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Abstract

The aim of this work is to determine an effective yield criteria for porous pressure
sensitive solids by employing a virtual testing strategy. The focus is on the pressure
sensitivity typically displayed by geomaterials, such as sandstone. Virtual testing
strategy is based on computational homogenisation approach following a unified
variational formulation, which provides bounds on the effective material properties
for a given choice of the Representative Volume Element (RVE). In order to
estimate the effective properties of porous solid, the constitutive behaviour of
continuum matrix is assumed to follow the standard Drucker-Prager elasto-plastic
model. The computationally generated effective yield criteria for porous solids
are obtained for various RVE choices and compared against the recently proposed
analytical estimates for Drucker-Prager type solids and the SR4 constitutive model
for soft rocks. The developed virtual testing strategy is applied to estimate the
effective properties of a realistic rock sample, thus illustrating a wide range of
potential applications.

Keywords: Multi-scale, Yield criterion, Computational homogenization, Virtual
testing, Porous elasto-plastic materials

1. Introduction

In many practical situations it is necessary to consider several length scales in
order to provide predictive modelling of a problem at hand. This situation arises,
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for instance, in the area of geomechanical analysis of geological problems, where
macro scale is commonly of the order of several kilometres, while relevant rock
samples that characterise material behaviour typically measure several centimetres
(see, e.g. [1; 2; 3]).

Traditional approach for such problems has relied on extensive experimental testing
of material samples in order to provide a phenomenological constitutive model
to be used in modelling at the macroscopic scale (see, e.g. [4; 5] and papers
therein for recent contributions). However, designing an extensive experimental
programme can be difficult as samples are often recovered at great expense and
scarcely available. There is therefore a need to enhance experimental programme
with computationally based techniques.

The present article discusses such a computational strategy with objective to con-
struct a constitutive model that may be used in simulation of large scale problems.
At the core of such computational strategy is a multiscale modelling methodology
that relies on homogenisation of a suitable chosen Representative Volume Elements
(RVESs). Since the basic principles for the multiscale modelling of heterogeneous
materials were introduced (see [6; 7]), this methodology has proved to be a very
effective way to deal with arbitrary physically non-linear and time dependent ma-
terial behaviour at micro-level. During the last decade or so various approaches
and techniques for the multiscale modelling and simulation of heterogeneous ma-
terials have been proposed. Among these we highlight the contributions by Ghosh
et al. [8], Suquet and co-workers [9; 10], Feyel and Chaboche [11], Miehe and
co-workers [12; 13; 14], Kouznetsova et al. [15], Ladeveze et al. [16], Terada and
Kikuchi [17] and Ibrahimbegovi¢ and Markovic¢ [18].

The aim of this work is to design a strategy to construct an effective yield criteria to
be used in simulation at the macroscopic length scale. The effective yield criteria
have been successfully constructed for porous materials with elasto-plastic von
Mises matrix, starting with the classical work by Gurson [19], who first proposed
an analytical yield criteria and flow rules for porous ductile media composed of
von Mises matrix. Numerous publications have since been contributed on the topic
as reported in a review article by Benzerga and Leblond [20], which discusses a
wide variety of extensions of the original Gurson’s model and its applications.
Notable recent refinements and extensions of the original model are described in
articles by Fritzen et al. [21], Monchiet and Bonnet [22], Ling et al. [23], Cazacu
and Revil-Baudard [24] and El Ghezal and Doghri [25].

A significant practical and research interest exists in characterisation of porous
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materials with pressure sensitive elasto-plastic matrix, which can often be encoun-
tered in geomaterials and solid polymers [1]. In early works Jeong [26] and Guo
et al. [27] extend the Gurson’s approach to determine an effective yield criteria for
porous materials with elasto-plastic Coulomb and Drucker-Prager matrix, respec-
tively. More recently, a substantial research effort has been invested to provide
characterisation of porous materials with pressure sensitive matrix for different
elasto-plastic constitutive laws and varied void configurations ( see, for instance,
[28], [29], [30], [21], [31], [32], [33] and [34], and references therein).

The objective of this work is to determine an effective yield criteria for porous
solids with pressure sensitive matrix by employing a computational homogenisa-
tion approach following a unified variational formulation described in de Souza
Neto and Feijoo [35] and Peric et al [36]. The formulation can be applied to
arbitrary materials and provides bounds on the effective material properties for a
given choice of the Representative Volume Element (RVE). It has already been
successfully applied in prediction of yielding behaviour of ductile porous materials
with pressure insensitive von Mises matrix (see [37], [38] and [39]). This arti-
cle describes the first attempt to employ a generic computational homogenisation
technique in constructing a macroscopic yield criterion for porous material with
pressure sensitive Drucker-Prager type matrix.

The overall procedure has many similarities to the approach normally undertaken
when performing experimental characterisation of the material behaviour and is
therefore termed the virtual testing strategy. Main ingredients of a generic virtual
testing strategy have recently been described by Zhang et al. [40] and Esmaeili
et al. [41], and applied to the construction of the initial yield surface for sheet
metal forming operations and heterogeneous composite with von Mises matrix,
respectively.

The paper is organised as follows: The multi-scale constitutive framework is re-
viewed in Section 2 and the finite element approximation method provides in
Section 3. Section 4 provides a brief summary of constitutive models considered
in this work. Main steps of the virtual testing strategy are given in Section 5,
while Section 6 provides numerical examples and includes comparative analy-
sis against the results available in literature. Finally, the main conclusions and
recommendations for future work are discussed.
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Figure 1. Macro-continuum with a locally attached micro-structure.

2. Homogenisation-based multi-scale constitutive theory

In order to provide a complete exposition of the virtual testing approach presented
in this work, next two sections briefly describe variational basis and finite element
approximation of the adopted multi-scale homogenisation methodology. For more
details related to variational setting and finite element implementation we refer to
our earlier articles [35], [36] and [42].

It is assumed from the outset that any material point  of the (macroscopic)
continuum is associated with a local Representative Volume Element (RVE) whose
domain €, with boundary 0€2,,, (see Figure 1), has a characteristic length, [,,.
Furthermore, it is assumed that the length /,, is much smaller than the characteristic
length, /, of the macro-continuum, thus ensuring the separation of scales, which is
essential ingredient of the adopted family of the multi-scale methods. The domain
€2, of the RVE is assumed to consist in general of a solid part, £2},, and a void part,
Q)

Q,=Q,UQ,. (1)
For simplicity, in what follows, we shall consider only RVEs whose void part does

not intersect the RVE boundary.

Fundamental assumption of the adopted multi-scale theory is that at any instant ¢,
the strain tensor at an arbitrary point & of the macro-continuum is assumed to be
the volume average of the microscopic strain tensor field, €, defined over Q,, :



1
e(r) = v /Q eu(y,1)dv, ()

where V, is the volume of the RVE and
Eu= Ve Uy, 3)

where V*u,, denotes the symmetric gradient of the microscopic displacement field
u,, of the RVE.

2.1. Kinematically admissible RVE displacement fields

By introducing expression (3) into equation (2) and making use of Green’s theorem,
it can easily be shown that the averaging relation (2) is equivalent to the following
constraint on the displacement field of the RVE [35]:

1
/ u#®sndA:/ “(uy®n+no®u,)dAd=V,e, 4)
09, 09, 2
where n denotes the outward unit normal field on 9€2,,.

It has proved convenient to split the displacement u,, into a sum

'U/,u(y, t) = s(t)y+ﬁﬂ(y’ t)’ (5)

of a homogeneous strain displacement, €(¢)y, and a displacement fluctuation
field, 4. The constraint (4) is then equivalent to requiring that the space Jf;, of
kinematically admissible displacement fluctuations of the RVE be a subspace of
the minimally constrained space of kinematically admissible displacement fluctu-
ations, Jii*:

H, C %7#* = {v, sufficiently regular | / v®;ndA = 0} : (6)
0Q,,

Following the split (5) the microscopic strain (3) can be expressed as the sum

€ﬂ(y’ t) = €(t) + Vsﬂ’,ll(y’ t) b (7)

of a homogeneous strain field (coinciding with the macroscopic, average strain)
and a field V*@,, that represents a fluctuation about the average.



2.2. Macroscopic stress, Hill-Mandel Principle and RVE equilibrium

In similarity to the above macroscopic strain definition (2), the macroscopic stress
tensor, o, is defined as the volume average of the microscopic stress field, o, over
the RVE:

1
o(t) = V—/Q o, (y,1)dV. (8)

H u
An essential concept that underlies models of the present type is the Hill-Mandel
Principle of Macro-homogeneity [43; 44] which requires the macroscopic stress
power to equal the volume average of the microscopic stress power for any kine-
matically admissible motion of the RVE. This is expressed by the equation

1
o'g(t):v—'u[Z O'MEﬂdV, 9)

m

that must hold for any kinematically admissible microscopic strain rate field, €.
The above is equivalent to the following variational equation:

/ t-ndA =0, /b-ndV:O Vne A, (10)
0Q Q

U U

in terms of the RVE boundary traction and body force fields denoted, respectively,
tand b.

The variational equilibrium statement for the RVE is then given by

/ o,:VndV=0 VYne.x,. (11)
‘u

Further, we assume that at any time ¢ the stress at each point y of the RVE is

delivered by a generic constitutive functional &, of the strain history EL (y) at that

point up to time ¢:

au(y.1) = Sy(e,(y)). (12)

This constitutive assumption, together with the equilibrium equation (11) leads
to the definition of the RVE equilibrium problem which consists in finding, for a
given macroscopic strain € (a function of time), a displacement fluctuation function
Uy, € %7# such that

/‘ Gy{[s(t) + Vi, (y, t)] } :VindV=0 Vne.%,. (13)

o
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2.3. Characterisation of the multi-scale constitutive model

The general multi-scale constitutive model in the present context is defined as
follows. For a given macroscopic strain history, we must firstly solve the RVE
equilibrium problem defined by (13). With the solution @, at hand, the macro-
scopic stress tensor is determined according to the averaging relation (8), i.e., we

have
1
= 6 ! = — 6
o(t) (e") V# </Q,, y{

where &S denotes the resulting (homogenised) macroscopic constitutive func-
tional.

t
s+vsaﬂ] }dV, (14)

2.4. The choice of kinematical constraints

The characterisation of a multi-scale model of the present type is completed
with the choice of a suitable space of kinematically admissible displacement
fluctuations, jfﬂ C %* In general, different choices lead to different macroscopic
response functional. The following choices are as:

2.4.1. Linear boundary displacements (or zero boundary fluctuations) model:

Jii, = Hin = {’U, sufficiently regular |v(y) =0V y € 6Qﬂ}. (15)

The displacements of the boundary of the RVE for this class of models are fully
prescribed as
u,(y) =y VyeoQ,. (16)

2.4.2. Periodic boundary fluctuations. This assumption is typically associated
with the description of media with periodic microstructure. The macrostructure
in this case is generated by the periodic repetition of the RVE [10]. For simplicity,
we will focus the description on two-dimensional problems and we shall follow
the notation adopted by Michel et al. [10]. In this case, each pair i of sides consists
of equally sized subsets

7 and I7 (17)

of 0€,,, with respective unit normals
n; and n;, (18)

such that
n;, = -n;. (19)



A one-to-one correspondence exists between the points of I'7 and I'; . That is, each
point y* € I'/ has a corresponding pair y~ € I'; . The key kinematical constraint
for this class of models is that the displacement fluctuation must be periodic on the
boundary of the RVE. That is, for each pair {y+, y‘} of boundary material points
we have

ﬁﬂ(yJ’,t) =a,(y~,1). (20)

Accordingly, the space JK; is defined as

Hy = Hper = {11,,, suff.reg. | @, (y*,1) = @,(y~,1) ¥ pairs{y*, y‘}.} (21)

2.4.3. The minimally constrained (or uniform boundary traction) model:
Jfﬂ = %7#* (22)

It can be shown [35] that the distribution of stress vector on the RVE boundary,
associated with the minimal kinematic constraint, satisfies

ou(y,)n(y) = o(t)n(y) Vy e oQ,. (23)

Similarly to the linear boundary displacements assumption, there are no restrictions
on the geometry of the RVE for this choice of the RVE constraint.

It should be pointed out that the use of different boundary conditions for a given
RVE produces, in general, different estimates of the corresponding macroscopic
constitutive response. The general rule, which follows after a careful mathemat-
ical arguments based on variational calculus (see, for instance, Peric et al [36]
and references therein), is that the linear boundary displacement (most kinemati-
cally constrained) produces the upper bound solution to the microscopic equilib-
rium problem, followed in order of decreasing stiffness, by the periodic displace-
ment fluctuation and the uniform boundary traction model, which produces lower
bound estimate that is associated with the most compliant (least kinematically
constrained) boundary condition.

3. Finite element approximation

This section provides a brief description of the computational implementation of
multi-scale constitutive methodology described in Section 2 within a non-linear



finite element framework. At the outset, it is assumed that the constitutive be-
haviour at the RVE level is described by conventional internal variable-based dis-
sipative constitutive laws, such as classical models of elasto-plasticity and elasto-
viscoplasticity. Numerical approximations to the initial value problem defined by
the constitutive equations of the model are usually obtained by Euler-type differ-
ence schemes. For a typical time (or pseudo-time) interval [t”, t”“] , and given
set of " of internal variables at ¢ , the stress a'l’f,“ at 7"*! is a function of the pre-
scribed strain €Z+1 at 1! (see, for instance, de Souza Neto et al [45] for a detailed
account of procedures of this kind in the context of plasticity and visco-plasticity).
The stress update procedure can be symbolically represented as

ot =6y (it a), (24)

where 6 denotes the integration algorithm-related implicit incremental constitu-
tive function at the point of interest, y.

The homogenised constitutive function defined in (14), can now be expressed in
its incremental form as:

1
o,n+1 — &(€n+l;dn) = _‘/Q &y(€n+1 + Vs,azﬂ;an) dV, (25)

H u

where &" denotes the field of internal variable sets over Q,, at time 7, and ﬂZ“

is the displacement fluctuation field of the RVE at *1 which is obtained as the
solution of the time-discrete version of equilibrium problem (13):

/ Gy (e + V“ﬂzﬂ;a”) :VndV =0 VneX,. (26)
Q

s
[

3.1. Finite element discretisation and solution

Following a standard procedure, the finite element approximation to problem (26)
for a given discretisation A consists in determining the unknown vector @' € %2,/
of global nodal displacement fluctuations such that

G"(a)t) = {/Qh B’ 6, (e™! +Ba;§+1)dv} m=0 VYneJ, (7
‘U

where QZ denotes the discretised RVE domain, B the global strain-displacement

matrix (or discrete symmetric gradient operator), €"*! is the fixed (given) array

9



A

of macroscopic engineering strains at "*! 0y is the functional that delivers the
finite element array of stress components, 77 denotes global vectors of nodal virtual
displacements of the RVE and Jiih is the finite-dimensional space of virtual nodal
displacement vectors associated with the finite element discretisation /4 of the
domain €.

The solution to the non-linear problem (27) is commonly undertaken by the
Newton-Raphson iterative scheme, whose typical iteration (k + 1) consists in
solving the linearised form,

[Fm +K® 5,,1/<j<+1>] m=0 VYnei), (28)

for the unknown iterative nodal displacement fluctuations vector, 6'&#) € e}i;#h
where

FO = / B 6y, (e +Ba))dv, (29)
Q)
and
K® = / B'D®Bdv (30)
o
is the tangent stiffness matrix of the RVE with
dé
p* =2 31)
de e=e"1+Ba/t!

denoting the consistent constitutive tangent matrix field over the RVE domain. In
the above the bracketed superscript denotes the Newton iteration number. With
the solution 6'&}]() at hand, the new guess '&,Lk) for the displacement fluctuation at
tn+1 1s obtained according to the Newton-Raphson update formula

Ialgk+1) — ,a/(lk) + 5/&lgk+l) . (32)

It should be noted that under the assumption of linear boundary displacements,
the solution of problem (28) follows the conventional route of general linear
solid mechanics problems, with the fluctuations degrees of freedom of the bound-
ary fully prescribed as zero. For the periodic and uniform tractions boundary
condition models, however, the kinematic boundary conditions of the RVE are
non-conventional. For details of implementation of different boundary condi-
tions within the described variational framework under both small and large strain
conditions we refer to our earlier publications [36] and [42], respectively.
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4. Constitutive models

Pressure sensitive elasto-plastic materials are widely encountered, both as natu-
rally occurring (rocks, soils) and artificially designed (concrete, solid polymers).
Hence, characterisation of constitutive behaviour of such materials has attracted a
significant research and practical interest. This section briefly reviews three elasto-
plastic yield criteria for pressure sensitive materials, starting first with a classical
Drucker-Prager yield criterion, and then discusses the constitutive description of
two yield criteria that have more recently been proposed to characterise behaviour
of porous materials with pressure sensitive matrix.

4.1. Standard Drucker-Prager model

The classical Drucker—Prager yield criterion is a simple extension of the von
Mises yield criterion, in which pressure sensitivity is introduced through a linear
dependence of the von Mises deviatoric stress on the hydrostatic pressure. Due
to its simplicity the Drucker-Prager yield criterion has often been used as a first
approximation of pressure sensitive elasto-plastic behaviour in wide range of ma-
terials such as soils, rock, concrete, solid polymers, foams, etc. Its mathematical
representation is given as,

tan ¢
V3

where, ¢ = +/J2(s(0)), in which J>(s) = %s : s is the second invariant of the
deviatoric stress s, s = o — p(o)I is the deviatoric stress tensor and p = %tr[a]
is the hydrostatic pressure. Here ¢ and ¢ denote the frictional angle and cohesion,
respectively, which need to be determined through experimental procedure.

®(o,c) =g+ p(o) —c (33)

4.2. Constitutive model for porous solids with Drucker-Prager elasto-plastic ma-
trix
Constitutive description of porous materials with the pressure sensitive elasto-
plastic matrix has received some attention. In early work Guo et al. [27] extend
the Gurson’s approach to determine an effective yield criteria for porous materials
with elasto-plastic Drucker-Prager matrix. More recently, an increased research ef-
fort has been invested to provide characterisation of porous materials with pressure
sensitive elasto-plastic matrix and varied void configurations ( see, for instance,
[28], [29], [30], [21], [31] and [32], and references therein). In particular, Shen
et al [33] provide a convenient mathematical expression of the macroscopic yield
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criterion for porous material with Drucker-Prager elasto-plastic matrix and spher-
ical voids. The macroscopic yield surface is expressed as,

. _ _ 2%
cj:{(—2fcosh(m+zs—1:fn(mln(l—3M15))+1+f2)[1— (fﬂ_h})] } (34)

tan(¢)

V3
hydrostatic stresses normalised by V3 ¢. We point out that a recent paper by
Shen et al [34] provides an updated version of the macroscopic yield criterion
for porous material Drucker-Prager elasto-plastic matrix, which is together with
the above expression (34), employed in comparative analysis of numerical results
provided in Section 6.

where M = , f = voidratio , g and p are, respectively, deviatoric and

4.3. The soft rock SR4 model

The SR4 is a generic elastic-plastic critical state constitutive model originally de-
signed to describe porous elasto-plastic materials, such as sandstone [46]. The
SR4 has proved very successful in description of much larger class of geomate-
rials and in this work it is employed to the describe macroscopic behaviour of
heterogeneous elasto-plastic materials with pressure sensitive matrix.

It is defined in the p — ¢ plane with two functions that intersect at the point of
maximum deviatoric stress.

The shear side is defined using the SR3 surface [47], whereas the compression
side is defined by the elliptical function of the standard Cam-Clay model [48; 49].
Its mathematical representation is given as

1

(0 eh) = g(6.p)q + (p - pt>tan¢( P pe ) (35)
Pt — DPc
(P — P)*
Dy = (89)* — Mip7, [1 - =0 (36)
o ¢ ¢Cm (p¢crit - pc)2

where p; is the tensile intercept of the yield surface with the hydrostatic axis, p is
the pre-consolidation pressure or compressive intercept of the yield surface with
the hydrostatic axis, p4_.,is the effective mean stress at gri; value, elvj is the plastic
volumetric strain, My is the slope of the line that intersects both the origin of the

12



p — g space and the yield surface in g value, n is material constant that defines
the shape of the yield surface in the p — ¢ plane, 6 is the Lode angle and g(6, p) is
a function that controls the shape of the yield surface in the deviatoric plane and
is computed as

Nlr

8(0,p) = | ———=(1+B"(p)sin(36))| . (37)

ﬁ”( )
Here N” is a deviatoric plane shape material constant and " (p) is a function
defined as

B (p) = BT exp(BTpE ) (38)

in which B and S are material constants and p, is the initial pre-consolidation
pressure (corresponding to uncompressed and undamaged material). In order to
match the SR4 yield surface with the Drucker-Prager yield shape the g factor is
taken as 1 by setting B = 0. It should be noted that in order to provide accurate
representation of material behaviour the SR4 yield surface is often combined with
a separate flow surface, thus defining a non-associative elasto-plastic constitutive
law.

5. Virtual testing strategy

This section discusses a computational strategy, which is designed with an objec-
tive to construct a constitutive model that may be used in simulation of macroscopic
scale problems. The overall procedure has many similarities with the approach
normally undertaken when performing experimental characterisation of the mate-
rial behaviour and is therefore termed the virtual testing strategy. Main ingredients
of a generic virtual testing strategy have recently been described by Zhang et al.
[40] and Esmaeili et al. [41], and applied to the construction of the initial yield
surface for sheet metal forming operations and heterogeneous composite with von
Mises matrix, respectively. In this context notable are also recent contributions by
Rodrigo et al. [39], Cao et al. [2] and Ahmed et al. [50].

At the core of a virtual testing strategy is a multiscale modelling methodology that
relies on homogenisation of a suitably chosen Representative Volume Elements
(RVESs). This work employs a computational homogenisation approach that follows
a unified variational formulation described in [35] and [36], which is briefly
summarised in Sections 2 and 3. The formulation can be applied to arbitrary
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materials and has a very useful feature that it provides bounds on the effective
material properties for a given choice of the Representative Volume Element
(RVE).

It should be observed that a virtual testing strategy based on such an RVE formu-
lation has already been successfully applied in prediction of yielding behaviour
of ductile porous materials with pressure insensitive von Mises matrix (see [37],
[38] and [39]). This article describes the first attempt to employ a virtual test-
ing strategy to construct a macroscopic yield criterion for porous material with
pressure sensitive Drucker-Prager type matrix. As will be discussed below, the
construction of an effective yield surface for pressure sensitive materials presents
unique challenges not faced when employing the von Mises type materials and
requires very careful and judicious choices when defining an effective constitutive
law.

The main steps of the virtual testing strategy used in this work are illustrated in
Figure 2. It should be noted that in order to describe the behaviour of practically
relevant problems, two strategies may be distinguished that correspond to different
length scales of the problem at hand. In strategy A an effective constitutive law
obtained within the virtual testing strategy is applied directly in simulation of a
macroscopic scale problem. In Strategy B the virtual testing involves an additional
step that provides an effective constitutive law for the behaviour of material at
mesoscopic scale. Strategy B is employed when significant heterogenities are
present at multiple length scales of material. Both strategies will be discussed in
more detail in Sections 5.1-5.3 .

5.1. RVE choice

Two unit cube RVEs are considered for all numerical results generated in Section
6: (i) A cube with a single spherical void at the centre, and (ii) a cube with
eight variable size randomly distributed spherical voids. The void ratio V) is
kept constant at 10% for all numerical examples. This represents a void volume
fraction typical for sandstone. The RVEs are discretised by eight noded hexahedral
elements. RVEs are shown in Figures 3(a) and 3(b), with cuts through discretised
finite element meshes with void ratio f = 10% depicted in Figures 3(c) and 3(d).
The RVE shown in Figure 3(c) is discretised with 106636, while the one in
Figure 3(d) is discretised with 1567766 hexahedral elements.
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Figure 2. Virtual testing strategy.

5.2. Yield criterion estimate

A crucial aspect of the described virtual testing strategy is identification of the yield
stress under different loading conditions. For the RVEs composed of the pressure
insensitive von Mises type elasto-plastic material, plastic collapse of the RVE is
considered to have occurred when no changes in macroscopic (homogenised) stress
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Figure 3. RVE geometries and finite element models: (a) and (c) single void RVE; (b) and (d)
RVE with multiple voids.

are observed for the increasing load factor. This procedure allows a straightforward
estimate of the von Mises and hydrostatic components of the macroscopic collapse
stress, which define a yield surface point (see [37], [38] and [39] for details of the
methodology and examples).

For the RVEs composed of pressure sensitive elasto-plastic materials this has
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proved to be a more challenging task. While the above procedure is applicable for
tensile and shear side of the p — g diagram, the pressure sensitivity of material does
not allow a simple estimate of the yield stress at the compressive side of the p — ¢
diagram. In order to overcome the ambiguity and in the spirit of the described
virtual testing strategy, in this work the Casagrande method [51] is employed to
identify the yield point in p — €, and g — €, diagrams for all loading conditions,
where €, and €, are volumetric and deviatoric strain, respectively. It should be
noted that the Casagrande method has originally been proposed to predict the pre-
consolidation pressure of soil samples and is nowadays also commonly employed
to estimate first yield stress during experimental procedure involving soil and rock
materials. Graphical illustration of the procedure is given in Figure 4. Within
the classical Casagrande method the yield stress is identified at the intersect of
the linear virgin elastic loading curve and the bisect of a horizontal and tangent
drawn at the point on the stress-strain response curve of maximum curvature (see
Figure 4). This procedure has proved essential in identifying yield stress for
the cases when transition between elastic and plastic deformation regime is slow,
resulting in a gradual change of slope of the stress-strain curve.

6.0
5.0}
4.0
43.0

»>| Yield point

2.0}
1.0¢

> 3 41 s
€4 %1073

Figure 4. Illustration of the Casagrande method.
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5.3. RVE loading

The loading programme consists in prescribing a macroscopic strain path

e(y) =v& (39)

where y where is the loading parameter and € is the strain imposed on the RVEs.
In order to construct a yield criterion in the stress space the macroscopic strain €
is varied according to the following rule:

1 1 1
E=a1| 0 55 (1) +4/1 -] @ (1) 300 (40)
0 0 55 500 3006 O

where a1 € [—1,0] for the compressive side of the p — ¢ diagram, while for the
tension side the following expression is employed

1 1 1

[ 2 0] [ %

E=Q) 0 1000 (1) + 1—(12@ (1) 300 (41)
0 0 15 506 200 O

in which a, € [0, 1]. Note that @; = 0 and @, = 0 correspond to a pure shear
direction, whereas a@; = —1 corresponds to triaxial compression, while ap = 1
defines triaxial tension loading. By varying parameters @) and @, a sufficient
number of yield points can be determined to allow an accurate yield surface to be
constructed.
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6. Numerical results

Virtual testing strategy described in Section 5 is employed in this Section to
construct a macroscopic yield surface for porous pressure sensitive material with
Drucker-Prager elasto-plastic matrix. Numerical results are obtained by using an
in-house implicit finite element code described in [45] and the commercial finite
element software ParaGeo [52] that relies on explicit solution strategy. Numerically
generated results are compared against the analytical estimates of yield criteria

given by expressions in Section 4.

In order to generate numerical results the following set of material constants has
been selected: Young’s modulus, £ = 3000 MPa and Poisson’s ratio, v = 0.3.
Two friction angles are considered, ¢ = 16.7° and ¢ = 30.2°, while cohesion is

taken as ¢ = 1 MPa.
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Figure 5. Comparison of the analytical expression (34) (Shen et al [33]) (solid line) and analytical
yield surface provided by Shen et al [34] (dashed line) against the yield stresses obtained by
employing the RVE with spherical void at the centre under linear and uniform traction boundary
conditions. In-house finite finite element code results for two friction angles: (a) ¢ = 16.7° and

(b) ¢ = 30.2°.

6.1. Role of RVE boundary conditions

Virtual tests have first been performed for an RVE with a single spherical void
in the centre of the RVE, while linear and uniform traction boundary conditions
are considered, which are expected to provide upper and lower bound solutions,

respectively, as discussed in Section 2.4.
Virtual testing results are generated by employing an implicit solution procedure
and compared against analytical expression given in equation (34). Figures 5(a)
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and 5(b) provide, respectively, a comparison between numerical and analytical
results for two selected friction angles ¢ = 16.7° and ¢ = 30.2°. It can be
observed that virtual test results capture very well trends observed for the pressure
sensitive elasto-plastic Drucker-Prager material, with linear boundary conditions
providing an excellent agreement with analytical expression (34) provided by Shen
et al [33]. However, it appears that a recently updated analytical expression given
by Shen et al [34] provides an improved estimate of the yield criterion for porous
elasto-plastic material with Drucker-Prager matrix, which fits within the upper and
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Figure 6. Stress-strain curves obtained by employing RVE with a spherical void under linear and
uniform traction boundary conditions for ¢ = 16.7°. Results are shown for three different loading
conditions: (a) pure compression, (b) pure tension and (c) pure shear.
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lower bound predictions associated with the FEM solutions obtained by employing
linear and uniform traction boundary conditions, respectively.

Figures 6 and 7 depict stress-strain evolution diagrams for both friction angles
¢ = 16.7° and ¢ = 30.2°, respectively. In particular, Figures 6(a), 6(b), 7(a)
and 7(b) give p — €, evolution diagrams for triaxial compression and tension,
respectively, while Figures 6(c) and 7(c) give g — €4 for pure shear loading. The
diagrams are used to identify yield stress for each loading combination, clearly
illustrating the difficulty in selecting the appropriate value of the yield stress. They
provide a justification for the use of Casagrande method as described in Section 5.2
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Figure 7. Stress-strain curves obtained by employing RVE with a spherical void under linear and

uniform traction boundary conditions for ¢ = 30.2°. Results are shown for three different loading
conditions: (a) pure compression, (b) pure tension and (c) pure shear.
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to identify the yield stress within the virtual testing strategy. This is particularly
evident on a stress-strain curve for frictional angle ¢ = 30.2°, which, under pure
compression loading conditions depicted in Figure 7(a), shows gradual transition
from elastic to plastic regime without a clearly identifiable yield stress point.

6.2. Choice of RVE

In order to illustrate the influence that the choice of RVE may have on constructed
yield surface the virtual testing procedure is in this section performed on different
RVEs described in Section 5.1 and given in Figure 3. With a view to practical ap-
plications the virtual testing strategy described in Section 5 has been implemented
in the commercial software ParaGeo.

Virtual testing results are generated by employing linear boundary condition,
which has been shown in previous Section 6.1 to lead to the yield surface that is in
very good agreement with analytical expressions. Figure 8 provides a comparison
between numerically constructed yield surfaces and analytical expression (34)
(Shen et al [33]) and expression provided by Shen et al [34] for two selected friction
angles ¢ = 16.7° and ¢ = 30.2°. It can be observed that virtual testing results
show very good agreement with analytical expression for both choices of RVE,
with no significant differences between RVEs with a single and multiple voids.
The correspondence between virtual testing results and analytical expressions is
particularly good for the smaller friction angle of ¢ = 16.7°, as show in Figures 8(a)
and 8(c). Notably, for friction angle ¢ = 30.2° the RVE with multiple voids
provides slightly softer response than the RVE with a single void as can be observed
by comparing Figures 8(b) and 8(d).

Figure 9 depict stress-strain evolution diagrams for friction angle ¢ = 30.2°.
Figure 9(a) and Figure 9(b) give p —¢&, evolution diagrams for triaxial compression
and tension, respectively, while Figure 9(c) gives g —e for pure shear loading. The
stress-strain evolution is displayed for an RVE with a single void for both in-house
implicit code and ParaGeo results, while results for RVE with multiple voids are
based on ParaGeo simulation. Clearly, the stress-strain diagrams obtained by both
codes are virtually indistinguishable. These diagrams provide typical stress-strain
curves that are used to identify yield stress for each loading combination, again
clearly illustrating the difficulty in selecting the appropriate value of the yield stress
particularly for larger value of frictional angle ¢ = 30.2° under pure compression
loading conditions shown in Figure 9(a). They provide further justification for the
use of Casagrande method as described in Section 5.2 to identify the yield stress
within the virtual testing strategy.
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Figure 8. Comparison between yield surface given by analytical expression (34) (solid line),
analytical yield surface provided by Shen et al [34] (dashed line) and numerical solutions: (a) and
(c) display results for RVE with single void and eight voids, respectively, with the friction angle
¢ = 16.7°; (b) and (d) show results for RVE with single void and eight voids, respectively, with the
friction angle ¢ = 30.2°. All results are obtained by employing ParaGeo.
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Figure 9. Stress-strain curves obtained by employing RVEs with a spherical void and multiple
voids under linear boundary conditions for ¢ = 30.2°. Results are shown for three different loading
conditions: (a) pure compression, (b) pure tension and (c) pure shear.

24



6.3. Mechanisms of plastic collapse

In order to get an insight into mechanisms of plastic collapse for porous materials
composed of pressure sensitive elasto-plastic matrix, the equivalent plastic strain
distribution plots are depicted in Figures 10 and 11.

Figure 10 illustrates the effective plastic strain distribution for the RVEs with
a single void, corresponding to the loads at which plastic collapse takes place.
The results for the RVE with a single void shown in Figure 10 are obtained by
imposing two kinematical constraints on the RVE: Figures 10(a), 10(c) and 10(e)
depict equivalent plastic strain for linear, while Figures 10(b), 10(d) and 10(f)
depict results for uniform traction boundary condition. Similar distributions of
equivalent plastic strain can be observed for both linear and traction boundary
conditions, however, the strains at which these levels have been achieved are lower
for the uniform traction boundary conditions. This confirms that the uniform
traction boundary conditions with minimal kinematical constrains provide a lower
bound solution to the plastic collapse of the RVE as clearly illustrated in stress-
strain diagrams given in Figures 6 and 7, and yield surface estimates shown in
Figure 5.

It can be observed from Figure 11 that the plastic collapse for the triaxial loading
conditions takes place by development of a plastic deformation in a layer of
material surrounding the void (Figure 11(c)), which spreads to the boundary
causing extensive plastification and collapse (Figure 11(d)). This failure pattern
is clearly illustrated for triaxial compression in Figures 10(a) and 10(b) and for
triaxial tension in Figures 10(c) and 10(d). For pure shear loading depicted in
Figures 10(e) and 10(f), the failure pattern starts similarly by development of a
plastic deformation in a layer of material surrounding the void, but then spreads
diagonally to reach the boundary along the direction of principal tensile stress.
This failure pattern is very clearly illustrated for the uniform traction boundary
condition depicted in Figure 10(f), while the plastic zone appears more diffused
for linear boundary condition shown in Figure 10(e).
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Figure 11. Evolution of equivalent plastic strain for the RVE with single void and friction angle
¢ = 16.7° under uniform traction boundary condition. Triaxial compression loading at different
load levels: (a) 5% of the total load (b) 7% of the total load, (c) 10% of the total load, and (d) 20%
of the total load .
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7. Multi-scale material characterisation application

In order to provide a demonstration of the potential that virtual testing strategy
described in Section 5 can have on practical applications, this section describes
the application to the realistic soft rock sample. The virtual testing procedure is
implemented in the commercial code ParaGeo [52] to allow simulation of large
scale problems associated with complex heterogeneous rock microstructure. In
order to provide more flexibility in the description of constitutive behaviour the
SR4 constitutive model described in Section 4.3 is employed.

The SR4 model is an extension of the SR3 model proposed by Crook et al. [47],
which has proved very successful in simulation of a wide range of problems from
geological practice (see, e.g. [53; 46; 54]). The SR4 is a generic critical state
model which includes non-associated hardening law and by the appropriate choice
of material parameters can provide a close match to the porous Drucker-Prager
type elasto-plastic material.

Figure 12(a) shows a digital image of a rock sample typical for a sandstone,
which is composed of pressure sensitive elasto-plastic matrix and two types of
elastic inclusion particles. Quartz_1 has Young’s modulus of £ = 70000 MPa,
while softer Quartz_2 has Young’s modulus of E = 50000 MPa. The matrix is
composed of a porous elasto-plastic material characterized by SR4 constitutive
model with Young’s Modulus E = 3000 MPa, tensile intercept p; = 1.5 MPa,
pre-consolidation pressure p. = —3.2 MPa and both friction ¢ and dilation angle
Y given as ¢ = = 50°. The Poisson’s ratio v = 0.3 is used for all materials in the
sample. The inclusion ratio of the sample stands at 17%. The discretised model
depicted in Figure 12(b) is meshed with 65648 triangular elements.

Figure 13 depicts stress-strain evolution diagrams under different loading condi-
tions. Figure 13(a) and Figure 13(b) give p—&, evolution diagrams for compression
and tension loading, respectively, while Figure 13(c) give g — €4 for pure shear
loading. The diagrams Figures 13(a) to 13(c) provide typical stress-strain curves
that are used to identify yield stress for each loading combination, again clearly
illustrating the importance of using the Casagrande method described in section
5.2 to identify the yield stress within the virtual testing strategy.

Figure 14 illustrates the effective plastic strain distribution corresponding to the
loads at which plastic collapse takes place. It can be observed from Figures 14(a)
and 14(b) that the plastic collapse for both compression and tension dominated
loading conditions takes place by development of large plastic deformations at the
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Figure 12. Sandstone RVE: (a) digital image, (b) finite element mesh.

interface between hard particles and soft rock matrix, which then spreads to the
boundary leading to extensive plastification and rock sample collapse. For shear
loading depicted in Figure 14(c), the failure pattern starts similarly by development
of a plastic deformation at the interface between hard particles and soft rock matrix,
but then spreads by formation of shear bands that reach the boundary leading to
plastic collapse.

Figure 15 depicts a set of yield points recovered by virtual testing procedure and
numerically constructed yield surface. The yield surface is obtained by employing
the SR4 constitutive model and an appropriate choice of material parameters that
provides the best fit to the set of yield points. The yield surface constructed in such
a way defines the meso-scale type constitutive model, which, within the virtual
testing strategy - type B (see Figure 2), provides a constitutive model to be used
for numerical simulations at the macro-scale.
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Figure 13. Stress-strain curves of the sandstone RVE under different loading conditions: (a)
compression, (b) tension and (c) shear.

30



@ (b)

Ep
3.0e-02
0.028

Ep
I 1.0e-03

—0.021 —0.00075

—0.014 ——0.0005

——0.007 —0.00025

I 0.0e+00

0.0e+00

Ep
I4A0e-02
0.036
-0.027

—0.018

—0.009

I 0.0e+00

Figure 14. Equivalent plastic strain distribution for the sandstone RVE under different loading
conditions: (a) compression, (b) tension and (c) shear.

31



1.2

1.0 A

0.8 1

0.6 1

0.4 1

0.2 1

—— Yield Criterion
@® Virtual Testing

0.0 T T T T T T T T
-30 -25 -20 -15 -1.0 -05 0.0 0.5 1.0 1.5

p

Figure 15. Set of yield stress points together with yield surface constructed by the virtual testing
procedure.

8. Concluding remarks

Virtual testing strategy has been developed in this work based on computational
homogenisation approach following a unified variational formulation. The poten-
tial of the strategy is illustrated by performing estimate of the effective properties
of porous solid with elasto-plastic Drucker-Prager matrix. Excellent correspon-
dence has been demonstrated between the computationally generated effective
yield criteria for porous solids and the recently proposed analytical estimates for
Drucker-Prager type solids and the SR4 constitutive model for soft rocks.

An important feature of the proposed virtual testing strategy is use of the Casagrande
procedure [51] to identify yield points and thus to construct an effective yield
surface for heterogeneous elasto-plastic materials. This procedure is commonly
employed in experimental characterisation of geological materials that invariably
display appreciable pressure sensitivity. A range of numerical tests performed in
this work demonstrates that the virtual testing strategy enhanced by the Casagrande
procedure provides an efficient and accurate methodology for constructing yield
surface for a wide range of realistic geological materials.
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The virtual testing procedure has been implemented in the commercial code
ParaGeo [52] to allow simulation of large scale problems associated with com-
plex heterogeneous rock microstructures. In order to illustrate the potential that
the developed virtual testing strategy may have on characterisation of practically
relevant materials, the effective yield surface has been constructed for the realistic
soft rock sample based on a digital image of a sandstone.
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