(Φk,Θk, χk) , (45)

where Θk and Φk are the angles that define the direction of k in the LAB frame, and the

third Euler angle, χk, is arbitrarily defined. The joint distribution of j and j ′ in the LAB

frame can then be obtained by rotation of the bipolar harmonics into the lab frame and
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integrating over all orientations of k:

P (Ωj,Ωj′) =

∫
P (Θk,Φk)P (ωj, ωj′)dΩk

=
1

16π2

∑
K

∑
k1k2

[k1][k2]h
K
0 (k1k2)

×
∫

P (Θk,Φk)
∑
P

DK
P0(Φk,Θk, χk)

[
BK

P (k1k2; Ωj,Ωj′)
]⋆

dΩk . (46)

The orthogonality of the rotation matrices leads to

P (Ωj,Ωj′) =
1

16π2

∑
K

∑
k1k2

[k1][k2]h
K
0 (k1k2)

∑
q′

gKq′
[
BK

q′ (k1k2; Ωj,Ωj′)
]⋆

. (47)

For most cases, q′ will be zero because k will be cylindrically distributed about the LAB

Z-axis. Furthermore, if k is isotropic, then the only term in the above expansion will be

that with K = q′ = 0, specifically

P (Ωj,Ωj′) =
1

16π2

∑
k

[k]2 h0
0(kk)

[
B0

0(kk; Ωj,Ωj′)
]⋆

, (48)

which again reduces to a Legendre polynomial expansion in Θjj′ ≡ θjj′ .

To complete the transformation into the LAB frame, Eqs. (47) and (48) need to be con-

voluted with the laboratory frame distribution of j, that is to say the extrinsic distribution

of j. The latter can be written13

P (Θj,Φj) =
1

4π

∑
k′′q′′

[k′′] rk
′′

q′′ (j)C
⋆
k′′q′′(Θj,Φj) . (49)

Making use of the orthogonality of the spherical harmonics in Eq. (47), the resulting expan-

sion can be written

P (Ωj′) =

∫
P (Θj,Φj)P (Ωj,Ωj′) dΩj

=
1

4π

∑
K

∑
k′′k2

[k′′][k2]h
K
0 (k′′k2)

×
∑
q′q′′

gKq′ (−1)K−q′−q′′ [K]1/2

 k′′ K k2

−q′′ −q′ q2

 rk
′′

q′′ (j)C
⋆
k2q2

(Θj′ ,Φj′) . (50)
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B. Link with QM expressions

To make contact with the QM expressions1,13,42,43 it is helpful to use Eq. (50) to obtain

the moments of the distribution of j ′.

Pk
q (j′) = ⟨Ckq(Θj′ ,Φj′)⟩ =

∫
P (Ωj′)Ckq(Θj′ ,Φj′) dΩj′ . (51)

Using the orthogonality of the spherical harmonics these can be written

Pk
q (j′) = ⟨Ckq(Θj′ ,Φj′)⟩

=
∑
Kk′′

[k′′]hK
0 (k′′k)

∑
q′q′′

gKq′ (−1)K+q[K]1/2

 k′′ K k

−q′′ −q′ q

 rk
′′

q′′ (j) . (52)

That is to say

Pk
q (j′) =

∑
k′′q′′

akk
′′

qq′′ (j, j
′) rk

′′

q′′ (j) , (53)

with

akk
′′

qq′′ (j, j
′) = [k′′]

∑
K

∑
q′

gKq′ (−1)K+q[K]1/2

 k′′ K k

−q′′ −q′ q

hK
0 (k′′k) . (54)

Note that in the case that the initial distribution of k is isotropic, then K = 0, and

akk
′′

qq′′ (j, j
′) ≡ akkqq (j, j′) = (−1)k[k]1/2 h0

0(kk) δkk′′δqq′′ , (55)

in agreement with Eq. (43), and with what one would expect from simpler treatments13. Eq.

(53) is also consistent with the QM expressions obtained in the previous work of Alexander43

and of Follmeg et al.42.

Another interesting example is when the direction of k is well defined, and is taken to be

along the LAB Z-axis. This is precisely the situation described in references 1 and 43 on

the QM k-j-j ′ distribution. In this case (Φk,Θk, χk) = (−Φj, 0, 0), and

P (Ωj,Ωj′) =
1

16π2

∑
K

∑
k1k2

[k1][k2]h
K
0 (k1k2)

∑
P

DK
P0(−Φj, 0, 0)

[
BK

P (k1k2; Ωj,Ωj′)
]⋆

.(56)

The rotation matrix element DK
P0(−Φj, 0, 0) = δP0, and therefore in this case the moments

of the products can be related to those of the reactants via the equation

Pk
q (j′) =

∑
k′′

akk
′′

qq (j, j′) rk
′′

q (j) , (57)
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with

akk
′′

qq (j, j′) = (−1)q[k′′]
∑
K

(−1)K [K]1/2

 k′′ K k

−q 0 q

hK
0 (k′′k) ≡ (−1)q [k′′] sk

′′

kq . (58)

That is to say, the collision can change the rank k but not ‘projection’ q. The sk
′′

kq moments

are the analogues of the quantum mechanical ‘correlation’ coefficients, which in turn are

proportional to the tensor cross sections of Follmeg et al.42.

IV. QCT AND QM CALCULATIONS

A. Classical tensor opacity functions and open shell calculations.

In previous work13 it has been shown that open shell cross sections for inelastic scattering

of molecules in 2Σ+ electronic states can also be obtained using QCT calculations, on the

assumption that electron and nuclear spin behave as spectators to the dynamics. In this

section, the most important equations to achieve this will be presented, and the reader is

referred to ref. 13 for further details. Note that the results of these approximate ‘open-shell’

QCT calculations have been shown previously to be in excellent accord with those from

exact QM dynamical calculations for the types of system under discussion13,14,17.

As previously12–14,17, we employ the following notation. N (N ′) denotes the diatomic

rotational angular momentum apart from electron and nuclear spin. For a diatomic radical

in a 2Σ+ electronic state, for which electronic orbital angular momentum is zero, N (N ′)

is equivalent to the nuclear rotational angular momentum, which must lie perpendicular to

the internuclear axis, r. The corresponding quantum number is written N (N ′). The total

rotational angular momentum apart from nuclear spin is denoted by j, and its quantum

number as j. In the Hund’s case (b) coupling scheme appropriate for 2Σ+ radicals, the

molecular wave function is defined by j = N +S, where S is the electronic spin. The total

angular momentum quantum number of the collision system (i.e. NO(A) with He in the

application discussed in Section V) is denoted by J and its projection onto the space fixed

Z-axis by MJ . Finally, the symbols ℓ and ℓ′ refer to the initial and final orbital angular

momentum quantum numbers for the collision system.

It is convenient to define the momentum transfer vector as K = N ′ − N , with its
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modulus determined by

|K|2 = |N |2 + |N ′|2 − 2|N ||N ′| cos θNN ′ , (59)

where

cos θNN ′ =
N ·N ′

|N ||N ′|
, (60)

and θNN ′ is the asymptotic angle between the initial N and final N ′ angular momentum

vectors.

The moduli of N and N ′ can be written in terms of the semiclassical quantization rule

|N |2 = N(N + 1)~2 (61)

|N ′|2 = N ′(N ′ + 1)~2 . (62)

Analogously, the momentum transfer quantum number can be defined as

|K|2 = K(K + 1)~2 . (63)

(The use of the quantization rule |N |2 = (N + 1/2)2~2, and similarly for N ′ and K, leads

to almost identical results except for N=0.)

According to Eq. (59), for definite values of N and N ′ there is a one to one correspondence

between K, and hence K, and cos θNN ′ , and therefore the probability density function of

cos θNN ′ as given by Eq. (42) can be related to that for a continuous K as

P (K) ≈ P (cos θNN ′)
2[K]

[N ][N ′]
, (64)

where the last term is just the Jacobian of the transformation. If the continuous values of

K are approximated to their nearest integers, the discrete probability distribution of a given

K for given values of N and N ′ is

P (K) =
NNN ′(K)

NNN ′
with

∑
K=0

P (K) = 1 , (65)

where NNN ′ is the number of trajectories from the initial N to the final N ′ state, and

NNN ′(K) the number of those with a momentum transfer K.

It can be shown13 that the tensor opacity function can be written as

PK(N,N ′) = (ℓmax + 1)2[N ]P (K)
NNN ′

NN

, (66)
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where NN is the total number of trajectories (elastic plus inelastic) starting in an initial

quantum number N . Given that the expression for the inelastic cross section is

σNN ′ = πb2max

NNN ′

NN

, (67)

and considering that the relation between impact parameter and the orbital angular mo-

mentum quantum number, k2
i b

2
max ≈ (ℓmax+1)2, where ki is the initial wave vector, it follows

that

PK(N,N ′) =
k2
i

π
[N ]σNN ′P (K) =

k2
i

π
[N ]σNN ′(K) . (68)

Therefore

σNN ′(K) =
π

k2
i

(ℓmax + 1)2
NNN ′(K)

NN

=
π

k2
i

PK(N,N ′)

[N ]
, (69)

and

σNN ′ =
π

k2
i

∑
K=0

PK(N,N ′)

[N ]
. (70)

Let us consider first the collisions of a closed shell species (S = 0), for which N = j and

N ′ = j′. The expression for the depolarization cross sections, Eq. (44), can be written13,14

σ
(k)
NN ′ = σNN ′ [1 − a(k)(N,N ′)] , (71)

with the classical depolarization moments

a(k)(N,N ′) = ⟨Pk(cos θNN ′)⟩ =
1

NNN ′

NNN′∑
i=1

Pk(cos θ
(i)
NN ′) , (72)

where the sum runs over the ensemble of trajectories ending in a given N ′ rotational state.

The QM expression for the depolarization cross section can be written13

σ
(k)
NN ′ =

∑
K>0

σNN ′(K)

1 − (−1)k−K−N−N ′
[N ]

1
2 [N ′]

1
2

{
N N k

N ′ N ′ K

} , (73)

where {...} represents a 6-j symbol. Note that summation over K = 0 is irrelevant since

this term contributes to pure elastic scattering wherein not only ∆N = 0 but also K = 0,

i.e. the vector N does not change. Using the Racah formula, valid when N,N ′, K ≫ k, it

can be shown44,45 that in the asymptotic limit{
N N k

N ′ N ′ K

}
=

{
N N ′ K

N ′ N k

}
∼ (−1)k+K+N+N ′

[N ]1/2[N ′]1/2
Pk(cos θNN ′) , (74)
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where cos θNN ′ is given by Eq. (60) using the quantization rules Eq. (61)–(63). Substituting

Eq. (74) into Eq. (73)

σ
(k)
NN ′ =

∑
K>0

σNN ′(K) [1 − Pk(cos θNN ′)] , (75)

and making use of Eq. (69) in Eq. (75)

σ
(k)
NN ′ =

π

k2
i

(ℓmax + 1)2
∑
K>0

NNN ′(K)

NN

[1 − Pk(cos θNN ′)] =

σNN ′

[
1 − 1

NNN ′

∑
K>0

NNN ′(K)Pk(cos θNN ′)

]
. (76)

Considering the one to one correspondence between K and cos θNN ′ , and discretizing their

respective values, leads to the following equation

σ
(k)
NN ′ = σNN ′ [1 − ⟨Pk(cos θNN ′)⟩] , (77)

thereby recovering Eq. (71).

To determine the polarization parameters in the case of collisions of open shell species in

2Σ electronic states, one can use the quasiclassical expression of the σNN ′(K) or PK(N,N ′),

and introduce them in the QM expression in terms of these magnitudes

a(k)(j, j′) = (−1)k−j−j′ [j]
1
2 [j′]

1
2

∑
K

(−1)−K

{
j j k

j′ j′ K

}{
N N ′ K

j′ j S

}2

σNN ′(K)

∑
K

{
N N ′ K

j′ j S

}2

σNN ′(K)

, (78)

and the state–to–state cross section

σN j→N ′ j′ = [j′][N ]
∑
K

{
N N ′ K

j′ j S

}2

σNN ′(K) . (79)

Notice that under the assumption of the electronic (and/or nuclear) spin being a spectator,

the direction of j can be adequately sampled with a modulus of quantum number j =

N ± 1/2, and assuming a fixed direction of S through the collision, the direction of the final

angular momentum j ′ can be analyzed subject to j′ = N ′± 1/2. With this implementation,

the values of σN j→N ′ j′ and a(k)(j, j′) can be determined using the equivalent to Eqs. (67)

and (72).
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B. QCT computational details

To illustrate the above QCT machinery, batches of approximately 1 × 105 trajectories

were run for several initial N states at a fixed collision energy of 0.039 eV for NO(A) + He,

which corresponds to the mean thermal collision energy at 300 K. The method employed was

similar to that described in ref.46, and will only be described briefly here. The calculations

were performed using the NO(A)+He ab initio potential energy surface (PES) of K los et

al.33. Since the PES has only been calculated using the fixed equilibrium bond length of

the radical, the method of Lagrange multipliers was used to force rigid rotor behaviour

during the integration of the classical equations of motion. To assign the final state for each

trajectory, the square of the rotational angular momentum |N ′|2 = N ′(N ′ + 1)~2 was first

calculated, and then the values of N ′ thereby obtained were rounded to the nearest integer.

Trajectories in a state with N ′ = N ± 0.5 were considered elastic. Elastic collisions,

which only change the direction of the velocity, can still lead to depolarization. The cri-

teria for collisional depolarization by elastic collisions is that there should be a minimum

angular momentum transfer K ≥ 0.513. At a fixed collision energy, the inelastic cross sec-

tions, σNN ′ , were calculated using Eq. (67). The maximum impact parameter leading to

inelastic trajectories was determined by monitoring the change in the rotational quantum

number, ∆N , with the criterion that no trajectories with |∆N | >0.5 took place for b > bmax.

Eq. (67) implies that the impact parameter for the i-th trajectory is sampled according to

b(i) = ξ1/2bmax, where ξ is a random number in the (0, 1) interval. The QCT calculation of

the a(k)(N,N ′) polarization parameters consisted simply of determining cos θNN ′ for each

trajectory13, and then applying Eq. (72). Depolarization cross sections were determined from

the depolarization parameters and the RET cross sections using Eq. (44).

The above treatment is appropriate for QCT calculations in which NO(A) + He is treated

as a closed shell system. QCT estimates of the ‘open shell’ spin-rotation level changing cross

sections for NO(A) + He are also presented here, and were obtained using the procedures

discussed in Section IV A and ref.13.

17



C. QM computational details

For comparison with some of the QCT results, fully quantum close-coupling (CC) scatter-

ing calculations were also performed using the same NO(A)+He ab initio PES of K los et al.33

used in the QCT calculations. As in our previous work12–14, the open shell (o–s) electronic

structure of the NO(A) molecule was taken into account in the QM scattering calculations

using the HIBRIDON suite of codes47, which employs a hybrid propagator comprised of the

Log-Derivative propagator by Manolopoulos48,49 and the Airy propagator for the long-range

region.

In the CC scattering calculations of the closed shell NO(A) + He system, the rotational

basis of NO(A) was set to a maximum value of N = 16 for the total energy of 326 cm−1

which corresponds to a collision energy of 0.039 eV for N=2. It was necessary to include

partial waves up to J = 100. The o–s CC QM scattering calculations were performed with

similar convergence and basis parameters as in the case of the c–s calculations.

In the following, we also make a direct comparison between the QCT and QM tensor

opacities. The QM tensor opacities of an open shell Hund’s case (b) molecules are defined

in terms of the reduced matrix elements of the T operator by13,43,50–52

PK(N,N ′) =
1

[K]

∑
ℓ ℓ′

|⟨N ′ℓ′||TK ||Nℓ⟩|2 , (80)

where the reduced T -matrix elements have been presented previously in references 43, 51 and

52. Note that the latter are the dynamical quantities obtained from a closed shell scattering

calculation43,50–52. They have no dependence on the electron spin, and can therefore be

calculated from a closed shell calculation. Both closed and open shell integral integral cross-

sections calculated using the QM tensor opacities, employing Eqs. (69) and (79), were in

excellent agreement with those obtained directly from HIBRIDON.

V. CALCULATION RESULTS AND DISCUSSION FOR NO(A) + He

In the following we illustrate the theoretical methodology presented in Sections II and III

by applying it to the RET and angular momentum depolarization collisions of NO(A) + He.

As already noted, inelastic scattering and collisional depolarization in this system has been

the subject of a previous experimental and theoretical investigation17, where it was shown
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that the results of the ‘open shell’ calculations agree very well with the experimental findings.

The main focus of the following is to show how analysis of the various vector correlations

presented here can be used to provide mechanistic insight about the NO(A) + He system. For

clarity, we have focussed on a specific RET transition, N = 2 → N ′ = 3, but similar results

would have been obtained for other RET processes, particularly those in which collisions

increase the rotational excitation. It should also be emphasized that the treatment presented

here can be used to calculate elastic depolarization cross sections13, which is a feature of the

methodology illustrated in the accompanying paper34. In the following, we show the closed

shell results first, with the open shell data presented in Subsection V D.

A. k-k′-j ′ vector correlation

We start by presenting the classical k-k′-j ′ vector correlation7, which describes the po-

larization of the product rotational polarization with respect to the scattering plane. Notice

that in this subsection as well as in the next one, N ′ and j ′ are interchangeable. The left

panels of Fig. 3 show the conditional probability density, P (θj′ , ϕj′|θ), at selected angles in

the range θ = 0◦ to θ = 180◦. In this and subsequent figures the z-axis is oriented vertically,

and the +x-axis points towards the left of the figures. Note that for consistency with the

analogous QM results, the number of moments, k2, used to construct the k-k′-j ′ distri-

butions shown in the figure is restricted to 2N ′ (i.e. k2max = 6 for the transition shown).

The k-k′-j ′ distributions are generally rather broad, suggesting that j ′ is distributed over a

wide range of angles. When the products are forward scattered (top panel), the distribution

is slightly peaked with j ′||k. However, because of the sin θ weighting, note that products

scattered near to the forward or backward directions contribute less to the scattering dy-

namics than those born in sideways directions. A more representative picture of the k-k′-j ′

correlation is obtained at scattering angles away from θ = 0◦ or 180◦, for which j ′ is much

more broadly distributed with respect to the scattering plane.

The left panel of Fig. 4 shows the k-k′-j ′ distribution obtained by integrating over the

scattering angle, θ, but preserving the scattering plane as coincident with the xz plane

(i.e. the results of Eq. (34)). Once averaged over scattering angle the resulting distribution

provides relatively little information about the scattering dynamics. Although, on average,

j ′ is weakly polarized around angles close to 45◦ to the z-axis, in the zx-plane, the averaging
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of the alignment over scattering angle masks the more structured scattering angle-dependent

features shown in Fig. 3.

B. k-j-j ′ vector correlation

Rather more informative are the plots of the k-j-j ′ vector correlation. The conditional

probability density, P (θj′ , ϕj′ |θj), is shown in the middle panels of Fig. 3, again for selected

angles in the range θj = 0◦ to 180◦. Note that in the cases of the k-j-j ′ and a-j-j ′

correlations, for consistency with the corresponding QM results, the number of moments,

k2, used to construct the distributions shown in these figures is restricted to 2N or 2N ′,

whichever is smaller (i.e. k2max = 4 for the transition shown). In the k-j frame, it is

immediately apparent that j ′ has a strong tendency to be polarized along the initial direction

of j. Collisions between NO(A) and He are only weakly depolarizing, as discussed further

below, and thus the distribution of j ′ is quite narrowly distributed about j. As shown in the

middle panel of Fig. 4, once the k-j-j ′ distribution is integrated over the direction of j (i.e.

over θj), whilst preserving the kj plane, the resulting P (θj′ , ϕj′) distribution is necessarily

less informative than which are those resolved in θj shown in Fig. 3. Nevertheless, some

modest propensity for j ′ to lie in the kj plane is preserved, as might be expected if NO(A) +

He collisions are only weakly depolarizing. Furthermore, on average, j ′ is seen to be weakly

polarized perpendicular to the initial relative velocity vector, k, as one might expect.

C. a-j-j ′ vector correlation

The right panels of Fig. 3 show the a-j-j ′ vector correlation, again presented in the form

of a conditional probability density, P (θaj′ , ϕaj′|θaj), for θaj angles in the range 0◦ to 180◦.

The distribution at θaj = 0◦ and 180◦ is particularly revealing. It provides very convincing

evidence for the strong propensity for the conservation of the projection of j along the

kinematic apse. Because j < j′, this can only be achieved if j ′ lies at some angle to the

apse direction, a. As the angle between j and the apse a increases, j ′ tends to follow the

direction of j, approximately conserving the projection along the apse direction (the z-axis

in these figures). Interestingly, apart from when θaj = 0◦ and 180◦, in general j ′ is not

distributed with cylindrical symmetry about the apse direction, not least because collisions
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favour small angles, θjj′ , between j and j ′.

As shown in the right panel of Fig. 4, integrating the a-j-j ′ distribution over θaj (but

keeping the aj plane aligned parallel with the zx plane) again unsurprisingly results in

a loss of information. However, of the three distributions presented the integrated a-j-j ′

distribution shows the strongest polarization, with a clear preference observed for j ′ to lie

along the x axis in the a-j frame. This reflects the fact that, on average, j tends to lie

at 90◦ to the apse direction, and, as we have already established for this system, j ′ has a

tendency to lie parallel to j.

The data shown in this section so far, in particular those presented in Fig. 3, are consistent

with previous work on the collisional depolarization of NO(A) by He17. The potential energy

surface33 for NO(A) + He possesses only a very modest energy well of <1 cm−1, and is largely

repulsive in nature. Both elastic and RET collisions of NO(A) + He can thus be described

quite reliably in terms of hard shell encounters, for which the projection of j onto the apse is

rigorously conserved during collision31,32. Kinematic factors, in particular the light mass of

He, also favour collisions which lead to little angular momentum depolarization, and hence

also conserve the projection of j along the kinematic apse.

D. j-j ′ vector correlation

We conclude this illustration by presenting results for the j-j ′ vector correlation for

NO(A) + He. This correlation is of particular interest as it is one of the vector correlations

most amenable to experimental interrogation11–25. In the upper panel of Fig. 5 we illustrate

how the classical j-j ′ two-vector correlation for NO(A) + He undergoing the N = 2 →

N ′ = 3 transition can be factored into regions corresponding to the amount of angular

momentum transferred, K. Similar data have been presented previously for OH(A) + Ar13.

Use of Eq. (69) allows determination of the K-dependent cross sections, σNN ′(K), as shown

in the lower panel of Fig. 5. These data can then be used to determine the ‘closed shell’

and ‘open shell’ depolarization moments, a
(k)
NN ′ and a

(k)
jj′ , presented in Fig. 6 for collisionally

induced disorientation (k = 1 – left panels) and disalignment (k = 2 – right panels). The

closed shell moments, shown in the upper panels of Fig. 6, generally take large positive values,

quite close to unity. This is consistent with Eq. (44), and with the fact that NO(A) + He

collisions are only weakly depolarizing, as we have seen from the three-vector correlations
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already presented. Note that when the depolarization moments are unity, no collisional

depolarization takes place and the depolarization cross sections go to zero. The behaviour

of the N = 2 → N ′ = 0 transition is notably different from the other transitions presented.

The reason for this is that the final state, N ′ = 0, cannot be polarized, and thus every

collision which induces a transition from N = 2 to N ′ = 0 leads to complete angular

momentum depolarization.

The ‘open shell’ QCT depolarization moments for initial N = 2 and j = N + S = 2.5

shown in the lower panels of Fig. 6 reveal that spin-rotation (SR) conserving transitions are

much less depolarizing than spin-rotation changing collisions. This is a direct consequence

of the fact that electron spin is treated as a spectator to the dynamics13. Transitions which

change spin-rotation state must change the direction of the rotational angular momentum,

and thus tend to be more depolarizing than the spin-rotation conserving transitions.

The corresponding closed and open shell rotational energy transfer cross sections, σj j′ ,

for the same initial state (N = 2, j = 2.5) as shown in Fig. 6, are presented in Fig. 7. As

in the Fig. 6, the ‘open shell’ QCT cross section data shown in the lower panel of Fig. 7 are

resolved into spin-rotation conserving and changing collisions. It can readily be seen that

although spin-rotation changing collisions are highly depolarizing, they have rather small

cross sections for this system. The reason for this is now clear. Spin-rotation changing

collisions require a change in the direction of N , and collisional depolarization is rather

inefficient for NO(A) + He.

Figs. 5–7 also include a comparison of the closed and open shell QCT calculations with

the corresponding QM data. Generally, the integral cross sections and alignment moments

calculated classically are in very good agreement with the corresponding quantum mechan-

ical quantities. The exceptions to this are the cross sections for ∆N = 1, which the QCT

calculations tend to overestimate. As already mentioned in Section IV, the origin of this

problem is the misassignment of trajectories as inelastic in the QCT calculations, rather

than elastic. The K-resolved cross sections, σNN ′(K), shown in the lower panel of Fig. 5

serve to highlight this point. Notice that for K > 1 the QM and QCT data are in excel-

lent accord, whereas the data for K = 1 is overestimated in the QCT calculations. If the

criteria for binning the K = 1 trajectories is changed from a minimum momentum transfer

of Kmin = 0.5 to Kmin = 1.0, then the K = 1 cross section, σNN ′(K), is brought into much

better agreement with QM theory. Interestingly, a similar change in Kmin has only a very
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minor effect on the QCT polar plots of the three-vector distributions shown in Figs. 3 and

4. This is also reflected in the QCT polarization parameters shown in Fig. 6, which are

generally in better agreement with the QM calculations for the ∆N = 1 transitions than

might be expected from the integral cross section data shown in Fig 7.

The excellent agreement between the QCT and QM ‘open shell’ polarization parameters

and integral cross sections is something commented on previously13. For 2Σ radicals of the

type in question, both electron and nuclear spin can be treated reliably as spectators to the

dynamics, and the good agreement between QM and QCT theory for these systems primarily

reflects the good agreement in the corresponding ‘closed shell’ tensor opacities. The coupling

to the electron and nuclear spin can in fact be treated in the same way in the QM and QCT

calculations, since both calculations can be represented in the tensor opacity formalism.

A similar approach could be adapted to 3Σ linear radicals and to non-linear polyatomic

radicals. However, it seems unlikely that a similar approach to that adopted here and

elsewhere13 will be transferable to 2Π radicals, or more generally to systems displaying large

spin-orbit coupling. In particular, treatment of collisions of 2Π radicals within the ‘spectator’

framework would require allowing for scattering on more than one potential energy surface53.

VI. CONCLUSIONS

In this paper we have presented the QCT methods required to characterize the angular

momentum polarization of the products of inelastic and reactive scattering, paying particular

attention to the two- and three- vector correlations involving the initial and final rotational

angular momenta, j and j ′. We have presented the theory that enables the calculation

of vector properties which can be directly compared with experimental measurement. The

classical theory has been applied to collisional depolarization and RET in the NO(A) + He

system, and the results are used to illustrate the type of mechanistic information provided by

such calculations. The data support previous conclusions17 that the projection of j along the

kinematic apse is nearly conserved for this system under thermal collision energy conditions.

Further applications of the theory developed here are explored in the accompanying paper34,

which presents a comparison of the mechanisms of collisional depolarization and rotational

energy transfer for the NO(A) and OH(A) collisions with Ar. In that paper, we further

illustrate the mechanistic insight that can be gained by observing two and three-vector
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correlations involving the reactant and product angular momenta, j and j ′.
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FIG. 1. (Color online.) The reference frames used for considering the three-vector correlations.

a) The scattering frame used for the k-k′-j′ correlation, in which k is defined as lying along the

z-axis and k′ in the zx-plane. b) The frame used to define the k-j-j′ correlation. c) The apse

frame used to define the a-j-j′ vector correlation. Note that a simple rotation around the y-axis

of the scattering frame results in the kinematic apse, a, becoming the z-axis.

FIG. 2. (Color online.) The effect of reflection, Ŝ, in the scattering k-k′ plane on the four vector,

k-k′-j-j′ distribution. The top and centre figures show the effect in the k-k′ scattering frame and

bottom figure shows the result of rotation R̂ into the k-j frame. The two frames are connected by

a simple rotation about the z-axis, as discussed in the text.

FIG. 3. (Color online.) Left Panels: An illustration of the k-k′-j′ conditional probability density

distribution, P (θj′ , ϕj′ |θ), for NO(A)+ He undergoing the N = 2 → N ′ = 3 rotational energy

transfer transition at a collision energy of 0.039 eV. The distribution is shown (from top to bottom)

at θk′ = 0◦, 45◦, 90◦, 135◦, and 180◦. Middle panels: As for the left panels but showing the k-j-j′

conditional probability density distribution, P (θj′ , ϕj′ |θj) for a selection of angles, θj . Right panels:

As for the left panels but showing the a-j-j′ probability density distribution, P (θaj′ , ϕaj′ |θaj) for

a selection of angles, θaj .
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FIG. 4. (Color online.) Left panel: An illustration of the k-k′-j′ probability density distribution,

P (θj′ , ϕj′), for NO(A)+ He undergoing the N = 2 → N ′ = 3 rotational energy transfer transition

at a collision energy of 0.039 eV, integrated over all scattering angles, θ. Note that in this figure,

the k-k′ scattering plane is the zx plane. Middle panel: As for the left panel, but showing the

k-j-j′ conditional probability density distribution, P (θj′ , ϕj′). Note that in this figure, the k-j

plane is the zx plane. Right panel: As for the left panel but showing the a-j-j′ probability density

distribution, P (θaj′ , ϕaj′) integrated over all angles θaj . Note that in this figure, the a-j plane is

the zx plane.

FIG. 5. (Color online.) Top panel: The j-j′ distribution showing the partitioning into different

amounts of momentum transfer, K. The various momentum transfer ‘bins’ are identified with

dashed (odd K) and continuous (even K) lines in light grey (red online). Bottom panel: The

resulting QCT depolarization cross sections, σNN ′(K), shown as circles, plotted as a function of

momentum transfer, K. The results are compared with the K-resolved cross sections obtained

from the QM tensor opacities (triangles). The data are for the N = 2 → N ′ = 3 collisionally

induced transition for NO(A) + He at a collision energy of 0.039 eV. See text and ref.13.
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FIG. 6. (Color online.) Disorientation (left panels) and disalignment (right panels) moments for

NO(A) + He with N = 2, resolved in final state at a collision energy of 0.039 eV. The top row

shows the QCT (circles) and CC-QM (triangles) closed shell data, whilst the bottom row shows

the results of the ‘open shell’ QCT (circles) and open shell CC-QM (triangles) calculations, with

j = N + S = 2.5. SR refers to the spin-rotation level, and the figure indicates whether it is

conserved, j′ = N ′ + 1/2, (labelled cons) or changed, j′ = N ′ − 1/2, (change) during collision.

FIG. 7. (Color online.) Upper panel: The closed shell QCT (circles) and CC-QM (triangles)

rotational energy transfer cross sections for NO(A) + He at a collision energy of 0.039 eV for initial

state N = 2. The data are resolved in final rotational state. Lower panel: The QCT ‘open shell’

and CC-QM open-shell RET cross sections for NO(A) + He with N = 2, and j = N + S = 2.5,

resolved in final state. SR refers to the spin-rotation level, and the figure indicates whether it is

conserved, j′ = N ′ + 1/2, (labelled cons) or changed, j′ = N ′ − 1/2, (change) during collision.
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