Effect of Gallium and Vanadium in NiMoV/Al₂O₃-Ga₂O₃ Catalysts on Indole Hydrodenitrogenation Esneyder Puello-Polo, Yelitce P. Reales, Edgar Marquez, Dunieskys G. Larruded, Luis C. Costa Arzuza & Carlos A. T. Toloza ## **Abstract** The effect of Ga as support modifier and V as second promoter on the NiMoV/Al₂O₃-Ga₂O₃ catalyst varying the synthesis method (SG: sol-gel synthesis vs I: impregnation synthesis) was studied. The catalysts were characterized by elemental analysis, textural properties, XRD, XPS, ²⁷Al NMR, Raman, EDX elemental mapping and HRTEM. The chemical analyses by XRF showed coincidence between experimental and theoretical values according to stoichiometric values proposed to Mo/Ni = 6 and (V + Ni)/(V + Ni + Mo) = 0.35. The sol-gel synthesis method increased the surface area by incorporation of Ga³⁺ ions into the Al₂O₃ forming Ga–O–Al bonding; whereas the impregnation synthesis leads to decrease by blocking of alumina pores, as follows $NiMoV/Al_2O_3-Ga_2O_3(I) < NiMoV/Al_2O_3-Ga_2O_3(SG) < Al_2O_3-Ga_2O_3(SG) Al_2O_3-Ga_2O_3-Ga_2O_3(SG) < Al_2O_3-Ga_2O$ $Ga_2O_3(I) < NiM_0/Al_2O_3 < Al_2O_3-Ga_2O_3(SG) < Al_2O_3$. The values of BJH mesopores mean size between 6.13 and 7.68 nm. XRD and XPS confirmed a bulk structure typical of (NH₄)₄[NiMo₆O₂₄H₆]·5H₂O and the presence at the surface of Mo⁴⁺, Mo⁶⁺, Ni_xS_y, NiMoS, Ni²⁺, Ga³⁺ and V₅₊ species, respectively. Raman showed that the sol-gel synthesis method reduces the interactions Ni-Mo sulfide-support and improvement the sulfidation degree NiMoV/Al₂O₃-Ga₂O₃(SG) as showed sulfur analysis CHONS. The largest proportion of AlO₄ content using the impregnation method to add Ga was verified by ²⁷Al solidstate MAS NMR. The EDS elemental mapping confirmed that Ni, Mo, Al, Ga, V and S are well-distributed on support. The HRTEM analysis shows that the length and stacking distribution of MoS₂ crystallites varied from 5.67 to 6.01 nm and 2.46 to 2.74 when using the sol-gel and impregnation synthesis method, respectively. The catalytic results revealed that the synthesis method induced the presence of gallium on the surface influencing the dispersion V₅₊ species, whose effect could have some relation with strength and density of acid sites that in turn influence the dispersion of the MoS2 phase, which correlates well with the indole HDN activities. The activities as indole HDN pseudo-first-order rate constants' values ($k_{\rm HDN}$) from 0.29 to 2.78 mol/($m^2 \cdot h$): NiMoV/Al₂O₃ < NiMoV/Al₂O₃-Ga₂O₃(I) < NiMo/Al₂O₃ < NiMoV/Al₂O₃-Ga₂O₃(SG). Nevertheless, the nature of the active site can be related with reaction pathways, that is, NiMoV/Al₂O₃-Ga₂O₃(SG) and NiMoV/Al₂O₃-Ga₂O₃(I) catalysts produce ECH through HIND, while NiMoV/Al₂O₃ and NiMo/Al₂O₃ produce EB by hydrogenolysis of HIND to OEA. In the regard, the Ga and V act as structural promoters in the NiMo catalysts, allowing the largest generation of NiMoS M-edge-like and BRIM sites for HDN. ## **Keywords** Gallium, Vanadium, Modified al2O3, Synthesis method, Indole hydrodenitrogenation