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1. INTRODUCTION 

 

Advances in technology have meant a notable progress in the industry of video games. With               

stories and graphics that only get more and more realistic, the audience has also become more                

demanding and, nowadays, quality and veracity are a must for video game creators. The need               

to produce realistic characters in realistic environments has now spread to all of the parts of a                 

videogame. For that reason, we cannot leave aside any of the elements that appear on the                

screen. 

This research work comes from the need to ensure that all of the elements of a video game                  

are as close to reality as possible. In this case, we have decided to focus on living beings like                   

wild animals and some plants, since we believe that nowadays they lack the realism and               

fidelity that other video game characters have, such as those who represent people. For this               

reason, we will recreate an ecosystem in which its living beings behave realistically, with the               

purpose of making progress in this field and applying it in future games. 

 

In this chapter we will present the objectives that we sought to achieve in the development of                 

this project, as well as the motivations that have led to the main idea of this work and the                   

initial conditions from which it started.  

 

1.1 Motivation 

 

The main motivation of this project is to find a way to improve the artificial intelligence (AI)                 

used in different games to control Non-Playable Characters (NPCs)[1] that represent living            

beings, like animals or plants, in their wild state. These animals will also have a great                

importance in the development of their habitat.  

 

Games like the Pokémon Sword and Pokémon Shield are the main source of inspiration for               

this project, since these were some of the first video games that sought to integrate the “open                 

world” genre by creating a map in which the player could move around freely. In these areas,                 
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the players were able to encounter many different Pokémon depending on the place they were               

at, the climatic conditions of the area and the moment of the day. However, the creatures’                

behaviors were quite simple, since they could be seen wandering a concrete area, pursuing              

the player to attack them or flee from them.  

 

This uncomplicated behavior became a source of frustration for the players, since Pokémon is              

a world-wide known video game saga that provided its consumers with a lot of information               

about each one of the species that appeared on the game, many times related to their                

behaviour and their interactions. However, this was hardly seen on the games because the              

creatures were too plain and not a lot of effort was put into their creation. 

 

Many games of the same genre apply similar IAs to the fauna of their games, and some may                  

include interactions with other NPCs, special objects or events among their behaviors. This             

usually helps to create the appearance that the world is actually alive and its creatures are                

realistic, which can be more than enough for some games, especially the oldest ones.              

However, there are other types of games which necessarily have to show realistic creatures              

with realistic conducts and nowadays this is not being carried out adequately, especially             

nowadays, when games need to be as close to reality as possible for the newest players. 

 

Thus, the motivation of this project is to find the solution to this issue through the design of                  

some IAs that will represent a living ecosystem in which the fauna, the flora and the                

environment interact with it. We have decided to carry out this project in order to contribute                

to the progress of video games and artificial intelligence, since we believe more work is               

needed in order to provide players with a lifelike experience when playing these type of               

games. 
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1.2 Objectives 

 

As previously mentioned, the main goal of this Final Degree Project is to find a way to                 

recreate ecosystems that act as close to real ecosystems as possible so that they can be applied                 

to different video games in the future. In order to achieve this, the first point is to analyze                  

which parts make up an ecosystem with the intention of establishing the objectives that this               

project must achieve to fulfill its goal.  

In short, an ecosystem has two main components: a group of living beings related to each                

other, and the environment in which they carry out their activities[2].  

Regarding the relationship between the living beings of an ecosystem, it is necessary to              

introduce the term “food chain”. A food chain divides living beings intro producers (those              

who generate their own food) and consumers those who need to feed on other living beings).                

Within the consumers we find four categories: the herbivores (which feed on producers), the              

carnivores (which feed on other consumers), the omnivores (which feed on both producers             

and consumers) and finally the scavengers (these feed on the remains of dead consumers) 

 

Regarding the environment, we can create a three-section division. In the first place, there is               

the day/night cycle, which establishes the hours of light and heat that affect an specific area,                

the climates, such as rain, snow or drought, and the geographical features that make it up                

such as rivers, lakes and mountains. 

 

Thus, our first and main objective of this project is based on this definition of an ecosystem.                 

For that reason, we will recreate one that has these characteristics, including the environment              

and the living beings that inhabit it. Moreover, our other objectives for this project are: 

 

- To create an uneven stage on which living beings can exist 

- To implement a day/night cycle that cyclically rotates between these two phases 

- To implement a climate system that changes the climate to which the scenario is              

subjected 

- To create a series of producers that generate food 
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- To create a series of NPCs that can interact with others and with the environment in                

which they are located by making use of an artificial intelligence that makes the              

appropriate decisions 

 

1.3 Environment and initial state 

 

At the beginning of this project, I was expecting to be able to dedicate my full time and                  

effort, since I had plenty of hours free to do so. I started planning everything quite early, in                  

order to avoid having to do everything last-minute, since that would be very perjudicial, not               

only to my project, but also to myself, since I suffer from chronic migraine headaches and                

anxiety. I was hoping a healthy and relaxed work environment would help my situation and               

my willingness, since I was very excited to embark in a project as ambitious as this. 

 

At first, I encountered a small problem when planning this project: the fact that Artificial               

Intelligence was not a field we had studied in depth throughout my degree years, since I had                 

only studied the bases of State Machines [3] and Behavior Trees [4]. Anyway, I was positive                

i had the necessary knowledge in order to be able to explore other more advanced options,                

such as mixing Hierarchical State Machines and Behaviour Trees. In addition, I was also              

counting on the support from my tutor Ángel Pascual del Pobli Ferré, an expert in the field of                  

Artificial Intelligence. 

 

Besides, I had also worked with Unity during my years of study, so I was also familiar with                  

other tools, like NavMesh from Unity that could help me with movement and pathfinding for               

my creatures, as well as Probuilder, which could be useful for the creation of scenarios. 

 

  

5 



 

2. PLANNING AND RESOURCES EVALUATION 

 

We will dedicate this chapter to talk about the planning that was initially expected to be                

followed for the development of this project. Furthermore, we will also discuss the amount of               

payment we would have received for this type of work. 

 

2.1 Planning 

 

It is estimated that a Final Degree Project should have a duration of around 290 without                

including the report. For this reason, we decided to estimate how long it would take us to                 

carry out this project by calculating the amount of time each part should take in order to make                  

an initial plan. 

 

In order to do that, I had to take into account the fact that I had to do some research about                     

Artificial Intelligence before starting with the actual project, since, as I previously mentioned,             

I hadn’t studied it enough before. I was also going to have to research about the animals I was                   

going to include in the project, in order to be accurate about their behaviours so that I could                  

integrate them better into the ecosystem I was going to create.  

 

In addition, since I was going to have to deal with much more difficult problems that what I                  

am used to because of the complexity of the project, I was not sure about the amount of time I                    

had to assign to some of the parts, since I had never done anything like that before. For this                   

reason, I decided to add extra hours to those Tasks I believed would probably take more time,                 

since I believed it would be safer to be prudent. 
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Tasks Subtask Estimation Real cost 
Total (Estimation - 

Real cost) 

Research    20h -25h (+5h) 

 
Animals and 

Ecosystems 
5h 5h  

 Artificial Intelligence 15h 20h (+5h)  

Design of the NPCs and their 

behaviours 
 10h  10h 

Environment    30h - 65h (+35h) 

 
Implementation 

day/night cycle 
6h 10h (+4h)  

 
Implementation 

climate system 
6h 10h (+4h)  

 Producers design 2h 5h (+3)  

 
Producers 

implementation 
5h 10h (+5h)  

 

Research on 

environment design 

tools 

3h 5h (+2h)  

 
Research on 

pathfinding tools 
3h 5h (+2h)  

 Design tests 5h 20h (+15h)  

Implementation of each NPCs’ 

individual basic behaviours 
   90h - 285h (+195h) 

 Creatures Design 5h 5h  

 
Creatures 

Implementation 
10h 20h (+10h)  

 Home implementation 10h 20h (+10h)  
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 Creatures Movement 10h 30h (+20h)  

 
Detection system 

implementation 
5h 10h (+5h)  

 

Basic common 

behaviour 

implementation 

50h 
200h 

(+150h) 
 

Implementation of each type of 

NPCs’collective behaviours 
  0h 50h - 0h 

Interaction of behaviours based 

on interactions between 

different types of  

NPCs 

 

 
 0h 80h - 0h 

Final Implementation    40h - 0h 

 
Final environment 

design 
15h 0h  

 Environment building 20h 0h  

 NPCs Implementation 20h 0h  

 
Environment 

correction 
10h 0h  

Report elaboration    10h - 20h (+10h) 

    300h-405h (+105h) 

Figura 1. Table with time distribution 

 

 

Luckily, in the beginning of the project I could combine some research and implementation              

Tasks in order to accelerate the development of the project, but as it progressed I had to                 

complete some of the Tasks in order to continue with the next.  
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Had I worked with a full team, some tasks, like the ones related to the environment and the                  

development of basic behaviours could have been made concurrently. This way, it would             

have been easier and faster to check any errors and make sure both teams interact correctly.  

 

2.2 Resources evaluation 

 

If I had been paid for this project, I would have received a total amount of 3850 Euros with a                    

payment of 10 euros per hour. 
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3.  SYSTEM ANALYSIS AND DESIGN 

 

We will dedicate this chapter to the presentation of our project 's requirements, analysis,              

design and architecture, as well as a first look to the the design of the interface. 

 

3.1 Requirement Analysis 

 

In order to carry out our work we will make an initial analysis of the requirements. For that                  

reason, we will divide requirements into two types: functional requirements, which determine            

what NPCs and Producers do according to the information they receive, and non-functional             

requirements, which determine how it must be done regarding execution, safety and/or speed. 

 

Functional Requirements 

 

Aimed at NPCs and Producers. 

 

NPCs: 

 

 

  Input: Climate  

 

  Output: Behaviour 

 

Each creature will be assigned one or two beneficial or perjudicial climates             

that will influence their behaviour while they take place  
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  Input: Day phase 

 

  Output: Behaviour 

 

Each creature will be assigned a time schedule to perform in, which will              

determine the phases of the day that are dedicated to activity or rest 

 

 

 

  Input: Internal data 

 

  Output: Behaviour 

 

Each creature comes with a set of internal data that is updated with the               

passing of time. This data, like hunger, thirst or age, will determine their type              

of behaviour a given creature has. 

 

 

 

 

  Input: Creature nearby 

 

  Output: Behaviour 

 

Each creature has a detection system that simulates real senses. If there’s a              

creature within their senses’ reach, the creature will act accordingly to the            

relationship between them. 

 

 

 

 

11 



 

 

  Input: Producer nearby 

 

  Output: Behaviour 

 

Each creature comes with a detection system that simulates real senses. If             

there’s a producer within their senses’ reach, the creature will go feed on them              

if the producer is on their normal diet and is hungry. 

 

 

 

  Input: Water nearby 

 

  Output: Behaviour 

 

Each creature comes with a detection system that simulates real senses. If the              

creature detects water within their senses’ reach, the creature will go drink if             

they are thirsty. 

 

 

 

  Input: Food o Water 

 

  Output: Internal data update 

 

When a creature eats or drinks, its hunger or thirst bar will be updated               

respectively. . 
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Producers: 

 

 

  Input: Climate 

 

  Output: Food generation 

 

Each producer is assigned a series of climates or combination of favourable,             

unfavourable or extra favourable climates that will determine how long the           

production of food should take or how much it should produce 

 

 

 

  Input: Day phase 

 

  Output: Food generation 

 

In case the producer has run out of food, it will cost a certain amount of day                 

phases to produce again  

 

 

 

  Input: Creature 

 

  Output: Food decrement 

 

When a creature eats from a producer, it diminishes the amount of food             

available  
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Non-Functional Requirements 

 

Non-functional requirements for this project are the following: 

 

- The implementation must be efficient in order to be able to work with big groups of                

NPCs without altering the normal performance. 

 

- Control structures must be reusable for new types of producers and creatures.  

 

- Control structures must be scalable in order to be able to create more complex              

producers and creatures. 

 

3.2 System Design 

 

The functioning system designed for the elaboration of this work will be presented in the               

following charts with the purpose of showing the relationships between the different systems             

they seek to implement, according to the objectives we established before. 
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Figura 2. Class diagram of SceneController, WeatherController, DayNightCycle and UIController 

 

 

This first class diagram [Figura 2] shows the functioning of one of the bases of the project:                 

the day/night cycle and the climate system. A SceneController will be in charge of managing               

everything related to the environment’s information and processes. In order to do so, it will               

be assigned a climate and a daily cycle controller. In addition, it will also be assigned with a                  

user interface controller to manage part of the information that is shown on the screen. All                
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these controllers are classes derived from MonoBehaviour, the basic class of Unity that links              

it with its API. 

 

The DayNightCycle is in charge of the day/night cycle, for which, given the length in seconds                

of how long we want a cycle to last, it is divided into 4 parts: dawn, day, afternoon and night.                    

Whenever the phase changes, a message will be sent to the SceneController.  

 

After this, the SceneController will send a message to the ClimateController, which will             

select one of the three climates at random within a few parameters before returning it. 

 

Once these two data are obtained, the SceneController will activate the phase change event to               

which both the producers and the creatures are endorsed..  

 

The second diagram (Figura 3) shows how the Producers work. As we can see, it is a simple                  

scheme, since it has a Producer class and a Controller.  

 

The Producer class descends from the ScriptableObject class, which is a special class that              

serves as a data container. This data can be edited from Unity's own editor, making it much                 

easier to create different types of producers from a single database.  

 

The ProducerController is in charge of the behavior of the producers. For it to work, it needs                 

to have an object of the producer class in order to obtain the necessary data. One of the                  

benefits of ScriptableObjects is that when an object contains another of this type it does not                

generate a copy but a reference, so any changes made to the Producer object will affect all                 

references to it, even while at runtime. The ProducerController also endorses to the phase              

change event, which will activate the data whenever it is activated.  
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Figura 3. Class Diagram of ProducerController 

 

Next, we can see the class diagram (Figura 4) that exemplifies the functioning of the               

creatures. The base structure is similar to the producers’, with a Creature class that descends               

from ScriptableObject and contains all the information of the type of creature and a              
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CreatureController that manages the information and which descends from MonoBehaviour.          

In this case, the controller has other types of information, such as the resting place, the groups                 

they are a part of or areas where they can find food or water. In addition, the creatures have                   

other three more controllers, which are responsible for managing specific information and            

whose results will be passed to the main controller. These controllers are: the             

SenseController, whose job is to recreate the senses of sight and hearing by using a               

CollisionSphere, an object descended from the collider class that detects the objects it hits or               

that are within its volume, the InteractionController, which is in charge of checking when the               

creature's body interacts with another object thanks to a BoxCollider that works in the same               

way as a SphereCollider but with the volume of a cube, and, finally, a BehaviourController,               

which is in charge of managing the creature's artificial intelligence.  

 

The BehaviourController will be in charge of receiving the different triggers detected by the              

other controllers of the creature to update the behavior according to them. It also needs a                

BlackBoard, a type of object that acts as a bridge to pass specific information for the action to                  

be performed between the different controllers to the artificial intelligence.  

 

As we have mentioned before, the artificial intelligence that controls the creatures is a              

Hierarchical State Machine that includes Behaviour Trees. The structure of this can be seen              

represented in Figura 4.  

 

The HierarchicalStateMachine class is formed from States connected to each other through            

Transitions, which need a condition to be activated. Both states and transitions contain Tasks,              

the base class from which the behavior trees are formed. Finally, we have the              

SubStateMachines, a class that inherits from the State class, but has the same functionality as               

the HierarchicalStateMachine. In short, we have a HierarchicalStateMachine inside another          

HierarchicalStateMachine. 

 

As we have previously mentioned, the Tasks are the base of the Behaviour Trees, the               

structure unit that form the behaviour trees. As their name states, Behaviour Trees have a               

“tree” structure, in which each Task represents an action that can give as result SUCCESS if                

the Task is carried out successfully, FAILURE when is not or RUNNING if it is still too early                  
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to know the result. For that reason, some nodes are necessary in order to divide the tree in its                   

different branches. These are the class Composite, that contains and works with several             

children Tasks. According to how they do it, we have two big groups: Sequences, which try                

to execute each of their children in order until one of them fails or ends, and Selectors, which                  

execute their first child and only execute another one if the first one fails until it gets it right. 

Each one of these types has a pair of variants: one that is random and picks its children                  

randomly (in this case it can even repeat one several times) and the non-deterministic one,               

which organises its children randomly but executes them normally. 

 

Other types of node that only have one child are the Decorators, which add variation to the                 

behaviors. There is also Limit, that determines the number of times its child can try to                

complete a Task (return the value RUNNING), the REPEATER, whose child executes itself             

once the Task is over, the Invert, that inverts the value of the SUCCESS and FAILURE and                 

vice versa, the Succeeder, which returns SUCCESS when its child finishes the task and the               

UntilFail that makes its child repeat the execution until it fails. 

 

From the Task class we will also create the "leaf" nodes of the tree, that will determine                 

concrete actions such as moving to another place, calculating which is the source of food or                

any other action that we might need. 
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Figura 4. Class Diagram of CreatureController 
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Figura 5. Class Diagram of Hierarchical State Machine 
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Finally, we have a diagram that shows the functioning of some derived classes (Figura 5).               

The classes derived from Creature add a list of the foods that they consume. In the case of                  

Creature_Herbivorous, a list of Producers, in the case of Creature_Carnivorous, another           

creature, and in the case of Creature_Omnivore, both. Creature_Scavenger determines that           

the creature feeds on the remains left by another creature when it dies.  

 

Next, we can also find the Egg class, derived from ScriptableObject, which contains the              

information about the egg and the Creature that will come out of it. EggController is the one                 

that manages the behavior of the egg, like for example how many days it will take to hatch or                   

the heat it needs in order to fulfill its Task.  

 

Then, we have two group-derived classes that are mainly oriented to the familiar structures:              

the Leader_Group, which contains a Creature that guides the group, and the            

MultiLeader_Group, which has at least two Leaders that guide the group.  

 

Finally, we have the Home class, the place where the creatures go to rest or to give birth.                  

These contain one or more colliders that determine the territory that belongs to the creatures               

that inhabit it. This is also useful in order to know about the sources of food and water that                   

are found within this territory or a creature that is found inside or outside of it. The Territorial                  

class derives from this one, and it is designed for creatures that inhabit larger territories with                

multiple places to rest and that can add more territory to their domains by taking it away from                  

other creatures. 
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Figura 6. Class Diagram of some derived classes 

 
 
Although each creature will have its own behaviors, the basis from which they all start will                

be practically the same. This means that the State Machine used by each creature will have                

more or less the same structure, which can be seen in the following chart. The State Machine                 

(SM), called Behaviour is formed by the state Sleep, the one that starts the SM, and the Sub                  

Machine (SbM) Active.  
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From the Sleep state it is only possible to pass to Chill, the initial State of the Active SbM,                   

which represents the awakening of a creature. Active consists of two other SbMs, which are               

Chill and Triggered, and the states Tired and Alert. From Chill we can access both the Alert                 

state, if it detects a creature nearby, and Tired state, when it is low on life or it is close to the                      

time to rest, and from which you can also pass to Alert.  

 

From Alert we can directly access to Chill if the creature does not feel any danger, to State                  

Interaction in Chill if the creature nearby is friendly or a relative, or any of the states                 

contained in Triggered: Run if it is dangerous or cannot be fought or Attack if it is weaker or                   

a prey.  

 

Inside Triggered, Run can go into Attack if there’s no chance of running and Attack can go                 

into Run if the creature believes it is going to lose. From Triggered you can only access Alert                  

as a precaution in case there is more danger. 

 

Finally, there is the SbM Chill, that contains the states Satisfied, Hungry, Thirsty and              

Interaction. Satisfied is the initial state of Chill, which represents the behavior of the              

creatures when all their needs are met, so it can be passed to both the Hungry state when it                   

needs to eat or the Thirsty state when it needs to drink. Both Hungry and Thirsty can go into                   

Satisfied state if their respective needs have been met or into each other if they need to meet                  

the other. Interact has already been explained above, although it is necessary to explain its               

transitions as well. These are from Interact to Chill when the interaction ends or Thirsty and                

Hungry if one of these needs has to be covered during the interaction.  
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Figura 7. Base State Machine’s diagram 

 

3.3 System Architecture 

 

I have not taken into account the computer's minimum requirements for this project, since the               

main goal is to lay the foundations for the running of an artificial intelligence. 

 

3.4 Interface Design 

 

Since the most interesting part about this project is to create an ecosystem in which all of the                  

creatures can be seen performing realistic activities, the ideal interface would be something             

really simple that would give us the necessary information. For this reason, we are going to                

use a clean head-up display, initially with only the daily phase and the climate that can be                 

seen in the top left corner. 
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Figura 8. User Interface Scheme 1 

 

 

The user will be able to move freely into the scenario with a mouse. If the user wishes to                   

check the basic statistics of a creature that is seen on screen, it will only have to make a left                    

click on it and it will display a small additional interface that will show us the species of the                   

creature, the sex and the age and the health, hunger and thirst bars. In addition, the camera                 

will stay fixed on the creature until we make a left click again or just click on the scenario. 
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Figura 9. User Interface Scheme 2 

 

 

We will place a small button in the top right corner that will open or close a new interface when 

clicked. This interface will have a list of all of the creatures in scene, classified by species. When the 

user clicks in one of the creatures, the camera will move to their position and it will stay fixed on the 

creature and display all of its information 

 

 

Figura 10. User Interface Scheme 3 
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4. WORK DEVELOPMENT AND RESULTS 

4.1 Work Development 

Before the start of the implementation, I looked for information related to how real 

ecosystems work, as well as state machines and behaviour trees. Once I had gathered enough 

information, I started to design the ecosystem I wanted to create.  

 

My planned ecosystem was formed by three producers and five creatures as a way to include 

the most important links of the food chain. In addition, I also wanted to represent the three 

main forms of movement. For that reason, I did some research to observe real animals in 

order to create the creatures of the ecosystem, which are the following: a hare, representing 

the herbivores, a snake, representing the carnivores, a fox, representing the omnivores and a 

vulture, representing the scavengers. Besides, in order to include the movement in water 

(since the vulture represents the movement in air and the other creatures represent the 

movement in ground), as well as a contrast with a super predator (represented by a fox, since 

there are no predators in this environment), I decided to include semi-aquatic rhinoceros as a 

personal contribution, since these do not exist in nature. 

 

Regarding the producers, I picked grass, a berry bush and seaweed so that the creatures 

would have a variety to select from. 
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Figura 11. Trophic chain representation 

 
 

In order for this ecosystem to be in balance and for no link that can break the whole chain to                    

disappear, we will have to take different factors into account. These range from the climate               

itself and the distribution of the homes of each creature or group in the territory to the speed                  

of reproduction of both creatures and producers and the metabolism of each type of creature.               

For example, in our case, we should have a greater number of Hares than Foxes and Vipers                 

on a constant basis. On the side of the Vipers it is something simple, since the snakes are                  

creatures of slow metabolism that feed continuously and also have the Fox as a predator.               

Regarding the Fox, it is somewhat more complex, since they do not have predators, but at the                 

same time they have other sources of food such as the Vipers and berries, since they are                 

omnivores. 

 

Apart from this, as we have previously mentioned, we will have to take reproduction into               

account, allowing the Hares to reproduce faster and in greater quantities so that they are not                

easily surpassed in number with respect to their predators, while the latter should have less               

speed of reproduction or descendants. Another way we will regulate this is by limiting              

reproduction to only take place if the health of both individuals is above 75% and their                

hunger and thirst levels are above 33%. In addition, female mammals will not be able to                
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reproduce if their gestation period is longer than their life expectancy or while their offspring               

have not fully grown yet. 

 

For example, if Hares proliferate more than they should, this will cause Vipers and Foxes to                

proliferate, while the amount of food available will decrease. This will cause the number of               

Hares to drop again over time, as there will be little food and it will be more difficult to                   

reproduce since there will be more predators. This decrease in numbers will progressively             

lower the number of predators as there is not enough food for everyone until the overall                

balance is restored.  

 

This movement in the numbers of Hares would also indirectly affect the rhinos, since they               

share a large part of the diet, and vice versa. The Vulture would be the least affected in all                   

this, as their proliferation is related to the number of creatures that die, so a destabilization in                 

any sense of the ecosystem would benefit them until this is corrected. 

 

All these numerical factors regarding reproduction mentioned above can vary according to            

the needs we find in a given scenario to adjust the ecosystem. 

 

As we had established before, the daily cycle would be divided into four parts: dawn, day,                

afternoon and night, and the climate into three parts: clear, sunny and rainy. The amount of                

time necessary to complete a full cycle will stay open until the debugging phase, where we                

will check the appropriate length for all functions to be carried out by each creature. We                

made this decision when making the initial tests, since we needed them to be as quick as                 

possible in order to save time. Initially, we decided 40 minutes would be a suitable amount of                 

time, but, as we said, we will finally establish it once we have made more progress. 

 

However, regarding climate, we actually established from the beginning that the chance of a              

change in climate in every change of phase would be of a 15%, with a 50% of chances of sun                    

or rain and with a length that would go from 1 phase to 3 cycles (12 phases). Besides, when                   

there’s an altered climate, there must be two full cycles of base climate before changing               

again. 
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Once we had made these decisions, the next step was to indicate how the climate or the                 

phases might affect each living being, beginning with the producers because of their             

simplicity.  

 

Taking the real life producers as a model, we can see climate can affect them in the quantity                  

of production of food as well as in the amount of time they can take to produce again.                  

Normally, the rainy weather makes the atmosphere humid, which helps the growth of the              

producers, and the sunny weather makes them dry out more easily, which makes it more               

difficult for the producers to grow. However, if a plant receives sun and humidity, it grows                

and produces food faster. 

 

 

 

Grass   

Food Quantity normal 3-10 units 

 sunny 3-5 units  

 rainy 8-12 units 

 rainy +  sunny 15 units 

Regeneration normal  5-7 cycles 

 sunny 7-9 cycles 

 rainy 3-5 cycles 

 rainy + sunny 2 cycles 

Nourishment  3 (per unit of food) 
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Berry bush   

Food Quantity normal 20-30 units 

 sunny 15-25 units  

 rainy 25-35 units 

 rainy +  sunny 45 units 

Regeneration normal  7-9 cycles 

 sunny 9-10 cycles 

 rainy 5-8 cycles 

 rainy + sunny 5 cycles 

Nourishment  5 (per unit of food) 

 

 

Regarding producers, seaweeds are a different case, since they are constantly under water and              

they receive all of the humidity they could possibly need, so a rainy weather does not really                 

benefit them, since it only takes the much needed sunlight away from them.  
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Seaweed   

Food Quantity normal 10-15 units 

 sunny 15-20 units  

 rainy 5-10 units 

 rainy +  sunny 10-15 units 

Regeneration normal  5-7 cycles 

 sunny 5 cycles 

 rainy 5-10 cycles 

 rainy + sunny 5-7 cycles 

Nourishment  5 (per unit of food) 

 

 

In the case of creatures, the effect of the phases of the day is more explicit, since each type of 

creature is adapted to a fixed amount of sun and heat, so they restrict their periods of activity 

to certain phases of the day. Climate affects them as well, since it can change their behaviour. 

For example, they might extend their period of activity, reduce it or even stay inactive during 

the time the climate lasts. 
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Hare  

Health 30-40 

Food 40 

Water 40 

Life expectancy 12-16 cycles 

Growth  4 cycles 

Litter 4-6 

Speed 10/20/50 

Activity period Dusk-Night 

Favourable Climate Sunny (Activity extended to Dawn) 

Unfavourable Climate Rainy (No Activity) 
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Rhinoceros  

Health 200-225 

Food 250 

Water 200 

Life expectancy 40-45 cycles 

Growth  10 cycles 

Litter 1-3 

Speed 10/20/30 

Activity period Dawn- Day 

Favourable Climate Rainy (Activity extended to Dusk) 

Unfavourable Climate Sunny (Reduced Movement) 
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Fox  

Health 75-80 

Food 75 

Water 50 

Life expectancy 25-30 cycles 

Growth  6 cycles 

Litter  2-4 

Speed 10/30/40 

Activity period Dusk-Night 

Favourable Climate Normal 

Unfavourable Climate Rainy (No Activity) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36 



 

Viper  

Health 20-25 

Food 50 

Water 50 

Life expectancy 15-20 cycles 

Growth 4 cycles 

Litter 3-5 

Speed 10/20/30 

Activity period Day-Dusk 

Favourable Climate Sunny (Activity extended to Dawn) 

Unfavourable Climate Rainy (No Activity) 
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Vulture  

Health 100-125 

Food 100 

Water 100 

Life expectancy 30-35 cycles 

Growth 5 cycles 

Litter 3-5 

Speed 30 

Activity period Dawn-Day-Dusk 

Favourable Climate Normal 

Unfavourable Climate Rainy (No Activity) 

 

 

Apart from the relationships established through the food chain, we also seek to recreate              

other types of interactions between different creatures. We can differentiate these in two             

groups, having on the one hand the friendly relations which establish that two creatures will               

behave in a friendly manner between them, and the conflictive relations, in which, on the               

contrary, two creatures will face each other and will respond by attacking, defending itself or               

fleeing. 

 

Thus, based on the actual counterparts of the creatures, we have decided to establish that               

Hares are sociable creatures living in large groups led by a few alpha males and several                

females, as well as their offspring, inside a territory. They are territorial with members of the                
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same species that come from different groups, so they will seek to confront intruders if they                

are not predators. The moment a Hare detects the presence of an intruder, it will let the others                  

closer know this information and so on. The young hares will automatically run away to the                

burrow, while the adults will face the intruder as long as the intruder is not a predator, the                  

young are in danger or cannot escape. 

 

 

Continuing with the Vipers, they are solitary creatures with territories reduced to the place              

where they hide, so they have to venture out of it when hunting. In the case of crossing with a                    

member of the same species, as long as the mating conditions do not exist, they will show                 

which of the two is stronger by making the other one flee.  

 

Foxes are creatures that live alone or in small families of a couple and their offspring, but                 

they are very friendly. This means that they may form small temporary hunting groups with               

other foxes they encounter or even families if they are of opposite sexes and are not part of                  

one. When there are cubs in the family it is the male who is in charge of hunting while the                    

mother takes care of the cubs. 

 

Rhinoceroses are solitary and very territorial creatures among males and members of            

different species, often disputing territory among themselves. Females, on the other hand, get             

along between them, and can share territory and even play with each other. Females can also                

share territory with other males, not producing confrontations except in the case that she is               

accompanied by her offspring, in which case she will try to scare off any male. The only                 

species they are not aggressive with is the Hare, being able to play with them and protect                 

them from their predators. 

 

Finally, the Vultures also live in small families of a couple and their offspring. Vultures are                

not aggressive with each other as long as there is enough food for everyone. If there are eggs                  

or young in the nest, the parents will take turns looking for food to share with the others on                   

their return. 
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After having established all of these features, we start with the implementation. We start with               

the simplest but most necessary part: the day/night cycle. Since these project does not need to                

be visually realistic, we start with a very simple script we can find in the article of Twiik.net                  

[5] and simplifying it. This script receives as an input the desired length of a full cycle and it                   

divides it into four parts. 

 

In order to visualize these changes, we create a scene in Unity3D with a test scenario and an                  

empty object that will serve as a controller. We add the DayNightCycle script to this               

controller, as well as a new script, a Scene Controller that will be in charge of managing all                  

of the changes and data. Whenever there is a change in the DayNightCycle, the              

SceneController will be reported and it will keep it on the variable CurrentPhase, which will               

modify the intensity of the associated Light object [6] as it corresponds. 

 

 

Figura 12. Day/Night cycle implementation scene 

 

 

Once the day/night cycle is over, we will move on to the climate. For this part, we will create                   

a new script called WeatherController. As we mentioned before, this script will represent the              

changes in the weather that may happen at a certain area in a very simple way while                 

synchronizing them to the changes of the daily cycle. When there’s a change of phase, the                
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SceneController will be in charge of informing the new script, who will check the climate of                

the previous phase that’s kept on the variable CurrentWeather, how many phases has this              

weather laster in the variable Phases_Passed and how many phases had it been established to               

last for in the variable Phases_Duration. 

  

Then, it will make a decision based on the data we have explained at the beginning of this                  

section, for which we have created an easy variable in case there may be a need to make                  

small changes. The result of the decision taken by WeatherController is returned to the              

SceneController, who will keep it on its own variable CurrentWeather. In order to be able to                

visualize these changes in the climate we will create a system of particles associated to the                

SceneController, wich will be activated when the rainy weather starts and deactivated when             

it’s over. We will make some adjustments to the system of particles so that the particles fall                 

down at our desired speed and to give them a light blue color. In addition, the                

SceneController will also adjust the intensity of the Light object so that it gets brighter during                

sunny phases or darker during the rainy ones. 

 

 

 

Figura 12. Weather implementation scene 
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Lastly, we will create a script called EventController that will be in charge of managing the                

calling of events [7]. Events are quite useful for this project, since different Scripts may               

subscribe one of their functions to one event. Once this event is activated, all of the functions                 

that are subscribed to it will also be activated. In our case, we will create the event                 

PhaseChange (DayPhase phase, Weather weather) that will be activated by the           

SceneController after obtaining a new phase and climate. These data will also be taken to the                

event and it will distribute it to all of the subscribed functions.  

 

Now that we have finished with the day/night cycle and climate, we can get to work with the                  

Producers. 

 

Since all generators basically share the same characteristics and behaviors, we decided to use              

Unity’s Scriptable Objects. As we mentioned earlier, these Scriptable Objects [8]can contain            

data. This data can be modified from the same Unity inspector, and these changes can be                

applied to all of the references of this Object, even if they are being executed in the project,                  

which makes it a very useful tool. Thus, we create a Script Productor that descends from the                 

class ScriptableObject and to which we add the following line of code: 

 

[CreateAssetMenu(fileName = "Producer", menuName = "ScriptableObjects/Producer")] 

 

This will allow us to create new objects like ScriptableObject that will use the parameters of                

Productor that we will explain later just by doing a right click, selecting create and then                

Productor at Unity’s Project window. 

 

Next, we will move on to Productor’s data. As we showed in charts x1, x2 and x3, producers                  

have a series of parameters from which they will make a random decision about how many                

food to generate and how long it will take for them to generate it. This random decision is                  

taken within a range and it takes into account the current weather conditions. In order to                

simplify the amount of variables necessary we will need each of them to come from the type                 

Vector2Int [9], which allows us to keep two full values inside of them. Besides, we will need                 

another variable that will specify the amount of nourishment each unit of food supplies. After               
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creating the script we can move on to the Project window in Unity and create the                

ScriptableObject for each type of producer as we have previously explained and fill it with               

the data collected in the chart. 

 

Now that we have established the data from the producers we have to create the script that                 

will manage this kind of information: the ProducerController. This script comes from            

MonoBehavior and it will contain a Producer variable to which we can assign the              

ScriptableObject we want. When we initiate the scene, the function Awake from            

MonoBehavior will activate selecting all the models that represent food generated in the             

meshes vector [10] of the object we assign this script to and which will act as a productor.                  

Another function of the ProducerController is TakeFood(int x), which will be received as a              

parameter of full value that will be substracted to the amount of food the producer currently                

has, stored in the variable foodQuantity and returning the appropriate nourishment according            

to the intake of food. 

 

You cannot take more food than there is, because if you substract the value of x from the                  

current food and is less than zero, the difference will be subtracted before the nutrition is                

returned. When the amount of total food is zero the meshes will be disabled, making them                

invisible until we can activate them again, and we will generate a random value for the                

variable PhasesToReg, taking into account the regeneration values in a clear climate. 

 

The function RegenerateFood() will be called when the indicated phases of the day have been               

completed in PhasesToReg. The amount of food generated will be obtained randomly within             

the range associated to the climate that has been on while it was waiting and it will be kept in                    

the FoodQuantity variable. We can figure out the climate that has been going on thanks to the                 

Boolean [11] called rained or sunnied. Finally, we will reactivate the meshes by turning them               

visible. 

 

Finally, we have the PhaseChanged(DayPhase phase, Weather weather) subscribed to the           

PhaseChange event, which, after receiving the new phase and climate, will check if all of the                

PhasestoReg’s phases have been completed. If not, it will update the phase meter called              

PhasesPassed. Next, it will check if the new climate is sun or rain and it will update the value                   
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of PhasesToReg accordingly, as well as rained or sunnied so that it does not repeat it until it                  

regenerates. If sunny or rained are “true”, PhasesToReg will update with the corresponding             

value. If the new PhasesToReg is inferior to PhasesPassed it will be called             

RegenerateFood(). In order to finish with the script we will need a function that returns us a                 

Boolean that tells us if a producer has food or not which we will call HasFood() and that will                   

be used by the creatures. 

 

Once the script is ready, we can create the different objects we can associate it to and which                  

will represent a type of producer. 

 

By using the grass object in the scene of Unity, we create an empty GameObject [12] we will                  

call Grass and, inside of it, we will place another empty object called Food_Model, inside of                

which we will create several cubes that we will deform until the ensemble acquires the shape                

of grass. Once we’ve done that, we will add Grass to the ProducerController script, we add                

the corresponding ScriptableObject in the inspector and the variable Food_Meshes, from           

which we will assign the object we want it to take the meshes from in order to make them                   

invisible, and we assign Food_Model. Lastly, we add a RigidBody [13] and a BoxCollider              

[14] to Grass so that the creatures can detect it. Finally, we only have to transform the Grass                  

object into a prefab [15] by dragging it from the Hierarchy window to the Project one. 

 

In order to create seaweed we would follow the same process as we’ve done with Grass, but                 

the berry bushes would follow a slightly different one. We would basically need to create two                

children in the GameObject, one for the model of the bush and another one for the berries. 
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Figura 13. Bush, Grass and Seaweed models 

 

 

Now that we have completed the base of the project, we need to begin with the                

implementation of the creatures. 

 

Frist of all, we need to make the creatures move, because it would be impossible for them to                  

complete any of the behaviours we design if they can’t move around. We will use the                

NavMesh tool in Unity for that [16]. With this tool, we can create meshes from the scenario                 

through which our NavMesh Agents [17] can move. These agents will use these meshes to               

trace the fastest path from their actual position in the mesh to another one (the so called                 

pathfinding), avoiding obstacles and other Agents on the way. 

 

After creating a new scene we create the scenario we want our objects, in this case, our                 

creatures, to move in. Next, we create an empty object we will call NavMeshController and               

to which we will add the NavMeshSurface [18] controller. After hitting the “bake” button in               

the inspector, it will generate a mesh from the scenario. The bake of the mesh is built taking                  

into account the objects of the scenario, the slopes and the steps. If we want it to only take                   

into account certain objects when creating the mesh, we can simply select them, just as it says                 

in  Unity's documents [19]. 
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Next, we have to create any Object in the scene, assign the NavMesh Agent to it, as well as a                    

script to which we will indicate that when the user clicks on the scenario, that spot will be                  

fixed as a destiny and the creature will move to it. 

 

This is the most basic move we can create, but since we have different types of creatures with                  

different sizes and even some with different ways to move, we need to make it more                

complex. In the Navigation window inside of Agents, we will create a different type of Agent                

for each creature, to which we can assign the height and width values of the Agent (since it’s                  

shaped like a cylinder), as well as the maximum height of the steps it can overcome and the                  

maximum gradient angle. Next, we will create a prefab for each creature to which we will                

assign the NavMeshAgent component, and inside of ir we will select the corresponding type              

of Agent. 

 

Next, in a new scene we will create a more complex type of scenario. In order to do so, we                    

will use the ProBuilder [20] and ProGrids [21] assets, available at Unity’s AssetStore. After              

installing them, we will create a new empty object that we will call Scenario. In there, we will                  

create a plan we will call Terrain and that we will modify with the Probuilder tools. In these                  

modifications we will generate a series of depressions in the terrain and then we will separate                

the original mesh, creating new objects we will place inside Terrain. We will use this to                

associate a NavMeshModifier [22] component to each of these objects, which will allow us              

to assign a different area to this object. 

 

The NavMesh areas mark out the area or the type of terrain inside a mesh, but we can assign                   

higher costs when doing the pathfinding, so that we can avoid going through this terrain as                

much as we can. We can also decide which areas we want the object to displace in from the                   

Area Mask in the NavMeshAgent component of each prefab. 

 

For this project we will need two different areas, apart from those who are given by default:                 

Water with a cost of 3 and Skye with a cost of 0. The Water area will be assigned to the                     

objects we have separated in the initial mesh. We will create a new transparent plan placed                

slightly above the scenario and we will assign the sky area. 
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Lastly, before making the bakes we need to take into account that it is possible that I might                  

need to go from one mesh to another. For example, in the case of vultures, they will move                  

from Sky to the ground to feed or rest. We may also want to go from one area from the same                     

mesh to another one that is close but not necessarily connected. To solve this problem we use                 

the NavMeshLink [23], componentes that allow us to create connexions between two            

NavMesh, allowing a creature to go from one to another when it enters a limited area, as well                  

as to assign an Area to the link. 

 

In the case of Vulture, we will need to be able to go up or down from any point of the mesh.                      

For that reason, we will create a prefab that will contain a NavMeshLink component that we                

can spawn in any place to adjust it to suit our needs and then destroy it once it’s used. 

 

Lastly, for each type of creature we will need to add a NavMeshSurface to the               

NavMeshController and adjust it to their characteristics. 

 

 

 

Figura 14. Testing NavMesh Scene 
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Now that we have sorted out how to create movement, the next step is to create a detection                  

system that imitates a real animal’s senses. This is quite simple, since we only need to create                 

a new empty object inside the corresponding prefab of each creature. This empty object will               

be called Senses and we will add a Sphere Collider [24] component with a marked Is Trigger                 

variable and a Script called Senses to it. This script derives from MonoBehaviour and it will                

detect when an object enters inside the Sphere Collider, then check the distance and direction               

from the centre of the collider and, if it's within the creature’s range of vision, it will figure                  

out what type of object it is. In order to avoid detecting unnecessary objects, we will create a                  

series of Layers dedicated to specific objects such as creatures, producers, water, terrain and              

other creature’s senses. We can also detect a creature through hearing, so whenever it enters               

inside the Collider, we will check how loud the noise is and we will decide if it detects it or                    

not.  

 

Now, we move on to create the collision system. In order to do so, we create an empty object                   

inside the creature’s Prefab called Body, which will be in charge of carrying the model of the                 

creature. Body will have a Box Collider associated to it, whose dimensions will be adjusted to                

the size of the boy. We also add a Script called Interaction that will be in charge of detecting                   

when a creature is touching food, water or another creature. 

 

 

 

Figura 15. Hase Prefab 
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Finally, we need to create the rest area. In order to do that, we will create a new prefab that                    

will serve as the base for the other rest areas. This prefab Home will have two children:                 

Meshes, the one that will contain the model and a Sphere Collider, and Territory, the one that                 

will have a Sphere Collider and a marked Is Trigger associated to it. This Sphere Collider                

will delimit the territory belonging to the inhabitants of the rest area. Home will have an                

associated script that will be also called Home. This script will be in charge of managing the                 

groups of creatures that inhabit it, saving the information of the places where they can find                

food and water inside the scenario, as well as spawning new creatures when a pregnant               

female that is in the group meets the gestation time or when the project starts. In the event                  

that the number of individuals of a particular species is excessively high, the SceneController              

will warn the different Homes containing this species so that they do not generate new               

creatures until the number is stabilized. Similarly, SceneController will warn the Homes to             

forcefully increase the number of individuals in case the number of individuals is too low. 

 

The new creatures will only be spawned when the phase of the day when they begin their                 

activity starts, so they will need to have a function subscribed to the PhaseChange event. For                

this reason, it will need to contain the data from the Scriptable Object of the creature. In                 

addition, it will save all of the generated creatures inside a Group class, and the creatures will                 

get deleted after they have died. Since this script derives from Monobehaviour, it will also               

use the Awake function, in which it will cast a SphereCollider the size of the territory in order                  

to detect all sources of water and producers in the area the creature can feed from and then                  

pass them on to the spawned creature. Creatures will be able to update these lists with new                 

places where they have found food outside the territory or water. 

 

When a creature grows up, if it has no place within the group it will abandon the group and                   

the Home, going in search of a new one that is not inhabited or that has a group with enough                    

space. If a Home loses all the creatures in the group it will remain empty again. 

 

Now that we’ve created everything we need in order to build the creature’s behaviours, we               

need to move on to the creation of the Scriptable Object Creature that we will be using as a                   

base to store every creature’s information. Its functioning is quite similar to the producer’s,              

but it also contains the information from the charts we showed at the beginning of this                
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section. Now, we have to create the scriptable object of each creature and fill it with the                 

corresponding data. 

 

 

Figura 16. Rhino, Hase, Fox, Viper and Vulture Models 

 

 

Next, we create the CreatureController script that will be in charge of managing the              

creature’s internal and external data. This script derived from MonoBehviour will take the             

data from the ScriptableObject in order to establish the maximum life, the amount of food               

and water etc. at the Awake function. This data should be updated every few seconds,               

reducing the amount of health, water and food in case there wasn’t enough previously. The               

number of seconds between updates will vary according to the creature's metabolism and may              

be slower and last longer with less food than other creatures. We will use the IEnumerator                

[25] for that. IEnumerator are lines of code that execute parallely to the script they belong to                 

so that they don’t hinder their own functioning. CreatureController will also be in charge of               

receiving data about the changes of phase and climate, and for that reason it needs to have a                  

function subscribed to that event. 

 

Before we can implement each creature’s behaviour and their controller, we must implement             

the base of the artificial intelligence. As we have previously mentioned, we intend to use               
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Hierarchical State Machines in this project, because they can contain other State Machines             

inside of them and combine them with Behaviour Trees. In order to implement the HSM, we                

resorted to the pseudocode that we can find at AI for Games [26] in the chapter dedicated to                  

Decision Making. This pseudocode contains a small error that we had to fix in order to                

achieve our goal. It was a very simple error: the update function returned us back to the                 

“Action” list instead of an object of the UpdateResult class. Apart from that, we had to adapt                 

the code, since C# does not allow a double inheritance, so it made the SubStateMachine               

inherit from State and it added the UpdateDown function from the StateMachine. We also              

had to change the Action class using the Task class, which would be the base of behaviour                 

trees. 

 

We used the code we found in Reddit called Simple Behaviour Tree implementation for              

Unity [27] for the creation of the Behaviour Trees after several attempts to implement the               

pseudocode proposed by the author of the book previously mentioned. We also modified             

some of the parts of the original code in order to create new nodes, like the                

NoDeterministicSelector and the NoDeterministicSequence [28] proposed by Millington, as         

well as the BlackBoard used for the communication between the the CreatureController and             

the Tasks, as well as creating new Leaf nodes with personal actions the creature will share.                

Now that we have implemented the base of the AI, we only need to create the controller that                  

will manage it. 

 

This controller will be the CreatureBehaviour script that derives from MonoBehaviour and            

that will contain a reference to the CreatureController of the creature. This script will create               

a new BlackBoard when initiated, and it will also contain a Hierarchical State Machine and a                

list of Tasks. CreatureController will be in charge of calling the function updateHSM from              

CreatureBehaviour each time an event is triggered. The updateHSM function will call the             

update of the HSM, which will study if the trigger received causes any changes in the                

behaviour of the current state and it will return a list of Tasks as an answer. This list of Tasks                    

will be executed by an IEnumerator in order to avoid performance problems, recreating the              

creature’s behaviour under the corresponding trigger. 
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After trying this, we created a new script that inherits from this CreatureBehaviour class              

called HareBehaviour, since we are going to try it on this creature. Instead of the               

CreatureBehaviour, we assign HareBehaviour the prefab and inside of it we initiate the new              

HSM with its states, SubHierarchicalStates, Transitions and BehaviourTrees. This test HSM           

is a simplified version of the one presented in the section 3.2 and it only has the                 

SubStateMachine Chill inside of active. We have also withdrawn the State Interact from it.              

Now we create a new scene with a home that spawns a hare, some generators and water. 

After many tests and trials, and many attempts to correct errors, we haven’t achieved our               

main goal, since the behaviour does not work completely well, but we do not have any more                 

time to continue with this project.  

 

4.2 Results 

 

After plenty of research and many hours spent implementing, we have completer a functional              

day/night cycle, although it is not completely correct since we run out of time to properly                

finish it. We have also managed to create a functional Climatic system that we could expand to                 

other types of climates.  

Regarding generators, we have managed to create a functional structure from which we could              

recreate almost any type of generator. With respect to creatures, we have created a functional               

detection system based on sight and hearing and a structure from which we could recreate               

almost any existing creature in the real world as well as their behaviours grosso modo.               

Unfortunately, we haven’t completed the main objective of this project, which was to place              

several types of creatures in a scenario to interact between each other as they would normally                

do. 
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5. CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions 

 

The main problem I had with this project is that I was too ambitious. I was trying to                  

do so much with very little time and resources. The situation we live in today didn’t help                 

much, because the COVID-19 pandemic has had a huge impact and we have been affected in                

many aspects. Although I haven’t completed my main goal, I am really proud of the work I                 

have done, because I have managed to finish almost everything I had set my mind on doing. I                  

would have really loved to finish this project, because I know I have dedicated myself               

full-time to it and I know in other circumstances, and with a little bit of help, I could have                   

definitely finished it on time. 

 

5.2 Future Work 

 

I was thrilled to make this project, especially because I really believed I could use my                

results in future video games. I really hope I can finish it some time in the future and improve                   

many of its parts. I believe I could implement different forms and stats depending on the age                 

or gender of each species of creature or I could improve Artificial Intelligence using Fuzzy               

Logic and Fuzzy State Machines. I have so many ideas for this project it’s such a pity I                  

couldn’t make it on time. I know someday I will finish this project, just to prove myself I was                   

capable of doing it and also because I believe it will be really useful in the future. 
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