

DOWNBEAT
DEVELOPMENT OF AN ADAPTIVE COMBAT SYSTEM

BASED ON THE USE OF THE DOWNBEATS AND UPBEATS
OF A MUSICAL PIECE.

Pablo Lorente Martínez

 VJ1241 — Bachelor’s Thesis

Degree in Video Game Design and Development

Advisor: Vicente Cholvi Juan

July 3, 2020

⠊⠞⠄⠎⠀⠗⠁⠊⠝⠊⠝⠛

⠎⠕⠍⠑⠺⠓⠑⠗⠑⠀⠑⠇⠎⠑

ABSTRACT
This document presents the Final Report of a Bachelor’s Thesis in the Degree in Video Game
Design and Development.

The project consists of the composition, production, implementation and analysis of a dynamically
changing musical piece and the development of a playable demonstration of a unique, challenging
and innovative combat system based on three main concepts: rhythm, strategy and reactivity.

This combat system is oriented to boss fights and proposes a symbiotic relationship between
music, visuals, narrative and mechanics. Therefore, in addition to mainly dealing with aspects
related to the combat demonstration, this document will also cover narrative aspects of DownBeat
—the complete game to which this combat system would belong— with the intention of facilitating
the understanding of both the musical and the non-musical narrative background.

KEYWORDS
● Game developing.

● Combat system.

● Musical composition.

● Adaptive music.

● Artificial intelligence.

INDEX

1. INTRODUCTION 1

1.1. Work motivation 1

1.2. Related subjects 1

1.3. Objectives 2

1.4. Tools 3

2. PLANNING 4

2.1. Tasks and expected duration 4

2.2. Dependencies and expected order 5

3. DESIGN 6

3.1. Sinopsis 6

3.2. Narrative background 7

Involved Characters 7
Preceding events 7

3.3. Mechanics 9

Basic concepts 9
Attack 11
Block 11
Special Techniques 12
Cut 13
Movement 13
Statistics and values 14

3.4. User Interface 17

Player status indicators 17
Enemy status and numerical indicators 18

3.5. Battle against Garad 19

Enemy attacks 19
Enemy techniques 19
Phases and behaviour 20

4. SOUNDTRACK 21

4.1. Introduction 21

4.2. Inspiration 21

4.3. Instrumentation 22

4.4. Leitmotivs 23

Fate 23
The Hero 24
The Beast 25
Home 26
Ursa Major 26

4.5. Sections of the soundtrack 27

Introduction: Prophecy 27
Interlude I: Steel Tempest 27
Phase I: Hunt 28
Interlude II: Mediation 28
Phase II: Determination 29
Interlude III: What Could Have Been 29
Phase III: A Terrible Fate 30
Interlude IV: An Empty Vessel 30
Phase IV: Conflagration 31
Coda: And Then Fate Rewinds 31

5. WORK DEVELOPMENT 32

5.1. Rhythm system 32

Rhythm bar 32
Circular design 33
Implementation 33
Auto-synchronization system 34
Scheduling system 34

5.2. Combat system 35

Success rate 35
Movement 35
Attack 36
Health 36
Ammunition 37
Block 37
Special techniques 38
Cut and offbeat 38

5.3. Enemy behaviour 39

Artificial intelligence 39
Counter 40
Attacks and techniques 40

5.4. User interface 42

Dialog box 42
Numerical indicators 43

5.5. Animations and visual effects 44

Combat animations 44
Visual effects 46
Camera behaviour 47

5.6. Dynamic soundtrack 48

Learning stage 48
Soundtrack adaptation 48
Implementation 49
Sound effects 50

5.7. Testing and debug 51

6. RESULTS 52

6.1. Time balance and deviations 52

6.2. Completion of the objectives 56

6.3. Links 57

7. CONCLUSIONS 57

BIBLIOGRAPHY 58

1. INTRODUCTION

1.1. Work motivation
Interaction between the user and the work is the most distinctive feature of the video game as an
form of artistic expression. Therefore, designing and implementing a unique, surprising and
engaging form of interaction is an essential step for a video game to achieve excellence. Recent
examples —such as Sekiro: Shadows Die Twice [1], Doom Eternal [2], Undertale [3] or Super
Hexagon [4]— achieve this effect through carefully designed mechanics or giving a surprising and
effective twist to the mechanical thropes of their genres.

As forms of artistic expression, video games usually aim to transmit certain emotions, sensations
or stories to the player through the narrative. However, is frequent to attempt to integrate the
narrative into the game by conceiving it as an addition to the mechanics instead of conceiving both
things —the mechanics and the narrative— as the same whole. As a consequence, praxis brought
form other art forms are used to overcome this problem in a way that is far from optimal and that
greatly misuses the video games’ potential as interactive audiovisual artworks: long cinematic
sequences or texts in which most of the narration of the story is encapsulated separately from the
playable part of the game.

This project was born as a proposal to unify both of this aspects towards the development of the
video game DownBeat, a personal project in which I intend to address interesting and
unconventional topics and concerns through a very emotional story displayed by charismatic
characters, a rich original leitmotiv-based soundtrack, a simple and clean graphic style and a
unique, dynamic and exciting combat system in which music, narrative and mechanics feed each
other in a symbiotic relationship.

1.2. Related subjects

● VJ1222 - Video Game Conceptual Design.

● VJ1236 - Sound Production Techniques.

● VJ1227 - Game Engines.

● VJ1231 - Artificial Intelligence.

● VJ1208 - Programming II (Computing).

Page 1 — Pablo Lorente Martínez — DownBeat

1.3. Objectives

● To develop a unique, dynamic, enjoyable and exciting combat system that may explore the
fight between the player and the enemy as a dance in which every opponent have to choose
—in real time and following the beat of the music— the most appropriate techniques to react
to the enemy movements.

● To develop this combat system in order to allow victory at first try with only a basic knowledge
of the moves, mechanical skill and reflexes, but also to be challenging and deep enough to
allow improvement and perfectioning through practice and memorization of patterns, as
happens in Undertale, Sekiro: Shadows Die Twice or in the dance itself.

● To coordinate the mechanics with the music, the visuals and the rest of the narrative section,
in order to transmit to the player the rhythm, the thrill and the emotional singularities of every
phase of the battle.

● To compose and produce an original soundtrack that, through programming and middleware
[5], dynamically adapts to the various phases of the battle and changes depending on aspects
as status conditions, remaining health, etc.

● To develop varied patterns of enemy attacks that may be consistent with the musical
development of the soundtrack in each phase, and an artificial intelligence that allows the
enemy to assess which patterns to use and to strategically act in response of the player when
this patterns are interrupted.

Page 2 — Pablo Lorente Martínez — DownBeat

1.4. Tools
The game engine and main tool for the development of the demo is Unity3D. Third-party libraries
and assets have been used in order to cover those aspects that are necessary for the the playable
demo but that do not fall within the objectives of the project, such as character models,
environment, animations, etc. For example, iTween library is used for the most basic animations
such as simple translations, rotations and scaling, while most of the models and complex
animations are from Mixamo. The rest of the 3D assets have been created in 3DS Max.

The programming tasks have been performed using C# and Visual Studio IDE.

GitHub has been used for version control and backup managing.

Toggl has been used for keeping track of the hours spent in each task.

The soundtrack has been composed and converted to audio files in Sibelius.

The mix and production of the final track have been performed using Audacity.

The middleware used to implement the dynamic soundtrack is Wwise.

This report and the previous documents have been written using Google Docs. In the same way,
the presentation has been composed using Google Slides.

Diagrams have been made using Draw.io.

Graphic design and 2D art tasks have been performed using Adobe Photoshop CC 2019.

The playable demo is compiled for Windows 10 and the input system is configured to play using a
Nintendo Switch Pro Controller.

Page 3 — Pablo Lorente Martínez — DownBeat

https://unity.com/
http://pixelplacement.com/itween/index.php
http://pixelplacement.com/itween/index.php
https://www.mixamo.com/#/
https://visualstudio.microsoft.com/
https://github.com/
https://toggl.com/
https://toggl.com/
https://www.avid.com/sibelius
https://www.audacityteam.org/
https://www.audiokinetic.com/products/wwise/
https://docs.google.com/
https://docs.google.com/presentation/
https://app.diagrams.net/
https://www.adobe.com/products/photoshop.html
https://www.microsoft.com/en-gb/windows/
https://www.nintendo.com/switch/buy-now/#accessories

2. PLANNING

2.1. Tasks and expected duration
To design and script the whole battle, including the different enemy attack patterns, the
different phases of the battle and the narrative and emotional singularities of each phase.

6h

To compose and produce a musical piece adapted for its use in a battle with different phases
of undefined duration.

36h

To learn the basics of a sound middleware like Wwise or Fmod. 12h

To prepare a system for dynamically alter the music depending of the current phase of the
battle and various events and variables.

24h

To design and program a rhythm bar system that keeps synchronized with the music and the
visuals anytime.

6h

To program the movement of the player on a circular grid centered on the enemy. 3h

To design a combat system structured over the idea of acting on downbeats or upbeats and
that presents, at any moment, different interesting options to counter enemy moves.

12h

To program this combat system, with values for damage, block and success chance that
depend on the player’s accuracy when pressing and releasing the buttons following the beat.

30h

To program the artificial intelligence for the enemy and their attack patterns. 12h

To design and program the combat UI. 4h

To implement the transitions between phases, including programming, UI and animations. 4h

To design and program the camera behaviour. 6h

To search and choose the graphic assets for the scene, design it and set it up. 6h

To develop visual feedback on the scene that helps the player to visualize the rhythm. 6h

To search, choose and implement the characters models and animations. 8h

To design and implement the visual effects and the sound effects. 12h

To test and fix bugs and design errors. 36h

To write the project’s report. 48h

To prepare the presentation. 29h

Total expected hours: 300h

Page 4 — Pablo Lorente Martínez — DownBeat

2.2. Dependencies and expected order

Page 5 — Pablo Lorente Martínez — DownBeat

3. DESIGN
An essential aspect to understand the project is to acknowledge what role would each of its parts
play in a complete game and what would be the relationships between them and the rest of the
parts of the game. For this reason, this section offers, in addition to information about the design
of the combat system and the musical section, a synopsis of DownBeat —the complete game to
which they would belong— and a brief introduction to the narrative background of the two
characters involved in the battle.

3.1. Sinopsis
It’s getting dark. The protagonist sleeps leaning against the window of an almost empty bus on her
way home —or, at least, what was once her home. Four years after her departure, she returns to
the small town that saw her grow after finishing her stay at the University. At the bus stop, her
grandmother and her two best childhood friends are waiting for her. Despite being happy to meet
them again, she cannot ignore the feeling in his stomach that tells her that, after so long away,
nothing can be like before.

Her return home will coincide with a great stir in the town, with deep folkloric and religious roots,
where stories and prophecies have a pronounced weight in the lives of the inhabitants. A series of
strange events will increase the strength to an ancient legend that tells of the arrival of a beast
that will bring ruin and death to the land that nourished its nascency. The disappearance of a child
will be the last straw and will spread panic among the inhabitants. Determined to find the little one
and put an end to the misfortunes that torment the town, several young people from the town,
including the protagonist, enter the forest aiming to end the life of the beast.

Nevertheless, the forest trails are wayward and wind their way through a sinister limbo where the
barriers between the world of the living and the the dead vanished long ago.

DownBeat presents a story of magical realism that, using the great assets of the medium, involves
the player in a fascinating and fun world, full of charismatic and familiar characters, overwhelmed
by their own circumstances. DownBeat explores day to day topics like interpersonal relationships,
insecurities, guilt, family bonds, and loss, but it also explores larger themes like life after death,
ideals, or how beliefs and expectations sculpt the destiny of people.

Page 6 — Pablo Lorente Martínez — DownBeat

3.2. Narrative background

Involved Characters
Protagonist: The player decides her name at the beginning of the game and will be moderately free
for shaping her behavior. She has just finished her stay in the University and returns home, but she
no longer feels that she belongs there. She is full of insecurities and is afraid of not meeting the
expectations that people have of her. She often boycotts herself unconsciously seeking
acceptance or compassion.

Grandma: Fun and tired-minded, perhaps because of her old age or perhaps because she always
liked the world that tales and old stories proposed to her more than the world that the war left her.
Behind her apparent nonsense there is a lot of wisdom, and the initial rejection of her teachings by
the protagonist will give way, throughout the game, to acceptance and reconciliation with others
and with herself.

The Beast: A mysterious entity that stars in an ancient legend. Little is known about it, but it
seems to be the cause of the strange events that flood the inhabitants of the town with fear.

Garad: The oldest of the last generation of the Hunter's bloodline, a respected lineage of defenders
of the village, ruled by the strict values of loyalty and honor. It is said that several of his ancestors
perished before The Beast when trying to hunt it down in his previous appearances. According to
family history, his destiny as the firstborn is to stop The Beast by giving his life in return. For this
reason, like his predecessors, he has grown keeping always in mind that, when the time comes, he
will have to die to rid his people from greater evil. Reserved and determined, this young man
assumes his role as defender of the village as soon as the return of The Beast becomes more
evident, with the disappearance of his little sister.

Preceding events

During the climax of the first narrative act, at a critical moment during the rescue of the missing
child, Garad reveals his weaknesses and insecurities, leading to a scene where the ties between
him and the protagonist strengthen. At the end of this first act, the protagonist and the hero return
to the village with the child, but without a trace of The Beast.

Before returning to the hunt, they decide to take a rest night and leave at dawn. That night, Garad,
the protagonist and her grandmother gather around the bonfire to talk. At one point in the
conversation, when addressing her granddaughter, the grandmother asks her for her name. The
protagonist attributes it to old age, and a possible neurodegenerative disease that has been
glimpsing for a long time, and becoming increasingly more evident.

Grandma doesn’t seem satisfied when the protagonist answers the name that the player decided.

—So, what’s your real name, then? Did you have a name before waking up in that bus?

Page 7 — Pablo Lorente Martínez — DownBeat

Suddenly, doubt begins to invade the mind of the protagonist. Grandma continues:

—Everyone in the village had our names, our lives, our history and our traditions before you
arrived. My granddaughter also had a name. But your name... My daughter did not choose that
name of yours. No, no... Everyone in the village seems comfortable calling you that, but... [Name of
the protagonist]... That’s not my granddaughter's name.

The conversation flows, and Grandma, who seems to be talking nonsense, looks more lucid than
ever. Can the protagonist remember the name of her parents? No, since the player has not been
given that information at any time. How is it possible that the protagonist does not remember even
the name of her own parents?

—I know you do not belong to this world —continues Grandma—, I know that you are traversing
by and you need this body to exist in our world. Don't be afraid, it's not a bad thing. We are all like
this... just souls that occupy a body in order to exist in this world until our time comes. Still, we all
keep memories of our time in this world: A name, a family… You are different. And it worries me.

Confused, the protagonist keeps her gaze fixed on the fire. A torrent of doubts prevents her from
articulating a word. The crackling of the fire and the calm song of the crickets is the only thing that
dares to break the silence. An idea emerges into her mind, and let she lets her heart speak for her:

—“The arrival of The Beast shall bring ruin and death to the land that nourished its nascency”,
that’s what the legend says.

—”And they who have the Hunter's blood coursing through their veins shall cease the calamity…”
—Garad's voice becomes weak and trembling— “...by sacrificing their own life”.

—”And then, fate rewinds” —adds Grandma—. It has always been like this. No one remembers
how it started, but this is the terrible fate that the village is doomed to repeat. Until the end of
time.

The protagonist breaks down in tears.

—But Grandma, I… I don’t… —she can't finish the sentence.

The protagonist's crying fills the calm atmosphere of the night. Soon, a metallic jingle catches the
protagonist's attention: Garad picks up his lantern, his halberd and his pike, and leaves this latter
on the protagonist's lap.

—Tomorrow at dawn at the entrance to the forest, we will finish this —says Garad, with his voice
trembling like never before—. Is the only way. At least we’ll do it together.

Garad fakes a smile, but several tears sparkle in the air as he turns to pass through the gate of
Grandma's neglected garden for the last time. The next day, waiting for Garad at the agreed site,
only his pike is found. The protagonist has entered the forest to hunt down The Beast and prove
her innocence. A wayward soul that refuses to accept the destiny that has been imposed on it.

With a lump in his throat, Garad enters the forest to hunt her down. When their destinies cross
again, weeks later, the protagonist will have discovered important clues about the true nature of
The Beast and the curse of the village. However, Garad's blind obstinacy to fulfill his destiny and
protect his loved ones is stronger than anything the protagonist can say. Bound by a terrible fate,
they will have to fight one last battle, but, this time, against each other.

Page 8 — Pablo Lorente Martínez — DownBeat

3.3. Mechanics

Basic concepts
Downbeats and upbeats: Both the combat and the soundtrack are structured around two musical
concepts, downbeats and upbeats. The music, despite having more complex secondary rhythms,
has a constant basic rhythm that consists of the alternation between strong and low beats, such as
the kick drum (beats), and weak and sharp beats, such as the snare (upbeats). Some movements,
such as attacks, can only be performed on downbeats, while other movements, such as special
techniques, can only be performed on upbeats. For visual clarity, all the actions and UI elements
related to downbeats are blue, while the ones related to upbeats are orange.

Rhythm circle: The rhythm circle is a tool that tells the player when downbeats and upbeats
happen in a very visual way. This circle is located at the bottom of the screen, between the health
bar and the ammunition indicator. The circle grows and shrinks to the rhythm. When the circle
reaches its minimum size, it glows blue —indicating the perfect moment for performing an action
on downbeat. When the circle reaches its maximum size, it glows orange —indicating the perfect
moment to perform an action on upbeat (See Figure 1).

Success rate: The precision with which a command is used to the rhythm of the music determines
its success rate. The success rate not only determines if the activity fails or not, but also
determines numerical values such as the damage that an attack can deal or the amount of damage
that a block can protect from, for example. Success rate is shown as a percentage, with 0% being
the lowest achievable value, and 100% being the highest.

Combat grid: Combats take place on a grid constituted by three concentric circles divided by six
radii, resulting in three rings (inner, middle and outer) made up of six squares each. The enemy is
always placed in the center of the grid, and the player is initially placed in one of the squares of the
inner ring. The squares light up in advance indicating danger when an enemy attack or technique is
going to inflict damage on those squares.

Figure 1: The rhythm circle, indicating a downbeat and an upbeat, respectively.

Page 9 — Pablo Lorente Martínez — DownBeat

Offbeat: Offbeat is an altered status effect that causes to be unable to perform any action until
achieving a perfect success rate. While the player is afflicted with the offbeat status effect, both
the music and the visual representation of the rhythm fade, increasing the difficulty to achieve a
perfect success rate (See Figure 2).

Phases: The combat is structured in phases. In each phase, the enemy can use various series of
attacks, blocks, techniques and cuts to try to reduce the player's life to 0. Likewise, the player can
use the mechanics described below in order to survive and reduce the life of the enemy. The
enemy's behavior and attack patterns can vary in each phase. During every phase, action is
rampant and uninterrupted. Between phases, the action momentarily ceases to give the player
time to mentally prepare for the next barrage of enemy moves. In this period of rest between
phases, an increasing tension is built through small capsules of written narration, music and
different camera shots.

Figure 2: Visual comparison between not being afflicted (up) and being afflicted (down) by the offbeat status effect.

Page 10 — Pablo Lorente Martínez — DownBeat

Attack
Pressing and holding the A Button1 on a downbeat starts loading an attack. By
releasing the A Button after one bar —on the next downbeat—, the attack is
performed. The success rate achieved when pressing the button determines
whether the attack hits or fails, while the success rate achieved when releasing
the button determines the amount of damage to be inflicted. In addition, if the
success rate is 100%, the attack is critical. Critical attacks deals 150% of the
attack damage.

There are two types of attacks: melee and ranged. Attacking from the inner ring results in a melee
attack, while attacking from any other point of the grid results in a ranged attack.

Ranged attacks require ammunition. Each ranged attack consumes a bullet of a cumulative
maximum of four bullets. The fourth bullet in each charge is powered: by consuming this bullet, the
player can perform an attack that deals double damage and heals a percentage of their maximum
health.

Melee attacks do not require ammunition, but are more risky as they require staying close to the
enemy. Critical melee attacks reloads a bullet into the chamber. In this way, the game encourages
the player to alternate between attacking in a safer way —from afar, facilitating the evasion of
enemy attacks and recovering health through powered attacks— and attacking more aggressively
—being more exposed to enemy attacks, but recovering ammunition.

Block

Pressing and holding the B Button on downbeat or on upbeat —with an
appropriate success rate— puts the player in a defensive stance. Releasing
the B Button when the enemy attacks blocks part of the damage. The blocked
damage depends on the success rate when releasing the button. In addition, if
the success rate is 100%, the enemy attack is completely deflected, applying
offbeat to the enemy —this perfect block is also known as parry.

Moving when an attack is going to be blocked results in a dodge. Dodges avoid total damage but
cannot apply offbeat to the enemy. Consequently, the game encourages the player to choose
between dodging and blocking, depending on whether they prefer to play safe or to opt for
dangerous option with a much more profitable risk-reward ratio.

Both melee and ranged attacks can be blocked, but special techniques cannot be blocked.
Receiving a cut while blocking applies offbeat to the blocker.

1: Button icons retrieved from [6].

Page 11 — Pablo Lorente Martínez — DownBeat

Special Techniques

Special techniques are powerful but risky moves that are intimately related to ammunition and
reloading. A special technique is loaded by pressing and holding the Y Button on upbeat, and is
performed by releasing the Y Button on the next upbeat. The success rate when pressing the
button determines if the technique is executed satisfactorily or if, on the contrary, it fails.

There are three types of special techniques:

Reload: It’s the most basic technique and can be executed standing
still. When performing this technique, the player reloads a number of
bullets that depends on the success rate when releasing the button.
A perfect success rate guarantees a full magazine and, therefore, at
least one powered bullet.

Pirouette: Can be executed by moving forward while in the inner
ring. It consists of jumping over the enemy's head to backflip
and land in the outer circle. The dealt damage depends on the
success rate when releasing the button. With a perfect success rate,
a powered bullet is inserted into the chamber if a slot is available.

Flash: Can be executed by moving backwards while in the outer ring.
It consists of charging energy to perform a thrust so fast that the
player instantly pierces through the enemy to position right behind
their back. The damage caused depends on the success rate when
releasing the button. With a perfect success rate, a powered bullet is
inserted into the chamber if a slot is available.

Definitely, the special techniques are more powerful than attacks since they cannot be blocked
and generally give better ammunition rewards. Nevertheless, techniques are a much riskier option
than attacks, as receiving an attack or a cut while charging a special technique applies offbeat to
the user. In addition, special techniques are a less efficient source of damage than attacks, since,
unlike attacks, a perfect success rate does not result in more damage, but in a better reload. For
this reason, the special techniques are ideal to alternate between rounds of attacks in order to
ensure enough ammunition to attack safely from the outer and middle rings, achieving greater
amounts of damage and healing thanks to the powered bullets.

It should be noted that special techniques are not only an efficient source of damage and
ammunition, but are also a valid tool for repositioning. For example, if the player is attacking from
the outer ring and runs out of ammunition, they can use the Flash technique to inflict damage on
the enemy, load a powered bullet into the chamber, and also reposition themself in the inner ring,
where they can recover ammunition using melee attacks. Likewise, if the player has a full chamber,
they can use the Pirouette technique to move directly to the outer ring, potentially increasing their
damage and healing until they run out of ammunition again.

Page 12 — Pablo Lorente Martínez — DownBeat

Cut

The cut is an extremely dangerous tool but of great utility and simplicity. Unlike
the rest of the movements, cuts don’t require to be loaded. Instead, the player
can execute a cut instantly by pressing the X button. Cuts can only be successful
if a success rate of 100% is achieved. Additionally, a cut is considered to fail if is
used against an enemy that is not blocking or charging a special technique. If the
cut is successful, it interrupts the action that the enemy is performing and
applies offbeat to them. If the cut fails, that is, if the percentage of success is
not perfect or if the enemy is not blocking or loading a special technique, offbeat
is applied to the user of the movement.

Therefore, all three types of movements —attacks, block and special techniques— form a “Rock,
paper or scissors-like” [7] triangular scheme of advantage and disadvantage relationships: Blocks
are effective against attacks but useless against special techniques, attacks apply offbeat to
combatants who are charging a special technique, but is useless against blocking combatants, and
the special techniques are effective against blocks but lose against attacks.

The cut is introduced as a fourth element that gives an additional depth layer to this triangle and
that can reverse some disadvantageous situations if it is used correctly, but that in return can
bring very negative results to the user if it is used incorrectly.

Movement

The player can move using the left stick or the directional pad. It can be
performed both on downbeat and upbeat. As happens with cuts, movement
does not require loading time, it is executed instantly when moving the
joystick. There are four allowed directions of movement — left, right, forward,
and backward — that allow the player to move to each of the adjacent squares
— left adjacent square, right adjacent square, adjacent square of the
immediately inner circle, and adjacent square of the immediately outer circle,
respectively.

The success rate determines the probability of successfully making the move,
that is, having a success rate higher than 90% guarantees the player to move
in the desired direction, but if the success rate is less than 50% means that the
movement will fail. Between those two values, the success chance is equal to
the success rate divided by 1.2 —83.33% of the success rate. This conditions
are much more exigent than those of the other actions, that guarantee to
perform the action with any success rate higher or equal than 50%, and, with
lesser rates, the success chance is equal to the totality of the success rate.

Due to these peculiarities, movement is the most suitable way to move quickly on the combat grid,
but it is a worse defensive tool than dodging (although it does not require loading time) due to a
higher probability of failure. This means that there is a higher chance of receiving the totality of
the enemy damage, that is, a devastating blow from which it can be difficult to recover.

Page 13 — Pablo Lorente Martínez — DownBeat

Statistics and values

PLAYER STATISTICS

Statistic Value Description

Maximum health 100 Maximum accumulable health. Starting health.

Damage 20 Base damage value.

Final increase +1 Damage increment added before every enemy attack
during the final phase of the battle.

Maximum
blockable ratio

80% Maximum percentage of damage that can be blocked
with an imperfect success rate.

Success rate
threshold

+6% When calculating success rate, the base value is
increased by 106%.

ENEMY STATISTICS

Statistic Value Description

Maximum health 600 Maximum accumulable health. Starting health.

Damage 20 Base damage value.

Tempest damage 30 Base damage value during the first 16 seconds of the
battle.

Final increase +2 Damage increment added before every attack during
the final phase of the battle.

Maximum
blockable ratio

80% Maximum percentage of damage that can be blocked
with an imperfect success rate.

Success rate
threshold

+5% When calculating success rate, the base value is
increased by 106%.

Randomness 0.1 Maximum error time when executing an action other
than a cut (in seconds).

Cut fix ratio 30% When executing a cut, the maximum error time is 30%
of the general maximum error time (0.033 seconds).

Page 14 — Pablo Lorente Martínez — DownBeat

PLAYER ACTIONS

Action Success rate (SR) Effect2

Movement >90% 100% chance of success.

50%~90% 0.83 · [SR]% chance of success.

<50% 0% chance of success.

Dodge, loading
any action

>50% [SR]% chance of success.

<50% 0% chance of success.

Melee attack 100% 30 damage points, +1 bullet.

<100% 20 · [SR] damage points.

Ranged attack
(regular bullet)

100% 30 damage points.

<100% 20 · [SR] damage points.

Ranged attack
(powered bullet)

100% 60 damage points, +20 health points.

<100% 40 · [SR] damage points, +20 health points.

Block 100% 100% damage blocked, apply offbeat to the enemy.

<100% 0.8 · [SR]% damage blocked.

Flash, twirl 100% 20 damage points (unblockable), +1 powered bullet.

<100% 20 · [SR] damage points (unblockable).

Reload 100% +3 bullets, +1 powered bullet.

90%~100% +3 bullets.

60%~90% +2 bullets.

30%~60% +1 bullet.

<30% No effect

Cut 100% Apply offbeat to the enemy if the conditions are met. If
not, apply offbeat to the player.

<100% Apply offbeat to the player.

2: Damage values calculated from base damage (20) without taking into account the damage increase during the final phase
of battle.

Page 15 — Pablo Lorente Martínez — DownBeat

ENEMY ACTIONS

Action Success rate (SR) Effect3

Attack 100% 30 damage points.

<100% 20 · [SR] damage points.

Block 100% 100% damage blocked, apply offbeat to the enemy.

<100% 0.8 · [SR]% damage blocked.

Offensive special
techniques

100% 20 damage points (unblockable).

<100% 20 · [SR] damage points (unblockable).

Prayer
(healing special
technique)

Any +60 health points.

Cut 100% Apply offbeat to the player if the conditions are met. If
not, apply offbeat to the enemy.

<100% Apply offbeat to the enemy.

3: Damage values calculated from base damage (20) without taking into account the damage increase during the final phase
of battle nor the increased damage during the beginning of the battle (30).

Page 16 — Pablo Lorente Martínez — DownBeat

3.4. User Interface

Player status indicators
Player status indicators are located on the bottom of the screen. Their function is to display the
most important information to the player: their health, their ammunition and the rhythm.

Rhythm circle: See first subsection Basic concepts from section 3.3. Mechanics (Also see Figure 3).

Player health bar: Is located on the left side of the rhythm circle. Consist of three overlapping bars,
each of which displays the player’s remaining health, recently lost health, and maximum health
respectively (See Figure 3).

Bullet chamber: Is located on the right side of the rhythm circle. Each one of the slots of the
chamber is represented with an annular section that is displayed in white, blue or
semi-transparent black, depending if the slot is filled with a regular bullet, a powered bullet or is
empty, respectively (See Figure 3).

Figure 3: Player’s health bar (1, 2 and 3),
rhythm circle (4, 5 and 6) and bullet
chamber (7, 8 and 9).

1. Maximum health

2. Recently lost health

3. Remaining health

4. Maximum circle size
(reached on upbeats)

5. Rhythm circle, shrinking and
blue because is
transitioning from an
upbeat to a downbeat.

6. Minimum circle size
(reached on downbeats)

7. First slot of the chamber
(empty).

8. Second and third slots of
the chamber (filled with
regular bullets).

9. Fourth slot of the chamber
(filled with a powered
bullet).

Page 17 — Pablo Lorente Martínez — DownBeat

Enemy status and numerical indicators

This indicators are also important for the battle, but in a lesser way. The main difference between
this indicators and the seen above is that this ones are merely informative, while reacting properly
to the ones above represents the main win condition for the player.

Enemy health bar: Is displayed on the top of the screen and indicates the enemy’s remaining
health, recently lost health, and maximum health, in a very similar way to the player health bar. (See
Figure 4).

Numerical indicators: They are displayed next to the rhythm circle or next to the enemy’s head,
and show values such as the percentage of success achieved in an action, the damage caused, the
damage blocked, etc. Aiming to not overwhelm player's attention, most relevant values are
displayed more clearly and with larger characters, while the less relevant values are smaller and
disappear faster. Numerical indicators are displayed in white if they indicate blocked damage,
success rate or status effects; in red if they indicate received damage, in blue if they indicate dealt
attack damage and in orange if they indicate dealt technique damage.

Figure 4: Enemy health bar and numerical indicators.

On the left, the enemy receives a critic attack. The
damage received (120) is shown in blue (indicating it was
dealt through an attack and not through a special
technique) and succeeded by an exclamation mark
(indicating it was a critic attack). The white part of the
health bar indicates the remaining health, while the
orange part indicates the recently lost health.

On the right, the player receives and partially blocks an
enemy attack. Under the rhythm circle, success rate is
displayed (99%). Both the blocked and unblocked
amounts of damage are shown next to the health bar.
The damage received (unblocked damage) is shown in red
numbers and as a red part of the bar

The dialog box: is the interface element where narrative snippets of text are displayed during
break periods between phases. It is located on the bottom of the screen, in the center of the lower
matte —each one of the black bars that frames the screen between this cinematic periods. Except
on rare occasions and despite its name, the dialog box does not show dialogues, but rather small
observations about what the protagonist feels, thinks, or draws her attention at a specific moment
of the combat.

In addition to these interface elements, the rhythm and the status effects are visually accentuated
through post processing effects like chromatic aberration and color correction.

Page 18 — Pablo Lorente Martínez — DownBeat

3.5. Battle against Garad
In order to keep the battle interesting and to provide the player an experience with an appropriate
difficulty curve, the battle against Garad is composed of four different phases. In each phase,
Garad may show a different behaviour and movement set. Although the behaviors shown in these
phases mainly respond to functional questions, it is also intended to show, through the selection of
attacks, special techniques and some other behavioral traits, the narrative peculiarities of each
phase of the battle.

Enemy attacks

For visual clarity, attacks are represented in blue. For this reason, the theme chosen for Garad's
attacks is electricity. This choice is also related to the Tomoe [8], an element traditionally used in
the emblems of Japanese families —from which Garad’s design is inspired— and strongly linked
with Raijin [9], the god of storms in Japanese mythology and the Shinto religion.

● Thrust: Garad charges a powerful electric thrust with his halberd on the player’s current
radius. After two beats, the thrust inflicts damage on the three selected squares.

● Sweep: Garad charges a powerful electric sweep on the player’s current ring. After two
beats, the sweep inflicts damage on the six selected squares.

● Lightning Strike: Garad casts a lightning on the player’s current square. After two beats,
the lightning strikes on this square, inflicting damage.

● Storm: Garad casts up to seven lightnings on the player’s current square and random near
squares. After two beats, the lightnings strike on the selected squares, inflicting damage.

Enemy techniques

Special techniques are represented in orange, and don’t follow any specific theme due to their
occasional use and the imitative nature of the most important of them.

● Prayer: Garad prays during two beats. After that, he recovers a percentage of his
maximum health.

● Backhand Sweep: Garad charges a powerful halberd sweep on the inner ring. After two
beats, the sweep inflicts damage on the six inner squares.

● Replication: Garad can charge this technique while charging an attack. This technique
replicates the same or other attack with one beat of delay. Thanks to this technique, Garad
can execute an attack-technique combo or an attack-technique-attack combo.

Page 19 — Pablo Lorente Martínez — DownBeat

Phases and behaviour

Unlike other enemies, Garad begins this fight by cornering the protagonist and executing a
excessive barrage of his most deadly attacks and techniques. This serves as a threat —Garad will
show no mercy and will try to end the protagonist’s life by any means. Then, the first phase begins.

● First phase: The Hero shows a cold and trained mind by defending flawlessly against the
player attacks and techniques and only dealing precise and determined attacks when the
player is off guard. During this phase, Garad will counter every player’s action, that is, try to
parry every player’s attack and to cut every player’s technique or block. He will only attack
—with thrusts and lightning strikes— if the player is not executing any action.

● Second phase: During this phase, The Hero seems mildly affected by his feelings towards
the protagonist, and decides to end the battle as soon as possible to stop the suffering of
both. Consequently, Garad keeps attacking uninterruptedly, now adding slightly more
desperate attacks and techniques —sweeps and backhand sweeps— and will only counter
player actions occasionally.

● Third phase: The Hero’s determination is unstoppable. During this phase, Garad will keep
attacking whenever he can —now using thrusts, sweeps, and storms—, countering most of
the player’s movements and using backhand sweeps and prayers to damage the
protagonist and to heal himself. If the player takes advantage of Garad’s attempts to heal
by countering his technique, Garad will learn and modify his behaviour, using the prayer
less frequently except in times of extreme need.

● Fourth phase: This phase is similar to the barrage of attack and techniques that starts the
battle. Consumed by despair and determined to fight to death, The Hero will not counter
any of the player’s movements nor attempt to heal himself. Instead, he will attack
uninterruptedly chaining his most powerful attacks with his replication technique. During
this phase, Garad will gradually increase his damage so much that his own attacks will
damage him when the player deflects them, making impossible for the player to extend
this phase over its maximum duration —if the player deflects Garad attacks, Garad will die;
if not, the protagonist will die. If the player lands a lethal hit on Garad during this phase, he
will endure it and receive no damage under ten remaining health points. Instead, offbeat
will be applied to Garad.

At the end of the fourth phase, a final cutscene is shown. If the player has managed to reduce
Garad's health enough, this cutscene will show Garad’s death and display the victory screen.
Otherwise, the cutscene will show Garad landing a final thrust on the protagonist’s chest, and the
defeat screen will be displayed.

Due to the limited duration of the previous phases, it is impossible for the player to deliver a lethal
blow to Garad before the fourth phase.

Page 20 — Pablo Lorente Martínez — DownBeat

4. SOUNDTRACK

4.1. Introduction
Bound by a terrible fate is the track that plays during the combat demonstration. The track tries to
move away from the classic conceptions of "boss battle music" to more accurately reflect the
nature of the fight: it is not about the main hero fighting against a horrifying demon or about the
forces of good fighting against the forces of evil: it is about an utterly despairing fight to the death
between two old friends who are helpless against their own circumstances. In this fight, the
protagonist, exiled from the village and judged as The Beast, faces not only the hero of the village
—who is willing to die in order to end her life—, but a forking fate: ¿Is the protagonist willing to save
her life if she has to kill the hero and, consequently, confirm the suspicions about her identity and
be forever rejected by the society?

4.2. Inspiration
Bound by a terrible fate is primarily inspired by Undertale's soundtrack [10] [11] [12] because of the
similar nature of the fights: Enemies are not evil nor do they want to kill the protagonist —in fact, in
most cases, they are their friends or they feel appreciation of some kind towards them— but they
have to confront them because the protagonist's objective involve a danger to their world and
wellness. Mostly, Undertale battles are melancholic encounters in which the protagonist face
characters who are just doing what is right for them, aiming to keep alive the hopes and dreams of
the rest of the Underworld inhabitants.

Undertale’s soundtrack also inspires Bound by a terrible fate due to its strong leitmotivic nature
[13] —of 101 tracks on the official soundtrack, Game Score Fanfare on YouTube [14] mentioned
that only 12 were isolated, without a trace of any other music used in the game, meaning the
remaining 83 are connected through leitmotivs.

In other ways, Bound by a terrible fate is also inspired by traditional Japanese music, chosen to
represent Garad as a hero of a village with deep traditional and folkloric roots, educated in strong
ideals and deeply guided by aspects such as honor and destiny.

It also extracts certain tropes of Spanish-Arabic music, especially from the processional marches.
These inspirations are mainly functional, although they serve to reinforce the same traditional and
folkloric aspects as traditional Japanese music.

Page 21 — Pablo Lorente Martínez — DownBeat

4.3. Instrumentation
Each of the instruments in Bound by a terrible fate has been chosen either for functional reasons or
for reasons of meaning, that is, to represent certain characters, ideas or other narrative elements.
The complete instrumentation is made up of the following instruments.

● Shakuhachi: A high pitched traditional Japanese woodwind instrument. Represents the
voice of the protagonist.

● Trombone: A medium-low pitched brass instrument. Represents Garad's voice.

● Trumpets: Medium-high pitched brass instruments. They represent the inhabitants of the
village, and therefore they usually appear as multiple voices that complement each other
to form chords, even when playing the main melody.

● Piano: An exceptionally versatile instrument with a very wide playing range. It works in the
piece as a cohesive element and to emphasize both the lowest notes —which consolidate
harmony— and the high notes that make the melody shine. The piano brings a very special
dramatism to extremely low and extremely high notes.

● Koto: The national instrument of Japan. It brings a very characteristic classical-feudal
japanese sound. It represents fate, and appears iterating the Fate leitmotiv during almost
all the work, as an ostinato.

● Unpitched percussion: Composed of taiko drums, snare drum, bass drum, cymbals and
drum set. Its main function is to clearly communicate the downbeats and upbeats to the
player for reasons of gameplay, although, of course, they also play an essential role in
constructing the emotional singularities of each of the sections.

● Timbales: Pitched percussion instruments. They fulfill a merely functional task, which is
to support the bass line provided by the piano. By reinforcing these low notes with
percussive beats, a noteworthy strength is given to the track.

● Choir and tubular bells: They bring a pronounced dramatic weight to the piece, since it’s
hard to not relate these instruments to death and funeral rites. They help enormously to
build in the player the sensation of a turning point that only can bring despair and loss.

Page 22 — Pablo Lorente Martínez — DownBeat

4.4. Leitmotivs
A leitmotiv or leitmotif is a short, constantly recurring musical phrase associated with a particular
person, place, or idea. Leitmotivs should be clearly identified so as to retain their identity if
modified on subsequent appearances, whether such modifications be in terms of rhythm,
harmony, orchestration or accompaniment. Leitmotivs may also be combined with other
leitmotivs to suggest a new dramatic condition or development [15].

Given the peculiar characteristics of the battle, leitmotivs are a very powerful tool for the dramatic
development of the combat, appealing to the emotional ties the player has established with the
characters through reminiscences of the music that accompanied past key events of the game,
especially the happier ones.

In order to ease the comparisons between different fragments, the following leitmotivs are shown
in key of C major or A minor —with no flats or sharps in their key signatures.

Fate

The Fate leitmotiv represents the homonymous idea and, unlike the rest of the leitmotivs of the
soundtrack, it usually appears as an accompaniment instead of as a melody. Nevertheless, this
leitmotiv reaches its maximum protagonism in Bound by a terrible fate, where it appears as a
ostinato that is incessantly maintained throughout the entire piece (See Figure 6).

In previous appearances of the leitmotiv —where it is used to represent an optimistic and friendly
fate or to highlight the strong ties between fate and the village— the bracketed notes are kept (See
Figure 5). These notes —first degree of the major scale— are responsible for the stability of the
melody. Despite that, in this piece, these notes are removed to represent a hostile fate.

Figure 5: Comparison between the original leitmotiv (left) and the hostile version (right).

Figure 6: A bar of the koto ostinato based on this leitmotiv, doubling each note and adding harmonic support.

Page 23 — Pablo Lorente Martínez — DownBeat

The Hero

The Hero's leitmotiv (See Figure 7) represents the figure of the hero, who usually coincides with the
character of Garad, although it also appears in other contexts denoting other characters’ heroic
actions —or especially unheroic actions, when the leitmotiv appears modified in a certain way— or
symbolizing former heroes of the village. It consists of two sections:

The first one, composed by the first three notes, is the hook of the leitmotiv and uses long notes
separated by wide intervals —an ascending perfect fifth and a descending perfect fourth
descending on the I, V and II degrees of the scale— in order to achieve simplicity and easy
recognition. The first jump, from I to V degree, quickly establishes the key, especially when the
leitmotiv appears accompanied by its original harmony.

The second section is made up of the following five notes. The first two act as an ornament that
anticipate the first note or chord of the important part of the section, that is, the last three notes.
These last three notes form a descending arpeggiated perfect major chord —the I degree chord.
The first of these notes —as well as the supporting notes that precede it— play a fundamental role
in turning the nature of the leitmotiv. By leaning on the III degree —which is descendingly altered in
minor keys— these notes are the ones that most clearly communicate to the listener if a major key
is being used to maintain the heroic and triumphant tone of the leitmotiv or, on the contrary, a
minor key is being used to communicate melancholy.

Figure 7: The Hero leitmotiv, in its most pure and simplified form.

The main way the hero's leitmotiv appears on the soundtrack is through the Hero Theme, which
uses the main chords of the major scale —I, IV and V degrees— to highlight the heroic and
victorious tone of the melody. Nevertheless, in Bound by a terrible fate, this theme appears
exclusively in minor mode, becoming the Fallen Hero Theme (See Figure 8).

Figure 8: Comparison between the Hero’s Theme in a major key (up) and the same theme in a minor key (down).

Page 24 — Pablo Lorente Martínez — DownBeat

Throughout the entire piece, the Fallen Hero’s Theme is intertwined and merged with others to
build different melodies. Thus, this theme leads some of the most important melodies, such as the
chorus melody or the melody that sounds during the first phase of the battle.

During the chorus, the Fallen Hero’s Theme appears solemnly and ominously constructed, unlike
his appearance during the first phase, in which its influenced by the Beast’s Theme and adopts its
harmony, also altering the development of the melody (See Figure 9).

Figure 9: Comparison between the two main iterations of the Fallen Hero’s Theme in Bound by a terrible fate —chorus melody
(up) and first phase melody (down).

The Beast

The Beast’s leitmotiv is characterized by its descending chromatic triplet (See Figure 10). The
objective when composing this leitmotiv was to achieve a sensation of sinister strangeness, which
is achieved through elements that are strange to the piece both in key and in rhythm —accidental
alterations and irregular groups. This sensation is reinforced in the Beast’s Theme, in which a
modified version of the Andalusian cadence [16] is used.

This cadence already provides a shade of exoticism and strangeness by varying the seventh
degree of the scale during the chord sequence. Also, in the Beast’s Theme, the second chord
appears modified to add another layer of strangeness. Substituting the G chord for the E7sus4
chord —which maintains two notes of the previous chord, Am, and two notes of the G chord— the
feeling of progress in the harmonic sequence is blurred.

Figure 10: The Beast’s leitmotiv (left) and its developing and harmonization in Beast’s Theme (right).

Page 25 — Pablo Lorente Martínez — DownBeat

Home

The Home leitmotiv mainly represents the village and, sometimes, the idea of “feeling at home”.
This leitmotiv is a melody in itself, and appears as such in those parts of the soundtrack associated
to the village as a physical place, usually accompanied by a first type compound cadence (I-IV-VI),
the most common sequence of major chords, which brings familiarity and joy to the melody.

In Bound by a terrible fate, this leitmotiv appears both rhythmically and harmonically distorted in
order to adequate its tone to the rest of the piece (See Figure 11). Through this distortion, a new
dramatic condition is communicated to the listener, who can easily recognize the leitmotiv
—cheerful and lively on its past iterations during the soundtrack— surrounded by a much more
melancholic accompaniment.

Figure 11: Comparison between the original Home melody and harmony (up) and the distorted form of this piece (down).

Ursa Major

The Ursa Major leitmotiv represents the bonds between two characters. Like the Home leitmotiv,
it’s a melody in itself (See Figure 13), and the shade variations —as well as the representation of
different characters and emotions— are achieved by changing the instrumentation and harmonic
accompaniment. For example, in the Interlude II: Mediation, this leitmotiv is displayed as a
conversation between the koto —which represents the protagonist— and the trombone —which
represents Garad. Also, the melody is subtly modified to include the Beast leitmotiv.

Figure 13: The Ursa Major leitmotiv.

Page 26 — Pablo Lorente Martínez — DownBeat

4.5. Sections of the soundtrack

Introduction: Prophecy

This introduction presents the ostinato that is maintained throughout the rest of the work, based
on the Fate leitmotiv. It has a harmonic accompaniment performed by the piano, the choir and the
tubular bells. As for percussion, there is a procession march rhythm that will later evolve, doubling
its time, in the rhythm that accompanies the rest of the work.

This section aims to represent the prophecy that connects the destiny of Garad and the
protagonist, intimately linked to death. For this reason, processional rhythms and instrumentation
reminiscent of funeral rites have been chosen. This section is intended to be completely
abstracted from the characters and their situation and to focus solely on prophecy, therefore the
use of shakuhachi, trombone, and trumpets is discarded.

This section lasts 16 seconds and repeats until the player presses the button to start the fight.
When this occurs, the music transitions to the closing bars of the intro, adding a short drum fill
that begins the next section.

Interlude I: Steel Tempest

This section lead off the battle and represents the first barrage of attacks dealt by Garad —a quick
succession of outrageous strikes that catch both the player and the protagonist by surprise. From
a narrative point of view, these attacks represent the fulfillment of the prophecy and how the
terrible fate that haunted the characters has already loomed over them.

To represent this, this interlude is a direct variation of Introduction: Prophecy. The timid ostinato
of Fate leitmotiv is now an incessant discharge of koto blows, and the voices of the villagers
—trumpets— and their hero —trombone— have joined the voices of prophecy —choir— and interpret
the same harmonic accompaniment.

For its part, the the processional march rhythm has doubled its speed, and has been merged with a
drum set rhythm that, in addition to strongly emphasizing the downbeats and upbeats due to
functional and mechanical reasons, presents a noisy subdivision on the cymbal ride, representing
the steel tempest that gives its name to the section.

This section lasts 18 seconds and automatically transitions to the next.

Page 27 — Pablo Lorente Martínez — DownBeat

Phase I: Hunt

This section is built around the Beast’s Theme and the Fallen Hero’s Theme. It maintains the
rhythmic section of the previous interlude, but the chorus —which is still interpreting the harmonic
accompaniment— goes from playing long notes to playing very distant quavers that replicate the
harmonic progression of the Beast’s Theme. The piano stars in the first part of this section,
interpreting a bass line based on The Beast leitmotiv, which is later alternately joined by the
trumpets and the right hand of the piano.

The first phase of the fight is conceived as a hunt in which the hero, after having dealt a first
barrage of attacks, is patiently defending himself waiting for the perfect moment to return to the
charge and end the life of The Beast. For this reason, the trombone —Garad— is incorporated over
the bass line based on The Beast leitmotiv, interpreting the Fallen Hero’s Theme, but adapted to
the harmony of the Beast’s Theme and, consequently, modifying the development of its melody.
Thus, it is intended to represent the Hero's blind obstinacy in hunting The Beast, which has led him
to decide to kill his friend so as not to fail the inhabitants of the village and himself.

This section lasts 50 seconds and automatically transitions to the next.

Interlude II: Mediation

The objective of this section is to represent the mediation between the protagonist —who is trying
to convince Garad that she doesn’t want to kill him and that there is no reason to fight— and Garad
—who, convinced that the protagonist is the Beast, is determined to die if necessary in order to
end her life.

This is represented by using the Ursa Major leitmotif presented as a conversation between the
shakuhachi —the protagonist— and the trombone —the hero. The use of the Ursa Major leitmotif,
which represents the ties between these two characters, reinforces the dramatism of the scene
for the player, who will recognize the melody and associate it with happier moments of the
characters.

This leitmotiv is subtly modified to include The Beast leitmotiv at the end of the first phrase, that
is, the protagonist’s phrase. This can be interpreted as the protagonist is explicitly trying to make
Garad understand that she is not The Beast. In the last part of this section, the trumpets start to
accompany the conversation between the shakuhachi and the trombone, representing the hopes
of the people of the village inhabitants, that lead Garad to return to the fight with Phase II:
Determination.

This section has three subsections of 16 seconds each. At the end of the first phase of combat, the
first subsection begins. If the player does not press the button to continue the fight, the second
subsection starts when the first subsection is over. The second subsection is looped until the
player decides to advance. During both the first and second subsections, when the player presses
the button to start the fight, the music transitions smoothly and seamlessly to the analog part of
the third subsection, which will automatically link to the second phase.

Page 28 — Pablo Lorente Martínez — DownBeat

Phase II: Determination

The objective of this section is to represent Garad's decision to fulfill his destiny at any price. This
section of the work is structured in a ternary way, that is, it has three parts of which the first one
exposes the chorus, the second one exposes a different development of some of the previous
musical ideas that appear throughout the piece, and the third re-exposes the chorus with some
minor changes.

In the chorus, the melody, based on the Fallen Hero’s Theme, is performed by trumpets and
trombones, although the shakuhachi steals their prominence in the final sections of each phrase.
Thus, an attempt is made to represent the determination of an entire people —trumpets— who sing
in unison with their hero —trombone— in whom they trust all their hopes, while an allegedly
innocent protagonist —shakuhachi— painfully laments to see a terrible fate looming over them all
unstoppably —represented by the incessant ostinatto of koto executing the leitmotif of fate.

The middle part begins with the trumpets playing the Hero’s Theme, and the trombone trying to
imitate it, but failing to reach the high notes —this represents Garad's fear of not meeting the
expectations and failing to protect the village. Despite this, the trombone finally manages to join
the trumpets to perform a more emphasized version of the Hero’s Theme, this time in major mode,
moving away from the concept of the fallen hero and enunciating his determination to meet his
destiny as The Hero and to fulfill the hopes of his people. In addition, the piano plays the Home
leitmotiv, to add emotion and meaning to the fragment.

Finally, the chorus is exposed again, this time harmonically accompanied by the choir, introduced
in the previous part. This section lasts for 1 minute and 28 seconds, and automatically transitions
to the next when finished.

Interlude III: What Could Have Been

During this section, the processional rhythm of the snare drum, the harmonies of the choir and a
waltz accompaniment of the piano serve as the basis for the meeting of the Home and Ursa Major
leitmotivs, performed by instruments that are added throughout the three repetitions of the same
8 bar phrase. Through these two leitmotivs, it is intended to represent the characters' last
thoughts about the moments lived together and how happy life could have been if they hadn't been
involved in the prophecy against their will.

In the first repetition, the trumpets perform the Home leitmotif. In the second repetition, the
shakuhachi and the trombone are added playing the Ursa Major leitmotiv. In the third repetition, a
harmonic shakuhachi reinforcement is added to this leitmotiv. At the end of this third repetition,
the drum kit and the piano —making use of the original version of the Fate leitmotiv as a link— give
way to Phase III: A Terrible Fate.

This section ideally lasts 56 seconds. If after this time the player has not yet pressed the button to
advance to the next phase, the last 16 seconds are looped until necessary. If, on the other hand, the
player presses the button before the section ends, the music transitions seamlessly to its analog
point of the last 16-second sentence, linking to the next section when it ends.

Page 29 — Pablo Lorente Martínez — DownBeat

Phase III: A Terrible Fate

This section depicts how each of the three parts involved in the conflict —the protagonist, Garad,
and the villagers— face these final moments of indeterminacy about how the prophecy is going to
be resolved. As the voices of the villagers unite as the Home leitmotiv, Garad proudly raises the
Hero theme, making it clear that he will fight to death to protect his village. Meanwhile, the
protagonist continues to use the Ursa Major leitmotiv to value her relationship with Garad, regret
having to battle him and self-convince herself that the friend with whom she shared so many
moments still lives behind the person who is trying to kill her.

This section reinforces the leitmotivic encounter dynamics of the previous section by maintaining
the same melody in the trumpets —Home— and adding a trombone melody based on the Fallen
Hero’s Theme. In addition, the shakuhachi reinforces the sharpest parts of the trumpet melody.

As for the accompaniment, the koto ostinato —Fate leitmotiv—, the drum rhythm, the timpani, the
tubular bells and the piano bass exposed in Phase II are reintroduced.

The first sentence of 8 bars is repeated three times, adding new layers with respect to the Ursa
Major leitmotif —interpreted by the shakuhachi from the second repetition— and to the
accompaniment, increasing the complexity of the rhythm of the snare drum, for example. In total,
this section lasts 48 seconds, and links to the next through a shakuhachi solo.

Interlude IV: An Empty Vessel

Consumed by despair and determined to burn his last energies in ending the protagonist’s life,
there is no longer any trace of the Garad that the player knew at the beginning of the game.
Nothing matters anymore: neither the village, nor the good times lived. It only matters to vanish
the Beast.

To represent this, the accompaniment of Phase I: Hunt is retrieved. This accompaniment uses The
Beast leitmotiv as a bassline and also includes the harmony of the theme of the Beast’s Theme,
performed by the choir. Along with the choir and piano, the funerary nature of this section is
reinforced through the use of bells, timpani and the processional rhythm of the snare drum.

The musical objective of the second part of this section is to create in the player a feeling of
discomfort and strangeness. To accomplish this, the piano interprets the Beast's leitmotiv, which,
as explained in The Beast subsection of 4.4. Leitmotivs, seek this same sensation through the use
of irregular groups, accidental alterations, and a harmonic progression that twists the Andalusian
cadence, which already sounds exotic in itself. As if that were not enough, the melody of the beast
is interpreted erratically, advancing, delaying or lengthening some notes, making them sound out
of time and with irregular durations.

The first part of this section lasts 26 seconds, while the second part, which is repeated as many
times as necessary, lasts 16 seconds.

Page 30 — Pablo Lorente Martínez — DownBeat

Phase IV: Conflagration

Without a drop of life in his eyes and only moved by despair, the empty vessel keeps fighting until
his last breath.

This phase extends the musical ideas exposed in the previous section, adding the koto ostinato,
the drum rhythm and reinforcing the Beast’s Theme through the trumpets and the trombone. In
addition, in the last 16 bars, the trombone retakes for the last time the Fallen Hero’s Theme, which
depicts that, even on the verge of death, the only thing that matters to him is to fulfill his destiny
and protect his town.

This section lasts 48 seconds and automatically links to the last section through a shakuhachi solo,
which represents the final blow of the protagonist who definitively ends Garad's life.

Coda: And Then Fate Rewinds

According to the prophecy, when The Hero sacrifices his life to stop The Beast, fate rewinds. In
Grandma's words, “It has always been like this. No one remembers how it started, but this is the
terrible fate that the village is doomed to repeat. Until the end of time”.

This last section —that only lasts 14 seconds— closes the work, taking up some of the musical ideas
exposed in the Introduction: Prophecy, giving full prominence to the leitmotif of fate and
alternating between the first two chords of the harmonic succession of The Beast. In this way, it is
intended to represent how the curse of the village has not been ended, but rewinded, and how
other Heros and other Beasts will be embroiled in this conflict, generation after generation.

Page 31 — Pablo Lorente Martínez — DownBeat

5. WORK DEVELOPMENT

5.1. Rhythm system
After the initial conceptual design tasks, the first great task of the project was to implement a
rhythm system that kept the music perpetually synchronized with both the gameplay and the
visuals despite possible low performance problems or unstable framerate, and that, in addition,
was simple and clear enough so the player can stay constantly informed without having to take his
attention away from the movements of the enemy.

For this, a brief study has been made of what different types of visual representations of rhythm
are usually used in rhythm video games.

Rhythm bar

The rhythm bar is the key element in most rhythm video games. In this games, a series of notes go
through the bar until they reach a key point. The player must press the correct button when the
note is centered on the key point.

The problem with this system is that it is designed for games that have different types of notes
that correspond to different buttons —usually marked with different colors or shapes—, as in Guitar
Hero [17] or Dance Dance Revolution [18]. In these games, the elongated design of the bar is
important because it allows the player to see in advance which buttons they will have to press
next.

Nevertheless, in games in which there is only one action button or in which the decision of what
button to press remains entirely with the player —as is the case of DownBeat— this design loses its
meaning, becoming excessively invasive on screen and capturing too much of the player's
attention. Games like Crypt of the Necrodancer [19] or the more recent Cadence of Hyrule [20]
propose a horizontal bar at the bottom of the screen, with the key point centered instead of at one
end. In this way, the player is allowed to continue to focus his attention on the central part of the
screen, where the action happens.

This solution is not applicable to DownBeat since two key points are needed —one for the
downbeats and one for the upbeats. This means a decision would have to be made in order to
keeping the two key points centered and close together —which would give very little response
time to the player— or to keep them separate —giving a longer response time to the player but
returning to the errors described above. Another solution would be to adapt the Crypt of the
Necrodancer system and mark the notes with different colors depending on whether they are
downbeats or upbeats, but it would be a form of representation that focuses most of its
informative efforts on data that the player already know — after a downbeat an upbeat comes, and
vice versa.

Page 32 — Pablo Lorente Martínez — DownBeat

Circular design

The circular design chosen for DownBeat —inspired by the Pokémon GO! [21] capture system—
solves these problems in an elegant and functional way: All visual information is collected within a
circle that remains centered at the bottom of the screen . Since the enemy and player are always
centered horizontally on the screen, the player can refer to the rhythm circle without having to
take their attention away from combat.

For more details about the rhythm circle, see subsection Basic concepts from section 3.3.
Mechanics.

Implementation

The first task of implementing the rhythm circle was to make the circle grow and shrink to the
beat, given a specific value of beats per minute (BPM). To do this, I implemented two coroutines,
CircleGrow() and CircleShrink(), to grow and shrink the circle respectively. Also, I
implemented a third coroutine, Loop(), which perpetually toggles between the execution of the
other two.

CircleGrow() and CircleShrink() also update the normalized variable, that is always
equal to the current portion of the normalized rhythm, being 0 a downbeat and 1 an upbeat. For
example, when the rhythm circle is on the 20% of its way to an upbeat or on the 80% of its way to a
downbeat, normalized is equal to 0.2, regardless of the BPM value.

When initiating the program, the duration of a beat is calculated from the given BPM value, and the
Loop() coroutine starts. This beat duration value is the duration that is applied to the other two
coroutines, which use methods from the iTween library to properly animate the different circle
elements, previously designed.

Testing this system resulted in a rhythm circle that started out in sync with the music but gradually
became out of sync. Using the Unity console log, it was determined that, after 50 seconds being
active, the system accumulated an error of 0.5 seconds, that is, a cumulative error of 1%.

Although this amount may seem insignificant, an error of 0.5 seconds makes the game completely
unplayable. For example, using 60 bpm music, beats last 1 second, which means that, being 0.5
seconds out of sync, a player who presses the buttons to the beat of the music in perfectly
accurate timing would get a 0% success ratio in all their actions.

To contextualize these numbers, a delay of more than 100 milliseconds in online games is
considered a high ping value and makes difficult to play. Ideally, for a rhythm game that works
entirely locally, there should never be a cumulative delay of more than 30 milliseconds, that is,
approximately two frames at a rate of 60 frames per second.

Page 33 — Pablo Lorente Martínez — DownBeat

Auto-synchronization system

Using the Unity audio engine time value, I implemented a simple algorithm —which iterates once at
the end of the CircleGrow() and CircleShrink() coroutines— to keep the game
perpetually in sync with the music:

● Two new variables of the float type are declared: lastTimeStamp and
syncCorrection, which indicate the time value of the audio engine in the previous
iteration and the time correction to be applied to the next coroutine, respectively.

● The expected time value for the next iteration is calculated as the sum of the previous
time value, the duration of a beat, and the time correction.

● The current time offset value is calculated as the expected time minus the real time value.

● lastTimeStamp is updated with the audioSource.time value;

● syncCorrection is updated with the time offset value.

To make these time corrections effective, the duration of CircleGrow() and CricleShrink()
is now equal to the duration of the beat plus the time correction value.

The testing of this algorithm resulted in that, after 15 minutes being active, the rhythm circle
accumulated an error of less than 10 milliseconds, that is, less than 0.00001% of the elapsed time.
Not only that, but also this testing showed that, even in low performance conditions and irregular
framerates, the cumulative error is not increasing, but ranges between values of 0 to 10
milliseconds regardless of the time it has been active, unlike from the previous implementation
that accumulated error over time. Therefore, this implementation is considered satisfactory.

Scheduling system

In the same script that controls the rhythm —Rhythm.cs— scheduling methods were
implemented. This methods are useful for the operation of the combat system and allow to
execute a certain methods of a certain script after a specific number of beats or after a specific
interval of time or to prevent the player from performing actions until they pass a specific number
of beats —locked beats.

The difference between waiting for a certain number of beats and their time equivalent is very
important since, although the player can only perform one action on each beat, they must be
allowed to perform one action at the end of a beat and another action at the beginning of the next
beat, although the time between these actions is much less than there would be between two
actions performed at the beginning and at the end of the same beat, respectively.

Page 34 — Pablo Lorente Martínez — DownBeat

5.2. Combat system

Success rate

In the PlayerController.cs —the script that controls the player character— the
CheckSuccess() method was implemented, which checks the normalized variable of the
rhythm circle to calculate and update the successRate variable of PlayerController.cs.
This method, in addition, returns a boolean that indicates whether the action is a success or a
failure depending on the success rate achieved.

A CheckMovementSuccess() method was implemented that works in a similar way but
following stricter criteria to calculate the success rate.

These methods are normally called from the conditional statements that must be met in order for
the main action methods — move, attack, block, technique, and cut — to be executed.

Movement

The Node.cs class was implemented to allow square based movement. Each of the cylinders that
represent the squares in the scene has this script. Every Node object represents a node of the
graph that is the combat grid. Each node has references to its left node, its right node, and its
anterior and posterior nodes, if any.

After implementing the input system by binding each of the essential actions of the game to a
button or stick on the controller —including two additional debug actions linked to the left and right
triggers respectively— the Move() method was implemented in PlayerController.cs. This
method is executed when sufficient input is received from the Move action. Its purpose is to
translate the character in the desired direction if there is an adjacent square in that direction and
the success rate obtained is sufficient.

To prevent the player from moving multiple times or performing multiple actions on the same beat,
the main actions methods check the following statements in order to be executed:

● The current beat is not locked.

● The CheckSuccess() —or CheckMovementSuccess()— method returns true.

● The player is currently not performing any action (currentAction == Action.None).

The Action type is an enumerated type that includes each of the main and some auxiliary actions:
Attack, Block, Tech, Reload, Twirl, Flash, Cut, Move, Wait and None. When the action meets the
above requirements and starts, currentAction is updated with the new action to be performed.
After a given time, currentAction is updated to be equal to Action.None if the player has not
started a different action.

Page 35 — Pablo Lorente Martínez — DownBeat

Attack

For the attack, a system based on two methods was implemented, one for its loading
—LoadAttack()— and the other for the attack itself —Attack(). This same structure and how
this method works has been replicated to implement most of the other actions.

The LoadAttack() method is executed when pressing the attack button and checks the
requirements mentioned in the previous section, in addition to verifying that the rhythm circle is
currently on a downbeat using the IsDownBeat() method from Rhythm.cs. If all of these
requirements are met, the next two beats are blocked, currentAction is updated to
Action.Attack, and the loaded variable is marked as true, indicating that the attack is
loaded. These two variables will automatically return to their initial state after two beats thanks to
the ScheduleUnload() method from Rhythm.cs.

The Attack() method is executed when the player releases the attack button. This method
checks that the beat is not locked, the current action is an attack and the rhythm is on a downbeat.
If these requirements are met, the damage to be inflicted is calculated from a new calculation of
the success rate.

Depending on whether the player is in the inner ring or not, damage is calculated differently:

● If the player is in the inner ring, damage is equal to the player's damage stat multiplied by
the success rate and divided by 100. Additionally, if the attack is critical, this damage is
multiplied by 1.5 and a bullet is reloaded into the chamber using the
FillChamberSlot() function, which will be covered in the Ammunition subsection.

● If the player is not in the inner ring, the same calculation is performed but replacing the
player's damage stat with the Shoot() method, which goes through the four slots of the
chamber and, when it finds a slot filled with a bullet, it marks that slot as empty, plays the
animation of spending that bullet in the user interface, heals the player if the fired bullet is
a powered bullet and returns the damage value of the fired bullet, which varies depending
on whether it is a powered bullet or not. If it does not find a bullet in the chamber, this
method returns 0. If this happens, the attack is not executed.

After calculating the damage to be inflicted and taking the corresponding steps, this value is
passed to enemy's GetAttack()method, which is analogous to the GetAttack()method from
PlayerController.cs, which will be discussed in the Block subsection.

Health

Basic methods have been implemented to control the player's health, including methods to take
damage, heal, and animate the life bar accordingly.

These methods will not be discussed due to their triviality, but the link to the source code can be
found in the section 6.3. Links.

Page 36 — Pablo Lorente Martínez — DownBeat

Ammunition

In order to manage ammunition expense and recovery, various methods and coroutines were
implemented in the PlayerController.cs script. The most functionally important are the
FillChamberSlot() method and the ReloadCoroutine() coroutine, which is started using
the Reload() function.

These methods use the Bullet enumerated type, which includes the values Bullet.Empty,
Bullet.One and Bullet.Plus to indicate if each of the slots in the chamber —which is
implemented as a Bullet array— is empty, filled with a normal bullet or filled with a powered
bullet, respectively.

FillChamberSlot() is used to reload a single bullet, which may or may not be powered —this is
indicated through a boolean argument. This method goes through each of the chamber's slots and
assigns the value of the new bullet to the first empty slot, if any. Also, it plays a small animation in
the user interface to indicate that a bullet has been reloaded.

The ReloadCoroutine() coroutine works in a similar way but for a specific number of bullets.
This function only receives an integer indicating the number of bullets, since it is not necessary to
specify whether these bullets are powered or not —that will depend on whether a full charge has
been made when the chamber was empty or not. Given the number of bullets to reload and the
number of empty slots, this coroutine determines which types of bullets to reload in each slot and
plays a small animation for each reloaded bullet in the user interface sequentially.

The two remaining coroutines —OutOfAmmo() and BurnBullet()— have a purely aesthetic and
communicative function, since they manage small animations in the user interface to indicate to
the player that they are trying to shoot without ammunition and that they have spent a bullet when
shooting, respectively.

Block

The block implementation follows the same “load and execution” structure discussed in the Attack
subsection, and uses a very similar logic. The main differences are that the block can be loaded
both on a downbeat and on an upbeat, and that, when releasing the button, a coroutine
—WaitForDamage()— is started in order to handle the possible delay between the enemy attack
and the player block.

When the player receives an attack, the GetAttack() method is called, which, if the player is
blocking, assigns the value of the attack received to the damageToBlock variable from
PlayerController.cs. Otherwise, the GetDamage() method —mentioned earlier in the
Health subsection— is called instead.

The WaitForDamage() coroutine waits for the damageToBlock variable to be non-zero during
a given time. When this happens, it calls the GetDamage() function indicating a damage value to
receive, which depends on the success rate achieved.

Page 37 — Pablo Lorente Martínez — DownBeat

Special techniques

The special techniques also follow the same logic and structure as the previous two actions, with
the peculiarity that, when starting to load the technique, a differentiation must be made between
which technique is being loaded, depending on the movement of the stick.

The method for loading techniques —LoadTech()— is executed when the button is pressed:
Consequently, if the movement of the stick is checked with a simple conditional statement, the
technique selection will only work properly if the player moves the stick before or in the exact
same frame in which the button is pressed. In other words, if the player moves the stick a few
milliseconds after pressing the button, the loaded technique may not be the correct one.

To solve this, the WaitForTechCorrection() coroutine was implemented, which, following a
logic similar to the WaitForDamage() coroutine, waits to receive enough input from the left
stick to then correct the current technique to the desired one. This coroutine is called when the
player starts to load the reload technique, which is the technique that is performed without any
movement input. The maximum duration chosen for this coroutine is 0.2 seconds. After testing,
this value was consolidated as an adequate value, as it is an interval that is permissive enough with
the player's errors so the game feels responsive and satisfactory, but strict enough so the player
cannot exploit this threshold as an advantage and the transition between animations is not
compromised.

Regarding everything else, the implementation of the techniques is analogous to the
implementation of the attacks, but changing the downbeats for upbeats and adjusting the
different damage values and ammunition rewards following the description found in the
subsection Special techniques from the 3.3. Mechanics section.

Cut and offbeat

Given the instantaneousness of the cut, this move does not need a loading method, it only needs a
execution method —Cut()— that is called when the player presses the button. Therefore, the
implementation of the cut is reduced to a conditional statement that checks the conditions
described in the subsection Cut from the 3.3. Mechanics section:

● The beat is not locked

● The acquired success rate equals 100%.

● The enemy is charging a block or a technique.

If these conditions are met, the enemy's OffBeat() method is called. Otherwise, the player's
OffBeat() method is called. For the player, this method interrupts any action that is being
loaded or performed, sets the variable offbeat to true and starts the WaitForRecover()
coroutine, which, after 0.5 seconds, waits for the player to achieve a 100% success ratio and then
sets the variable offbeat to false. The CheckSuccess() and CheckMovementSuccess()
methods were modified so that, if the offbeat variable is true, they always return false except
when the success rate equals to 100%.

Page 38 — Pablo Lorente Martínez — DownBeat

5.3. Enemy behaviour
Most of the enemy methods related to the main actions, health or success ratio are implemented
analogously to the methods explained in the previous section, with the particularity that, in this
case, the actions are not executed by the player but by a simple artificial intelligence. Therefore, in
this section, only the exclusive implementations from EnemyController.cs —the script that
controls the behavior of the enemy— and the differences proposed by the non-exclusive methods
with respect to their analogs from PlayerController.cs will be discussed.

Artificial intelligence

The enemy exhibits a series of behaviors in each of the different phases of the battle. To achieve
this, a method was implemented for each phase —Phase1(), Phase2(), Phase3() and
Phase4(). One of these methods —depending on what the current phase is— is called in the
Update() function, which is executed every frame, except if the offbeat variable from
EnemyController.cs is true, in which case the enemy schedules a call to the RecoverBeat()
function —which sets offbeat to false— for three beats later, and stays inactive meanwhile.

The methods that govern the enemy behavior during the different phases are implemented
following the descriptions explained in the Phases and behavior subsection of section 3.5. Battle
against Garad, and the link to the source code can be found in the section 6.3. Links.

Regarding the accuracy with which the enemy follows the rhythm, one of the conditions required
for the enemy to perform a certain action is that the normalized variable of Rhythm.cs must
be less than 0.02 —for downbeat actions— or greater than 0.98 —for upbeat actions. In this way, it
is guaranteed that the enemy behaves with a certain intelligence when following the rhythm and
does not try to execute actions at arbitrary times.

In addition, for each action the enemy performs, its charge time —the time that elapses between
the moment when the action starts to load and the moment when it is executed— is equal to that
action's usual charge time plus a random value ranging from -0.1 to 0.1 —although this value is
customizable from the Unity editor in order to increase or decrease the difficulty by improving or
worsening enemy’s accuracy. Thanks to this, the enemy is able to acquire different success rates,
resulting in different damage values, occasional critical attacks, etc.

This random value is applied in the same way to all actions except the cut, where this value is
multiplied by a ratio that can be customized from the Unity editor. The objective of this ratio is to
make the enemy more precise when making a cut than when doing other actions. For example, an
enemy that gets a 100% success ratio in one out of every two actions may be frustratingly powerful
as the half of their attacks are critical hits, but they may also be excessively dumb because they
miss half of their cuts, applying offbeat to themself every time.

Page 39 — Pablo Lorente Martínez — DownBeat

Counter

The Counter() method controls the behavior of the enemy when its objective is to counter the
player. This method is called from the methods of the different phases when the required
conditions are met. This condition may vary in each phase, and are discussed in the

This method checks whether the player is loading an attack, a special technique, or a block, and
consequently performs the appropriate move to counter it, using the ScheduleFunction()
method from Rhythm.cs and the corresponding action method —Block() if the player is loading
an attack or Cut() if the player is loading a block or a technique.

Attacks and techniques

A different method has been implemented for each enemy attack and for each enemy technique.
In addition, two functions —RandomAttack() and RandomTech()— have been implemented to
execute a random attack or technique from a given list. These methods receive an array of
integers as an argument, randomly choose one of those integers and consequently decide, using a
switch statement, which attack or technique to execute. In this way, making the enemy attacks
use different attack pools for the different phases is as easy as passing the method a different
array in each phase.

To execute the attacks on specific squares, several methods have been implemented in the
Node.cs script that, using coroutines, increase the emission and color of the squares’ material
during a given loading time and then inflict damage on the player if they are in that square.

In addition, in this same class, some useful methods have been implemented for the selection of
squares and the cancellation of attacks and techniques:

● GetIndexInAxis() returns 0 if the node is from the inner ring, 1 if it is from the middle
ring and 2 if it is from the outer ring.

● GetFirstNodeOnThisAxis() returns the node from the inner ring that is also on this
node’s axis.

● GetLastNodeOnThisAxis() returns the node from the outer ring that is also on this
node’s axis.

● GetFirstNodeOnOppositeAxis() returns the node from the inner ring that is also on
this node’s opposite axis.

● Cancel() stops all coroutines on this node and returns its usual material properties.

Page 40 — Pablo Lorente Martínez — DownBeat

Regarding attacks and techniques, they are implemented as follows:

● Thunder: Loads an attack on the node the player is on.

● Storm: Selects the player's current node and between 4 and 6 additional nodes of that
node's axis and adjacent axes, and loads an attack on each of them.

● Thrust: Iterates over the player’s current axis, loading an attack on each of its nodes.

● Sweep: Iterates over the player’s current ring, loading an attack on each of its nodes.

● Backhand sweep: Iterates over the inner ring, loading a technique on each of its nodes.

● Prayer: Uses the ScheduleFunction() method from Rhythm.cs to schedule a call to
the Heal() method from EnemyController.cs after about two seconds. In order to
execute this technique, a random value between 0 and 10 must be lesser than the
retaliate value. This variable starts with a value of 5, sets to 0 when the enemy uses
this technique, increases its value by one (with a maximum of 10) when the random number
surpass its value or when the enemy receives damage, and decreases its value by one
(with a minimum value of 0) every time the player counter this technique with a cut or an
attack. This makes the enemy to use this technique more often as they receive damage,
but also to use it only in times of need if the player usually takes advantage of this
technique to apply offbeat to the enemy.

● Storm Combo (Storm + Replication): All nodes in the combat grid are enqueued in a
modified priority queue that allows an integer to be passed to the constructor as an
argument. This integer is the maxRandomVariation variable of the priority queue.
When an item is added to the priority queue, the queue increases its priority by a random
value between 0 and maxRandomVariation. The initial priority assigned to each node is
equal to the Manhattan distance [22] from that node to the player's current node. For the
first storm, 5 to 7 nodes are dequeued, and an attack is loaded on each. For the second
storm, 5 to 7 more are dequeued, and a technique is loaded on each.

● Sweep Combo (Sweep + Replication + Sweep): Randomly, it is decided whether the
combo will start on the inner ring or the outer ring. If it starts on the inner ring, the method
iterates over it, charging attacks on each of its nodes. This process is repeated after a
second for the middle ring, and after two seconds for the outer ring. If the combo starts on
the outer ring, the order of the rings is the opposite —outer, middle and inner.

● Thrust Combo (Thrust + Replication, up to 3 times): Randomly, it is decided whether the
combo will start on the axis that is left adjacent to the player axis or on the axis that is
right adjacent to the player's axis. Then, a random number between 3 and 6 thrusts is
determined. At 1 second intervals, thrusts begin to be loaded onto the selected axis,
iterating over the circle clockwise if started to the player's right or counterclockwise if
started to the player's left. The attack stops when the chosen number of thrusts is
reached or when one of the thrusts hits the player.

Page 41 — Pablo Lorente Martínez — DownBeat

5.4. User interface
Developing the user interface was one of the most time consuming tasks compared to initial
planning. However, most of these tasks consisted of implementing simple animations using
methods from the iTween library and testing and adjusting different parameters to obtain a
satisfactory visual result.

Since the operation of most of the elements of the user interface have been explained in different
subsections from sections 5.1. Rhythm system and 5.2. Combat system —in methods that, in
addition to having a function in the playable system, also control part of the user interface—, this
section will only cover implementations related to two elements: the dialog box and the numeric
indicators.

Dialog box

The dialog box makes use of the CutsceneText.cs script. This script includes the LoadText()
method, which loads a text file from one of the subfolders from the Resources/Text folder. This
method receives a string as parameter, which is the name of the folder to load. Each folder
corresponds to one of the cutscenes in the game, and inside it contains different text files with
observations or thoughts related to that cutscene. Each time this method is called, it randomly
loads one of the text files from the corresponding folder.

In addition, the CutsceneText.cs script has three parameters that are customizable from the
Unity editor —letterTime, pauseTime and stopTime— that indicate the duration of the pauses
that the ShowText() method makes after each letter, comma and full stops, respectively.

This method is called at the beginning of every cutscene and everytime the player presses the A
button during a cutscene. In order to work properly, this methods also checks the state of the text
using the enumerated type TextState —which can be Unloaded, Writing, Paused, and
Ended.

After loading a new text if necessary and if writing process has not ended, the ShowText()
method displays the text by writing the letters one by one —what is commonly known as Typewriter
effect— until it finds the character '$', which is not displayed, and stops the method. When the
player calls this method again by pressing the A button, the previous text is erased and the writing
is resumed after the last ‘$’ character reached.

If the player presses the button A and the writing process has ended completely, the text is erased
and a timer is displayed on the lower right corner of the screen. This timer indicates the remaining
time for the transition to the next combat phase, and its implementation is discussed in the
Implementation subsection from section 5.6. Dynamic soundtrack.

Page 42 — Pablo Lorente Martínez — DownBeat

http://pixelplacement.com/itween/index.php
http://pixelplacement.com/itween/index.php

Numerical indicators

To implement the numeric indicators, a text object named PopUpText was created, which was
configured with the desired text properties and saved as a prefab in the Resources folder so that it
could be loaded via script.

The UIController.cs script was implemented to manage the color, size, spawn position and
animation of each of these indicators. When the PopUpNumber() method from this script is
called from another script, the following data is passed as arguments:

● The number to display

● The NumberType value —an enumerated type which presents various values such as
Rate, Attack, Plus, Damage, Block, etc.

● A boolean value indicating whether the number must be displayed as a critical hit or not.

Given these three arguments, the color and size are chosen using the Setup() method, which
uses a switch statement to determine the color depending on the type and calculates an
appropriate size depending on the value of the number, whether it is critical or not, and the
minSize, maxSize, minValue and maxValue parameters, which establish a linear relationship
between minimum and maximum values of size and numerical value.

After this, the distance that the number will translate in its animation is calculated following
similar criteria, and the Animate() coroutine —which is in charge of varying the position, scale
and opacity of the number during its life on screen— begins. The duration of the animation is also
chosen depending on the value of the number.

To avoid overlapping numbers, UIController.cs makes use of an array of Transform objects
that act as pivots on which to spawn the numbers. This array —pivots— works in conjunction with
an array of the same length named empty, which indicates which of the pivots are available and
which are occupied. When the PopUpText() function is called, it iterates over empty to find the
first available pivot, and the PopUpText prefab is instantiated from the Resources folder as a child
of that pivot, in addition to marking that pivot as occupied in the empty array.

When the animation ends and the PopUpText object disappears, its pivot position in the empty
array is marked as available again.

This script also has functions analogous to the previous ones but that follow other criteria to
decide the size, position or content of what is shown on the screen. For example, the
PopUpRate() and PopUpText() methods follow the same logic as PopUpNumber() but use a
single-pivot system and call different overloads of the Setup() method or the Animate()
coroutine to satisfy certain peculiarities with respect to the visual representation of the message.

Most of the parameters can be customized from the Unity editor — the position of the pivots, the
minimum and maximum values of size and numerical value, the base values of translation distance
for the animation, screen time and fade duration, and the different colors for the text.

Page 43 — Pablo Lorente Martínez — DownBeat

5.5. Animations and visual effects
Unexpectedly, the tasks from this field have been some of the most time consuming tasks in the
entire project. This was mainly due to the fact that a large part of the animations used had to be
adapted to meet the needs of the project.

Despite the fact that this field may seem of minor importance, a visual section that provides the
user with adequate feedback on what is happening in the game is essential for a satisfactory
combat system. For example, Sekiro: Shadows Die Twice's combat system [1] feels so responsive,
intuitive, and polished largely due to the sparks released by the swords when they collide —which
tell the player if attacks are blocked or deflected— and to the fluid and precise animations that
allow the player to discern what attack the enemy is going to use, and act accordingly.

In the same way, it is crucial for this combat system that the player has clear and striking visual
information about the movements of his own character, the movements of the enemy and even the
rhythm.

Combat animations

The combat animations, both of the enemy and of the player, as well as the models of the
characters, have been imported from Mixamo. Despite the fact that this page has a wide variety of
animations, many of the characters' actions were not properly represented in them, and the most
similar ones hindered visual clarity or were incompatible with the character's design. For example,
although the main character and the enemy share the majority of the actions, no character
animation could be reused for the enemy since the enemy wields a weapon —in fact, a large
weapon that easily improperly pierces the geometry of the stage or the enemy himself.

Consequently, many of the animations have been adapted from specific positions of other
animations. For example, the posture adopted by the enemy when loading the Flash technique is
extracted from a capoeira movement.

Most actions have been implemented following a similar logic: the character can transition to an
action loading animation from any other state when the corresponding trigger is activated via
script. When the player releases the button to perform the action, a trigger named release is
activated. This causes the character to transition to the animation in which he performs the action
in question. After a certain time, the character returns to the default state. When the same loading
animation can result in two different animations —such as loading the block, which can result in a
block or a parry—, auxiliary triggers are used.

Also, a trigger called fail is used when the player releases the button at half load or, in general,
when an interruption of the current animation is necessary. When this trigger is activated, the
character returns to its default state.

Page 44 — Pablo Lorente Martínez — DownBeat

https://www.mixamo.com/#/

In short, for the animations of the character the following state machine was implemented using
the Unity Animator (See Figure 14):

Figure 14: Player animator states and transitions.

For the enemy, in addition to implementing a state machine similar to the previous one, several
methods were extended in order to move the halberd. For example, in the Sweep() and
Thrust() methods, an empty object is placed at the player's position (See Figure 15). This empty
object acts as a pivot, and the Effects.cs script uses it to orientate the halberd to the indicated
location. When the animation ends, the halberd returns to its original position relative to the
enemy's right arm.

Figure 15: Position of the halberd pivot —right under the player— during an enemy thrust.

Originally, the enemy was going to use the halberd to attack and the pike —which is hanging on his
back, holding the lantern— to use techniques. This idea was finally discarded due to the absence of
Mixamo animations that held two weapons and that served to faithfully represent the actions of
the enemy. The 3D models for the halberd and the pike have been imported from [23], and the
model for the lantern has been imported from [24].

Page 45 — Pablo Lorente Martínez — DownBeat

In comparison with the previously discussed state machine, the enemy state machine (See Figure
16), presents very similar structure and logic, with the difference that the transition between
animations does not depend on the player, which facilitates its implementation. On the other hand,
the enemy has a wider variety of attacks than the player, although these animations are reusable
for the Replication technique. In addition, the enemy does not have movement animations, since it
is always in the center of the stage.

Figure 16: Enemy animator states and transitions.

Visual effects

Different visual effects have been implemented for both player and enemy attacks and techniques.
In general, these effects have been developed using particle systems, trails and lights, mostly
derived from the pre-made effects from the Unity Particle Pack [25].

To manage its appearance and some small animations regarding the scale or rotation of the
effects —which use methods from the iTween library or own scripts— different methods have been
implemented in the Effects.cs class. Each of these methods is called from the corresponding
animation using animation events, and is responsible for instantiating the prefabs necessary to
carry out the effect —for example, for an explosion, the script instantiates a shock wave, sparks, a
light, etc.— and managing all coroutines that are necessary to properly animate said effect. The
Flash technique, in addition, makes use of a plane that uses a custom designed sprite to represent
the energy blade that comes out of the character's arm.

For the general environment, three different post-processing profiles have been used —one
practically empty, one for the general scene and another for when the player is under the offbeat
effect— and two cameras —one that renders the general scene alternating between the two last

Page 46 — Pablo Lorente Martínez — DownBeat

http://pixelplacement.com/itween/index.php

post-processing profiles and a superposed camera that only renders, under the first profile, the
characters and a few other elements. (See figure 17)

Figure 17: Comparison between the image rendered by the main camera —left— and the image rendered by the superposed
camera —right. In the game, these two images are combined in order to show the offbeat post processing effects but without

affecting the characters.

Camera behaviour

The Cinemachine package functionalities have been used to create several virtual cameras
between which the main camera transitions. For example, the game uses a different virtual
camera for each of the three positions that the player can have in his axis of the combat grid,
another for when he loads the Flash technique, etc.

Transitions between cameras use a state machine implemented in the Unity Animator, similar to
those that control player and enemy animations. (See Figure 18). Triggers that control transitions
between cameras are activated when the player performs certain actions, such as moving forward
or backward.

Figure 18: Camera states and transitions.

The main tasks regarding the use of cameras have taken place when implementing the cutscenes,
but this section will be discussed in more advanced stages of the development of the project,
given that some of these cinematics are not yet implemented.

Page 47 — Pablo Lorente Martínez — DownBeat

https://unity.com/es/unity/features/editor/art-and-design/cinemachine

5.6. Dynamic soundtrack

Learning stage

This stage includes a research about different techniques and practices that may be useful for the
implementation of the dynamic soundtrack, as well as the learning of the basic teachings for using
sound middleware such as Wwise. A tutorial by Michael Zull [26] has been followed in order to
integrate Wwise into Unity, while the official Wwise tutorials [27] have been consulted in order to
learn how to use the software.

Soundtrack adaptation

The implementation of the dynamic soundtrack has been conditioned by some limitations of the
audio middleware, such as:

● Wwise offers very limited audio edition options.

● Wwise does not allow jumps within the same audio clip.

● The only useful data from the wwise audio engine that can be queried from Unity is the
current time value, that is, the time in milliseconds that has passed since the audio engine
was initialized.

Due to the first limitation, the initial plan to attenuate the music directly from the audio
middleware when the offbeat effect was applied to the player had to be dropped. Instead, an
alternative version of Bound by a terrible fate was produced including echo effect, reverb,
low-pass filter, and custom equalization to achieve the “underwater attenuation” effect.

In order to achieve the desired implementation despite the second limitation, it has been
necessary to cut Bound by a terrible fate into 12 audio clips, so that all the desired jumps can be
made by transitions between clips. The same process was followed to split the attenuated version
of the soundtrack to obtain an attenuated version of each of the clips. Depending on the needs
when linking with other clips, many of these clips have pre-entry and post-exit fragments, which
overlaps the end of the previous clip or the beginning of the subsequent clip respectively, thus
achieving more natural transitions (See Figure 19).

Due to this, the cuts had to be made independently for each of the audio tracks —which correspond
to each of the instruments— that make the soundtrack. This allows, for example, the pre-entry
fragment of the Phase III: A Terrible Fate to consist only of the brass anachruses, the snare drum
and drum kit introduction and the piano fill that uses the Fate leitmotiv. By leaving the rest of the
instruments out of this fragment, it is guaranteed that there will not be duplicate voices and that
the transition to this phase can take place from different points of Interlude III: What Could Have
Been.

Page 48 — Pablo Lorente Martínez — DownBeat

Figure 19: Seven of the eleven audio tracks that compose the Coda: And Then Fate Rewinds audio clip. Highlighted on the left
side of the timeline, the pre-entry fragment of this clip.

Implementation

The first phase of the implementation consisted of preparing in Wwise a whole hierarchy of audio
clips —each of which is composed by the original track and attenuated version—, placing cues
along each of the clips to mark the start and end of the pre-entry and post-exit fragments and
additional transition points, establish the appropriate rules for each of the transitions between
clips, and establish the flow between the several clips —as well as the alternation between tracks—
using switches and states.

Once this was achieved, the dynamic soundtrack was already working as expected within the audio
middleware, but Unity still needed to communicate with Wwise to activate and deactivate the
switches and states that govern the flow of the dynamic soundtrack.

This is easily accomplished by using the functions from the AkSoundEngine class, which is
automatically implemented in the project when integrating Wwise. However, an unexpected
problem arose, and that is, after calling that function, there was no way of knowing within how long
the transition would happen.

Page 49 — Pablo Lorente Martínez — DownBeat

For example, if the player presses the A button on the start menu to start the battle, the transition
to the combat —which must match the transition from the Introduction: Prophecy audio clip to the
Interlude I: Steel Tempest audio clip— should not happen instantaneously, but should wait for the
right moment to ensure a musically correct transition and also to leave the player at least a couple
of seconds as a threshold to prepare themself for the first round of enemy attacks.

To achieve this, several functions were implemented in MenuController.cs to manually calculate
the remaining time until the transition occurs. These functions replicate the logic that Wwise
follows to decide when to make the transitions depending on the specified rules, and, consulting
the time value from the audio engine, saving this value at the beginning of each phase and doing
the appropriate mathematical operations, they calculate the remaining time, display it on the
screen and schedule the start of the next phase of the combat accordingly.

A major part of the implementation stage consisted of testing if the dynamic soundtrack was
working as expected and tweaking parameters until the result was satisfactory. This supposed a
large amount of time considering the complete duration of the work and the number of
possibilities that had to be tested.

Sound effects

The last part of the creation and implementation of the dynamic soundtrack consisted of mixing
and editing different sounds clips to obtain sound effects that fit the needs of the project, as well
as establishing the rules for their correct reproduction.

In addition, to prevent the sound effects from becoming repetitive, some of them were
pitch-randomized. Indeed, for the thunder sound effect —which sounds every time the enemy
attacks—, three different sound clips were produced. Whenever a thunder sound needs to be
played, Wwise to plays randomly one of this three sound effects in order to decrease repeatability.

The links to the original sound effects have been included in the Bibliography [29 - 45], although
most of the final effects have gone through a deep process of editing and mixing, resulting almost
unrecognizable. In total, 19 sound effects were produced for the following events:

● Block

● Confirm (Menu)

● Critical hit

● Cut

● Enemy block

● Flash

● Heal

● Out of ammunition

● Powered shot

● Prayer

● Punch

● Reload

● Shot

● Slash

● Text (Menu)

● Thunder (1)

● Thunder (2)

● Thunder (3)

● Twirl

Page 50 — Pablo Lorente Martínez — DownBeat

5.7. Testing and debug
The testing stage not only resulted in the discovery of several important bugs and significant
conclusions regarding the difficulty balance, but also served as an opportunity to search for
exploits of what the player could take advantage of and make corrections in the implementation of
the mechanics to get a more satisfying experience.

Most of these bugs and exploits were caused by the problems in the synchronization of the time
limits within certain actions can be performed, and were solved by adding time locks using
coroutines.

A significant part of the testing phase occurred during the implementation of the dynamic
soundtrack and the transitions between combat and cutscenes, since, for example, every time it
was necessary to test whether the transition from the fourth phase to the final cinematic —which
in the soundtrack corresponds to the transition from Phase IV: Conflagration to the Coda: And Then
Fate Rewinds— was produced correctly, the previous three phases had to be played. This resulted
in a short list of bugs that were corrected immediately after their discovery or in the final stage of
the project.

After 150 hours dedicated to the development of the demo —without including the composition and
production of the soundtrack or the tasks related to the writing of this report— and having
obtained a functional build and several final tests without the appearance of bugs, the testing and
debug stage was considered as finished, although it new bugs may be discovered in the future.

Page 51 — Pablo Lorente Martínez — DownBeat

6. RESULTS

6.1. Time balance and deviations
Before starting the project, a planning —which can be consulted in section 2. Planning— was made.
Despite the fact that this planning has served as a guide for the development of the project in
terms of order and dependencies between tasks, various setbacks and minor changes of direction
have emerged during the development of the project, resulting in a slightly different final planning.

The main reasons for the most notable changes in planning have been problems derived from the
state of alarm, creative decisions and technical difficulties —although, in certain tasks, the
opposite effect has occurred and the ease and absence of problems have resulted in a significant
saving of time.

The dynamics for measuring the time spent on each task consisted of using the Toggl tool to start
a timer each time a work session for a specific task started, indicating the name of the task and its
classification —design, user interface, combat system, artificial intelligence, composition, etc.—
and stopping it when the work session has ended or when the task is finished.

A side-by-side comparison between the expected hours and the real number of hours spent on
each task, as well a brief explanation of the difference between them, if any.

MUSIC RELATED TASKS

Task Expected
hours

Final
hours

Deviation reason

Composing and
producing

36 58 Lack of inspiration, inability to use Logic Pro X due
to LABCOM closure, unexpected Wwise limitations.

Middleware
basic learning

12 3.5 Unexpected software intuitiveness.

Dynamic
soundtrack
implementation

24 8 Rhythm system was expected to stop working
when switching from Unity audio engine to Wwise
dynamic audio engine, but worked with just a few
minor changes.

Sound effects 2 4 The sound effects were mixed, edited and
produced instead of just downloaded.

Total 74 73.5 —

Page 52 — Pablo Lorente Martínez — DownBeat

https://toggl.com/

CONCEPTUAL DESIGN RELATED TASKS

Task Expected
hours

Final
hours

Deviation reason

Combat system
design

12 12 —

Battle scripting
and enemy
behaviour design

6 3 The battle was originally going to consist of five
different phases, but was reduced to four due to
time limitations regarding the soundtrack
composition.

Camera
behaviour design

2 1 Each cutscene were originally going to randomly
toggle between at least eight different camera
shots. This idea was discarded.

Total 20 16 —

PROGRAMMING RELATED TASKS

Task Expected
hours

Final
hours

Deviation reason

Movement
implementation

3 3 —

Rhythm bar
implementation

4 4 —

Combat system
implementation

30 15.5 Most of the actions follow a similar logic, so the
code of one was reused in the others.

User interface
implementation

2 13 A lot of time had to be spent adjusting the behavior
of some interface elements through trial and error
until it was satisfactory.

Artificial
Intelligence
implementation

12 10 Reducing the number of phases from five to four
meant less different behaviors to implement.

Camera
behaviour
implementation

4 1.5 Discarding the idea of randomized cutscenes
considerably reduced the workload.

Menus and
cutscenes
implementation

— 9 These tasks were erroneously not taken into
account when making the initial planning

Total 55 56 —

Page 53 — Pablo Lorente Martínez — DownBeat

2D AND 3D ART, ANIMATIONS AND VISUAL EFFECTS RELATED TASKS

Task Expected
hours

Final hours Deviation reason

Rhythm bar
design and art

2 1 —

User interface
design and art

2 2 —

Cutscenes
and main
menu
animations
and visuals

4 7.5 Some custom animations were made but they
stopped working when changing the hierarchy of
character models for technical reasons.

Combat
character’s
animations

8 18.5 Most imported animations had to be adapted to
meet the needs of the project. In addition, more
animations than expected were necessary.

Environment
3D modeling,
lighting and
post
processing
effects

6 3 Opting for a minimalist and symbolic aesthetic
reduced the workload when building the scene.

Rhythm visual
feedback

6 1 Due to the environment minimalism, it was only
necessary to implement the glow of the tiles and
some changes to the chromatic aberration.

Visual effects 10 13 Custom particle system and other visual effects
were implemented for most player and enemy
animations.

Total 38 46 —

Page 54 — Pablo Lorente Martínez — DownBeat

DEBUG TASKS

Task Expected
hours

Final
hours

Deviation reason

Dynamic soundtrack
debug

6 6 —

Combat system debug 8 8 —

Artificial intelligence
debug

4 2.5 The simplification of the enemy AI also resulted
in fewer bugs.

Combat animations
debug

8 8 —

Cutscenes and menu
debug

4 4 —

Build debug 6 0.5 Unlike most of my previous projects, there was
only one bug derived from the build and it was
easily fixed.

Total 36 29 —

DOCUMENTATION

Task Expected
hours

Final
hours

Deviation reason

Planification — 6 Erroneously not taken into account in the planning.

Code cleaning — 5 Erroneously not taken into account in the planning.

Sheet music
layout

— 3 Erroneously not taken into account in the planning.

Video
demonstration

— 3 Erroneously not taken into account in the planning.

Final report 48 64 Much more time consuming than expected.

Presentation
preparing

29 12 —

Total 77 81 —

Page 55 — Pablo Lorente Martínez — DownBeat

TOTAL BALANCE

Task Expected hours Final hours

Music 74 73.5

Conceptual
design

20 16

Programming 55 56

Visuals 38 46

Debug 36 29

Documentation 77 81

Total 300 320

6.2. Completion of the objectives
Regarding the initial objectives —discussed in section 1.3. Objectives— and having considered the
project development as finished, these are the conclusions regarding their completion:

● A playable demo of a complete boss battle has been developed. This demo presents a unique,
dynamic, enjoyable and exciting combat system, in which both opponents must respond to
the movements of the rival following the beat and using in their favor the downbeats and
upbeats of the music, as if it were a dance.

● Once the controls and mechanics are known, this combat system allows the player to achieve
victory at first try relying solely on reflexes, sense of rhythm and mechanical skill, but it also
leaves room for challenge and improvement by practicing and memorizing patterns.

● The mechanics, the music, the visuals and the rest of the narrative elements are intimately
coordinated at any moment of the battle.

● An original soundtrack that dynamically adapts to player inputs and other in-game changes
has been composed, produced and implemented

● The enemy has been provided with an artificial intelligence that allows him to pose an
interesting challenge to the player, react to their actions and display different behaviors and
attack patterns that remain consistent with the musical and narrative development of each
phase.

Page 56 — Pablo Lorente Martínez — DownBeat

6.3. Links
GitHub repository: https://github.com/PabloPSK99/DownBeat-TFG

DownBeat demo executable file:
https://drive.google.com/file/d/1tu1dMy09SQnP2x64jTEDkCkvHq5ZsOuE/view?usp=sharing

Video demonstration on YouTube: https://www.youtube.com/watch?v=yPHhTktpBfY

Bound by a terrible fate on SoundCloud:
https://soundcloud.com/pablo-lorente-martinez/downbeat-bound-by-a-terrible-fate

Bound by a terrible fate sheet music:
https://drive.google.com/file/d/1iYfmgbD1RaRmO00xhNKDOGEKjO86i-MF/view?usp=sharing

7. CONCLUSIONS
This project is the first step in a long journey to make DownBeat a reality. This game existed within
me as a still formless idea: I had come up with some fun and unique mechanics for the combat
system and had certain concerns in mind that I wanted to address through the game, but there was
no common thread between the two nor an appropriate world where this idea could flourish.

Undoubtedly, the need to take this idea to paper in order to use part of it as my Bachelor’s Thesis
has been the kind misfortune that nourished it’s nascency.

This project has taken away my sleep more nights than my mind and body could to endure, but it
has also given me a goal and the determination to reach it. Thanks to this project, I have been able
to fully devote myself to my two passions: video game development and musical composition, and,
from them, synthesize a work that I am extremely proud of.

Regarding future plans, DownBeat still needs a lot of conceptual and narrative design work before
starting with the development of the full game. Having achieved that and finally having a solid
vision of what I want DownBeat to be, I would like to assemble a small team and try to bring the
project to a version advanced enough to be able to obtain financing to fully devote ourselves to its
development.

I really hope that these wishes can be fulfilled in the future and I know that I will work hard to make
it happen.

Page 57 — Pablo Lorente Martínez — DownBeat

https://github.com/PabloPSK99/DownBeat-TFG
https://drive.google.com/file/d/1tu1dMy09SQnP2x64jTEDkCkvHq5ZsOuE/view?usp=sharing
https://www.youtube.com/watch?v=yPHhTktpBfY
https://soundcloud.com/pablo-lorente-martinez/downbeat-bound-by-a-terrible-fate
https://drive.google.com/file/d/1iYfmgbD1RaRmO00xhNKDOGEKjO86i-MF/view?usp=sharing

BIBLIOGRAPHY
[1] Sekiro: Shadows Die Twice (PC version) [Video game]. (2019). From Software.

https://www.sekirothegame.com/uk/en/home. Accessed:2020-06-02.

[2] Doom Eternal (PC version) [Video game]. (2020). Bethesda.
https://bethesda.net/en/game/doom. Accessed:2020-06-02.

[3] Fox, T. (2015). Undertale (PC version) [Video game]. https://undertale.com/.
Accessed:2020-06-02.

[4] Cavanagh, T. (2013). Super Hexagon (PC version) [Video game].
https://superhexagon.com/. Accessed:2020-06-02.

[5] Wikipedia. Middleware. https://en.wikipedia.org/wiki/Middleware. Accessed:
2020-06-02.

[6] Lyubo. (2018). Introducing Coherent Console Fonts, Coherent Labs.
https://coherent-labs.com/posts/introducing-coherent-console-fonts/. Accessed:
2020-05-28.

[7] Wikipedia. Rock Paper Scissors. https://en.wikipedia.org/wiki/Rock_paper_scissors.
Accessed: 2020-06-02.

[8] Wikipedia. Tomoe. https://en.wikipedia.org/wiki/Tomoe. Accessed: 2020-06-07.

[9] Wikipedia. Raijin. https://en.wikipedia.org/wiki/Raijin. Accessed: 2020-06-02.

[10] Toby Fox. (2015). Heartache. On Undertale Soundtrack. [Audio File]. Retrieved from
https://tobyfox.bandcamp.com/track/heartache-2. Accessed: 2020-06-02.

[11] Toby Fox. (2015). ASGORE. On Undertale Soundtrack. [Audio File]. Retrieved from
https://tobyfox.bandcamp.com/track/asgore. Accessed: 2020-06-02.

[12] Toby Fox. (2015). Battle Against a True Hero. On Undertale Soundtrack. [Audio File].
Retrieved from https://www.youtube.com/watch?v=aWBtpBwzzdM. Accessed:
2020-06-02.

[13] Jason M. Yu. (2016) An Examination of Leitmotifs and Their Use to Shape Narrative in
UNDERTALE – Part 1 of 2. http://jasonyu.me/undertale-part-1/. Accessed: 2020-05-30.

[14] Game Score Fanfare. (2017). How the song "Undertale" Hits Home. [Video File]. Retrieved
from https://www.youtube.com/watch?v=9xR-xOkKP44. Accessed: 2020-05-30.

[15] Wikipedia. Leitmotif. https://en.wikipedia.org/wiki/Leitmotif. Accessed: 2020-05-30.

[16] Wikipedia. Andalusian Cadence. https://en.wikipedia.org/wiki/Andalusian_cadence.
Accessed: 2020-05-30.

Page 58 — Pablo Lorente Martínez — DownBeat

https://www.sekirothegame.com/uk/en/home
https://bethesda.net/en/game/doom
https://undertale.com/
https://superhexagon.com/
https://en.wikipedia.org/wiki/Middleware
https://coherent-labs.com/posts/introducing-coherent-console-fonts/
https://en.wikipedia.org/wiki/Rock_paper_scissors
https://en.wikipedia.org/wiki/Tomoe
https://en.wikipedia.org/wiki/Raijin
https://tobyfox.bandcamp.com/track/heartache-2
https://tobyfox.bandcamp.com/track/asgore
https://www.youtube.com/watch?v=aWBtpBwzzdM
http://jasonyu.me/undertale-part-1/
https://www.youtube.com/watch?v=9xR-xOkKP44
https://en.wikipedia.org/wiki/Leitmotif
https://en.wikipedia.org/wiki/Andalusian_cadence

[17] Guitar Hero Live (Xbox One version) [Video game]. (2015). Activision.
https://www.guitarhero.com/game. Accessed:2020-06-07.

[18] Dance Dance Revolution A20 (Arcade version) [Video game]. (2019). Konami.
https://p.eagate.573.jp/game/ddr/ddra20/p/. Accessed:2020-06-07.

[19] Crypt of the Necrodancer (Nintendo Switch version) [Video game]. (2015). Brace Yourself
Games. https://braceyourselfgames.com/crypt-of-the-necrodancer/.
Accessed:2020-06-07.

[20] Cadence of Hyrule — Crypt of the NecroDancer feat. The Legend of Zelda (Nintendo Switch
version) [Video game]. (2019). Brace Yourself Games.
https://braceyourselfgames.com/cadence-of-hyrule/. Accessed:2020-06-07.

[21] Pokémon GO! (Android version) [Video game]. (2016). Niantic, Inc.
https://www.pokemongo.com/en-gb/. Accessed:2020-06-07.

[22] Wikipedia. Taxicab Geometry. https://en.wikipedia.org/wiki/Taxicab_geometry.
Accessed: 2020-06-07.

[23] Helsssoo. (2016). Halberd - Weapons 18th Century, Unity Asset Store
https://assetstore.unity.com/packages/3d/props/weapons/halberd-weapons-18th-centu
ry-61568. Accessed: 2020-06-08.

[24] MIBS. (2019). Free 3D Model : Chinese Paper Lantern, Behance
https://www.behance.net/gallery/75603975/FREE-3D-MODEL-Chinese-Paper-Lantern.
Accessed: 2020-06-08.

[25] Unity Technologies. (2020). Unity Particle Pack, Unity Asset Store
https://assetstore.unity.com/packages/essentials/tutorial-projects/unity-particle-pack-
127325. Accessed: 2020-06-08.

[26] West Side Electronic Music. (2016). Wwise and Unity: Getting Started with Unity & Wwise,
Part 1 . [Video File]. Retrieved from https://www.youtube.com/watch?v=rK96gLoZMEY.
Accessed: 2020-07-03.

[27] Audiokinetic. (2019). Wwise-201 | Wwise 2019.1. [Video Playlist]. Retrieved from
https://www.youtube.com/watch?v=g_PAUvbBMS0&list=PLXMeprTk4ORP8xloWRduLTVp
3vYHdZ1Qw. Accessed: 2020-07-03.

[28] Robinhood76. (2010). 01904 Air Swoosh.wav. [Audio File]. Retrieved from
https://freesound.org/people/Robinhood76/sounds/101432/. Accessed: 2020-07-03.

[29] Selector. (2016). Sleigh Bells Hit. [Audio File]. Retrieved from
https://freesound.org/people/Selector/sounds/369506/. Accessed: 2020-07-03.

[30] Jtn191. (2020). Regen-healing3.wav. [Audio File]. Retrieved from
https://freesound.org/people/jtn191/sounds/514271/. Accessed: 2020-07-03.

[31] Langerium. (2009). Air_cut.wav. [Audio File]. Retrieved from
https://freesound.org/people/Langerium/sounds/84616/. Accessed: 2020-07-03.

Page 59 — Pablo Lorente Martínez — DownBeat

https://www.guitarhero.com/game
https://p.eagate.573.jp/game/ddr/ddra20/p/
https://braceyourselfgames.com/crypt-of-the-necrodancer/
https://braceyourselfgames.com/cadence-of-hyrule/
https://www.pokemongo.com/en-gb/
https://en.wikipedia.org/wiki/Taxicab_geometry
https://assetstore.unity.com/packages/3d/props/weapons/halberd-weapons-18th-century-61568
https://assetstore.unity.com/packages/3d/props/weapons/halberd-weapons-18th-century-61568
https://www.behance.net/gallery/75603975/FREE-3D-MODEL-Chinese-Paper-Lantern
https://assetstore.unity.com/packages/essentials/tutorial-projects/unity-particle-pack-127325
https://assetstore.unity.com/packages/essentials/tutorial-projects/unity-particle-pack-127325
https://www.youtube.com/watch?v=rK96gLoZMEY
https://www.youtube.com/watch?v=g_PAUvbBMS0&list=PLXMeprTk4ORP8xloWRduLTVp3vYHdZ1Qw
https://www.youtube.com/watch?v=g_PAUvbBMS0&list=PLXMeprTk4ORP8xloWRduLTVp3vYHdZ1Qw
https://freesound.org/people/Robinhood76/sounds/101432/
https://freesound.org/people/Selector/sounds/369506/
https://freesound.org/people/jtn191/sounds/514271/
https://freesound.org/people/Langerium/sounds/84616/

[32] Imbubec. (2011). 1_Knife_Slash_A.wav. [Audio File]. Retrieved from
https://freesound.org/people/lmbubec/sounds/118792/. Accessed: 2020-07-03.

[33] Loopsamples.clu. (2019). Cmaj7 Bell30.ogg. [Audio File]. Retrieved from
https://freesound.org/people/loopsamples.club/sounds/483383/. Accessed:
2020-07-03.

[34] Nekoninja. (2016). Shield Guard. [Audio File]. Retrieved from
https://freesound.org/people/nekoninja/sounds/370203/. Accessed: 2020-07-03.

[35] Ecfike. (2011). Computer Error.wav. [Audio File]. Retrieved from
https://freesound.org/people/ecfike/sounds/135125/. Accessed: 2020-07-03.

[36] InspectorJ. (2017). Cmaj7 Bell30.ogg. [Audio File]. Retrieved from
https://freesound.org/people/InspectorJ/sounds/339818/. Accessed: 2020-07-03.

[37] Bspiller5. (2019). BPS-Boxing-Punches-Designed-Face Hit-Medium.wav. [Audio File].
Retrieved from https://freesound.org/people/bspiller5/sounds/478150/. Accessed:
2020-07-03.

[38] Aiwha. (2013). Hits on wood. [Audio File]. Retrieved from
https://freesound.org/people/Aiwha/sounds/190027/. Accessed: 2020-07-03.

[39] EthanChase7744. (2018). Epic Sword Clang 2.wav. [Audio File]. Retrieved from
https://freesound.org/people/ethanchase7744/sounds/439538/. Accessed: 2020-07-03.

[40] Goup_1. (2013). Boom Kick. [Audio File]. Retrieved from
https://freesound.org/people/Goup_1/sounds/195396/. Accessed: 2020-07-03.

[41] ElenZack. (2019). Breaking Glass_2.wav. [Audio File]. Retrieved from
https://freesound.org/people/ElenZack/sounds/500604/. Accessed: 2020-07-03.

[42] ToneDock. (2018). UI-134. On User Interface Sound Effects. [Audio File]. Retrieved from
https://www.tonedock.com/samples/288. Accessed: 2020-07-03.

[43] ToneDock. (2018). UI-135. On User Interface Sound Effects. [Audio File]. Retrieved from
https://www.tonedock.com/samples/289. Accessed: 2020-07-03.

[44] Gabe Nwagbala. (2019). Pikachu's Thunderbolt Charge Sound Effect Pokémon The Series
The Beginning. [Video File]. Retrieved from
https://www.youtube.com/watch?v=NL-mr7dnGVY. Accessed: 2020-07-03.

[45] Movie Man. (2016). Thunder Clap Sound Effect HD (Best Thunder Quality). [Video File].
Retrieved from https://www.youtube.com/watch?v=qOHuT5njtRA. Accessed:
2020-07-03.

Page 60 — Pablo Lorente Martínez — DownBeat

https://freesound.org/people/lmbubec/sounds/118792/
https://freesound.org/people/loopsamples.club/sounds/483383/
https://freesound.org/people/nekoninja/sounds/370203/
https://freesound.org/people/ecfike/sounds/135125/
https://freesound.org/people/InspectorJ/sounds/339818/
https://freesound.org/people/bspiller5/sounds/478150/
https://freesound.org/people/Aiwha/sounds/190027/
https://freesound.org/people/ethanchase7744/sounds/439538/
https://freesound.org/people/Goup_1/sounds/195396/
https://freesound.org/people/ElenZack/sounds/500604/
https://www.tonedock.com/samples/288
https://www.tonedock.com/samples/289
https://www.youtube.com/watch?v=NL-mr7dnGVY
https://www.youtube.com/watch?v=qOHuT5njtRA

