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This paper elucidates the bifurcation mechanism of an equidistant economy in spatial economics.
To this end, we derive the rules of secondary and further bifurcations as a major theoretical con-
tribution of this paper. Then we combine them with pre-existing results of direct bifurcation
of the symmetric group SN [Elmhirst, 2004]. Particular attention is devoted to the existence
of invariant solutions which retain their spatial distributions when the value of the bifurcation
parameter changes. Invariant patterns of an equidistant economy under the replicator dynamics
are obtained. The mechanism of bifurcations from these patterns is elucidated. The stability of
bifurcating branches is analyzed to demonstrate that most of them are unstable immediately
after bifurcation. Numerical analysis of spatial economic models confirms that almost all bifur-
cating branches are unstable. Direct bifurcating curves connect the curves of invariant solutions,
thereby creating a mesh-like network, which appears as threads of warp and weft. The theoret-
ical bifurcation mechanism and numerical examples of networks advanced herein might be of
great assistance in the study of spatial economics.

Keywords : Bifurcation; equidistant economy; group-theoretic bifurcation theory; invariant
pattern; replicator dynamics; spatial economic model; stability.

1. Introduction

Spatial economics (or economic geography) aims to
explain the spatial distribution of economic activi-
ties and how distance between locations affects the
economic behavior of agents. New economic geog-
raphy might be regarded as a subfield of spatial

economics emphasizing how economic agglomera-
tion patterns evolve as a result of the historical
increases in economic integration (i.e. decreased
worldwide transportation costs). Ever since the
seminal study by Krugman [1991], numerous contri-
butions have provided insights into the connection

†Author for correspondence

This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the
Creative Commons Attribution 4.0 (CC BY) License which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.

2050240-1

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

0.
30

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 8
9.

15
2.

21
3.

13
3 

on
 0

1/
15

/2
1.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

https://dx.doi.org/10.1142/S0218127420502405


December 26, 2020 14:53 WSPC/S0218-1274 2050240

H. Aizawa et al.

between transportation costs and the spatial orga-
nization of economic activities.

Equidistant economy, in which transport costs
between all pairs of places are identical, is an impor-
tant spatial platform in spatial economics. Bifurca-
tion mechanism of this economy has been investi-
gated to observe a complicated mesh-like network
of equilibrium curves [Gaspar et al., 2019b]. This
paper elucidates the network mechanism (1) using
a group-theoretic analysis for the symmetric group
SN [Golubitsky & Stewart, 2002; Elmhirst, 2004]
and (2) referring to invariant patterns for the repli-
cator dynamics (Sec. 3 and [Ikeda et al., 2018b;
Ikeda et al., 2019a; Ikeda et al., 2019b]). It is cus-
tomary in spatial economics to deal with bifurca-
tions of steady states. Therefore, Hopf bifurcations
are not considered in this paper. Hopf bifurcations
with SN -symmetry (e.g. [Golubitsky & Stewart,
1985; Diaz & Rodrigues, 2007]) and applications
of bifurcation theory to dynamic problems in eco-
nomics (e.g. [Dercole et al., 2008; Dercole & Radi,
2020]) are to be consulted with the literature.

A break point and a sustain point, which play
important roles in this discussion, were first studied
in a two-place economy under replicator dynamics
[Fujita et al., 1999; Baldwin et al., 2003]. A break
point is associated with a symmetry-breaking bifur-
cation of two identical places, whereas a sustain
point is located at the intersection of a solution
curve for two identical places and a curve for two
different places. Thereafter, economic agglomera-
tion has been studied under various settings (spatial
topologies), such as a line segment (e.g. [Fujita &
Mori, 1997]), a racetrack (e.g. [Tabuchi & Thisse,
2011]), and a lattice (e.g. [Ikeda et al., 2018a]). The
equidistant case has been handled mostly with three
regions [Fujita et al., 1999; Castro et al., 2012; Com-
mendatore et al., 2015]. Direct bifurcation from N
identical places leads to a two-level hierarchy state
comprising one large place and N − 1 small places
[Gaspar et al., 2018]. Other works have considered
an arbitrary number of equidistant places under dif-
ferent settings. Nevertheless, they provide only an
incomplete account of the network of possible equi-
libria [Puga, 1999; Tabuchi et al., 2005; Oyama,
2009; Zeng & Uchikawa, 2014; Gaspar et al., 2019a].

In light of the discussion presented above, this
paper aims to elucidate the bifurcation mechanism
of an equidistant economy with N places. Bifurca-
tion analysis of a symmetric field is a well-matured
topic [Golubitsky et al., 1988; Ikeda & Murota,

2019]. In fact, the mechanism of direct bifurcation
of this economy is readily available through bifur-
cation analysis of the symmetric group SN [Golu-
bitsky & Stewart, 2002; Elmhirst, 2004]: all pos-
sible bifurcating solutions from the uniform state
were obtained and were proven to be unstable
immediately after each bifurcation. By contrast, few
reports describe the secondary bifurcation under
SN -symmetry. For instance, it is analyzed as a sim-
ple example [Rodrigues, 2007]. Its stability is briefly
remarked upon [Elmhirst, 2004]. A major theoreti-
cal contribution of the paper is our analysis of sec-
ondary and further bifurcations.

The existence of special spatial distributions,
called invariant patterns, has come to be acknowl-
edged. Steady-state solutions that satisfy the static
governing equation form solution curves parameter-
ized by the bifurcation parameter (transportation
cost in spatial economics). In general, the spatial
pattern changes along a solution curve. By con-
trast, there can be a special solution curve that has
a constant spatial pattern. Such pattern is called
herein an invariant pattern. Invariant patterns of a
racetrack economy and of a lattice economy under
the replicator dynamics, which is the most popu-
lar in economics, were found and employed to eluci-
date the bifurcation mechanisms of these economies
[Ikeda et al., 2018b; Ikeda et al., 2019a; Ikeda et al.,
2019b]. Stability analysis of invariant patterns of
an equidistant economy of spatial economic mod-
els was conducted [Gaspar et al., 2018; Gaspar
et al., 2019a]. In this paper, invariant patterns of an
equidistant economy under the replicator dynam-
ics are found. Then the secondary (sustain) bifur-
cation mechanism is investigated theoretically for
these invariant patterns. This theoretical stability
analysis demonstrates that some of the branches
are stable immediately after bifurcation, unlike the
direct bifurcation.

For numerical bifurcation analysis of a sym-
metric system, it is customary to first obtain the
uniform solution, next find direct, secondary, and
further bifurcating solutions successively, and then
assemble these solution curves. As described herein,
because of the existence of invariant solutions, we
can use the following innovative bifurcation analysis
procedure [Ikeda et al., 2019a]. (1) Obtain all invari-
ant patterns and find all bifurcation points on the
equilibrium curves for these patterns. (2) Obtain
all direct, secondary, and further bifurcating equi-
librium curves from these invariant patterns and
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find all bifurcation points on these curves. This
procedure is put to use for numerical analysis of
an equidistant economy with three, four, and eight
places of two spatial economic models [Forslid &
Ottaviano, 2003; Pflüger, 2004]. There are direct
bifurcating curves connecting the curves of invariant
solutions, thereby displaying mesh-like networks
resembling threads constituting the weft of invari-
ant patterns and the warp of noninvariant ones.
Results demonstrate that almost all bifurcating
equilibria are unstable.

The theoretical bifurcation mechanism and
numerical examples of networks presented in this
paper might be of great assistance in the study of
spatial economics. In fact, this mechanism for three
places [Fig. 1(a)] is applied successfully to the study
of the agglomeration mechanism of a spatial eco-
nomic model [Gaspar et al., 2019b].

This paper is organized as explained here-
inafter. A spatial economic model under the repli-
cator dynamics is presented in Sec. 2. Invariant
patterns are obtained in Sec. 3. A bifurcation mech-
anism of an equidistant economy is put forth in
Sec. 4. The stability of bifurcating branches is stud-
ied in Sec. 5. Numerical bifurcation analyses of
spatial economic models are conducted as described
in Sec. 6.

2. Spatial Economic Model Under
Replicator Dynamics

Economic geography models share some common
components: (i) a manufacturing sector operates
under imperfect competition with increasing
returns to scale at the firm level; (ii) inter-regional
trade of manufactured goods is costly, with trans-
port costs; and (iii) inter-regional mobility (migra-
tion) of some production factors is allowed. Increas-
ing returns at the firm level foster agglomeration in
a place, although fiercer competition in larger mar-
kets tends to drive firms to disperse across places.

Although many economic geography models
specifically examine two places, the analysis has
come to be extended to multiple places, as described
in the Introduction. The present study examines a
setup with an arbitrary number of places that are
pairwise equidistant.

Spatial economic models are presented. Their
steady-state solutions under the replicator dynam-
ics are classified. Whereas the theoretical frame-
work of this paper is efficacious for analyzing gen-
eral spatial economic models, detailed aspects of

payoff functions are defined in accordance with two
important models: the FO model [Forslid & Otta-
viano, 2003] and the Pf model [Pflüger, 2004]. These
two models serve as concrete examples of spatial
economic models to be used for investigating the
progress of bifurcation (Sec. 6).

2.1. Spatial economic model

There are N (≥ 3) places and mobile agents (work-
ers or firms, entrepreneurs) that can choose where
to locate from N places. Denote by h = {hi | i =
1, . . . , N} the spatial distribution of agents. It is
assumed that

∑N
i=1 hi = 1; accordingly, the state

space is the probability simplex. The payoff (indi-
rect utility or profit) for locating in place i is derived
from a model-specific short-run general equilibrium.
It is a function of goods’ prices and an amount
of income reflecting agents’ preferences and mar-
ket conditions. In equilibrium, it is given as a func-
tion vi of the spatial distribution of mobile agents h
and a parameter φ ∈ (0, 1) that represents the free-
ness of transport between the places. The param-
eter φ is an inverse measure of transport costs. It
can be regarded as signifying the degree of economic
integration between the N places. A continuous C1

function v : R
N × (0, 1) → R

N
+ therefore defines a

general spatial economic model with N places. An
equilibrium is defined as a spatial distribution of
agents h = h∗ that satisfies the conditions of{

v∗ − vi(h∗, φ) = 0 if h∗i > 0,

v∗ − vi(h∗, φ) ≥ 0 if h∗i = 0
(1)

and
∑N

i=1 h
∗
i = 1, where v∗ denotes the equilib-

rium payoff level. It is noteworthy that (1) includes
the case in which the payoff varies across places,
because vi(h∗, φ) < v∗ can possibly occur for
h∗i = 0. Economic backbones of the payoff func-
tion v for the FO and Pf models are summarized
briefly below, whereas Appendix A presents related
details.

Two factors, skilled and unskilled labor, are
used in production along with the two sectors.
There are two types of workers associated with two
types of labor. The workers supply one unit of each
type of labor inelastically (i.e. irrespective of the
wage rate). The total endowments of skilled and
unskilled workers are respectively H and L, with
H normalized to unity (H = 1). Skilled workers
are mobile across places; hi denotes the number of
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skilled workers located in place i. Unskilled work-
ers are immobile and are equally distributed across
all places (i.e. the number of unskilled workers in
each place is � = L/N). The two sectors are agri-
culture (A) and manufacturing (M). The A-sector
output is homogeneous. Each unit is produced using
a unit of unskilled labor under perfect competition.
Trade of the A-sector good is frictionless. Choosing
this good as numéraire means that its price and
the wage paid to an unskilled worker are set to
unity everywhere. Appendix A presents additional
details. The M-sector output is a horizontally dif-
ferentiated good produced using both skilled and
unskilled labor under increasing returns to scale and
Dixit–Stiglitz monopolistic competition [Dixit &
Stiglitz, 1977]. Three major parameters exist for the
models: σ represents the constant elasticity of sub-
stitution between any two manufactured goods; μ
denotes the constant expenditure share on indus-
trial varieties; and L signifies the endowment of
immobile workers.

Inter-regional trade of M-sector goods incurs
iceberg costs. That is, for each unit of M-sector
goods transported from place i to j (j �= i), only a
fraction 1/τij < 1 arrives. Intra-regional transport
is frictionless: τii = 1 for all i. The main assumption
used for these discussions is that transport costs
among all pairs of places are equal, i.e. the space
economy is equidistant.

Assumption 1. τij = τ > 1 for all i �= j.

By this assumption, the freeness of transport
parameter φ = τ1−σ ∈ (0, 1) characterizes the
inter-regional transport cost structure of FO and
Pf models. As φ approaches 0 or 1, the trade cost
increases or decreases, respectively. We employ φ as
the bifurcation parameter. Derivation of the short-
run general equilibrium is detailed in Appendix A.
We reproduce here only the expressions of interest
to us.

The payoff functions for the FO and Pf models
are given as

[FO] vi(h, φ) = Δi(h, φ)
μ

σ−1wi(h, φ), (2)

[Pf] vi(h, φ) = log Δi(h, φ)
μ

σ−1 + wi(h, φ), (3)

respectively, where wi is the wage function and

Δi(h, φ) =
N∑

j=1

τ1−σ
ji hj = hi + φ

N∑
j=1,j �=i

hj

= hi + φ(1 − hi).

Therein, τ1−σ
ij = φ if i �= j and τ1−σ

ii = 1 under
Assumption 1. The wage vector w = {wi | 1 ≤ i ≤
N} can be expressed explicitly as

[FO] w(h, φ) =
�μ

σ

(
I − μ

σ
M(h, φ)diag[h]

)−1

×M(h, φ)1N , (4)

[Pf] w(h, φ) =
μ

σ
M(h, φ)(h + �1N ). (5)

Here, M(h, φ) = {τ 1−σ
ji /Δj(h, φ) | i, j = 1, . . . , N};

I represents theN -dimensional identity matrix; and
1N = (1, . . . , 1)︸ ︷︷ ︸

N times

is the N -dimensional all-one vector.

2.2. Replicator dynamics

It is customary in economics to replace the problem
to obtain stable spatial equilibria in (1) with another
problem to find a set of stable steady-state solutions
of the replicator dynamics [Taylor & Jonker, 1978]
as

dh
dt

= F(h, φ), (6)

where F(h, φ) = {Fi(h, φ) | 1 ≤ i ≤ N}, and

Fi(h, φ) = (vi(h, φ) − v(h, φ))hi. (7)

Here, v(h, φ) =
∑N

i=1 hivi(h, φ) is the average
utility. Steady-state solutions (rest points) (h(φ), φ)
of the replicator dynamics (6) are defined as those
points which satisfy the static governing equation

F(h, φ) = 0. (8)

The law of preservation of population
∑N

i=1 hi = 1
is satisfied for the steady-state solutions. Accord-
ingly, the space of h is an (N − 1)-dimensional
simplex, as explained in Remark 2.1 below. A
steady-state solution is stable if every eigenvalue
of the Jacobian matrix J(h, φ) = ∂F/∂h(h, φ) has
a negative real part and is unstable if at least one
eigenvalue has a positive real part. It is necessary to
exclude an eigenvalue associated with an eigenvec-
tor that does not belong to the (N−1)-dimensional
simplex. A stable equilibrium, which is the main tar-
get of this paper, is defined as a stable steady-state
solution of (8) with non-negative population hi ≥ 0
(1 ≤ i ≤ N); it is known that such a solution satis-
fies the equilibrium condition (1) of an underlying
spatial economic model [Sandholm, 2010].
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Steady-state solutions are classifiable into inte-
rior solutions for which all places have positive pop-
ulation, and corner solutions for which some places
have zero population. A corner solution can be
expressed, without loss of generality, by an appro-
priate permutation of components of h, as

h = (h+
m,0n) (1 ≤ m ≤ N − 1;m+ n = N) (9)

with h+
m = {hi > 0,

∑m
1=1 hi = 1 | 1 ≤ i ≤ m} ∈ R

m
+

and the n-dimensional zero vector 0n = (0, . . . , 0)︸ ︷︷ ︸
n times

.

Remark 2.1. It is customary in economic geography
to use h = (h1, h2, . . . , hN−1) with hN = 1 −∑N−1

i=1 hi. However, in the present formulation, all
N coordinates, i.e. h = (h1, h2, . . . , hN ), are used
because the symmetry condition and the spatial
population distribution can be expressed in a much
more consistent manner.

3. Invariant Patterns

Invariant patterns of an equidistant economy are
presented. Steady-state solutions that satisfy the
static governing equation F(h, φ) = 0 in (8) form
solution curves (h(φ), φ) parameterized by φ. In
general, the spatial pattern h(φ) varies with φ along
a solution curve. By contrast, by virtue of the prod-
uct form (7) of the replicator dynamics, there can
be a special solution curve (h(φ), φ) = (h, φ) that
has a constant spatial pattern h(φ) = h along the
curve. Such pattern h is called herein an invariant
pattern. The curve of an invariant pattern exists
for any φ ∈ (0, 1). On the other hand, a pattern
h(φ) that varies with φ is called a noninvariant pat-
tern and might or might not be a steady state for a
given φ.

The uniform state

huniform =
1
N

1N

and a series of core–periphery patterns (cf.
Remark 3.1)

hCP
m =

1
m

(1m,0n) (1 ≤ m ≤ N − 1;m+ n = N)

(10)

with 1m = (1, . . . , 1)︸ ︷︷ ︸
m times

, play important roles in this

paper as explained below.

Proposition 1. The uniform state and the core–
periphery pattern in (10) are invariant patterns for
an equidistant economy.

Proof. Appendix B.1 presents an associated proof.
�

Remark 3.1. In economic geography, the pattern
h = (1, 0) (N = 2), in which a (core) place has the
whole population of 1 and another (periphery) place
has no population, presents a core–periphery pat-
tern. As described herein, this notion is extended.
The pattern in (10) is called a core–periphery pat-
tern. This pattern is a special form of the corner
solution (9) with a two-level hierarchy: the iden-
tical population 1/m is agglomerated to m core
places, whereas other n peripheral places have no
population.

4. Bifurcation Mechanism

The bifurcation mechanism of secondary and fur-
ther bifurcations of an equidistant economy is inves-
tigated as a novel contribution of this paper. The
mechanism of the direct bifurcation of the uniform
state [Golubitsky & Stewart, 2002; Elmhirst, 2004]
is also included in Sec. 4.1 to make the discussion
self-contained. Since it is customary in spatial eco-
nomics to deal with bifurcations of steady states,
this paper does not address Hopf bifurcations.

In economic geography [Fujita et al., 1999], a
sustain point is defined as the value of the trans-
port cost parameter below which an economy with
the core–periphery pattern hCP

1 = (1, 0) in (10)
becomes stable. In light of bifurcation theory, we
can consider a sustain point as the bifurcation point
at which some zero component(s) of population dis-
tribution h become nonzero on a bifurcating path.
This kind of bifurcation is called sustain bifurcation
herein and the associated bifurcation point is called
a sustain bifurcation point. Similarly, we use break
bifurcation and break bifurcation point.

4.1. Direct bifurcation from a
uniform state

The mechanism of the direct bifurcation from the
uniform state huniform = 1

N 1N of an equidistant
economy with N places was elucidated by the bifur-
cation analysis of a symmetric group SN labeling
the symmetry of this economy [Golubitsky & Stew-
art, 2002; Elmhirst, 2004]. This analysis is presented
briefly and consistently with our formulation.
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The uniform state has the Jacobian matrix of
the form

J = AN (a, b) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a b · · · b

b a b
...

... b
. . . b

b · · · b a

⎞
⎟⎟⎟⎟⎟⎟⎠ (11)

with

a =
∂

∂hi
(vi − v) (1 ≤ i ≤ N);

b =
∂

∂hj
(vi − v) (1 ≤ i, j ≤ N ; i �= j).

That is, all diagonal entries of the Jacobian matrix
J are a and all off-diagonal ones are b. When a = b,
this state encounters a direct bifurcation point with
(N−1)-times repeated zero eigenvalues of the Jaco-
bian matrix. At this point, several two-level hierar-
chy states of the form

hm = (u1, . . . , u1︸ ︷︷ ︸
m times

, u2, . . . , u2︸ ︷︷ ︸
n times

) = (u11m, u21n)

(1 ≤ m ≤ N − 1;m+ n = N ;

u1m+ u2n = 1;u1, u2 > 0) (12)

branch simultaneously in the incremental directions
as

δhm = ε
(
1m,−m

n
1n

)
(1 ≤ m ≤ N − 1;

m+ n = N ; ε ∈ R), (13)

as explained in Proposition 2 below. Consequently,
N places split into m places with equal population
size and n places with another size. A branch is
called symmetric if δhm and −δhm denote the same
state up to a permutation of place numbers. It is
designated as asymmetric if they do not.

Proposition 2. At a bifurcation point of the uni-
form (equidistant) state, the two-level hierarchy
states in (12) branch in the directions of (13). The
associated branch is symmetric if n = m = N/2
(N even); it is asymmetric otherwise.

Proof. Appendix B.2 and an earlier report of the
literature [Elmhirst, 2004] present this proof. �

4.2. Bifurcation from a two-level
hierarchical state

The two-level hierarchy state hm = (u11m, u21n)
in (12) has break and sustain bifurcation points. At
a sustain bifurcation point, where u21n vanishes,
this state exits to a corner solution expressing the
core–periphery pattern in (10):

hCP
m =

1
m

(1m,0n) (1 ≤ m ≤ N − 1;m+ n = N).

For the discussion of a break bifurcation point,
we refer to the Jacobian matrix of the two-level hier-
archy state, which takes the form of

J =

(
Am(a, b) eEmn

fEnm An(c, d)

)
.

Therein, Am(a, b) and An(c, d) are defined simi-
larly to AN (a, b) in (11); Emn = 1m

�1n is an
m× n matrix with all entries being equal to 1; and
a, b, . . . , f are constants. A break bifurcation takes
place when a = b or c = d is satisfied. We here-
inafter focus on the case of c = d, whereas the other
case of a = b can be treated similarly.

At a break bifurcation point with c = d, a num-
ber of three-level hierarchy states of

hp = (u11m, u21p, u31n−p)

(1 ≤ p ≤ n− 1;m+ n = N ;

u1m+ u2p+ u3(n− p) = 1;u1, u2, u3 > 0)
(14)

branch simultaneously in the directions of

δhp = ε(0m, (n− p)1p,−p1n−p)

(1 ≤ p ≤ n− 1;m+ n = N ; ε ∈ R),
(15)

as explained in Proposition 3. Consequently, n iden-
tical places split into p places with an identical
population size and n − p places of another size
(1 ≤ p ≤ n− 1).

Proposition 3. At a break bifurcation point of the
two-level hierarchy state in (12), the three-level
hierarchy states in (14) branch in the directions
of (15). The branch is symmetric if p = n/2
(n even) and asymmetric otherwise.

Proof. Appendix B.3 presents the associated proof.
�
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The three-level hierarchy state in (14) can exit
to the corner solution at a sustain bifurcation point;
alternatively, it can undergo further bifurcations to
arrive at an aggregated interior state with an s-level
hierarchy of (2 ≤ s ≤ N).

hm1,...,ms = (u11m1 , . . . , us1ms) (16)

with
∑s

i=1mi = N and
∑s

i=1 uimi = 1. Bifurca-
tions can proceed until reaching a completely aggre-
gated interior state of h1 > h2 > · · · > hN > 0.

4.3. Bifurcation from
core-periphery patterns

In the discussion of bifurcation from the core–
periphery pattern hCP = 1

m(1m,0n) in (10), we
refer to its Jacobian matrix as

J =

(
Am(a, b) eEmn

O cIn

)
(1 ≤ m ≤ N − 1)

(17)

with In being an n×n identity matrix and c = vi−v
(m + 1 ≤ i ≤ N) with vm+1 = vm+2 = · · · = vN .
The critical point of this pattern is either a break
bifurcation point for a = b with singular Am(a, b) or
a sustain bifurcation point for c = 0 with singular
cIn in (17).

Before the main discussion, we refer to the half
branch. One must recall that the branches for the
break bifurcations presented above do exist in both
directions of δhp and −δhp. By contrast, a branch
exists in only one direction for a sustain bifurca-
tion point because no negative population is allowed
(Propositions 4 and 6 below); such a branch is called
a half branch.

We start with the simplest core–periphery pat-
tern: full agglomeration hFA = (1,0N−1), which
is an invariant pattern (Proposition 1). The full
agglomeration has only sustain bifurcation points,
at which several bifurcating solutions of the form

hp = (1 − pu, u1p,0N−p−1)(
1 ≤ p ≤ N − 1; 0 < u <

1
p

)
(18)

branch simultaneously in several directions as

δhp = ε

(
−1,

1
p
1p,0N−p−1

)
(1 ≤ p ≤ N − 1; ε > 0). (19)

Proposition 4. Full agglomeration hFA = (1,
0N−1) does not have a limit point or a break bifur-
cation point but has sustain bifurcation points with
the half branches in (18).

Proof. Appendix B.4 presents an associated proof.
�

Other core–periphery patterns (m ≥ 2) have
both break and sustain bifurcation points, which
engender several bifurcating solutions as expounded
in the following propositions, the proofs of which
resemble that for Proposition 3.

Proposition 5. At a break bifurcation point of the
core–periphery pattern in (10), several three-level
hierarchy states branch simultaneously as

hp = (u11p, u21m−p,0n)

(1 ≤ p ≤ m− 1;

u1p+ u2(m− p) = 1;u1, u2 > 0). (20)

The branch is symmetric if p = m/2 (m even) and
asymmetric otherwise.

Proposition 6. At a sustain bifurcation point of the
core–periphery pattern in (10), there emerge half
branches with

hp = (u11m, u21p,0n−p)

(1 ≤ p ≤ n;u1m+ u2p = 1;u1, u2 > 0).
(21)

The branches in (20) and (21) can encounter
break and sustain bifurcation points successively to
arrive at an aggregated state with an s-level hierar-
chy (2 ≤ s ≤ N) as

hm1,...,ms = (u11m1 , . . . , us−11ms−1 ,0ms), (22)

with
s∑

i=1

mi = N and
s−1∑
i=1

uimi = 1.

4.4. Simple examples

To illustrate the bifurcation mechanism in equidis-
tant economy, Figs. 1(a) and 1(b) provide simple
examples of the hierarchies of spatial patterns for
the cases of N = 3 and N = 4, respectively. A
symmetric branch is expressed by a thick arrow
and an asymmetric one by a thin one. For each
case, the subhierarchy for interior solutions at the
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(a) N = 3

(b) N = 4

(c) An arbitrary N

Fig. 1. Bifurcation mechanism of an equidistant economy expressed by hierarchies of geometrical patterns. A symmetric
branch is expressed by a thick arrow and an asymmetric one by a thin one.
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top is connected to that for corner solutions at the
bottom [see (9) for the definition of a corner solu-
tion]. There is a recurrent property: the hierarchy of
N = 3 becomes the subhierarchy of corner solutions
for N = 4. For an arbitrary number N of places, the
subhierarchy of corner solutions is given by the hier-
archy of N − 1 places [see Fig. 1(c)]. By virtue of
this recurrent property, the hierarchy grows rapidly
as N increases. In turn, the bifurcation mechanism
becomes progressively complicated.

5. Asymptotic Stability of Branches

In the previous section, branches of bifurcation
points for geometrical patterns of interest, such as
the uniform state, the full agglomeration, and core–
periphery patterns are investigated respectively in
Propositions 2, 4 and 6. In this section, as a novel
contribution of this paper, we investigate asymp-
totic stability of these branches in a close neighbor-
hood of the associated bifurcation point. The sta-
bility of branches from the uniform state is already
studied as explained below [Elmhirst, 2004].

Lemma 1. Under the assumption that the uniform
state huniform = 1

N 1N is stable until reaching the
break bifurcation point, all branches of this state are
asymptotically unstable.

We hereinafter investigate the stability of
half branches from a sustain bifurcation point
of the core–periphery pattern hCP

m = 1
m(1m,0n)

(m+n = N) in (10). We recall its Jacobian matrix
in (17) as

J =

(
Am(a, b) eEmn

O cIn

)
(1 ≤ m ≤ N − 1)

(23)

and consider its sustain bifurcation point at φ =
φc with a singular cIn (c = 0) and a nonsingu-
lar Am(a, b) (a �= b). Define incremental variables
(y,x, ψ) from this point as

h =
1
m

(1m,0n) + (y,x), φ = φc + ψ (24)

with y = (y1, . . . , ym) and x = (x1, . . . , xn). We
obtain the bifurcation equation

G = {Gi(x, ψ) | 1 ≤ i ≤ n} = 0 (25)

based on the procedure: (1) Express the static gov-
erning equation F(h, φ) = 0 in (8) in terms of

these incremental variables (y,x, ψ). (2) Express
y = y(x, ψ) using the first m components of F =
0, because Am(a, b) is nonsingular. (3) Eliminate
y = y(x, ψ) from the last n components of F = 0.
By virtue of a factored form (7) of the replica-
tor dynamics, Gi(x, ψ) takes the special form of
Gi = xi · Ĝi(x, ψ) (1 ≤ i ≤ n) for some function
Ĝi. Then solutions (x, ψ) of Ĝ1 = · · · = Ĝn = 0
give bifurcating solutions via y = y(x, ψ) and (24).

At a sustain bifurcation point of the core–
periphery pattern hCP

m , there emerge several half
branches in (21), i.e.

hp = (u11m, u21p,0n−p)

(1 ≤ p ≤ n;u1m+ u2p = 1;u1, u2 > 0).
(26)

We see that these branches are associated with

x = ε(1p,0n−p) (ε > 0), (27)

similarly to the proof of Proposition 3. By analysis
of the bifurcation equation G = 0 in (25) described
in Appendix B.5, it is readily apparent that asymp-
totic bifurcating ψ versus ε curves exist as

ψ ≈ −β + (p − 1)γ
α

ε (1 ≤ p ≤ N − 1) (28)

with expansion coefficients α, β, and γ of the bifur-
cation equation. The following lemma serves in a
pivotal role for the description of the stability of
half branches of the core–periphery pattern hCP

m .

Lemma 2. The eigenvalues of ∂G/∂x for the
branches of the core–periphery pattern hCP

m are
given asymptotically as⎧⎪⎨
⎪⎩
λ1 ≈ {β + (p− 1)γ}ε (repeated once),

λ2 ≈ −(γ − β)ε (repeated p− 1 times),

λ3 ≈ (γ − β)ε (repeated n− p times).
(29)

Proof. Appendix B.5 presents an associated proof.
�

The associated half branches are stable if all
eigenvalues in (29) are negative. Note that p = 1
and p = n are exceptional cases where λ2 or λ3

is absent, respectively. For these exceptional cases,
stable half branches can exist as expounded below.
This makes a sharp contrast with a break bifurca-
tion point for the uniform state, for which all half

2050240-9
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branches are unstable (Lemma 1). For the descrip-
tion of stability, we use the following assumption,
which accords with the numerical results of sus-
tain bifurcation of the full agglomeration hFA =
(1,0N−1) of spatial economic models (Sec. 6).

Assumption 2. The pre-bifurcation core–peri-
phery pattern is stable for ψ > 0 (φ > φc).

Proposition 7. Under Assumption 2, the stability
of half branches that emerge from hCP

m = 1
m(1m,0n)

(1 ≤ m ≤ N − 1) is classifiable into three distinct
cases as explained below.

(i) A three-level hierarchy state (u11m, u2,0n−1)
is the only stable half branch for γ < β < 0. It
resides in ψ < 0.

(ii) A two-level hierarchy state (u11m, u21n) is the
only stable half branch for β < min(γ,−(n −
1)γ). It resides in ψ < 0.

(iii) All half branches are unstable for γ �= β and
β > 0 or −(n− 1)γ < β < 0.

Proof. Appendix B.6 presents an associated proof.
�

Among the plethora of half branches in (26), at
most one of them is stable. Figure 2 depicts the clas-
sification of the parameter space (β, γ) into three
distinct cases for the full agglomeration. For the full
agglomeration state hFA = (1,0N−1), for example,
the stability of half branches is readily available by
setting n = N − 1 in Proposition 7 and in Fig. 2.

Fig. 2. Classification of stability of half branches for the
core–periphery pattern hCP

m = 1
m (1m, 0n) in the parameter

space (β, γ).

6. Numerical Bifurcation Analysis

A numerical bifurcation analysis is conducted for
spatial economic models: the FO and Pf models
(Sec. 2) related to theoretical results presented in
Secs. 3–5. The values of the parameters in (2)–(5)
are set as (σ, μ, �) = (6.0, 0.4, 1.0) for the FO model
and as (σ, μ, �) = (4.0, 0.6, 2.0) for the Pf model.

The following innovative bifurcation analysis
procedure is used [Ikeda et al., 2019a]. (1) Obtain
all invariant patterns and find all bifurcation points
on the equilibrium curves for these patterns. (2)
Obtain all direct, secondary, and further bifurcat-
ing equilibrium curves from these invariant pat-
terns and find all bifurcation points on these curves.
Using this procedure, one can obtain all possi-
ble bifurcating solutions connected to invariant
solutions.

Figure 3 reports bifurcation diagrams for the
FO and Pf models with N = 3, 4, and 8 equidis-
tant places. The horizontal axis is the freeness
of transport φ and the vertical axis is taken as
hmax(h) = maxi{hi}. A series of horizontal lines
expresses equilibrium curves for invariant patterns
(Proposition 1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uniform state huniform =
1
N

1N ,

core–periphery pattern

hCP
m =

1
m

(1m,0n) (2 ≤ m ≤ N − 1),

full agglomeration hFA = (1,0N−1).

The solid (broken) curves correspond to stable
(unstable) steady-state solutions of the governing
equation (8). The white circles (◦) in the figures
denote break bifurcation points, whereas the black
disks (•) denote sustain bifurcation points. The
double circle (�) in Fig. 3(b) represents a limit
point of φ. The stability analysis of the direct bifur-
cating curves was conducted to confirm that there
are no bifurcation points on these curves. Accord-
ingly, there are no secondary bifurcations from these
curves. Figure 3 therefore encompasses all possible
equilibrium curves connected to the curves of invari-
ant patterns.

The break bifurcation point A (◦) is located
at the right end of the solid horizontal line with
hmax = 1

N of the stable uniform state huniform =
1
N 1N . Several two-level hierarchy states branching

2050240-10
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Bifurcation diagrams for N = 3, 4, and 8 for the models by Forslid and Ottaviano [2003] and Pflüger [2004]: solid line,
stable steady state; broken line, unstable steady state; ◦, break bifurcation point; •, sustain bifurcation point; �, limit point
of φ. (a) Forslid and Ottaviano [2003], N = 3, (b) Pflüger [2004], N = 3, (c) Forslid and Ottaviano [2003], N = 4, (d) Pflüger
[2004], N = 4, (e) Forslid and Ottaviano [2003], N = 8 and (f) Pflüger [2004], N = 8.

from this point (Proposition 2) exist as

hm = (u11m, u21n) (1 ≤ m ≤ N − 1;

m+ n = N ;u1m+ u2n = 1).

These states connect the break bifurcation point A
(◦) of the uniform state huniform = 1

N 1N with N −

1 sustain bifurcation points (•) of core–periphery
patterns in (10):

hCP
m =

1
m

(1m,0n) (1 ≤ m ≤ N − 1;m+ n = N).

From each of break bifurcation points (◦) of the
two-level hierarchy states with hmax = 1

m (1 ≤ m ≤
2050240-11
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N − 1), several branches with three-level hierarchy
states [(20) in Proposition 5] emerge as

hp = (u11p, u21m−p,0n)

(1 ≤ p ≤ m− 1;u1p+ u2(m− p) = 1).

Each of these states connects a break bifurca-
tion point (◦) with a sustain bifurcation point (•).
Such pairs of break and sustain bifurcation points
were encountered recurrently until reaching the full
agglomeration hFA = (1,0N−1) at the sustain bifur-
cation point B which resides at the left end of the
solid horizontal line for stable full agglomeration.

Direct bifurcating curves connecting invariant
solutions thereby display mesh-like networks, which
resemble threads constituting the weft of invariant
patterns and warp of noninvariant ones. These net-
works are much clearer and more systematic than
that for a hexagonal lattice [Ikeda et al., 2019a],
possibly by virtue of a large symmetry of the sym-
metric group SN .

Among invariant patterns, only the uniform
state and full agglomeration have some stable equi-
libria. All the branches from the uniform state
huniform = 1

N 1N are unstable immediately after

(a) N = 3

(b) N = 4

Fig. 4. Hierarchies of geometrical patterns in numerical analyses for N = 3 and 4. A symmetric branch is expressed by a
thick arrow and an asymmetric one is expressed by a thin arrow.
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bifurcation (Lemma 1). Curve BC in Fig. 3 for a
noninvariant branch of the Pf model is stable as
predicted in Proposition 7(ii); other cases include
no stable, noninvariant curve.

Figure 4 depicts the hierarchy of geometrical
patterns for the present numerical analyses. The
hierarchy diagram of the N = 3 case is a “subset”
of the N = 4 case. These hierarchies correspond to
the subsets of theoretical hierarchies summarized by
Fig. 1. As demonstrated by Figs. 3(e) and 3(f) for
N = 8, the hierarchy grows rapidly as N increases.

7. Conclusions

A thorough study was conducted on the bifurcation
mechanism and stability of an equidistant economy.
As a novel contribution, we elucidated the bifur-
cation mechanisms of secondary and further bifur-
cations. The bifurcation mechanism of the direct
bifurcation of the uniform state [Golubitsky &
Stewart, 2002; Elmhirst, 2004] is also included to
make the discussion self-contained. The equilibrium
curves of this economy have complicated mesh-like
networks comprising intersecting equilibrium curves
of invariant and noninvariant patterns, similar to
threads of warp and weft. The bifurcation mecha-
nisms advanced in this study were of great assis-
tance in obtaining these complicated curves. The
theoretical bifurcation mechanisms and numerical
examples of networks advanced in this paper are
expected to be of great assistance in the study of
multiple places in spatial economics.
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Ikeda, K., Aizawa, H., Kogure, Y. & Takayama, Y.
[2018a] “Stability of bifurcating patterns of spatial
economy models on a hexagonal lattice,” Int. J. Bifur-
cation and Chaos 28, 1850138-1–30.

Ikeda, K., Onda, M. & Takayama, Y. [2018b] “Spatial
period doubling, invariant pattern, and break point in
economic agglomeration in two dimensions,” J. Econ.
Dyn. Contr. 92, 129–152.

2050240-13

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

0.
30

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 8
9.

15
2.

21
3.

13
3 

on
 0

1/
15

/2
1.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



December 26, 2020 14:53 WSPC/S0218-1274 2050240

H. Aizawa et al.

Ikeda, K. & Murota, K. [2019] Imperfect Bifurcation in
Structures and Materials, 3rd edition (Springer, NY).

Ikeda, K., Kogure, Y., Aizawa, H. & Takayama, Y.
[2019a] “Invariant patterns for replicator dynamics on
a hexagonal lattice,” Int. J. Bifurcation and Chaos
29, 1930014-1–17.

Ikeda, K., Onda, M. & Takayama, Y. [2019b] “Bifurca-
tion theory of a racetrack economy in a spatial econ-
omy model,” Netw. Spat. Econ. 9, 57–82.

Krugman, P. [1991] “Increasing returns and economic
geography,” J. Polit. Econ. 99, 483–499.

Oyama, D. [2009] “Agglomeration under forward-looking
expectations: Potentials and global stability,” Reg.
Sci. Urban Econ. 39, 696–713.

Pflüger, M. [2004] “A simple, analytically solvable,
Chamberlinian agglomeration model,” Reg. Sci.
Urban Econ. 34, 565–573.

Puga, D. [1999] “The rise and fall of regional inequali-
ties,” Eur. Econ. Rev. 43, 303–334.

Rodrigues, A. [2007] “Bifurcation of dynamical systems
with symmetry,” PhD thesis, Faculdade de Ciência da
Universifade do Porto.

Sandholm, W. H. [2010] Population Games and Evolu-
tionary Dynamics (MIT Press, Cambridge).

Tabuchi, T., Thisse, J.-F. & Zeng, D.-Z. [2005] “On the
number and size of cities,” J. Econ. Geogr. 5, 423–448.

Tabuchi, T. & Thisse, J. F. [2011] “A new economic
geography model of central places,” J. Urban Econ.
69, 240–252.

Taylor, P. D. & Jonker, L. B. [1978] “Evolutionary sta-
ble strategies and game dynamics,” Math. Biosci. 40,
145–156.

Zeng, D.-Z. & Uchikawa, T. [2014] “Ubiquitous inequal-
ity: The home market effect in a multicountry space,”
J. Math. Econ. 50, 225–233.

Appendices

Appendix A

Core–Periphery Models

Two core–periphery models, the FO model and
the Pf model, are introduced. In these models, each
worker chooses a consumption level that maximizes
the worker’s own utility, given the spatial distribu-
tion h of workers. This process, the so-called “short-
run equilibrium,” determines the payoff v = (vi | i =
1, 2, . . . , N) of workers as a function of h.

Individuals share the same utility function U
over the M-sector and A-sector goods. The utility
function in place i is

[FO model] U(CM
i , C

A
i ) = (CM

i )μ(CA
i )1−μ

(0 < μ < 1), (A.1a)

[Pf model] U(CM
i , C

A
i ) = μ lnCM

i + CA
i

(μ > 0), (A.1b)

where μ is a constant parameter, CA
i represents the

consumption of the A-sector product in place i, and
CM

i is the manufacturing aggregate in place i, which
is defined as

CM
i ≡

⎛
⎝∑

j

∫ nj

0
qji(ξ)(σ−1)/σdξ

⎞
⎠σ/(σ−1)

.

Therein, qji(ξ) stands for the consumption in place
i of a variety ξ ∈ [0, nj ] produced in place j, nj

denotes the continuum range of varieties produced
in place j, often called the number of available vari-
eties, and σ > 1 expresses the constant elasticity of
substitution between any two varieties. The budget
constraint is given as

pA
i C

A
i +

∑
j

∫ nj

0
pji(ξ)qji(ξ)dξ = Yi, (A.2)

where pA
i represents the price of the A-sector good

in place i, pji(ξ) signifies the price of a variety ξ
in place i produced in place j and Yi stands for
the income of an individual in place i. The incomes
(wages) of skilled workers and unskilled workers are
denoted, respectively, by wi and wL

i .
An individual in place i maximizes (A.1) sub-

ject to (A.2). This maximization yields the following
demand functions:

[FO model] CA
i = (1 − μ)

Yi

pA
i

, CM
i = μ

Yi

ρi
,

qji(ξ) = μ
ρσ−1

i Yi

pji(ξ)σ
, (A.3a)

[Pf model] CA
i =

Yi

pA
i

− μ, CM
i = μ

pA
i

ρi
,

qji(ξ) = μ
pA

i ρ
σ−1
i

pji(ξ)σ
. (A.3b)

Therein,

ρi =

⎛
⎝∑

j

∫ nj

0
pji(ξ)1−σdξ

⎞
⎠1/(1−σ)

(A.4)

denotes the price index of the differentiated product
in place i. Because the total income and population
in place i are wihi +wL

i � and hi +�, respectively, we
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have total demand Qji(ξ) in place i for a variety ξ
produced in place j as

[FO model] Qji(ξ) = μ
ρσ−1

i

pji(ξ)σ
(wihi + wL

i �),

(A.5a)

[Pf model] Qji(ξ) = μ
pA

i ρ
σ−1
i

pji(ξ)σ
(hi + �). (A.5b)

The A sector is perfectly competitive. It pro-
duces homogeneous goods under constant-returns-
to-scale technology, which requires one unit of
unskilled labor to produce one unit of output. For
simplicity, we assume that the A-sector goods are
transported between places without transportation
cost and assume that they are chosen as numéraire.
These assumptions mean that, in equilibrium, the
wage of an unskilled worker wL

i is equal to the price
of A-sector goods in all places (i.e. pA

i = wL
i = 1 for

each i = 1, . . . , N).
The M-sector output is produced under increas-

ing returns to scale technology and under Dixit–
Stiglitz monopolistic competition. A firm incurs a
fixed input requirement of α units of skilled labor
and a marginal input requirement of β units of
unskilled labor. That is, linear technology in terms
of unskilled labor is assumed in the profit func-
tion. Given the fixed input requirement α, skilled
labor market clearing implies ni = hi/α in equilib-
rium. An M-sector firm located in place i chooses
(pij(ξ) | j = 1, . . . , N), which maximizes its profit

Πi(ξ) =
∑

j

pij(ξ)Qij(ξ) − (αwi + βxi(ξ)),

where xi(ξ) is the total supply.
Recall that the transportation costs for M-

sector goods are assumed to take the iceberg form.
That is, for each unit of M-sector goods trans-
ported from place i to place j (�= i), only a fraction
1/τij < 1 arrives (τii = 1). Consequently, the total
supply xi(ξ) is

xi(ξ) =
∑

j

τijQij(ξ). (A.6)

Because a continuum of firms exists, each firm
is negligible in the sense that its action has no effect
on the market (i.e. the price indices). Therefore, the
first-order condition for profit maximization yields

pij(ξ) =
σβ

σ − 1
τij. (A.7)

This expression implies that the price of the M-
sector products is independent of variety ξ. Con-
sequently, Qij(ξ) and xi(ξ) are independent of ξ.
Therefore, the argument ξ is suppressed in the
sequel. Substituting (A.7) into (A.4), we have the
price index

ρi =
σβ

σ − 1

⎛
⎝ 1
α

∑
j

hjφji

⎞
⎠1/(1−σ)

, (A.8)

where φji = τ1−σ
ji is a spatial discounting factor

between places j and i from (A.5) and (A.8), φji is
obtained as (pjiQji)/(piiQii), which means that φji

is the ratio of total expenditure in place i for each
M-sector product produced in place j to the expen-
diture for a domestic product. Under our assump-
tions, φii = 1 and φij = φ = τ1−σ for all i �= j.

In the short run, skilled workers are immo-
bile between places, i.e. their spatial distribution
(h = (hi) ∈ R

N ) is assumed to be given. The market
equilibrium conditions consist of the M-sector goods
market clearing condition and the zero-profit condi-
tion because of the free entry and exit of firms. The
former condition can be expressed as (A.6). The
latter condition requires that the operating profit
of a firm be absorbed entirely by the wage bill of its
skilled workers as

wi(h, φ) =
1
α

⎛
⎝∑

j

pijQij(h, φ) − βxi(h, φ)

⎞
⎠.
(A.9)

Substituting (A.5)–(A.8) into (A.9), we have the
market equilibrium wage of

[FO model] wi(h, φ) =
μ

σ

∑
j

φij

Δj(h, φ)

× (wj(h, φ)hj + 1),
(A.10a)

[Pf model] wi(h, φ) =
μ

σ

∑
j

φij

Δj(h, φ)
(hj + 1),

(A.10b)

where Δj(h, φ) ≡ ∑
k φkjhk denotes the mar-

ket size of the M-sector in place j. Consequently,
φij/Δj(h, φ) defines the market share in place j of
each M-sector product produced in place i.

The indirect utility vi(h, φ) in the main text,
given the spatial distribution of the skilled workers,
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is obtained by substituting (A.3), (A.8), and (A.10)
into (A.1).

Appendix B

Proof of Propositions and a Lemma

B.1. Proof of Proposition 1

For the uniform state, we have (vi − v)hi = 0 (1 ≤
i ≤ N) because v1 = · · · = vN = v. Accordingly,
this state always satisfies the static governing equa-
tion F(h∗, φ) = 0 in (8). For the core–periphery
pattern hCP

m = ( 1
m1,0n), we have (vi − v)hi = 0

(m+1 ≤ i ≤ N) for zero components 0n of hCP
m . For

the components 1
m1, we have v1 = v2 = · · · = vm

and

v =
m∑

i=1

hivi +
N∑

i=m+1

hivi

=

(
m∑

i=1

1
m

)
v1 +

N∑
i=m+1

0 × vi = v1.

Then (vi − v)hi = (v1 − v)h1 = 0 (1 ≤ i ≤ m).
Consequently, the core–periphery pattern is a
steady-state solution for any φ.

B.2. Proof of Proposition 2

Consider the uniform state huniform = 1
N 1N , which

is invariant to the symmetric group SN , and a state
with the symmetry of an axial subgroup Sm × Sn

(m+ n = N). Denote by

δh = (α1, . . . , αm, β1, . . . , βn)

an incremental variable vector for this state with
Sm × Sn symmetry. By Sm and Sn symmetries, we
have

α1 = · · · = αm = α, β1 = · · · = βn = β

for some variables α and β. By virtue of the orthog-
onality between subspaces for SN and Sm × Sn

(m+ n = N), we have

huniformδh� =
1
N

1N (α1m, β1n)�

=
1
N

(αm+ βn) = 0.

Hence β = −m
n α and

δh = α
(
1m,−m

n
1n

)
(B.1)

spans a one-dimensional space. Then by the equiv-
ariant branching lemma [Golubitsky et al., 1988;

Ikeda & Murota, 2019], a bifurcating solution exists
in the direction (B.1), i.e. (13). A bifurcating solu-
tion takes the form:

h =
1
N

1N + δh

=
((

1
N

+ α

)
1m,

(
1
N

− α
m

n

)
1n

)
= (u11m, u21n)

with u1 = 1
N + α and u2 = 1

N − αm
n , thereby

showing (12).
The branch for (B.1) is symmetric if m = n

because δh = α(1m,−1m) and −δh = α(−1m,1m)
(N = 2m) are identical up to the permutation of
components. It is asymmetric otherwise because the
number of positive components is different for δh
and −δh.

B.3. Proof of Proposition 3

Consider the uniform state huniform = 1
N 1N with

the symmetry of SN , a two-level hierarchy state
h∗ = (u11m, u21n) with the symmetry of Sm × Sn,
and a three-level hierarchy state with the symme-
try of Sm × Sn1 × Sn2 (m + n = N ;n1 + n2 = n).
One can denote by

δh = (α1, . . . , αm, β1, . . . , βn1 , γ1, . . . , γn2) (B.2)

an incremental variable vector for this state with
Sm×Sn1 ×Sn2 symmetry. By Sm, Sn1, and Sn2 sym-
metries, we have

α1 = · · · = αm = α,

β1 = · · · = βn1 = β,

γ1 = · · · = γn2 = γ,

for some variables α, β, and γ. By virtue of the
orthogonality between subspaces for SN , Sm × Sn,
and Sm × Sn1 × Sn2, we have

huniformδh� =
1
N

1N (α1m, β1n1 , γ1n2)
�

=
1
N

(αm+ βn1 + γn2)

= 0,

h∗δh� = (u11m, u21n)(α1m, β1n1 , γ1n2)
�

= u1αm+ u2(βn1 + γn2)

= 0.
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Thus we have α = 0 and γ = −n1
n2
β. Then (B.2)

becomes

δh = β

(
0m,1n1 ,−

n1

n2
1n2

)
.

Because this is spanned by a one-dimensional space,
by the equivariant branching lemma, there exists a
bifurcating solution in this direction δh, which leads
to (15) by setting β = ε(n − p), n1 = p, and n2 =
n − p. Equation (14) and symmetry/asymmetry of
the branch can be proved similarly to the proof pre-
sented for Proposition 2.

B.4. Proof of Proposition 4

The eigenvalue of the Jacobian matrix of the full
agglomeration hFA = (1,0N−1) for a limit point or
a break bifurcation point is given by

A1 = a =
∂(v1 − v)
∂h1

= −v1 < 0.

Because v1 is assumed to be positive (Sec. 2.1), this
eigenvalue is always nonzero (negative). Accord-
ingly, a limit point or a break bifurcation point does
not exist. The proof for the half branches of the sus-
tain bifurcation point is similar to that presented for
Proposition 3.

B.5. Proof of Lemma 2

The asymptotic forms of Gi in (25) and its Jaco-
bian matrix ∂Gi/∂xj are given as explained below.
By virtue of a factored form (7) of the replicator
dynamics, Gi(x, ψ) takes a special form of Gi =
xi · Ĝi(x, ψ) (1 ≤ i ≤ n). We can expand Ĝi into a
power series to arrive at

Gi ≈ xi

⎛
⎝αψ +

n∑
j=1

βjxj

⎞
⎠

for some constants α and βi. By the symmetry
(equivariance) of the system of equations Gi (1 ≤
i ≤ n), a permutation xi ↔ xj must lead to a per-
mutation Gi ↔ Gj . This entails βj = β (j = i) and
βj = γ (j �= i) for some constants β and γ. Then
we have

Gi ≈ xi

⎛
⎝αψ + βxi + γ

n∑
j �=i

xj

⎞
⎠ (1 ≤ i ≤ n),

(B.3)

∂Gi

∂xj
≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
αψ + 2βxi + γ

n∑
j �=i

xj (i = j),

γxi (i �= j).

(B.4)

The use of the form x = ε(1p,0n−p) of a bifurcating
branch in (27) in (B.3) leads to

G1 = · · · = Gp ≈ ε{αψ + (β + (p− 1)γ)ε},
Gp+1 = · · · = Gn = 0.

Consequently, a set of equations Gi = 0 (1 ≤
i ≤ n) is satisfied by the solution curve ψ ≈
−β+(p−1)γ

α ε in (28). Substituting x = ε(1p,0n−p)
in (27) into (B.4) and using (28), we obtain

Ĵ =
{
∂Gi

∂xj

}
= ε

(
Ap(β, γ) γEpq

O (γ − β)In−p

)
.

The eigenvalues of the first diagonal block εAp(β, γ)
give λ1 (repeated once) and λ2 (repeated p − 1
times) and the eigenvalues of the second diagonal
block ε(γ − β)In−p give λ3 (repeated n − p times)
in (29).

B.6. Proof of Proposition 7

For p = 2, . . . , n−1, eigenvalues λ2 ≈ −(γ−β)ε and
λ3 ≈ (γ − β)ε in (29) exist and have opposite signs
for γ �= β. Accordingly, the associated branches are
unstable for γ �= β.

From (B.4), the Jacobian matrix for the prebi-
furcation state has an (n− 1)-times repeated eigen-
value αψ. Because the prebifurcation state is stable
for ψ > 0, we have α < 0.

For (i), by setting p = 1 in (29), we
have the stability conditions of λ1 ≈ βε < 0
and λ3 ≈ (γ − β)ε < 0, i.e. γ < β < 0 since
ε > 0. Then from α < 0 and (28), which reduces
to ψ ≈ −β

αε for this case, it is apparent that ψ < 0.
For (ii), by setting p = n in (29), we have the

stability conditions of λ1 ≈ {β + (n − 1)γ}ε < 0
and λ2 ≈ −(γ − β)ε < 0, i.e. β < γ and β <
−(n − 1)γ. Then from (28), which reads ψ ≈
−β+(n−1)γ

α ε for this case, it is apparent that
ψ < 0.

In summary, a unique stable branch exists for
each of the cases (i) and (ii), whereas there are no
stable branches in other cases, designated as (iii).
For (iii), we have the remaining parameter space of
β > 0 or −(n− 1)γ < β < 0.
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