
Exploring learning techniques based 
on decision trees and their 

performance in platform games 
 
 

 

 
 

Final Degree Work 

 
Author: Carlos Tello Ordoñez 

Bachelor’s Degree in Video Game Design and Development 
Universitat Jaume I 

July 6th, 2020 

 
 

Advisor: Pedro José Sanz Valero  
  

 



ABSTRACT 
This document presents the Final Degree Work of the Bachelor’s Degree in Video Game              
Design and Development. The work consists of the study and implementation of machine             
learning techniques based on decision trees. The focus is set on Quinlan’s Inductive             
Decision Tree algorithm (ID3) ​[1] and its extension, the Incremental Decision Tree learning             
algorithm (ID4). 

The learning methods are applied to the classic Super Mario Bros ​[2]​. The artificial              
intelligence agents are implemented and trained within the Mario AI Framework ​[3]​. This is a               
framework for using AI methods with a version of Super Mario Bros. The framework includes               
features such as level generators, observation grid, and already implemented playing           
agents.  

In order to demonstrate the reliability and feasibility of the system, some tests have been               
carried out as an experimental validation. These preliminary results showcase the pros and             
cons of the applied learning approach and open the door to continue exploring learning              
techniques in other videogame contexts. 
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1. TECHNICAL PROPOSAL 
 
This chapter presents an overview of the Final Degree Work project. The following sections              
include the motivation of the project, a list of the principal objectives to achieve, the planning                
of the development process, and its expected results. 
 

1.1. INTRODUCTION AND MOTIVATION OF THE PROJECT 

The project aims to compare the performance of online and offline induction of decision trees               
algorithms. This comparison is done by implementing agents of Induction of Decision Tree             
algorithm(ID3) and Incremental Decision Tree algorithm(ID4) in the Mario AI Framework. 
The Mario AI framework is a framework for using AI methods with a version of Super Mario                 
Bros. 

The first part of the project will be focused on implementing the data structures of the                
decision trees that are used by the learning algorithms, in order to improve the              
understanding of the decision process and the later tree build process. The next step will be                
the implementation of the learning algorithms. These algorithms will be tested with simple             
example sets extracted from examples provided by the analyzed literature. 

The next part will be to use the previously implemented algorithms to train an ​agent in the                 
Mario AI Framework that will learn to play the classic platform game. The training process               
will be carried out by providing sets of examples to teach simple behaviors to the playing                
agent. Then a recorder agent will observe other playing agents, which are already             
implemented in the version 0.8.0 of the framework, in order to collect a set of examples from                 
expert players. 

The motivation underlying this project is applying my previous knowledge about the            
artificial intelligence field and improving them by the analysis and implementation of two             
learning algorithms. 

 

1.2. RELATED COURSES 

● VJ1215 Algorithms and data structures. 
● VJ1224 Software Engineering. 
● VJ1227 Game Engines. 
● VJ1231 Artificial Intelligence. 

 

1.3. OBJECTIVES 

● Implementation of decision trees data structure and algorithm. 
● Provide a visual representation of decision trees. 
● Implementation of the ID3 algorithm. 
● Implementation of the ID4 algorithm. 
● Understanding and integration of Mario AI Framework base code. 
● Integration of ID3 and ID4 learning agent. 
● Provide a study and comparison of learning algorithms applied to platform games. 
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1.4. PROJECT PLANNING 

 
Submission Due by    

Technical proposal 16-dic.-2019    

Analysis and Design Doc. 10-feb.-2020    

Mentor's report 8-jun.-2020    

Report's First Draft 3-jul.-2020    

        

        

Tasks Estimated Completion 
Time (hours) 

TECHNICAL PROPOSAL 10 

 Research 4 

 Write the proposal document 6 

ANALYSIS AND DESIGN DOCUMENT 86 

 ANALYSIS 50 

  Documentation Decision Trees 10 

  Documentation ID3 20 

  Documentation ID4 10 

  Documentation Mario AI 10 

 DESIGN 36 

  Decision Tree 6 

  ID3 algorithm 16 

  ID4 algorithm 10 

  Comparison criteria 4 

IMPLEMENTATION 120 

 Datasets 4 

  Create and read CSV files 2 

  Datasets as JSON 2 

 Decision Trees 16 

  Data structure 8 

  Decision functions 8 

 ID3 60 

  Data structure 12 

  Algorithm 16 

  Agent 10 
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  Learning graphic representation 6 

  Learning test 6 

  Results Analysis 10 

 ID4 40 

  Algorithm 14 

  Agent 10 

  Learning test sessions 6 

  Results Analysis 10 

FINAL REPORT 70 

PROJECT DEFENSE PREPARATION 14 

        

TOTAL COMPLETION TIME 300 

 
 

1.5. EXPECTED RESULTS 

With the work developed for this project, I expect to obtain two working implementations of               
the ID3 and ID4 algorithms and be able to apply them to platform games in order to train an                   
artificial intelligence agent to play them. 
 

1.6. TOOLS 

● Mario AI Framework 0.8.0 
● IntelliJ IDEA Community 2020.1 (JDK 13.0.2) 
● Git 2.24.1.windows.2 
● Gson 2.8.6 
● Google Sheets. 
● Lucidchart.  
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2. ANALYSIS AND DESIGN 
This chapter offers a general overview of the work within the context of machine learning               
and the Mario AI Framework. It also provides a detailed description of the machine learning               
techniques, providing information about their knowledge representation model, and a brief           
description of the algorithms. 
 

2.1. INTRODUCTION 

The work of the project lays on the development of machine learning agents for the classic                
platformer video game Super Mario Bros. The learning algorithms used by the agents are              
Induction Decision Trees and Incremental Decision Trees. 

The two learning methods are implemented in order to test the efficiency of both when               
approaching the problem of teaching an agent to play this genre of video games. 

 

2.2. WORK CONTEXT 

2.2.1. MACHINE LEARNING 

Machine learning is considered one of the central research areas in artificial intelligence. The              
field of machine learning is focused on how to construct systems that automatically improve              
with experience. 

Quinlan defends that ​[4]​: “​any attempt to understand intelligence as a phenomenon must             
include an understanding of learning​.”  

This concept of learning is defined by Herbert Simon as ​[5]​: “​any change in a system that                 
allows it to perform better the second time on the repetition of the same task or another task                  
drawn for the same population​.” 

Simon’s definition describes learning as a process of generalization from a given            
experience. During this process, the performance of the learning system should improve by             
repeating the same task and also a similar task in the domain. Since the learning domains                
are usually large, the learner tends to perform an induction task of the knowledge. This               
means that only some of all the possible examples are examined by the learner. It is the                 
learner who, from this limited experience, must generalize correctly to unseen instances of             
the domain. 

The use of learning techniques applied in games has the potential to provide a consistent               
challenge for players but also to reduce the effort to create game-specific AI ​[6]​.  

Learning methods can be classified into several groups depending on different aspects            
such as, what is being learned, the effects of the learning on a character’s behaviour, and                
when the learning occurs. This last point shows the biggest difference between the two              
techniques of this project. The learning of the Induction of Decision Trees algorithm is done               
offline when the game is not being played. On the other hand, the Incremental Decision               
Trees algorithm is able to modify its knowledge online, while playing the game. 

It is important to balance the effort when working with learning algorithms. To balance the               
effort means that the work of programming and training the learning algorithm is less than               
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hardcoding the particular AI behaviours . The development of this project also aims to test               
whether the work is worth the effort for the results obtained. 
 
2.2.2. SUPER MARIO BROSS 

The game used to teach the learning algorithms is Super Mario Bros., a 2D side-scrolling               
action game. The player takes control of the famous plumber Mario. The mission of the               
character is to find and rescue the Princess through the Mushroom Kingdom. On his              
adventure, Mario will climb mountains, fight turtle soldiers, jump pits and avoid different             
traps. 

The player can walk and run to the right and left, jump and shoot fireballs (when Mario is                  
at Fire state). Mario can be in three states: Small (initial state), Big (there are some objects                 
that he can crush by jumping from below), and Fire (can shoot fireballs). 

The main goal of the level is to get to the end of the level. To do so, the player has to                      
traverse it from left to right. There are some alternative goals for the levels: complete it as                 
fast as possible, collect all the coins in the level, or getting the highest score (collect coins                 
and kill enemies). 

In the game, the control pad is simple: one d-pad and two action buttons. The player uses                 
the D-pad to move Mario, button A to jump and B to run/shoot. Keeping in mind that the                  
D-pad has four directions but the up direction is not used, the controls are limited to five                 
buttons with two possible states: pressed or released. This gives the player 32(2​5​) different              
actions. However there are some combinations of buttons that are pointless and not             
commonly used, like pressing  right and left simultaneously. 

 
2.2.3. MARIO AI FRAMEWORK 

The environment where the algorithms are trained and tested is the Mario AI Framework              
0.8.0 , a benchmarking software that can be interfaced with learning algorithms and which             1

origin and purpose is described elsewhere ​[7]​. 
 

 

Figure 1: Infinite Mario Bros. 

 

1 Mario-AI-Framework git repository: ​https://github.com/amidos2006/Mario-AI-Framework 
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Many papers have been written about this benchmarking software providing the tool with             
significant documentation. The framework started as a modified version of Markus Persson’s            
Infinite Mario  a public domain clone of the classic Super Mario Bros (​Figure 1​). 2

The framework provides a wide variety of levels including the first fifteen original levels. It               
also allows the user to generate new levels that can be played either by a player of an AI                   
agent. With the source code of the framework, they are included also some of the agents                
that have been implemented using this tool. There is also the possibility to run the game with                 
player controls and an agent that will take random decisions.  

The application programming interface (API) of the Mario AI Framework provides the            
option of removing the realtime elements of the game so that the learning algorithm can step                
forward the game without dependency on graphical output. The API is broken down into the               
following Java interfaces ​[8]​: 

1. Environment interface: It describes the game state to the agent at each time step.              
The information is presented as: 

● Receptive area observations, as two-dimensional arrays that describe the         
world around Mario with block resolution. At the centre is Mario itself. 

● Exact positions of enemies with pixel resolution for more detailed information. 
● Mario state (Small, Big, Fire). There are also other binary/discrete variables to            

check whether Mario is on the ground, can jump, and is carrying a Koopa’s              
shell. 

2. Agent interface: It needs to be implemented in order to create a functional playing              
agent. The core method is the ​getAction which takes as input the environment and returns a                
five-bit array specifying an action. 

This benchmark was originally created as the environment of The 2009 Mario AI             
Competition ​[9]​. Initially, the competition only hosted a gameplay track, where the goal was              
to clear as many levels as possible. The competition kept growing over the years and in its                 
second edition, it consisted of four separate tracks: ​gameplay​, ​learning​, ​Turing test, ​and             
level generation​.  

This work is going to focus on the ​Learning Track​. Here the agents were tested on                
unseen levels during the agent development, but they were allowed to train on the track               
before being scored. Each agent was allowed to play each testing track 10000 times and it                
was scored only from the 10001st playthrough. 

Moreover, the learning techniques of this project are mostly the one from the other on the                
data collecting process and the performance of the induction or increment of the decision              
rule. Therefore the training process will be also taken into account for the comparison of               
results. 

 

2.3. METHODOLOGY 

This chapter offers a detailed description of the machine learning techniques, providing            
information about their knowledge representation model, and a brief description of the            
algorithms. 
 

2 Infinite Mario: ​https://openhtml5games.github.io/games-mirror/dist/mariohtml5/main.html  

10 

https://openhtml5games.github.io/games-mirror/dist/mariohtml5/main.html


2.3.1. DECISION TREES 

Both learning methodologies are members of the TDIDT family. As members of this family,              
they represent acquired knowledge as decision trees. The construction of the trees begins             
with a root that proceeds down to the leaves of the tree. This is why the name ​T​op ​D​own                   
I​nduction of ​Decision​ ​T​rees is given to the group of methodologies. 

Decision trees are based on the idea of a universe of objects, described using attributes.               
These attributes measure important aspects of the object, and they take a set of discrete               
and exclusive values. The objects of the universe are classified into one of a set of mutually                 
exclusive classes. 

The leaves of the tree contain the classes of the universe. The other nodes of the tree                 
represent tests based on the attributes of the object, with a branch for each possible               
outcome. The objects are classified starting from the root of the tree and moving down to the                 
leaves following the branches with the values of the object’s attributes. 

 

Figure 2​. Decision Tree example 

Figure 2 shows a representation of a decision tree from the dataset proposed by              
Millington and Funge at ​[6]​. Some of the datasets from this chapter are used in the following                 
section to illustrate other concepts. The tree has two possible outcomes: ​Defend or Attack​.              
The objects of this example are represented with the attributes: ​Has ammo and ​Is in cover​.                
In this case, the attributes only take binary values, but they could take a larger range of                 
discrete (​i.e.​ empty ammo, low ammo, and full ammo). 

Decision trees take as input a tree definition that consists of decision tree nodes. The               
base class of these trees is ​DecisionTreeNode​. It is implemented as an interface with a               
definition of the function ​makeDecision()​ which recursively walks through the tree. 

There are two classes that extend from the DecisionTreeNode interface: ​Action ​and            
MultiDecision​. For this project, the Decision nodes will be supporting multiple daughter            
nodes, although if the problem does not require it, they can just be implemented as nodes of                 
a binary tree. 

Decision Trees follow the structure shown in ​Figure 3​. The private variable ​root is of type                
DecisionTreeNode, meaning that it can be either a ​MultiDecision ​or an Action. The last              
case, although very unlikely, is possible if the decision for any given Observation ​is always               
the same action. The public method ​makeDecision() of a Decision Tree gets an Observation              
and calls the ​makeDecision() method of its root, returning an action. The ​Observation ​class              
only has a public variable ​attributes​ which maps every attribute with its value.  

As it has been pointed before, Action and MultiDecision extend from ​DecisionTreeNode.            
Since the actions represent the leaves of the tree, the ​makeDecision() method of this class               
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returns the Action object itself. At a MultiDecision node, the ​makeDecision() method            
recursively calls the function on the node returned by ​getBranch()​, the daughter node             
mapped with the ​testValue​. 

This implementation is based on the one proposed by Millington and Funge in the chapter               
Decision Making of their book ​Artificial Intelligence for Games ​[10]​. Here the nodes are              
stored in a single block of memory, avoiding slower execution and memory cache problems.              
The performance of the algorithm is linear with the number of nodes visited. The mentioned               
chapter points out that it is common for the decisions to take constant time. Assuming that                
the tree is balanced and the constant time, the performance of the algorithm is O(log​2​n​),               
where ​n is the number of decision nodes of the tree. As we will see below, the trees built by                    
ID3 tend to be balanced. 

 

 
Figure 3​: Decision tree class diagram 

 
 

2.3.2. INDUCTION OF DECISION TREES 

The learning strategy used by the systems of the TDIDT family is non-incremental learning              
from examples. As we will see in Incremental Decision Trees there are some variations that               
can be applied to these systems to make them incremental learners. The learning strategy              
needs a training set from which it will induct a classification rule, expressed as a decision                
tree. 

For the induction task, the system is provided with a set of examples to be classified. The                 
classification is carried developing a decision tree from the top down. This tree is not               
developed guided by the order in which the examples are provided, but by the frequency of                
information. 

The induction of decision trees is iterative: from the set of observations, it chooses the               
best attribute to divide the examples into several subsets. This attribute is the one that               
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provides the division with the highest information gain. The algorithm repeats the subdivision             
process until all the examples in the subdivision are from the same class. 

The algorithm takes the entropy of the classes in the set in order to choose the division                 
attribute. It measures the degree in which the classes from the set of examples agree with                
the other classes of the same set. If all the examples are from the same class, then the                  
entropy of the set is 0. On the other hand, when the distribution of the classes is uniform the                   
entropy is 1. 

The information gain is calculated as the reduction in overall entropy. The entropy is              
determined using Shannon's Entropy ​[11]​ function: 

 E(x) = (x )log p(x )− ∑
n

i=1
p i b i   

where ​n ​is the number of examples and ​b ​the number of possible actions. 
 
INFORMATION GAIN EXAMPLE: 
The following example illustrates the calculus of the information gain for a given set ​[6]​: 

 
Action Health Cover Ammo 

Attack Healthy In Cover With Ammo 

Attack Hurt In Cover With Ammo 

Defend Healthy In Cover Empty 

Defend Hurt In Cover Empty 

Defend Hurt Exposed With Ammo 

 
This example set shows two possible actions: Attack and Defend. The entropy of the              

complete set is: 
 ·log (p ·log (pEs =  − pattack 2 attack) − pdefend 2 defend)  
 /5·log (2/5) 3/5·log (3/5)Es =  − 2 2 −  2  
 0.971Es =   

   
The set is divided into three attributes: ​Health, Cover, ​and Ammo​. The divisions split the               

possible values of each attribute and the entropy for each of these values is: 

E​healthy​ ​= 1.000 E​hurt​ ​= 0.918 

E​cover​ ​= 1.000 E​exposed​ ​= 0.000 

E​ammo​ ​= 0.981 E​empty​ ​= 0.000 

 
The entropy of ​Hurt ​is established with: 

 ·log (p ·log (pEhurt =  − pattack 2 attack) − pdefend 2 defend)  
 /3·log (1/3) 2/3·log (2/3)Ehurt =  − 1 2 −  2  
 0.918Ehurt =   

As it has been mentioned before, the information gain of each division is obtained from               
the reduction of the overall entropy (0.971). This reduction is given by the formula: 

 EG =  s − p⊤ * E⊤ − p⊥ * E⊥  
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For example, the information gain for ​Health ​is: 
 EG =  s − p⊤ * E⊤ − p⊥ * E⊥  
 0.971 /5 /5 .918G =  − 2 * 1 − 3 * 0  
 0.020G =   

 
And the information gain for each of the attributes is: 

G​healthy​ ​= 0.020 

G​cover​ ​= 0.171 

G​ammo​ ​= 0.420 

 
For the given set of examples the algorithm will choose ​Ammo as the best attribute for the                 

division. It will repeat the same process for each of the divisions, but it will remove the ​Ammo                  
attribute from the calculus. The algorithm stops when entropy is 0 so all the examples from                
the set converge in the same class. 

The Induction of Decision Trees algorithm takes as input a list of examples, a list of                
attributes and the root of the tree, which is a new instance of the DecisionTreeNode               
described above. 

Examples​, ​from the input list of the algorithm, stores the action of the example and a                
hash table with its attributes. The key identifies the name of an attribute and the value of the                  
pair its value. This class has a constructor in order to instantiate the examples from a JSON                 
file and a  ​getValue()​ method that returns the value of a given attribute. 

The algorithm starts with the recursive ​makeTree()​. This method divides the set of             
examples until the examples lead to the same action. The ​splitByAttribute() ​method carries             
out the division, taking the list of examples and the attribute from which divide the set, and                 
returning a list of lists of examples. This function is called for each of the attributes of the                  
input, and for each of these divisions, the algorithm calculates its entropy with             
entropyOfSets()​. The entropy of the sets is calculated with the ​entropy() ​method, using             
Shannon's Entropy function, explained earlier in this chapter.  

 

 

Figure 4: ID3 class diagram 
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At each iteration of the recursive function, the algorithm chooses the attribute with the              
highest information gain, subtracting the entropy of the set from the overall entropy. The              
input DecisionTreeNode sets its testValue as the bestSplitAttribute and maps its daughter            
nodes with the remaining attributes excluding the testValue. And for each daughter calls the              
recursive function. The stop condition of the recursive calls is when the initial entropy of the                
set is 0, meaning that all the examples of the set agree on the same action. The current                  
decision node is now a leaf of the tree (an action). 

The implementation of the ID3 algorithm is also based on Millington and Funge’s book, in               
the chapter Learning ​[6]​. Its performance is O(​a​·log​v​n​) in memory and O(​a·v·n·​log​v​n​) in time,              
where ​a is the number of attributes, ​v is the number of values for each attribute and ​n the                   
number of examples in the initial set. The class diagram of this decision tree structure is                
represented in ​Figure 4​. 

 
2.3.3. INCREMENTAL DECISION TREES 

The Incremental Decision Tree(ID4) technique goes beyond ID3 and introduces the           
possibility to add new examples to a classification rule that has been already inducted from a                
previously given set of examples. 

The incremental algorithm starts as the basic induction one, generating a decision tree             
from an initial set of examples. In this case, the nodes of the tree keep track of all the                   
examples classified through the branch. Every time that ​makeTree creates a new node, it              
adds the input list of examples from the current iterative call. The format of the decision tree                 
with the list of examples for each node is represented by ​Figure 5​. 

 

 

Figure 5: Decision tree with ID4 format 

 
In addition, the nodes can be asked to update their subtree when a new example is                

added. There are four ways in which a node can be updated: 
● If it is a leaf node and the new example belongs to the same class, this example is                  

added to the node’s object list. 
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● If it is a leaf node but the new example does not belong to the same class, the leaf                   
node is turned into a decision node and it has to be determined by the division                
attribute. This division is like the one in the ID3 algorithm. 

● If it is a decision node it has to proceed as the case below. At this point there are two                    
possible situations: 

○ The new best division attribute is the same it was before adding the new              
example. In this case, the classification continues from the child nodes. 

○ The new best division attribute is different from the one in the original tree. In               
this case, the subtree that has the current decision node as root is destroyed              
and rebuilt (the same way we build a tree with ID3) with all the examples that                
the subtree was classifying plus the new example. 

The node update is carried out within the function ​incrementTree​. It takes as input the               
example that is going to be added to the tree and a node to which add the new example.                   
The algorithm checks if the node has to be updated. The algorithm starts with the root node                 
of the tree and recursively classifies the example until it reaches a leaf or the input node                 
requires to be updated. The methods used to find the best split attribute are the same                
described for the ID3 algorithm. 

 
INCREMENTAL DECISION TREE WALKTHROUGH: 
The following example illustrates the increment process of an ID4 decision tree for a given               
set (Millington and Funge, 2006): 

 
Action Health Cover Ammo 

Run Healthy Exposed Empty 

Attack Healthy In Cover With Ammo 

Attack Hurt In Cover With Ammo 

Defend Healthy In Cover Empty 

Defend Hurt In Cover Empty 

 

 

Figure 6: Decision tree ID4 example with the initial set 

 
The initial set of examples will result in the induction of a decision tree that looks like the one                   
shown in ​Figure 6​. To the initial decision tree we add the following examples one at a time: 
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Action Health Cover Ammo 

Defend Hurt Exposed With Ammo 

Run Healthy Exposed With Ammo 

 
When the first example enters at the first decision node, the algorithm determines that              
Ammo is still the best attribute to use as the decision test value. The increment continues on                 
the appropriate daughter node. This node is an action but it does not match with the                
example, so the action node is turned into a decision using Cover as test value. The                
resultant tree is shown in ​Figure 7​. 

 

Figure 7: Decision tree ID4 example first increment 

 
Now the second example is added to the incremented tree. At the first node, the algorithm                

determines that Cover is the best attribute to divide the set. In ​Figure 8​, it can be seen that in                    
this case, the whole tree is rebuilt. 

 

 

Figure 8: Decision tree ID4 example second increment 

 
One of the main problems of the incremental algorithm is that in the worst case, every                

time that a new example is added to a previously built decision tree, the tree has to be built                   
from scratch. This could happen if adding a new example meant to find a new best division                 
attribute at the root node, which would cost more than building a new ID3 from scratch each                 
time. However, this case seems to be very unlikely ​[6]​. 
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2.4. DESIGN 

The following sections describe the structure and features of the agents that will collect the               
data through game observations and the one that will use the processed data to make the                
decisions when playing the game. 
 
2.4.1. AGENT 

The term “agent” will be used many times in this document, so the following section aims to                 
provide the reader with a description of the term. In the context of the project, an agent is                  
referred as an autonomous character that determines what action to take based on             
information received from the game data, and carries out those actions ​[12]​. 

From this definition of agent it can be provided with a representation of an “agent-based               
AI model” which is represented by Figure 9 

 

 

Figure 9: The agent-based AI model 

 
2.4.2. MARIO AGENT 

All the agents developed for the Mario AI Framework have to implement the interface              
MarioAgent​. The interface defines the following methods: 

● void ​initialize​(MarioForwardModel model, MarioTimer timer): 
● boolean[] ​getActions​(MarioForwardModel model, MarioTimer timer): returns the       

action that Mario is carrying in the current game frame. It takes as input an object of                 
the forward model for the agent to simulate the future, and the time before the agent                
has to return. 

● String ​getAgentName​(): returns the name of the agent displayed for debug purposes. 
For this project there are going to be developed two different agents. One that will collect                
data from other agents while these play the game. The other will process the data collected                
by the previously mentioned agent and will make a decision tree out of it, which will be used                  
to make decisions while playing the game. 
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2.4.3. RECORDING AGENT 

The recording agent has its own constructor where it takes another agent instance (from              
now on the recorded agent​) as input. It returns the actions based on the recorded agent’s                
getActions​ implementation. 

On the ​initialize method, the agent also initializes the recorded agent and a list of               
examples. At ​getAction​, the agent adds this action to the example list with the action               
returned by the recorded agent and an observation of the current state of the world, then it                 
returns the stored action. The observations of the world are saved as dictionaries where the               
name of an attribute is the key and the value is a primitive. 

The recorded attributes are collected with ​getObservation which takes a forward model as             
input and returns the attributes Hashtable. The following table shows the name of the              
attributes and the methods of the forward model that return the value of the attributes: 
 

MarioMode getMarioMode 

OnGround isMarioOnGround 

MayJump mayMarioJump 

EnemiesObservation getMarioEnemiesObse
rvation 

SceneObservation getMarioSceneObserv
ation 

 
When the game is over, ​saveExamples creates a new database and serializes it into a               
JSON file. 
 
2.4.4. PLAYING AGENT 

Due to the fact that the decision-making process is identical for the two learning algorithms,               
both are implemented into the same Mario Agent. 

At the constructor, the agent takes as input the name of the file containing the decision                
tree that the agent is using as a decision-maker. 

The agent implements the ​getObservation function described above and calls it at            
getActions to send it as the input of ​makeDecision which gets a node of the tree based on                  
the observation. The action returned ​getActions is the one from the returned node of              
makeDecision​. 

 
2.4.5. SYSTEM REQUIREMENTS 

Functional (F) Non-functional (NF) 

F1.​ The agent should be able to check the 
current state of the world. 

NF1. ​The observations of the world is 
represented with debug options. 

19 



F2.​ The recorder agent is initialized with 
other agent from which record the actions. 

NF2.​ The actions taken by the agents are 
displayed on the game screen. 

F3.​ The recorder stores in a dataset the 
returned actions with an observation of the 
world. 

NF3.​ The decision tree is represented 
visually on the screen. 

F4.​ The recorder should be able to save the 
collected data into a dataset file. 

NF4.​ The decision making process is 
displayed on the decision tree 
representation. 

F5.​ The player agent is initialized with a 
dataset file. 

 

F6. ​The player agent should build a 
decision tree from a dataset. 

 

F7.​ The player agent makes a decision of 
which action it takes based on the 
observation of the world. 

 

F8. ​The player agent should be able to 
increment the dataset and update the 
decision tree. 
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3. WORK DEVELOPMENT 
This chapter describes the work done for the project, discussing intermediate results, faced             
problems and difficulties, and implementation decisions. 
 

3.1. LOAD AND PROCESS DATASETS 

Both learning algorithms use previous experience to start building their decision rules. These             
previous experiences are easy to store as Comma-separated values (CSV files).  

The example dataset used to illustrate how to calculate entropy and information gain             
(​2.3.2. Induction of Decision Trees​) is represented at CSV format as: 

 
Action,Health,Cover,Ammo 
Attack,Healthy,In Cover,With Ammo 
Attack,Hurt,In Cover,With Ammo 
Defend,Healthy,In Cover,Empty 
Defend,Hurt,In Cover,Empty 
Defend,Hurt,Exposed,With Ammo 

 
The first line (header) of the file contains the name of each attribute stored at the set of                  

observations, excluding the first column which contains the actions of each example. From             
this point, every line represents an example. 

There is a class ​FileManager ​with a static method ​ReadCSV ​that processes a given CSV               
file into a ​Dataset object. These objects store an array with all the examples of the dataset                 
and another array with all the attributes. 

To the ​Example ​class from ​Figure 3​, it has been added a ​printExample method that prints                
at the example at the console with the structure: 

 
Action​ -> ​Attribute1​, ​Attribute2​, ​Attribute3​, etc​. 

 
Even though CSV is a good format to store actions and attributes as strings, the use of                 

JSON format is key when working with object-based information. The ​FileManager ​also            
includes a ​ReadJSON ​method to store objects into JSON. The java library Gson from              3

Google is used to format objects into strings that can be later saved into text files. There are                  
static methods to: create, write, and read text files. 

The program ​LoadDataFromCVS.java shows the results of reading a dataset with CSV            
format, serializing it into a JSON and saving the JSON file. Then it deserializes it into a                 
Dataset object and prints its lists of examples and attributes. This is the console output after                
executing the program with the dataset provided until this moment: 

 

Reading dataset from CSV file 
 
Attack:    With Ammo    In Cover    Healthy 
Attack:    With Ammo    In Cover    Hurt 

3 Gson git repository: ​https://github.com/google/gson/blob/master/UserGuide.md 
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Defend:    Empty    In Cover    Healthy 
Defend:    Empty    In Cover    Hurt 
Defend:    With Ammo    Exposed    Hurt 
 
Serializing dataset as json 
 
Saving JSON at files 
File already exists 
Successfully wrote to the file 
 
Deserializing JSON from files 
 
Successfully read from the file 
 
Reading deserialize dataset from JSON 
EXAMPLES: 
Attack:    In Cover    With Ammo    Healthy 
Attack:    In Cover    With Ammo    Hurt 
Defend:    In Cover    Empty    Healthy 
Defend:    In Cover    Empty    Hurt 
Defend:    Exposed    With Ammo    Hurt 
 
ATTRIBUTES: 
Health    Cover    Ammo 

 
To test the same data processing with the dataset of Quinlan’s Induction of decision trees               

paper comment line 13 and uncomment line 14 of the program. 
 

13 
14 

String datasetFilename = “datasetMF”; 
// String datasetFilename = “datasetQuinlan”; 

 

3.2. DECISION TREE 

For the implementation of the decision tree nodes both ​Action ​and ​MultiDecision extend             
from the abstract class DecisionTreeNode​. This class defines a method ​makeDecision           
which takes as input a Hashtable of key string and object values and returns another               
DecisionTreeNode​. At its constructor it initializes the list of examples that the ID4 algorithm              
will use when incrementing the tree. 

The ​Action class has an object variable ​action that specifies the action that needs to be                
taken. This variable is an object so it can be represented by any primitive. For its                
makeDecision​ implementation, it returns itself (meaning the end of the recursive function).  

On the other hand, ​MultiDecision has two variables: testValue and daughterNodes. The            
first one refers to the attribute used as the division value. The second one is a HashTable                 
that maps the different values of the testValue attribute with the daughter nodes that lead to                
the classification of the examples. 

Since the ID3 and ID4 trees implement the same methods with a significant difference at               
makeDecision (their implementation is discussed later), they extend from an abstract class            
DecisionTree​. The diagram class of ​Figure 3 shows the methods defined by the class and               
its relation with the above described classes. In this case, ​makeDecision calls to the same               
method of the root node. 

In order to test the implementation of the decision tree structure and its dependencies, it               
has been implemented ​DecisionTreeBasic class which has an empty constructor and the            
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tree is built by adding the daughter nodes hard-coded. This test is done at the               
DecisionTreeMF.java program which builds a decision tree like the one in ​Figure 2 and then               
finds the action for the observation: In cover, Empty Healthy; which determines as Defend. 

 

+root: 
  -test value: Ammo 
  +daughter nodes: 

+Empty: 
 -action: Defend 

+With Ammo: 
 -test value: Cover 
 +daughter nodes: 
 +In Cover: 
 -action: Attack 
 +Exposed: 
 -action: Defend 
 
With attributes: 
Cover: In Cover 
Ammo: Empty 
Health: Healthy 
 
Action is: Defend 

 

3.3. ID3 

The implementation of the Induction of Decision Trees algorithm is done through small             
steps. First of all the methods that divide the set of examples according to the attributes of                 
the examples. After that the calculus of the entropy of a set and the information gain of each                  
division. And finally the construction of the tree using the previous functions. 

 
3.3.1 SPLIT BY ATTRIBUTE 

All the functionalities of the induction and increment of the decision trees are implemented              
as static methods of the class ​InductionOfDecisionTrees​. 

The ​splitByAttribute divides a list of examples into several subsets so each of the               
examples in a subset shares the same value for a given attribute. It returns a list of lists of                   
examples and takes as input a list of examples, from which divide the subsets and an                
attribute as a string, used as a division of the set of examples. 

The following console output shows the result of dividing the example dataset of the              
shooter game. This result is obtained by calling the ​SplitByAttibute method on the             
MethodsID3​ program: 
 

============================= 
Division with Health 
============================= 
Attack:    In Cover    With Ammo    Hurt 
Defend:    In Cover    Empty    Hurt 
Defend:    Exposed    With Ammo    Hurt 
 
Attack:    In Cover    With Ammo    Healthy 
Defend:    In Cover    Empty    Healthy 
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============================= 
Division with Cover 
============================= 
Defend:    Exposed    With Ammo    Hurt 
 
Attack:    In Cover    With Ammo    Healthy 
Attack:    In Cover    With Ammo    Hurt 
Defend:    In Cover    Empty    Healthy 
Defend:    In Cover    Empty    Hurt 
 
============================= 
Division with Ammo 
============================= 
Attack:    In Cover    With Ammo    Healthy 
Attack:    In Cover    With Ammo    Hurt 
Defend:    Exposed    With Ammo    Hurt 
 
Defend:    In Cover    Empty    Healthy 
Defend:    In Cover    Empty    Hurt 

 
3.3.2 ENTROPY AND INFORMATION GAIN 

The calculus explained at the Information Gain Example (​2.3.2. Induction of Decision Trees​)             
are implemented as the static methods ​entropy ​and ​entropyOfSets​. The algorithm uses            
entropy ​to find the initial entropy of the set. And ​entropyOfSets returns the entropy of a list of                  
sets. The information gain of each set is the subtraction of the overall entropy of a subset                 
from the initial entropy of the set. The calling of the ​EntropyAndInformtionGain method from              
MethodsID3.java​ program gives the following console output. 
 

Entropy of example set: 0.9709506 
 
Entropy of Hurt: 0.9182958 
Entropy of Healthy: 1.0 
Information gain of Health: 0.01997304 
 
Entropy of Exposed: 0.0 
Entropy of In Cover: 1.0 
Information gain of Cover: 0.17095059 
 
Entropy of With Ammo: 0.91829586 
Entropy of Empty: 0.0 
Information gain of Ammo: 0.41997308 

 
These results agree on the calculus from the ones at the Information Gain Example              
mentioned above. 
 
3.3.3. MAKE TREE 

The tree is built with ​makeTree which takes as input a list of examples, a list of attributes,                  
and a DecisionTreeNode from where the algorithm grows the tree. The method is recursive              
and for the initial call it takes as the list of examples all the examples from the dataset, all the                    
attributes from the examples, and a new node as the root of the tree. At every recursion, the                  
algorithm divides the set of examples and makes another recursion call with each subset,              
and with the attributes that have not been used as test values at the parent nodes yet. The                  
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algorithm stops when the entropy of the given examples is zero, meaning that there are not                
any examples that can be divided or that all the examples agree on the same action                
meaning that the current node is an action node (leaf of the tree). 
 

+root: 
  -test value: Ammo 
  +daughter nodes: 

+Empty: 
 -action: Defend 

+With Ammo: 
 -test value: Cover 
 +daughter nodes: 
 +In Cover: 
 -action: Attack 
 +Exposed: 
 -action: Defend 

 
Even though the algorithm is implemented using the DecisionTreeNode class which is            

able to store a list of examples, in this case the nodes do not add any example to this list. 
A ID3 decision tree is built at the ​MakeID3.java program, which takes the shooter              

example as the input dataset. The resulting tree formatted with Gson into a JSON file is                
shown above and named ​ID3Shooter.JSON at the files folder. The distribution of the             
decision nodes is the same as the decision tree from ​Figure 2​, proving that the algorithm can                 
build decision trees correctly. 

 
3.3.4. NOISE 

The implementation of the algorithm includes an add-on to the basic ID3 algorithm to allow               
the tree construction work with noise in the dataset (e.g. inadequate attributes). This is done               
to avoid the situation where a collection of examples contains representations of both             
classes P and N, but the algorithm excludes further testing of the collection. The exclusion of                
further testing could be either because the attributes are inadequate or not able to              
distinguish among the examples of the collection, or because each attribute has been judged              
to be irrelevant to the classification of the examples. In this case, it is necessary to produce a                  
leaf node containing the classification of the examples. The problem is that the examples of               
the collection are not all from the same class. 

According to Quinlan, the best alternative to handle this situations is to assign the leaf to                
the most numerous class. This approach minimizes the sum of the absolute errors over              
objects in the collection ​[4]​. 

The noise handling feature can be tested by commenting lines 18 and 19 of the               
MakeID3.java​ and uncomment lines 20 and 21. 

 

18 
19 
20 
21 

String datasetFilename = “datasetMF”; 
String datasetFilename = “ID3Shooter”; 
// String datasetFilename = “datasetMF_noise”; 
// String datasetFilename = “ID3Shooter_noise”; 

 
In this case, “datasetMF_noise” contains a similar dataset to the one that has been seen               

already, but it adds to new examples to generate noise into the built of the dataset: 
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Action Health Cover Ammo 

Attack Healthy In Cover With Ammo 

Attack Hurt In Cover With Ammo 

Attack Hurt Exposed With Ammo 

Attack Hurt Exposed With Ammo 

Defend Healthy In Cover Empty 

Defend Hurt In Cover Empty 

Defend Hurt Exposed With Ammo 

 
As it can be appreciated, the examples in ​italic ​have the same values for all the attributes,                 

but only two of them agree on the same action. The resulting tree will be very similar to the                   
one from ​Figure 2​, but in this case the action for exposed is ​Attack​, since it is the most                   
numerous one. 
 

+root: 
  -test value: Ammo 
  +daughter nodes: 

+Empty: 
 -action: Defend 

+With Ammo: 
 -test value: Cover 
 +daughter nodes: 
 +In Cover: 
 -action: Attack 
 +Exposed: 
 -action: Attack 

 

3.4. ID4 

Most of the implementation needed for the ID4 algorithm has already been done for the ID3                
algorithm. The only difference with this previous implementation is that at the beginning of              
makeTree​, in this case, it adds the given list of examples to de node’s list of visited                 
examples. 

The major implementation, in this case, is the incrementTree function which takes as             
input the example that is going to be incremented to the tree and the current decision node                 
at which the algorithm is adding the example. The algorithm updates the current node              
depending on whether it is a decision node and the new example provides a better division                
attribute (the algorithm rebuilds the subtree of this node) or if it is an action node and the                  
new example does not agree on the action (the algorithms turns the action node into a                
decision that classifies both actions). 

The fact that java does not support pointer arithmetic ​[13] as other programming             
languages like C or C++ turns the update of the nodes a bit challenging. Java does support                 
references ​[14] but they do not act the same way references work in other languages. The                
main problem found here is that references can not be casted to an incompatible type,               
meaning that the bytes in memory can not be reinterpreted as some other object. The               
reason for this restriction is that Java is strongly type-safe. 
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The pointer problem is solved by asking ​incrementTree to return the updated given node.              
So every time that the algorithm increments an example into a node, the node is equal to the                  
returned node of ​incrementTree​. By doing this, the nodes are always updated with the              
corresponding reference of the node, if not, when the nodes were updated into a new               
extension of DecisionTreeNode (e.g. an Action turned into a MultiDecision) the new node will              
change its reference in memory and therefore the old one will not change. 

In order to test the tree construction and the increment of examples, the program              
MakeID4.java ​creates an ID4 tree with the example dataset used to illustrate the algorithm              
walkthrough (​2.3.3. Incremental Decision Trees​). As can be seen in the above console             
output, the implementation of the algorithm is able to build, and increment trees with the               
expected results. 
 

============================= 
INITIAL TREE 
============================= 
+root: 
  -test value: Ammo 
  +daughter nodes: 

+Empty: 
   -test value: Cover 
   +daughter nodes: 
   +In Cover: 
 -action: Defend 
   +Exposed: 
 -action: Run 

+With Ammo: 
   -action: Attack 
 
============================= 
FIRST INCREMENT 
============================= 
+root: 
  -test value: Ammo 
  +daughter nodes: 

+Empty: 
   -test value: Cover 
   +daughter nodes: 
   +In Cover: 
 -action: Defend 
   +Exposed: 
 -action: Run 

+With Ammo: 
   -test value: Cover 
   +daughter nodes: 
   +In Cover: 
 -action: Attack 
   +Exposed: 
 -action: Defend 
 
============================= 
SECOND INCREMENT 
============================= 
+root: 
  -test value: Ammo 
  +daughter nodes: 

+Empty: 
   -test value: Cover 
   +daughter nodes: 
   +In Cover: 
 -action: Defend 
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   +Exposed: 
 -action: Run 

+With Ammo: 
   -test value: Cover 
   +daughter nodes: 
   +In Cover: 
 -action: Attack 
   +Exposed: 
   -test value: Health 
   +daughter nodes: 
 +Healthy: 
 -action: Run 
 +Hurt: 
 -action: Defend 

 
 

3.5. DEBUG VIEW 

With the purpose of better understanding the observations collected by the agents either for              
recording or decision making purposes, the first step into the Mario AI framework has been               
implementing a debug view of the observation grid. The use of this grid and how it is                 
obtained is detailed below. 

First of all the debug details of the framework were enabled by setting to true the static                 
boolean​ verbose ​from ​MarioGame.java​. 

 

43 public static final boolean verbose = true; 

 

 

Figure 10: Debug canvas view. 

 
The next step was to implement a ​debugView() method in ​MarioRender​, which will only              

be invoked when the debug details are on. The method started drawing a transparent grey               
rectangle at the top left quadrant of the game view. This rectangle, represented in ​Figure 10​,                
will be the canvas used to represent the debug view. 

Once the reference canvas was ready, the next step was to add solid rectangles that will                
represent the obstacles as it is represented in ​Figure 11​. And after that the debug view                
included a representation of Mario as a red line in the center of the canvas (​Figure 12​).  

Finally, there were added empty rectangles to the debug view that represented the areas              
of observation (using different colours) and the obstacles showed were limited to these             
observation areas (​Figure 13​). 
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Figure 11: Debug view with obstacles. 

 

 

Figure 12: Debug view with Mario representation. 

 

 

Figure 13: Debug view with observation areas. 

 

3.6. RECORDING AGENT 

The recording agent is implemented following the design previously described. In order to             
collect the data, it records the performance of the Mario agent implemented by Robin              
Baumgarten at the first Mario AI competition ​[9]​. This agent uses an implementation of the               
A* algorithm to find the shortest path to the end of the level. It has been chosen not only                   
because of its efficiency but also because it was the winner of the first edition of the                 
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competition due to its great performance. This controller was able to clear the 40 proposed               
levels with a time left of 4878 seconds in total. 

At every game tick, the agent gets a set of observations and stores them in the examples                 
list with the related actions of the recorded agent. When the game stops running (the game                
is over), the MarioGame class invokes ​SaveDataset from the recorder agent in case the              
playing agent is named “CarlosTelloRecorder” (the name of the described agent). 

In order to improve the knowledge of the player agent, ​getObservation extended the             
number of attributes to record. Nevertheless, as it will be discussed later it did not end up                 
being enough to learn how to properly play the game. The attributes recorded by the agent                
are: 

 

Attribute Values Description 

MarioMode 0,1,2 current Mario mode (small, large, fire) 

OnGround boolean whether Mario is touching the ground 

MayJump boolean is Mario able to jump 

EnemiesObservation 2D grid current enemies on the screen 

SceneObservation 2D grid current objects (not enemies) on the screen 

MarioPosition 2D vector tile location of Mario with respect to the screen 

CanJumpHigher boolean whether Mario can press jump to reach higher positions 

 
The name of the datasets is taken as input of the agent initialization. 

 

3.7. MARIO AGENT 

Once the recorder agent is implemented it is the turn for an agent that is able to process the                   
data collected and develop a learning rule which it can use in order to make decisions based                 
on different observations. 

The player agent, named “LegacyAgent” is located with the recorder agent at the package              
agents.carlostTello. The constructor of this agent takes as input the name of the dataset              
from which it will induct the learning rule.  

At the initialize method the agents initialize an array of booleans which will only change its                
values in case the decisionTree returns a valid action for a given observation. This is done                
so the agent always remembers its last action in case the decision tree does not provide                
another valid action. After this, the agent reads the loaded dataset and builds a decision tree                
with the set of examples. The resultant tree is saved as a class variable, so ​makeDecision                
can be invoked from ​getActions​. When getActions gets the resultant node of the decision it               
checks if the node is not null and it is an action, in which case sets ​action (class variable) as                    
the returned action of the tree. In case the returned node is null or it is not an action, ​action                    
will remain the same as the result of the previous frame. 

In order to get the input observation required for ​makeDecision​, the agent calls the              
method ​getObservation​, identical from the one implemented for the recorder agent. Two            
more methods: ​matrixToArrayList and ​arrayToArrayList are implemented in order to save the            
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vectors and grid observations as ArrayList. This is needed because when Gson formats the              
arrays into for the JSON, these attributes are converted into ArrayList, and the type of value                
from the player observation has to match the type of value saved in the tree. 

 

 

Figure 14: Mario killed by an enemy at the early stages of the training. 

As it has been pointed before, the set of attributes recorded on the observations did not                
result enough to generate a valid learning rule that allowed the player agent progress into               
the game. After testing different sets of attributes for the observations, the final set is the one                 
that has provided the best results. During the first games, the player learned to start moving                
forward, but this was the only behavior that is supported. This behavior made Mario die               
every time on the first enemy or gap of the level (​Figure 14​). After many adjustments on the                  
observations, Mario has finally learned to jump over an enemy but it is still not able to jump                  
fixed obstacles (​Figure 15​). 

 

  

Figure 15: Mario blocked by a pipeline. 

 
Although a solution has not been found for this learning limitation the most likely reason is                

that the learning rule results highly specific. The main reason for this hypothesis is extracted               
from studying the inducted decision tree. The test value of the root node is              
SceneObservation. The values of the attribute are 16 by 16 grids representing the current              
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view of the game divided into 256 tiles. This division results in an unbalanced tree where                
most of the daughters of the root node are Actions. 

In order to solve this problem it was tried to divide the observations of the game view into                  
smaller pieces of the screen or use a smaller grid closer to Mario and even move this small                  
grid forward so the focus is set on what is in front of the player. Nevertheless, it did not result                    
in a valid solution since the above mentioned problems with the enemy and the pipeline kept                
occurring.  

However, the simplification of the data collected pointed to an important problem.            
Apparently the execution of the agents, used by the recorder to collect the data, took such                
an irregular time to return the actions for the given observation of the world, that the data                 
saved in the datasets ended up being distorted and corrupted. One example of this problem               
was noticed when the observation for an enemy standing three tiles away from Mario, was               
saved as if there were three consecutive enemies in front of Mario. After trying different               
adjustments in the data collection process, such as limiting the number of frames between              
collections of data, it could not be found a valid solution for the problem. For this reason, the                  
focus was changed to provide the playing agent with simple and customized datasets in              
order to check if it was able to learn the basic behaviours of the character. 

 

3.8. CUSTOMIZED DATASETS 

The first behaviour that was taught to the AI agent was to jump a short distance from the                  
ground. For the small jump, the only attribute used for the dataset was ​MayJump​, which               
returns a boolean value that represents whether Mario is able to jump from the ground               
meaning that Mario is on the ground and the jump button is not being pressed. The                
representation of the actions, as it has been mentioned before, is by an array of booleans                
where each position of the array represents a different button. The order of these buttons is:                
Left​,​ Right​,​ Down, Run ​and​ Jump​. 

The dataset for this behaviour (MarioDatasetSmallJump) results in the following two           
examples: 

 
Action MayJump 

false, false, false, false, true true 

false, false, false, false, false false 

 
The decision tree obtained from this data set is trivial and as it can be observed in the                  

following representation: 
 

+root: 
  -test value: MayJump 
  +daughter nodes: 

+true: 
     -action: [false, false, false, false, true] 

+false: 
     -action: [false, false, false, false, false] 

 
As an extension of this behaviour, a new attribute was added to the dataset to make                

Mario jump as high as possible. To do so the dataset MarioDatasetHighJump adds the              
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attribute ​CanJumpHigher​, which returns true when Mario is not on the ground but it can still                
jump higher by keeping the jump button pressed. The dataset also adds an example for this                
last situation: 

 
Action MayJump CanJumpHigher 

false, false, false, false, true true false 

false, false, false, false, true false true 

false, false, false, false, false false false 

 
In this case, although quite simple, the resulting ID3 of the dataset provides a deeper               

understanding of the tree construction algorithm.  
 

+root: 
  -test value: MayJump 
  +daughter nodes: 

+true: 
   -action: [false, false, false, false, true] 

+false: 
     -test value: CanJumpHigher 
     +daughter nodes: 
         +true: 
       -action: [false, false, false, false, true] 
         +false: 
       -action: [false, false, false, false, false] 

 
The next behaviour that was introduced was jumping over small obstacles such as blocks              

or enemies. The new attributes ​ForwardMarioObservatio was added to the dataset. This            
attribute stores a 4 by 3 matrix of booleans, where an obstacle is represented by 1 and the                  
absence of objects by 0. Although initially there were written two datasets: one to learn how                
to jump over blocks and the other to skip enemies, both merged into the same one, due to                  
the fact that the concept for both was the same: skip obstacles. This dataset has the                
following representation: 

 
Action MayJump CanJumpHigher ForwardMarioObservation 

false,true,false,false,true true false 

0000 
0000 
0001 

false,true,false,false,false false false 

0000 
0000 
0001 

false,true,false,false,true true false 

0000 
0000 
0010 

false,true,false,false,false false false 

0000 
0000 
0010 

false,true,false,false,true true false 

0000 
0000 
0100 
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false,true,false,false,false false false 

0000 
0000 
0100 

false,true,false,false,true true false 

0000 
0000 
1000 

false,true,false,false,false false false 

0000 
0000 
1000 

false,true,false,false,false true false 

0000 
0000 
0000 

false,true,false,false,true false true 

0000 
0000 
0000 

false,true,false,false,false false false 

0000 
0000 
0000 

 

+root: 
  -test value: MayJump 
  +daughter nodes: 

+true: 
   -test value: ForwardMarioObservation 
   +daughter nodes: 
     +[[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]: 
 -action: [false, true, false, false, true] 
     +[[0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]: 
 -action: [false, true, false, false, true] 
     +[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0]]: 
 -action: [false, true, false, false, true] 
     +[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]: 
 -action: [false, true, false, false, false] 
     +[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]]: 
 -action: [false, true, false, false, true] 

+false: 
   -test value: CanJumpHigher 
   +daughter nodes: 
     +true: 
 -action: [false, true, false, false, true] 
     +false: 
 -action: [false, true, false, false, false] 

 
The last behaviour that has been introduced to the player agent is jumping over holes in                

the terrain. To do so a new attribute ​GroundMarioObservation has been added to the              
dataset, but in this case the previous ​ForwardMarioObservation attribute has been removed            
to keep the dataset as simple as possible. The new attribute ​GroundMarioObservation is             
represented as a 4 by 1 grid, where each row represents the tiles under Mario. The dataset                 
for this behaviour is: 

 
 

Action MayJump CanJumpHigher GroundMarioObservation 

false,true,false,false,false true false 1111 
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false,true,false,false,true true false 1100 

false,true,false,false,true true false 1001 

false,true,false,false,true true false 0011 

false,true,false,false,true false true 0000 

false,true,false,false,false false false 0000 

 
 

+root: 
  -test value: GroundMarioObservation 
  +daughter nodes: 

+[[1.0], [0.0], [0.0], [1.0]]: 
     -action: [false, true, false, false, true] 

+[[1.0], [1.0], [1.0], [1.0]]: 
     -action: [false, true, false, false, false] 

+[[0.0], [0.0], [1.0], [1.0]]: 
     -action: [false, true, false, false, true] 

+[[1.0], [1.0], [0.0], [0.0]]: 
     -action: [false, true, false, false, true] 

+[[0.0], [0.0], [0.0], [0.0]]: 
     -test value: CanJumpHigher 
     +daughter nodes: 
         +true: 
     -action: [false, true, false, false, true] 
         +false: 
     -action: [false, true, false, false, false] 

 
Finally all the previously trained behaviours were merged into one dataset named            

“MarioDatasetComplete”. This dataset contains a total of 21 examples with the attributes:            
MayJump​, ​CanJumpHigher​, ​ForwardMarioObservation and GroundMarioObservation​. The      
resultant decision tree is: 
 

+root: 
  -test value: MayJump 
  +daughter nodes: 

+true: 
 -test value: ForwardMarioObservation 
 +daughter nodes: 
 +[[0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]: 
 -action: [false, true, false, false, true] 
 +[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]: 
 -action: [false, true, false, true, true] 
 +[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0]]: 
 -action: [false, true, false, false, true] 
 +[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]: 
 -test value: GroundMarioObservation 
 +daughter nodes: 
 +[[1.0], [0.0], [0.0], [0.0]]: 
     -action: [false, true, false, false, true] 
 +[[1.0], [0.0], [0.0], [1.0]]: 
     -action: [false, true, false, false, true] 
 +[[1.0], [1.0], [1.0], [1.0]]: 
     -action: [false, true, false, false, false] 
 +[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]]: 
 -action: [false, true, false, false, true] 
 +[[1.0, 1.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]: 
 -action: [false, true, false, true, true] 
 +[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]: 
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 -action: [false, true, false, true, true] 
 +[[0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0]]: 
 -action: [false, true, false, false, true] 
 +[[0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]: 
 -action: [false, true, false, false, true] 
 +[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 1.0]]: 
 -action: [false, true, false, false, true] 
 +[[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]: 
 -action: [false, true, false, false, true] 

+false: 
     -test value: CanJumpHigher 
     +daughter nodes: 
         +true: 
         -test value: ForwardMarioObservation 
         +daughter nodes: 
         +[[0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 
0.0]]: 
             -action: [false, false, false, false, true] 
         +[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 
0.0]]: 
             -action: [false, true, false, false, true] 
         +false: 
         -action: [false, true, false, false, false] 

 
With this dataset Mario is able to clear the 100% of the a simple training level:                

“./levels/carlosTello/completeSimpleTrainLevel.txt” and almost the 50% of the first original         
level. 

This dataset has provided the best performance and a balanced tree structure, so it has               
been selected to compare the performance of the two learning techniques. For this test, both               
algorithms have built a decision tree incrementally from 1 example to 21. The ID3 algorithm               
has done this by making a new tree every time the dataset was increased. On the other                 
hand the ID4 algorithm has incremented the dataset with the corresponding structural            
updates. The graph from ​Figure 16 shows the computational time in nanoseconds that it              
took each algorithm to increment a new example. 

 

Figure 16: Algorithms comparison graph. 
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The values for the times of the graphs have been obtained from the program              
ID3vsID4.java​. 

The graph shows how the incremental process of the ID4 technique in most of the cases                
results in the fastest alternative to update the learning rule when the examples of the dataset                
are incremented.  
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4. CONCLUSIONS 
This chapter shows and discusses the results of the development process. 
 

4.1. DECISION TREE LEARNING METHODOLOGIES 

In the first part of the project, it has been proved the efficiency of the learning methodologies                 
from the TDIDT family to build learning rules from previously generated datasets. These             
techniques provide a human-friendly representation of the knowledge acquired by a           
machine. The mathematical representation dealing with decision trees, although not trivial, is            
simple enough for a quick understanding. 

The main requirement of these learning algorithms is to provide them with a good set of                
examples that will allow the system to generalize over other unseen cases (inference             
mechanism). This has been the main problem of the second part of the project. 

As it has been shown, through the results provided in the previous section, the              
implementation of the learning algorithm has proved to work as expected when the induction              
task is provided with well-defined sets. 

 

4.2.  MARIO AGENT LEARNING THROUGH RECORDED DATA 

The results obtained in this second part of the project have not been as expected. The data                 
sets recorded with the observations of other implemented agents, playing the game, has led              
to a very specific dataset unable to generalize the core behaviors of the game. 

Even though the observations have been narrowed down into smaller sets of            
observations, the learning rule could not be properly generalized and therefore the AI agent              
could not perform with the expected results. 

 

4.3. MARIO AGENT LEARNING THROUGH CUSTOM DATA 

On the other hand, the results of the handwritten datasets had provided quite good results.               
Although these results are rather limited and can only be applied to fairly simple situations,               
they have proved more promising than the ones obtained through recorded data. 

Nevertheless, since one of the objectives of the project was to study the reliability and               
performance of the algorithms ID3 and ID4 applied to platform games, from the obtained              
results it can be concluded that these learning techniques can be applied to this genre of                
games, but bearing in mind that maybe other learning techniques, as research future lines,              
could be tested, for the sake of better performance, over this kind of videogames. 
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5. FUTURE WORK 
This project opens two lines of future development. On the one hand, the learning              
techniques that have been implemented could be tested into a different environment and             
situations. For example, they could be applied into other genres of games such as              
turn-based and/or strategy. An environment that seems more appropriate, for the algorithms            
of the TDIDT family, are trading card games. In these games, the action moves slower and                
the player is not required to make quick decisions with a constantly changing environment. 

On the other hand, the project will keep growing by testing other machine learning              
techniques, which could be more elaborated but most likely more suitable for platform             
games. Some of these techniques are genetic algorithms or deep reinforcement learning,            
which requires much more implementation work but has proved to be very effective in many               
arcade games ​[15]​. 
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