Boise State University ScholarWorks

VIP 2020

Vertically Integrated Projects (VIP) Showcases

12-4-2020

Mining Gems in Literature and Genomes: A Proof of Concept in Artemisia tridentata

Carlos Dave Dumaguit Boise State University

S. J. Galla *Boise State University*

Anthony Melton Boise State University

John M. A. Wojahn Boise State University

P. Martinez Boise State University

See next page for additional authors

This research is part of the Genome 2 Phenome project.

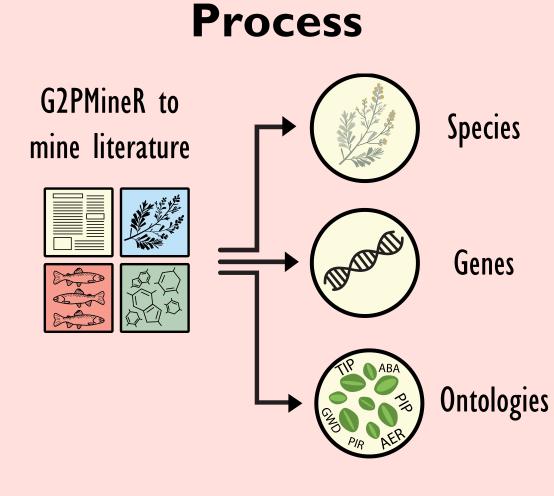
Authors

Carlos Dave Dumaguit, S. J. Galla, Anthony Melton, John M. A. Wojahn, P. Martinez, and Sven Buerki

Mining Gems in Literature and Genomes: a Proof of Concept in Artemisia tridentata

Dumaguit, C.D., Galla, S.J., Melton, A., Wojahn, J. M. A., Martinez, P., Buerki, S. Boise State University, Department of Biological Sciences

Introduction


- Research predicts increased global temperatures and increased occurrences of longer droughts, which can have far-reaching impacts on crops and plant communities, including the imperiled big sagebrush (Artemisia tridentata)^{1-3,6,7}
- Looking at the genetic underpinnings of drought brings insight into how plants cope with these conditions and plants' abilities to adapt to anthropogenic drought⁴
- While research on the genomic basis of plant resilience towards drought has been conducted in crops and model plants, fewer studies have evaluated natural plant communities
- Literature Mining provides efficient, customizable processes⁶

Top Five Candidate Genes by Appearance in Literature

Gene Family	Ontology	Count
DREB (dehydration response element		507
binding)	transcription factor	537
NAC	transcription factor	522
WRKY	transcription factor	344
MYB	transcription factor	321
	d'ansemption factor	521
SOD (superoxide dismutase)	antioxidant	229

Table I.

Each of the top 50 genes were manually searched in the literature for a direct relationship or empirical data linking them to plants and resistance to stress

- We used G2PMineR, a newly developed package to mine literature publications for genes related to drought and plant stress responses⁷
- After finding candidate genes, the top 50 genes/family of genes were manually validated for their relatedness to drought stress response
- One of the top candidates, the DREB (dehydration response element binding) family was analyzed more closely using a pipeline in *R* utilizing rBLAST and NCBI Gen Bank⁸
- DREB genes were pulled from dozens of species from NCBI Gen Bank

Findings & Discussion

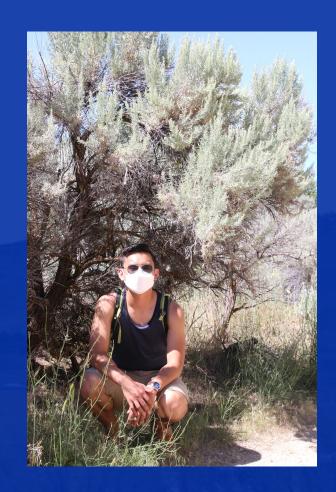
- The validation process refined one of the first estimates to determine how many genes are related to drought stress response in plants
- The abundance of transcription factors could lead future research into plant adaptability and susceptibility due to genomic variations among and within species
- DREB gene family matches were found in four scaffoldsthree in *Phaseolus vulgaris* and one in *Glycine max*
- Our genome for Artemisia tridentata was incomplete (about half of the total) which could mean more gene matches in the future
- There was a lack of blast matches with DREB genes from species such as Arabidopsis thaliana, & Oryza Sativa
- Although not closely related by phylogeny, the relationship between legumes and sagebrush via potential drought response genes is an interesting exploration

References

and precipitation extremes: HadEX3. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2019/D032263 ²Stahle, D.W. (2020). Anthropogenic Megadrought. Science Vol 368, Iss 6488, 238-240. ³Brodribb, T.J., Powers, J., Cochard, H., Choat, B. (2020). Hanging by a thread? Forest and drought. Science Vol 368, lss 6488, 261-266.

⁴Gupta, A., Rico-Medina, A., Cano-Delgado, A.I. (2020). The physiology of plant responses to drought. Science Vol 368, lss 6488, 266-269. ⁵Davies, K.W., Boyd, C.S., Beck, J.L., Bates, J.D., & Svejcar, T.J. (2011). Saving the sagebrush sea: An ecosystem conservation plan for big sagebrush plant communities. Biological Conservation 144, 2573-2584. éJensen, L., Saric, J., & Bork, P. (2006). Literature mining for the biologist: from information retrieval to biological discovery. Nature Reviews

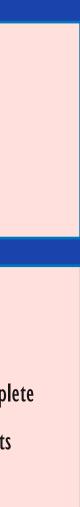
Genetics, 119-129.


⁷Wojahn, J.M.A., Galla, S., & Buerki, S. (2020) G2PMineR R Package. In preparation. ⁸Melton, A. (2020) GenomeMining R Package. In prearation.

Reddit User Thanatophobia666. https://www.reddit.com/r/unixporn/comments/f1mb2g/oci made a wallpaper with the unix logo and/

Future Directions

- More genes will be searched once the genome is complete to provide a full picture of Artemisia tridentata and its genetic tools to combat drought
- Research on natural plant communities could save on conservation efforts as most plant genetics focus on crop species and model organisms



NCBI

