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The Cerebellum on Cocaine
Marta Miquel* , Isis Gil-Miravet and Julian Guarque-Chabrera

Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain

The traditional cerebellum’s role has been linked to the high computational demands
for sensorimotor control. However, several findings have pointed to its involvement in
executive and emotional functions in the last decades. First in 2009 and then, in 2016,
we raised why we should consider the cerebellum when thinking about drug addiction.
A decade later, mounting evidence strongly suggests the cerebellar involvement in this
disorder. Nevertheless, direct evidence is still partial and related mainly to drug-induced
reward memory, but recent results about cerebellar functions may provide new insights
into its role in addiction. The present review does not intend to be a compelling revision
on available findings, as we did in the two previous reviews. This minireview focuses on
specific findings of the cerebellum’s role in drug-related reward memories and the way
ahead for future research. The results discussed here provide grounds for involving the
cerebellar cortex’s apical region in regulating behavior driven by drug-cue associations.
They also suggest that the cerebellar cortex dysfunction may facilitate drug-induced
learning by increasing glutamatergic output from the deep cerebellar nucleus (DCN) to
the ventral tegmental area (VTA) and neural activity in its projecting areas.

Keywords: cerebellum, drug addiction, prefrontal cortex, ventral tegmental area, striatum, goal-directed behavior,
habit

INTRODUCTION

It is remarkable that during evolution there has been a coordinated scaling in the number of cortical
and cerebellar neurons across species (Herculano-Houzel, 2010). However, in terms of the number
of neurons contained in the brain mass, the cerebellum is the winner with 80% of neurons, the
majority granular cells, packed in 10% of brain volume (Azevedo et al., 2009). It is still uncertain
why so many neurons are needed for cerebellar functions as silencing 75% of granule cells does
not impact motor adaptation and performance (Galliano et al., 2013). It has been suggested as one
possible explanation that the huge number of granule cells enable to make sparse coding available
to increase memory storage capacity in the cerebellum (Schweighofer et al., 2001). In evolutionary
terms, it would have allowed great apes to improve the learning of motor skills, tool-making and in
the end, verbal communication (Barton, 2012).

It is now clear that reciprocal connectivity between the cerebellum and the rest of the brain is
crucial to understanding cerebellar function (Galliano and De Zeeuw, 2014; Lackey et al., 2018).
A key principle of the anatomical organization in the cerebellum is the segmentation of inputs and
outputs in several longitudinal oriented modules (Figure 1). Each module includes descending
and ascending afferents from subdivisions in the pontine nuclei and inferior olive, respectively.
These inputs reach specific areas in the cerebellar cortex as well as regions of deep cerebellar
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FIGURE 1 | (A) Descending and ascending afferents to the cerebellum, cerebro-pontinocerebellar and spino-olivocerebellar pathways, respectively. Descending
cortical efferents arrive to the pontine nuclei (PN) that provides mossy fiber (mf) projections to the cerebellar cortex ending in the granule cell layer (GCL). The
ascending pathway from to the inferior olive (IO) projects climbing fibers (cf) to the cerebellar cortex contacting Purkinje cell (PC) dendrites in the molecular layer (ML).
Both pathways leave collaterals in the deep cerebellar nuclei (DCN) on their direction to the cerebellar cortex. (B) Schematic representation of the cerebellar circuitry.
The descending pathway through mf contacts granule (Gr) and Golgi (Go) cells in the GCL and leaves collaterals in the DCN. Gr send their ascending axon to the ML
that bifurcates forming the parallel fibers (pf). In the ML, pf make contact with the dendrites of Go, PC, and molecular layer interneurons (MLI). The ascending
pathway through cf contacts PC dendrites. PC sends inhibitory projections to the DCN that only sends output signal when PC are inhibited by MLI. DCN not only
send the main cerebellar output but also send inhibitory feedback to IO and Go, and excitatory feedback to Gr and Go. The cerebellar circuit is organized as a
feedforward excitatory network with inhibitory loops. (C) Modular organization of the cerebellum. The anatomical organization of the cerebellum is distributed in
longitudinal modules, where PC are organized perpendicular to the cortical folds. Moreover, differential microzones can be observed forming striped zones of PC.
Each module is organized by parasagittal bands of PC and the cf emerging from the contralateral IO that contact them. Mf projecting to a certain group of PC
through the GCL also contact with the same DCN those PC project to. In that manner there is somatotopy between the deseeding and ascending pathways, the PN
and IO regions, the cerebellar cortical zones where mf and cf terminate in, and the specific DCN region where PC project to. (D) Cortico-cerebellar loops.

and vestibular nuclei to which Purkinje cells project their axons
(see for a recent review, Watson and Apps, 2019). Cerebellar
modules integrate information from differentiated brain areas
with incoming peripheral signals (Figure 1). Accordingly,
sensorimotor coordination depends on the convergence at
a cellular level of somatosensory and motor cortical inputs
into specific regions of the cerebellar cortex that, in turn,
send ascending projections to the motor cortex through
differentiated thalamic areas (Proville et al., 2014). Moreover, the
functional loop formed by the anterior lateral motor cortex and
fastigial nucleus in the cerebellum is required to maintain the
representation of the information in the frontal cortex during
motor planning, as Gao et al. (2018) recently demonstrated.

Beyond the well-accepted role of the cerebellum in the
high computational demands for sensorimotor control, several
findings have pointed to its involvement in executive and
emotional functions in the last decades (Schmahmann and
Sherman, 1998; Blackwood et al., 2004; Bastian, 2006; Callu
et al., 2007; Cardoso et al., 2014; Nguyen et al., 2017;
Deverett et al., 2019; Hull, 2020). Direct and indirect reciprocal
connectivity between the cerebellum and other brain regions as
the amygdala, basal ganglia, and mPFC can explain cerebellar
roles in fear memory, cognitive flexibility, behavioral control,

and goal-directed behavior (Sacchetti et al., 2002; Bostan et al.,
2013; Wagner et al., 2017; Xiao et al., 2018; Schmahmann,
2019). Likewise, it can also explain why cerebellar dysfunction is
associated with neuropsychiatric disorders in which impairment
of behavioral and cognitive inhibitory control is a central part of
the disease pattern as to happen in autism, obsessive-compulsive
(OCD), attention deficit/hyperactivity (ADHD) and addiction
(Miquel et al., 2019; Figure 2).

Accordingly, in 2009 and then in 2016, we raised the
question to why we should consider the cerebellum when
thinking about drug addiction and drew attention to the
cerebellum’s roles in several of the brain functions affected
in drug addicts. A decade later, mounting evidence strongly
suggest the cerebellar involvement in this disorder. It is worth
noting that the cerebellum connects bidirectionally to functional
loops involved in drug addiction. In particular, the cerebellum
modulates cortical influences on striatal activity (Chen et al.,
2014; Watson et al., 2014) and exerts an indirect (Forster and
Blaha, 2003; Rogers et al., 2011) but also a direct control over
VTA dopaminergic neurons (Watabe-Uchida et al., 2012; Carta
et al., 2019; Gil-Miravet et al., 2019b; Figure 2). Nevertheless,
evidence is still partial and related mainly to drug-induced reward
memory, but recent results may provide with a wider perspective
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FIGURE 2 | The addiction circuitry. mPFC, medial prefrontal cortex; DS, dorsal striatum; NAc, nucleus accumbens; HIP, hippocampus; BLA, basolateral amygdala;
TH, thalamus; STN, subthalamic nucleus; VTA, ventral tegmental area; PN, pontine nucleus; IO, inferior olive; DCN, deep cerebellar nucleus; PC, purkinje cells; mf,
mossy fibers; nmf, nuclear mossy fibers; cf, climbing fibers. Direct and indirect reciprocal connectivity between the cerebellum and other brain regions as the VTA,
amygdala, basal ganglia, and mPFC.

of cerebellar roles in drug addiction. For the purpose of this
minireview, we will focus on specific findings about the role of
the cerebellum in cocaine-induced learning, suggesting the way
forward for future research.

A BRIEF HISTORICAL VIEW OF
ADDICTIVE DRUG EFFECTS ON
CEREBELLAR FUNCTION

First evidences of drug effects on the cerebellum came from
the toxicology of alcohol and cannabis. For many years, it was
thought that the main role of the cerebellum was limited to
tolerance to motor incoordination and some of the withdrawal
symptoms induced by drug misuse (Killicorn, 1955; Decker et al.,
1959; Allsop and Turner, 1966; Ho et al., 1972; Dewey et al., 1973;
Vivian et al., 1973; Rogers et al., 1980; Liljequist and Tabakoff,
1985; Rodríguez de Fonseca et al., 1994; Blednov et al., 2017). It is
undeniable that alcohol and cannabis induce molecular changes
in the cerebellum that correlate with homeostatic adaptations.
Reduction of inhibitory binding sites and downstream pathways
(Dewey et al., 1973; Liljequist and Tabakoff, 1985; Rodríguez de
Fonseca et al., 1994; Casu et al., 2005) or decreases in cerebellar
responses to these drugs (Volkow et al., 1993; Blednov et al., 2017)
are both examples of homeostatic adaptations with chronic drug
use. Nevertheless, drug impact on the cerebellum goes beyond
homeostatic alterations and entails similar plasticity changes
that have been described in the basal ganglia and mPFC to
underly incentive sensitization (Couceyro et al., 1994; Klitenick
et al., 1995; Bhargava and Kumar, 1999; Fumagalli et al., 2007;
Palomino et al., 2014) and cocaine-induced associative memory
(Carbo-Gas et al., 2014a,b, 2017).

A critical part of aberrant drug-induced plasticity in several
brain regions is linked to Brain-Derived Neurotrophic Factor
(BDNF) mechanisms (Li and Wolf, 2015). Indeed, relapse
risk correlates with serum BDNF levels in abstinent cocaine
addicts (Grimm et al., 2003; D’Sa et al., 2011; Corominas-
Roso et al., 2015). Likewise, time-dependent increases in BDNF
in the mPFC and VTA, but not in the nucleus accumbens
(Bobadilla et al., 2019), have been associated with the incubation
of craving under cocaine abstinence (Grimm et al., 2003).
We have explored the effects of cocaine reinstatement on
BDNF-related plasticity in the cerebellum of sensitized mice
after short (Vazquez-Sanroman et al., 2015a) and protracted
abstinence (Vazquez-Sanroman et al., 2015b). The direction
of cerebellar plasticity after reinstatement depends entirely on
the length of abstinence. Cocaine reinstatement after short
abstinence (1 week) promotes transcriptional activity through
the overexpression of exon VI in the cerebellar cortex that
resulted in an accumulation of proBDNF to the detriment of
matureBDNF isoform. Accordingly, p75NGF receptor levels also
increased. ProBDNF expression enhanced in Purkinje neurons
and Bergman glia, and was associated with structural changes
such as pruning of Purkinje dendritic spines and a reduction
in the size and density of their synaptic terminals. Moreover,
GluR2 subunits of AMPA receptors in Purkinje neurons appeared
internalized (Vazquez-Sanroman et al., 2015a). Therefore, shortly
after drug cessation, cocaine reinstatement reduces the inhibitory
tonic control of Purkinje neurons on DCN output neurons.

In contrast, cocaine reinstatement after protracted abstinence
(1 month) increased mature-BDNF mechanisms in the cerebellar
cortex of cocaine sensitized mice. The increase was a post-
transcriptional effect plausibly fueled through the enhancement
of tissue plasminogen activator (tpA) levels responsible for
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proBDNF cleavage (Vazquez-Sanroman et al., 2015b). In
consequence, we observed higher levels of mature-BDNF isoform
and TrkB receptors, as well as increased cellular BDNF expression
in Purkinje neurons. BDNF-related plasticity was accompanied
this time by dendritic sprouting and a larger size of synaptic
boutons in Purkinje neurons. Moreover, GluR2 expression
enhanced selectively in the soma and dendrites of these cells
in lobules VIII and IX of the vermis, suggesting GluR2
trafficking toward the cell surface (Vazquez-Sanroman et al.,
2015b). It has been shown that the mature-BDNF isoform
may promote activity-dependent dendritic sprouting and axonal
re-modeling in striatal-cortico-limbic neurons through TrkB
receptor activation (Kafitz et al., 1999; Kovalchuk et al., 2002).
Similar role has been demonstrated for BDNF and TrkB receptors
in parallel fiber-Purkinje cell synapses (Lu and Figurov, 1997).
Thus, although it remains to be tested, these results suggest
that cocaine reinstatement after protracted abstinence would
promote enhanced Purkinje inhibitory functions decreasing the
cerebellar output. Altogether, these findings indicate a time-
dependent regulation of molecular and structural plasticity in
Purkinje neurons during withdrawal that might contribute to
promote cocaine seeking and relapse.

CEREBELLAR ROLE IN
COCAINE-INDUCED ASSOCIATIVE
MEMORY

The central role of the cerebellum in associative motor and non-
motor learning has been well established (Kim and Thompson,
1997; De Zeeuw and Yeo, 2005; Sacchetti et al., 2005). It has been
shown that both electrical (Steinmetz et al., 1989) and optogenetic
stimulation (Albergaria et al., 2018) of mossy fiber inputs from
the pontine nuclei projecting to the granular cell layer mimic the
conditioned stimulus to produce conditioned eyeblink responses.
Acquisition and short-term expression of the conditioned motor
response depend on the specific regions in the cerebellar cortex
(Galliano et al., 2013). However, long-term consolidation seems
to occur in the interposed nucleus (Carulli et al., 2020).

In drug addiction, learned reinforcing properties make drug-
associated cues strong motivational triggers for drug seeking.
The consolidation and persistence of these associative memories
(Everitt and Robbins, 2005; Hyman et al., 2006) together with
deficits in executive inhibitory control (Koob and Volkow, 2010)
result in an elevated risk of relapse even after long periods of
protracted abstinence. Long-lasting brain changes that underlie
drug-related memories make addiction a chronic disease.

A strong support for a cerebellar role in long-lasting drug-
cue associations comes from human and animal research (Miquel
et al., 2009, 2016; Moulton et al., 2014; Moreno-Rius and
Miquel, 2017). Neuroimaging studies of cue-reactivity have
consistently shown cerebellar activations when drug-related cues
are presented to drug addicts (Grant et al., 1996; Martin-Sölch
et al., 2001; Schneider et al., 2001; Anderson et al., 2006; Smolka
et al., 2006; Filbey et al., 2009). The cerebellar activation has
been described regardless the sensory modality and the type of
drug used. Several findings make unlikely cerebellar activity to

be a craving correlate (Moreno-Rius and Miquel, 2017). First,
overlapping patterns of cerebellar activation have been described
when drug abusers are presented with food- and drug-related
cues (Tomasi et al., 2015). Second, the presentation of anger-
associated cues also triggers increased activity in the cerebellum
(Kilts et al., 2001). Last but not least, a positive correlation
between cerebellar activations and craving self-reports is far from
being a consistent result (Grant et al., 1996; Bonson et al., 2002;
Risinger et al., 2005).

We have been investigating the cerebellum’s contribution to
cocaine-cue associative memory during the last decade (Carbo-
Gas et al., 2014a,b, 2017; Gil-Miravet et al., 2019a,b). Using an
animal model of cocaine-induced odor preference conditioning,
we have shown that the conditioned preference for cocaine-
associated cues correlates with a selective increase in neural
activity (cFos expression) at the apical part of the granular cell
layer in the posterior vermis (lobules 8 and 9). The increased
activity was observed in granule cells mainly, and in about
half of Golgi interneurons (Carbo-Gas et al., 2014a,b, 2017). It
has been described that the number of activated granule cells
rises as learning progresses (Giovannucci et al., 2017). It is
worthy of mention that no activity changes were detected in
the cerebellum of pseudo-conditioning animals or those that did
not express the conditioned response. These findings rule out
the possibility that the cerebellar activation results exclusively
from unconditioned stimulating properties of cocaine or from
movements performed during the test, since all treated groups
received the same drug regimen and no differences were found
in motor activity (Carbo-Gas et al., 2017). Furthermore, they
suggest that granule cell activation would represent some aspects
of the drug-cue associative engram or, at least, use this engram to
regulate goal-directed behavior. According to the last suggestion,
increased granule cell activity was not seen when mice showing
preference were confined in the presence of CS+ (cocaine-related
cue), but with no chance of selecting between CS+ and CS−
(saline-related cue) (Carbo-Gas et al., 2017). Thus, granule cell
activity did not result from the cue presentation merely. It seems
to be more related to response selection driven by the reward-
predictive cue. In addition, the main cerebellar task during
the action selection might involve the generation of intentions
to reach the goal as it has been recently suggested (Caligiore
et al., 2017). In other words, the cerebellum would contribute
to bias behavioral selection toward the context that predicts
drug availability (Carbo-Gas et al., 2014b). The internal state
(drug abstinence) might modulate these cerebellar predictions,
increasing the probability of selecting the drug-associated context
when the drug is absent from the body. Nevertheless, although
the representation and estimation of the goal value appears to
be a role of the cortico-basal ganglia loop (Houk and Wise,
1995; Doya, 2000), we cannot rule out that the cerebellar cortex
encodes the reward value of the cocaine associated cue. Granule
cell activity in the apical region has been demonstrated to encode
reward, the expectation of reward, reward omission and the
conditioned response using natural rewards (Wagner et al., 2017).
In functional terms, the expected consequence of increasing
activity in granule cells is an enhanced inhibitory effect of
molecular interneurons over Purkinje activity as parallel fibers
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contact and can stimulate dendrites of molecular interneurons
(Gao et al., 2016; Albergaria et al., 2018). Then, one should expect
granule cell activation to facilitate cerebellar output by reducing
Purkinje inhibitory control onto DCN neurons. However, we
have not been able to demonstrate consistent Purkinje activity
changes being linked to cocaine-induced preference memory by
using cFos expression analysis (Carbo-Gas et al., 2014a,b).

A significant issue in the addiction field is to explain why
drug-induced memories are so persistent and long-lasting.
In this respect, we have been interested in the function of
perineuronal nets (PNNs) in the cerebellum and their regulation
by cocaine-related behavior. PNNs are extracellular matrix
lattice cartilage-like structures that wrap the soma and proximal
neurites of several neuronal populations, the majority fast-
spiking GABAergic interneurons (Grimpe and Silver, 2002;
Fawcett et al., 2019). These structures restrict neuronal plasticity
and actively contribute to synaptic stabilization in the adult brain
(Dityatev and Schachner, 2003; Corvetti and Rossi, 2005). In the
cerebellum, only a few neuronal populations are surrounded by
PNNs, and unlike other regions, PNN-bearing neurons do not
express parvalbumin (Carulli et al., 2006). In a recent study, we
have investigated the regulation of cerebellar PNNs by cocaine-
induced memory (Carbo-Gas et al., 2017). The acquisition of
conditioned preference for cocaine-related cues increases PNN
expression surrounding Golgi interneurons in the apical region
of the cerebellar cortex. Stronger PNNs correlate with a higher
preference for cocaine-related cues. Again, the effect was found in
the apical region of the cerebellar cortex and was not reproduced
in pseudo-conditioned groups or when conditioned response
was not evident. However, PNNs expressed by inhibitory and
excitatory neuronal populations in the DCN decreased in all
cocaine-treated groups irrespective of the establishment of
a conditioned preference. Importantly, previous research has
shown that degradation of PNNs in the prelimbic cortex and
anterior hypothalamus is able to prevent the formation of drug-
related memory (Slaker et al., 2015; Blacktop et al., 2017).

Taken together, our findings indicate that drug-related
memory may be represented in the cerebellum through two
hallmarks signatures localized in the apical region of the
granule cell layer: increased granule cell activity and strong fully
condensed PNNs around Golgi interneurons. We have not been
able to reproduce either of these effects in ventral regions of the
posterior vermis though these regions expressed high granule cell
activity and a large number of Golgi cells bearing a PNN (Carbo-
Gas et al., 2014a, 2017). These results raise the question of which
functional characteristics and connectivity patterns make the
apical region relevant to drug associative memory (Gil-Miravet
et al., 2019a,b). The apical cerebellar cortex receives mossy fiber
inputs from sensorimotor and exteroceptive cortices through
specialized regions in the pontine nuclei (Voogd and Ruigrok,
2004). In addition, a prominent excitatory projection of mossy
fibers to the apical region of the granule cell layer arises from
the DCN and has demonstrated to optimize the conditioned
response in motor associative learning (Gao et al., 2016). Finally,
granule cell activity in this area is present during unconditioned
and conditioned stimuli, as well as during the conditioned
response (Giovannucci et al., 2017; Wagner et al., 2017).

In a pursuit of an explanation for the relevance of this
cerebellar region, we investigated the effects of a neurotoxic
lesion restricted to the apical part of the posterior vermis (lobule
8) on cocaine-related memory (Gil-Miravet et al., 2019a,b).
Unexpectedly, the apical lesion dramatically raises the probability
of learning/expressing the cocaine-cue Pavlovian association
(Gil-Miravet et al., 2019a,b). More important, the cerebellar
lesion increased neuronal activity in the mPFC, NAC, and all
striatal subdivisions except the ventrolateral striatum, backing the
idea of the VTA as a plausible hotspot for a modulatory action
of the cerebellum on drug-related memory effects (Carta et al.,
2019; Gil-Miravet et al., 2019b). Indeed, using both retrograde
and anterograde tracing, we demonstrated that neurons from the
apical region of lobule 8 in the vermis reach both the interposed
and lateral nuclei (DCN) in the deep cerebellum running laterally
to the middle line. In turn, the DCN send direct glutamatergic
projections to the contralateral VTA making contacts with
dopaminergic and non-dopaminergic neurons. The role of the
cerebellum in regulating VTA neuronal activity and conditioned
place preference (CPP) has been nicely demonstrated in a recent
paper (Carta et al., 2019). Optogenetic stimulation of DCN-
VTA glutamatergic projections activated VTA neurons and was
sufficient to induce a strong CPP. In agreement, the apical lesion
of lobule 8 increased neural activity in the dentate nucleus, likely
by reducing the tonic inhibition exerts by Purkinje onto DCN
neurons (Gil-Miravet et al., 2019b). We were also interested in the
role of the functional loops between the cerebellum and medial
prefrontal cortex as well. Our results showed that the deactivation
of the infralimbic (IL) but not the prelimbic (PL) cortex
during conditioning also facilitates the acquisition of cocaine-
induced conditioned preference. Interestingly, simultaneous
cerebellum-IL deactivations abolished the facilitative effect
of separate deactivations on drug-related learning, indicating
a compensatory close IL-cerebellar loop (Gil-Miravet et al.,
2019a; Figure 2).

MODEL-FREE VS. MODEL-BASED
SYSTEMS IN DRUG REWARD
LEARNING. WHAT WOULD THE
CEREBELLUM’S ROLE BE?

Reinforcement learning involves two distinct and parallel
processes with dissociated neural substrates (Balleine and
Dickinson, 1998). During instrumental actions, a flexible and
planned goal-directed behavior can compete but also cooperate
with the stimulus-response automatic process (habit). When
habitual behavior is established, the probability of responding for
devalued outcomes increases because the mental representation
of the relationship between the stimulus (S) and response
(R) does not incorporate information about the current value
of the outcome (Adams and Dickinson, 1981; Dayan and
Balleine, 2002; Balleine and O’Doherty, 2010). From a theory of
decision perspective, these two different systems guide behavior
during decision making. A model-based system (goal-directed)
that includes an explicit knowledge about the reward context
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competes with a model-free system (habit) that learn about
the reward value and emits habit-like responses with repetition
(Lee et al., 2014). The first one operates under uncertainty
while the second predominates when outcomes become more
predictable. The ability to resolve and monitor the competition
between habit and goal-directed processes entails a coordinated
work of cortico-basal ganglia-cerebellar loops (Caligiore et al.,
2017) and depends on the engagement of executive control
(Lee et al., 2014; Watson et al., 2018). It has been proposed
that the executive control is under an “arbitrator” that would
mediate between planning systems that use predictions of action-
outcomes and habitual action selection systems that learn to
automate by repeating previously rewarded actions (Lee et al.,
2014). The model-free seems to be the default system (Wang
et al., 2018). Namely, the arbitrator appears to modulate the
activity of brain regions involved in model-free control thereby
gating the shift to a flexible behavioral approach. Although it
is far to be clear which brain regions may arbitrate this action
selection, findings point to inferior medial and lateral prefrontal
regions including the rostral cingulate cortex (Lee et al., 2014).
Moreover, unquestionable evidence indicates that ventral regions
of the basal ganglia receiving dopamine projections from the
VTA and SNc are responsible for goal-directed behaviors (de
Wit et al., 2009; Balleine and O’Doherty, 2010). Likewise, habit-
like responses require the integrity of sensorimotor cortices and
dorsolateral regions within the striatum (caudate/putamen) (Yin
and Knowlton, 2006; Lee et al., 2014).

Recent findings provide compelling support for the role of
the cerebellum in reward-based reinforcement learning and goal-
directed behavior (Wagner et al., 2017; Carta et al., 2019; Hull,
2020), but also in model-free learning (Callu et al., 2007; De
Bartolo et al., 2009; Liljeholm et al., 2015; Watson et al., 2018).
It is clear that cf and Gr cells (Figure 1) generate responses in the
cerebellar cortex to events that predict upcoming reward, but they
also encode reward omissions (Wagner et al., 2017; Heffley et al.,
2018). These signals will enable Purkinje cells to learn responses
and establish “forward models” to make effective predictions that
regulate behavioral decisions.

One of the most relevant insights into the role of the
cerebellum in goal-directed behavior has been provided by the
recent study by Carta et al. (2019). In this work, optogenetic
stimulation of glutamatergic projections from the DCN to
VTA induces consistent short and long-term place preference
for the location in which the optogenetic stimulation was
applied. Optogenetic stimulation was release upon entry in the
reward location. Mice expressing channelrhodopsin2 (ChR2)
actively approached this location to obtain the stimulation of
the cerebellum-VTA pathway. Moreover, the stimulation was
able to increase firing in one third of VTA cells in vivo,
eliciting excitatory synaptic currents in DA and non-DA neurons.
Optogenetic inhibition of cerebellar terminals in the VTA did
not induce aversion but prevented the establishment of social
preferences. Altogether, these findings reveal that the cerebellum
not only is able to encode the goal and the context but also to
regulate behavior to reach the goal.

Evidence about the contribution of the cerebellum to habits
has come from animal and human research. A bilateral lesion in

the interposed nucleus or hemicerebellectomy (Callu et al., 2007;
De Bartolo et al., 2009) prevent the establishment of habits with
overtraining. In these experiments, animals with the cerebellar
alteration maintained the action-outcome features despite
overtraining, and expression of an automatic cue-response stage
is not created. In humans, the cerebellum and other regions
in the sensorimotor network show greater activation when
subjects respond to previously devalued outcomes, suggesting
their involvement in the expression of S-R habits (Watson et al.,
2018; Liljeholm et al., 2015). Indeed, activity in the tail of the
caudate/thalamus, the cerebellum and the lingual gyrus predicts
insensitivity to outcome devaluation. The greater the activity
the higher the probability to respond to devaluated outcomes
(Liljeholm et al., 2015). In this case, the cerebellar activity
did not result from repetition, since the task did not involve
overtraining. On the contrary, it predicted the formation of
strong S-R associations.

Drug addiction like other compulsive disorders might result
from an excessive dominance of model-free control (Everitt
and Robbins, 2005; Lüscher et al., 2020). With extended drug
experience, cue-action-reward associations become stronger
and drug-associated cues come to be powerful motivational
triggers for craving and relapse even after long periods of
protracted abstinence. Addictive behavior has been identified
as a compulsive habit (Belin et al., 2013). First, drug seeking
is automatically triggered by the presence of drug-related
cues or their mental representation. Second, behavior becomes
insensitive to outcome devaluation (Everitt and Robbins, 2005;
Zapata et al., 2010; Belin et al., 2013; Ersche et al., 2016).
Compulsive disorders imply a failure in cortical top-down
control and over-activity in dorsal regions of the basal ganglia
which cause behavioral disinhibition and stereotyped behavioral
repetition (Fineberg et al., 2014; Figee et al., 2016).

Structural neuroimage findings also point to a role for the
cerebellum in compulsive behavior. The most common finding
of patients with compulsive disorders has been decreased gray
matter (GM) volume in several regions of the cerebellum and
increased basal ganglia-cerebellar connectivity (see Miquel et al.,
2019 for a review). Moreover, drug addicts and heavy drug users
exhibit a dysfunctional prefrontal-cerebellar pattern in which the
cerebellum appears to be overactive during cognitive tasks that
should recruit prefrontal resources (Hester and Garavan, 2004;
Bolla et al., 2005; Goldstein et al., 2007). Another brain region
that has been demonstrated to be crucial for the formation and
crystallization of habits is the infralimbic cortex (IL) (Killcross
and Coutureau, 2003; Smith and Graybiel, 2013; Barker et al.,
2018). Activity in the IL during habit formation is necessary
for full habit acquisition. In fact, repeated optogenetic inhibition
during overtraining disrupts the formation of habits in rats and
mice (Smith and Graybiel, 2013; Barker et al., 2018).

Overall, our recent findings reveal that the cerebellum may
modulate cocaine-induced learning, but also neural activity and
synaptic stabilization mechanisms in the IL (Gil-Miravet et al.,
2019b). Impairment of the posterior vermis increased activity
and perineuronal expression in the IL, but only in those rats
that expressed the conditioned response of preference for drug
associated cues. We have proposed that under stimulation of
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the cerebellar cortex the prevailing behavioral pattern of drug
seeking will be flexible and sensitive to reward devaluation (goal-
directed). On the contrary, cerebellar cortex deactivations will
encourage the formation of strong cue-drug associations and
insensitivity to reward devaluation (habit) (Gil-Miravet et al.,
2019b; Miquel et al., 2019).

CONCLUDING REMARKS

Overall, findings point to a modulatory function of the
cerebellum on the establishment of drug-induced associative
memory through the regulation of VTA activity. Nonetheless,
research about the cerebellum’s role in drug-related memory is
still in its infancy and there are open questions that remain
unanswered. First, it is unknown through which neural pathways
drug-related cue and unconditioned signals are conveyed to
the cerebellum. Second, it is also ignored how cerebellar cortex
encodes the conditioned cue and unconditioned properties
of the drug. Third, the role of Purkinje neurons in drug-
cue associative memory needs to be further explored. Finally,
it is crucial to test the hypotheses including addictive drugs
with distinct neuropharmacological actions. It is expected the
modulatory role of the cerebellum to affect not only the
expression of the conditioned response but also non-motor
aspects of drug-induced reward. To address all these questions
more precisely cell-specific tools such as DREADDs (designer
receptor exclusively activated by designer drugs), optogenetics,
electrophysiology and viral tracing will be required.

Our findings also suggest that pathological conditions
impairing the cerebellar cortex may increase the likelihood of
acquiring drug-induced associative memory and promote drug
relapse through disinhibition of VTA and its projecting regions.

Moreover, they may explain why both cerebellar disfunction
and prefrontal impairment enhance susceptibility to compulsive
and impulsive disorders including drug addiction, eating
disorders, attention deficit/hyperactivity (ADHD), and obsessive-
compulsive disorder (OCD) (Miquel et al., 2019). Accordingly,
it has been described that in humans, the impairment of the
vermis results in impulsivity and disinhibition (Silveri et al., 1994;
Schmahmann and Sherman, 1998; Kim et al., 2013; Tessier et al.,
2015), inducing what has been called the Cerebellar Cognitive
Affective Syndrome (CAS) (Schmahmann and Sherman, 1998).
It would be of the utmost importance to test whether similar
cerebellar disfunctions that lead to CAS increase the risk for
drug addiction or are sufficient for inducing a compulsive
addictive phenotype.
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