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Beyond Euclidean Distance for Error Measurement
in Pedestrian Indoor Location
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Adriano Moreira , Stefan Knauth , Rafael Berkvens and Joaquı́n Huerta

Abstract—Indoor Positioning Systems suffer from a lack of
standard evaluation procedures enabling credible comparisons:
this is one of the main challenges hindering their widespread
market adoption. Traditionally, accuracy evaluation is based on
positioning errors defined as the Euclidean distance between the
true positions and the estimated positions. While Euclidean is
simple, it ignores obstacles and floor transitions. In this paper,
we describe procedures that measure a positioning error defined
as the length of the pedestrian path that connects the estimated
position to the true position. The procedures apply pathfinding
on floor maps using Visibility Graphs or Navigational Meshes
for vector maps, and Fast Marching for raster maps. Multi-
floor and multi-building paths use information on vertical in-
building communication ways and outdoor paths. The proposed
measurement procedures are applied to position estimates pro-
vided by the Indoor Positioning Systems that participated in
the EvAAL-ETRI 2015 competition. Procedures are compared
in terms of pedestrian path realism, indoor model complexity,
path computation time and error magnitudes. The Visibility
Graphs algorithm computes shortest distance paths; Navigational
Meshes produces very similar paths with significantly shorter
computation time; Fast Marching computes longer, more natural-
looking paths at the expense of longer computation time and
memory size. The 75th percentile of the measured error differs
among the methods from 2.2 m to 3.7 m across the evaluation
sets.

Index Terms—Indoor Positioning System Evaluation, Error
Measurement, Indoor Pathfinding, WiFi Fingerprinting.
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I. INTRODUCTION

PERFORMANCE of indoor Location Based Services is
strictly linked to the accuracy of the underlying Indoor

Positioning Systems (IPSs) [1]. IPSs exhibit errors in the range
from a few centimeters for technologies like UWB [2] or
Ultrasound [3], to the more commonly used pedestrian IPSs
that exhibit errors of several meters [4]. The latter are typically
based on Wi-Fi, BLE and Magnetic Field signatures and often
combined with pedestrian dead reckoning. Generally speaking,
the environment influences the behavior and the accuracy of
an IPS, as IPSs commonly rely on signal measurements that
are heavily affected by the indoor environment characteristics
[5]. In the following, we will implicitly make reference to a
person or a robot that navigates across an indoor environment.

Several IPS evaluation criteria are possible and significant,
for example cost, computational demand, and privacy [1].
However, the prime criterion is accuracy, which is some form
of statistics based on positioning errors [1, 6]. The positioning
error for an IPS, used in a single floor, is commonly measured
as the Euclidean distance between the ground truth position
and the estimated position [6, 7, 8, 9]. The Euclidean distance
is easy and fast to compute, and arguably the most significant
error definition when Line-of-Sight (LoS) exists between true
and estimated positions. This is the usual case for small
errors (within centimeters) or when the target scenarios are
free from relevant obstacles. However, errors observed for the
most-often-used IPSs are within a few meters, so LoS being
impaired by walls or ceilings is not an uncommon occurrence.

Our preliminary work [10] proposed to define the position-
ing error as the length of the path that a pedestrian could follow
between an IPS-estimated position and the true position. The
2D paths were determined using Visibility Graphs (VG) from
floor plans in vector format. That preliminary work highlighted
divergences between the proposed error measurement and
the Euclidean distance measurement that affect the perceived
accuracy of an IPS. That perceived accuracy is important for
tuning and comparisons among IPSs. However, the number of
alternative routes can become large due to the many degrees
of freedom [11], especially if we consider a complex multi-
building multi-floor scenario with multiple endpoints. As the
number of elevators, stairs and building entrances increases,
finding the optimal route becomes more complex [12]. The
current manuscript technically extends our preliminary work
by (i) considering two new pathfinding methods –Navigational
Meshes (NM) and Fast Marching (FM)–; (ii) performing an
evaluation on a multi-building multi-story scenario with out-
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door navigation; and (iii) using position estimates obtained by
participants in the IPIN 2015 competition. The implementation
of pathfinding methods, measurement procedures and analyses
presented in this manuscript are available 1 with an Apache-
2.0 license. In summary, this manuscript contributes to advance
the state of art in IPS evaluation, with the following specific
contributions:

• description of five error measurement procedures for
IPSs, using either vector or raster floor map information
to compute the walking distance between two points;

• comparison of the proposed measurement procedures and
the Euclidean distance approach (with floor and building
misidentification penalties) in terms of pedestrian path
realism, indoor model complexity, path computation time
and error magnitude.

II. POSITIONING ERROR IN INDOOR POSITIONING
SYSTEMS

Unlike the Global Navigation Satellite Systems (GNSS)
used for positioning in most open outdoor environments,
current IPSs must be tuned for each targeted indoor scenario
[1]. One reason is that many IPSs rely on radio signals,
whose propagation is strongly affected by the specifics of each
different building [5]. IPSs relying on inertial navigation are
strongly affected by the building layout. No solution currently
dominates the IPSs market because those that deliver high
accuracy also have known drawbacks. As far as high-accuracy
systems are concerned, IPSs based on UWB and Ultrasound
require hardware deployments whose cost compromises their
scalability, while vision-based IPSs force the users to keep
their device in a fixed position in order to get a view of
the environment [1]. IPSs based on WiFi, BLE and Magnetic
Field signatures, often complemented with inertial sensors’
readings, are the most frequently used in commercial solutions
and the scientific literature for pedestrian navigation [1, 5].
These IPSs, however, have typical error ranges within a few
meters. Errors of a few meters in open outdoor fields may
not be significant. However, obstacles in complex indoor
environments are separated by distances similar in magnitude
to those errors which, therefore, have a much higher impact
on the quality of an indoor navigation system.

The problem is not new, and has received some attention
in the literature. Pulkkinen et al. [13] discusses about stan-
dardized baselines and metrics. Adler et al. [14] makes a
survey of experimental evaluation criteria adopted in the IPIN
papers, where different evaluation metrics were considered.
Liu et al. [15] proposes a novel way to compute similarity
between moving objects, based on geographic and semantic
components of the movements. de la Osa et al. [16] deals with
the lack of a predominant solution for defining the ground truth
when comparing indoor position estimates. Anagnostopoulos
et al. [17] defines a novel dynamic evaluation procedure with
predefined geometrical paths (see [18]) to capture real-life
usage of the scenarios, as well as other features such as ease
of deployment and cost-efficiency. Even if discussion about
evaluation strategies is open, the distance between the position

1With DOI: 10.5281/zenodo.3741390
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Fig. 1. Error underestimation from a pedestrian perspective when using 2D/3D
Euclidean distance. The red and green colors of encircled signs indicate
estimated and actual positions, respectively. The “B”, “F” and “R” signs
highlight identification failure cases for building, floor, and room, respectively.

estimate and the real position –i.e. the positioning error– still
relies on the Euclidean distance.

The ISO/IEC 18305:2016 International Standard [6] pro-
vides an evaluation methodology for IPSs. The standard de-
fines the magnitude of an error as the 3D (or 2D if only the
horizontal components are considered) Euclidean distance (l2
norm) between the actual and the estimated position. Despite
the existence of the standard, the evaluation of IPSs is still
an open challenge [19, 20]. In [19], the authors provide a
critical reading of the standard that highlights the complexity
of error measurement in indoor environments different from
single-floor open spaces. They describe three alternatives for
error measurement:

1) The 3D Euclidean distance defined in the standard. It is
widely used in IPSs literature, it is very easy to compute,
but it over- or under-estimates the importance of floor or
building detection errors from a pedestrian perspective.

2) The 2D Euclidean distance with floor and building
penalties, as used in several IPSs competitions [21,
22]. It is also very easy to compute, and the over- or
under-estimation of the importance of a correct floor or
building detection is less significant.

3) The pedestrian path length, as we proposed in [10]. It
is not easy to compute as it requires the application of
pathfinding methods to floor map information, but it can
provide the distance that a pedestrian would walk.

Figure 1 depicts some cases where the Euclidean distance
may significantly divert from error as may be perceived by a
pedestrian or robot. Also, it shows that finding the proper floor
penalty may be challenging in a heterogeneous environment.
We acknowledge that precise floor map information may not
exist for a given scenario. However, its availability would
be valuable not only for evaluation, but also for radio map
creation and map matching [5].

III. 2D PATHFINDING

Pathfinding is an important topic not only for robotics and
computer games [23, 24], but also to improve the accuracy of
indoor positioning [25] or to support indoor navigation [26].
This section describes the pathfinding methods used for mea-
suring the IPSs error: Visibility Graphs (VG), Navigation
Meshes (NM) and Fast Marching (FM).
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Fig. 2. Offsetting and VG path examples. The radius of the red circles matches
the size of the subject.

A. Visibility Graphs and Navigation Meshes

The VG and NM methods are based on vector maps and
require knowing the information about the navigable space of
the target environment, which we call free space. The free
space is formed of all indoor positions where the positioning
subject can be found without colliding with obstacles. The
free space is represented in this work using a polygon with
holes E, neither of which are necessarily convex. Section IV
describes how to obtain the free space representation from
floor plans. When computing paths using VG or NM, we
define the forbidden space as the space along the perimeter of
obstacles that a path must avoid so that a real-world object of
given size does not collide with the obstacles.

The free space is constructed as illustrated in Figure 2.
The limits of the environment (polygon boundaries) are grown
inwards and the inner obstacles (polygon holes) are grown
outwards by a quantity that depends on the physical size of
the subject. Once the forbidden space is removed from the
free space, obtaining thus a new polygon F , the subject can
be considered having null size as far as path computation
is regarded when using VG or NM. This work used the
CAD/CAM technique known as polygon offsetting [27] to
compute the forbidden space.

Given a set S of disjoint polygonal obstacles, the Visibility
Graph of S has a node for every vertex of S and a visibility
arc connecting any two nodes in LoS of each other; nodes are
in LoS when they can be joined by a segment that does not
collide with any edge of S. In this work, S is composed of
the boundary and the holes of F . Algorithms for the efficient
construction of VGs already exist [23]. The shortest collision-
free path between two points is composed by arcs of the VG,
once nodes and visibility arcs for the start and destination
points are added [23]. Pathfinding with VG requires setting arc
weights to the Euclidean distances between each pair of nodes
and using a pathfinding algorithm like e.g., Dijkstra’s [28] or
A∗ [29]. The paths found using VG usually have hard turns,
which are not ideal for describing people movement. Also,
VGs typically have a large number of arcs, which increases
the computational cost of pathfinding. For example, the simple
environment of Figure 2 resulted in over 50 visibility arcs.
For the experiments in this work, we used the graph-based
MATLAB’s implementation of Dijkstra’s algorithm [30]. Also,
we created a MATLAB implementation for VG construction

(a) Visibility Graph (b) Navigation Mesh
Fig. 3. Pathway representations for the TI building, lowest floor.

that performs brute-force testing of arc eligibility. The de-
termination of a VG requires several geometrical operations,
being the most used operations the point-in-polygon and ray-
or segment-to-environment intersection.

A Navigation Mesh [31, 32] subdivides F into a set of
convex polygons. The convex polygons represent spaces where
movement between two points of the polygon’s boundary is
possible without a collision. A constrained triangulation could
be used as an NM. For example, a Delaunay triangulation
[33] created from the vertices of F , for which the triangles
outside the environment are removed, is an NM. However,
an NM based solely on a triangulation normally has too
many unnecessary divisions of the space. Several approaches
exist for NM construction [34]. A MATLAB implementation
for NM was created for the experiments in this work. It
builds a constrained Delaunay triangulation and iteratively
combines adjacent polygons to remove nonessential edges,
thus obtaining new convex polygons [32]. The output is a
graph representing the obtained polygons. A path is computed
using Dijkstra’s [30], and it is later straightened using LoS
testing to remove unnecessary intermediate points [31].

Figure 3 presents an example of the resulting graphs for a
building (TI) of the scenario used in later sections. The graph
obtained by NM has far fewer arcs than that produced by VG.
The obtained path is not guaranteed to be the shortest one,
because Dijkstra’s finds the shortest route between polygons,
without any visibility information, and because the subsequent
straightening step uses visibility information only to remove
unnecessary intermediate points.

For complex environments, pathfinding for VG is consider-
ably slower than for NM, even accounting for the straightening
step (see results in Section V). For both VG and NM,
finding the route involves creating a new graph by adding
the endpoints to the static floor graph and adding new arcs
for each endpoint. In VG, new arcs are added that connect
each endpoint to those vertices of F that are visible from
the endpoint. In NM, new arcs are added that connect each
endpoint to vertices of the polygon containing it. If an endpoint
lies outside the valid areas, i.e., outside the boundaries or
inside a hole of F , a correction step is required before
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(a) Speed transformation (b) FM image output

Fig. 4. FM examples. Blue and green dots represent origin and destination
points, respectively. Magenta lines show the paths determined applying FM.

pathfinding. The correction step moves an endpoint to the
closest point in a valid area. Such point is determined by
finding the point on an edge of F which is the closest to the
endpoint, and by translating the former inward or outward.

B. Fast Marching

Fast marching [35] is a method that, given a domain and
propagation speeds, finds the time needed for a wave front
to reach each point in the domain from a given source point.
Unlike VG and NM, which are applied to vector maps, FM is
most easily applied to raster images. In this case the domain
is the set of image cells (pixels) and each cell is assigned
a propagation speed value. The algorithm uses the known
discrete solution to the Eikonal equation to update the cell
values and thus find the time when the front crosses a point.
For pathfinding, the speed in cells representing obstacles is set
to zero. As the algorithm produces no local minimum [36],
a path between source and destination points is determined
following the maximum gradient direction from the destination
point. The implementation used in the experiments presented
in this paper is based on MultiStencils [37], an improvement
on the original algorithm that produces smoother paths by
solving the Eikonal equation through several stencils.

In this work, the speed map is created from a distance
transformation applied to the binarized (e.g., black and white)
map raster. The result is an image where the value of a cell
is its distance to the nearest cell in the original image that
corresponds to an obstacle. The distance value d of each cell
is then transformed into a (non-zero) speed value v using:

v = 0.01 +

{
d d < τ
τ d ≥ τ (1)

In Equation 1, τ is a distance threshold for speed reduc-
tion. All cells farther than τ from obstacles have the same
(maximum) speed, which avoids to force paths towards the
center zone in large areas. The value of τ depends on image
resolution.For example, for the images later mentioned in
Section V, τ was empirically determined and set to 30 to avoid
speed reduction for cells representing positions farther than
2 m from obstacles. The 0.01 value was added to avoid zero-
velocity cells and thus non-traversable obstacles. Figure 4a

presents an example speed map, where the darker the shade
the lower the speed. Obstacles and areas outside of the target
environment (non-valid areas) are represented with the darkest
shade. Figure 4b depicts the output from applying FM over
the speed map from Figure 4a. Lighter shades correspond to
points reached sooner by the wave front originating from the
source point (blue dot). The paths shown in Figure 4 show that
FM does not require endpoint corrections. In fact, since non-
valid areas have the minimum speed values, they are actively
avoided. FM does not require offsetting either (although it can
be optionally applied) because cells close to obstacles have low
speed values and are avoided.

The computation cost for building a path with FM depends
on the size of the input image, which is related to the size of
the environment and its complexity. Image resolution should
be balanced so that the image retains all details relevant for
pathfinding while not adding useless computation burden.

The VG method was chosen because it produces the shortest
paths. NM is a computationally lighter alternative to VG that
somehow relaxes the requirement of finding the shortest path.
FM relaxes that requirement even further. We provide the
source code of our proposed methods and evaluation frame-
work, to enable comparison with other methods 2. Alternative
methods for finding the shortest path, such as predefined
waypoints [24], the direct application of Dijkstra’s to raster
maps [24], or quadtrees [38] may be considered in future
extensions of our procedures.

IV. IPSS ERROR MEASUREMENT PROCEDURES

The solution to finding a route across several floors and
buildings builds upon the 2D pathfinding methods introduced
in Section III. In the following, two variants are considered
here named Single Model (SM) and Endpoints Expansions
(EE). Both require static knowledge of the length of con-
nections between any two pair of accesses to each floor.
Here and in the following a static information can be pre-
computed, as it is dependent on map information only, while
dynamic information also depends on the endpoints. In the
most common case, inter-floor connections include vertical
connections between adjacent floors and inter-building con-
nections are outdoor ground-level routes between building
accesses, but more complex configurations may exist; for
example, vertical connections between non-adjacent floors,
horizontal connections above ground level between buildings
and more: we neglect these cases in the subsequent description
without loss of generality.

The SM variant connects the individual graphs produced for
each floor by the VG or NM methods using arcs that represent
the inter-floor and inter-building connections. This variant
produces a single 3D graph, which is the classic representation
used for navigation services in indoor environments [39].
Being based on graphs, it cannot be used with FM pathfinding.

The EE variant is not based on graphs and can be used with
any of the three pathfinding methods. A complete path between
source and destination is composed of an ordered sequence of

2With DOI: 10.5281/zenodo.3741390

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIM.2020.3021514

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 5

Fig. 5. Shortest distance path between two endpoints located in distinct
buildings and floors, computed using the EE variant with NM pathfinding.

path stretches that generally include inter-floor stretches, inter-
building stretches and intra-floor stretches computed via 2D
pathfinding. All the stretches are statically known apart from
the extreme ones (first and last). Each extreme stretch is chosen
from the set of intra-floor paths connecting an endpoint to each
access of the floor where the endpoint lies, meaning that sets
of intra-floor paths are dynamically computed.

Figure 5 represents a complete path where each stretch is
either:

• a vertical blue segment: statically known inter-floor con-
nection;

• a horizontal blue segment: statically known inter-building
connection;

• a green segment: a statically computed intra-floor stretch;
• a red segment: a dynamically computed intra-floor ex-

treme stretch.

Input: Environment Data Representation, Endpoint pairs
Output: Paths between endpoint pairs

1 Floor model creation
2 Single model integration
3 for each pair of endpoints do
4 Endpoint correction
5 Path computation
6 end

Algorithm 1: Path determination for the SM variant.

Input: Environment Data Representation, Endpoint pairs
Output: Paths between endpoint pairs

1 Floor model creation
2 for each pair of endpoints do
3 Endpoint expansion
4 Endpoint correction
5 Path computation
6 Endpoint contraction
7 end

Algorithm 2: Path determination for the EE variant.

In order to build a path, the EE variant chooses a sequence
of stretches using an always-forward strategy, that is, floor

𝐸1 = 𝑒, 𝑠1, 𝑠2, 𝑑1, 𝑑2, 𝑔

𝐸2 = 𝑒, 𝑡1, 𝑡2, 𝑑1, 𝑑2, 𝑔

𝐶1 = 𝑒, 𝑐, 𝑠1, 𝑠2, 𝑑1, 𝑑2, 𝑔

𝐶2 = 𝑒, 𝑐, 𝑡1, 𝑡2, 𝑑1, 𝑑2, 𝑔

𝑃1 = 𝑒𝑐, 𝑐𝑠1, 𝑠1𝑠2, 𝑠2𝑑1, 𝑑1𝑑2, 𝑑2𝑔

𝑃2 = 𝑒𝑐, 𝑐𝑡1, 𝑡1𝑡2, 𝑡2𝑑1, 𝑑1𝑑2, 𝑑2𝑔
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𝑃 = 𝑒𝑐, 𝑐𝑠1, 𝑠1𝑠2, 𝑠2𝑑1, 𝑑1𝑑2, 𝑑2𝑔
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Fig. 6. Example of outputs for steps 3 to 6 from Algorithm 2. Legend for
the black circles is e: estimate; g: ground truth; c: correction, s1, s2, t1 and
t2: floor entrances; b1 and b2: building doors. xy represents the computed
path between points x and y.

changes are done only if they represent a floor-wise or
building-wise advancement towards the destination. EE finds
a set of possible paths which includes the shortest path. The
number of possible paths thus identified is large and exponen-
tially related to the number of inter-floor and inter-building
connections. In the experimental implementation, only a subset
of possible routes is computed, in order to shorten computation
time.

Algorithm 1 and algorithm 2 are pseudo-code representa-
tions of SM and EE, respectively. Both algorithms take the
map and a set of endpoint pairs as input, each pair being the
real and estimated positions from the use-case presented in
Section V. The steps are:

• Floor model creation: Loading of the environment data,
i.e., the polygons or the image of each floor and the
vertical and inter-building connection information. The
output is the 2D graphs for the VG and NM methods,
and the speed transformation for the FM method.

• Single Model Integration: Linking together the graphs
created for each floor by the NM or VG methods. For
each inter-floor or inter-building connection, new arcs are
created: for VG, they are visibility arcs that irradiate from
the access node; for NM, they are segments that connect
the access node to the vertices of the containing polygon.

• Endpoint expansion: For each pair of endpoints, the pair
is removed. Always-forward sets are computed. For each
always-forward set, a new endpoint pair is added for each
of the two extreme stretches.

• Endpoint correction: Correction of endpoints lying out-
side the environment to the closest point inside the valid
areas. FM does not requires this step. Corrections are
tracked and later included in the error magnitude.

• Path computation: Use one of the three 2D pathfinding
methods to compute a path stretch for each endpoint pair
not associated with a static pre-computed stretch length.

• Endpoints contraction: Obtain the sequences of stretches
connecting the original endpoint pairs using the informa-
tion computed or stored for each path stretch.

Figure 6 illustrates an example for steps 3–6 from Algo-
rithm 2. Step 3 produces the basic information for creating the
paths between endpoints. Step 4 adds a correction if required.
Step 5 uses or computes path stretches to obtain actual paths
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between the endpoints. Finally, step 6 selects the minimum
distance path among those obtained in step 5.

The outputs of Algorithm 1 and Algorithm 2 are the paths
that connect the input endpoint pairs. The application of Algo-
rithm 1 or Algorithm 2 with any of the three 2D pathfinding
methods is hereinafter called a measurement procedure. Five
measurement procedures are proposed:

• VG-SM: Uses Algorithm 1 with VG for 2D pathfinding.
• VG-EE: Uses Algorithm 2 with VG for 2D pathfinding.
• NM-SM: Uses Algorithm 1 with NM for 2D pathfinding.
• NM-EE: Uses Algorithm 2 with NM for 2D pathfinding.
• FM-EE: Uses Algorithm 2 with FM for 2D pathfinding.
Procedures VG-SM and NM-SM produce shortest distance

paths, while VG-EE, NM-EE, and FM-EE produce several
alternative paths for each pair of endpoints lying on distinct
floors or buildings. While measurements other than the shortest
distance are generally useful for pedestrian navigation, only
shortest-distance is considered in the following. Examples
of significant paths different from the shortest are those
that take into account the subject familiarity with the target
environment, including those that contain the closest floor or
building exit from an endpoint; and those that leave the origin
building through the exit which is closest to the destination
building.

V. USE CASE: THE IPIN 2015 TRACK 3 COMPETITION

The error measurement procedures were applied to position
estimates provided by IPSs, trained and evaluated on data
from the UJIIndoorLoc dataset [40]. UJIIndoorLoc includes
publicly-available training and validation sets and a test set
that is kept secret by the dataset curators. The test set was used
in the IPIN 2015 (EvAAL-ETRI) Track 3 competition [41] to
evaluate IPSs based on WiFi fingerprinting. This paper applies
the proposed error measurement procedure to the 20,716
estimates provided by the four teams (5179 estimates each
team) that participated in that competition (“RTLSUM”[42],
“HFTS” [43], “ICSL” [44], and “MOSAIC” [45]).

A. Preparation of Environment Information

The UJIIndoorLoc’s data was collected in three university
buildings. The environment data used in the measurement pro-
cedures included a 2D depiction of each building’s floor that
represented the building’s boundaries and the inner structural
obstacles. The representation of a floor was either a set of
polygons (vector format) or an image (raster format). The
actual floors are connected through stairs or elevators, and
buildings communicate through outdoor paths between their
entrance doors. Environment information was obtained from
accurate CAD and GIS data [46]. Figure 7 shows the free
space representation for the first floor of each of the three
buildings where doors and similar obstacles are removed.

Polygon simplification was performed on the vector format
to reduce the number of vertices and edges, which is particu-
larly relevant for curves such as pillars, which were reduced
from 40 to 8 vertices each. Offset (as described in Section III)
for VG and NM was set to 0.2 m, which accounts for (half)
the average width of a person while also avoiding blockage of

Fig. 7. Geometric data of buildings, representing the free space in white
color. From left to right, the buildings are identified as TI, TD and TC.

small entrances. Raster images had a cell (pixel) size of 0.1 m.
Besides, the line thickness was chosen to represent thin but
continuous representations of obstacles’ edges.

TABLE I
GENERAL CHARACTERISTICS OF ENVIRONMENT’S BUILDINGS.

Building Area (m2) Floors Vert. Comm. Build. Doors
TI 15,600 4 18 7
TD 37,150 4 37 8
TC 27,100 5 24 4

The inter-floor (vertical) and inter-building (outdoor) com-
munication ways were represented as static information in
the form of triplets containing two endpoint tags and the
distance between endpoints. That allows, for instance in FM-
based approaches, to split pathfinding into independent steps
by creating a layer for each floor and representing the stairs
and elevators as static transit nodes between the independent
layers [12]. The compiled data for vertical and outdoor ways
considered any vertical way between two adjacent floors from
the same building and one route for any pair of doors from
two buildings. Automatic methods for topology extraction or
feature identification from floor plans may reduce the effort
of map data preparation [47, 48]. However, we manually
compiled the data relative to vertical and outdoor ways in order
to ensure accuracy of distance computation. Table I presents
the numbers of vertical ways along with other building infor-
mation. Note that this procedure does not prevent the use of
simple maps, even obtained from sketches, as long as they
represent closed buildings with well-defined entrance points.

B. Experimental Results

Results presented here were obtained from experiments
carried out on a PC with Intel Core i7-8700 CPU @ 3.2 GHz,
16 GB of RAM memory, running MATLAB R2019a on MX
Linux 18.2 Continuum. The procedures were implemented in
MATLAB, favoring correctness over efficiency. CPU times
were measured only once, so they are only intended to give a
grasp of relative computation times.

Table II and Table III present the measured times for steps
of Algorithm 1 and Algorithm 2, respectively. In the tables,
Σ is the total step time, while µ and σ are the mean and
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TABLE II
EMPIRICAL COMPUTATION TIMES (IN SECONDS) FOR STEPS OF

ALGORITHM 1.

Procedure Floor model
creation

Σ (s)

Single model
integration

Σ (s)

Endpoints
correction
µ (ms)

Paths
computation
µ± σ (s)

VG-SM 52 32 0.1 0.21 ± 0.01
NM-SM 122 1 0.1 0.02 ± 0.00

TABLE III
EMPIRICAL COMPUTATION TIMES FOR STEPS OF ALGORITHM 2.

Procedure Floor model
creation

Σ (s)

Endpoints
expansion
µ(ms)

Endpoints
correction
µ (ms)

Paths
computation
µ± σ (s)

VG-EE 52 7.4 2.4 0.23 ± 0.05
NM-EE 122 8.8 2.6 0.03 ± 0.02
FM 1 7.4 NA 2.51 ± 0.11

standard deviation of a set of times. The times for Endpoints
expansion and Endpoints correction are the mean per endpoint
pair, while for Paths computation are the mean per intra-floor
computed path.

Although the time spent for Floor model creation is not
negligible, its importance is limited because it takes less
than 3 min to complete for all procedures. Furthermore, the
graphs or images resulting from this step can be stored
and later reused by EE or SM for path computation. Times
for Endpoints expansion and Endpoints correction are small
compared to the times employed in the Paths computation, but
they are not negligible. Their σ values were close to zero and
are not reported.

Floor and building misidentifications increased the number
of paths to compute in the EE variants. Considering all teams,
the total path processing time for the NM and VG methods was
about eight times larger in EE variants than in SM variants. In
contrast, the increase is 26 times if only the MOSAIC team is
considered. EE is also demanding in terms of memory, mainly
because the path information is kept for later analysis.

The times for the Paths computation step are the most
important measures presented in Table II and Table III. Times
for NM-based procedures are small and thus affordable for
evaluation purposes, which is typically an offline procedure,
even for large evaluation sets. Times for VG-based procedures
are about seven times larger than those based on NM, although
those times should not be a concern in most scenarios for VG-
based procedures. In contrast, FM-EE needs more than 2 s on
average to run a single path computation. In our experiment,
FM-EE took more than five days to compute the paths for
the original evaluation pairs. Given its computational cost, the
FM-based procedure is suited for small evaluation sets when
the need for a realistically smoothed path is prevalent over
reducing the computation burden.

The Single model integration step is performed only once.
NM-SM runs significantly faster than VG-SM in this step
because NM produces floor graphs much less complex than
VG, as discussed in Section III. This effect is seen for the
Endpoints correction and Paths computation steps, which are
are smaller in Table II than in Table III.

TABLE IV
COMPLEXITY OF THE ENVIRONMENT REPRESENTATION FOR ALL FLOORS.

VG 2.3 × 104 nodes – 3.2 × 105 arcs
NM 2.3 × 104 nodes – 3.6 × 104 arcs
FM 13 floor images of 2, 971 × 2, 101 pixels

Table IV compares the complexity of the map structures:
graphs for VG and NM and raster for FM. VG and NM use
the same number of nodes, yet the number of arcs of VG is
almost nine times that of NM. FM computes the paths from
images of the same size as the input maps, which is over 6
million pixels in our experiment.

While important, evaluation time matters only for time
affordability, and thus it is a secondary aspect of the pro-
posed procedures. The main aspect is the error magnitudes as
measured by the procedures. To set those magnitudes in the
context of IPSs’ evaluation, Figure 8 presents comparisons
between the errors as measured by the proposed procedures
and those measured by the EvAAL procedure. The EvAAL
error is the sum of the 2D Euclidean distance r between the
estimate (xe, ye) and its ground truth (xg, yg), plus penalties
for floor difference and building inequality [8]. In [41], the
penalties were 4 m and 50 m, respectively:

e =
∥∥(xe, ye), (xg, yg)

∥∥+ 4
∣∣fe − fg∣∣+

{
0 be = bg
50 be 6= bg

(2)

The usage of the EvAAL procedure with the floor and
building penalties from Equation 2 is hereinafter called EFP04
procedure. Results from the VG-SM and VG-EE procedures
are exactly the same, as are results from NM-SM and NM-
EE. Therefore, for simplicity, error measures are shown only
for the EE variant, without further distinction. In Figure 8,
positions with both correct floor and building identification,
which are indicated by gray and green dots, lie near the diag-
onal, meaning that their EFP04 error magnitudes are similar
to those of the proposed procedures. Green dots are position
estimates that were corrected because they lied outside the
valid evaluation area; in these cases error magnitude includes
the correction length. Figure 8a contains no green dots because
FM does not use estimate correction, while Figure 8d does
not either because the MOSAIC team correctly placed all
estimates inside the valid area.

Blue dots represent samples with floor (but not building)
misidentification. The ICSL team had the lowest floor detec-
tion rate. HTFS had the best floor detection rate, and in fact it
has fewer blue dots. From a pedestrian perspective, the EFP04
procedure always underestimated the error when the position
was estimated in the right building but the wrong floor. The
4 m floor penalty of the EFP04 procedure was approximately
equal to the floor height, which should be considered a lower
bound to the length of the path walked by the subject to change
floors.

Red dots, only shown in Figure 8d, represent building
misidentifications, which are the cases with the largest errors,
only present in results from the MOSAIC team. The 50 m
building penalty of the EFP04 procedure was too large for
most cases. Also, that penalty was far too small for a few of
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Fig. 8. Examples of error measurement differences. Green and gray dots represent cases for which floor and building were correctly identified, with or without
applying corrections, respectively. Blue and red dots represent cases of floor and building misidentification, respectively.

other cases that required changing floors at the two buildings,
as previously shown by Figure 5. In general, when compared
to pathfinding-based alternatives, the EFP04 procedure mostly
underestimated the magnitude of the error for the evaluated
environment and estimation sets.
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Fig. 9. Measures of the proposed procedures for the MOSAIC team.

Figure 9 (but also Figure 8d) helps on path comparison
among the four compared procedures, for the MOSAIC team.
The charts help confirming that (1) the EFP04 procedure
produces error values lower than the other produces, apart
from the case of building misidentification; (2) while the VG
method computes the shortest path, NM provides a close
approximation; and (3) while the FM method produces the
longest path for most cases, in a few cases it may produce a
path shorter than that of NM.

Figure 10 presents the CDFs of measures as provided by
the four procedures already explored and by three additional
ones: the 3D Euclidean distance (E3D), which is addressed in
some works [6, 49]; and the EvAAL procedure using the same
50 m building penalty as EFP04 and no floor penalty (EFP00)
or 15 m floor penalty (EFP15). The EFP15 procedure has been
used in on-site Tracks (1 and 2) of the IPIN competitions
[8]. E3D, EFP00 and EFP04 provide percentile values that
are notably similar for all teams but ICSL, the one with the
smallest floor hit ratio. Thus, the comparisons between EFP04
and the proposed method also apply to E3D and EFP00.

The 75th percentile values of EFP15 and VG are close
for all teams. The difference increases for percentiles above

75th: it stays below 3 m up to the 95th for all teams but
MOSAIC. Thus, EFP15 measures may arguably be a good
mathematically simple approximation to VG-based measures
for the percentiles 75th or lower. The FM-based procedure,
which computes paths more realistic and thus longer than the
shortest ones, provides the largest measures as seen across
all percentiles values. In comparison with FM, VG is easier to
compute and understand, the latter being a fundamental aspect
when comparing systems. Thus, the VG-based procedure is
recommended for all cases where a high reliability is needed
or high quantile metrics are involved.

TABLE V
TEAMS EVALUATION RESULTS.

Team EFP04
(m)

EFP15
(m)

VG
(m)

NM
(m)

FM
(m)

Floor
(%)

Building
(%)

RTLSUM 8.34 8.48 8.96 8.96 10.49 93.74 100.00
ICSL 10.87 12.75 13.26 13.26 14.54 86.93 100.00
HFTS 11.61 12.52 12.57 12.57 14.09 96.25 100.00
MOSAIC 12.12 12.41 12.62 12.62 14.83 93.86 98.65

Table V reports the accuracy of each team as measured by
EPS04, EPS15 and the three proposed procedures using the
75th percentile metric. The 75th percentile is part of the EvAAL
evaluation framework, and is used in IPIN competitions [21,
22]. Notice in Table V that EFP04, EPS15, VF and FM
produce different rankings. While RTLSUM keeps the first
place in all cases, ICSL moves from the second to the fourth
place with EPS15, VG or NM, and to the third place when
using FM, because EFP04 is more lenient of floor misdetection
than EPS15, VG or FM. For the same reason, the HFTS
team, which has the best floor detection rate, moves up to
the second place with both VG and FM. The MOSAIC team
ranks third when using the VG- and NM-based procedures.
The MOSAIC team had a few building detection errors, each
of them bringing a 50 m penalty whose weight is higher in
EFP04 than in EFP15, where the effect of the floor penalty
is more relevant. This explains why MOSAIC, with its good
floor detection rate, ranks better with EFP15 (second place)
than EPF04 (fourth place).

FM builds path always longer than VG and apparently
longer than NM too; the difference is most notable when
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Fig. 10. CDFs comparison of error magnitudes. Besides the explored measures, the charts also include those produced by the 3D Euclidean distance (E3D)
and by the EvAAL procedure using floor penalties of zero (EFP00) and fifteen (EFP15).

(a) VG (b) NM (c) FM
Fig. 11. Examples of computed paths using the proposed pathfinding methods.

misidentifying a building, which explains MOSAIC getting
the lowest rank with FM.

The similarity of values in Table V for VG-based and NM-
based procedures requires an explanation. Figure 11 shows
how example paths produced by VG and NM are very similar.
The reason is that NM uses a path straightening procedure
using LoS testing: while this method does not produce the
shortest path in all cases as VG does, its results are usually
very close. FM actively avoids edges, thus creating smooth
but sinuous paths that divert from the shortest distance paths
found by the VG method or their good approximation provided
by the NM method. Also, the NM method is less computing
intensive. SM variants are much less resource demanding than
EE variants, and thus recommended unless the FM method is
required.

Correct identification of building and floor is of utmost
importance for an IPS. The proposed measurement proce-
dures avoid over- or under-penalization for floor and building
misidentifications, from a pedestrian perspective, given that
they do not require the usage of compromise penalty values
for heterogeneous environments. They do require the usage of
a well-defined offset parameter, which is required for VG and
NM, but optionally applicable to FM as pre-processing.

The proposed measurement procedures focused on error
measurement in indoor environments. The indoor character
influenced aspects of procedures, like the endpoint correction.
In general, a positioning system that has building (map)
information should validate the position estimations to avoid
non-accessible areas like, obstacles or inaccessible areas. If the
estimates should strictly lie indoors, then outside areas can be
considered non-accessible and the correction procedure should

be applied. Systems that provide seamless indoor and outdoor
localization will consider outdoor areas as accessible.

VI. CONCLUSION

Comparing IPSs is a complex task and involves many met-
rics. We have arguably moved a step forward in the direction
of improving the usefulness of the most important metric, that
is, positioning accuracy. In the case of a person or robot,
most accuracy measures currently used are some statistics on
positioning errors along the path, where the positioning error
is defined as the Euclidean distance between an estimated
position and the corresponding correct (ground truth) position.
Euclidean distance is a good choice for approximating the cost
of making a bad estimate: it is simple to compute and explain,
its mathematical properties are well known, it does not require
to be tuned using free parameters.

The ISO/IEC 18305:2016 standard [6] uses 3D Euclidean
distance, while the IPIN competitions use 2D Euclidean dis-
tance with floor penalty (EFPX). Floor penalty accounts for
the cost of bad positioning estimate that is perceived by a
person or robot in the case of floor detection errors, but adds
a parameter X , which needs to be tuned to the environment
on the basis of experience. The walking distance proposed
in this paper is an improvement over both 3D and EFPX
in that it accounts for the cost of floor detection errors and
additionally for the cost of going around 2D obstacles like
walls, which may be significant in office-like environments. In
comparison with EFPX , it removes the need of a floor penalty
parameter, which is a compromise value for heterogeneous
environments found in a non-algorithmic way; it instead uses
an offset parameter that is based on the size of the target and
the minimal entrance (e.g., door) size in a well-defined way. In
the experiments, the offset value was 0.2 m, which accounted
for average person width and avoided entrance blockage.

The procedures described in the paper are tailored for pedes-
trian paths determination. They were developed considering
floors and buildings as entities with well defined boundaries
and known entrance points. Thus, they are not appropriate
for use cases like UAVs (e.g., drones), or boundary-less
environment representations.
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The source code for all the procedures is available with
an Apache-2.0 license and can be extended to include other
pathfinding methods. As an example, the EE variants can be
used in further analyses that are not limited to the shortest
path.

The positioning error defined in this paper will be exper-
imented in the next editions of the IPIN competition and
possibly used as an optional modification to the EvAAL
framework [8].
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