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Abstract

Due to the minimal length scale induced by non-commuting co-ordinates, it is not clear a priori

what is meant by a position measurement on a non-commutative space. It was shown recently in

a paper by Scholtz et al. that it is indeed possible to recover the notion of quantum mechanical

position measurements consistently on the non-commutative plane. To do this, it is necessary to

introduce weak (non-projective) measurements, formulated in terms of Positive Operator-Valued

Measures (POVMs). In this thesis we shall demonstrate, however, that a measurement of posi-

tion alone in non-commutative space cannot yield complete information about the quantum state

of a particle. Indeed, the aforementioned formalism entails a description that is non-local in that

it requires knowledge of all orders of positional derivatives through the star product that is used

ubiquitously to map operator multiplication onto function multiplication in non-commutative

systems. It will be shown that there exist several equivalent local descriptions, which are arrived

at via the introduction of additional degrees of freedom. Consequently non-commutative quan-

tum mechanical position measurements necessarily confront us with some additional structure

which is necessary (in addition to position) to specify quantum states completely. The remainder

of the thesis, based in part on a recent publication (“Noncommutative quantum mechanics

– a perspective on structure and spatial extent”, C.M. Rohwer, K.G. Zloshchastiev,

L. Gouba and F.G. Scholtz, J. Phys. A: Math. Theor. 43 (2010) 345302) will in-

volve investigations into the physical interpretation of these additional degrees of freedom. For

one particular local formulation, the corresponding classical theory will be used to demonstrate

that the concept of extended, structured objects emerges quite naturally and unavoidably there.

This description will be shown to be equivalent to one describing a two-charge harmonically

interacting composite in a strong magnetic field found by Susskind. It will be argued through

various applications that these notions also extend naturally to the quantum level, and con-

straints will be shown to arise there. A further local formulation will be introduced, where the

natural interpretation is that of objects located at a point with a certain angular momentum

about that point. This again enforces the idea of particles that are not point-like. Both local

descriptions are convenient, in that they make explicit the additional structure which is encoded

more subtly in the non-local description. Lastly we shall argue that the additional degrees of

freedom introduced by local descriptions may also be thought of as gauge degrees of freedom in

a gauge-invariant formulation of the theory.
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Opsomming

As gevolg van die minimum lengteskaal wat deur nie-kommuterende koördinate gëınduseer word

is dit nie a priori duidelik wat met ’n posisiemeting op ’n nie-kommutatiewe ruimte bedoel word

nie. Dit is onlangs in ’n artikel deur Scholtz et al. getoon dat dit wel op ’n nie-kommutatiewe

vlak moontlik is om die begrip van kwantummeganiese posisiemetings te herwin. Vir hierdie

doel benodig ons die konsep van swak (nie-projektiewe) metings wat in terme van ’n positief

operator-waardige maat geformuleer word. In hierdie tesis sal ons egter toon dat ’n meting

van slegs die posisie nie volledige inligting oor die kwantumtoestand van ’n deeltjie in ’n nie-

kommutatiewe ruimte lewer nie. Ons formalisme behels ’n nie-lokale beskrywing waarbinne ken-

nis oor alle ordes van posisieafgeleides in die sogenaamde sterproduk bevat word. Die sterproduk

is ’n welbekende konstruksie waardeur operatorvermenigvuldiging op funksievermenigvuldiging

afgebeeld kan word. Ons sal toon dat verskeie ekwivalente lokale beskrywings bestaan wat volg

uit die invoer van bykomende vryheidsgrade. Dit beteken dat nie-kommutatiewe posisiemetings

op ’n natuurlike wyse die nodigheid van bykomende strukture uitwys wat noodsaaklik is om

die kwantumtoestand van ’n sisteem volledig te beskryf. Die res van die tesis, wat gedeelte-

lik op ’n onlangse publikasie (“Noncommutative quantum mechanics – a perspective on

structure and spatial extent”, C.M. Rohwer, K.G. Zloshchastiev, L. Gouba and F.G.

Scholtz, J. Phys. A: Math. Theor. 43 (2010) 345302) gebaseer is, behels ’n ondersoek

na die fisiese interpretasie van hierdie bykomende strukture. Ons sal toon dat vir ’n spesifieke

lokale formulering die beeld van objekte met struktuur op ’n natuurlike wyse in die ooreenstem-

mende klassieke teorie na vore kom. Hierdie beskrywing is inderdaad ekwivalent aan die van

Susskind wat twee gelaaide deeltjies, gekoppel deur ’n harmoniese interaksie, in ’n sterk mag-

neetveld behels. Met behulp van verskeie toepassings sal ons toon dat hierdie interpretasie op

’n natuurlike wyse na die kwantummeganiese konteks vertaal waar sekere dwangvoorwaardes na

vore kom. ’n Tweede lokale beskrywing in terme van objekte wat by ’n sekere punt met ’n vaste

hoekmomentum gelokaliseer is sal ook ondersoek word. Binne hierdie konteks sal ons weer deur

die begrip van addisionele struktuur gekonfronteer word. Beide lokale beskrywings is gerieflik

omdat hulle hierdie bykomende strukture eksplisiet maak, terwyl dit in die nie-lokale beskrywing

deur die sterproduk versteek word. Laastens sal ons toon dat die bykomende vryheidsgrade in

lokale beskrywings ook as ykvryheidsgrade van ’n ykinvariante formulering van die teorie beskou

kan word.
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Background and Motivations

As strange as the idea of introducing non-commutative spatial co-ordinates into quantum me-

chanical theories may seem, it is certainly not as novel as one may expect. In fact, suggestions that

space-time co-ordinates may be non-commutative appeared already in the early days of quantum

mechanics. For instance, in his article [1] of 1947, Snyder pointed out that it is problematic to

describe matter and local interactions relativistically in continuous 4-dimensional space-time due

to the appearance of divergences in field theories in this context. It is shown there that there

exists Lorentz-invariant space-time in which there is a natural unit of length, the introduction

of which partially remedies aforementioned divergences. It is also demonstrated that the no-

tion of a smallest unit of length can only be implemented upon having dropped assumptions of

commutative space-time: commuting co-ordinates would have continuous spectra which would

contradict the idea of spatial quantisation. More recently, the notion of non-commutative space-

time was investigated also from the perspective of gravitational instabilities. In [2], Dopplicher

et al. argued that attempts at spatial localisation with precision smaller than the Planck length,

`p =

√
G~
c3
' 1.6× 10−33 cm, (1)

result in the collapse of gravitational theories in that they would require energy concentrations

large enough to induce black hole formation. A natural solution to this problem would be to

impose a minimum bound on localisability. On an intuitive level, one may understand this

to be a consequence of the fact that a minimal length scale implies a regularisation of high

momenta (through the Fourier transformation), which in turn restricts the attainable energy

concentrations. Since non-commuting operators induce uncertainty relations, a natural way

to impose such a bound on localisability is to introduce co-ordinates that do not commute. By

finding a Hilbert space representation of a non-commuting algebra, these authors then introduced

the concept of optimal localisation and put forward first steps toward field theories in this context.

At this point, already, one may ask whether the notion of a point particle makes any sense

in a space with finite, non-zero minimal bounds on spatial localisability. Though the answer

to this question is far from obvious, it is clear that a local description of a point particle, i.e.,

one where we allocate a specific position to a point particle which has no physical extent, is

nonsensical if we cannot specify co-ordinates to arbitrary accuracy. One fundamental motivation

behind the study of frameworks such as string theory, is the need for a consistent field theoretical

framework for extended objects where the notion of point-like local interactions may be replaced
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by non-local interactions. In this particular context, it was shown by Susskind et al. that a

free particle moving in the non-commutative plane can be thought of as two oppositely charged

particles interacting through a harmonic potential and moving in a strong magnetic field [3] —

an idea which makes the notion of physical extent and structure quite explicit. This article also

alludes to the important role that non-commutative geometries play in the framework of string

theory. Seiberg explains in [4] that the extended nature of strings leads to ambiguities in defining

geometry and topology of space-time, and that field theories on non-commutative space in fact

correspond to low-energy limits of string theories. Indeed, the study of field theories on non-

commutative geometries – another setting in which non-local interactions occur quite naturally

– has grown into a sizeable research field of its own; for an extensive review, see, for instance,

[5]. Furthermore, the framework of non-commutative geometry provides a useful mathematical

setting for the study of matrix models in string theory, as set out in [6]. In the context of the

Landau problem, non-commutativity of guiding center co-ordinates in the lowest Landau level

is well-known (the non-commutative parameter here scales inversely to the magnitude of the

magnetic field); a detailed discussion can be found in [7]. Thermodynamic quantities such as

the entropy of a non-commutative fermion gas have also been shown to exhibit non-extensive

features due to the excluded volume effects induced at high densities by non-commutativity [8].

Non-commutative geometry appears in various other physical applications – a comprehensive

summary may be found in [9].

Returning to the issues discussed earlier in this chapter, we see from many arguments there

that the standard views of space-time merit further scrutiny and possibly even drastic revision.

Evidently one candidate for addressing many of the problems encountered in this context is

the introduction of non-commutative spatial co-ordinates. We have also seen that the issues

of locality of measurements and the notion of extendedness go hand-in-hand with such mod-

ified space-time frameworks. Indeed, a consistent probability framework to describe position

measurements in non-commutative quantum mechanics — a matter which is not trivial since

non-commuting co-ordinates do not allow for simultaneous eigenstates — was formulated in [10].

This thesis departs with a detailed investigation of the non-locality1 of this description. We

shall then proceed to introduce a manifestly local description for non-commutative quantum

mechanical position measurements on a generic level, and subsequently focus on two specific

choices of basis and their interpretations. As stated above, local position measurements of point

1 With non-locality we mean that this description requires knowledge not only of the position wave function,
but also of all orders of spatial derivatives thereof. This non-locality is encoded in the so-called star product, and
will be elaborated upon in the chapters to follow.
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particles do not make sense in non-commutative space. Consequently it is not surprising that

aforementioned local descriptions require the introduction of additional degrees of freedom and

that constraints arise in some of these formulations. At this point it would be quite natural to

ask whether non-commutative quantum mechanics might allow for an interpretation in terms of

objects with additional structure and / or extent. Indeed, it has been shown (see Section 2 of

[23]) that the conserved energy and total angular momentum derived from the non-commutative

path integral action in [22] contain explicit correction terms to those for a point particle. Thus we

see that, already on a classical level, there are hints at structured objects in a non-commutative

theory. To provide further motivation for this standpoint, we shall show that the physical picture

of Susskind [3] that was mentioned above appears explicitly in the non-commutative classical the-

ory corresponding to one of our local descriptions. In this context we shall also demonstrate that

the aforementioned correction terms to the conserved energy may also be formulated in terms of

the additional degrees of freedom of this local description. Through application of this formula-

tion to eigenstates of angular momentum, the free particle and the quantum harmonic oscillator

we shall demonstrate that Susskind’s view is natural also in the context of non-commutative

quantum mechanics. A further local formulation will be shown to allow a natural interpretation

in terms of objects with an angular momentum about a point of localisation. Naturally such

a point of view is incompatible with that of a point-particle whose internal degrees of freedom

have not been specified. We shall conclude that the notion of additional structure is undeniably

present in any such local description, and, most importantly, that complete information about

non-commutative quantum mechanical states cannot be provided by a measurement of position

only.
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CHAPTER 1

A REVIEW OF THE STANDARD QUANTUM MECHANICAL

FRAMEWORK

In the following two chapters we shall discuss in detail the formalism that will be used for the re-

mainder of this thesis. In order to illustrate the consequences of introducing non-commutative co-

ordinates, we first review standard quantum mechanics, focusing on the significance of algebraic

commutation relations and the statistical interpretations of measurement processes. Thereafter

the non-commutative formalism as set out in [10] will be introduced and described in detail, with

particular attention payed to the identification of measurable quantities and a suitable frame-

work for position measurements. Note that all analyses will be restricted to two dimensions, i.e.,

our formalism applies to a non-commutative plane.2

1.1 A unitary representation of the Heisenberg algebra

The cornerstone of standard quantum mechanics is the set of canonical commutation relations.

The relevant underlying structure is the abstract Heisenberg algebra, which reads

[x, y] = 0,

[x, px] = [y, py] = i~, (1.1)

[px, py] = [x, py] = [y, px] = 0.

The generators of the algebra are linked to observable quantities through the construction of

a unitary representation in terms of Hermitian operators that act on the quantum mechanical

Hilbert space. The states of the system are represented by vectors in this quantum Hilbert space,

which shall henceforth be denoted by Hq. These operators obviously obey the same commutation

relations as those above,

[x̂, ŷ] = 0,

[x̂, p̂x] = [ŷ, p̂y] = i~, (1.2)

[p̂x, p̂y] = [x̂, p̂y] = [ŷ, p̂x] = 0.

2 In Appendix A we discuss briefly the inclusion of a third co-ordinate and the associated problems pertaining
to transformation properties and rotational invariance in higher dimensions.

1



1. A REVIEW OF THE STANDARD QUANTUM MECHANICAL FRAMEWORK 2

Two representations are common in the setting of standard quantum mechanics — the Schrödinger

representation and Heisenberg’s matrix representation.3 For the former, for instance, we have

that the position and momentum operators act on the Hilbert space of square-integrable wave

functions as follows:

x̂ψ(x, y) = xψ(x, y),

p̂xψ(x, y) = −i~ ∂
∂x
ψ(x, y), (1.3)

and similarly for y.

The commutation relations (1.2) induce an uncertainty in the position and momentum observ-

ables,

∆x̂∆p̂x ≥
~
2
, ∆ŷ∆p̂y ≥

~
2
, (1.4)

where we define ∆Â ≡
√
〈Â2〉 − 〈Â〉2 for any observable Â.4 On a physical level, (1.4) simply

implies that, for a given direction, momentum and position cannot be measured simultaneously

to arbitrary accuracy. In contrast to this, however, the two co-ordinates may be measured si-

multaneously since x and y commute in (1.1), as do the operators (1.2) representing them on the

Hilbert space. It is this particular feature that will later be altered in a non-commutative setting.

Having reviewed the matter of representations of the abstract Heisenberg algebra, let us revisit

the statistical interpretation associated with measurements in the standard quantum mechanical

formalism.

1.2 The postulates of standard quantum mechanics

In standard quantum mechanics, measurements are considered to be projective. To illustrate

precisely what is meant by this statement, we now recap the fundamental postulates of this

probabilistic framework. We shall follow the discussion of [12], where the quantum mechanical

formulation of von Neumann (see, for instance, [13]) is summarised.

Postulates of Standard Quantum Mechanics:

I To every quantum mechanical observable we assign a corresponding Hermitian operator,

3 From the Stone-von Neumann theorem we know that all unitary representations of the algebra (1.1) are
equivalent; see, for instance, [14].

4 The proof hereof is simple, and relies on the Schwartz inequality; see, for instance, [11].



1. A REVIEW OF THE STANDARD QUANTUM MECHANICAL FRAMEWORK 3

A = A†. Due to the Hermiticity of A, we can construct a complete orthonormal basis

(which, for simplicity, we assume here to be discrete) for Hq from the eigenvectors of A:

A |φn〉 = λn |φn〉 , 〈φn|φm〉 = δn,m ⇒ Hq = spann{|φn〉}.5 (1.5)

Naturally A has a spectral representation in terms of these eigenvectors:

A =
∑
n

λn |φn〉 〈φn|

≡
∑
n

λnPn. (1.6)

The Hermiticity of A also guarantees a real spectrum, λn ∈ < ∀ n.

II We call the operators Pn ≡ |φn〉 〈φn| projectors. They sum to the identity on the quantum

Hilbert space, ∑
n

Pn = 1q. (1.7)

Since the eigenvectors of A are orthogonal (see (1.5)), we have that

PnPm = |φn〉 〈φn|φm〉 〈φm| = δn,mPn. (1.8)

Consequently any projector squares to itself, i.e., P 2
n = Pn. This implies that its eigenvalues

must be 0 or 1.

III A measurement of the observable A must necessarily yield one of the eigenvalues of A, say

λα ∈ {λn | n = 0 : ∞}. If the system is originally in a normalised pure state |ψ〉, then the

probability6 of measuring λα is given by

pα = |〈φα|ψ〉|2 = 〈ψ|Pα |ψ〉 = 〈ψ|P 2
α |ψ〉 = |Pα |ψ〉|2 . (1.9)

These probabilities are non-negative and sum to unity,

pα ≥ 0,
∑
α

pα = 1 ⇒ 0 ≤ pα ≤ 1, (1.10)

5 At this point we do not stipulate the dimensionality of Hq.
6 The inherent randomness in the measurement process becomes manifest in this postulate: we are not guar-

anteed any particular outcome. The only prediction we can make is the set of possible outcomes, and to each
element thereof we may assign a probability. It is in this context that the notion of ensemble measurements is a
natural interpretation.



1. A REVIEW OF THE STANDARD QUANTUM MECHANICAL FRAMEWORK 4

as is required for any probability. (These statements are easily verified using equations (1.6),

(1.7) and (1.9)).

The normalised state of the system after measurement is

|φ〉 ≡ Pα |ψ〉√
〈ψ|Pα |ψ〉

. (1.11)

If another measurement is performed immediately on the system, it is clear from (1.6) and

(1.8) that the outcome will again be λα with a probability of 1. It is in this sense that

we consider measurements to be projective, since repeated measurements of a particular

observable will yield the same result, i.e., the system is projected into a particular eigenstate

of the observable in the measurement process.

For the case where the system is initially in a mixed state described by the density operator

ρ, the probability of measuring outcome λα is

pα = trq(PαρPα) = trq(P
2
αρ) = trq(Pαρ), (1.12)

and the corresponding post-measurement state is described by the density operator

ρα =
PαρPα

trq(PαρPα)
=

PαρPα
trq(Pαρ)

. (1.13)

(Here trq denotes the trace over the quantum Hilbert space, Hq).

IV The expectation value of A, in the sense of repeated measurements on an ensemble of

identically prepared systems initially in state |ψ〉, is given by the probability-weighted sum

of all possible outcomes,

〈A〉 =
∑
n

pnλn. (1.14)

The extension to a system initially in the mixed state ρ is simply

〈A〉 =
∑
n

λntrq{Pnρ} = trq{Aρ}. (1.15)

Although the above postulates outline the usual approach to / interpretation of the statistical

quantum mechanical framework, it is possible to relax some of these points. Indeed, the stip-

ulation of projectivity in measurements is a very restrictive one, and we shall demonstrate in

the following section that it is possible to build a consistent probabilistic framework where this
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requirement is relaxed.

1.3 Weak measurement: the language of Positive Operator Valued Measures

One of the most important underpinnings of quantum mechanics is the conservation of prob-

ability. This is guaranteed by insisting on Hermiticity of observables, which ensures unitarity in

dynamic evolution of the system. Naturally such a description must be applied to closed quan-

tum systems which are devoid of interactions with an environment that may violate conservation.

Indeed, open quantum systems are typically described in terms of non-Hermitian operators that

represent coupling to the environment.7 Generally such descriptions involve an alteration of the

postulates set out above. As will be seen in later sections, it is necessary also in the frame-

work of non-commutative quantum mechanical position measurements to modify the postulates

of measurement slightly. For this reason we shall consider here a well-established extension to

the statistical formalism above, that is of use not only in our framework but also in fields like

quantum computing [16] and open quantum systems [17].

Returning to the matter at hand, we note that, to build a consistent probability framework,

it is necessary to have a set of non-negative normalised probabilities as in (1.10). Looking at

equation (1.9), we note that this is possible even if the operators Pn are not positive: it suffices to

have positivity for P 2
n . We will show that this can be done even if one abandons the requirement

of orthogonality (1.8) for the operators Pn which generate the post-measurement state (1.11).

Suppose now that the normalised post-measurement state after a specific experiment,

|φ〉 =
Dα |ψ〉√

〈ψ|D†αDα |ψ〉
, (1.16)

is determined by a set of non-orthogonal operators {Dn}, DnDm 6= δn,m. We call these operators

“detection operators”, and they are a generalisation of the orthogonal projectors Pn from (1.6).

As an extension of the operators P 2
n , we further introduce a set of positive operators πn that

sum to the identity on Hq,

πn ≥ 0,
∑
n

πn = 1q. (1.17)

With this we have a so-called Positive Operator Valued Measure (POVM), where each πα is an

element of the POVM. We note that one way to guarantee positivity of the POVM elements is

through the identification

πn = D†nDn. (1.18)

7 For an example of such a description, see [15].
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The obvious choice of detection operator would be Dn = π
1/2
n (the square root of πn exists since

the operator is positive). However, the most general choice of detection operator satisfying (1.18)

is

Dn = Unπ
1/2
n , (1.19)

where Un is an arbitrary unitary transformation whose relevance will become clear shortly. Com-

paring the post-measurement states (1.11) and (1.16), we note that it would be natural to asso-

ciate the α in Dα with a particular outcome of an observable (which need not be Hermitian). Let

us proceed by introducing a modified set of postulates (based on the above POVMs) that allows

the construction of a consistent, non-projective quantum mechanical probability interpretation

for measurements of such quantities.

Modified Postulates of Quantum Mechanics: Non-Projective Measurements

I We no longer require that the operators representing observables on Hq need be Hermitian.

(This need not imply that Hermitian observables no longer exist, we simply do not demand

Hermiticity of all observables).

II Our point of departure is a decomposition of the identity onHq in terms of positive operators

(i.e. a POVM):

πn ≥ 0 ∀ n,
∑
n

πn = 1q. (1.20)

The elements of the POVM may be decomposed further in terms of so-called detection

operators,

πn = D†nDn, (1.21)

where D†n 6= Dn and DnDm 6= δn,m in general, but where

∑
n

D†nDn = 1q. (1.22)

III A detection must necessarily yield an outcome corresponding to one of the elements of the

POVM, say πα. If the system is originally in a normalised pure state |ψ〉, then the probability

of this particular outcome is

pα = |Dα |ψ〉|2 = 〈ψ|D†αDα |ψ〉 = 〈ψ|πα |ψ〉 . (1.23)

The previous postulate ensures that pα ≥ 0,
∑

α pα = 1, and consequently that 0 ≤ pα ≤ 1.
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For a system initially in a mixed state with density operator ρ, the probability for this

particular outcome is

pα = trq(DαρD
†
α) = trq(D

†
αDαρ) = trq(παρ). (1.24)

Note that we do not prescribe the form of the operator corresponding to the observable

quantity. Rather we consider the set of possible outcomes of a measurement, each being

a label of a particular POVM. It need not be the case that these outcomes are necessarily

eigenstates of a particular operator.

IV The state of the system after measurement is

|φ〉 =
Dα |ψ〉√

〈ψ|D†αDα |ψ〉
. (1.25)

Recalling that the most general form of the detection operators is

Dn = Unπ
1/2
n , (1.26)

we see that the state (1.25) can only be specified up to a unitary transformation, which

induces a degree of arbitrariness after measurement. Consequently we cannot make any

exact statements about the post-measurement state other than its norm. Furthermore, due

to the non-orthogonality of the detection operators, a repeated measurement need not yield

the same result (in contrast to (1.11)). It is in this sense that this framework describes

non-projective measurements.

For a mixed state ρ, the post-measurement state of the system is described by

ρα =
DαρD

†
α

trq(DαρD
†
α)

=
DαρD

†
α

trq(D
†
αDαρ)

. (1.27)

V For any observable O, the expectation value is defined as

〈O〉 ≡ trq(Oρ). (1.28)

This concludes our review of the standard quantum mechanical framework and the associated

probabilistic formalism(s) for describing measurements. We now introduce the non-commutative
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framework by modifying the Heisenberg algebra (1.1), finding a suitable unitary representation

on Hq, and discussing the implications of this formalism on position measurements.



CHAPTER 2

THE FORMALISM OF NON-COMMUTATIVE QUANTUM MECHANICS

2.1 A unitary representation of the non-commutative Heisenberg algebra

The framework of non-commutative quantum mechanics that we will use was put forward in

[10], where a consistent probability interpretation for this formalism was outlined. Said article

essentially comprises a consolidation and subsequent extension of the basic machinery used in

[18] and [19]. Since this construction is vital to our analyses, we shall review these discussions

thoroughly.

The foundation of our construction is the introduction of a non-commutative configuration

space.8 Co-ordinates on this space satisfy the commutation relation

[x̂, ŷ] = iθ, (2.1)

where θ is a real parameter (in units of length squared) that is assumed to be positive without loss

of generality. By implication, the first line of the abstract Heisenberg algebra (1.1) is modified;

its non-commutative analogue reads

[x, y] = iθ,

[x, px] = [y, py] = i~, (2.2)

[px, py] = [x, py] = [y, px] = 0.

The task at hand is to find the quantum Hilbert space, Hq, and a unitary representation of

the non-commutative algebra on this space. Returning to (2.1), we note that non-commutative

co-ordinates cannot be scalars since these would commute. For this reason we denote the co-

ordinates by hatted operators in (2.1). In order to find a basis for classical configuration space,

it is convenient to define the following creation and annihilation operators:

b =
1√
2θ

(x̂+ iŷ),

b† =
1√
2θ

(x̂− iŷ). (2.3)

8 We will investigate the case where the commutation relations of the momenta are unchanged, and only
positional commutation relations are altered.

9
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It is easy to verify (using (2.1)) that these operators satisfy the Fock algebra

[b, b†] = 1. (2.4)

This simply implies that the classical configuration space is isomorphic to boson Fock space,

Hc ∼= F ≡ span

{
|n〉 =

(b†)n√
n!
|0〉 ; n = 0 :∞

}
. (2.5)

Consequently classical configuration space is a Hilbert space, which we shall denote by Hc. This

is not an unusual feature, since standard commutative configuration space (i.e., <2) is also a

Hilbert space. At this point it should be noted that, due to the fact that the non-commutative

parameter θ (which we assume to be of the order of the square of the Planck length (1)) is

very small, effects of non-commutativity would manifest only at very short length scales, which

in turn require very high energies to probe. In this light, it is not sensible to speak of these

effects on a classical level, since any uncertainty induced by non-commutativity would manifest

on a significantly smaller scale than the uncertainties that are naturally inherent to classical

measurements.

As stated, we wish to find a unitary representation of the non-commutative Heisenberg algebra

(2.2) on the quantum Hilbert space. It is natural to identify the quantum Hilbert space with the

set of Hilbert-Schmidt operators acting on non-commutative configuration space,

Hq =
{
ψ(x̂, ŷ) : ψ(x̂, ŷ) ∈ B (Hc) , trc

[
ψ(x̂, ŷ)†ψ(x̂, ŷ)

]
<∞

}
, (2.6)

where

trcψ(x̂, ŷ) ≡
∞∑
n=0

〈n|ψ(x̂, ŷ) |n〉 (2.7)

denotes the trace over Hc, and B (Hc) is the set of bounded operators on Hc. In analogy to the

Schrödinger representation, the square-integrable functions of position co-ordinates are replaced

by operators of finite trace (read: norm) which are functions of the position co-ordinates from

(2.1). Of course the physical quantum states of the system are represented by elements of (i.e.,

operators in) Hq. This is indeed a Hilbert space, as demonstrated, for instance in [21]. The

associated natural inner product on this space is

(φ(x̂, ŷ), ψ(x̂, ŷ)) = trc

[
φ(x̂, ŷ)†ψ(x̂, ŷ)

]
. (2.8)

At this point the clear need for a consistent notation arises, since it is necessary to distinguish
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between the non-commutative configuration space and the quantum Hilbert space. For this

purpose we denote elements of Hc with angular kets, |·〉, and use round kets ψ(x̂, ŷ) ≡ |ψ) for

elements of Hq. Through the inner product (2.8) elements of the dual space H∗q i.e., linear

functionals denoted by round bras, (ψ|, will map elements of Hq onto complex numbers:

(φ|ψ) = (φ, ψ) = trc

[
φ(x̂, ŷ)†ψ(x̂, ŷ)

]
. (2.9)

We distinguish between Hermitian conjugation on Hc (denoted by †) and Hermitian conjugation

on Hq (denoted by ‡). Furthermore, we shall employ capital letters to denote operators acting

on Hq, whereas lowercase hatted letters are reserved for operators acting on Hc.

With the above framework in place, we are equipped to build the unitary representation of

the non-commutative Heisenberg algebra (2.2) on the quantum Hilbert space. This is done in

terms of the position operators X and Y , and the momentum operators Px and Py, which act

on elements ψ(x̂, ŷ) ∈ Hq according to

Xψ(x̂, ŷ) = x̂ψ(x̂, ŷ) Y ψ(x̂, ŷ) = ŷψ(x̂, ŷ)

Pxψ(x̂, ŷ) =
~
θ

[ŷ, ψ(x̂, ŷ)] Pyψ(x̂, ŷ) = −~
θ

[x̂, ψ(x̂, ŷ)]. (2.10)

Of course this representation conserves the commutation relations of the non-commutative Heisen-

berg algebra (2.2), and is analogous to the Schrödinger representation of the commutative Heisen-

berg algebra. Position operators act by left multiplication, and momentum operators act ad-

jointly. To make the correspondence more explicit, consider any state ψ(x̂, ŷ) ∈ Hq that may be

written as

ψ(x̂, ŷ) =

∞∑
m,n=0

cm,nx̂
mŷn, cm,n ∈ C (2.11)

after suitable ordering. The action of the x-momentum operator on this state according to (2.10)

is simply

Pxψ(x̂, ŷ) =
~
θ

[ŷ, ψ(x̂, ŷ)]

=
~
θ

(−iθ)
∞∑

m,n=0

cm,nmx̂
m−1ŷn

= −i~ ∂
∂x̂
ψ(x̂, ŷ) (2.12)

Comparing this to (1.3), the analogy is clear: the momenta from (2.10) act as algebraic deriva-

tives.
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Lastly, we introduce some operators that are simply linear combinations of those in (2.10),

since these will be convenient to work with in later sections. The first two are linear combinations

of the position operators, and represent the counterpart to the operators (2.3) on Hq:

B ≡ 1√
2θ

(X + iY ) ⇒ Bψ(x̂, ŷ) = bψ(x̂, ŷ),

B‡ ≡ 1√
2θ

(X − iY ) ⇒ B‡ψ(x̂, ŷ) = b†ψ(x̂, ŷ). (2.13)

The second two are linear combinations of the momentum operators, namely

P ≡ Px + iPy ⇒ Pψ(x̂, ŷ) = −i~
√

2

θ
[b, ψ(x̂, ŷ)],

P ‡ ≡ Px − iPy ⇒ P ‡ψ(x̂, ŷ) = i~
√

2

θ
[b†, ψ(x̂, ŷ)]. (2.14)

As can be seen from definition (2.10) and the commutation relation (2.1), these two operators

commute,

[P, P ‡] = 0. (2.15)

We require one further notational convention. For any operator O acting on the quantum Hilbert

space, we may define left- and right action (denoted by subscripted L and R, respectively) as

follows:

OLψ = Oψ; ORψ = ψO ∀ ψ ∈ Hq. (2.16)

In this language, for instance, the complex momenta (2.14) may be written as

P = i~
√

2

θ
[BR −BL] and P ‡ = i~

√
2

θ
[B‡L −B

‡
R]. (2.17)

Note that left- and right operators always commute, since O
(1)
L O

(2)
R ψ = O(1)ψO(2) = O

(2)
R O

(1)
L ψ.

Also, if [O
(1)
L , O

(2)
L ] = c, then [O

(1)
R , O

(2)
R ] = −c.

We now have the basic machinery in place to perform calculations in a non-commutative quan-

tum mechanical framework. As far as interpretation is concerned, we proceed essentially as

we would with standard quantum mechanics. As will become evident in the section to follow,

however, the issue of position measurement must be addressed with great care in our non-

commutative framework. This will be done in the context of weak measurements using the
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language of Positive Operator Valued Measures (POVMs) set out in Section 1.3.

2.2 Position measurement in non-commutative quantum mechanics: the need

for a revised probabilistic framework

As mentioned, the commutation relation (2.1) induces an uncertainty relation ∆x̂∆ŷ ≥ θ
2 .

By implication, it is impossible to measure the co-ordinates x̂ and ŷ simultaneously to arbitrary

accuracy. A corollary to this statement is that it is impossible to define a state that is a simul-

taneous eigenstate of the operators X and Y in (2.10). In commutative quantum mechanics we

are able to define such states since this issue does not arise. Clearly the notion of position and

its measurement does not exist a priori in a non-commutative framework. Again this should be

contrasted with position measurements in commutative spaces, which yield complete information

about the state of the quantum mechanical system. We shall show here that in order to speak

of non-commutative position measurements, it is necessary to invoke some sort of additional

structure or missing information, which is manifested in the non-locality of this description.

The natural question to ask is what form the non-commutative analogue to an eigenstate of

position would take. We continue by summarising the approach taken in [10]. Since x and y

cannot be specified to arbitrary accuracy in any state, the closest analogue would be a state that

has minimal uncertainty on the non-commutative configuration space. Consider the normalised

coherent states

|z〉 = e−zz̄/2ezb
† |0〉

= e−zz̄/2
∞∑
n=0

1√
n!
zn |n〉 , (2.18)

where z = 1√
2θ

(x+ iy) is a dimensionless complex number, and z̄ is its complex conjugate. Note

that these coherent states are eigenstates of the annihilation operator from (2.3),

b |z〉 = z |z〉 , 〈z| b† = z̄ 〈z| . (2.19)
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From this and from (2.3) we see that

x̂ =
√

θ
2 (b+ b†)

〈x̂〉 =
√

θ
2 〈z| b+ b† |z〉 =

√
θ
2 (z + z̄)〈

x̂2
〉

= θ
2 〈z| (b+ b†)2 |z〉 = θ

2(z2 + z̄2 + 2zz̄ + 1)

 ⇒ ∆x̂ =
√
〈x̂2〉 − 〈x̂〉2 =

√
θ

2

ŷ = i
√

θ
2 (b† − b)

〈ŷ〉 = i
√

θ
2 〈z| b

† − b |z〉 = i
√

θ
2 (z̄ − z)〈

ŷ2
〉

= −θ
2 〈z| (b

† − b)2 |z〉 = −θ
2 (z2 + z̄2 − 2zz̄ − 1)

 ⇒ ∆ŷ =
√
〈ŷ2〉 − 〈ŷ〉2 =

√
θ

2

(2.20)

Clearly this implies that

∆x̂∆ŷ =
θ

2
, (2.21)

i.e., the coherent states (2.18) display minimum uncertainty in x̂ and ŷ. As is shown in [20], they

also admit a resolution of the identity on Hc,

1

π

∫
d2z |z〉 〈z| =

1

π

∫
d2z

∞∑
n,m=0

1√
n!m!

e−zz̄znz̄m |n〉 〈m|

=
1

π

∞∑
n,m=0

|n〉 〈m|√
n!m!

∫ 2π

0
dφeiφ(n−m)

∫ ∞
0

dr re−r
2
rn+m

=
∞∑
n=0

|n〉 〈n|

= 1c, (2.22)

where we made use of the Fourier transform representation of the Kronecker delta in polar co-

ordinates, and evaluated the radial integral in terms of Γ-functions. Clearly the states (2.18)

also span Hc since they are simply infinite linear combinations of Fock states. We say that these

coherent states provide an over-complete basis on the non-commutative configuration space,

where it is important to note that they are not orthogonal,

〈z1|z2〉 = e−z1z̄1/2−z2z̄2/2+z2z̄1 6= δ(z1 − z2). (2.23)

Turning our attention to the quantum Hilbert space, we construct there a state (operator) that

corresponds to (2.18):

|z) ≡ |z〉〈z|. (2.24)
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These states are normalised with respect to the inner product (2.8) and are thus indeed Hilbert-

Schmidt operators. Take note, however, of their non-orthogonality,

(z1|z2) = trc

(
(|z1〉 〈z1|)‡ |z2〉 〈z2|

)
=
∣∣∣e−z1z̄1/2−z2z̄2/2+z2z̄1

∣∣∣2 = e−|z1−z2|
2
. (2.25)

Since z1 and z2 are dimensionless here, the Gaussian will become a Dirac delta function in the

commutative limit θ → 0. From (2.13) and (2.19) it is clear that these states are also eigenstates

of BL,

BL|z) = z|z). (2.26)

In complete analogy to the calculations in (2.20) we can solve for X and Y in (2.13), and verify

that the states (2.24) are minimal uncertainty states in position on the quantum Hilbert space:

X =
√

θ
2 (BL +B‡L)

〈X〉|z) =
√

θ
2 (z|BL +B‡L |z) =

√
θ
2 (z + z̄)〈

X2
〉
|z) = θ

2 (z| (BL +B‡L)2 |z) = θ
2(z2 + z̄2 + 2zz̄ + 1)

 ⇒ ∆X =
√
〈X2〉 − 〈X〉2 =

√
θ

2

Y = i
√

θ
2 (B‡L −BL)

〈Y 〉|z) = i
√

θ
2 (z|B‡L −BL |z) = i

√
θ
2 (z̄ − z)〈

Y 2
〉
|z) = −θ

2 (z| (B‡L −BL)2 |z) = −θ
2 (z2 + z̄2 − 2zz̄ − 1)

 ⇒ ∆Y =
√
〈Y 2〉 − 〈Y 〉2 =

√
θ

2

∴ ∆X∆Y =
θ

2
. (2.27)

It is thus natural to interpret x and y as the dimensionful position co-ordinates. This would

imply that the states |z) are the analogue of position eigenstates on Hq, since they saturate the

uncertainty relation induced by the commutation relation (2.1).9 In this trend, the operator

associated with position is BL. It is at this point that we require the probabilistic framework of

POVMs set out in Section 1.3. To make use of this formalism, we need to show that the states

(2.24) provide an over-complete set of basis states on the quantum Hilbert space. To prove this,

9 In later sections we will show that the states |z) ≡ |z〉〈z| are not the most general states that display the
properties discussed above. We follow here, however, the formalism set out in [10], and shall extrapolate on this
point in Section 3.1.
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we define the states |z, w) ≡ |z〉 〈w|, and consider that

1

π2

∫
d2z

∫
d2w |z, w) (z, w|ψ) =

1

π2

∫
d2z

∫
d2w |z, w)

∞∑
n=0

〈n| [|z〉 〈w|]‡ψ |n〉

=
1

π2

∫
d2z

∫
d2w |z〉 〈w| 〈z|ψ |w〉

= |ψ) . (2.28)

(In the final step we made use of the fact that 〈z|ψ |w〉 is simply a complex number, and of

equation (2.22)). This implies that

1

π2

∫
d2z

∫
d2w |z, w) (z, w| ≡ 1q (2.29)

is a resolution of the identity on Hq. If we now choose w = z+ v, and note that d2w = d2v since

we are integrating over the entire complex plane, we find that

1q |ψ) =
1

π2

∫
d2z

∫
d2v |z, z + v) (z, z + v|ψ)

=
1

π2

∫
d2z

∫
d2v |z〉 〈z + v| 〈z|ψ |z + v〉

=
1

π2

∫
d2z

∫
d2v e−|v|

2 |z〉 〈z| ev̄
←
∂z̄+v

→
∂z 〈z|ψ |z〉

=
1

π

∫
d2z |z) e

←
∂z̄
→
∂z (z|ψ) , (2.30)

where we have defined ∂z̄ ≡ ∂
∂z̄ and ∂z ≡ ∂

∂z , used the fact that ev∂zf(z) = f(z + v), and

performed the Gaussian integral over v explicitly. Consequently

1q =
1

π

∫
d2z |z)e

←
∂z̄
→
∂z(z| ≡ 1

π

∫
d2z |z) ? (z| (2.31)

is a resolution of the identity on Hq, and it follows that the operators

πz =
1

π
|z)e

←
∂z̄
→
∂z(z| ,

∫
d2z πz = 1q (2.32)

provide an Operator Valued Measure. (Note that since x and y are dimensionful co-ordinates,
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we have that d2z = dxdy
2θ ). The operators are also positive, since

(φ|πz |φ) =
1

π
(ψ|z) ? (z|ψ)

=
1

π

∞∑
n=0

1

n!

∂n (φ|z)
∂z̄n

∂n (z|φ)

∂zn

=
1

π

∞∑
n=0

1

n!

∣∣∣∣∂n (z|φ)

∂zn

∣∣∣∣2 ≥ 0 ∀ φ. (2.33)

Assuming that the system is in a pure state |ψ), it is thus consistent to assign the probability of

finding the particle at position (x, y) (defined in terms of z and z̄) as

P (z, z̄) = (ψ|πz|ψ)

=
1

π
(ψ|z) ? (z|ψ) . (2.34)

Consider the difference of this position probability distribution to those in standard (commuta-

tive) quantum mechanics. In the standard case, we simply define the probability distribution as

the modulus squared of the position wave function: P (~x) ≡ |ψ(~x)|2. This is not the case here

— a star product is involved. Consequently, if we define ψ(z, z̄) ≡ (z|ψ) as the wave function

in position, we must always bear in mind that it is not a probability amplitude in the standard

sense, but that the star product is required to form the probability distribution. It is in this

sense that this probabilistic framework is non-local, since we require knowledge of all orders of

derivatives of the overlap (z|ψ). The overlap ψ(z, z̄) ≡ (z|ψ) does thus not provide complete

information about the state |ψ).

Lastly, we shall address the post-measurement state of the system. In Appendix B we show

that for an element πz of the POVM (2.32) we have the property that

π1/2
z =

√
π πz. (2.35)

We conclude that the elements of the POVM (2.32) are (up to a constant) simply projectors.10

This allows us to construct the post-measurement state by considering the discussion from Section

1.3. We recall that the form of the detection operators was simply the square root of the

corresponding POVM elements (up to a unitary transformation), or in this particular case

Dz = Uπ1/2
z =

√
π Uπz. (2.36)

10 Note that this does not imply that we do not need to use the language of POVMs here, however, since it is
clear that separate elements of the POVM are not orthogonal, πzπw 6= δ(z − w)πz.
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The state of the system initially in pure state |ψ) after measurement is now simply

|φ) =
Dz |ψ)√

(ψ|D†zDz |ψ)
=

√
π Uπz |ψ)

π
√

(ψ|π2
z |ψ)

=
√
π

Uπz |ψ)√
(ψ|πz |ψ)

. (2.37)

Again, it is important to note that the unitary transformation above reflects that we do not have

complete information about the post-measurement state.

This completes our review of the non-commutative quantum mechanical formalism set out

in [10]. In further parts of this thesis we shall consider in greater detail the POVM (2.32).

As already alluded to in footnote 9, the states (2.24) are not the only ones in Hq that display

minimal uncertainty in x and y. It is also clear that the description of position measurements

in the framework above is highly non-local, in that it requires the knowledge of all orders of

derivatives in z and z̄ of the wave function ψ(z, z̄) ≡ (z|ψ). We shall show in Chapter 3 that the

introduction of additional degrees of freedom (that characterise the right sector of basis states)

allows us to decompose the resolution of the identity (2.31) in such a way that the resulting

POVM is local in z, thereby allowing for local descriptions of position measurements. This,

of course, brings with it several interpretational questions regarding the meaning of the added

degrees of freedom. Focusing on two particular choices of bases, we shall attempt to provide some

insight into possible physical interpretations of the right sector in Chapters 4, 5. In Chapter 6

we shall demonstrate that the right sector degrees of freedom may also be thought of as gauge

degrees of freedom in a gauge-invariant formulation of non-commutative quantum mechanics.



CHAPTER 3

THE RIGHT SECTOR AND BASES FOR LOCAL POSITION

MEASUREMENTS

As alluded to in the previous chapter, the motivation for introducing the states |z) ≡ |z〉 〈z| was

that they are optimally (minimally) localised in Hq, in the sense that they saturate the x − y

uncertainty relation. In this regard they may be considered as being the analogue of position

eigenstates (of the associated non-Hermitian operator BL) on the quantum Hilbert space. In this

chapter we shall show that these states are not the most general states to display these properties.

The description of position measurements in terms of these states is, as stated, non-local in that

it requires the knowledge of all orders of derivatives in z and z̄ of the overlap ψ(z, z̄) ≡ (z|ψ).

By introducing new degrees of freedom that contain explicit information about the right sector

of quantum states, we shall now find decompositions of the identity (2.31) on Hq in terms of

bases that allow a local description of position measurements. (By “local” we mean that these

descriptions do not require explicit knowledge of all orders of derivatives in z and z̄). Naturally

we wish to attach physical meaning to these newly introduced degrees of freedom. This matter

will be addressed in later chapters where, for instance, we shall consider arguments from the

corresponding classical theories which indicate that the notion of additional structure is clearly

encoded in these variables.

3.1 Arbitrariness of the right sector in non-local position measurements

Let us revisit some arguments from Chapter 2. In equation (2.27) we showed that the states

|z) are minimally localised in the variables x and y, and are eigenstates of the operator that we

associate with position, BL. Consider now the state

|z, φ) ≡ |z〉 〈φ| ∈ Hq, (3.1)

19
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where φ is arbitrary. Next we note that, for instance,

〈X〉|z,φ) =

√
θ

2
(z, φ|BL +B‡L |z, φ)

=

√
θ

2
trc

(
[|z〉 〈φ|]‡(BL +B‡L) |z〉 〈φ|

)
=

√
θ

2
〈z| b+ b† |z〉

=

√
θ

2
(z + z̄). (3.2)

Thus it is clear that all expectation values taken with respect to the basis elements |z) in (2.27)

are independent of the right sector 〈·| of these elements, since the trace of the inner product on

Hq essentially removes this information (see the second and third line in the calculation above).

Consequently the expectation values of the same (left-acting) operators with respect to the basis

elements |z, φ) equal those taken with respect to |z). Following the same arguments as previously,

we thus note that the states (3.1) are also minimum uncertainty states in position for all φ, i.e.,

this statement is independent of the specific form of the right sector. Furthermore, these states

are also eigenstates of our position operator,

BL |z, φ) = b |z〉 〈φ| = z |z〉 〈φ| ∀ φ. (3.3)

We conclude that the non-local framework for position measurements from [10] set out in Section

2.2 is insensitive to information contained in the right sector of states of the form |z〉 〈·|. Consider

the contrast to a 2 dimensional commutative quantum system, where states can be completely

specified by knowledge of position, i.e., x and y (since the corresponding observables form a

maximally commuting set). In lieu of the above arguments, however, it becomes clear that in

the non-commutative framework additional information from the right sector is necessary to

specify states completely. Since the non-locality in position measurements as in Section 2.2 is

a direct consequence of the star product, one may ask whether a manifestly local description in

terms of a decomposition of this star product is possible. We shall address this question below.

3.2 Decomposition of the identity on Hq

The first requirement for a probability description in terms of POVMs is a resolution of the

identity on the quantum Hilbert space. For this purpose, suppose we have a set {|α〉} of states
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in Hc that satisfy

OR(|φ〉 〈α|) = |φ〉 〈α|O = λα |φ〉 〈α| ∀ |φ〉 ∈ Hc,
∑
α

|α〉 〈α| = 1c. (3.4)

(Here the state label α could be discrete or continuous. In the latter case, the summation would

simply be replaced by an integral.) The aim is to find a decomposition of the identity (2.31) on

Hq in terms of states |z, α) where α specifies the right sector of an outer product as in (3.1). If

we achieve this, we have a new set of states that are still eigenstates of BL, but that have an

added state label (degree of freedom). Such a state is of course a minimum uncertainty state in

x and y (as discussed in 3.1) that is localised at z. If we had a transformation that would localise

the state elsewhere (i.e., translate z), we would require that this transformation is unitary and

maintains the minimum uncertainty property of the states. To this end, let us define the operator

T (z) ≡ e
− i

~

√
θ
2

(z̄P+zP ‡)

= ez(B
‡
L−BR)+z̄(BR−BL), (3.5)

which acts on any φ ∈ Hq according to11

T (z)φ = ezb
†−z̄b φ ez̄b−zb

†
, (3.6)

and is unitary with respect to the inner product (2.8). As with usual translations, we have that

T (z)T ‡(w) = T (z − w), and [T (z), T (w)] = 0. (3.7)

Though this operator is the direct analogue of the translation operator e−
i
~ ~p·~x from standard

quantum mechanics12, take note of its left and right action. In this light it is clear that the state

(2.24) may be written as |z) = T (z) |0〉 〈0|, as is seen by splitting the exponents in (3.5) through

the identity eA+B = eAeBe−1/2[A,B] which applies whenever the operators A and B commute to

a constant. It would thus make sense to introduce states of the form

|z, α) ≡ T (z) (|0〉 〈α|) = |z〉 〈α| ez̄b−zb† , (3.8)

which simply represent some state |0〉 〈α| that was originally located at the origin, and was then

translated to the point z. Returning to (3.4), we note that these states are eigenstates of the

11 To show this we use definition (2.14) of the complex momenta.
12 To see this, take note that for two complex variables u = ux+iuy and v = vx+ivy we have that (uv̄+ ūv)/2 =

uxvx + vxux is simply the dot product. Applying this to the definitions (2.13) and (2.14) makes the analogy clear.
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translated operator OR,

T (z)ORT
‡(z) |z, α) = T (z) (|0〉 〈α|O) = λα |z, α) . (3.9)

This makes sense since we have translated the state |0〉 〈α| away from the origin to the point

z, and consequently we would expect to have to shift the operator OR to this point in order to

satisfy the eigenvalue equation from (3.4). Clearly a translated state of the form (3.8) above is

still an eigenstate of BL and also a minimum uncertainty state (since the arguments from Section

3.1 hold also for the states (3.8)).

To show that a resolution of the identity on Hq in terms of these states is possible, consider

that

1

π

∫
d2z

∑
α

(ψ|z, α) (z, α|φ) =
1

π

∫
d2z

∑
α

trc

(
ψ‡ |z〉 〈α| ez̄b−zb†

)
trc

(
ezb
†−z̄b |α〉 〈z|φ

)
=

1

π

∫
d2z

∑
α

〈α| ez̄b−zb†ψ‡ |z〉 〈z|φezb†−z̄b |α〉

=
1

π

∫
d2z 〈z|φψ‡ |z〉

= trc

(
φψ‡

)
= trc

(
ψ‡φ

)
= (ψ|φ) , (3.10)

where we made use of the completeness relation (3.4), the definition of the trace over Hc in terms

of the classical coherent states (2.18) and the cyclic property of the trace. We have thus shown

that
1

π

∫
d2z

∑
α

|z, α) (z, α| = 1q (3.11)

is a resolution of the identity on Hq for any set {|α〉} of states in Hc that satisfies (3.4). This

implies that

|z) ? (z| =
∑
α

|z, α) (z, α| , (3.12)

i.e., that we have decomposed the star product in terms of a new variable α which characterises

the right sector of the states (3.8). This procedure simply reflects that the “missing information”

encoded in the non-local description set out in Chapter 2 may be made explicit through the
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introduction of new degrees of freedom. This makes manifest the additional structure that was

alluded to earlier.

3.3 POVMs for local position measurements

We depart by noting that the states |z, α) not only admit a resolution of the identity on Hq,

but also that the corresponding operators

πz,α ≡
1

π
|z, α) (z, α| (3.13)

are positive and Hermitian (this is easy to see — consider equation (3.15)). Thus we have a

POVM, ∫
d2z

∑
α

πz,α = 1q, πz,α ≥ 0, (3.14)

in terms of which we can ask probabilistic questions according to Section 1.3. We could, for

instance, ask what the probability distribution in z and α is, given that the system is in a pure

state |ψ). This is simply

P (z, α) = (ψ|πz,α |ψ) =
1

π
(ψ|z, α) (z, α|ψ) =

1

π
| (z, α|ψ) |2. (3.15)

This distribution provides information not only about position, but also about the degree of

freedom α. It also stands in contrast to the probability distribution (2.34) in z , in that (z, α|ψ)

is indeed a probability amplitude in the standard sense: its modulus squared is the probability

distribution, and there is no need for a star product. Also note that since

∑
α

πz,α =
1

π
|z) ? (z| = πz, (3.16)

where πz refers to the POVM (2.32), we may obtain the probability distribution (2.34) by

summing (3.15) over all α. Similarly, we could obtain a distribution in α only by integrating

(3.15) over (z, z̄).

Let us take stock of the discussion thus far. We have decomposed the star product by intro-

ducing a new degree of freedom which characterises the right sector of the resulting states. This

allows us to write a probability distribution in position and in this new variable — a distribution

that is manifestly local in z and z̄, in that it does not require knowledge of all orders of deriva-

tives in these variables. Summation over all possible values of this new degree of freedom returns

us to the non-local description in position only, where we do require explicit knowledge of said

derivatives. The price to pay for the convenience of the local description with the added degree
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of freedom is that we are as yet unsure of the physical meaning of the new degree of freedom.

What is clear, however, is that this description resolves more transparently the information that

is encoded through derivatives in the non-local description. One should note, however, that the

two description contain the same information — it is simply accessed in different ways.

A further use of the completeness relations (2.31) and (3.11) is that we may reconstruct any

state |φ) from overlaps of the form (z|φ) and (z, α|φ). As stated, the former results in a non-local

description, whereas the latter is local in position; both descriptions address the same physical

information, and one does not display a loss of information when compared to the other. We

thus have two types of bases that may be used to represent physical systems — one non-local

and the other local in position. As is to be expected, the local basis is mathematically more

convenient to work with since we need not access higher order derivatives. We shall demonstrate

later, however, that constraints may arise in the local description. These constraints must be

handled with caution, and restrict which states in the system are physical.

It should be noted from the onset that the additional degrees of freedom in our local de-

scriptions differ fundamentally from additional quantum labels (such as spin) from standard

quantum mechanics: in the standard setting such quantum labels must be added in by hand,

whereas these additional state labels appear naturally and unavoidably in any local position

description of non-commutative quantum mechanics. For the remainder of this thesis we shall

concern ourselves with two particular choices of bases that allow such local probability descrip-

tions — one with a continuous state label for the right sector, and the other with a discrete

label. We shall attempt to explore the physical meaning of the additional degrees of freedom

in each case, and represent a few non-commutative quantum systems in these bases in order to

gain understanding of the additionally resolved information. Thereafter we shall demonstrate

that local transformations between bases for the right sector may also be thought of as gauge

transformations in a gauge-invariant formulation of the theory.



CHAPTER 4

THE BASIS |z, v) ≡ T (z) |0〉 〈v|

In this chapter we shall introduce a basis of the form (3.8) where the right sector is characterised

by a coherent state with label v. After showing that a resolution of the identity on Hq in terms

of these states is possible, we shall construct the positive, Hermitian elements of the associated

POVM, thereby providing a probability formulation in terms of this basis. Thereafter we consider

the associated classical theories to gain insights into the physical nature of the degree of freedom

v, and apply the basis to representing a few non-commutative quantum mechanical problems

that were investigated in [10].

4.1 Decomposition of the identity on Hq and the associated POVM

Let us take a look at the derivation of the identity on the quantum Hilbert space. From

equation (2.30) it is clear that the star product may be written as

? = e
←
∂z̄
→
∂z =

∫
d2v e−|v|

2
ev̄
←
∂z̄+v

→
∂z . (4.1)

If we now introduce the states

|z, v) ≡ e−vv̄/2ev̄∂z̄ |z) , (4.2)

we note that the identity on the quantum Hilbert space may be written as

1q =
1

π2

∫
d2z

∫
d2v |z, v) (z, v| . (4.3)

Considering the states (4.2) in more detail, we observe that

|z, v) = e−vv̄/2ev̄∂z̄ |z)

= T (z) |0〉 〈v|

= e
1
2

(z̄v−v̄z) |z〉 〈z + v| , with z, v ∈ C. (4.4)

Here T (z) denotes the translation operator (3.5). It is also evident that these states may be

viewed as “position eigenstates” in the sense of Section 3.1,

BL |z, v) = e
1
2

(z̄v−v̄z) b |z〉 〈z + v| = z |z, v) . (4.5)

25
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This statement, in fact, holds even for linear combinations of these states taken over v. In

addition to the resolution of the identity on Hq in terms of the states |z, v), we also have the

required positivity condition,

(φ|z, v) (z, v|φ) = e−|v|
2

(ψ|z) ev̄
←
∂z̄+v

→
∂z (z|ψ)

= e−|v|
2
[
ev̄∂z̄ (ψ|z)

] [
ev∂z (z|ψ)

]
= e−|v|

2
∣∣∣ev∂z (z|ψ)

∣∣∣2 ≥ 0. (4.6)

Thus we have a new POVM, namely

πz,v ≡
1

π2
|z, v) (z, v| ,

∫
d2z

∫
d2v πz,v = 1q. (4.7)

Correspondingly, we may define a probability distribution in z and v. Assuming that the system

is in a pure state |ψ), this is simply

P (z, v) = (ψ|πz,v |ψ) =
1

π2
(ψ|z, v) (z, v|ψ) =

1

π2
|(z, v|ψ)|2 . (4.8)

This probability provides information not only about position z, as was the case in (2.34), but

also about a further degree of freedom, v. As stated, the two distributions are connected, in that

we could also ask for the probability to find the particle localised at point z, without detecting

any information regarding v. This is simply the sum of the probabilities (4.8) over all v:

P (z) =
1

π

∫
d2v P (z, v) = (ψ|

[
1

π

∫
d2v πz,v

]
|ψ) = (ψ|πz |ψ) , (4.9)

with πz as in (2.32).

To summarise, we have found states that allow a decomposition of the identity (2.31) on Hq
through the introduction of added degrees of freedom v which characterise the right sector of the

state in terms of a coherent state. As set out in Sections 3.1 and 3.2, these states are position

states. Since the relevant positivity criteria are met, we are able to construct a POVM in terms

of these states (as in Section 3.3), which can be used to ask local probabilistic questions. Of

course the price to pay for this local description is that it is unclear what the physical meaning

of the newly introduced degree of freedom v is. This matter will be addressed in the remainder

of this chapter.
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4.2 An analysis of the corresponding classical theory

As stated, the states |z, v) form an over-complete coherent state basis for the quantum Hilbert

space of the non-commutative system. Consequently we may derive a path integral action in the

standard way according to [20] (this calculation is done explicitly in Appendix C). This action

is generally given by

S =

∫ t′′

t′
dt (z, v| i~ d

dt
−H |z, v) , (4.10)

where we take the states |z, v) ≡ |z[t], v[t]) to be time-dependent. We consider here a non-

commutative Hamiltonian of the form H = P 2

2m + V (X,Y ). In order to compute this action

explicitly we thus require the diagonal matrix elements in the |z, v) basis of the time-derivative

operator and of the kinetic and potential terms of the Hamiltonian. Note that since |z, v) =

e−(zz̄+v̄z+vv̄/2)ezb
† |0〉 〈0| e(z̄+v̄)b, we have

(z, v| d
dt
|z, v) = (z, v| −(z ˙̄z + żz̄ + ˙̄vz + żv̄ + [v ˙̄v + v̇v̄]/2) + żB‡L + ( ˙̄z ˙̄v)BR |z, v)

= ˙̄zv − v̄ż +
1

2
( ˙̄vv − v̇v̄). (4.11)

The free part of the Hamiltonian is simply 1
2mPP

‡. Through (2.14) we obtain

(z, v|PP ‡ |z, v) = (z, v| −~2(2/θ)[BR −BL][B‡L −B
‡
R] |z, v)

=
2~2

θ
v̄v. (4.12)

Since this term represents the kinetic energy, we see that v has a clear connection to momentum

in this context (namely that it equals [up to constants] the expectation value thereof in the basis

(4.4)). Lastly, the potential may be written as a normal ordered function of BL and B‡L by

solving X and Y in (2.13), and thus its matrix element is simply

(z, v|V (X,Y ) |z, v) = (z, v|V (B‡L, BL) |z, v) = V (z̄, z), (4.13)

where it is important to note that this potential does not depend on v. Inserting (4.11), (4.12)

and (4.13) into (4.10), we obtain

S =

∫ t′′

t′
dt

[
i~
(

˙̄zv − v̄ż +
1

2
( ˙̄vv − v̇v̄)

)
− ~2

mθ
v̄v − V (z̄, z)

]
. (4.14)

In order to gain some physical intuition about this system, we proceed to show that this

action can be identified precisely with that of [3] in the case of a free Hamiltonian, i.e., when
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V = 0. This picture makes the notion of extent and structure very explicit, in that it entails two

particles of mass m and opposite charge ±q moving in a magnetic field ~B = Bẑ perpendicular

to the plane. The charges further interact through a harmonic interaction.13 If we assign z to

be the dimensionful co-ordinates of one particle and z + v the dimensionful co-ordinates of the

other (i.e., v is the relative co-ordinate), we observe that the Lagrangian of this system in the

symmetric gauge and in S.I. units is

L =
1

2
m ˙̄zż+

1

2
m ( ˙̄z + ˙̄v) (ż + v̇)+

iqB

4c
( ˙̄zz − z̄ż)− iqB

4c
[( ˙̄z + ˙̄v) (z + v)− (z̄ + v̄) (ż + v̇)]− 1

2
Kv̄v.

(4.15)

Here the first two terms are the kinetic energy terms, the third and fourth terms represent the

coupling to the magnetic field and the last term is the harmonic potential with spring constant

K. Introducing the magnetic length ` =
√

2~c
qB and the dimensionless co-ordinates z

` and v
` this

reduces to

L =
1

2
m`2 ˙̄zż +

1

2
m`2 ( ˙̄z + ˙̄v) (ż + v̇) + i~

[
( ˙̄zv − v̄ż) +

1

2
( ˙̄vv − v̄v̇)

]
− 1

2
K`2v̄v. (4.16)

In the limit of a strong magnetic field where ` → 0 the kinetic terms may be ignored. In this

case this Lagrangian reduces to that in (4.14), where we identify K = 2~2

m`2θ
. Given the physical

picture described here, it is clear that in this context v clearly represents the spatial extent of this

two-charge composite. Note that in the strong magnetic field limit the spring constant becomes

very large. The physical consequence of this is that internal mode excitations are suppressed,

and the composite behaves more like a stiff rod whose length is proportional to its (average)

momentum (see (4.12) and the subsequent observation).

Let us now return to (4.14) for the case where the potential is non-zero. As stated, the

potential may be written as a function of z and z̄ through appropriate normal ordering, and

is independent of v. One should note, however, that the normal ordering would generate θ-

dependent corrections, i.e., it is not simply the naive potential obtained by replacing the non-

commutative variables with commutative ones. In this sense it is different from the classical

potential of a point particle to which it reduces in the commutative limit. In [22] a non-local

form of the path integral action was found. This action is later cast into a manifestly local form

through the introduction of auxiliary fields. Comparing equation (13) of said article to equation

(4.14), it is immediately evident that the variable v plays exactly the same role as the auxiliary

fields — non-locality is remedied through the introduction of added degrees of freedom. The

properties of this action were already discussed there; in particular it was found that this is a

13See Figure 4.1 for a schematic.
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second class constrained system that yields, upon introduction of Dirac brackets, non-commuting

co-ordinates z and z̄ as one would expect. We shall point out in the next section that constraints

also arise on the quantum mechanical level.

Continuing, we note that through use of the Lagrangian

L =

[
i~
(

˙̄zv − v̄ż +
1

2
( ˙̄vv − v̇v̄)

)
− ~2

mθ
v̄v − V (z̄, z)

]
(4.17)

from (4.14) it is easy to obtain the equations of motion through the Euler-Lagrange equations

d
dt
∂L
∂q̇ −

∂L
∂q = 0 with q ∈ {z, z̄, v, v̄}. These simply read

i~ ˙̄v − ∂V

∂z
= 0,

−i~v̇ − ∂V

∂z̄
= 0,

i~ ( ˙̄z + ˙̄v)− ~2

mθ
v̄ = 0,

−i~ (ż + v̇)− ~2

mθ
v = 0. (4.18)

Solving for v and v̄ in the third and fourth lines above, inserting this into the first two equations

and finally reintroducing the dimensionful variable z → z√
2θ

, this can be cast into a more

recognisable form,

z̈ = − 2

m

∂V

∂z̄
−
√

2θ v̈,

¨̄z = − 2

m

∂V

∂z
−
√

2θ ¨̄v. (4.19)

(The factor of 2 in the first term is indeed correct since ∂z = 1
2 [∂x − i∂y]). We observe that, up

to leading order in θ, the position obeys the standard equations of motion. The additional terms

reflect the coupling to the variable v. This coupling is observed also on the quantum mechanical

level, as will be seen for instance in the case of the harmonic oscillator in Section 4.6.

The conserved energy is given in terms of the dimensionful variable z and dimensionless

variable v as

E =
~2

mθ
v̄v + V (z, z̄), (4.20)

where we computed the time derivative dE
dt explicitly and used (4.18). From this it is clear that

the momentum canonically conjugate to z is −i~v̄. This again reflects the direct relation between

v, which we associate with spatial extent, and momentum. We observe that, as reflected in (4.18),

the momentum conjugate to z is not simply mż as would be the case for a point particle. This
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in turn signals that the conserved energy is not just the sum of kinetic and potential energies of

a point particle. To illustrate this explicitly, we rewrite (4.20) as

E =
m

2
˙̄zż + V −mθ ˙̄vv̇ + i~ (v ˙̄v − v̇v̄) , (4.21)

where we again made use of (4.18). From (4.19) we see that the dimensionful z has a length

scale `z, determined by the potential, associated with it. Using this in the first two equations of

(4.18), we conclude that the dimensionless v ∼
√
θ
`z

, which implies the vanishing of the correction

terms in the commutative limit. It is, of course, natural that the particular dynamics of a

system would govern the positional length scales involved. This generic phenomenon is also

demonstrated explicitly on the quantum mechanical framework in Section 4.6 in the context of

the harmonic oscillator.

Lastly we note from (4.18) that for the free particle v and v̄ are simply constant in time, and

are directly related to the momentum. (The former observation follows from the first two lines

of (4.18), whereas the latter follows from the third and fourth lines). This again confirms the

picture found above, namely that for the free particle the deformation in v depends linearly on

the momentum, which was also the conclusion reached in [3]. In Section 4.5 we will investigate

the quantum mechanical free particle, also in lieu of the connection between momentum and

extent.

Clearly the arguments above support the notion that, on the classical level, v may be viewed

as describing the extent of a composite. This was demonstrated explicitly through introduction

of the the two coupled charges in a magnetic field, and subsequent analysis of corrections to the

standard equations of motion and conserved energy. We shall proceed by taking this view as a

point of departure for the physical interpretation of our non-commutative quantum system. It

will be demonstrated that said view is indeed also a natural one on the quantum level.

4.3 Constraints and differential operators on (z, v|ψ)

Due to its corresponding local probability description, the basis |z, v) is mathematically con-

venient for the representation of states |ψ) of a non-commutative quantum systems in terms of

overlaps (z, v|ψ). From (4.4) we see that the bra in H∗q dual to |z, v) is

(z, v| = |z + v〉 〈z| e
1
2

(v̄z−z̄v)

= e−[zz̄+z̄v+ 1
2
vv̄]e(z+v)b† |0〉 〈0| ez̄b. (4.22)
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Since all operators on Hq may be written as functions of the bosonic operators (2.13), we now

proceed to show that the action of these operators on a state |ψ) may be described in terms of

differential operators acting on the overlap (z, v|ψ). Using the notation for left- and right acting

operators set out in (2.16), we have

(z, v|B‡L |ψ) = e
1
2

(v̄z−z̄v) 〈z| b†ψ |z + v〉 = z̄ (z, v|ψ) ,

(z, v|BL |ψ) = e
1
2

(v̄z−z̄v) 〈z| bψ |z + v〉 = (
∂

∂z̄
+ z + v) (z, v|ψ) ,

(z, v|BR |ψ) = e
1
2

(v̄z−z̄v) 〈z|ψb |z + v〉 = (z + v) (z, v|ψ) , and

(z, v|B‡R |ψ) = e
1
2

(v̄z−z̄v) 〈z|ψb† |z + v〉 = (
∂

∂v
+ z̄ +

v̄

2
) (z, v|ψ)

= (
∂

∂z
+ z̄) (z, v|ψ) . (4.23)

Next we note from equation (4.22) that the functions (z, v|ψ) must obey the following set of

constraints, (
∂

∂v̄
+
v

2

)
(z, v|ψ) = 0, (4.24)(

∂

∂z
− ∂

∂v
− v̄

2

)
(z, v|ψ) = 0. (4.25)

Since these constraints are a consequence of the choice of basis, they must hold for all states ψ.

Consequently there is a restriction on which functions (z, v|ψ) are physical in this basis. We shall

refer to this subspace of functions as the physical subspace. As stated earlier, our intention is to

represent all operators that are functions of bosonic operators in terms of differential operators.

In this light, it should be noted not only that the constraints (4.24) and (4.25) commute with

each other, but also that the differential operators associated with the creation and annihilation

operators in (4.23) all commute with the constraints. Consequently the physical subspace of

functions is left invariant under the action of aforementioned differential operators, and thus also

under the action of the differential operator representation in this basis of any operator that is

a function of those in (4.23). This implies that we may implement the constraints strongly on

the physical subspace, and we shall do so in subsequent analyses. A further consequence of the

constraints is that the differential operator representation of a particular operator is not unique

on the physical subspace, since we may employ (4.24) and (4.25) to rewrite such a representation.

Indeed, we shall make use of this feature repeatedly in sections to follow. It should be noted,

however, that this procedure is only valid on the physical subspace, and must be implemented

with great care.
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As stated, (4.23) provides us with a useful “dictionary” to represent any operator that is a

function of the bosonic operators in terms of derivatives acting on (z, v|ψ). In the subsequent

sections we analyse the angular momentum operator and the Hamiltonians of the free particle

and the generalised harmonic oscillator by looking at their representations and eigenstates in the

basis (4.4).

4.4 Angular momentum

In [10] it was shown that the generator of rotations in this non-commutative quantum me-

chanical formalism is

L = XLPy − YLPx +
θ

2~
PP ‡. (4.26)

The first two terms are the familiar ~r × ~p part of the angular momentum operator. The second

term arises due to the non-commutativity of co-ordinates and also ensures that angular momen-

tum is a conserved quantity for the free particle, as required. Since our “recipe book” (4.23)

allows us to represent functions of the creation- and annihilation operators, the next step is to

rewrite (4.26) in terms of these operators. To do so, we note from (2.10) that

XL =
√

2θ (BL+B‡L), YL = −i
√

2θ (BL−B‡L), Px =
~
θ

(YL−YR), and Py =
~
θ

(XR−XL).

(4.27)

Inserting this into (4.26) we find that

L = ~
(
BRB

‡
R −B

‡
LBL

)
, (4.28)

where BRB
‡
R = (B‡B)R is the right number operator. (The order of operators is indeed correct

here, since for any two operators A and B we have that [AB]Rψ = ψAB = BRARψ). We

may now write the action of this angular momentum operator in the basis (4.4) as a differential

operator (denoted as L̂) by making use of the relevant associations from (4.23):

L̂ = ~
[
(z + v)

(
∂

∂v
+ z̄ +

v̄

2

)
− z̄

(
∂

∂z̄
+ z + v

)]
= ~

[
v
∂

∂v
+ z

∂

∂v
+
|v|2

2
+
v̄z

2
− z̄ ∂

∂z̄

]
. (4.29)

Although this representation is unique on the full space, it can be cast in different forms on the

physical subspace using the constraints (4.24), (4.25). To illustrate this, we note that (4.29) may
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be rewritten as

L̂ = ~
[
z
∂

∂z
− z̄ ∂

∂z̄
+ v

∂

∂v
− v̄ ∂

∂v̄

]
.

= L̂z + L̂v (4.30)

on the physical subspace. This particular form of L̂ is manifestly Hermitian but, as stated, it

may only be applied to elements of the physical subspace and is not valid on the unconstrained

function space. Furthermore, if we view L̂z = ~
(
z ∂
∂z − z̄

∂
∂z̄

)
and L̂v = ~

(
v ∂
∂v − v̄

∂
∂v̄

)
as an

orbital angular momentum and an intrinsic angular momentum respectively, we note that there

are two contributions to the total angular momentum. This point of view is not unreasonable if

we interpret z and v as position and local spatial variations of the state, respectively. Taking this

view as a point of departure, we thus see the explicit split of total angular momentum into orbital

and intrinsic angular momentum. This interpretation is clearly in line with the notion of an

extended or structured object. One should, however, be cautious in applying this interpretation,

since (4.30) acts only on the constrained physical subspace. It would be wrong to think that

L̂z and L̂v are independent operators, i.e. that one could define states on the physical subspace

that are simultaneous eigenstates of L̂z and L̂v. In fact, in lieu of the constraints (4.24), (4.25) it

becomes clear that these two operators do not commute on the physical subspace. Consequently

it is not surprising that such physical simultaneous eigenstates of L̂z and L̂v do not exist. To shed

some light on this matter, let us consider eigenstates of the total angular momentum operator.

From the form (4.28) of the angular momentum, it is clear that the states

|l) ≡
∞∑
n=0

αn |n〉 〈n+ l| (4.31)

are eigenstates of L, since

L |l) = ~
(
BRB

‡
R −B

‡
LBL

)
|l)

= ~
∞∑
n=0

αn

(
|n〉 〈n+ l| b†b− b†b |n〉 〈n+ l|

)
= ~l |l) . (4.32)
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To represent such a state in the basis (4.4) we require its overlap with the bra (4.22), namely

(z, v|l) = e
1
2

(v̄z−z̄v)
∞∑
n=0

αntrc ([|z + v〉 〈z|] |n〉 〈n+ l|)

= e
1
2

(v̄z−z̄v)
∞∑
n=0

αn 〈z|n〉 〈n+ l|z + v〉

= e
1
2

(v̄z−z̄v)e−(|z|2+|z+v|2)/2
∞∑
n=0

αn
z̄n(z + v)n

n!

(z + v)l√
(n+ l)!/n!

. (4.33)

By construction this overlap is an element of the physical subspace, and thus it is an eigenfunction

of both total angular momentum differential operators (4.29) and (4.30). Note, however, that the

variables z and v do not decouple in this “wave function”. We see here explicitly that although

(4.33) is an eigenstate of total angular momentum, it is not a simultaneous eigenstate of L̂z

and L̂v. As stated, due to the constraints it is impossible to find such a state on the physical

subspace of Hq — the requirement of physicality prevents the decoupling of z and v as is seen in

(4.33). A physical consequence hereof is that the quantities that may be interpreted as orbital

and intrinsic angular momentum, respectively, are not independent. If we consider the clear

connection between momentum (motion of the classical composite) and shape deformation seen in

Section 4.2, this result is reasonable also from a physical point of view. The implication is simply

that orbital motion affects shape deformation and consequently intrinsic angular momentum, and

vice versa. We infer that z and v cannot be interpreted as degrees of freedom of a rigid body.

This too is in line with the results of [3]. For a schematic of this scenario, see Figure 4.1

4.5 Free particle

The Hamiltonian of the free particle is simply

Hfree =
P ‡P

2m
= − ~2

mθ
[B‡L −B

‡
R] [BR −BL] , (4.34)

where we have used definition (2.14) of the complex momenta. Again we write the action of

(4.34) on a state |ψ) as a differential operator in the basis (4.4) according to (4.23),

(z, v|Hfree |ψ) = − ~2

mθ

[
z̄ − (

∂

∂z
+ z̄)

] [
(z + v)− (

∂

∂z̄
+ z + v)

]
(z, v|ψ)

= − ~2

mθ

∂2

∂z∂z̄
(z, v|ψ) ≡ Ĥfree (z, v|ψ) . (4.35)
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Figure 4.1: A schematic showing the two-charge (harmonically coupled) composite,
whose orbital motion affects its shape deformation and vice versa.

Note that the operator Ĥfree is independent of v, which implies a complete decoupling between

the positional degrees of freedom (z) and those that pertain to additional structure (v) for the

free particle. This is not surprising since we know that non-commutativity has no effect on a

free particle, as was found in [10].

Next we consider the eigenstates of momentum as given in [10],

|ψk) =

√
θ

2π~2
e
i
~

√
θ
2

(k̄b+kb†)
=

√
θ

2π~2
e−

θ
4~2 |k|2e

i
~

√
θ
2
kb†
e
i
~

√
θ
2
k̄b
. (4.36)

The normalisation prefactor is chosen thus so that these states form a complete set of basis states

on Hq. This will be proven and used at a later stage. These states are analogues of plane waves

from standard quantum mechanics (as is seen from definition (2.3)), and are clearly eigenstates

of the complex momenta (2.14),

P |ψk) = i~
√

2

θ

√
θ

2π~2
e−

θ
4~2 |k|2

[
e
i
~

√
θ
2
kb†
e
i
~

√
θ
2
k̄b
, b

]
= i~

√
2

θ
k |ψk) ,

P ‡ |ψk) = i~
√

2

θ

√
θ

2π~2
e−

θ
4~2 |k|2

[
b†, e

i
~

√
θ
2
kb†
e
i
~

√
θ
2
k̄b
]

= i~
√

2

θ
k̄ |ψk) , (4.37)
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and consequently also eigenstates of the free particle Hamiltonian (4.34). The overlap of such a

momentum state with a basis element (4.4) is

(z, v|ψk) =

√
θ

2π~2
e−

θ
4~2 |k|2e

1
2

(v̄z−z̄v) 〈z| e
i
~

√
θ
2
kb†
e
i
~

√
θ
2
k̄b |z + v〉

=

√
θ

2π~2
e−

θ
4~2 |k|2e

i
~

√
θ
2

[kz̄+k̄(z+v)]
e−

1
2
|v|2 . (4.38)

These overlaps are, by construction, eigenstates of the differential operator representation (4.35)

of the free particle Hamiltonian (4.34). As expected, the z and v degrees of freedom decouple in

this wave function. We can find the probability distribution in z and v for the state |ψk) using

the POVM (4.7),

P (z, v) = (ψk|πz,v |ψk)

= (ψk|z, v) (z, v|ψk)

=
θ

2π~2
e−

θ
2~2 |k|2e

i
~

√
θ
2

[k̄v−v̄k]
e−|v|

2

=
θ

2π~2
e
−| i~

√
θ
2
k−v|2

. (4.39)

The first evident feature of distribution (4.39) is that all dependence on z has disappeared. This

is, of course, to be expected and simply implies that the dynamics of the average position, or

“guiding center” is that of a free particle, as confirmed by (4.35). A measurement of position,

which does not enquire about any other possible structure, will therefore yield equal probabilities

everywhere. The Gaussian k-dependence implies a regularization of high momenta. This is

simply a consequence of the existence of a short length scale
√
θ , since a minimal length scale

implies (through a Fourier transformation) that high momenta are restricted — a result that was

also found for the non-commutative spherical well in [19]. Next we note that, for a fixed value of

k, k̄, the term e
i
~

√
θ
2

[k̄v−v̄k]
represents a momentum-dependent stretching of the distribution in v.

This stretching is perpendicular to the direction of motion, which has the physical implication

that a measurement of the distribution around the center z through the implementation of

the POVM (4.7) will yield an asymmetrical momentum-dependent distribution, very much as

was found in [3]. The Gaussian v-dependence shows that the spatial distribution around z is

confined on the length scale set by θ. Note that this is a generic feature, which does not depend

on dynamics as the Gaussian factor in the wave-function is a consequence of the constraint (4.24).

We thus expect the distribution in v always to be confined to a length scale set by θ, regardless of

the particular dynamics, while said dynamics will set the length scale associated with the average
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position z. We shall indeed see this explicitly for the harmonic oscillator discussed below. In the

case of the free particle there is of course no length associated with the average position z. One

could also view the Gaussian dependence of the wave function on v as arising from harmonic

dynamics for v with oscillator length
√

2θ , which, for small values of θ, corresponds to a very stiff

spring constants. This is, of course, precisely the picture that emerged from the corresponding

classical theory discussed in Section 4.2.

4.6 Harmonic oscillator

The harmonic oscillator Hamiltonian discussed in [10] was

H =
1

2m
PP ‡ +

1

2
mω2(X2

L + Y 2
L ), (4.40)

where we note that the harmonic interaction may be rewritten in terms of the creation- and

annihilation operators (2.13) through B‡LBL = 1
2θ (X2

L + Y 2
L ) + 1

2 . Note that we shall omit the

factor of 1
2 in the Hamiltonian below, since it constitutes a constant contribution to the energy.

We proceed by generalising this Hamiltonian slightly through the addition of a similar harmonic

term with right action, which yields the Hamiltonian that we shall consider for the rest of this

analysis:

Hh.o. =
1

2m
PP ‡ +mθω2

L(B‡LBL) +mθω2
R(BRB

‡
R)

= αB‡LBL + βB‡RBR − γ(B‡LBR +B‡RBL)−mθω2
R, (4.41)

where we identify

α =
~2

mθ
+mθω2

L, β =
~2

mθ
+mθω2

R, γ =
~2

mθ
. (4.42)

Returning to (4.27), we note that the right action term may also be rewritten in terms of momenta

and left co-ordinates. Consequently one may also interpret the generalised Hamiltonian (4.41)

as a gauged harmonic oscillator Hamiltonian with an added magnetic field. Next we wish to

diagonalise this Hamiltonian, i.e., find its eigenstates. The addition of the right action term

implies that we cannot follow the diagonalisation procedure discussed in [10]. We digress briefly

to describe the diagonalisation of (4.41) through the construction of a Bogoliubov transformation.
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This transformation introduces new ladder operators of the form


A1

A‡1

A2

A‡2

 =


cosh (φ) 0 sinh (φ) 0

0 cosh (φ) 0 sinh (φ)

sinh (φ) 0 cosh (φ) 0

0 sinh (φ) 0 cosh (φ)




BL

B‡L

BR

B‡R

 , (4.43)

and preserves the commutation relations of BL, B‡L, BR and B‡R, i.e.,

[BL, B
‡
L] = 1; [BR, B

‡
R] = −1; [BL, BR] = [BL, B

‡
R] = 0

⇓

[A1, A
‡
1] = 1; [A2, A

‡
2] = −1; [A1, A2] = [A1, A

‡
2] = 0. (4.44)

Insisting on a diagonal form of (4.41) in terms of these new operators fixes the rotation parameter

φ on

φ = −arctanh (Γ) , (4.45)

with

Γ = 1 +
mθ

2~2

[
mθ(ω2

L + ω2
R)−

√
(ω2
L + ω2

R)[4~2 +m2θ2(ω2
L + ω2

R)]

]
(4.46)

Under (4.45), the inversion of (4.43) and subsequent substitution into (4.41) yield the diagonalised

Hamiltonian

Hh.o. = K1A
‡
1A1 +K2A2A

‡
2 + (K2 −mθω2

R) (4.47)

where we denoted

K1 =
1

2

[
mθω2

L −mθω2
R +

√
(ω2
L + ω2

R)[4~2 +m2θ2(ω2
L + ω2

R)]

]
,

K2 =
1

2

[
mθω2

R −mθω2
L +

√
(ω2
L + ω2

R)[4~2 +m2θ2(ω2
L + ω2

R)]

]
. (4.48)

It is now a simple matter to see that the spectrum of (4.41) is

En1,n2 = n1K1 + (n2 + 1)K2 −mθω2
R. (4.49)
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Next we construct the vacuum solution, |0). It is required that this state is annihilated by the

relevant operators, namely

A1 |0) = 0 ⇒ [cosh (φ)BL + sinh (φ)BR] |0) = 0, and

A‡2 |0) = 0 ⇒ [sinh (φ)B‡L + cosh (φ)B‡R] |0) = 0. (4.50)

Since we know that BL |0〉 〈0| = B‡R |0〉 〈0| = 0, let us postulate that |0) = N eξB
‡
LBR |0〉 〈0|, in

which case we find

A1 |0) = N
(

cosh (φ){[BL, eξB
‡
LBR ] + eξB

‡
LBRBL}+ sinh (φ)BRe

ξB‡LBR
)
|0〉 〈0|

= (cosh (φ)ξBR + sinh (φ)BR) |0) and

A‡2 |0) = N
(

sinh (φ)B‡Le
ξB‡LBR + cosh (φ){[B‡R, e

ξB‡LBR ] + eξB
‡
LBRB‡R}

)
|0〉 〈0|

=
(

sinh (φ)B‡L + cosh (φ)ξB‡L

)
|0) (4.51)

Clearly (4.50) is satisfied if we choose ξ = − sinhφ
coshφ = − tanhφ, i.e. when |0) = N eΓB‡LBR |0〉 〈0|

(see (4.45)). For the normalisation of the ground state we note that

(0|0) = N 2 trc

([
eΓB‡LBR |0〉 〈0|

]‡
eΓB‡LBR |0〉 〈0|

)
= N 2

∞∑
n=0

∞∑
m=0

Γn+mtrc (|n〉 〈n|m〉 〈m|)

= N 2
∞∑
n=0

Γ2n

=
N 2

1− Γ2
, (4.52)

where the condition |Γ| < 1 is automatically satisfied due to (4.45). Thus the correctly normalized

ground state is

|ψ0) =
√

1− Γ2 eΓB‡LBR |0〉 〈0| . (4.53)

Finally, excited states can be constructed by applying the appropriate ladder operators from

(4.43):

|n1, n2)h.o. = (A‡1)n1(A2)n2 |ψ0) . (4.54)

In the limit ωR → 0 the above results reduce to those of [10]. Consider, for instance, the

probability distribution in position for the ground state (4.53). To do this we note that for
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|z) = |z〉 〈z|,

(z|ψ0) =
√

1− Γ2

∞∑
n=0

Γne−|z|
2 |z|2n

n!

=
√

1− Γ2 e|z|
2(Γ−1). (4.55)

Thus

P (z) = (ψ0|z) ? (z|ψ0)

= (1− Γ2)
∞∑
n=0

(zz̄)n(Γ− 1)2n

n!
e2|z|2(Γ−1)

= (1− Γ2)e−(1−Γ2)|z|2 . (4.56)

In the limit ωR → 0 this agrees with the distribution found in [10].

Next we use (4.23) to find the representation of the harmonic oscillator Hamiltonian (4.41)

in the basis (4.4):

(z, v|Hh.o. |ψ) = (z, v| 1

2m
PP ‡ +mθω2

L(B‡LBL) +mθω2
R(BRB

‡
R) |ψ)

=

[
− ~2

mθ

∂2

∂z∂z̄
+mθω2

Lz̄(
∂

∂z̄
+ z + v) +mθω2

R(z + v)(
∂

∂v
+ z̄ +

v̄

2
)

]
(z, v|ψ)

:= Ĥh.o. (z, v|ψ) . (4.57)

We note that the operator Ĥh.o. is only Hermitian on the physical function space restricted by

the constraints (4.24) and (4.25), and that its particular form in (4.57) is again not unique on this

space due to the constraints. Furthermore, it is easy to check that the total angular momentum

operator (4.30) commutes with the above Hamiltonian as desired.

As mentioned above, the constraints (4.24), (4.25) allow the rewriting of (4.57) in many

equivalent forms on the physical subspace. One particular form, namely the manifestly Hermi-

tian form, reflects the physics more explicitly. Through an appropriate use of constraints the
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Hamiltonian (4.57) can indeed be rewritten as

Ĥh.o. = − ~2

mθ

∂2

∂z∂z̄
+mθω2

L

[
|z|2 + z̄(

∂

∂z̄
+
v

2
− ∂

∂v̄
) + z(− ∂

∂z
+
v̄

2
+

∂

∂v
)

]
+

mθω2
R

[
(z +

v

2
− ∂

∂v̄
)(z̄ +

∂

∂v
+
v̄

2
)

]
= − ~2

mθ

∂2

∂z∂z̄
+mθ(ω2

L + ω2
R)|z|2 −mθω2

L

(
z
∂

∂z
− z̄ ∂

∂z̄

)
+mθω2

R

[
(
∂

∂v
+
v̄

2
)(− ∂

∂v̄
+
v

2
)− 1

]
+mθ(ω2

L + ω2
R)

(
z̄(− ∂

∂v̄
+
v

2
) + z(

∂

∂v
+
v̄

2
)

)
.

(4.58)

The different contributions in this Hamiltonian have clear physical meanings. The first two terms

represent a normal harmonic oscillator whose frequency is shifted by the right frequency, i.e., if

we impose ωR → 0 this is simply the standard harmonic oscillator Hamiltonian. The third term

reflects the standard type of “Zeeman term” which has a clear angular momentum dependence.

It is this term that induces the well-known time reversal symmetry breaking, since “forward”

and “backward” angular momentum states (of which one is obtained by time-reversing the other)

do not have equal energy. The fourth term represents a “Landau” Hamiltonian for the variable

v with energy scale set by ωR. This again supports the notions that the right sector displays

harmonic dynamics and that the right action term in the Hamiltonian can also be rewritten in

terms of a standard gauged magnetic field term, i.e., in terms of left acting co-ordinates and

momenta. The last term represents the expected coupling between the variable v, describing the

local spatial distribution of the state, and the average position z, implying that the local spatial

distribution will be position-dependent. Again we note that due to the constraint (4.24) the wave

function (z, v|ψ) must always contain a Gaussian e−
|v|2

2 , which implies that this dimensionless

parameter is of order v ∼ 1, i.e., the dimensionful variable v ∼
√
θ . Introducing the dimensionful

variable z′ =
√

2θ z one immediately sees from this that the third through last terms are all higher

order in θ and will vanish in the commutative limit to yield the standard commutative harmonic

oscillator. To recap, we observe that the form (4.57) of the Hamiltonian which is unique on the

entire space, is not Hermitian. Since the physical states are those that are annihilated by the

constraints, we could thus find the solutions to this non-Hermitian Hamiltonian on the whole

space, and select only the physical ones (since the constraints and the Hamiltonian commute).

This simply amounts to selecting the “lowest Landau level” states of the right sector. The

interaction term could then, for instance, be solved perturbatively.
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Lastly, let us look at the representation of the ground state (4.53) in the basis (4.4):

(z, v|ψ0) =
√

1− Γ2 e
1
2

(z̄v−v̄z)trc

(
|z + v〉 〈z|

[
eΓB‡LBR |0〉 〈0|

])
=

√
1− Γ2 e

1
2

(z̄v−v̄z)
∞∑
n

Γn 〈z|n〉 〈n|z + v〉

=
√

1− Γ2 e
1
2

(z̄v−v̄z)eΓz̄(z+v)e−
1
2

(|z|2+|z+v|2) (4.59)

This implies that the probability distribution in z and v for the ground state is

P (z, v) = (ψ0|πz,v |ψ0)

= (ψ0|z, v) (z, v|ψ0)

= (1− Γ2)eΓ(2|z|2+z̄v+v̄z))e−(2|z|2+|v|2+z̄v+v̄z)

= (1− Γ2) e−|v|
2︸ ︷︷ ︸ e−2(1−Γ)|z|2︸ ︷︷ ︸ e−(1−Γ)(z̄v+v̄z)︸ ︷︷ ︸ (4.60)

(i) (ii) (iii)

Let us first investigate this distribution in the standard non-commutative harmonic oscillator

limit, i.e. where ωR = 0. For this purpose we define two length scales,

`θ =
√

2θ

`ωL =

√
2~
mωL

, (4.61)

where `ωL is just the standard harmonic oscillator length scale. Noting that both z and v are

dimensionless variables, i.e. z = 1√
2θ

(x + iy) (and similarly for v), we see that the Gaussian

(i) in (4.60) decays on a length scale of `θ. If we associate v with spatial extent, this is to be

expected as the scale for the local spatial extent must be set by the non-commutative parameter.

As already remarked this behaviour is quite generic and a consequence of the constraints on the

wave function rather than the dynamics. This is also important to ensure that the variable v

couples weakly to the variable z for small θ and decouples in the commutative limit.

From (4.45) it is clear that

Γ|ωR=0 = 1 +
mθ

2~2

[
mθω2

L −
√
ω2
L[4~2 +m2θ2ω2

L]

]
, (4.62)

and thus

1− Γ|ωR=0 = −
(
`θ
`ωL

)2
2

(
`θ
`ωL

)2

− 2

√
1 +

(
`θ
`ωL

)4
 . (4.63)
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Since v = 1
`θ

(vx+ ivy), it is clear that under these assumptions the Gaussian (ii) in (4.60) decays

on a length scale of `ωL , with a further dependence on the ratio
(
`θ
`ωL

)
. Comparing this to the

case of the commutative harmonic oscillator, where the ground state wave function decays on a

length scale of `ω =
√

2~
mω , this also makes sense: the variable z is associated with the position

of a particle moving in a harmonic potential with strength set by ωL. Finally, we observe that

term (iii) in (4.60) represents the expected position dependent deformation of the distribution

P (z, v). Note that when ωL = ωR = 0 this term vanishes and, as was found for the free particle,

there is a decoupling.

In conclusion, the representation of the ground state (4.53) for the case ωR = 0 in the basis

(4.4) shows explicitly that there are two length scales involved in the problem: the fundamental

harmonic oscillator length scale as well as the length scale set by the non-commutative parameter

θ. As discussed in Section 4.2, it is of course generic that the particular dynamics set the

positional length scale of a problem. In the case where ωR 6= 0, the decay of the Gaussian term

(iii) in (4.60) would be governed by two length scales: `ωL and `ωR .



CHAPTER 5

THE BASIS |z, n) ≡ T (z) |0〉 〈n|

5.1 A basis with a discrete right sector label — interpretation and probability

distribution

Of course the particular degree of freedom introduced to decompose the star product need

not be a continuous state label. We could just as well choose a discrete basis to label the right

sector and still have a consistent local description for position measurements. To do this, let us

revisit the form (4.28) of the total angular momentum operator and its most general eigenstates

(4.31). It is clear that the state

|m,n) ≡ |m〉 〈n| , (5.1)

with |n〉 ∈ Hc as in (2.5), is also an eigenstate of angular momentum,

L |m,n) = ~(n−m) |m,n) . (5.2)

We further introduce the left radius-squared operator,

R2
L ≡ X2

L + Y 2
L = θ(2B‡LBL + 1), (5.3)

and note that the states (5.1) are simultaneously eigenstates of this operator and of L (clearly

R2
L and L commute),

R2
L |m,n) = θ(2n+ 1) |m,n) ∀ n. (5.4)

In this light it is clear that the “minimal radius-squared” state of the form (5.1) is that which

has a zero state label in the left sector (m = 0) and is consequently the eigenstate of R2
L with

the smallest eigenvalue,

|0, n) ≡ |0〉 〈n| , R2
L |0, n) = θ |0, n) ∀ n. (5.5)

One should take care not to interpret this as a statement about the physical size / distribution

of the state |0, n). We associate the left sector with position in our description, and consequently

one should read the above equation as stating that such a state is localised on the circumference

a disk of area πθ about the origin (since the radius of such a disk is
√
θ ). The fact that the

minimal area is not zero is simply a manifestation of the quantisation of space induced by the

non-commutativity of co-ordinates. The states (5.5) have the further property that their right

44
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sector, characterised by n, simply labels their angular momentum,

L |0, n) = ~n |0, n) . (5.6)

We now have a clear physical picture for these states. As was previously done for the states

|0〉 〈v| in (4.4), we now define translations of the states (5.5),

|z, n) ≡ T (z) |0〉 〈n|

= |z〉 〈n| ez̄b−zb† , (5.7)

so that

BL |z, n) = z |z, n) . (5.8)

We may thus interpret z as the positional state label, i.e., such a state is then a position state

in the sense of Section 3.2. Since the bosonic states allow a resolution of the identity on Hc,

∞∑
n=0

|n〉 〈n| = 1c, (5.9)

it is clear from (3.10) and (3.11) that we may also resolve the identity on the quantum Hilbert

space in terms of the states (5.7),

1

π

∫
d2z

∞∑
n=0

|z, n) (z, n| = 1q, (5.10)

i.e., we have found another decomposition of the star product in (2.31),

∞∑
n=0

|z, n) (z, n| = |z) ? (z| . (5.11)

As regards the requirement of positivity, it is clear that

(φ|z, n) (z, n|φ) = trc

(
φ‡ |z〉 〈n| ez̄b−zb†

)
trc

(
[|z〉 〈n| ez̄b−zb† ]‡φ

)
= 〈n| ez̄b−zb†φ‡ |z〉 〈z|φezb†−z̄b |n〉

= | 〈n| ez̄b−zb†φ‡ |z〉 |2 ≥ 0 ∀ φ. (5.12)
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Consequently we may again introduce a POVM corresponding to the states (5.7)

πz,n ≡
1

π
|z, n) (z, n| ,

∫
d2z

∞∑
n=0

πz,n = 1q, (5.13)

in terms of which we may define another local probability distribution. Assuming the system is

in a pure state |ψ), this distribution in z and n is simply

P (z, n) = (ψ|πz,n |ψ) =
1

π
(ψ|z, n) (z, n|ψ) =

1

π
|(z, n|ψ)|2 . (5.14)

Returning to the physical interpretation of the new state label n, we note that the states (5.7)

are eigenstates of the translated left radius-squared operator,

T (z)R2
L T
‡(z) |z, n) = θ |z, n) . (5.15)

This statement also applies to the translated angular momentum operator,

T (z)LT ‡(z) |z, n) = ~n |z, n) . (5.16)

The reasoning is as previously: we have translated the eigenstates |0〉 〈n| of L and R2
L from the

origin to the point z, and thus we must also translate the operators themselves to satisfy the

eigenvalue equation. Consequently the n in |z, n) refers to the angular momentum about the

point z. At this level already we note that the notion of some “additional structure” is clearly

present: if an object is localised at the point z, and it has an angular momentum about this

point, then by necessity the object must have some sort of non-trivial structure (i.e., it cannot

be a point particle).

5.2 Relating the states |z, v) and |z, n)

Previously we considered translations of the form

|z, v) = T (z) |0〉 〈v| . (5.17)

Clearly this state is simply a coherent state in the angular momentum sector (labeled by v), that

is

|z, v) = e−|v|
2/2

∞∑
n=0

v̄n√
n!
|z, n) . (5.18)
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It is, of course, possible to perform the inverse basis transformation as well:

|z, n) =
1

π

∫
d2v e−|v|

2/2 vn√
n!
|z, v) . (5.19)

At this point it should be noted that the probability distributions (5.14) and (4.8) for a

particular system are related. To see this we define a generating functional

G(λ) =
1

π
(ψ|z, v) eλ

←
∂v̄
→
∂v (z, v|ψ) . (5.20)

Next we note that P (z, v) = 1
π | (z, v|ψ) |2 = 1

π | 〈z|ψe
zb†−z̄b |v〉 |2 and P (z, n) = 1

π | 〈z|ψe
zb†−z̄b |n〉 |2,

which implies that

P (z, v) = G(λ)|λ=0 and P (z, n) =
∂nλ
n!
G(λ)

∣∣∣∣
λ=0; v=v̄=0

. (5.21)

Stated differently, we may obtain the distribution (5.14) from the distribution (4.8) through

P (z, n) =
∂nv ∂

n
v̄

n!
P (z, v)

∣∣∣∣
v=v̄=0

. (5.22)

Note that although we may transform from the state |z, n) to the state |z, v) (and thus also from

the probability amplitude (z, n|ψ) to (z, v|ψ)), it is not possible to transform from the distribu-

tion P (z, n) to the distribution P (z, v) in general.14 This is due to the fact that the right sector

of basis elements |z, v) is specified by a complex variable, and the coherent states |v〉 form an

over-complete basis on Hc. The right sector of basis states |z, n), in contrast, is characterised by

bosonic states |n〉 which simply form a complete (orthonormal) basis for Hc. This also explains

why constraints arise for the |z, v) basis, but not in the |z, n) basis.

To get a further idea of the link between the states |z, v) (4.4) and |z, n) (5.7), let us consider

again that the state |z, n) represents an object with angular momentum ~n about the point z.

As stated earlier and as is clear from the basis transformation (5.18), the state |z, v) is simply a

weighted sum of such angular momentum states. Compare this to standard quantum mechanics:

there an angular momentum state is of the form eimφ. If we sum over all values of m for such

a state, we obtain a precise localisation in the angle, φ (in terms of a Dirac delta function). To

see the analogy with the states discussed here, it is again useful to refer back to the picture of

the two-charge composite, where z refers to the co-ordinate of one charge and v to the relative

14 The reasoning here is that although (ψ|z, v) = e−|v|
2/2 ∑∞

n=0 v̄
n (ψ|z, n) through (5.18), we have in general

that |(ψ|z, v)|2 6= e−|v|
2 ∑∞

n=0 |v̄
n (ψ|z, n)|2.
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co-ordinate between the charges. In this context v (which is the label of the coherent state

in n, i.e., of a weighted summation of angular momentum states – see (5.18)) determines the

orientation, i.e., also an angular localisation of the composite.

Let us further consider the expectation value of angular momentum in the basis (4.4),

(z, v|L |z, v) = ~
(
|z + v|2 − |z|2

)
. (5.23)

It is clear that if v = 0, the average angular momentum of such a state is zero, which implies that

for this choice the “orbital” and “intrinsic” angular momenta cancel each other out on average.

It is also clear that for the untranslated state |0, v) = |0〉 〈v|, we have

〈L〉|0,v) ≡ (0, v|L |0, v) = ~|v|2 with ∆L =
√
〈L2〉|0,v) − 〈L〉2|0,v) = ~|v|. (5.24)

Again considering the dual picture of two harmonically interacting charges in a magnetic field

set out in Section 4.2, we see that the extent of the composite is directly proportional to the

average angular momentum about its point of localisation — this is, of course, logical, since

higher angular momentum about one of the charges (i.e., about the co-ordinate z = 0) would

cause a stretching of the spring between them (i.e., an increase in the length of v). Note that v

is dimensionless here, thus the relative fluctuations ∆L/〈L〉 decrease for higher average angular

momenta.

5.3 Average energy

Consider now that we may write the states (5.7) as15

|z, n) =
1√
n!
|z〉 〈z| (b− z)n

=
1√
n!

(
∂

∂z̄

)n
|z)

=
1√
n!

(
1

i~

√
θ

2
P

)n
|z) , (5.25)

15 The second line of this equation allows for a very simple proof of (2.31) given (5.10).
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where we made use of definition (2.24) of the states |z). This allows for an easy calculation of

the expectation value of the free particle energy in the |z, n)-basis, namely

〈Hfree〉|z,n) = (z, n| P
‡P

2m
|z, n)

=
1

2m

[
−
(

1

i~

)2 θ

2

]n−(n+1)
(n+ 1)!

n!
(z, n+ 1|z, n+ 1)

=
~2

mθ
(n+ 1). (5.26)

Further it is straight forward to verify that

〈(Hfree)
m〉|z,n) =

(
~2

mθ

)m
(n+m)!

n!
. (5.27)

Consequently the fluctuations pertaining to (5.26) are simply

∆Hfree =
√
〈(Hfree)2〉 − 〈Hfree〉2

=
~2

mθ

√
n+ 1 , (5.28)

which in turn implies that the relative fluctuations ∆Hfree/〈Hfree〉 ∼ 1/
√
n for large n, and

thus decrease for large average energies. As expected, (5.26) is independent of z since the free

particle Hamiltonian is translationally invariant. In this sense there is a degeneracy in that the

expected energy would be the same for all states |z, n) for a particular n, independent of the

position z. One may view this in analogy to the quantum Hall system, where it costs no energy

to translate the particle in the plane. Furthermore, in the quantum Hall system, the particle may

be better localised by exciting higher Landau levels (see discussion in [7]). Better localisation,

in turn, requires high momenta. Comparing this to the expression above, we note that n may

be viewed as being analogous to a label of Landau levels. To make this explicit, let us relate the

spectrum of the Landau problem, En = ~ωc(n + 1/2) with ωc = |e|B
m , to (5.26). Equating the

coefficients of n yields

θ =
~
|e|B

, (5.29)

which again demonstrates that the non-commutative parameter scales as the square of the mag-

netic length ` ≡
√
~/|e|B . If we were to add a potential to the Hamiltonian, i.e.,

H = Hfree + V, (5.30)
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we note that the expectation value of the energy would become

〈H〉|z,n) =
~2

mθ
(n+ 1) + 〈z|V |z〉 , (5.31)

since the potential is a function of the co-ordinates and is thus insensitive to the right sector.

This implies that the potential would lift the aforementioned degeneracy brought about by

translational invariance. Assuming that θ is small, the energy scales involved in the external

potential would be much smaller than those set by ~2/mθ.

We conclude that, on average, it takes large amounts of energy (due to the energy scale set

by ~/mθ) to excite higher values of n for a free particle. This behaviour is analogous to that of

a composite with great rotational inertia.

5.4 Some probability distributions

In this section we shall discuss differences between position measurements which probe the

right sector (in terms of a local position description) and those that are insensitive to right sector

degrees of freedom (in terms of the non-local position description).

5.4.1 Pure position measurements in terms of the non-local POVM (2.32)

Suppose we have a system prepared in a minimal uncertainty position state (in the sense

of [10]) of the form |ψ) = |w) = |w〉 〈w| (i.e., a state which is a translation of the state |0〉 〈0|

where we do not specify the right sector). The probability distribution of position in terms of

the non-local formalism set out in Chapter 2 is simply

P (z) = (w|πz |w)

=
1

π
(w|z) ? (z|w)

=
1

π
e−|z−w|

2
. (5.32)

As expected (due to the over-completeness of the states (2.24)) we obtain a Gaussian decay (with

the length scale set by θ) for the probability of finding the system in another minimal uncertainty

state |z).16

It would be natural to ask what would happen if we do in fact specify the right sector of

the state of the system, but perform the same measurement. To this end, suppose now that we

prepare the system in the state |ψ) = |w, n) = T (w) |0〉 〈n|. Again the probability of measuring

16 Upon restoring the correct dimensionality in the exponent in (5.32) we see that this distribution becomes a
Dirac delta function in the commutative limit, as expected.
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position z is given in terms of the POVM (2.32),

P (z) = (w, n|πz |w, n) =
1

π
(w, n|z) ? (z|w, n) . (5.33)

Now

(z|w, n) = trc
[
{T (z) |0〉 〈0|}† {T (w) |0〉 〈n|}

]
= trc

[
|0〉 〈0| {T (w − z) |0〉 〈n|}

]
= 〈0|

{
T (w − z) |0〉 〈n|

}
|0〉

= 〈0|w − z〉 〈n|z − w〉

= e−|z−w|
2 (z − w)n√

n!
, (5.34)

where we made use of the properties (3.6) and (3.7) of the translation operator. Consequently

(w, n|z) = e−|z−w|
2 (z̄ − w̄)n√

n!
, (5.35)

which implies that

P (z) =
1

π

{
e−|z−w|

2 (z̄ − w̄)n√
n!

}
e
←
∂z̄
→
∂z

{
e−|z−w|

2 (z − w)n√
n!

}
=

1

π

1

n!
∂nα∂

n
β

∞∑
m=0

1

m!

{
e−(z−w−α)(z̄−w̄)(z − w − α)m

}{
e−(z−w)(z̄−w̄−β)(z̄ − w̄ − β)m

}∣∣∣∣∣
α=β=0

=
1

π

1

n!
∂nα∂

n
βe
−|z−w|2+αβ

∣∣∣∣
α=β=0

=
1

π
e−|z−w|

2
. (5.36)

We note that the probabilities (5.32) and (5.36) are identical. The reason for this is that the

non-local POVM πz asks questions about position (i.e., the left sector) only, and does not probe

the additional structure of the right sector. Indeed, this POVM cannot extract any information

about the right sector exactly due to the fact that it provides a description where this information

has been averaged out. In that regard the Gaussian decay above also makes sense, since the state

|w, n) is minimally localised at w and the probability of finding it elsewhere again decays on a

length scale of θ. Since this type of measurement effectively sums over the contributions from

the right sector (see (5.11)), it is to be expected that, even though we specified the right sector

in the state |ψ) = |w, n), the resulting distribution (5.36) is independent of n. This demonstrates

explicitly that a measurement of position alone (in the sense of [10]) cannot yield full information
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about the state of the system.

5.4.2 Position measurements in terms of the local POVM (5.13) – probing the right

sector

We again consider a system prepared in a state |ψ) = |w) = |w〉 〈w|, where we have not speci-

fied details of the right sector before applying a translation. According to (5.14) the probability

distribution in z and n is simply

P (z, n) = (w|πz,n |w)

=
1

π
|(z, n|w)|2

=
1

π
e−2|z−w|2 |z − w|2n

n!
. (5.37)

In the position sector there is again a Gaussian decay associated with minimal uncertainty

position states in the probability distribution. This behaviour is of course generic to all position

states, as is expected from the discussion in Chapter 3. In addition to this, however, we note

a dependence on n. In fact, the distribution above is essentially a Gaussian located on a ring,

whose radius is determined by n. Since the POVM πz,n probes the probability of finding a state

with angular momentum ~n about the point z, this result is not surprising. One may even link

this distribution to the standard position representation of the Landau problem in commutative

quantum mechanics, where n is the label of the Landau level. This again relates to the analogies

drawn in Section 5.3.

Again it would be sensible to ask what happens if we carry out the same measurement on a

system where we specify the right sector upon preparation, i.e., |ψ) = |w,m) = T (w) |0〉 〈m|. We

first note that

(z, n|w,m) = 〈m| e(z−w)b†−(z̄−w̄)b |n〉 e−zz̄/2−ww̄/2+wz̄, (5.38)

which implies that if z = w, these states are in fact orthogonal. The probability distribution for

z and n is now simply

P (z, n) =
1

π
(w,m|z, n) (z, n|w,m) =

1

π
e−|z−w|

2
∣∣∣〈m| e(z−w)b†−(z̄−w̄)b |n〉

∣∣∣2 . (5.39)

Clearly this distribution goes like δn,m if z = w. This indicates again that translations mix up the

local degrees of freedom specified by the right sector, as is seen in the term
∣∣∣〈m| e(z−w)b†−(z̄−w̄)b |n〉

∣∣∣2
above. Consequently it would only be possible to specify the right sector of basis states globally

(i.e., independently of the positional state label) if, in addition to translations, we would apply
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a further unitary transformation to the right sector, whose function would be to cancel the right

action of the translation operator. This will be discussed in more detail in the context of gauge

theories in Chapter 6.

5.4.3 Some transition probabilities between states

Let us find the transition amplitude between two states of the form (5.7),

|zi, ni) ≡ T (zi) |0〉 〈ni| , i = 1, 2. (5.40)

Under the assumption of free propagation the time evolution operator is simply

U = e−
it

2m~PP
‡
. (5.41)

We are now interested in a matrix element of the form (z2, n2|U |z1, n1). To compute this, we

insert a complete17 set of momentum states (4.36),

(z2, n2|U |z1, n1) =

∫
d2k e−

it
2m~ |k|

2
(z1, n1|ψk) (ψk|z2, n2)

=

√
θ

2m~2

1√
n1!

1√
n2!

∫
d2k

{
e−[ it~+mθ

2m~2 ]kk̄e
i
~

√
θ
2

[z2−z1]k̄
e
i
~

√
θ
2

[z̄2−z̄1]k

[(−i/~)(
√
θ/2 ) k]n1 [(i/~)(

√
θ/2 ) k̄]n2

}
,

(5.42)

where we made use of the fact that P |ψk) = k |ψk) (and its Hermitian conjugate) in the first

line, and evaluated the overlaps explicitly in the second line. Upon identifying

∆ ≡ z2 − z1 and ∆̄ ≡ z̄2 − z̄1 (5.43)

and performing the Gaussian integral explicitly, the matrix element may be cast into a more

user-friendly form

(z2, n2|U |z1, n1) =
mθ

it~ +mθ

1√
n1!

1√
n2!

(
∂

∂∆

)n2
(
− ∂

∂∆̄

)n1

e−
mθ

it~+mθ
|∆|2 . (5.44)

(Note that the commutative limit is indeed well-defined here: the θ in the denominator of the

prefactor mθ
it~+mθ is canceled by the 1

2θ which appears when we transform between dimensionless

17 The proof of completeness for these states is set out in Appendix D.
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and dimensionful co-ordinates). Further defining

Γ ≡ mθ

it~ +mθ
, (5.45)

we note that (5.44) may be rewritten in terms of generalised Laguerre polynomials,

Lan (x) ≡ x−aex

n!
(∂x)n

(
e−xxn+a

)
, (5.46)

as

(z2, n2|U |z1, n1) =

√
n1!

n2!
Γn2+1∆n2−n1e−Γ|∆|2Ln2−n1

n1

(
Γ|∆|2

)
. (5.47)

This expression is symmetric under the exchange n1 ↔ n2, as is readily verified using properties

of (5.46). As expected, this simplifies precisely to the free path integral propagator found in [22]

for the case where n1 = n2 = 0, i.e., when |zi, 0) = |zi〉 〈zi| ≡ |zi) — see (2.24):

(z2|U |z1) =
mθ

it~ +mθ
e−

mθ
it~+mθ

|z1−z2|2 . (5.48)

Comparing this to the commutative free particle propagator, where the exponential is a pure

phase, we note that non-commutative transition probability (i.e., the modulus squared of (5.48))

has an actual exponential decay. This is again due to the over-completeness of basis elements

|z) ≡ |z〉 〈z|; indeed, in the commutative case we are considering the transition probability

between two exactly localised, orthogonal states (i.e., Dirac delta functions), whereas the initial

and final states in the non-commutative scenario are non-orthogonal coherent states. Clearly,

even for t = 0, there is a non-zero overlap between the two states, which is not the case in the

commutative system. Consider also that two time-scales feature in the transition probability

between z1 and z2 (i.e., the modulus squared of the overlap (5.48)). For t� mθ/~ the Gaussian

decay disappears, and we again approach the standard propagator of the commutative system.

For very small time-scales, however, i.e., for t � mθ/~ the Gaussian decay (resulting from the

over-completeness of the basis states) is dominant. We further note that, as discussed in [24, 25],

the non-commutative parameter induces an ultraviolet cutoff for the free particle. Again this may

be understood as suppression of high momenta due to exclusion of small positional length-scales

through non-commutativity.

Let us return to the general form (5.47) of the propagator. Suppose we consider an initial

state with zero angular momentum about the point z1, i.e., |z1, 0). In this case, the Laguerre

polynomial in (5.47) is simply 1. If we now ask about the transition amplitude to the same

point (i.e., z2 = z1), we note that transitions to higher angular momenta about this point, i.e.,
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to n2 6= 0, are suppressed through the factorial prefactor. This is exactly what we expect, since

it would cost energy to excite higher angular momenta.



CHAPTER 6

THE RIGHT SECTOR VIEWED AS GAUGE DEGREES OF FREEDOM

From the preceding discussions it is clear that it is possible to formulate non-commutative quan-

tum mechanical position measurements in a local manner. As stated, the advantage of such a

local formulation is that it makes the additional structure (degrees of freedom) involved in such

measurements explicit. Although we discussed two specific bases for the right sector, there is

no a priori reason for a particular choice of basis. It would thus be natural to ask whether

there exists a version of the theory that is insensitive to these specific choices of local (right

sector) basis, thereby allowing for a local description that incorporates this additional structure

in a more generic manner. In this section we shall formulate a gauge-invariant non-commutative

Hamiltonian theory, and proceed to demonstrate that local transformations of the right sector

(i.e., position-dependent transformations that probe the left sector but only transform the right

sector degrees of freedom) may be absorbed as local gauge transformations in this context.

6.1 A gauge-invariant formulation

Consider a Hamiltonian in minimal coupling form,

H =
1

2m
(~P + e ~A)2, (6.1)

where ~A = (Ax, Ay) is the vector potential (gauge field). Note that ~A is a quantum operator

here, and acts on the full quantum Hilbert space. Upon introducing the operators

D ≡ 1√
2

(P + eA) and D‡ ≡ 1√
2

(P ‡ + eA‡), (6.2)

where we define

A ≡ Ax + iAy and A‡ ≡ Ax − iAy (6.3)

in analogy to the complex momenta P and P ‡ from (2.14), we see that (6.1) may be written as

H =
1

2m
(D‡D +DD‡). (6.4)
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We proceed as usual with deriving the transformation rules for the gauge field. The time-

independent Schrödinger equation reads

Hψ = Eψ. (6.5)

Suppose we now transform the wave-function by a unitary transformation, U with U ‡ = U−1,

according to

ψ → ψ′ ≡ Uψ, (6.6)

and simultaneously transform the Hamiltonian (6.4) according to

H → H ′ ≡ UHU ‡. (6.7)

Clearly this yields a new eigenvalue equation,

H ′ψ′ = Eψ′, (6.8)

i.e., H and H ′ are isospectral. It is a simple matter to verify that

H ′ =
1

2m
(D′D′‡ +D′‡D′) (6.9)

is gauge-invariant under the transformation rules

D′ =
1√
2

(P + eA′) with A′ = U ‡AU − 1

e
[P,U ‡]U, and

D′‡ =
1√
2

(P ‡ + eA′‡) with A′‡ = U ‡A‡U − 1

e
[P ‡, U ‡]U, (6.10)

i.e., that

UH[A′,A′‡]U ‡ = H[A,A‡]. (6.11)

Note that the operators D and D‡ are analogues of the covariant derivative from commutative

gauge theories, and that they obey the transformation rules

D[A′] = UD[A]U † and

D[A′†] = UD[A†]U † (6.12)

by construction.

Hereby we have derived the transformation rules for the gauge field. These rules are es-
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sentially identical to those that would be found in a commutative theory, except that the mo-

menta act adjointly (i.e., as algebraic derivatives) in the non-commutative theory.18 Under these

transformation rules, the Hamiltonian (6.4) thus displays a gauge symmetry under the gauge

transformation set out in (6.6) and (6.7).

6.2 A local transformation of the right sector seen as a gauge transformation

Let us consider again a generic basis element of the form (3.8),

|z, α) ≡ T (z) (|0〉 〈α|) = |z〉 〈α| ez̄b−zb† , (6.13)

where α may be a discrete (i.e., Fock basis) or continuous (i.e., coherent state basis) label for

the right sector. Suppose we now introduce a new basis that is obtained by a local (in the sense

that it probes information regarding position, i.e., about the left sector) similarity transformation

which transforms the right sector and whose inverse is well-defined. Such a transformation would

necessarily have left- and right acting parts, and would be a function of BL, BR and B‡R,

|z, β) = S(BL, BR, B
‡
R) |z, α) = S(z,BR, B

‡
R) |z, α) ⇔ |z, α) = S−1 |z, β) . (6.14)

One may, of course, also view this basis transformation in terms of expansion co-efficients,

|z, β) =

∫
d2z′

∑
η

∣∣z′, η) (z′, η∣∣S(BL, BR, B
‡
R) |z, α)

=

∫
d2z′

∑
η

C(z, z′, η, α)
∣∣z′, η) with C(z, z′, η, α) ∈ C. (6.15)

We have thus established a 1− 1 invertible mapping between two sets of “local” basis states,

ζα(z) ≡ spanα {|z, α)} and ζβ(z) ≡ spanβ {|z, β)} (6.16)

18 In standard quantum mechanics, a pure gauge transformation of a Hamiltonian H = 1
2m

(~P + ~A)2 → H ′ =

UHU† and the corresponding wave function ψ → ψ′ = Uψ, is one which induces additional terms the gauge field
(vector potential) ~A which are of the form Ai = U(∂iU

†). This simply implies that the curl of these additional
terms is zero, i.e., no new magnetic field is introduced by the transformation. Consequently the two Hamiltonians
represent the same physical situation, i.e., a pure gauge transformation introduces no new physics.
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so that

∀ |z, β) ∈ ζβ(z) ∃ |z, α) ∈ ζα(z) : |z, β) = S |z, α)

and

∀ |z, α) ∈ ζβ(z) ∃ |z, β) ∈ ζβ(z) : |z, α) = S−1 |z, β) . (6.17)

Consequently, if the label α is discrete (continuous) then β must also be discrete (continuous)

and vice-versa, since there is not a 1− 1 correspondence of elements between a complete and an

over-complete basis.

Let us return to the Hamiltonian (6.4), the action of which may now be written in this new

basis as

(z, β|H |ψ) = (z, α|S‡H |ψ)

= (z, α|S‡H(S‡)−1S‡ |ψ)

= (z, α|H ′
∣∣ψ′) , (6.18)

with H ′ ≡ S‡H(S‡)−1 and |ψ′) ≡ S‡ |ψ). Suppose that the transformation S (6.14) (and thus its

Hermitian conjugate on Hq, S‡) is indeed unitary. In this case the connection to the discussion

from the previous section is clear: if the action of the Hamiltonian (6.4) is expressed in a particular

local basis, a unitary transformation of the right sector of this basis takes precisely the form of

a pure gauge transformation performed on H and ψ. For the more general case where S is

a pure similarity transformation, i.e., it is invertible but not unitary, the new Hamiltonian H ′

may be non-Hermitian; however, the arguments about spectra still hold.19 Note that the local

transformation of the right sector acts on an infinite dimensional space (since there are infinitely

many state labels for the right sector).

We thus have a formulation of the non-commutative theory which allows for total arbitrariness

of local (right sector) choices of basis in the context of gauge invariance.

6.3 Adding dynamics for the gauge field – some cautious speculations

Thus far we have only considered the minimal coupling form of the Hamiltonian (6.1). In this

form, the gauge field is handled as a background field in that there are no dynamics ascribed to

it. If we wished to make the gauge field dynamical, this would involve adding a term which is a

19 Note that the discussion presented here applies to any similarity transformation S in (6.14), not only those
that transform the right sector only. However, if we wish the new basis to be a “position basis” in the sense of
Chapter 3, then this transformation must necessarily be one that only transforms the right sector of the basis
elements. We shall restrict our discussions to such transformations.
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function of the field to the Hamiltonian. A further analysis should probably best be continued

on the level of the action, as is usually done in the context of standard gauge theories. In this

setting it should be possible to construct a term analogous to the usual tr[FµνF
µν ] term, which

possesses the desired invariance properties. Suppose we introduce an object20

F ≡ 1

e
[D,D‡]

= [P,A‡]− [P ‡,A] + e[A,A‡]. (6.19)

From (6.12) it is clear that

F ′ ≡ F [A′] = UF [A]U ‡, (6.20)

as required. Although we shall not investigate this idea in great depth here, we shall mention a

few ideas for possible future work. In principle (6.19) could be used to build the gauge-invariant

objects mentioned above. One may speculate that since such terms govern the spectrum of the

right sector degrees of freedom, it may be possible to restrict which of these degrees of freedom

are accessible to the system at a certain energy / temperature. At low energies, this may imply

that the system can only access a finite number of these degrees of freedom (of which there

are infinitely many, since the right sector is infinite-dimensional). It is not clear which gauge

symmetry would be associated with this restriction, but this may be one way to construct a low-

energy effective theory for the right sector which essentially masks certain degrees of freedom

and thus reproduces smaller gauge symmetries.

20 This object is exactly analogous to that from standard quantum mechanical gauge theories, namely
Fµ,ν = ∂µAν − ∂νAµ + e[Aµ, Aν ]. In standard electromagnetism, which is an Abelian gauge theory, this is simply
the anti-symmetric electromagnetic field tensor, Fµ,ν = ∂µAν − ∂νAµ.



CHAPTER 7

DISCUSSION AND CONCLUSIONS

We have argued that, in contrast to commutative quantum mechanics, the notion of position

and its measurement in non-commutative space cannot yield complete information regarding the

quantum state of a particle. Indeed, the introduction of additional structure is unavoidable in any

position representation of non-commutative quantum mechanics. In the non-local formulation

set out in [10] this additional structure is encoded in higher order positional derivatives, whereas

the local descriptions set out here require the introduction of additional degrees of freedom

that label the right sector of basis states. We argued that these additional degrees of freedom

appear naturally and unavoidably in any local position description of non-commutative quantum

mechanics. This stands in contrast to state labels such as spin from standard quantum mechanics,

which need to be added by hand. We demonstrated that it is entirely sensible to define such local

position states, and that the right sector is in essence arbitrary and unnecessary for describing

the position of a particle only. In order to gain insight about the physical meaning of the right

sector, two specific choices of basis were investigated.

As set out in [23], constants of motion found from the path integral representation in [22] show

that already in a non-local, unconstrained description of non-commutative quantum mechanics

there are hints at extended objects in the theory. Motivated by these findings, we demonstrated

that for one particular choice of local basis with a continuous label for the right sector, one way

to view aforementioned additional structure may be in terms of physical extent. It was demon-

strated explicitly in the classical picture that the energy contains correction terms proportional

to the non-commutative parameter. These corrections could also be cast in a local or non-local

form. In the local formulation the Lagrangian of a free particle coincides precisely with that

of two oppositely charged particles coupled by a harmonic potential and moving in a strong

magnetic field. Using these results as a primer, we proceeded to show that an interpretation

of non-commutative quantum mechanics in terms of extended objects with additional structure

is indeed a natural one by considering representations of the angular momentum operator and

various Hamiltonians as well as the corresponding eigenfunctions in this basis. Furthermore,

constraints were shown to arise in this basis, and it was suggested that eigenfunctions of quan-

tum operators may be obtained on a full function space, and that the physical eigenfunctions

may then be selected as those that satisfy these constraints.

A further local choice of basis was suggested, namely one where the additional degrees of

freedom (in this case discrete state labels) describe angular momentum about the positional
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state label of the basis elements. Analogies to the quantum Hall system were pointed out, and

it was argued that the non-local POVM from [10] cannot resolve information about the right

sector of states of a non-commutative quantum system. The latter point demonstrates clearly

that a measurement of position alone cannot yield sufficient information to specify the state of a

non-commutative quantum system completely. These basis states were also used to find a local

form of the non-commutative free particle propagator which describes the transition amplitude

between states localised at certain points and with particular angular momenta about those

points. Furthermore relations between the two local bases were pointed out.

It was also observed that all positional descriptions of non-commutative quantum mechanics,

local or non-local, are equivalent in that the notion of additional structure is simply encoded in

different ways, but information is not lost when one description is contrasted with another. In

this sense the non-local formulation could be viewed as an effective description in that it averages

over the additional degrees of freedom that appear explicitly in the local formulations. The local

description of non-commutative quantum mechanics in terms of a constrained system may also

offer an interesting new perspective.

Lastly it was argued that, if we were to insist that the local choice of basis for the right

sector should be physically irrelevant, it may be natural to think of the additional degrees of

freedom as gauge degrees of freedom. After formulating a gauge-invariant version of the non-

commutative theory on the level of a Hamiltonian in minimal coupling form, we demonstrated

that local transformations of the right sector may be absorbed into gauge transformations of this

Hamiltonian and its eigenfunctions. First steps toward ascribing dynamics to the gauge field

were suggested, and it was speculated that energetic considerations could possibly be employed

to impose a restriction on which gauge degrees of freedom are accessible to the system, thereby

altering the symmetry in the theory. This particular point may merit further investigation in

the context of a Lagrangian formulation in the future.



APPENDIX A

Inclusion of a third co-ordinate

Suppose we have a three dimensional non-commutative Heisenberg algebra

[xi, xj ] = iθi,j with i, j = 1, 2, 3,

[xi, pj ] = i~δi,j ,

[pi, pj ] = 0. (A.1)

In this case it is clear that θi,j must be a completely antisymmetric matrix with real entries

(otherwise the position operators cannot be Hermitian). Antisymmetry of a matrix implies that

its eigenvalues come in pairs, {λi,−λi}, which in turn implies that if the dimension of the matrix

is odd, one eigenvalue must be zero. It is thus possible to perform a series of transformations

on the co-ordinates that will diagonalise θi,j so that we have two non-commutating co-ordinates,

each of which commutes with the third one.

Naturally this procedure breaks rotational symmetry of this framework, since the choice of

co-ordinate orientation is not arbitrary. The only way to remedy this is to insist that θi,j should

transform as a tensor. This point of view is naturally incompatible with the assumption that

the non-commutative parameter should be a constant which is equal in all reference frames.

The tensorial transformation properties of non-commuting co-ordinates and the restoration of

rotational symmetry in higher dimensions are discussed extensively in [26, 27] in the setting of

twist deformations and Hopf algebraic techniques. Since this thesis deals with a two-dimensional

framework where these complications do not arise, this matter is not explored further here.21

21 It should be noted, however, that there is a required modification to the angular momentum operator (gen-
erator of rotations), even in a two-dimensional setting. This was discussed extensively in [10], and is also used in
Section 4.4.
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APPENDIX B

Proof of equation (2.35)

Recall that we defined the POVM (2.32) as

πz =
1

π
|z) ? (z| = 1

π
|z) e

←
∂z̄
→
∂z (z| . (B.1)

Let us now consider the following matrix element

(ñ, m̃|πz |n,m) =
1

π
(ñ, m̃|z) ? (z|n,m)

=
1

π
(〈z|m̃〉 〈ñ|z〉) ? (〈z|n〉 〈m|z〉)

=
1

π

(
e−zz̄

z̄m̃√
m̃!

zñ√
ñ!

)
?

(
e−zz̄

z̄n√
n!

zm√
m!

)
=

1

π

zñ√
ñ!

z̄n√
n!

(
e−zz̄

z̄m̃√
m̃!

)
e
←
∂z̄
→
∂z

(
e−zz̄

zm√
m!

)
︸ ︷︷ ︸, (B.2)

≡ f(z)

where we made use of the fact that 〈n|z〉 = e−|z|
2/2 zn√

n!
. Next we note that

f(z) =
1√
m̃!

1√
m!

∞∑
k=0

1

k!

(
∂kz̄ [z̄m̃e−zz̄]

)(
∂kz [zme−zz̄]

)
=

1√
m̃!

1√
m!

∂m̃λ1
∂mλ2

∞∑
k=0

1

k!

(
∂kz̄ [e−zz̄+λ1z̄]

)(
∂kz [e−zz̄+λ2z]

)∣∣∣∣∣
λ1=λ2=0

=
1√
m̃!

1√
m!

∂m̃λ1
∂mλ2

e(λ1−z)(λ2−z̄)−2zz̄+λ1z̄+λ2z
∣∣∣
λ1=λ2=0

=
1√
m̃!

1√
m!

∂m̃λ1
∂mλ2

eλ1λ2−zz̄
∣∣∣
λ1=λ2=0

= e−zz̄
m!

(
√
m! )2

δm,m̃. (B.3)

In the last step we simply note that if we expand the exponential, only terms of equal order

in λ1 and λ2 will survive when we impose λ1 = λ2 = 0, which produces the Kronecker delta.

Inserting this result into (B.3) we obtain
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(ñ, m̃|πz |n,m) =
1

π

zñ√
ñ!

z̄n√
n!
e−zz̄δm,m̃

=
1

π
〈ñ|z〉 〈z|n〉 δm,m̃. (B.4)

Next we define the operator

Pz ≡
∞∑
k=0

|z, k) (z, k| with |z, k) ≡ |z〉 〈k| , (B.5)

and consider the following matrix element,

(ñ, m̃|Pz |n,m) =
∞∑
k=0

trc (|m̃〉 〈ñ|z〉 〈k|) trc (|k〉 〈z|n〉 〈m|)

=
∞∑
k=0

〈ñ|z〉 〈k|m̃〉 〈z|n〉 〈m|k〉

= 〈ñ|z〉 〈z|n〉 δm,m̃. (B.6)

Comparing (B.4) and (B.6), we note that

πz =
1

π
Pz. (B.7)

Further, it is trivial to check that P 2
z = Pz. This simply implies that π2

z = 1
π2P

2
z = 1

ππz, and

consequently

π1/2
z =

√
π πz, (B.8)

which proves the result.
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APPENDIX C

The path integral action

We follow here the discussion of [20] where the propagator (matrix element of the time evolution

operator) is found as a coherent state path integral.

Suppose we consider such a matrix element in the basis (4.4),

(
z′′, v′′

∣∣ e− i
~TH

∣∣z′, v′) , (C.1)

where U ≡ e−
i
~TH is the unitary time evolution operator, T = t′′− t′ represents the time interval

of propagation and H is the Hamiltonian of the system. We proceed by “slicing” the time interval

into N+1 subintervals (the reason for the +1 will become evident shortly) of width ε = T/(N+1)

so that (zN+1, vN+1) ≡ (z′′, v′′), (z0, v0) ≡ (z′, v′), and the N co-ordinates {(zk, vk), k = 1 : N}

represent z and v at time-subinterval k of the time-sliced path. Naturally we may resolve the

identity (4.3) at each of these points,

∫
|zk, vk) (zk, vk| dµk = 1q, with dµk ≡

1

π2
d2zk d

2vk. (C.2)

In order to compute the path integral, we introduce the regularised Hamiltonian

Hε =
H

1 + εH2
with ε > 0, (C.3)

which has the property that limε→0Hε = H (where the limits limε→0 and limN→∞ are of course

interchangeable). Next we write the time evolution operator as the limit

e−
i
~TH = lim

N→∞

[
1− i

~
T

N + 1
HT/(N+1)

]N+1

. (C.4)

We substitute this into (C.1) and subsequently insert the identity (C.2) at each point labeled by
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k = 1 : N , which yields

(
z′′, v′′

∣∣ e− i
~TH

∣∣z′, v′)
= lim

N→∞

(
z′′, v′′

∣∣ [1− i

~
εHε

]N+1 ∣∣z′, v′)
= lim

N→∞

∫
...

∫ N∏
k=0

(zk+1, vk+1|
[
1− i

~
εHε

]N+1

|zk, vk)
N∏
k=1

dµk

= lim
N→∞

∫
...

∫ N∏
k=0

(zk+1, vk+1|zk, vk)
[
1− i

~
ε
(zk+1, vk+1|Hε |zk, vk)

(zk+1, vk+1|zk, vk)

] N∏
k=1

dµk

(C.5)

Proceeding to define

Hε(zk′ , vk′ ; zk, vk) ≡
(zk′ , vk′ |Hε |zk, vk)

(zk′ , vk′ |zk, vk)
, (C.6)

and assuming that the integrals exist, we rewrite (C.5) as

(
z′′, v′′

∣∣ e− i
~TH

∣∣z′, v′) = lim
N→∞

∫
...

∫ N∏
k=0

(zk+1, vk+1|zk, vk) e−
i
~Hε(zk+1,vk+1;zk,vk)

N∏
k=1

dµk.

(C.7)

As ε → 0 we may view the set of points (zk, vk), k = 0 : N + 1 as defining the limit of the

functions (z[t], v[t]), t ∈ [t′, t′′]. If we wish to interchange the operations of integration and

limN→∞ in (C.7), however, it is necessary to assume that the integrand takes the form where

aforementioned functions are continuous and differentiable paths (z[t], v[t]) in z − v parameter

space. For notational simplicity we shall denote (zt, vt) ≡ (z[t], v[t]).

Next we note that in the small ε limit we have

(zk+1, vk+1|zk, vk) = 1− (zk+1, vk+1| {|zk+1, vk+1)− |zk, vk)}

∼= e−(zk+1,vk+1|{|zk+1,vk+1)−|zk,vk)}. (C.8)

Introducing the notation

H(z, v) ≡ H(z, v; z, v) = (z, v|H |z, v) (C.9)

and the differential of the state |zt, vt),

d |zt, vt) ≡ |zt + dzt, vt + dvt)− |zt, vt) , (C.10)
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we see that, under the above assumptions, the integrand in (C.7) takes the form

exp

[
−
∫ z′′,v′′

z′,v′
(zt, vt| {d |zt, vt)} −

i

~

∫ t′′

t′
H(zt, vt)dt

]
. (C.11)

Lastly we introduce the time derivative of a state |zt, vt) as

˙︷ ︸︸ ︷
|zt, vt) ≡

d

dt
|zt, vt) , (C.12)

and the measure that represents integration over all paths in z − v parameter space,

[Dµ] ≡ lim
N→∞

N∏
k=1

dµk. (C.13)

This allows us to write

∫
[Dµ] exp

[
i

~

∫ t′′

t′
dt

{
i~(zt, vt

˙︷ ︸︸ ︷
|zt, vt)−H(zt, vt)

}]
, (C.14)

i.e., we may identify the path integral action as

S =

∫ t′′

t′
dt

{
i~(zt, vt

˙︷ ︸︸ ︷
|zt, vt)−H(zt, vt)

}

=

∫ t′′

t′
dt (z, v| i~ d

dt
−H |z, v) . (C.15)



APPENDIX D

Momentum eigenstates (4.36) as a complete basis for Hq

We recall the form of these states,

|ψk) =

√
θ

2π~2
e
i
~

√
θ
2

(k̄b+kb†)
=

√
θ

2π~2
e−

θ
4~2 |k|2e

i
~

√
θ
2
kb†
e
i
~

√
θ
2
k̄b
. (D.1)

First we show that these states are orthogonal:

(ψk′ |ψk) =
θ

2π~2
trc

(
[e

i
~

√
θ
2

(k̄′b+k′b†)
]‡[e

i
~

√
θ
2

(k̄b+kb†)
]

)
=

θ

2π2~2

∫
d2z 〈z| e−

i
~

√
θ
2

(k̄′b+k′b†)
e
i
~

√
θ
2

(k̄b+kb†) |z〉

=
θ

2π2~2
e−

θ
4~2 (|k|2+|k′|2)− θ

2~ k̄
′k
∫
d2z e

i
~

√
θ
2
z̄(k−k′)

e
i
~

√
θ
2
z(k̄−k̄′)

=
1

~2
e−

θ
4~2 (|k|2+|k′|2)− θ

2~ k̄
′k δ(k − k′). (D.2)

To show that we may resolve the identity on Hq in terms of these states, consider again the

overlap (2.25) of two states of the form (2.24); for |zi) = |zi〉 〈zi|, i = 1, 2, we had

(z1|z2) = e−|z1−z2|
2
. (D.3)

Now, since

(zi|ψk) =

√
θ

2π~2
e−

θ
4~2 |k|2e

i
~

√
θ
2

(k̄zi+kz̄i), (D.4)

we note that ∫
d2k (z1|ψk) (ψk|z2) = e−|z1−z2|

2
, (D.5)

as is readily verified through explicit evaluation of the Gaussian integrals. We conclude that∫
d2k |ψk) (ψk| = 1q (D.6)

is a resolution of the identity on Hq, i.e., the states (4.36) provide a complete basis for this space.
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