

Recreation of a Realistic Ecosystem
by Jaume Sanz Sempere

Degree’s Final Work

Degree in Video Game Design and Development

Universitat Jaume I

September 2020

Supervised by: Angel Pascual del Pobil Ferré

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/373288565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. INTRODUCTION 2
1.1 Motivation 2
1.2 Objectives 4
1.3 Environment and initial state 5

2. PLANNING AND RESOURCES EVALUATION 6
2.1 Planning 6
2.2 Resources evaluation 9

3. SYSTEM ANALYSIS AND DESIGN 10
3.1 Requirement Analysis 10
3.2 System Design 14
3.3 System Architecture 25
3.4 Interface Design 25

4. WORK DEVELOPMENT AND RESULTS 28
4.1 Work Development 28
4.2 Results 52

5. CONCLUSIONS AND FUTURE WORK 53
5.1 Conclusions 53
5.2 Future Work 53

BIBLIOGRAPHY 54

1

1. INTRODUCTION

Advances in technology have meant a notable progress in the industry of video games. With

stories and graphics that only get more and more realistic, the audience has also become more

demanding and, nowadays, quality and veracity are a must for video game creators. The need

to produce realistic characters in realistic environments has now spread to all of the parts of a

videogame. For that reason, we cannot leave aside any of the elements that appear on the

screen.

This research work comes from the need to ensure that all of the elements of a video game

are as close to reality as possible. In this case, we have decided to focus on living beings like

wild animals and some plants, since we believe that nowadays they lack the realism and

fidelity that other video game characters have, such as those who represent people. For this

reason, we will recreate an ecosystem in which its living beings behave realistically, with the

purpose of making progress in this field and applying it in future games.

In this chapter we will present the objectives that we sought to achieve in the development of

this project, as well as the motivations that have led to the main idea of this work and the

initial conditions from which it started.

1.1 Motivation

The main motivation of this project is to find a way to improve the artificial intelligence (AI)

used in different games to control Non-Playable Characters (NPCs)[1] that represent living

beings, like animals or plants, in their wild state. These animals will also have a great

importance in the development of their habitat.

Games like the Pokémon Sword and Pokémon Shield are the main source of inspiration for

this project, since these were some of the first video games that sought to integrate the “open

world” genre by creating a map in which the player could move around freely. In these areas,

2

the players were able to encounter many different Pokémon depending on the place they were

at, the climatic conditions of the area and the moment of the day. However, the creatures’

behaviors were quite simple, since they could be seen wandering a concrete area, pursuing

the player to attack them or flee from them.

This uncomplicated behavior became a source of frustration for the players, since Pokémon is

a world-wide known video game saga that provided its consumers with a lot of information

about each one of the species that appeared on the game, many times related to their

behaviour and their interactions. However, this was hardly seen on the games because the

creatures were too plain and not a lot of effort was put into their creation.

Many games of the same genre apply similar IAs to the fauna of their games, and some may

include interactions with other NPCs, special objects or events among their behaviors. This

usually helps to create the appearance that the world is actually alive and its creatures are

realistic, which can be more than enough for some games, especially the oldest ones.

However, there are other types of games which necessarily have to show realistic creatures

with realistic conducts and nowadays this is not being carried out adequately, especially

nowadays, when games need to be as close to reality as possible for the newest players.

Thus, the motivation of this project is to find the solution to this issue through the design of

some IAs that will represent a living ecosystem in which the fauna, the flora and the

environment interact with it. We have decided to carry out this project in order to contribute

to the progress of video games and artificial intelligence, since we believe more work is

needed in order to provide players with a lifelike experience when playing these type of

games.

3

1.2 Objectives

As previously mentioned, the main goal of this Final Degree Project is to find a way to

recreate ecosystems that act as close to real ecosystems as possible so that they can be applied

to different video games in the future. In order to achieve this, the first point is to analyze

which parts make up an ecosystem with the intention of establishing the objectives that this

project must achieve to fulfill its goal.

In short, an ecosystem has two main components: a group of living beings related to each

other, and the environment in which they carry out their activities[2].

Regarding the relationship between the living beings of an ecosystem, it is necessary to

introduce the term “food chain”. A food chain divides living beings intro producers (those

who generate their own food) and consumers those who need to feed on other living beings).

Within the consumers we find four categories: the herbivores (which feed on producers), the

carnivores (which feed on other consumers), the omnivores (which feed on both producers

and consumers) and finally the scavengers (these feed on the remains of dead consumers)

Regarding the environment, we can create a three-section division. In the first place, there is

the day/night cycle, which establishes the hours of light and heat that affect an specific area,

the climates, such as rain, snow or drought, and the geographical features that make it up

such as rivers, lakes and mountains.

Thus, our first and main objective of this project is based on this definition of an ecosystem.

For that reason, we will recreate one that has these characteristics, including the environment

and the living beings that inhabit it. Moreover, our other objectives for this project are:

- To create an uneven stage on which living beings can exist

- To implement a day/night cycle that cyclically rotates between these two phases

- To implement a climate system that changes the climate to which the scenario is

subjected

- To create a series of producers that generate food

4

- To create a series of NPCs that can interact with others and with the environment in

which they are located by making use of an artificial intelligence that makes the

appropriate decisions

1.3 Environment and initial state

At the beginning of this project, I was expecting to be able to dedicate my full time and

effort, since I had plenty of hours free to do so. I started planning everything quite early, in

order to avoid having to do everything last-minute, since that would be very perjudicial, not

only to my project, but also to myself, since I suffer from chronic migraine headaches and

anxiety. I was hoping a healthy and relaxed work environment would help my situation and

my willingness, since I was very excited to embark in a project as ambitious as this.

At first, I encountered a small problem when planning this project: the fact that Artificial

Intelligence was not a field we had studied in depth throughout my degree years, since I had

only studied the bases of State Machines [3] and Behavior Trees [4]. Anyway, I was positive

i had the necessary knowledge in order to be able to explore other more advanced options,

such as mixing Hierarchical State Machines and Behaviour Trees. In addition, I was also

counting on the support from my tutor Ángel Pascual del Pobli Ferré, an expert in the field of

Artificial Intelligence.

Besides, I had also worked with Unity during my years of study, so I was also familiar with

other tools, like NavMesh from Unity that could help me with movement and pathfinding for

my creatures, as well as Probuilder, which could be useful for the creation of scenarios.

5

2. PLANNING AND RESOURCES EVALUATION

We will dedicate this chapter to talk about the planning that was initially expected to be

followed for the development of this project. Furthermore, we will also discuss the amount of

payment we would have received for this type of work.

2.1 Planning

It is estimated that a Final Degree Project should have a duration of around 290 without

including the report. For this reason, we decided to estimate how long it would take us to

carry out this project by calculating the amount of time each part should take in order to make

an initial plan.

In order to do that, I had to take into account the fact that I had to do some research about

Artificial Intelligence before starting with the actual project, since, as I previously mentioned,

I hadn’t studied it enough before. I was also going to have to research about the animals I was

going to include in the project, in order to be accurate about their behaviours so that I could

integrate them better into the ecosystem I was going to create.

In addition, since I was going to have to deal with much more difficult problems that what I

am used to because of the complexity of the project, I was not sure about the amount of time I

had to assign to some of the parts, since I had never done anything like that before. For this

reason, I decided to add extra hours to those Tasks I believed would probably take more time,

since I believed it would be safer to be prudent.

6

Tasks Subtask Estimation Real cost
Total (Estimation -

Real cost)

Research 20h -25h (+5h)

Animals and

Ecosystems
5h 5h

 Artificial Intelligence 15h 20h (+5h)

Design of the NPCs and their

behaviours
 10h 10h

Environment 30h - 65h (+35h)

Implementation

day/night cycle
6h 10h (+4h)

Implementation

climate system
6h 10h (+4h)

 Producers design 2h 5h (+3)

Producers

implementation
5h 10h (+5h)

Research on

environment design

tools

3h 5h (+2h)

Research on

pathfinding tools
3h 5h (+2h)

 Design tests 5h 20h (+15h)

Implementation of each NPCs’

individual basic behaviours
 90h - 285h (+195h)

 Creatures Design 5h 5h

Creatures

Implementation
10h 20h (+10h)

 Home implementation 10h 20h (+10h)

7

 Creatures Movement 10h 30h (+20h)

Detection system

implementation
5h 10h (+5h)

Basic common

behaviour

implementation

50h
200h

(+150h)

Implementation of each type of

NPCs’collective behaviours
 0h 50h - 0h

Interaction of behaviours based

on interactions between

different types of

NPCs

 0h 80h - 0h

Final Implementation 40h - 0h

Final environment

design
15h 0h

 Environment building 20h 0h

 NPCs Implementation 20h 0h

Environment

correction
10h 0h

Report elaboration 10h - 20h (+10h)

 300h-405h (+105h)

Figura 1. Table with time distribution

Luckily, in the beginning of the project I could combine some research and implementation

Tasks in order to accelerate the development of the project, but as it progressed I had to

complete some of the Tasks in order to continue with the next.

8

Had I worked with a full team, some tasks, like the ones related to the environment and the

development of basic behaviours could have been made concurrently. This way, it would

have been easier and faster to check any errors and make sure both teams interact correctly.

2.2 Resources evaluation

If I had been paid for this project, I would have received a total amount of 3850 Euros with a

payment of 10 euros per hour.

9

3. SYSTEM ANALYSIS AND DESIGN

We will dedicate this chapter to the presentation of our project 's requirements, analysis,

design and architecture, as well as a first look to the the design of the interface.

3.1 Requirement Analysis

In order to carry out our work we will make an initial analysis of the requirements. For that

reason, we will divide requirements into two types: functional requirements, which determine

what NPCs and Producers do according to the information they receive, and non-functional

requirements, which determine how it must be done regarding execution, safety and/or speed.

Functional Requirements

Aimed at NPCs and Producers.

NPCs:

 Input: Climate

 Output: Behaviour

Each creature will be assigned one or two beneficial or perjudicial climates

that will influence their behaviour while they take place

10

 Input: Day phase

 Output: Behaviour

Each creature will be assigned a time schedule to perform in, which will

determine the phases of the day that are dedicated to activity or rest

 Input: Internal data

 Output: Behaviour

Each creature comes with a set of internal data that is updated with the

passing of time. This data, like hunger, thirst or age, will determine their type

of behaviour a given creature has.

 Input: Creature nearby

 Output: Behaviour

Each creature has a detection system that simulates real senses. If there’s a

creature within their senses’ reach, the creature will act accordingly to the

relationship between them.

11

 Input: Producer nearby

 Output: Behaviour

Each creature comes with a detection system that simulates real senses. If

there’s a producer within their senses’ reach, the creature will go feed on them

if the producer is on their normal diet and is hungry.

 Input: Water nearby

 Output: Behaviour

Each creature comes with a detection system that simulates real senses. If the

creature detects water within their senses’ reach, the creature will go drink if

they are thirsty.

 Input: Food o Water

 Output: Internal data update

When a creature eats or drinks, its hunger or thirst bar will be updated

respectively. .

12

Producers:

 Input: Climate

 Output: Food generation

Each producer is assigned a series of climates or combination of favourable,

unfavourable or extra favourable climates that will determine how long the

production of food should take or how much it should produce

 Input: Day phase

 Output: Food generation

In case the producer has run out of food, it will cost a certain amount of day

phases to produce again

 Input: Creature

 Output: Food decrement

When a creature eats from a producer, it diminishes the amount of food

available

13

Non-Functional Requirements

Non-functional requirements for this project are the following:

- The implementation must be efficient in order to be able to work with big groups of

NPCs without altering the normal performance.

- Control structures must be reusable for new types of producers and creatures.

- Control structures must be scalable in order to be able to create more complex

producers and creatures.

3.2 System Design

The functioning system designed for the elaboration of this work will be presented in the

following charts with the purpose of showing the relationships between the different systems

they seek to implement, according to the objectives we established before.

14

Figura 2. Class diagram of SceneController, WeatherController, DayNightCycle and UIController

This first class diagram [Figura 2] shows the functioning of one of the bases of the project:

the day/night cycle and the climate system. A SceneController will be in charge of managing

everything related to the environment’s information and processes. In order to do so, it will

be assigned a climate and a daily cycle controller. In addition, it will also be assigned with a

user interface controller to manage part of the information that is shown on the screen. All

15

these controllers are classes derived from MonoBehaviour, the basic class of Unity that links

it with its API.

The DayNightCycle is in charge of the day/night cycle, for which, given the length in seconds

of how long we want a cycle to last, it is divided into 4 parts: dawn, day, afternoon and night.

Whenever the phase changes, a message will be sent to the SceneController.

After this, the SceneController will send a message to the ClimateController, which will

select one of the three climates at random within a few parameters before returning it.

Once these two data are obtained, the SceneController will activate the phase change event to

which both the producers and the creatures are endorsed..

The second diagram (Figura 3) shows how the Producers work. As we can see, it is a simple

scheme, since it has a Producer class and a Controller.

The Producer class descends from the ScriptableObject class, which is a special class that

serves as a data container. This data can be edited from Unity's own editor, making it much

easier to create different types of producers from a single database.

The ProducerController is in charge of the behavior of the producers. For it to work, it needs

to have an object of the producer class in order to obtain the necessary data. One of the

benefits of ScriptableObjects is that when an object contains another of this type it does not

generate a copy but a reference, so any changes made to the Producer object will affect all

references to it, even while at runtime. The ProducerController also endorses to the phase

change event, which will activate the data whenever it is activated.

16

Figura 3. Class Diagram of ProducerController

Next, we can see the class diagram (Figura 4) that exemplifies the functioning of the

creatures. The base structure is similar to the producers’, with a Creature class that descends

from ScriptableObject and contains all the information of the type of creature and a

17

CreatureController that manages the information and which descends from MonoBehaviour.

In this case, the controller has other types of information, such as the resting place, the groups

they are a part of or areas where they can find food or water. In addition, the creatures have

other three more controllers, which are responsible for managing specific information and

whose results will be passed to the main controller. These controllers are: the

SenseController, whose job is to recreate the senses of sight and hearing by using a

CollisionSphere, an object descended from the collider class that detects the objects it hits or

that are within its volume, the InteractionController, which is in charge of checking when the

creature's body interacts with another object thanks to a BoxCollider that works in the same

way as a SphereCollider but with the volume of a cube, and, finally, a BehaviourController,

which is in charge of managing the creature's artificial intelligence.

The BehaviourController will be in charge of receiving the different triggers detected by the

other controllers of the creature to update the behavior according to them. It also needs a

BlackBoard, a type of object that acts as a bridge to pass specific information for the action to

be performed between the different controllers to the artificial intelligence.

As we have mentioned before, the artificial intelligence that controls the creatures is a

Hierarchical State Machine that includes Behaviour Trees. The structure of this can be seen

represented in Figura 4.

The HierarchicalStateMachine class is formed from States connected to each other through

Transitions, which need a condition to be activated. Both states and transitions contain Tasks,

the base class from which the behavior trees are formed. Finally, we have the

SubStateMachines, a class that inherits from the State class, but has the same functionality as

the HierarchicalStateMachine. In short, we have a HierarchicalStateMachine inside another

HierarchicalStateMachine.

As we have previously mentioned, the Tasks are the base of the Behaviour Trees, the

structure unit that form the behaviour trees. As their name states, Behaviour Trees have a

“tree” structure, in which each Task represents an action that can give as result SUCCESS if

the Task is carried out successfully, FAILURE when is not or RUNNING if it is still too early

18

to know the result. For that reason, some nodes are necessary in order to divide the tree in its

different branches. These are the class Composite, that contains and works with several

children Tasks. According to how they do it, we have two big groups: Sequences, which try

to execute each of their children in order until one of them fails or ends, and Selectors, which

execute their first child and only execute another one if the first one fails until it gets it right.

Each one of these types has a pair of variants: one that is random and picks its children

randomly (in this case it can even repeat one several times) and the non-deterministic one,

which organises its children randomly but executes them normally.

Other types of node that only have one child are the Decorators, which add variation to the

behaviors. There is also Limit, that determines the number of times its child can try to

complete a Task (return the value RUNNING), the REPEATER, whose child executes itself

once the Task is over, the Invert, that inverts the value of the SUCCESS and FAILURE and

vice versa, the Succeeder, which returns SUCCESS when its child finishes the task and the

UntilFail that makes its child repeat the execution until it fails.

From the Task class we will also create the "leaf" nodes of the tree, that will determine

concrete actions such as moving to another place, calculating which is the source of food or

any other action that we might need.

19

Figura 4. Class Diagram of CreatureController

20

Figura 5. Class Diagram of Hierarchical State Machine

21

Finally, we have a diagram that shows the functioning of some derived classes (Figura 5).

The classes derived from Creature add a list of the foods that they consume. In the case of

Creature_Herbivorous, a list of Producers, in the case of Creature_Carnivorous, another

creature, and in the case of Creature_Omnivore, both. Creature_Scavenger determines that

the creature feeds on the remains left by another creature when it dies.

Next, we can also find the Egg class, derived from ScriptableObject, which contains the

information about the egg and the Creature that will come out of it. EggController is the one

that manages the behavior of the egg, like for example how many days it will take to hatch or

the heat it needs in order to fulfill its Task.

Then, we have two group-derived classes that are mainly oriented to the familiar structures:

the Leader_Group, which contains a Creature that guides the group, and the

MultiLeader_Group, which has at least two Leaders that guide the group.

Finally, we have the Home class, the place where the creatures go to rest or to give birth.

These contain one or more colliders that determine the territory that belongs to the creatures

that inhabit it. This is also useful in order to know about the sources of food and water that

are found within this territory or a creature that is found inside or outside of it. The Territorial

class derives from this one, and it is designed for creatures that inhabit larger territories with

multiple places to rest and that can add more territory to their domains by taking it away from

other creatures.

22

Figura 6. Class Diagram of some derived classes

Although each creature will have its own behaviors, the basis from which they all start will

be practically the same. This means that the State Machine used by each creature will have

more or less the same structure, which can be seen in the following chart. The State Machine

(SM), called Behaviour is formed by the state Sleep, the one that starts the SM, and the Sub

Machine (SbM) Active.

23

From the Sleep state it is only possible to pass to Chill, the initial State of the Active SbM,

which represents the awakening of a creature. Active consists of two other SbMs, which are

Chill and Triggered, and the states Tired and Alert. From Chill we can access both the Alert

state, if it detects a creature nearby, and Tired state, when it is low on life or it is close to the

time to rest, and from which you can also pass to Alert.

From Alert we can directly access to Chill if the creature does not feel any danger, to State

Interaction in Chill if the creature nearby is friendly or a relative, or any of the states

contained in Triggered: Run if it is dangerous or cannot be fought or Attack if it is weaker or

a prey.

Inside Triggered, Run can go into Attack if there’s no chance of running and Attack can go

into Run if the creature believes it is going to lose. From Triggered you can only access Alert

as a precaution in case there is more danger.

Finally, there is the SbM Chill, that contains the states Satisfied, Hungry, Thirsty and

Interaction. Satisfied is the initial state of Chill, which represents the behavior of the

creatures when all their needs are met, so it can be passed to both the Hungry state when it

needs to eat or the Thirsty state when it needs to drink. Both Hungry and Thirsty can go into

Satisfied state if their respective needs have been met or into each other if they need to meet

the other. Interact has already been explained above, although it is necessary to explain its

transitions as well. These are from Interact to Chill when the interaction ends or Thirsty and

Hungry if one of these needs has to be covered during the interaction.

24

Figura 7. Base State Machine’s diagram

3.3 System Architecture

I have not taken into account the computer's minimum requirements for this project, since the

main goal is to lay the foundations for the running of an artificial intelligence.

3.4 Interface Design

Since the most interesting part about this project is to create an ecosystem in which all of the

creatures can be seen performing realistic activities, the ideal interface would be something

really simple that would give us the necessary information. For this reason, we are going to

use a clean head-up display, initially with only the daily phase and the climate that can be

seen in the top left corner.

25

Figura 8. User Interface Scheme 1

The user will be able to move freely into the scenario with a mouse. If the user wishes to

check the basic statistics of a creature that is seen on screen, it will only have to make a left

click on it and it will display a small additional interface that will show us the species of the

creature, the sex and the age and the health, hunger and thirst bars. In addition, the camera

will stay fixed on the creature until we make a left click again or just click on the scenario.

26

Figura 9. User Interface Scheme 2

We will place a small button in the top right corner that will open or close a new interface when

clicked. This interface will have a list of all of the creatures in scene, classified by species. When the

user clicks in one of the creatures, the camera will move to their position and it will stay fixed on the

creature and display all of its information

Figura 10. User Interface Scheme 3

27

4. WORK DEVELOPMENT AND RESULTS

4.1 Work Development

Before the start of the implementation, I looked for information related to how real

ecosystems work, as well as state machines and behaviour trees. Once I had gathered enough

information, I started to design the ecosystem I wanted to create.

My planned ecosystem was formed by three producers and five creatures as a way to include

the most important links of the food chain. In addition, I also wanted to represent the three

main forms of movement. For that reason, I did some research to observe real animals in

order to create the creatures of the ecosystem, which are the following: a hare, representing

the herbivores, a snake, representing the carnivores, a fox, representing the omnivores and a

vulture, representing the scavengers. Besides, in order to include the movement in water

(since the vulture represents the movement in air and the other creatures represent the

movement in ground), as well as a contrast with a super predator (represented by a fox, since

there are no predators in this environment), I decided to include semi-aquatic rhinoceros as a

personal contribution, since these do not exist in nature.

Regarding the producers, I picked grass, a berry bush and seaweed so that the creatures

would have a variety to select from.

28

Figura 11. Trophic chain representation

In order for this ecosystem to be in balance and for no link that can break the whole chain to

disappear, we will have to take different factors into account. These range from the climate

itself and the distribution of the homes of each creature or group in the territory to the speed

of reproduction of both creatures and producers and the metabolism of each type of creature.

For example, in our case, we should have a greater number of Hares than Foxes and Vipers

on a constant basis. On the side of the Vipers it is something simple, since the snakes are

creatures of slow metabolism that feed continuously and also have the Fox as a predator.

Regarding the Fox, it is somewhat more complex, since they do not have predators, but at the

same time they have other sources of food such as the Vipers and berries, since they are

omnivores.

Apart from this, as we have previously mentioned, we will have to take reproduction into

account, allowing the Hares to reproduce faster and in greater quantities so that they are not

easily surpassed in number with respect to their predators, while the latter should have less

speed of reproduction or descendants. Another way we will regulate this is by limiting

reproduction to only take place if the health of both individuals is above 75% and their

hunger and thirst levels are above 33%. In addition, female mammals will not be able to

29

reproduce if their gestation period is longer than their life expectancy or while their offspring

have not fully grown yet.

For example, if Hares proliferate more than they should, this will cause Vipers and Foxes to

proliferate, while the amount of food available will decrease. This will cause the number of

Hares to drop again over time, as there will be little food and it will be more difficult to

reproduce since there will be more predators. This decrease in numbers will progressively

lower the number of predators as there is not enough food for everyone until the overall

balance is restored.

This movement in the numbers of Hares would also indirectly affect the rhinos, since they

share a large part of the diet, and vice versa. The Vulture would be the least affected in all

this, as their proliferation is related to the number of creatures that die, so a destabilization in

any sense of the ecosystem would benefit them until this is corrected.

All these numerical factors regarding reproduction mentioned above can vary according to

the needs we find in a given scenario to adjust the ecosystem.

As we had established before, the daily cycle would be divided into four parts: dawn, day,

afternoon and night, and the climate into three parts: clear, sunny and rainy. The amount of

time necessary to complete a full cycle will stay open until the debugging phase, where we

will check the appropriate length for all functions to be carried out by each creature. We

made this decision when making the initial tests, since we needed them to be as quick as

possible in order to save time. Initially, we decided 40 minutes would be a suitable amount of

time, but, as we said, we will finally establish it once we have made more progress.

However, regarding climate, we actually established from the beginning that the chance of a

change in climate in every change of phase would be of a 15%, with a 50% of chances of sun

or rain and with a length that would go from 1 phase to 3 cycles (12 phases). Besides, when

there’s an altered climate, there must be two full cycles of base climate before changing

again.

30

Once we had made these decisions, the next step was to indicate how the climate or the

phases might affect each living being, beginning with the producers because of their

simplicity.

Taking the real life producers as a model, we can see climate can affect them in the quantity

of production of food as well as in the amount of time they can take to produce again.

Normally, the rainy weather makes the atmosphere humid, which helps the growth of the

producers, and the sunny weather makes them dry out more easily, which makes it more

difficult for the producers to grow. However, if a plant receives sun and humidity, it grows

and produces food faster.

Grass

Food Quantity normal 3-10 units

 sunny 3-5 units

 rainy 8-12 units

 rainy + sunny 15 units

Regeneration normal 5-7 cycles

 sunny 7-9 cycles

 rainy 3-5 cycles

 rainy + sunny 2 cycles

Nourishment 3 (per unit of food)

31

Berry bush

Food Quantity normal 20-30 units

 sunny 15-25 units

 rainy 25-35 units

 rainy + sunny 45 units

Regeneration normal 7-9 cycles

 sunny 9-10 cycles

 rainy 5-8 cycles

 rainy + sunny 5 cycles

Nourishment 5 (per unit of food)

Regarding producers, seaweeds are a different case, since they are constantly under water and

they receive all of the humidity they could possibly need, so a rainy weather does not really

benefit them, since it only takes the much needed sunlight away from them.

32

Seaweed

Food Quantity normal 10-15 units

 sunny 15-20 units

 rainy 5-10 units

 rainy + sunny 10-15 units

Regeneration normal 5-7 cycles

 sunny 5 cycles

 rainy 5-10 cycles

 rainy + sunny 5-7 cycles

Nourishment 5 (per unit of food)

In the case of creatures, the effect of the phases of the day is more explicit, since each type of

creature is adapted to a fixed amount of sun and heat, so they restrict their periods of activity

to certain phases of the day. Climate affects them as well, since it can change their behaviour.

For example, they might extend their period of activity, reduce it or even stay inactive during

the time the climate lasts.

33

Hare

Health 30-40

Food 40

Water 40

Life expectancy 12-16 cycles

Growth 4 cycles

Litter 4-6

Speed 10/20/50

Activity period Dusk-Night

Favourable Climate Sunny (Activity extended to Dawn)

Unfavourable Climate Rainy (No Activity)

34

Rhinoceros

Health 200-225

Food 250

Water 200

Life expectancy 40-45 cycles

Growth 10 cycles

Litter 1-3

Speed 10/20/30

Activity period Dawn- Day

Favourable Climate Rainy (Activity extended to Dusk)

Unfavourable Climate Sunny (Reduced Movement)

35

Fox

Health 75-80

Food 75

Water 50

Life expectancy 25-30 cycles

Growth 6 cycles

Litter 2-4

Speed 10/30/40

Activity period Dusk-Night

Favourable Climate Normal

Unfavourable Climate Rainy (No Activity)

36

Viper

Health 20-25

Food 50

Water 50

Life expectancy 15-20 cycles

Growth 4 cycles

Litter 3-5

Speed 10/20/30

Activity period Day-Dusk

Favourable Climate Sunny (Activity extended to Dawn)

Unfavourable Climate Rainy (No Activity)

37

Vulture

Health 100-125

Food 100

Water 100

Life expectancy 30-35 cycles

Growth 5 cycles

Litter 3-5

Speed 30

Activity period Dawn-Day-Dusk

Favourable Climate Normal

Unfavourable Climate Rainy (No Activity)

Apart from the relationships established through the food chain, we also seek to recreate

other types of interactions between different creatures. We can differentiate these in two

groups, having on the one hand the friendly relations which establish that two creatures will

behave in a friendly manner between them, and the conflictive relations, in which, on the

contrary, two creatures will face each other and will respond by attacking, defending itself or

fleeing.

Thus, based on the actual counterparts of the creatures, we have decided to establish that

Hares are sociable creatures living in large groups led by a few alpha males and several

females, as well as their offspring, inside a territory. They are territorial with members of the

38

same species that come from different groups, so they will seek to confront intruders if they

are not predators. The moment a Hare detects the presence of an intruder, it will let the others

closer know this information and so on. The young hares will automatically run away to the

burrow, while the adults will face the intruder as long as the intruder is not a predator, the

young are in danger or cannot escape.

Continuing with the Vipers, they are solitary creatures with territories reduced to the place

where they hide, so they have to venture out of it when hunting. In the case of crossing with a

member of the same species, as long as the mating conditions do not exist, they will show

which of the two is stronger by making the other one flee.

Foxes are creatures that live alone or in small families of a couple and their offspring, but

they are very friendly. This means that they may form small temporary hunting groups with

other foxes they encounter or even families if they are of opposite sexes and are not part of

one. When there are cubs in the family it is the male who is in charge of hunting while the

mother takes care of the cubs.

Rhinoceroses are solitary and very territorial creatures among males and members of

different species, often disputing territory among themselves. Females, on the other hand, get

along between them, and can share territory and even play with each other. Females can also

share territory with other males, not producing confrontations except in the case that she is

accompanied by her offspring, in which case she will try to scare off any male. The only

species they are not aggressive with is the Hare, being able to play with them and protect

them from their predators.

Finally, the Vultures also live in small families of a couple and their offspring. Vultures are

not aggressive with each other as long as there is enough food for everyone. If there are eggs

or young in the nest, the parents will take turns looking for food to share with the others on

their return.

39

After having established all of these features, we start with the implementation. We start with

the simplest but most necessary part: the day/night cycle. Since these project does not need to

be visually realistic, we start with a very simple script we can find in the article of Twiik.net

[5] and simplifying it. This script receives as an input the desired length of a full cycle and it

divides it into four parts.

In order to visualize these changes, we create a scene in Unity3D with a test scenario and an

empty object that will serve as a controller. We add the DayNightCycle script to this

controller, as well as a new script, a Scene Controller that will be in charge of managing all

of the changes and data. Whenever there is a change in the DayNightCycle, the

SceneController will be reported and it will keep it on the variable CurrentPhase, which will

modify the intensity of the associated Light object [6] as it corresponds.

Figura 12. Day/Night cycle implementation scene

Once the day/night cycle is over, we will move on to the climate. For this part, we will create

a new script called WeatherController. As we mentioned before, this script will represent the

changes in the weather that may happen at a certain area in a very simple way while

synchronizing them to the changes of the daily cycle. When there’s a change of phase, the

40

SceneController will be in charge of informing the new script, who will check the climate of

the previous phase that’s kept on the variable CurrentWeather, how many phases has this

weather laster in the variable Phases_Passed and how many phases had it been established to

last for in the variable Phases_Duration.

Then, it will make a decision based on the data we have explained at the beginning of this

section, for which we have created an easy variable in case there may be a need to make

small changes. The result of the decision taken by WeatherController is returned to the

SceneController, who will keep it on its own variable CurrentWeather. In order to be able to

visualize these changes in the climate we will create a system of particles associated to the

SceneController, wich will be activated when the rainy weather starts and deactivated when

it’s over. We will make some adjustments to the system of particles so that the particles fall

down at our desired speed and to give them a light blue color. In addition, the

SceneController will also adjust the intensity of the Light object so that it gets brighter during

sunny phases or darker during the rainy ones.

Figura 12. Weather implementation scene

41

Lastly, we will create a script called EventController that will be in charge of managing the

calling of events [7]. Events are quite useful for this project, since different Scripts may

subscribe one of their functions to one event. Once this event is activated, all of the functions

that are subscribed to it will also be activated. In our case, we will create the event

PhaseChange (DayPhase phase, Weather weather) that will be activated by the

SceneController after obtaining a new phase and climate. These data will also be taken to the

event and it will distribute it to all of the subscribed functions.

Now that we have finished with the day/night cycle and climate, we can get to work with the

Producers.

Since all generators basically share the same characteristics and behaviors, we decided to use

Unity’s Scriptable Objects. As we mentioned earlier, these Scriptable Objects [8]can contain

data. This data can be modified from the same Unity inspector, and these changes can be

applied to all of the references of this Object, even if they are being executed in the project,

which makes it a very useful tool. Thus, we create a Script Productor that descends from the

class ScriptableObject and to which we add the following line of code:

[CreateAssetMenu(fileName = "Producer", menuName = "ScriptableObjects/Producer")]

This will allow us to create new objects like ScriptableObject that will use the parameters of

Productor that we will explain later just by doing a right click, selecting create and then

Productor at Unity’s Project window.

Next, we will move on to Productor’s data. As we showed in charts x1, x2 and x3, producers

have a series of parameters from which they will make a random decision about how many

food to generate and how long it will take for them to generate it. This random decision is

taken within a range and it takes into account the current weather conditions. In order to

simplify the amount of variables necessary we will need each of them to come from the type

Vector2Int [9], which allows us to keep two full values inside of them. Besides, we will need

another variable that will specify the amount of nourishment each unit of food supplies. After

42

creating the script we can move on to the Project window in Unity and create the

ScriptableObject for each type of producer as we have previously explained and fill it with

the data collected in the chart.

Now that we have established the data from the producers we have to create the script that

will manage this kind of information: the ProducerController. This script comes from

MonoBehavior and it will contain a Producer variable to which we can assign the

ScriptableObject we want. When we initiate the scene, the function Awake from

MonoBehavior will activate selecting all the models that represent food generated in the

meshes vector [10] of the object we assign this script to and which will act as a productor.

Another function of the ProducerController is TakeFood(int x), which will be received as a

parameter of full value that will be substracted to the amount of food the producer currently

has, stored in the variable foodQuantity and returning the appropriate nourishment according

to the intake of food.

You cannot take more food than there is, because if you substract the value of x from the

current food and is less than zero, the difference will be subtracted before the nutrition is

returned. When the amount of total food is zero the meshes will be disabled, making them

invisible until we can activate them again, and we will generate a random value for the

variable PhasesToReg, taking into account the regeneration values in a clear climate.

The function RegenerateFood() will be called when the indicated phases of the day have been

completed in PhasesToReg. The amount of food generated will be obtained randomly within

the range associated to the climate that has been on while it was waiting and it will be kept in

the FoodQuantity variable. We can figure out the climate that has been going on thanks to the

Boolean [11] called rained or sunnied. Finally, we will reactivate the meshes by turning them

visible.

Finally, we have the PhaseChanged(DayPhase phase, Weather weather) subscribed to the

PhaseChange event, which, after receiving the new phase and climate, will check if all of the

PhasestoReg’s phases have been completed. If not, it will update the phase meter called

PhasesPassed. Next, it will check if the new climate is sun or rain and it will update the value

43

of PhasesToReg accordingly, as well as rained or sunnied so that it does not repeat it until it

regenerates. If sunny or rained are “true”, PhasesToReg will update with the corresponding

value. If the new PhasesToReg is inferior to PhasesPassed it will be called

RegenerateFood(). In order to finish with the script we will need a function that returns us a

Boolean that tells us if a producer has food or not which we will call HasFood() and that will

be used by the creatures.

Once the script is ready, we can create the different objects we can associate it to and which

will represent a type of producer.

By using the grass object in the scene of Unity, we create an empty GameObject [12] we will

call Grass and, inside of it, we will place another empty object called Food_Model, inside of

which we will create several cubes that we will deform until the ensemble acquires the shape

of grass. Once we’ve done that, we will add Grass to the ProducerController script, we add

the corresponding ScriptableObject in the inspector and the variable Food_Meshes, from

which we will assign the object we want it to take the meshes from in order to make them

invisible, and we assign Food_Model. Lastly, we add a RigidBody [13] and a BoxCollider

[14] to Grass so that the creatures can detect it. Finally, we only have to transform the Grass

object into a prefab [15] by dragging it from the Hierarchy window to the Project one.

In order to create seaweed we would follow the same process as we’ve done with Grass, but

the berry bushes would follow a slightly different one. We would basically need to create two

children in the GameObject, one for the model of the bush and another one for the berries.

44

Figura 13. Bush, Grass and Seaweed models

Now that we have completed the base of the project, we need to begin with the

implementation of the creatures.

Frist of all, we need to make the creatures move, because it would be impossible for them to

complete any of the behaviours we design if they can’t move around. We will use the

NavMesh tool in Unity for that [16]. With this tool, we can create meshes from the scenario

through which our NavMesh Agents [17] can move. These agents will use these meshes to

trace the fastest path from their actual position in the mesh to another one (the so called

pathfinding), avoiding obstacles and other Agents on the way.

After creating a new scene we create the scenario we want our objects, in this case, our

creatures, to move in. Next, we create an empty object we will call NavMeshController and

to which we will add the NavMeshSurface [18] controller. After hitting the “bake” button in

the inspector, it will generate a mesh from the scenario. The bake of the mesh is built taking

into account the objects of the scenario, the slopes and the steps. If we want it to only take

into account certain objects when creating the mesh, we can simply select them, just as it says

in Unity's documents [19].

45

Next, we have to create any Object in the scene, assign the NavMesh Agent to it, as well as a

script to which we will indicate that when the user clicks on the scenario, that spot will be

fixed as a destiny and the creature will move to it.

This is the most basic move we can create, but since we have different types of creatures with

different sizes and even some with different ways to move, we need to make it more

complex. In the Navigation window inside of Agents, we will create a different type of Agent

for each creature, to which we can assign the height and width values of the Agent (since it’s

shaped like a cylinder), as well as the maximum height of the steps it can overcome and the

maximum gradient angle. Next, we will create a prefab for each creature to which we will

assign the NavMeshAgent component, and inside of ir we will select the corresponding type

of Agent.

Next, in a new scene we will create a more complex type of scenario. In order to do so, we

will use the ProBuilder [20] and ProGrids [21] assets, available at Unity’s AssetStore. After

installing them, we will create a new empty object that we will call Scenario. In there, we will

create a plan we will call Terrain and that we will modify with the Probuilder tools. In these

modifications we will generate a series of depressions in the terrain and then we will separate

the original mesh, creating new objects we will place inside Terrain. We will use this to

associate a NavMeshModifier [22] component to each of these objects, which will allow us

to assign a different area to this object.

The NavMesh areas mark out the area or the type of terrain inside a mesh, but we can assign

higher costs when doing the pathfinding, so that we can avoid going through this terrain as

much as we can. We can also decide which areas we want the object to displace in from the

Area Mask in the NavMeshAgent component of each prefab.

For this project we will need two different areas, apart from those who are given by default:

Water with a cost of 3 and Skye with a cost of 0. The Water area will be assigned to the

objects we have separated in the initial mesh. We will create a new transparent plan placed

slightly above the scenario and we will assign the sky area.

46

Lastly, before making the bakes we need to take into account that it is possible that I might

need to go from one mesh to another. For example, in the case of vultures, they will move

from Sky to the ground to feed or rest. We may also want to go from one area from the same

mesh to another one that is close but not necessarily connected. To solve this problem we use

the NavMeshLink [23], componentes that allow us to create connexions between two

NavMesh, allowing a creature to go from one to another when it enters a limited area, as well

as to assign an Area to the link.

In the case of Vulture, we will need to be able to go up or down from any point of the mesh.

For that reason, we will create a prefab that will contain a NavMeshLink component that we

can spawn in any place to adjust it to suit our needs and then destroy it once it’s used.

Lastly, for each type of creature we will need to add a NavMeshSurface to the

NavMeshController and adjust it to their characteristics.

Figura 14. Testing NavMesh Scene

47

Now that we have sorted out how to create movement, the next step is to create a detection

system that imitates a real animal’s senses. This is quite simple, since we only need to create

a new empty object inside the corresponding prefab of each creature. This empty object will

be called Senses and we will add a Sphere Collider [24] component with a marked Is Trigger

variable and a Script called Senses to it. This script derives from MonoBehaviour and it will

detect when an object enters inside the Sphere Collider, then check the distance and direction

from the centre of the collider and, if it's within the creature’s range of vision, it will figure

out what type of object it is. In order to avoid detecting unnecessary objects, we will create a

series of Layers dedicated to specific objects such as creatures, producers, water, terrain and

other creature’s senses. We can also detect a creature through hearing, so whenever it enters

inside the Collider, we will check how loud the noise is and we will decide if it detects it or

not.

Now, we move on to create the collision system. In order to do so, we create an empty object

inside the creature’s Prefab called Body, which will be in charge of carrying the model of the

creature. Body will have a Box Collider associated to it, whose dimensions will be adjusted to

the size of the boy. We also add a Script called Interaction that will be in charge of detecting

when a creature is touching food, water or another creature.

Figura 15. Hase Prefab

48

Finally, we need to create the rest area. In order to do that, we will create a new prefab that

will serve as the base for the other rest areas. This prefab Home will have two children:

Meshes, the one that will contain the model and a Sphere Collider, and Territory, the one that

will have a Sphere Collider and a marked Is Trigger associated to it. This Sphere Collider

will delimit the territory belonging to the inhabitants of the rest area. Home will have an

associated script that will be also called Home. This script will be in charge of managing the

groups of creatures that inhabit it, saving the information of the places where they can find

food and water inside the scenario, as well as spawning new creatures when a pregnant

female that is in the group meets the gestation time or when the project starts. In the event

that the number of individuals of a particular species is excessively high, the SceneController

will warn the different Homes containing this species so that they do not generate new

creatures until the number is stabilized. Similarly, SceneController will warn the Homes to

forcefully increase the number of individuals in case the number of individuals is too low.

The new creatures will only be spawned when the phase of the day when they begin their

activity starts, so they will need to have a function subscribed to the PhaseChange event. For

this reason, it will need to contain the data from the Scriptable Object of the creature. In

addition, it will save all of the generated creatures inside a Group class, and the creatures will

get deleted after they have died. Since this script derives from Monobehaviour, it will also

use the Awake function, in which it will cast a SphereCollider the size of the territory in order

to detect all sources of water and producers in the area the creature can feed from and then

pass them on to the spawned creature. Creatures will be able to update these lists with new

places where they have found food outside the territory or water.

When a creature grows up, if it has no place within the group it will abandon the group and

the Home, going in search of a new one that is not inhabited or that has a group with enough

space. If a Home loses all the creatures in the group it will remain empty again.

Now that we’ve created everything we need in order to build the creature’s behaviours, we

need to move on to the creation of the Scriptable Object Creature that we will be using as a

base to store every creature’s information. Its functioning is quite similar to the producer’s,

but it also contains the information from the charts we showed at the beginning of this

49

section. Now, we have to create the scriptable object of each creature and fill it with the

corresponding data.

Figura 16. Rhino, Hase, Fox, Viper and Vulture Models

Next, we create the CreatureController script that will be in charge of managing the

creature’s internal and external data. This script derived from MonoBehviour will take the

data from the ScriptableObject in order to establish the maximum life, the amount of food

and water etc. at the Awake function. This data should be updated every few seconds,

reducing the amount of health, water and food in case there wasn’t enough previously. The

number of seconds between updates will vary according to the creature's metabolism and may

be slower and last longer with less food than other creatures. We will use the IEnumerator

[25] for that. IEnumerator are lines of code that execute parallely to the script they belong to

so that they don’t hinder their own functioning. CreatureController will also be in charge of

receiving data about the changes of phase and climate, and for that reason it needs to have a

function subscribed to that event.

Before we can implement each creature’s behaviour and their controller, we must implement

the base of the artificial intelligence. As we have previously mentioned, we intend to use

50

Hierarchical State Machines in this project, because they can contain other State Machines

inside of them and combine them with Behaviour Trees. In order to implement the HSM, we

resorted to the pseudocode that we can find at AI for Games [26] in the chapter dedicated to

Decision Making. This pseudocode contains a small error that we had to fix in order to

achieve our goal. It was a very simple error: the update function returned us back to the

“Action” list instead of an object of the UpdateResult class. Apart from that, we had to adapt

the code, since C# does not allow a double inheritance, so it made the SubStateMachine

inherit from State and it added the UpdateDown function from the StateMachine. We also

had to change the Action class using the Task class, which would be the base of behaviour

trees.

We used the code we found in Reddit called Simple Behaviour Tree implementation for

Unity [27] for the creation of the Behaviour Trees after several attempts to implement the

pseudocode proposed by the author of the book previously mentioned. We also modified

some of the parts of the original code in order to create new nodes, like the

NoDeterministicSelector and the NoDeterministicSequence [28] proposed by Millington, as

well as the BlackBoard used for the communication between the the CreatureController and

the Tasks, as well as creating new Leaf nodes with personal actions the creature will share.

Now that we have implemented the base of the AI, we only need to create the controller that

will manage it.

This controller will be the CreatureBehaviour script that derives from MonoBehaviour and

that will contain a reference to the CreatureController of the creature. This script will create

a new BlackBoard when initiated, and it will also contain a Hierarchical State Machine and a

list of Tasks. CreatureController will be in charge of calling the function updateHSM from

CreatureBehaviour each time an event is triggered. The updateHSM function will call the

update of the HSM, which will study if the trigger received causes any changes in the

behaviour of the current state and it will return a list of Tasks as an answer. This list of Tasks

will be executed by an IEnumerator in order to avoid performance problems, recreating the

creature’s behaviour under the corresponding trigger.

51

After trying this, we created a new script that inherits from this CreatureBehaviour class

called HareBehaviour, since we are going to try it on this creature. Instead of the

CreatureBehaviour, we assign HareBehaviour the prefab and inside of it we initiate the new

HSM with its states, SubHierarchicalStates, Transitions and BehaviourTrees. This test HSM

is a simplified version of the one presented in the section 3.2 and it only has the

SubStateMachine Chill inside of active. We have also withdrawn the State Interact from it.

Now we create a new scene with a home that spawns a hare, some generators and water.

After many tests and trials, and many attempts to correct errors, we haven’t achieved our

main goal, since the behaviour does not work completely well, but we do not have any more

time to continue with this project.

4.2 Results

After plenty of research and many hours spent implementing, we have completer a functional

day/night cycle, although it is not completely correct since we run out of time to properly

finish it. We have also managed to create a functional Climatic system that we could expand to

other types of climates.

Regarding generators, we have managed to create a functional structure from which we could

recreate almost any type of generator. With respect to creatures, we have created a functional

detection system based on sight and hearing and a structure from which we could recreate

almost any existing creature in the real world as well as their behaviours grosso modo.

Unfortunately, we haven’t completed the main objective of this project, which was to place

several types of creatures in a scenario to interact between each other as they would normally

do.

52

5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The main problem I had with this project is that I was too ambitious. I was trying to

do so much with very little time and resources. The situation we live in today didn’t help

much, because the COVID-19 pandemic has had a huge impact and we have been affected in

many aspects. Although I haven’t completed my main goal, I am really proud of the work I

have done, because I have managed to finish almost everything I had set my mind on doing. I

would have really loved to finish this project, because I know I have dedicated myself

full-time to it and I know in other circumstances, and with a little bit of help, I could have

definitely finished it on time.

5.2 Future Work

I was thrilled to make this project, especially because I really believed I could use my

results in future video games. I really hope I can finish it some time in the future and improve

many of its parts. I believe I could implement different forms and stats depending on the age

or gender of each species of creature or I could improve Artificial Intelligence using Fuzzy

Logic and Fuzzy State Machines. I have so many ideas for this project it’s such a pity I

couldn’t make it on time. I know someday I will finish this project, just to prove myself I was

capable of doing it and also because I believe it will be really useful in the future.

53

BIBLIOGRAPHY

[1] Non-Playable Character on Wikipedia:

https://en.wikipedia.org/wiki/Non-player_character

[2] Ecosystem on Wikipedia: https://en.wikipedia.org/wiki/Ecosystem

[3] State Machine on Wikipedia: https://en.wikipedia.org/wiki/Finite-state_machine

[4] Behaviour Trees on Wikipedia:

https://en.wikipedia.org/wiki/Behavior_tree_(artificial_intelligence,_robotics_and_control)

[5] Simplest possible day night cycle in Unity 5:

http://twiik.net/articles/simplest-possible-day-night-cycle-in-unity-5

[6] Unity Documentation 5.3 Light:

https://docs.unity3d.com/es/530/Manual/class-Light.html

[7] What are Events? (C# Basics) - Youtube Tutorial

 https://www.youtube.com/watch?v=OuZrhykVytg&ab_channel=CodeMonkey

[8] Unity Documentation 2019.4 - Scriptable Objects

https://docs.unity3d.com/Manual/class-ScriptableObject.html

[9] Unity Documentation 2019.4 - Vector2Int:

https://docs.unity3d.com/ScriptReference/Vector2Int.html

[10] Unity Documentation 2019.4 - Meshes:

https://docs.unity3d.com/Manual/class-Mesh.html

54

https://en.wikipedia.org/wiki/Non-player_character
https://en.wikipedia.org/wiki/Ecosystem
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Behavior_tree_(artificial_intelligence,_robotics_and_control)
http://twiik.net/articles/simplest-possible-day-night-cycle-in-unity-5
https://docs.unity3d.com/es/530/Manual/class-Light.html
https://www.youtube.com/watch?v=OuZrhykVytg&ab_channel=CodeMonkey
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://docs.unity3d.com/ScriptReference/Vector2Int.html
https://docs.unity3d.com/Manual/class-Mesh.html

[11] Boolean datatype on Wikipedia: https://en.wikipedia.org/wiki/Boolean_data_type

[12] Unity Documentation 2019.4 - GameObject:

https://docs.unity3d.com/ScriptReference/GameObject.html

[13] Unity Documentation 2019.4 - RigidBody:

https://docs.unity3d.com/ScriptReference/Rigidbody.html

[14] Unity Documentation 2019.4 - Box Collider:

https://docs.unity3d.com/es/2019.4/Manual/class-BoxCollider.html

[15] Unity Documentation 5.3 - Prefabs:

https://docs.unity3d.com/es/530/Manual/Prefabs.html

[16] Unity Documentation 2019.4 - Navigation System:

https://docs.unity3d.com/Manual/nav-NavigationSystem.html

[17] Unity Documentation 2019.4 - NavMeshAgent:

https://docs.unity3d.com/ScriptReference/AI.NavMeshAgent.html

[18] Unity Documentation 2019.4 - NavMeshSurface:

https://docs.unity3d.com/Manual/class-NavMeshSurface.html

[19] Uniry Documentation 2019.4 - Building a NavMesh:

https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html

[20] Unity - ProBuilder: https://unity3d.com/es/unity/features/worldbuilding/probuilder

[21] Unity Manual - About ProGrids:

https://docs.unity3d.com/Packages/com.unity.progrids@3.0/manual/index.html

[22] Unity Documentation 2019.4 - NavMesh Modifier:

https://docs.unity3d.com/Manual/class-NavMeshModifier.html

55

https://en.wikipedia.org/wiki/Boolean_data_type
https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/ScriptReference/Rigidbody.html
https://docs.unity3d.com/es/2019.4/Manual/class-BoxCollider.html
https://docs.unity3d.com/es/530/Manual/Prefabs.html
https://docs.unity3d.com/Manual/nav-NavigationSystem.html
https://docs.unity3d.com/ScriptReference/AI.NavMeshAgent.html
https://docs.unity3d.com/Manual/class-NavMeshSurface.html
https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html
https://unity3d.com/es/unity/features/worldbuilding/probuilder
https://docs.unity3d.com/Packages/com.unity.progrids@3.0/manual/index.html
https://docs.unity3d.com/Manual/class-NavMeshModifier.html

[23] Unity Documentation 2019.4 - NavMesh Link:

https://docs.unity3d.com/Manual/class-NavMeshLink.html

[24] Unity Documentation 2019.4 - SphereCollider:

https://docs.unity3d.com/ScriptReference/SphereCollider.html

[25] Unity Documentation 2019.4 - IEnumerator:

https://docs.unity3d.com/ScriptReference/MonoBehaviour.StartCoroutine.html

[26] AI for Games by Ian Millington, third edition

[27] Simple Behaviour Tree implementation for Unity:

https://www.reddit.com/r/gamedev/comments/46ywep/simple_behaviour_tree_implementatio

n_for_unity/

[28] Nondeterministic algorithm on Wikipedia:

https://en.wikipedia.org/wiki/Nondeterministic_algorithm

56

https://docs.unity3d.com/Manual/class-NavMeshLink.html
https://docs.unity3d.com/ScriptReference/SphereCollider.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.StartCoroutine.html
https://www.reddit.com/r/gamedev/comments/46ywep/simple_behaviour_tree_implementation_for_unity/
https://www.reddit.com/r/gamedev/comments/46ywep/simple_behaviour_tree_implementation_for_unity/
https://en.wikipedia.org/wiki/Nondeterministic_algorithm

