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Abstract

Non-commutative quantum mechanics is a generalisation of quantum mechanics which in-

corporates the notion of a fundamental shortest length scale by introducing non-commuting

position coordinates. Various theories of quantum gravity indicate the existence of such

a shortest length scale in nature. It has furthermore been realised that certain condensed

matter systems allow effective descriptions in terms of non-commuting coordinates. As a

result, non-commutative quantum mechanics has received increasing attention recently.

A consistent formulation and interpretation of non-commutative quantum mechanics,

which unambiguously defines position measurement within the existing framework of quan-

tum mechanics, was recently presented by Scholtz et al. This thesis builds on the latter

formalism, extends it to many-particle systems and links it up with non-commutative

quantum field theory via second quantisation. It is shown that interactions of particles,

among themselves and with external potentials, are altered as a result of the fuzziness

induced by non-commutativity. For potential scattering, generic increases are found for

the differential and total scattering cross sections. Furthermore, the recovery of a scat-

tering potential from scattering data is shown to involve a suppression of high energy

contributions, disallowing divergent interaction forces. Likewise, the effective statistical

interaction among fermions and bosons is modified, leading to an apparent violation of

Pauli’s exclusion principle and foretelling implications for thermodynamics at high densi-

ties.
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Opsomming

Nie-kommutatiewe kwantummeganika is ’n veralgemening van kwantummeganika wat die

idee van ’n fundamentele kortste lengteskaal invoer d.m.v. nie-kommuterende koördinate.

Verskeie teorieë van kwantum-grawitasie dui op die bestaan van so ’n kortste lengteskaal

in die natuur. Dit is verder uitgewys dat sekere gekondenseerde materie sisteme effektiewe

beskrywings in terme van nie-kommuterende koordinate toelaat. Gevolglik het die veld

van nie-kommutatiewe kwantummeganika onlangs toenemende aandag geniet.

’n Konsistente formulering en interpretasie van nie-kommutatiewe kwantummeganika,

wat posisiemetings eenduidig binne bestaande kwantummeganika raamwerke defineer, is

onlangs voorgestel deur Scholtz et al. Hierdie tesis brei uit op hierdie formalisme, veralge-

meen dit tot veeldeeltjiesisteme en koppel dit aan nie-kommutatiewe kwantumveldeteorie

d.m.v. tweede kwantisering. Daar word gewys dat interaksies tussen deeltjies en met

eksterne potensiale verander word as gevolg van nie-kommutatiwiteit. Vir potensiale ver-

strooïıng verskyn generiese toenames vir die differensiële and totale verstroïıngskanvlak.

Verder word gewys dat die herkonstruksie van ’n verstrooïıngspotensiaal vanaf verstrooïıngsdata

’n onderdrukking van hoë-energiebydrae behels, wat divergente interaksiekragte verbied.

Soortgelyk word die effektiewe statistiese interaksie tussen fermione en bosone verander,

wat ly tot ’n skynbare verbreking van Pauli se uitsluitingsbeginsel en dui op verdere gevolge

vir termodinamika by hoë digthede.
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Introduction and Background

Quantum mechanics, and its extension, quantum field theory, are counted amongst the

greatest scientific advances of the 20th century. This is not only due to the unprecedented

success of quantum theory in explaining and predicting experimental results. Maybe

more than anything, quantum theory represented a conceptual revolution, challenging the

deterministic paradigm of classical physics. In quantum mechanics, a system is allowed

to be in a superposition of different states simultaneously, and only upon the intervention

of measurement is it forced to take on a definite state. Any prediction of experimental

outcomes is therefore statistical in nature.

Despite its accomplishments, quantum mechanics appears to have one obvious limita-

tion: It is formulated exclusively to describe point particles, regarded as entities without

spatial extent or structure. Of course, any particle looks like a point from sufficiently far,

and at low densities we would expect finite-size effects to play a minor role. However, at

high densities and energies we would expect such effects to be significant.

Related to the notion of particle size is the concept of spatial resolution. Conventional

quantum theory is formulated on continuous space-time, and this is the root of the di-

vergences that plague quantum field theory. To be more precise, a function defined over

continuous space has an infinite number of degrees of freedom. In quantum field the-

ory, which is formulated in the language of functional integrals, this leads to ill-defined

integration measures and divergences. To overcome this problem, various so-called renor-

malisation schemes have been launched, in which high energy contributions to the path

integrals are left out by the introduction of some cut-off parameter. This renders otherwise

infinite quantities expressible in terms of the cut-off parameter, and physical quantities

may be sought for which the cut-off dependence vanishes [1]. A physical justification for

the introduction of a high energy cut-off is given by Delamotte [2]: If we try to probe a

particle of mass m beyond a length scale of the order of the Compton wavelength ~/mc,

the energy involved is of order mc2. This is enough energy to create new particles identical

to the original one. The indistinguishability of these particles makes position measurement

ambiguous, and effectively imposes a lower bound on the resolution of space.

Before renormalisation became popular, another alternative approach was proposed to

tackle the divergence problem of field theories: In 1947, the idea of quantised spacetime
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was introduced in an article by Snyder [3]. His basic idea was to turn space and time

coordinates into operators, and showing that the quantity S2 = c2t2 − ~x2 can be Lorentz

invariant even if the position operators have discrete spectra. More specifically, he pro-

posed the commutation relations

[x̂i, x̂j ] =
ia2

~
ǫijkL̂k, [t̂, x̂i] =

ia2

~c
M̂i, i, j, k ∈ {1, 2, 3}, (1)

where the L̂i’s and the M̂i’s are the generators of the Lorentz group, and ǫijk is the

completely anti-symmetric tensor. Here a plays the role of a fundamental unit of length,

and for a → 0 we recover our familiar commuting coordinates. For finite a, however,

the eigenvalue spectrum of the position operators becomes discretised in integer steps of

a. The effect of introducing such a shortest fundamental length scale is similar to the

introduction of a high energy cut-off in the renormalisation approach. However, Snyder’s

idea never received much attention, whereas the renormalisation method quickly gained

popularity. And, as it later turned out, non-commutative field theories are not necessarily

renormalisable [4].

It was only much later, in the context of quantum gravity, that the idea of non-

commuting spatial coordinates resurfaced: Theories of quantum gravity attempt to unify

quantum mechanics with two other largely successful theories of the 20th century, the

theories of special and general relativity. Whereas the first two are largely reconciled in

the framework of quantum field theory, the incorporation of the latter remains among the

greatest challenges in physics. The problems arise at high energies and short length scales,

where both quantum theory and general relativity presumably play significant roles. The

length scale in question is believed to be of the order of the Planck length lP =
√
G~/c3,

the fundamental unit of length which emerges by combining the fundamental constants of

the constituting theories; Planck’s constant, ~, of quantum mechanics, the speed of light,

c, of special relativity and the gravitational constant, G, of general relativity.

A physical argument for the existence of a fundamental shortest length scale in nature

was given by Doplicher, Fredenhagen and Roberts [5], and is quoted as the ’Principle of

gravitational Stability against localization of events’ by Doplicher [6]:

The gravitational field generated by the concentration of energy required by the

Heisenberg Uncertainty Principle to localize an event in spacetime should not

be so strong to hide the event itself to any distant observer - distant compared

to the Planck scale.

2



In [5, 6] it is argued that the above uncertainty principle should be incorporated through

the introduction of non-commuting spacetime coordinates, although not necessarily gov-

erned by Snyder’s commutation relations (1). Rather, it is argued that the commutators

of the coordinates should depend on energy concentration and hence on the underlying

metric of the background space.

In view of the ’principle of gravitational stability against localization of events’, it

is maybe not surprising that the concept of non-commuting coordinates has emerged

independently from various theories of quantum gravity. For example, Seiberg and Witten

showed that non-commutative spacetime may result from certain low energy limits of string

theory [7]. Intuitively, the localisation of an extended string, as opposed to a point particle,

is ambiguous. Arguments from string theory have been among the major motivations for

the study of non-commutative theories [4].

Non-commutative quantum mechanics is not only of interest to the quantum gravity

community; applications can also be found in condensed matter physics. A well known

example is quantum Hall systems, in which charged particles move in a plane perpendicular

to a magnetic field. The particles move on orbits of quantised radii and may be described

in terms of a set of non-commuting guiding centre coordinates [8, 9]. Similarly, one can

imagine that non-commutative quantum theory may provide an effective mathematical

description of other physical systems which are experimentally realisable. For example,

models of Graphene have been developed based on a non-commutative description [10].

Another exciting prospect is the use of non-commutative quantum mechanics to describe

particles with structure, as attempted by Rohwer et al [11]. Bigatti and Susskind [12]

have argued that non-commutative quantum mechanics is dual to a description of dipoles

moving in a magnetic field. A review of the various topics in physics inspired by non-

commutative geometry can be found in [13].

The above motivations have stimulated an increasing interest in the fields of non-

commutative quantum mechanics, non-commutative field theory and non-commutative

geometry over the last few decades. The starting point is usually to postulate commuta-

tion relations

[x̂i, x̂j] = iθi,j , (2)

with θij being a constant antisymmetric matrix. In the context of quantum gravity for-

mulated on four dimensional spacetime this implies a breaking of Poincaré invariance, if

3



θi,j are considered fundamental constants of nature that do not transform. It is, however,

possible to restore a twisted Poincaré symmetry [4, 14]. In two dimensions one need not

worry about such problems, because the coordinate commutation relation

[x̂i, x̂j ] = iǫi,jθ, i, j ∈ {1, 2}, ǫ1,2 = −ǫ2,1 = 1, (3)

where θ is a scalar constant, can easily be shown to be invariant under rotation.

The Aim of This Thesis

In this thesis we will restrict our attention to non-commutative quantum mechanics in

the plane. The origin of non-commutativity will not be of primary concern to us, and we

will simply postulate the commutation relation (3), with
√
θ playing the role of a funda-

mental length scale. This was also the point of departure for Scholtz et al. in [15], where a

consistent formulation and interpretation of single-particle non-commutative quantum me-

chanics was presented. We build on [15] to develop non-commutative scattering theory and

to construct a non-commutative many-particle formalism. It is precisely in scattering situ-

ations and in many-particle systems that one might expect effects of non-commutativity to

manifest themselves, especially at energies and densities corresponding to the fundamental

length scale
√
θ. One can therefore hope that the extended formalism presented here can

shed new light on our understanding of interactions in the non-commutative plane.

Conventional quantum field theory may be derived from commutative quantum me-

chanics via many-body theory and second quantisation. In a similar way, we will show

that non-commutative quantum field theory may be built from non-commutative quantum

mechanics. This is in contrast to the historical development, where non-commutative field

theories emerged as a generalisation of commutative field theory, without reference to any

underlying theory of non-commutative quantum mechanics. This thesis may therefore

serve as a bridge across an apparent gap in existing literature. Furthermore, the choice of

star product, which is an ongoing debate in non-commutative field theory [16], is in our

case determined by the underlying single-particle formalism.

We emphasise that by limiting the discussion to two spatial dimensions, this thesis can-

not claim any relevance to quantum gravity in four-dimensional spacetime. However, we

offer a generalisation of quantum mechanics which incorporates the notion of a shortest

length scale and which can be understood within the usual interpretational framework of

quantum mechanics. Hopefully, the simple structure of the two-dimensional theory may

4



reveal generic effects of non-commuting coordinates which carry over to higher dimen-

sions. The two-dimensional formulation should also have direct application to physically

realisable systems such as quantum Hall systems, for which the guiding centre coordinates

satisfy (3), with θ inversely proportional to the magnetic field strength.

The thesis is structured as follows: The first chapter is devoted to the single-particle

formulation of non-commutative quantum mechanics. It is largely an elaboration on [15],

and it paves the way for Chapter 2, which discusses scattering, and Chapter 3, where a

many-particle formalism is constructed. Chapter 4 explores how non-commutativity man-

ifests itself in many-particle systems by considering the simplest possible such system; that

of only two particles. In particular we study the effective interactions between two bosons

or fermions. To round of the thesis, a short concluding chapter is included which seeks to

link up the previous chapters, provide some general conclusions and outline the prospects

of future investigations. In the interest of fluency, most of the elaborate calculations have

been referred to Appendix C.
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Chapter 1

Single-Particle Formalism

The purpose of this chapter is to review the formalism of single-particle non-commutative

quantum mechanics. Naturally, such a theory shares many of the features of conventional

’commutative’ quantum mechanics, and hence it is appropriate to begin by briefly sketch-

ing the development and essential elements of the latter. The following account is inspired

by Dirac [17], von Neumnann [18] and Bratteli [19].

In its infancy, quantum theory was a fragmented set of ideas introduced to explain

specific experimental observations. Among these were Einstein’s theory of light quanta

and Planck’s explanation of blackbody radiation. These ideas were taken further by people

like de Broglie, who postulated wave-particle dualism as a general property of all matter,

and by Bohr and Sommerfeld, who introduced empirical quantisation rules to account for

the observed quantisation of atomic spectra.

Two rivalling mathematical frameworks were proposed to formalise the empirical Bohr-

Sommerfeld quantisation rules: on the one hand the so called matrix formulation of

Heisenberg, and on the other hand the wave mechanics developed by Schrödinger. In

the latter approach the state of a system is described by a wave function ψ(x1, ..., xn; t),

where {xi}ni=1 are particle position coordinates and t is time. For particles of mass m in a

position dependent potential V , the dynamics is governed by the Schrödinger equation

i~
∂

∂t
ψ(x1, ..., xn; t) =

(
− ~

2

2m

n∑

i=1

∂2

∂x2i
+ V (x1, ..., xn)

)
ψ(x1, ..., xn; t). (1.1)

Here, and in the remainder of the thesis, ~ is Planck’s constant divided by 2π, and i is the

imaginary unit
√
−1. If the wavefunction ψ is an element of the space L2(Rn) of square-

integrable functions, it can be normalised, which naturally leads to the interpretation of

the quantity

ρ(x1, ..., xn; t) = |ψ(x1, ..., xn; t)|2 dx1...dxn, (1.2)

as the probability for localising the particle in a volume element around the coordinates

x1, ..., xn at time t.

In Heisenberg’s formalism position and momentum coordinates are replaced by the sets

6



1. Single-Particle Formalism 7

of matrices {X i} and {P i} respectively, satisfying the relations

∑

k

(
X i
n,kP

j
k,m − P j

n,kX
i
k,m

)
= i~δn,mδi,j , (1.3)

where δ is the Kronecker delta (assuming the value 1 for identical arguments and 0 other-

wise). The energy of a system is associated with a Hamiltonian operator, which conven-

tionally takes the form

H =
n∑

i=1

(P i)2

2m
+ V (X1, ..., Xn). (1.4)

The time evolution of an arbitrary operator A = A(X1, ..., Xn, P 1, ..., P n) (with no explicit

time dependence) is determined by the Hamiltonian operator according to

∂

∂t
A =

i

~
(HA− AH) . (1.5)

The physical states of a system are represented by normalised vectors acted upon by the

matrix operators. As in the Schrödinger formulation, the state vectors have a probabilistic

interpretation: Given a system in the state ψ, the outcome of measuring an operator A

is random, with the average value given by 〈A〉 = (ψ,Aψ). We note, however, that in the

Schrödinger picture the states are time dependent, while in Heisenberg’s formulation all

the dynamics is contained in the matrix operators.

The first unified, axiomatic formulations of quantum mechanics are usually attributed to

von Neumann [18] and Dirac [17], who phrased quantum mechanics in the mathematically

rigorous language of abstract algebra. In this language, observable quantities, such as

position and momentum, are associated with Hermitian operators, denoted observables,

and states of a system are represented by unit vectors in a separable Hilbert space carrying

a unitary representation of the algebra formed by the observables. We call this state space

the quantum Hilbert space. In the case of a spinless particle moving in R
n, the quantum

mechanics would be governed by the so called Heisenberg algebra

[x̂i, x̂j ] = 0,

[p̂i, p̂j ] = 0,

[x̂i, p̂j ] = iδi,j~. (1.6)



1. Single-Particle Formalism 8

Schrödinger’s wave-mechanical formulation is an irreducible unitary representation of

the algebra (1.6) on the separable Hilbert space L2(Rn), with the position and momentum

operators acting according to

x̂iψ(x) = xiψ(x), p̂iψ(x) = −i~∂ψ(x)
∂xi

. (1.7)

This is often called the position representation, and it is known, by the Stone-von Neumann

theorem, to be unique up to unitary transformations [20].

The state space of Heisenberg’s matrix formulation is isomorphic to the quantum Hilbert

space L2(Rn) of Schrödinger’s wave mechanics, and the position and momentum matrices

satisfy (1.6). The actions of the position and momentum matrices are easily mapped to

(1.7), and constitute an equally valid formulation of quantum mechanics. Similarly, we

could imagine other representations of the quantum Hilbert space giving rise to alternative,

but related, formulations.

A more abstract form of the quantum Hilbert space is revealed by introducing pairs of

canonical operators

ai =
1√
2~

(x̂i + ip̂i) a†i =
1√
2~

(x̂i − ip̂i) , (1.8)

satisfying [ai, aj] = [a†i , a
†
j] = 0 and [ai, a

†
j ] = δi,j. This implies that the Heisenberg algebra

(1.6) can be realised on the Fock space

Fn = ⊗nF = {|i1, ..., in〉}∞i1,...,in=0, (1.9)

with |i1, ..., in〉 = |i1〉 ⊗ ...⊗ |in〉 = 1√
i1!...,in!

(a†1)
i1 |0〉 ⊗ ...⊗ (a†n)

in |0〉 and a1 |0, i2, ..., in〉 =
a2 |i1, 0, ..., in〉 = ... = an |i1, ..., in−1, 0〉 = 0. The elements of Fn therefore form a basis

for the quantum Hilbert space, and a general state of the latter is expressible as a vector

|ψ〉 =∑∞i1,...,in=0 ci1,...,in |i1, ..., in〉 with ci1,...,in ∈ C.

Let us now restrict ourselves to two dimensions and consider the generalisation to non-

commutative quantum mechanics. First we turn the position coordinates into operators

and impose the commutation relation

[x̂i, x̂j ] = iǫi,jθ. (1.10)

Here ǫi,j is the completely antisymmetric tensor with ǫ1,2 = 1, and the non-commutative
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parameter, θ, is real with dimension of an area. Without loss of generality, we may take

it to be positive. This modification is reflected at the level of the Heisenberg algebra

by substituting the first line of (1.6) with (1.10). The formulation of non-commutative

quantum mechanics then amounts to constructing a unitary representation of a modified

Heisenberg algebra on a separable Hilbert space. In fact, since (1.10) does not change the

rank of the Heisenberg algebra, the quantum Hilbert space of the non-commutative system

must be identical to that of the commutative system on an abstract level. As we have

seen, however, we are free to represent the quantum Hilbert space in whatever way we like,

and we will proceed in the spirit of Scholtz et al. [15], where a consistent formulation and

interpretation of non-commutative quantum mechanics is achieved by a representation of

the quantum Hilbert space as the set of Hilbert-Schmidt operators. This approach, which

is termed ’the operatorial approach’ in [13], features a natural interpretation of position

measurement in the non-commutative plane. The remainder of this chapter is largely

based on [15] and serves as a point of departure for the development of scattering theory

in Chapter 2 and the generalisation to many-particle systems in Chapter 3.

1.1 The Non-Commutative Classical Configuration Space

In the position representation (1.7) of commutative quantum mechanics in a plane, the

classical configuration space R2 of position coordinates plays an important role as the field

over which the wavefunctions of the quantum Hilbert space are defined. It is essential for

this construction that the position coordinates commute, so that both coordinates may be

specified simultaneously. In non-commutative quantum mechanics, however, (1.10) leads

to an uncertainty relation for position measurement, analogous to Heisenberg’s uncertainty

relation for position and momentum:

∆x1∆x2 ≥ θ

2
. (1.11)

Hence, one cannot specify the two position coordinates of a particle simultaneously. The

purpose of this section is to construct the equivalent of a classical configuration space

for non-commutative quantum mechanics. We will do so in a manner which leads to a

particular representation of the quantum Hilbert space in section 1.2.

We begin by introducing a new pair of operators

b =
1√
2θ

(x̂1 + ix̂2), b† =
1√
2θ

(x̂1 − ix̂2). (1.12)
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It is easy to verify that [b, b†] = 1, and therefore the set {b, b†}, or alternatively {x̂1, x̂2},
form an irreducible set of operators on the boson Fock space F = {|n〉}∞n=0 with |n〉 =

1√
n!
(b†)n |0〉 and b |0〉 = 0.

In terms of this Fock basis we may define a set of coherent states [21]:

|z〉 = e−
1
2
|z|2ezb

† |0〉

= e−
1
2
|z|2

∞∑

n=0

zn√
n!

|n〉 . (1.13)

z here is a dimensionless complex number, however, we may write it as z = 1√
2θ
(x1 + ix2),

which leads to the natural interpretation of (x2, x2) as dimensionfull position coordinates.

In fact, |z〉 is a minimum uncertainty state in position, satisfying (1.11) with equality, and

b |z〉 = z |z〉. Motivated by this, we define the non-commutative classical configuration

space as

Hc = span {|n〉}∞n=o , (1.14)

where the span is over the field of complex numbers. The notion of a point in this space

is most closely emulated by the set of coherent states (1.13).

The number states |n〉 form an orthogonal basis, implying that the identity operator

on Hc may be resolved as

Îc =
∞∑

n=0

|n〉 〈n| . (1.15)

The coherent states, on the other hand, are not orthogonal. Rather, they constitute an

overcomplete basis for Hc, yet they do allow the following alternative resolution of the

identity operator:

Îc =
1

π

∫
d2z |z〉 〈z| . (1.16)

Here, and throughout the rest of the thesis, d2z = dzdz̄. Coherent states will be used

extensively in the remainder of this thesis, and a derivation of their properties mentioned

above, including the resolution of the identity operator, is provided in Appendix A.
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1.2 The Quantum Hilbert Space

Let us denote the set of operators acting in on the classical configuration space (1.14)

by S. As noted in section 1.1, the coordinate operators {x̂1, x̂2} form an irreducible set

on the classical configuration space, and hence any operator in S should be expressible in

terms of these (i.e. Ô(x̂1, x̂2) ∈ S). But, since Hc has a Fock basis, any operator acting in

on it can also be expressed in the form Ô =
∑∞

i,j=0 ci,j |i〉 〈j|, and there exists a trivial map

between operators of this form and the Fock space F2 = {|m,n〉}∞m,n=0 defined in (1.9).

We therefore conclude that S is isomorphic to F2, and as a result, it should be possible

to represent states in the quantum Hilbert space by operators of the form ψ(x̂1, x̂2) ∈ S.
In [15] this is accomplished by equipping S with the trace inner product

(φ(x̂1, x̂2), ψ(x̂1, x̂2)) = trc(φ(x̂1, x̂2)
†ψ(x̂1, x̂2))

=
∞∑

n=0

〈n|φ(x̂1, x̂2)†ψ(x̂1, x̂2) |n〉

=
1

π

∫
d2z 〈z|φ(x̂1, x̂2)†ψ(x̂1, x̂2) |z〉 , (1.17)

where the trace is taken over Hc. The quantum Hilbert space Hq is then defined as

Hq = {ψ(x̂1, x̂2) : ψ(x̂1, x̂2) ∈ B(Hc),
(
ψ(x̂1, x̂2)

†, ψ(x̂1, x̂2)
)
<∞}, (1.18)

where B(Hc) ⊆ S is the set of bounded operators on Hc. These are commonly known as

the set of Hilbert-Schmidt operators, and the inner product (1.17) of a state with itself is

the so called Hilbert-Schmidt norm.

In ’bra-ket’ notation we will denote elements of the quantum Hilbert space by |ψ) ≡
ψ(x̂1, x̂2), to distinguish them from elements of the classical configuration space denoted

by |·〉. We must also distinguish between Hermitian conjugation on Hc and Hq. The

symbol † will be reserved for the former and the symbol ‡ for the latter.

We define the quantum position and momentum operators to act on an element ψ(x̂1, x̂2) ∈
Hq as follows:

X̂iψ(x̂1, x̂2) = x̂iψ(x̂1, x̂2),

P̂iψ(x̂1, x̂2) =
~

θ
ǫi,j [x̂j, ψ(x̂1, x̂2)] . (1.19)

The position operator acts by left operator multiplication, whereas the momentum oper-
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ator acts adjointly. The commutator takes the role of a spatial derivative with respect to

the non-commutative coordinates. It is easily verified using (1.10) that (1.19) satisfies the

following modified Heisenberg algebra:

[X̂i, X̂j ] = iǫi,jθ,

[P̂i, P̂j] = 0,

[X̂i, P̂j] = iδi,j~. (1.20)

(1.19) is a unitary representation of (1.20) on (1.18) [15]. The non-commutative Schrödinger

equation becomes

i~
∂

∂t
ψ(x̂1, x̂2) =

(
1

2m

(
P 2
1 + P 2

2

)
+ V (X̂1, X̂2)

)
ψ(x̂1, x̂2). (1.21)

It is sometimes convenient to adopt an alternative notation, in which operators are

labeled by their direction of action. This is adopted for example in [11], where one seeks

to give an alternative interpretation to the right hand side of the quantum states. In this

notation we first rename our position operators: X̂L
i ≡ X̂i. Secondly, we define a set of

right-acting operators {X̂R
1 , X̂

R
2 }, acting according to

X̂R
i ψ(x̂1, x̂2) = ψ(x̂1, x̂2)x̂i. (1.22)

These satisfy
[
X̂R
i , X̂

R
j

]
= −iǫi,jθ. We will not attempt to attach any meaning to the

right-acting operators here, but we note that they allow for an alternative expression of

the momentum operators:

P̂iψ(x̂1, x̂2) =
~

θ
ǫi,j

(
X̂L
j − X̂R

j

)
. (1.23)

For our purposes it will often be most convenient to work with operators whose action

involves left or right multiplication by b and b† rather than x̂1 and x̂2. We therefore

introduce the operators

BL =
1√
2θ

(
X̂L

1 + iX̂L
2

)
, B‡L =

1√
2θ

(
X̂L

1 − iX̂L
2

)
,

BR =
1√
2θ

(
X̂R

1 + iX̂R
2

)
, B‡R =

1√
2θ

(
X̂R

1 − iX̂R
2

)
,

P̂ = P̂1 + iP̂2, P̂ ‡ = P̂1 − iP̂2, (1.24)
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with corresponding actions

BLψ(x̂1, x̂2) = bψ(x̂1, x̂2),

B‡Lψ(x̂1, x̂2) = b†ψ(x̂1, x̂2),

BRψ(x̂1, x̂2) = ψ(x̂1, x̂2)b,

B‡Rψ(x̂1, x̂2) = ψ(x̂1, x̂2)b
†,

P̂ψ(x̂1, x̂2) = −i~
√

2

θ
(BL −BR)ψ(x̂1, x̂2)

= −i~
√

2

θ
[b, ψ(x̂1, x̂2)] ,

P̂ ‡ψ(x̂1, x̂2) = i~

√
2

θ

(
B‡L −B‡R

)
ψ(x̂1, x̂2)

= i~

√
2

θ

[
b†, ψ(x̂1, x̂2)

]
. (1.25)

It is straightforward to check that P̂ P̂ ‡ = P̂ ‡P̂ = P̂ 2
1 + P̂ 2

2 and
[
BL, B

‡
L

]
=
[
B‡R, BR

]
= 1,

[
P̂ , P̂ ‡

]
=
[
BL, P̂

]
=
[
BR, P̂

]
=
[
B‡L, P̂

‡
]
=
[
B‡R, P̂

‡
]
= 0 and

[
BL, P̂

‡
]
=
[
BR, P̂

‡
]
=

[
B‡L, P̂

]
=
[
B‡R, P̂

]
= i~

√
2
θ
. In terms of these operators the Schrödinger equation (1.21)

becomes

i~
∂

∂t
ψ(b†, b) =

(
1

2m
P ‡P + V (B‡L, BL)

)
ψ(b†, b). (1.26)

1.2.1 A Position Basis for the Quantum Hilbert Space

The quantum Hilbert space was defined in (1.18) as the set of bounded operators acting

in on the classical configuration space. Operators acting in on the classical configuration

space have the form |·〉 〈·|, hence a general element of the quantum Hilbert space, in

’bra-ket’ notation, should take the form

|ψ) =
∞∑

n,m=0

cn,m |n,m) , (1.27)

where |n,m) = |n〉 〈m| and cn,m = 〈n|ψ(b†, b) |m〉 ∈ C. The vectors |ψ) are diagonal

in this basis only if [ψ(b†, b), b†b] = 0. However, according to a well-known property of

operators on boson Fock space, any state |ψ) ∈ Hq has a diagonal form in terms of the
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states |z) = |z〉 〈z| [21]1:

|ψ) =
1

π

∫
d2z
[
e−∂z̄∂z 〈z|ψ(b†, b) |z〉

]
|z) . (1.28)

It follows from the definition of the coherent state that,

BL |z) = z |z) . (1.29)

Furthermore,

|z) = T (z) |z = 0) , (1.30)

where T (z) = ez(B
‡
L
−B‡

R
)−z̄(BL−BR) = e

i
~
(x1P̂1+x2P̂2) [11]. This looks exactly like the transla-

tion operator in commutative quantum mechanics. (1.28), (1.29) and (1.30) indicate that

the states |z) play a role analogous to position states in commutative quantum mechanics.

Further justification for this is provided in [22]. From here onwards we will speak loosely

of the states |z) as position states, keeping in mind that this is merely an analogy.

The overlap of such a position state with a general state |ψ) ∈ Hq becomes

(z| ψ) = trc
(
|z〉 〈z|ψ(b†, b)

)

= 〈z|ψ(b†, b) |z〉

≡ ψ(z̄, z). (1.31)

In the last step it is implied that the operator ψ(b†, b) is normal ordered (i.e. with all b†

operators in ψ̂ appearing to the left of the b operators), which is not a restriction, because

any operator can be brought to this form by application of the commutation relation

[b, b†] = 1. In particular, if |ψ) = |w) is another position state, we obtain

(z| w) = e−|z−w|
2

. (1.32)

Keeping in mind that the complex numbers z and w are normalised by a factor of 1/
√
2θ,

we see that this Gaussian overlap has a width of order
√
θ, which reflects the fact that

particles may not be localised simultaneously in two directions beyond this length scale.

In the commutative limit we recover a Dirac delta function, as we should for position

1See proof in C.1.1
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states in commutative quantum mechanics.

Consider for a moment the full set of operators S acting in on the classical configuration

space Hc, of which Hq form a subset. Again we assume normal ordering. Now we define

the map

M : S → C,

M(Â) = A(z̄, z), (1.33)

with A(z̄, z) = 〈z| Â |z〉. M is a isomorphism 2, because it is onto,M(Î) = 1 andM(ÂB̂) =

A(z̄, z) ⋆z B(z̄, z) with the star denoting the Voros product

⋆z = e
←−
∂z
−→
∂z̄ , (1.34)

where ∂z ≡ ∂
∂z

and ∂z̄ ≡ ∂
∂z̄
.

The operators acting on the quantum Hilbert space are expressible in terms of left or

right acting operators on the classical configuration space. For a left acting operator, OL,

we have

(z|OL |ψ) = 〈z|OLψ(b
†, b) |z〉

= OL(z̄, z) ⋆z ψ(z̄, z). (1.35)

For a right acting operator, OR,

(z|OR |ψ) = 〈z|ψ(b†, b)OR |z〉

= ψ(z̄, z) ⋆z OR(z̄, z). (1.36)

In particular, we have

(z|BL |ψ) = z ⋆z ψ(z̄, z),

(z|B‡L |ψ) = z̄ ⋆z ψ(z̄, z),

(z|BR |ψ) = ψ(z̄, z) ⋆z z,

(z|B‡R |ψ) = ψ(z̄, z) ⋆z z̄. (1.37)

2See proof in C.1.2



1. Single-Particle Formalism 16

These relations can be used to express the momentum operators in terms of derivatives:

(z|P̂ |ψ) = −i~
√

2

θ

∂

∂z̄
ψ(z̄, z),

(z|P̂ ‡|ψ) = −i~
√

2

θ

∂

∂z
ψ(z̄, z). (1.38)

The Schrödinger equation (1.26) can be written in the form

i~
∂

∂t
(z| ψ) = − ~

2

mθ

∂2

∂z∂z̄
(z| ψ) + V (z̄, z) ⋆z (z| ψ) . (1.39)

The map M allows us to formulate non-commutative quantum mechanics on a space of

functions of scalar coordinates. This approach is common in non-commutative geometry

[23] and non-commutative field theory [4], however it comes at the expense of modifying

the operation of multiplication, which introduces an explicit non-locality in the theory,

because knowledge of a function up to all its derivatives is required at every point.

As a final note of this section, consider the overlap of two arbitrary states in the quantum

Hilbert space, φ(b†, b), ψ(b†, b) ∈ Hq. This is defined in (1.17) as a trace over Hc, which in

the |z) basis becomes

(φ| ψ) =
1

π

∫
d2z 〈z|φ(b†, b)†ψ(b†, b) |z〉

=
1

π

∫
d2z φ̄(z̄, z) ⋆z ψ(z̄, z)

=
1

π

∫
d2z (φ| z) ⋆z (z| ψ) , (1.40)

as a result of the homomorphism 1.33. Since the states φ(b†, b) and ψ(b†, b) were arbitrary,

we conclude that the identity operator on the quantum Hilbert space may be expressed as

Îq =
1

π

∫
d2z |z) ⋆z (z| . (1.41)

This will be very useful in the next section, where we discuss the meaning of position

measurement in non-commutative quantum mechanics.

1.2.2 The Meaning of Position Measurement

The state of a quantum system may be encoded in the form of a density matrix ρ̂.

We distinguish between pure states, which may be expressed as ρ̂ = |ψ) (ψ|, |ψ) ∈ Hq



1. Single-Particle Formalism 17

and mixed states, of the form ρ̂ =
∑

i ci |ψi) (ψi|, with ci ∈ R
+ and

∑
i ci = 1 3. The

probability of measuring a system in a state |α) given that it was prepared in the state |ψ)
would be P (|α)) = |(α|ψ)|2 = (α|ρ̂|α). This may alternatively be expressed as P (|α)) =
trq(|α) (α| ρ̂). We note, however, that if |α) = |z) the quantity trq(|z) (z| ρ̂) does not

measure the probability of finding the particle at position z, because Îq 6=
∫
d2z |z) (z|.

To define non-commutative position measurement we need to introduce the concept of a

Positive Operator Valued Measure (POVM):

Let us define the positive definite operator

πz =
1

π
|z) ⋆z (z| . (1.42)

From (1.41) it is clear that
∑

z πz = 1, and πz fulfils the requirement of a positive POVM

[25]: it decomposes the identity operator into positive definite terms, thereby allowing for

a natural probabilistic interpretation. For a non-commutative particle prepared in a state

ρ̂ we therefore define position measurement by

P (z) = trq(πzρ̂). (1.43)

If ρ̂ = |ψ) (ψ| this is equivalent to P (z) = 1
π
(ψ| z) ⋆z (z| ψ). We note that this definition

ensures that
∫
d2z P (z) = 1.

The non-commutative position measurement is not projective, because π2
z 6= πz, and,

as a result, two consecutive position measurements need not yield the same answer. The

cost of accommodating non-commutative position measurement is therefore to relax von

Neumann’s postulate of projective measurement, which states that by performing a mea-

surement, the system is forced into the eigenstate of the observable corresponding to the

realised outcome [18]. This relaxation is permissible within the familiar framework of

quantum mechanics in terms of POVMs, however, it requires us to think carefully about

what is meant by measuring a particle’s position.

[25] refers to ’state discrimination’ rather than ’measurement’. This captures the sense

of a measurement as an either/or process; a detector either clicks or it does not when

it detects a particle. Because position states in non-commutative quantum mechanics

overlap, we cannot perfectly discriminate them, and all the position states contribute to

the probability of a detector to click. The effect of this is that space becomes fuzzy; there

3An introduction to density matrices is given, for example, by Sakurai [24]
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is a limit to the resolution of space and one cannot localise a particle precisely to a point z.

One may only conclude that the particle most likely was within the peak of the Gaussian

position state |z). After measurement the system will be in a superposition of the different

states that might have triggered the detection, and this explains why the measurement is

non-projective. We conclude that the act of position measurement in non-commutative

quantum mechanics perturbs the system.

1.2.3 The Non-Commutative Momentum Basis

In [15] it was demonstrated that the non-commutative analogue of a plane wave has

the form

ψ(b†, b) = e
i
~

√
θ
2
(pb†+p̄b). (1.44)

Here p is the complex momentum p = (p1 + ip2).

ψ(b†, b) =
1

π

∫
d2ze

θ

4~2
|p|2e

i
~

√
θ
2
(pz̄+p̄z) |z〉 〈z| . (1.45)

This provides a natural definition of a momentum ket in the quantum Hilbert space:

|p) ≡
√

θ

2π3~2

∫
d2ze

θ

4~2
|p|2e

i
~

√
θ
2
(pz̄+p̄z) |z) . (1.46)

The prefactor is included for reasons that will become evident shortly. It is straightforward

to show that

P |p) = p |p) ,

P ‡ |p) = p̄ |p) , (1.47)

as desired. The overlap of a state |z) with such a momentum state is

(z| p) =

√
θ

2π~2
e−

θ

4~2
|p|2e

i
~

√
θ
2
(pz̄+p̄z), (1.48)
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and the momentum representation of an arbitrary state |ψ) ∈ Hq is

(p| ψ) = trc

(√
θ

2π~2
e−

i
~

√
θ
2
(pb†+p̄b)ψ(b†, b)

)

=
1

π

∫
d2z (p|z) ⋆z (z|ψ)

=

√
θ

2π3~2
e

θ

4~2
|p|2
∫
d2z e−

i
~

√
θ
2
(pz̄+p̄z) (z| ψ) . (1.49)

Inserting (1.48) in (1.49) one can show that that the momentum states form an orthogonal

basis:

(p| p′) = δ(p1 − p′1)δ(p2 − p′2). (1.50)

It is also straightforward to prove from (1.41) and (1.48) that the identity operator on the

quantum Hilbert space may be expressed as

Îq =

∫
d2p |p) (p| , (1.51)

where d2p = dpdp̄ = dp1dp2.

(1.50) and (1.51) show that the momentum basis of non commutative quantum me-

chanics is identical to that of commutative quantum mechanics. The difference lies in

the transformation between the position and momentum bases. In commutative quan-

tum mechanics this is a Fourier transform. In non-commutative quantum mechanics

it is a Fourier transform followed by multiplication by a factor of
√

2θ
π~2
e

θ

4~2
|p|2 , accord-

ing to (1.49). In general, a function f(z̄, z) in the non-commutative position space be-

comes f(p̄, p) =
√

2θ
π~2
e

θ

4~2
|p|2 f̃(

√
2θ
~
p̄,
√
2θ
~
p) in momentum space, where f̃( p̄

~
, p
~
) is the nor-

mal Fourier transform of f(z̄, z). If we did not know that the position space was non-

commutative we might attempt to Fourier transform
√

2θ
π~2
e

θ

4~2
|p|2 f̃(

√
2θ
~
p̄,
√
2θ
~
p) back to

position space. However this is only possible if f̃ falls off sufficiently fast at high mo-

menta. The correct inverse transform from the momentum to the position basis is

f(z̄, z) =

√
θ

2π~2

∫
d2pe

i
~

√
θ
2
(p̄z+pz̄)

(
e−

θ

4~2
|p|2f(p̄, p)

)
. (1.52)

We note that high energy contributions are suppressed. Since high momentum corresponds

to short length scales, this effectively means that functions in the position representation
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must be smooth at the scale of
√
θ. This is equivalent to requiring that the functions be

of Schwartz class.

1.3 The Physical Implications of Non-Commuting Coordinates

The previous sections focused on the mathematical formulation of non-commutative

quantum mechanics. This section looks at some generic physical implications of this

formalism.

1.3.1 Breaking of Time Reversal Symmetry

In commutative quantum mechanics the time reversal operator is an antiunitary op-

erator which acts on the quantum Hilbert space by complex conjugation [24]. In non-

commutative quantum mechanics we define the time reversal operator Θ which acts by

Hermitian conjugation [15]:

Θψ(x̂1, x̂2) = ψ†(x̂1, x̂2). (1.53)

From the above definition the following relations may be derived:

ΘX̂L
i Θ
−1 = X̂R

i ,

ΘX̂R
i Θ

−1 = X̂L
i .

(1.54)

As a result, the momentum operators, which act adjointly, change sign under time reversal,

as they should:

ΘP̂iΘ
−1 = −P̂i. (1.55)

For a general Hamiltonian with a position dependent potential V (B‡L, BL), ΘHΘ−1 6=
H, and hence time reversal symmetry is broken. The exception would be if [V, ψ] = 0 for

all ψ ∈ Hq, but Schur’s lemma tells us that this is only possible if V is a multiple of the

identity. Hence, time reversal symmetry is only present for constant potentials.

Breaking of time reversal symmetry has been explicitly shown for the non-commutative

harmonic oscillator [15] and the non-commutative well [26], where in both cases states of

opposite angular momenta are found to have different energies.
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A possible way to restore time reversal symmetry is by adding a term to the Hamiltonian

which acts from the right. This leads to speculations about possible interpretations of the

right acting operators, and we will refrain from that discussion here.

1.3.2 Confinement

In section 1.2.3 it was shown that the momentum basis is unchanged by the introduction

of non-commuting position coordinates, and, as a consequence, a free particle is unaffected

by this modification [15]. The effects of non commutativity only manifest themselves once

a particle is confined by some potential. First of all, as discussed in section 1.3.1, the

presence of a non-constant potential must result in a breaking of time reversal symmetry.

Secondly, there are several conceptual and practical problems concerned with confinement

in a non-commutative space. As was established in section 1.2.3, there is a shortest length

scale at which a wavefunction may vary, and therefore, one would suppose, a smallest

area in which a particle may be confined. In addition, one cannot have sharp potential

boundaries in a fuzzy space.

[26] generalises the concept of piece-wise constant potentials to non-commutative quan-

tum mechanics by means of projection operators on the non-commutative quantum Hilbert

space, however the method is only applicable to radially symmetric potentials. The def-

inition of arbitrary piece-wise constant potentials in a non-commutative space is still an

outstanding challenge.



Chapter 2

Scattering Theory

In this chapter we discuss scattering in the non-commutative plane, more specifically

scattering of a particle by a potential. The scattering theory in two dimensions for com-

mutative quantum mechanics is well known and is presented by Adhikari in [27].

Scattering theory in non-commutative quantum mechanics has also been studied previ-

ously. For example, the scattering from a non-commutative well has been studied numeri-

cally by Thom [28]. From a theoretical viewpoint, Demetrian and Kochan [29] have found

non-commutative corrections to the scattering cross section to first order. The aim of this

chapter is to develop non-commutative scattering theory in a more rigorous fashion, fol-

lowing the Lippmann-Schwinger approach and starting from the consistent interpretation

of position measurement presented in the previous chapter.

2.1 Conserved Currents in Non-Commutative Quantum Mechan-

ics

In 1.2.2 it was shown that for a system in a pure state ρ̂ = |ψ) (ψ| with |ψ) ∈ Hq,

the probability of measuring the particle at position z is P (z) = trq(πzρ̂) = 1
π
(ψ| z) ⋆z

(z| ψ). If we view z as a free parameter we may therefore regard the function P (z) as a

probability density function. For a general dynamic system this probability distribution

will change with time, however, the total probability must remain unity. Thus, there must

exist a continuity equation for the conservation of probability. In conventional quantum

mechanics this continuity equation is

∂

∂t
ρ+ ~∇ ·~j = 0, (2.1)

with ρ = ψ̄(x)ψ(x) and ~j = i~
2m

(
ψ~∇ψ̄ − ψ̄ ~∇ψ

)
[30]. Correspondingly, it was shown in

[15] that the quantity ρ̂ = ψ̂†ψ̂ is conserved in non-commutative quantum mechanics:

∂

∂t
ρ̂ = [x̂2, j1] + [x̂1, j2]. (2.2)

22
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This time the currents are defined by

j1 =
~

2miθ2

{
ψ̂†[x̂2, ψ̂]− [x̂2, ψ̂

†]ψ̂
}
,

j2 =
~

2miθ2

{
ψ̂†[x̂1, ψ̂]− [x̂1, ψ̂

†]ψ̂
}
. (2.3)

In C.2.1 we derive the equivalent of the latter continuity equation in the non-commutative

position representation, i.e. for the quantity 1
π
〈z|ψ̂†ψ̂|z〉 = 1

π
ψ̄(z) ⋆z ψ(z) = P (z), with

ψ(z) = (z|ψ). We find that the continuity equation

∂

∂t
P (z) +

∂

∂z
jz +

∂

∂z̄
jz̄ = 0, (2.4)

is satisfied, with

jz =
~

2iπmθ

[
ψ̄(z) ⋆z

(
∂

∂z̄
ψ(z)

)
−
(
∂

∂z̄
ψ̄(z)

)
⋆z ψ(z)

]
,

jz̄ =
~

2iπmθ

[
ψ̄(z) ⋆z

(
∂

∂z
ψ(z)

)
−
(
∂

∂z
ψ̄(z)

)
⋆z ψ(z)

]
. (2.5)

In scattering situations one often considers radially symmetric potentials, and it is most

convenient to work with polar coordinates. We therefore introduce the radial coordinate

r and angular coordinate φ, such that z = reiφ and z̄ = re−iφ. Correspondingly,

∂

∂z
=

e−iφ

2

[
∂

∂r
− i

r

∂

∂φ

]
,

∂

∂z̄
=

eiφ

2

[
∂

∂r
+
i

r

∂

∂φ

]
, (2.6)

and it is shown in C.2.2 that the radial form of the continuity equation is

∂

∂t
P (z) +

1

r

∂

∂r
(rjr) +

1

r

∂

∂φ
jφ = 0, (2.7)

with

jr =
1

2

(√
z̄

z
jz +

√
z

z̄
jz̄

)
,

jφ = − i

2

(√
z̄

z
jz −

√
z

z̄
jz̄

)
. (2.8)
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2.1.1 The Differential Scattering Cross Section

In a two-dimensional scattering situation, where we have an incoming current and an

outgoing current, we define the differential cross section by

dσ

dφ
=

|jout| |r|dφ
|jin|

. (2.9)

This is a probability distribution for an incoming particle to be scattered in a certain

angular direction, i.e.

dσ

dφ
dφ =

# of particles scattered into dφ per unit time

# of incident particles crossing unit ”area” per unit time
. (2.10)

(We say ”area” to keep the analogy with three-dimensional scattering.) The total cross

section is defined as

σ =

∫ 2π

0

dσ

dφ
dφ, (2.11)

and could be thought of as the effective area of the scattering potential as seen by an

incident particle.

To actually calculate the differential cross section we need to find the incoming and

outgoing currents, which again requires knowledge of the full eigenfunction of the Hamil-

tonian describing the scattering process. To do this we will use the Lippmann-Schwinger

approach.

2.2 The Lippmann-Schwinger Equation

Suppose a scattering process is described by the Hamiltonian (Ĥ0+V̂ )|ψ) = E|ψ), where
Ĥ0 is the free Hamiltonian and V̂ is the scattering potential. In the absence of a scattering

potential the corresponding eigenfunctions would be those of a free particle, which we will

denote by |φ), i.e. Ĥ0|φ) = E0|φ), with E0 being the energy of the free particle. If |ψ) is
the eigenfunction of the full Hamiltonian, we have Ĥ|ψ) = (Ĥ0 + V̂ )|ψ) = E|ψ). One can

argue that, if the scattering process is elastic, the inclusion of the potential V̂ should not

alter the energy, i.e. E = E0. This leads one to postulate the following implicit form of

the full wavefunction:

|ψ) = |φ) + 1

E − Ĥ0

V̂ |ψ). (2.12)
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If one does not worry for the moment about the singular nature of 1/(E − Ĥ0), it can

be seen that multiplication of (2.12) with E − Ĥ0 returns the desired full-Hamiltonian

eigenvalue equation.

To remedy the singularity problem in (2.12) it is customary to add a small imaginary

part to the denominator of the operator 1/(E − Ĥ0), such that

|ψ±) = |φ) + 1

E − Ĥ0 ± iε
V̂ |ψ±). (2.13)

The latter is known as the Lippmann-Schwinger equation, and the + and - solutions

correspond to a plane wave plus an outgoing or incoming circular wave respectively [24].

The physically interesting case is the one with a plus, corresponding to a incident plane

wave plus an outgoing scattered wave.

The Lippmann-Schwinger equation is independent of the particular choice of basis, and

it should therefore be valid in non-commutative quantum mechanics as in commutative

quantum mechanics. We are interested in the non-commutative position representation,

i.e. (z|ψ+):

(z|ψ+) = (z|φ) + (z| 1

E − Ĥ0 ± iε
V̂ |ψ+). (2.14)

After some tedious manipulation, as carried out in C.2.3, one obtains the more explicit

form of (2.14),

(z|ψ+) =

√
θ

2π~2


e−

θ

4~2
|q|2+ i

~

√
θ
2
(qz̄+q̄z) +

√
i
ei

√
2θ
~
|q||z|

√√
2θ
~
|q||z|

f(q, p)


 , (2.15)

which evidently has the form of a incoming plane wave plus an outgoing circular wave.

The amplitude of the latter is given by

f(q, p) = −mθ
~2

√
2

π

√
2π~2

θ

∫
d2w e−

i
~

√
θ
2
(pw̄+̄w)(w|V̂ |ψ+). (2.16)

This is valid in the limit where the point of observation is far outside the scattering

potential, and (2.16) can be shown to coincide exactly with the result of [27] in the

commutative limit.

We may now proceed to find an expression for the differential scattering cross-section

in terms of the scattering amplitude (2.16). To do this we need to calculate the currents



2. Scattering Theory 26

jz and jz̄ for both the incident and scattered particles. For the incident particles this is

straightforward: Using (2.5) we have

jinz =
~

2iπmθ

θ

2π~2

[
e−

θ

4~2
|q|2− i

~

√
θ
2
(qz̄+q̄z) ⋆z

(
∂

∂z̄
e−

θ

4~2
|q|2+ i

~

√
θ
2
(qz̄+q̄z)

)

−
(
∂

∂z̄
e−

θ

4~2
|q|2− i

~

√
θ
2
(qz̄+q̄z)

)
⋆z e

− θ

4~2
|q|2+ i

~

√
θ
2
(qz̄+q̄z)

]

=
1

4iπ2m~

[
e−

θ

4~2
|q|2− i

~

√
θ
2
(qz̄+q̄z)e

θ

2~2
|q|2
(
i

~

√
θ

2
qe−

θ

4~2
|q|2+ i

~

√
θ
2
(qz̄+q̄z)

)

−
(
− i

~

√
θ

2
qe−

θ

4~2
|q|2− i

~

√
θ
2
(qz̄+q̄z)

)
e

θ

2~2
|q|2e−

1
4~2
|q|2+ i

~

√
θ
2
(qz̄+q̄z)

]

=

√
2θq

4π2m~2
, (2.17)

and similarly

jinz̄ =

√
2θq̄

4π2m~2
. (2.18)

We may, without loss of generality, assume that the incoming current has only an x-

component. Then

|jin| = |1
2

(
jinz + jinz̄

)
|

=

√
2θ|q|

4π2m~2
. (2.19)

The corresponding calculation for the outgoing scattered current is considerably more

complicated and is provided in C.2.4. The final result is

jr =
1

4π2m~|z|e
θ

2~2
|q|2 |f(q, p)|2,

jφ = 0. (2.20)

Accordingly, by substituting (2.19) and (2.20) into (2.9), with |r| = |z|
√
2θ, we obtain the

differential cross section

dσ

dφ
=

~

|q|e
θ

2~2
|q|2 |f(q, p)|2. (2.21)
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2.2.1 The Transfer Matrix

The Lippmann-Schwinger equation gives an implicit expression for the wavefunction of

the full scattering Hamiltonian. This suggests that the full wavefunction could be obtained

recursively. In C.2.5 it is shown that the scattering amplitude (2.16) may be expressed as

f(q, p) = −2mπ2

√
2

π
e−

θ

4~2
|p|2(p|V̂ |ψ+). (2.22)

Now, let us define the operator T̂ , such that

V̂ |ψ+) = T̂ |q), (2.23)

where |q) is the incident plane wave. Then, acting on (2.13) from the left with V̂ yields

T̂ |q) = V̂ |q) + V̂
1

E − Ĥ0 + iε
T̂ |q), (2.24)

and hence we have the following implicit definition of T̂ :

T̂ = V̂ + V̂
1

E − Ĥ0 + iε
T̂ . (2.25)

Now, let us define Ĝ = (E − Ĥ0 + iε)−1. This is known as the free propagator 1. We then

see that we may write

T̂ = V̂ + V̂ ĜV̂ + V̂ ĜV̂ ĜV̂ + ... . (2.26)

Correspondingly, we may write the scattering amplitude as

f(q, p) = −2mπ2

√
2

π
e−

θ

4~2
|p|2(p|T̂ |q)

= −2mπ2

√
2

π
e−

θ

4~2
|p|2
{
(p|V̂ |q) + (p|V̂ ĜV̂ |q) + (p|V̂ ĜV̂ ĜV̂ |q) + ...

}
.(2.27)

The latter form of the scattering amplitude has a clear intuitive interpretation: The

incident particle may be scattered several times while traversing the scattering potential,

before emerging on the other side. This give rise to the series of terms in the scattering

1A subscript 0 is often included to distinguish it from the full propagator, however this is not an issue
here since we do not discuss the full or ’dressed’ propagator.
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amplitude. A term V̂ appear for each scattering event, and in between these events the

particle propagates in a manner governed by the propagator Ĝ.

The above interpretation is the same as in commutative quantum mechanics, and can

be found in text books like [24]. In fact, since the commutative and non-commutative mo-

mentum states are identical, one might be lead to conclude that the term (p|T̂ |q) in (2.27)

is exactly the same as in commutative quantum mechanics. In that case, when inserting

(2.27) in (2.21) one obtains the exact same differential cross section as for commutative

scattering, because the exponential terms cancel out. However, the series of scattering

terms (p|V̂ Ĝ...V̂ |q) is actually not the same as in commutative quantum mechanics, be-

cause V̂ is now dependent on the non-commuting position coordinates. The consequence

of this will be illustrated in the next section, where we focus on the contribution of the

first term (p|V̂ |q) in (2.27).

2.2.2 The Born Approximation

We consider scattering potentials with a finite range, and hence, far from the potential

a particle will move freely. One would therefore expect the full wavefunction of the scat-

tering potential to be merely a perturbation of that of the free particle. Therefore, as a

first attempt, we will insert the incident free wavefunction on the right hand side of the

Lippmann-Schwinger equation, i.e.

|ψ) = |p) + 1

E − Ĥ0

V̂ |p), (2.28)

where |p) is the usual momentum state of an incident particle. We note that this is

identical to only including the first term in the expansion of the operator T̂ discussed in the

previous section. In this approximation, known as the Born approximation, the scattering

amplitude becomes (remembering that we assumed elastic scattering, i.e. |p| = |q|),

f(q, p) = −2mπ2

√
2

π
e−

θ

4~2
|p|2(p|V̂ |q)

= −4mπ2

√
2

π

θ

2π~2
e

θ

4~2
(|q|2−2qp̄)Ṽ (

√
2θ(q − q)

~
). (2.29)

The intermediate steps are shown in C.2.6, and Ṽ (
√
2θ(q−q)

~
) is the normal Fourier transform

of V (z̄, z). Inserting this in (2.21) we obtain, as a first approximation to the differential
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scattering cross section,

dσ

dφ
= 8π

(
mθ

~2

)2
~

|q|e
θ

2~2
|q−p|2

∣∣∣∣∣Ṽ (

√
2θ(q − p)

~
)

∣∣∣∣∣

2

. (2.30)

We see that there is a modification to the commutative case, namely the exponential term

e
θ

2~2
|q−p|2 . This originates in the modified transformation from the position basis to the

momentum basis, as discussed in 1.2.3.

We can draw the following conclusions from (2.30):

• Given a scattering potential V (z̄, z), the differential scattering cross section will be

different from what it would be in the commutative case. For elastic scattering

(|q| = |p|) the additional term e
θ

2~2
|q−p|2 may be written as e

θ

~2
|q|2(1−cosα), where α

is the angle between the incident and scattered particle. This implies that for all

directions, except for forward, the scattering amplitude is enhanced. One could

interpret this as the scatterer appearing to be bigger as a result of its fuzzy nature.

• If we did not know that space is non-commutative we would take the differential cross

section to be of the form dσ/dθ ∝ |Veff |2, where Ṽeff = 1
2π
e

θ

4~2
|q−p|2Ṽ , i.e. without the

extra exponential term. We might then attempt to recover the form of the scattering

potential by taking the Fourier transform of Ṽeff . What one should actually do

is to Fourier transform 1
2π
e−

θ

4~2
|q−p|2Ṽeff . This will improve the convergence of the

integral involved and might in some cases render what would be a diverging potential

in commutative quantum mechanics finite.

• By Fourier transforming Ṽ = 1
2π
e−

θ

4~2
|q−p|2Ṽeff one finds that the non-commutative

potential is a Gaussian convolution of the effective potential Veff , i.e. V (z̄, z) =

2
π

∫
d2w e−2|w|

2
Veff (z̄ + w̄, z +w). It appears that, to first order, one could simulate

non-commutativity by blurring the potentials in conventional quantum mechanics.

These conclusions should also extend to the higher order scattering contributions in

(2.27). The second point might suggest a means to test our non-commutative theory, by

analysing experimental scattering data in the two frameworks and comparing the results.

2.2.3 The Optical Theorem

To conclude this chapter, we look at the optical theorem in non-commutative quantum

mechanics. The optical theorem is useful because it provides a means to obtain the total
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cross section from the differential cross section without having to integrate the latter. In

commutative quantum mechanics in two dimensions, the optical theorem reads [27]:

σtot =

√
8π~

|q| Im (f(α = 0)) , (2.31)

where α is the scattering angle. We show in C.2.7 that the corresponding relationship in

non-commutative quantum mechanics is

σtot =

√
8π~

|q| e
θ

4~2
|p|2Im (f(α = 0)) . (2.32)

We see, therefore, that the total cross section in non-commutative quantum mechanics is

modified in a similar way to the differential cross-section, if we take into account the expo-

nential terms hidden in f . We also note that (2.31) and (2.32) coincide in the commutative

limit.



Chapter 3

Many-Particle Formalism

In Chapter 1 we developed the formalism of single-particle non-commutative quantum me-

chanics and established a consistent interpretational framework, which was subsequently

applied in Chapter 2 to develop the theory of potential scattering. In this chapter we

venture into new territory by extending this formalism to many-particle systems, and

eventually we will make contact with non-commutative field theory.

3.1 Bosons and Fermions

An important ingredient of quantum mechanics, which only enters at the level of many-

particle systems, is the concept of indistinguishability of particles. In classical mechanics

we speak of identical particles, however, we think of them as entities that may in principle

be labelled (i.e. by a number on a billiard ball) to keep track of the individual particles’

trajectories. In quantum mechanics the meaning of the word ’indistinguishable’ is more

literal: there is no way, even in principle, that two identical particles, such as two electrons,

can be distinguished. If two identical particles are brought close to each other their

wavefunctions would overlap and make it impossible to tell which is where. Even if the

particles are far apart they may be entangled, as is illustrated by the famous Einstein-

Podolsky-Rosen paradox [31]. The resolution is to not think of the particles as separate

entities but rather consider the system as a whole and describe it by a single wavefunction.

As an extension of the notation of Chapter 1 we will write a N -particle wavefunction

in the position representation as ψ(z1, ...zN ), where {z1, ...zN} are complex, dimensionless

particle position coordinates. Certain restrictions are imposed on such wavefunctions

by the fact that particles are indistinguishable. Since we may not label the particles

uniquely, the physical state should not change under arbitrary permutations of the particle

labels. Swapping two particle labels around should at most multiply the wavefunction

with a phase factor, and swapping them back should return the original wavefunction [32].

Mathematically,

ψ(z1, ..., za, ..., zb, ...zN ) = λψ(z1, ..., zb, ..., za, ...zN )

= λ2ψ(z1, ..., za, ..., zb, ...zN ), (3.1)

31
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and we conclude that λ2 = 1 and λ = ±11 Hence, there are two kinds of particles, namely

bosons, having symmetric wavefunctions:

ψ(z1, ..., za, ..., zb, ...zN ) = +ψ(z1, ..., zb, ..., za, ...zN ); (3.2)

and fermions, having antisymmetric wavefunctions:

ψ(z1, ..., za, ..., zb, ...zN ) = −ψ(z1, ..., zb, ..., za, ...zN ). (3.3)

From (3.3) we immediately derive Pauli’s exclusion principle: Two fermions may not be

in the same state. (3.2), however, allows an arbitrary number of bosons to occupy the

same state. Some of the most interesting features of quantum mechanics follows from this

so called ’quantum statistics’ of bosons and fermions.

It is appropriate to mention at this point that much work has been done on so called

’twisted statistics’ in the context of non-commutative quantum mechanics, as a way to

restore Poincaré invariance [14]. If one insists that the non-commutative parameter be

an observer-independent constant of nature, such a twisting is required in three or more

dimensions. In the non-commutative plane the coordinate commutation relation is already

rotationally and translationally invariant, and twisting therefore becomes optional. We

chose to not introduce twisting in this thesis, thereby allowing us to study other effects of

non-commutativity separately from the effects caused by twisted statistics.

3.2 The N-Particle Classical Configuration Space

In Chapter 1 we defined the single-particle quantum Hilbert space Hq as the set of

bounded Hilbert-Schmidt operators ψ(b†, b), acting in on the classical configuration space

Hc = span {|n〉}∞n=o. In commutative quantum mechanics, if the configuration space of a

single particle is R2, the configuration space of a N -particle system would be R2N = ⊗N
R

2.

In complete analogy we therefore define the N -particle non-commutative configuration

space as

HN
c = ⊗NHc

= span {|n1, ..., nN〉}∞n1,...,nN=0 , (3.4)

1Strictly speaking, for a two-dimensional system the classical configuration space is not simply con-
nected, and other phase factors are possible, leading to so called anyon statistics. This is a subtlety,
however, and for the purpose of ths thesis we will only allow for pure bosonic or fermionic states.
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where |n1, ..., nN〉 = |n1〉 ⊗ ...⊗ |nN〉 and, as before, the span is over the complex field. In

particular, this space contains the N -particle coherent states

|z1, ..., zN〉 = |z1〉 ⊗ ...⊗ |zN〉 . (3.5)

An irreducible set of operators acting in on HN
c is formed by {b1, b†1, ..., bN , b†N}, with

bi = 1⊗ ...

ithposition︷︸︸︷
⊗b⊗ ...⊗ 1,

b†i = 1⊗ ... ⊗b†⊗︸ ︷︷ ︸
ithposition

...⊗ 1, (3.6)

acting according to

bi |z1, ..., zN〉 = zi |z1, ..., zN〉 ,

〈z1, ..., zN | b†i = 〈z1, ..., zN | z̄i. (3.7)

We may express the identity operator on HN
c as

ÎNc =
1

πN

∫
d2z1...d

2zN |z1, ..., zN〉 〈z1, ..., zN | (3.8)

A general operator acting in on the classical configuration space HN
c is a function of all

the bi’s and b
†
i ’s. A simple generalisation of (1.28) allows us to write any such operator as

Ô =
1

πN

∫
d2z1...d

2zN

(
e−

∑N
i=1 ∂z̄i∂ziO(z1, ..., zN )

)
|z1, ..., zN〉 〈z1, ..., zN | , (3.9)

i.e. diagonally in terms of |z1, ..., zN〉 〈z1, ..., zN |, and with the definition O(z1, ..., zN ) =

〈z1, ..., zN | Ô |z1, ..., zN〉 (implying again normal ordering).

3.3 The N-Particle Quantum Hilbert Space

As in the single-particle formulation of Chapter 1, the vectors of ourN -particle quantum

Hilbert space will be operators ψ(b†1, b1, ..., b
†
N , bN) acting in on the N -particle classical

configuration space HN
c . Evidently, any such operator is an element of the space HN

q =

⊗NHq, however, physical states must be either bosonic or fermionic, and, accordingly, we
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impose the condition

ψ(..., b†i , bi, ..., b
†
j , bj , ...) = ±ψ(..., b†j , bj, ..., b†i , bi, ...), (3.10)

where the + is for bosons and the − is for fermions. This ensures that ψ(z1, ..., zN ) =

〈z1, ..., zN | ψ̂ |z1, ..., zN〉 satisfies either (3.2) or (3.3), and we will think of ψ(z1, ..., zN ) as

the non-commutative analogue of a many-particle wavefunction in position space. Let us

formally define the N -particle non-commutative quantum Hilbert space for bosons and

fermions as

HN±
q =

{
ψ(b†1, b1, ..., b

†
N , bN) ∈ ⊗NHq :

ψ(..., b†i , bi, ..., b
†
j , bj , ...) = ±ψ(..., b†j, bj , ..., b†i , bi, ...)∀i, j ∈ {1, ..., N}

}
.(3.11)

The inner product is induced by the tensor product structure and the inner product on

Hq:

(ψ|φ) = trHN
c

{
ψ(b†1, b1, ..., b

†
N , bN)

†φ(b†1, b1, ..., b
†
N , bN )

}
. (3.12)

3.3.1 A Position Basis for the N-Particle Quantum Hilbert Space

By defining the inner product (3.12) we are associating bras and kets with the elements

of the N -particle quantum Hilbert space. As a natural generalisation of section 1.2.1, let

us therefore define

|z1, ..., zN ) = |z1, ..., zN〉 〈z1, ..., zN |

= |z1〉 〈z1| ⊗ ...⊗ |zN〉 〈zN | . (3.13)

This allows us to write ψ(z1, ..., zN ) = 〈z1, ..., zN | ψ̂ |z1, ..., zN〉 = (z1, ..., zN | ψ). 2 Using

(3.9) we can then write arbitrary vectors in the quantum Hilbert space as

|ψ) =
1

πN

∫
d2z1...d

2zN

(
e−

∑N
i=1 ∂z̄i∂ziψ(z1, ..., zN )

)
|z1, ..., zN )

=
1

πN

∫
d2z1...d

2zN |z1, ..., zN ) e
∑N

i=1

←−
∂zi
−→
∂z̄iψ(z1, ..., zN )

=
1

πN

∫
d2z1...d

2zN |z1, ..., zN ) ⋆z1,...,zN (z1, ..., zN | ψ) , (3.14)

2This wavefunction obviously depend on the conjugate coordinates z̄i as well, but for the purpose of
shortening our expressions we will coomonly only write for example ψ(z) when we mean ψ(z̄, z).
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where, in the second line, we have used integration by parts to change the direction of

action of the ∂zi ’s, and in the third line we have introduced the N -particle Voros star

product

⋆z1,...,zN = e
∑N

i=1

←−
∂zi
−→
∂z̄i . (3.15)

We see from (3.14) that the N -particle identity operator may be written as

ÎNq =
1

πN

∫
d2z1...d

2zN |z1, ..., zN ) ⋆z1,...,zN (z1, ..., zN | . (3.16)

The states |z1, ..., zN ) are not symmetric or antisymmetric, and hence not physical. The

identity operator (3.16) spans all of ⊗NHq, while we would like to restrict ourselves to the

bosonic or fermionic subspaces HN±
q . Let us therefore introduce the states

|z1, ..., zN )± =
1√
N !

∑

P∈S(N)

(±)ǫP |zP (1), ..., zP (N)). (3.17)

Here the sum is over all permutations of the N complex coordinates, i.e. P is an element

of the permutation group S(N), and zP (i) is the new i-th coordinate after permutation.

ǫP is the parity of the permutation, i.e.

ǫP =





0 if P is an even permutation (even number of transpositions)

1 if P is an odd permutation (odd number of transpositions)

With a + (3.17) becomes symmetric (i.e. bosonic), and with a - it becomes antisymmetric

(i.e. fermionic). The overlap of two such states is (see C.3.1)

± (z1, ..., zN | w1, ..., wN )± =
∑

P∈S(N)

(±)ǫP
N∏

i=1

e−|zi−wP (i)|2 , (3.18)

and in general, for a bosonic or fermionic state |ψ) which is symmetric or antisymmetric

according to (3.10),

±(z1, ..., zN |ψ) =
√
N !(z1, ..., zN |ψ). (3.19)

Note that this does not mean that |z1, ..., zN )± =
√
N !|z1, ..., zN )! Because of (anti-

)symmetry it is possible to write ±(z1, ..., zN |ψ) = 1
N !

∑
P∈S(N)(±)ǫP ±(zP (1), ..., zP (N)|ψ).
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We may use this and (3.19) to rewrite (3.14):

|ψ) =
1

πN

∫
d2z1...d

2zN |z1, ..., zN ) ⋆z1,...,zN (z1, ..., zN | ψ)

=
1

N !πN

∑

P∈S(N)

(±)ǫP
∫
d2z1...d

2zN |z1, ..., zN ) ⋆z1,...,zN (zP (1), ..., zP (N)|ψ)

=
1

N !πN

∑

P∈S(N)

(±)ǫP
∫
d2z1...d

2zN |zP (1), ..., zP (N)) ⋆z1,...,zN (z1, ..., zN |ψ)

=
1

N !πN

∫
d2z1...d

2zN |z1, ..., zN )± ⋆z1,...,zN ± (z1, ..., zN | ψ) . (3.20)

From the second to the third line we have relabelled the integration variables, in order to

shift the permutations from the bra to the ket. The final form makes it explicit that |ψ) is
diagonal in the bosonic or fermionic N -particle position states |z1, ..., zN )±. The operators

ÎN±q =
1

N !πN

∫
d2z1...d

2zN |z1, ..., zN )± ⋆z1,...,zN ± (z1, ..., zN | , (3.21)

project states onto the symmetric or antisymmetric subspace of HN
q , and therefore play

the roles of the identity operators on our quantum Hilbert spaces HN±
q .

3.3.2 N-Particle Position Measurement

In Chapter 1 position measurement in non-commutative quantum mechanics was de-

fined in terms of the POVM πz =
1
π
|z) ⋆z (z|. The form of this POVM was derived from

the identity operator on the single particle quantum Hilbert space. In a similar way, we

may construct POVMs on a N -particle space from resolutions of the N -particle identity

operator. However, the question arises whether one should use the full identity operator on

HN
q or the identity operator on the bosonic or fermionic subspaces? Suppose we construct

a POVM from (3.16):

πz1,...,zN =
1

πN
|z1, ..., zN ) ⋆z1,...,zN (z1, ..., zN |, (3.22)

According to this definition, the probability of measuring N particles in the state |ψ) at
coordinates z1, ..., zn is

P (z1, ..., zN ) = trHN
c
(πz1,...,zN |ψ)(ψ|)

=
1

πN
(ψ|z1, ..., zN ) ⋆z1,...,zN (z1, ..., zN |ψ). (3.23)
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Suppose instead we construct a POVM from (3.21):

π±z1,...,zN =
1

N !πN
|z1, ..., zN )± ⋆z1,...,zN ± (z1, ..., zN | . (3.24)

Then the probability of finding the N particles at coordinates {z1, ..., zN} is given by

P (z1, ..., zN ) = trHN
c

(
π±z1,...,zN |ψ)(ψ|

)

=
1

N !πN
(ψ|z1, ..., zN )± ⋆z1,...,zN ±(z1, ..., zN |ψ). (3.25)

However, if |ψ) is a bosonic or fermionic state, then (3.23) and (3.25) are identical by

insertion of (3.19). As a result, (3.22) and (3.24) measure the same quantity. The latter

form (3.24) makes it explicit that π±z1,...,zN does not distinguish which particle is where,

but merely measures the probabilities of finding the N particles at the given coordinates,

however, this is already implicit in the bosonic or fermionic nature of |ψ). While the

former version (3.22) may be applied to both fermionic and bosonic states, the latter

version (3.24) sees either only bosons (+) or only fermions (-).

Rather than asking about the position of N particles it might be more natural to ask

about the particle density at a position z. We do this by averaging out the probability of

any of the N coordinates to be equal to z, i.e. we define the particle density operator for

bosons or fermions:

ρ̂±N(z) =

∫
d2z1...d

2zN

N∑

a=1

δ(z − za)π
±
z1,...,zN

= N

∫
d2z2...d

2zN π±z,z2,...,zN

=
1

(N − 1)!πN

∫
d2z2...d

2zN |z, z2, ..., zN )± ⋆z,z2,...,zN ±(z, z2, ..., zN |. (3.26)

We see that
∫
d2z ρ̂±N(z) = NÎ±N , which confirms that there are N bosons or fermions in

all of space.

3.4 Second Quantisation

In the previous section we regarded the particle number N as being fixed and proceeded

to construct N -particle quantum states. In this section we will develop the formalism of

’second quantisation’, which allows particles to be created and destroyed. Our development

will follow closely that of Brown [33] for commutative quantum mechanics.
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3.4.1 The Particle Fock Space

Let us start by enlarging our quantum Hilbert space to include states of arbitrary

particle number:

H±Q = H0±
q ⊕H1±

q ⊕H2±
q ⊕H3±

q ⊕ ... . (3.27)

Here Hi±
q is defined according to (3.11), and we have included the zero-particle space H0±

q .

The latter contains only one state, the so called vacuum-state, which we will denote by

|Ω). Given two states |z1, ..., zN )±, |w1, ..., wM )± ∈ H±Q the overlap is

±(z1, ..., zN |w1, ..., wM )± = δN,M±(z1, ..., zN |w1, ..., wM )±, (3.28)

i.e. states of different particle number are orthogonal.

3.4.2 Particle Creation and Annihilation Operators

Let us define the following operator acting in on the enlarged quantum Hilbert space

H±Q:

ψ̂‡(z) =
∞∑

n=0

1

N !πN

∫
d2z1...d

2zN |z, z1, ..., zN )± ⋆z1,...,zN ±(z1, ..., zN |. (3.29)

Note that the bra on the right is a N -particle state, while the ket on the left is a (N +1)-

particle state. 3 The action of this operator on an arbitrary state |z, ..., zN )± is

ψ̂‡(z)|z1, ..., zN )± = |z, z1, ..., zN )±, (3.30)

as is shown in C.3.2. It adds a new particle at position z to the state |z, ..., zN )±, and
hence we will call it the particle creation operator. In fact, any ket |z, ..., zN )± can be

written in terms of creation operators acting in on the vacuum ket:

|z1, ..., zN )± = ψ̂‡(z1)...ψ̂
‡(zN)|Ω). (3.31)

3We have not included a label ± to indicate the bosonic or fermionic nature of the operator ψ̂‡(z). It
will, however, always be clear from the context which one we mean.
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From (3.31) we deduce the following commutation relation for the creation operators:

[ψ̂‡(z), ψ̂‡(w)]∓ = 0, (3.32)

because |..., zi, zi+1, ...)± = ...ψ̂‡(za)ψ̂
‡(zb)...|Ω) = ±|..., zb, za, ...)± = ±...ψ̂‡(zb)ψ̂‡(za)...|Ω).

Let us next consider the Hermitian conjugate of (3.29), namely

ψ̂(z) =
∞∑

N=0

1

N !πN

∫
d2z1...d

2zN |z1, ..., zN )± ⋆z1,...,zN ±(z, z1, ..., zN |. (3.33)

In this operator the ket to the left has one particle less than the bra on the right. By

simple Hermitian conjugation of (3.31) we must have

±(z1, ..., zN | = (Ω|ψ̂(zN)...ψ̂(z1), (3.34)

and subsequently

[ψ̂(z), ψ̂(w)]∓ = 0. (3.35)

If we let ψ̂(z) act forward on a ket |z, ..., zN )± we obtain

ψ̂(z)|z1, ..., zN )± =
N∑

a=1

(±)a+1e−|z−za|
2 |z1, ..., za−1, za+1, ..., zN )±, (3.36)

as shown in C.3.3. We end up with a state of particle number N − 1, and hence we call

ψ̂(z) an annihilation operator. The operator ψ̂(z) removes the a-th particle of |z, ..., zN )±
with a probability dependent on the distance |z−za|. We cannot tell with certainty which

particle has been removed, and therefore we must end up in a superposition of all the

possible states that one obtains by removing one of the particles. In the commutative

limit the Gaussian factor e−|z−za|
2
would tend to a Dirac delta function, and a particle

could only be annihilated if z = za.

It is straightforward to derive the commutation relation between an annihilation and a

creation operator. This is shown in C.3.4, and the result is

[ψ̂(z), ψ̂‡(w)]∓ = e−|z−w|
2

. (3.37)

Compare this to the usual commutation relation [ψ̂(~x), ψ̂†(~x′)]∓ = δ(~x−~x′) of conventional
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quantum mechanics [33].

3.4.3 Momentum Creation and Annihilation Operators

In section 1.2.3 we defined the momentum states |p) =
√

θ
2π3~2

∫
d2ze

θ

4~2
|p|2e

i
~

√
θ
2
(pz̄+p̄z)|z).

The fact that |z) = ψ̂†(z)|Ω) suggest that we could write |p) = â‡p|Ω), with

â‡p =

√
θ

2π3~2

∫
d2ze

θ

4~2
|p|2e

i
~

√
θ
2
(pz̄+p̄z)ψ̂‡(z), (3.38)

and similarly we could introduce the Hermitian conjugate operator

âp =

√
θ

2π3~2

∫
d2ze

θ

4~2
|p|2e−

i
~

√
θ
2
(pz̄+p̄z)ψ̂(z). (3.39)

It is straightforward to check, using the commutation relations (3.32), (3.35) and (3.37),

that the above pair of operators satisfy the commutation relations

[âp, âq]∓ = 0,
[
â‡p, â

‡
q

]
∓ = 0,

[
âp, â

‡
q

]
∓ = δ2(p− q). (3.40)

These operators therefore create and annihilate particles with momentum p and can be

used to construct bosonic or fermionic N -particle states as follows:

|p1, ..., pN )± = â‡p1 ...â
‡
pN
|Ω). (3.41)

Since |z) =
∫
d2p|p)(p|z) we derive the inverse transformation of (3.29) and (3.33) to

be

ψ̂(z) =

√
θ

2π~2

∫
d2pe−

θ

4~2
|p|2e−

i
~

√
θ
2
(pz̄+p̄z)âp,

ψ̂†(z) =

√
θ

2π~2

∫
d2pe−

θ

4~2
|p|2e

i
~

√
θ
2
(pz̄+p̄z)â‡p. (3.42)

3.4.4 The Relationship Between Commutative and Non-Commutative Cre-

ation/Annihilation Operators

As discussed in Chapter 1, the momentum basis is the same in commutative and non-

commutative quantum mechanics. Suppose we were working in the momentum basis
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and did not know that the position coordinates were non-commuting. We might then

have proceeded as in commutative quantum mechanics and defined position creation and

annihilation operators by a normal Fourier transform of (3.38) and (3.39):

ψ̂C(~x) =
1

2π~

∫
d2pe

i
~
~x·~pâp,

ψ̂†C(r) =
1

2π~

∫
d2pe−

i
~
~x·~pâ‡p. (3.43)

These operators satisfy the commutation relations

[ψ̂C(~x), ψ̂C(~x
′)]∓ = 0,

[ψ̂†C(~x), ψ̂
†
C(~x

′)]∓ = 0,

[ψ̂C(~x), ψ̂
†
C(~x

′)]∓ = δ(~x− ~x′). (3.44)

The inverse of the relations in (3.43) are obtained by an inverse Fourier transform and are

âp =
1

2π~

∫
d2pe−

i
~
~x·~pψ̂C(~x),

â‡p =
1

2π~

∫
d2pe

i
~
~x·~pψ̂†C(~x). (3.45)

Combining (3.42) and (3.45) we get

ψ̂(z) =

√
2

πθ

∫
d2re−

1
θ
|~x−
√
2θ~z|2ψ̂C(~x),

ψ̂†(z) =

√
2

πθ

∫
d2re−

1
θ
|~x−
√
2θ~z|2ψ̂†C(~x), (3.46)

where we have introduced the vectors ~z = (Re(z), Im(z)). This provides us with a nice

interpretation of the non-commutative creation operator ψ̂†(z): it is not creating a particle

at the position z, but rather in a region around this point according to a sharply peaked

Gaussian probability distribution. The non-commutative particle is in a superposition of

commutative position states, in agreement with the interpretation of non-commutative

position space as being fuzzy and the inability to localise a particle beyond a length scale

of θ. This interpretation might be misleading, however, as the sharply defined position

states of commutative quantum mechanics have no clear meaning if space is really non-

commutative.
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3.4.5 General Second Quantised Operators

In section 1.2.1 we showed that the non-commutative Schrödinger equation for a single

particle can be expressed as

i~
∂

∂t
(z|ψ) = − ~

2

mθ

∂2

∂z∂z̄
(z|ψ) + V (z̄, z) ⋆ (z|ψ). (3.47)

We now propose that the appropriate second quantised Hamiltonian operator for non-

interacting particles in an external potential V is

Ĥ =
1

π

∫
d2zψ̂†(z) ⋆z

(
− ~

2

mθ

∂2

∂z∂z̄
ψ̂(z)

)
+ ψ̂†(z) ⋆z V (z̄, z) ⋆z ψ̂(z). (3.48)

We will motivate the form of (3.48) by showing how it acts in on an N -particle wavefunc-

tion, and to do this we need to compute the commutator [ψ̂(w), Ĥ]. Using the identity

[AB,C] = A[B,C]∓ ± [A,C]∓B and the commutation relations (3.32), (3.35) and (3.37)

of the position creation and annihilation operators we get

[ψ̂(w),
1

π

∫
d2zψ̂†(z) ⋆z

(
∂2

∂z∂z̄
ψ̂(z)

)
] =

1

π

∫
d2z[ψ̂(w), ψ̂†(z)]∓ ⋆z

(
∂2

∂z∂z̄
ψ̂(z)

)

=
1

π

∫
d2z
(
e−∂z∂z̄e−|z−w|

2
)( ∂2

∂z∂z̄
ψ̂(z)

)

=

∫
d2zδ(z − w)

(
∂2

∂z∂z̄
ψ̂(z)

)

=
∂2

∂w∂w̄
ψ̂(w). (3.49)

The property e−∂z∂z̄e−|z−w|
2
= πδ(z − w) is proved in B.2. Similarly, for the potential

energy term,

[ψ̂(w),
1

π

∫
d2zψ̂†(z) ⋆z V (z̄, z) ⋆z ψ̂(z)] =

1

π

∫
d2z[ψ̂(w), ψ̂†(z)]∓ ⋆z V (z̄, z) ⋆z ψ̂(z)

=

∫
d2zδ(z − w)V (z̄, z) ⋆z ψ̂(z)

= V (w̄, w) ⋆w ψ̂(w). (3.50)

Combining (3.49) and (3.50) we get

[ψ̂(w), Ĥ] = − ~
2

mθ

∂2

∂w∂w̄
ψ̂(w) + V (w̄, w) ⋆w ψ̂(w). (3.51)
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We also note that (Ω|Ĥ = 0, because of the operator ψ̂‡ being the leftmost operator in

Ĥ. As a result of this, and by repeated application of [AB,C] = A[B,C] + [A,C]B, we

therefore have

±(z1, ..., zN |Ĥ|ψ) = (Ω|ψ̂(zN)...ψ̂(z1), Ĥ|ψ)

= (Ω|[ψ̂(zN)...ψ̂(z1), Ĥ]|ψ)

= (Ω|ψ̂(zN)...[ψ̂(z1), Ĥ]|ψ)

+(Ω|ψ̂(zN)...[ψ̂(z2), Ĥ]ψ̂(z1)|ψ)

+...+ (Ω|[ψ̂(zN), Ĥ]ψ̂(zN−1)...ψ̂(z1)|ψ)

=

{
N∑

a=1

[
− ~

2

mθ

∂2

∂za∂z̄a
+ V (z̄a, za)⋆za

]}

±(z1, ..., zN |ψ). (3.52)

This is precisely what we would expect the Hamiltonian of a non-interacting many particle

system to look like, with the total energy being the sum of the individual particles’ energies.

For a two-particle interaction we can introduce the second quantised operator

Ŵ =
1

2π2

∫
d2zd2wψ̂†(z)ψ̂†(w) ⋆z,w W (z̄, z, w̄, w) ⋆z,w ψ̂(w)ψ̂(z). (3.53)

As shown in C.3.5, this two-particle operator acts on a N -particle state according to

±(z1, ..., zN |Ŵ |ψ) =
N∑

a=1

N∑

b=a+1

W (z̄a, za, z̄b, zb) ⋆za,zb ±(z1, ..., zN |ψ). (3.54)

We would of course usually only consider interactions that depend on relative distance, in

which case W (z̄, z, w̄, w) = W (|z − w|).
As a last remark in this section, let us define the particle density operator

ρ̂(z) =
1

π
ψ̂‡(z) ⋆z ψ̂(z)

=
∞∑

N=0

1

N !πN+1

∫
d2z1...d

2zN |z, z1, ..., zN )± ⋆z,z1,...,zN ±(z, z1, ..., zN |. (3.55)

We note that ρ̂ =
∑∞

N=0 ρ̂
±
N where ρ̂±N is the N -particle density operator defined in 3.26.

It is clear that that |z1, ..., zN )± is not an eigenstate of ρ̂, so the action of measuring

the particle density disturbs the system. This is in contrast to commutative quantum
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mechanics. We may, however, define the number operator

N̂ =

∫
d2zρ̂(z), (3.56)

which returns the number of particles in a pure N -particle state, for any N , without

altering the state, because N̂ =
∑∞

N=0NÎ
±
N , with Î±N the identity operator on the N -

particle subspace.

3.4.6 Time Dependence

In order to describe the time evolution of a quantum system we need to amend the

time-independent framework developed so far. We will introduce time dependence in

accordance with the Heisenberg picture, where operators evolve in time according to

i~
∂

∂t
Ô = [Ô, Ĥ]. (3.57)

In particular,

i~
∂

∂t
ψ̂(z, t) = [ψ̂(z, t), Ĥ]. (3.58)

At any time t the equal-time commutation relations of the creation and annihilation op-

erators are

[ψ̂(z, t), ψ̂(w, t)]∓ = 0,

[ψ̂‡(z, t), ψ̂‡(w, t)]∓ = 0,

[ψ̂(z, t), ψ̂‡(w, t)]∓ = e−|z−w|
2

. (3.59)

The analogous commutation relations for different time arguments are non-trivial and

depend on the Hamiltonian governing their time evolution.

We may define a time dependent position state

±(z1, ..., zN ; t| = (Ω|ψ̂(zN ; t)...ψ̂(z1; t). (3.60)

The vacuum state is time independent, because (Ω|Ĥ = 0, and as a result, using (3.58),

i~
∂

∂t
±(z1, ..., zN ; t| = ±(z1, ..., zN ; t|Ĥ. (3.61)
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Taking the inner product of both sides with a state |ψ) gives the time dependent Schrödinger

equation. For a time-independent Hamiltonian we get

±(z1, ..., zN ; t| = ±(z1, ..., zN ; t0|e−
i(t−t0)

~
Ĥ . (3.62)

3.5 The Link With Non-Commutative Quantum Field Theory

With the second-quantisation formalism in place, it is straightforward to make a link

with non-commutative quantum field theory. The aim of this section is merely to show that

non-commutative quantum field theory can be derived from non-commutative quantum

mechanics in the same way that commutative quantum field theory can be built from

conventional quantum mechanics. The actual study and application of non-commutative

field theory is beyond the scope of this thesis, and interested readers are referred to the

vast amount of existing literature on this topic, for example [4]. Non-commutative field

theory is closely linked to non-commutative geometry, which is an active field of research

in mathematics. The standard reference for this theory is Connes [23].

3.5.1 Bosonic Fields

We define a bosonic field state by

|φ, t) = eD̂t[φ]|Ω), (3.63)

where

D̂t[φ] =
1

π

∫
d2z
{
ψ̂‡(z, t) ⋆z φ(z)− φ̄(z) ⋆z ψ̂(z, t)

}

=

∫
d2p
{
â‡p(t)φ(p)− φ̄(p)âp(t)

}
. (3.64)

|φ) has the form of a coherent state on the quantum Hilbert space and can be written as a

superposition of states with different particle numbers. The fact that we cannot associate

with |φ, t) a specific particle number leads to the interpretation of these states as fields.

The square brackets around the argument in D̂t[φ] is used to emphasise the functional

dependence of the operator on the whole function φ. The particular representation of

φ is unimportant, and the position and momentum representations above are only two

examples of representations of the operator D̂. In fact, one can easily show that φ(z) =

(z|φ) and φ(p) = (p|φ), i.e. the functions appearing in the operator D̂ are the projections
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of the field operator |φ) onto single-particle states. One could therefore think of eD̂ as

creating a many particle field state out of single particle wavefunctions when acting in on

the vacuum state.

It is easy to check that |φ) is an eigenstate of the annihilation operator (in any repre-

sentation). For example, in the position basis, [ψ̂(z, t), D̂t[φ]] = φ(z) and therefore, by the

Baker-Campbell-Hausdorff formula, e−D̂t[φ]ψ̂(z, t)eD̂t[φ] = ψ̂(z, t) + φ(z). Consequently,

ψ̂(z)|φ, t) = eD̂t[φ]e−D̂t[φ]ψ̂(z, t)eD̂t[φ]|Ω)

= eD̂t[φ]
{
ψ̂(z, t) + φ(z)

}
|Ω)

= φ(z)|φ, t), (3.65)

and similarly, in the momentum representation (or any other representation for that mat-

ter)

âp(t)|φ, t) = φ(p)|φ, t). (3.66)

Since the annihilation operators return the field when acting in on a ket (and similarly the

creation operator returns the conjugate field when acting backwards on a bra) the creation

and annihilation operators are known as field operators in the context of quantum field

theory.

The overlap between two field-states at equal time is

(φ, t|ψ, t) = exp

{
− 1

2π

∫
d2z
(
φ̄(z) ⋆z φ(z) + ψ̄(z) ⋆z ψ(z)− 2φ̄(z) ⋆z ψ(z)

)}

= exp

{
−1

2

∫
d2p
(
φ̄(p)φ(p) + ψ̄(p)ψ(p)− 2φ̄(p)ψ(p)

)}
. (3.67)

(The proof is a simple generalisation of the proof in Appendix A that 〈z|w〉 = e−
1
2
|z|2− 1

2
|w|2+z̄w)

This yields unity if ψ = φ, which shows that the field states as defined in (3.63) are nor-

malised. One can also show that eD̂t[φ] = e
it
~
ĤeD̂0[φ]e−

it
~
Ĥ and thus

|φ, t) = e−
it
~
Ĥ |φ, 0). (3.68)

As demonstrated in previous sections, the momentum representation of non-commutative

quantum mechanics is equivalent to that of the commutative theory. By choosing to work

in the momentum basis we can therefore proceed to construct a path integral formulation



3. Many-Particle Formalism 47

of quantum field theory exactly as in the commutative case. One does this by first noting

that the identity operator on the quantum Hilbert space at a fixed time t can be expressed

as a functional integral (see [33]):

Î =

∫
[dφ][dφ̄]|φ, t)(φ, t|, (3.69)

where the integration measure expressed in the momentum representation is

[dφ][dφ̄] =
N∏

k=1

dφ(pk)dφ̄(pk)dp

2πi
. (3.70)

By this it is implied that momentum space is discretised into N cells of size dp so that

there are N degrees of freedom to integrate over. Finally the limit N → ∞ is taken.

If one now wishes to calculate transition amplitudes from an initial field φi at time ti to

a final field φf at time tf one may make use of the identity (3.69) to divide the transition

into a sequence of smaller steps:

(φf , tf |φi, ti) =

∫ M−1∏

j=1

[dφj][dφ̄j](φf , tf |φM−1, tM−1)(φM−1, tM−1|...

...|φ2, t2)(φ2, t2|φ1, t1)(φ1, t1|φi, ti). (3.71)

If we make the time steps equal and of infinitesimal length ǫ = (tf − ti)/M (i.e. let

M → ∞) we may calculate the intermediate terms:

(φj+1, tj+1|φj, tj) = (φj+1, tj|e−
iǫ
~
Ĥ |φj, tj)

≈ (φj+1, tj|1−
iǫ

~
Ĥ|φj, tj)

= (φj+1, tj|1−
iǫ

~
H(φj+1, φj)|φj, tj)

= (φj+1, tj|φj, tj)e−
iǫ
~
H(φj+1,φj), (3.72)

where we have defined H(φj+1, φj) = (φj+1, tj|Ĥ|φj, tj)/(φj+1, tj|φj, tj). Substituting back

into (3.71) and using (3.67) we obtain

(φf , tf |φi, ti) = lim
M→∞

∫ M−1∏

j=1

[dφj][dφ̄j]e
− 1

2

∫

d2p

(
φ̄j+1φj+1+φ̄jφj−2φ̄j+1φj

)

×e− iǫ
~
H(φj+1,φj). (3.73)
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For convenience we have made the identifications φi = φ0 and φf = φM in the expression

above. If one now realises that

lim
ǫ→0

φ̄j+1
φj+1 − φj

ǫ
= φ̄(t)

∂

∂t
φ(t), (3.74)

one may group the terms in such a way as to obtain, after taking the limit,

(φf , tf |φi, ti) = e
1
2

∫

d2p

(
φ̄f (p)φf (p)−ψ̄i(p)ψi(p)

) ∫
[dφ][dφ̄]e

i
~

∫ tf
ti

dtL. (3.75)

Here L is the Lagrangian of the system,

L = i

∫
d2pφ̄(p, t)

∂

∂t
φ(p, t)−H(φ̄(p, t), φ(p, t)), (3.76)

and we have defined the measure

[dφ][dφ̄] =
M−1∏

j=1

N∏

k=1

dφ̄(pk, tj)dφ(pk, tj)dp

2πi
, (3.77)

i.e. (3.70) M − 1 times.

If we now want to express the path integral in terms of fields over the non-commutative

position space we transform the fields according to (1.49):

φ(p, t) =

√
θ

2π3~2
e

θ

4~2
|p|2
∫
d2ze−

i
~

√
θ
2
(pz̄+p̄z)φ(z, t). (3.78)

The consequence is that a star product enters in the Lagrangian, more specifically, with

the Hamiltonian written out in full:

L =
i

π

∫
d2z

{
φ̄(z, t) ⋆z

∂

∂t
φ(z, t)− φ̄(z, t) ⋆z

(
− ~

2

4mθ

∂2

∂z̄∂z
φ(z, t) + V (z̄, z) ⋆z φ(z, t)

)}

+
1

π2

∫
d2zd2wφ̄(z, t)φ̄(w, t) ⋆z,w W (z̄, z, w̄, w) ⋆z,w φ(w, t)φ(z, t). (3.79)

In changing from the momentum to the position representation, a Jacobian function will

enter in the integration measure (3.77). Since the transformation (3.78) and its complex

conjugate are linear this should not pose any problem, and should just give rise to an

irrelevant overall normalisation factor. The measure will be ill-defined, but this is the case

anyway in conventional quantum field theory. One does not worry so much about this
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because the physically interesting quantities calculated in field theory are normalised such

that these divergences cancel out. One might argue, however, that the space of functions

that we integrate over in non-commutative field theory is a subspace of the full L2 space of

conventional field theory. More precisely, the functions are Schwartz-class and smooth on

a length scale of order
√
θ. This does not seem to be a concern in the existing literature

on non-commutative field theories, possibly for the reason that the set of Schwartz-class

functions is dense in L2.

Without dwelling more on possible issues with the measure, we conclude that the es-

sential difference between commutative and non-commutative quantum field theory is the

replacement of the normal Cartesian product with a star product. This is in agreement

with existing literature, although the symmetric Moyal product is usually considered in-

stead of the Voros product resulting from our development [16].

3.5.2 Fermionic Fields

Just as in the bosonic case, we may define a fermionic field state

|φ, t) = eD̂t[φ]|Ω), (3.80)

with

D̂t[φ] =
1

π

∫
d2z
{
ψ̂‡(z, t) ⋆z φ(z)− φ̄(z) ⋆z ψ̂(z, t)

}

=

∫
d2p
{
â‡p(t)φ(p)− φ̄(p)âp(t)

}
. (3.81)

The only difference is that the field operators in D̂ are now fermionic, and the functions

φ and φ̄ are anti-commuting Grassmann variables4 defined over the complex field. The

states (3.80) are eigenstates of the fermionic annihilation operators, and since we are

free to chose the momentum representation it is is possible to derive the fermionic path

integral formalism in complete analogy to the commutative case. We may then proceed as

in the previous section to transform the path integral into the non commutative position

representation. In the end we obtain for an arbitrary transition amplitude,

(φf , tf |φi, ti) = e
1
2π

∫

d2z

(
φ̄f (z)⋆zφf (z)−ψ̄i(z)⋆zψi(z)

) ∫
[dφ][dφ̄]e

i
~

∫ tf
ti

dtL. (3.82)

4A short introduction to Grassmann calculus in the context of quantum field theory is given by Brown
[33].
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with L identical to (3.79), only in terms of fermionic Grassmann functions φ. The func-

tional integral is understood to be a Grassmannian functional integral and acts as a func-

tional derivative.



Chapter 4

The Exchange Potential

At this stage we could have ventured into applications of the full machinery developed in

the previous chapter to many particle systems. However, to gain an intuitive feeling for

how non-commutative particles interact, it is instructive to consider a simpler system of

only two particles.

Suppose we have two particles in the canonical ensemble, described by a density matrix

ρ̂ =
1

Z
e−βĤ , (4.1)

where Ĥ is the free Hamiltonian and β = 1/(kT ) (k being the Boltzmann constant and T

the temperature of the system 1). Z = trQ

(
e−βĤ

)
is the partition function of the system

and must be included for normalisation purposes.

We may now calculate the probability of measuring the particles at positions z1 and z2.

This is done in C.4.1, and the result is

P (z1, z2) = trQ
[
π±z1,z2 ρ̂

]

=
1

Zπ2

(
mθ

β~2

)2{
1± β~2

β~2 + 2mθ
e
− 2mθ

2mθ+β~2
|z2−z1|2

}
. (4.2)

(Note that we used the operators π±z1,z2 , rather than πz1,z2 , since we want to measure either

bosons or fermions (see 3.3.2).) In accordance with Pathria [34], we now define an effective

potential between the two particles by

Veff (z1, z2) = − 1

β
ln(P (z1, z2)). (4.3)

Substituting (4.2) into (4.3) we get

Veff (|z1 − z2|) = − 1

β
ln

[
1± β~2

β~2 + 2mθ
e
− 2mθ

2mθ+β~2
|z2−z1|2

]
+ const. (4.4)

The constant term absorbs the diverging partition function Z, but, since this term only

shifts the potential by a global factor, it may be ignored. It may easily be verified that

1Temperature is maybe a misleading term for a system of two particles. What is meant is that the
particles are in thermal equilibrium, for example by coupling to an external reservoir.

51
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Figure 4.1: The exchange potential for two fermions (a) and two bosons (b)
plotted for different values of θ for fixed β (β = ~ = m = 1).
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Figure 4.2: The exchange potential for two fermions (a) and two bosons (b)
plotted for different values of β for fixed θ (θ = ~ = m = 1).
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in the limit as θ → 0, after changing from the dimensionless coordinates z1 and z2 to the

corresponding dimensionfull vectors ~x1 and ~x2, we retain the same form of the exchange

potential as [34], namely

Veff (~x1 − ~x2) = − 1

β
ln
[
1± e

− m

β~2
(~x2−~x1)2

]
. (4.5)

[34] defines the mean thermal wavelength λ =
√

2πβ~2

m
. The mean thermal wavelength

can be interpreted as the length scale at which quantum effects become dominant. If the

mean inter-particle distance in a gas is much larger than the mean thermal wavelength, we

may regard the gas as a classical Maxwell-Boltzmann gas. However, as the mean particle

separation approaches the mean thermal wavelength, the fermionic or bosonic nature of

the particles start playing a role.

In non-commutative quantum mechanics we may define a θ-dependent mean thermal

wavelength λNC =
√

2π(β~2+2mθ)
m

. In contrast to the commutative case, λNC is finite even

for infinite temperature, i.e. limβ→0 λNC = 2
√
πθ. The behaviour of the exchange potential

at high temperatures is further altered by the prefactor β~2

β~2+2mθ
in front of the exponential

term in 4.4. We conclude, therefore, that in non-commutative quantum mechanics, as

opposed to normal quantum mechanics, the quantum effects do not necessarily become

less important at higher temperatures. If the density is sufficiently high, the quantum

effects will rather get more significant as the temperature increases.

The best way to get a feeling for the behaviour of the non-commutative exchange

potential (4.4) is by plotting it, as has been done in Figures 4.1 and 4.2. We see that

the potential indeed behaves differently from its commutative counterpart (4.5) on length

scales of order θ. Most striking is the effect for the fermionic exchange potential, which

diverges in commutative quantum mechanics but becomes finite at |z2− z1| = 0 for θ > 0.

In the case of bosons the effect is not as dramatic, however, the non-commutative exchange

potential is weakened at short length scales even for bosons.

In the commutative case (4.5) the temperature only has a scaling effect on the exchange

potential. Although the temperature enters in a more complicated manner in (4.4), Figure

4.2 shows that the temperature plays a similar role for the non-commutative exchange

potentials.

Particles experience forces, not potentials. Let us therefore define the exchange force
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Figure 4.3: The exchange force for two fermions plotted for different values
of β for the θ = 0 (a) and θ = 1 (b) (~ = m = 1).
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Figure 4.4: The exchange force for two bosons plotted for different values of
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between two particles as follows:

Feff = − ∂

∂(|z2 − z1|)
Veff (|z2 − z1|). (4.6)

In Figures 4.3 and 4.4 the dependence of the exchange force on temperature is shown for the

commutative and non-commutative cases. We see that the introduction of non-commuting

coordinates makes the forces weaker. It also appears that the non-commutative exchange

forces are less sensitive to temperature than in commutative quantum mechanics at short

length scales. One could interpret this as the effect of θ becoming comparatively larger

than the effect of β at short separations. For bosons we note that the separation at which

the force attains its maximum strength is larger than in the commutative case. Even for

fermions the force reaches a maximum, before decaying away as the separation approaches

zero. Non-commutativity does not alter the sign of the forces, however; for bosons the

exchange force is always attractive, and for fermions it is always repulsive.

One could take different views regarding the softening of the exchange potentials in

non-commutative space: Firstly, one could argue that, because the distance between two

particles may not be resolved beyond the length scale
√
θ, it makes no sense to ask about

the potential strength for smaller separations. Alternatively, since particles will experience

each other as smeared out in space, we should not interpret the separation in the argument

of Veff as a sharply defined distance. Rather, one should interpret Veff (|z2 − z1|) as

an average energy of two particles whose separation is only known up to a Gaussian

distribution centered at z2 − z1 and with variance
√
θ.

An alternative interpretation suggests itself if one realises that the modifications to

the exchange potentials may be fully attributed to the POVMs for position measurement,

π±z1,z2 = 1
2!π2 |z1, z2)± ⋆z1,z2 ±(z1, z2|. At first glance, one might think that this operator

reduces to the zero-operator if we set z1 = z2 in the fermionic case; after all it contains

antisymmetric states. However, there is a star product present in π±z1,z2 , and this star

product must be allowed to act before the indices are set equal. This ensures that π±z,z 6=
0. One can see this easily if the star product is decomposed, for example as e

←−
∂z
−→
∂z̄ =
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1
π

∫
d2u e−|u|

2+u
←−
∂z+ū

−→
∂z̄ , as was done in C.4.1:

|z1, z2)± ⋆z1,z2 ±(z1, z2|

=
1

2π2

∫
d2ud2ve−|u|

2−|v|2
{
|z1)eu

←−
∂z1+ū

−→
∂z̄1 (z1| ⊗ |z2)ev

←−
∂z2+v̄

−→
∂z̄2 (z2|

+|z2)ev
←−
∂z2+v̄

−→
∂z̄2 (z2| ⊗ |z1)eu

←−
∂z1+ū

−→
∂z̄1 (z1| ± |z1)eu

←−
∂z1+v̄

−→
∂z̄2 (z2| ⊗ |z2)ev

←−
∂z2+ū

−→
∂z̄1 (z1|

± |z2)ev
←−
∂z2+ū

−→
∂z̄1 (z1| ⊗ |z1)eu

←−
∂z1+v̄

−→
∂z̄2 (z2|

}
. (4.7)

For fermions, the last two terms of (4.7) will only cancel out the first two terms for z1 = z2

in the commutative limit; in this limit the Gaussian factors tend to Dirac delta functions,

and the only contribution to the integrals is for u = v = 0.

Suggestions have been made, for example by Rohwer et al. [11], that decompositions of

the star product, for instance like the example above, may be related to internal degrees of

freedom of the particles. From this perspective, two non-commutative fermions can really

sit on top of each other, and the Pauli principle is not violated, because the particles may

be in different internal states. If we remove the integral in (4.7) and set u = v the terms

do cancel for fermions. One might say that the state has been completely specified by the

’internal degrees of freedom’ u and v. Within this interpretation, the strong modifications

of the exchange potentials in the high temperature limit could be explained by the fact

that more and more internal degrees of freedom become accessible to the particles as the

temperature increases.

If one merely regards u and v in (4.7) as auxiliary variables, instead of invoking extra

physical degrees of freedom, one might say that π±z,z 6= 0 simply because of the nonlocality

introduced by non-commutativity through the star product.

The exchange potential has previously been derived in the context of twisted statistics

in [36], however, not based on the consistent interpretation of position measurement as pre-

sented in this thesis. The result obtained is similar in form to (4.4), and leads to the same

apparent violation of Pauli’s exclusion principle whenever twisting is present. However,

since twisting in two dimensional non-commutative quantum mechanics is optional (i.e.

the twisting parameter is arbitrary) the effect reported in [36] may be avoided by choosing

not to twist. Our result is a more profound manifestation of the non-commutativity of

space, which cannot be avoided, and which originates in the fact that position measure-

ment does not provide complete knowledge of the state of a system. In higher dimensions,

where the twisting parameter equals the non-commutative parameter by the requirement
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of Poincaré invariance, one would expect an additional distortion of the exchange potential

due to the twisting, on top of the distortion reported here in two dimensions.

Lastly, let us remark that by setting ~ = m = θ = 1 in the plots in this section we have

indeed chosen a very large non-commutative parameter, thereby exaggerating the effects

one would expect in the context of quantum gravity, where θ presumably would assume a

very small value. The energies required to observe violations of the Pauli principle would

probably be unattainable in experiment. In any case, our non-relativistic approach would

likely be invalid at very high energies, and a more careful analysis would be required.



Conclusion

To conclude this thesis, let us briefly summarise what has been achieved in the preceding

chapters:

• We have derived the differential scattering cross section for scattering of particles by

a potential in the non-commutative plane. It was found that this differential cross

section is larger than predicted by commutative theory. We contribute this finding

to the fact that interactions in a non-commutative space are not point interactions,

since potentials and particles cannot be localised perfectly. This effectively increases

the range of the potential and makes it appear larger. A lower limit is also imposed

on the scale at which scattering potentials may fluctuate, as a direct result of the

altered relationship between the position and momentum representations in non-

commutative quantum mechanics.

• We have built a many-particle formalism of non-commutative quantum mechanics

based on the interpretational framework developed in [15]. In particular we have

phrased this formalism in the language of second quantisation. The fact that inter-

actions are no longer point-interactions is captured by the modified commutation

relation satisfied by the field operators:

[ψ̂(z), ψ̂‡(w)]∓ = e−|z−w|
2

.

• We were able to make a link between non-commutative quantum mechanics and

non-commutative field theory via the second quantised formalism. The step from

commutative to non-commutative field theory essentially involves the substitution

of the usual Cartesian product with a star product. This is in agreement with

existing literature on non-commutative field theory, however, there is presently no

consensus about the form of star product to be used. Besides the Voros product

employed here, the slightly different Moyal product is commonly used, and there is

an ongoing debate whether the two products result in the same physics or not [16].

Our development sees the Voros product emerging in a natural way, and provides

an argument in favour of its selection.

• The effective interaction between particles due to particle statistics is modified in
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non-commutative quantum mechanics. We observed an effective increase in the

mean thermal wavelength, indicating that quantum effects will play a significant

role whenever particles are brought within a distance of order
√
θ. Most striking is

the effect on fermions, which in non-commutative quantum mechanics are allowed

to sit on top of each other. This apparent violation of Pauli’s exclusion principle

is unavoidable and comes about without the introduction of twisted statistics. The

effect has a more profound origin, stemming from the inherent non-locality of non-

commutative quantum mechanics and the fact that a position measurement does not

specify the state of a particle completely.

A general observation, which may summarise the first and last point above, is that

non-commutativity appears to have a softening effect on interactions at the scale of
√
θ.

It appears that in a hypothetical non-commutative world singularities in space cannot

exist.

As pointed out in the introduction, we have been strictly confined to two spatial dimen-

sions, and the conclusions reached here do not necessarily extend to higher dimensions.

An obvious suggestion for future research would therefore be to generalise this formalism

to higher dimensions. In the event that the results from two dimensions survive, one could

foresee implications in high energy physics and for the physics of dense astrophysical ob-

jects due to the alteration of forces at short length scales. The two-dimensional version

of the formalism, as presented here, may find direct applications to systems such as the

quantum Hall system, which allow for effective descriptions in terms of non-commutative

coordinates.

This thesis has only considered a non-local description of non-commutative quantum

mechanics. As previously mentioned, a local description of non-commutative quantum

mechanics have recently been suggested, and attempts have been made to relate the new

local degrees of freedom to particle structure or extent [11]. A generalisation of the many-

particle formalism developed here to such a local description is a straightforward matter.

Mathematically, the step from a non-local to a local description involves some decomposi-

tion of the star product, and this naturally extends to the many particle situation. Hence,

should one wish to study many-particle systems in a local framework, the tools developed

here are readily available.



Appendix A

Coherent States

This appendix serves as an introduction to the theory of coherent states, and should

provide sufficient background for the purpose of this thesis. Interested readers are referred

to Klauder and Skagerstam [21] for an extensive review of the theory of coherent states.

In 1.1 we defined the annihilation and creation operators b = 1√
2θ
(x̂1 + ix̂2) and

b† = 1√
2θ
(x̂1 − ix̂2) on the classical configuration space Hc, satisfying [b, b†] = 1. These

operators act in on the number states of the Fock basis as follows:

b |n〉 =
√
n |n− 1〉 ,

b† |n〉 =
√
n+ 1 |n+ 1〉 . (A.1)

It follows that

b†b |n〉 = n |n〉 . (A.2)

Let us now define the coherent state

|z〉 = ezb
†−z̄b |0〉 . (A.3)

Using the Baker-Campbell-Hausdorff formula, one can show that

e−zb
†+z̄bbezb

†−z̄b = b+ z. (A.4)

Keeping in mind that b |0〉 = 0 according to (A.1) we therefore have

b |z〉 = bezb
†−z̄b |0〉

= ezb
†−z̄be−zb

†+z̄bbezb
†−z̄b |0〉

= ezb
†−z̄b(b+ z) |0〉

= z |z〉 , (A.5)

i.e. the coherent state (A.3) is an eigenstate of the annihilation operator b. By complex
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conjugation we similarly obtain

〈z| b† = z̄ 〈z| . (A.6)

Using the fact that eA+B = eAeBe−
1
2
[A,B] whenever [A,B] = const, one may write the

coherent state (A.3) as

|z〉 = ezb
†−z̄b |0〉

= ezb
†
e−z̄be−

1
2
|z|2 |0〉

= e−
1
2
|z|2ezb

† |0〉

= e−
1
2
|z|2

∞∑

n=0

zn√
n!

|n〉 . (A.7)

From the latter one deduces the action of the creation operator on a coherent state:

b† |z〉 =

(
∂

∂z
+
z̄

2

)
|z〉 ; (A.8)

and correspondingly,

〈z| b =

(
∂

∂z̄
+
z

2

)
〈z| . (A.9)

One may also deduce from (A.7) the following overlaps:

〈n|z〉 = e−
1
2
|z|2 z

n

√
n!
,

〈z|n〉 = e−
1
2
|z|2 z̄

n

√
n!
,

〈z|w〉 = e−
1
2
|z|2− 1

2
|w|2+z̄w. (A.10)

We know that the identity operator on Hc can be expressed in terms of the number states:

Îc =
∞∑

n=0

|n〉 〈n| . (A.11)

Let us now prove that the identity operator alternatively may be expressed in terms of
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the coherent states:

1

π

∫
d2 z |z〉 〈z| =

1

π

∫
d2z e−|z|

2
∞∑

m,n=0

zmz̄n√
m!n!

|m〉 〈n|

=
1

π

∞∑

m,n=0

1√
m!n!

|m〉 〈n|
∫
r drdφ e−r

2

rm+nei(m−n)φ

= 2
∞∑

m,n=0

δm,n√
m!n!

|m〉 〈n|
∫
dr e−r

2

rn+m+1

= 2
∞∑

n=0

1

n!
|n〉 〈n|

∫
dr e−r

2

r2n+1

=
∞∑

n=0

|n〉 〈n| . (A.12)

Here we have expressed z in polar coordinates (i.e. z = reiφ) and used the fact that

2
∫
dr e−r

2
r2n+1 = Γ(n+ 1) = n! is the Gamma function. We therefore conclude that

Îc =
1

π

∫
d2z |z〉 〈z| . (A.13)

Using (A.10) and (A.13) one may express a number state in terms of coherent states:

|n〉 =
1

π

∫
dz |z〉 e− 1

2
|z|2 z̄

n

√
n!
. (A.14)

Let us lastly demonstrate that the coherent states satisfy the uncertainty relation (1.11)

with equality:

〈z| x̂1 |z〉 =

√
θ

2
〈z|
(
b+ b†

)
|z〉

=

√
θ

2
(z + z̄),

〈z| (x̂1)2 |z〉 =
θ

2
〈z|
(
b+ b†

)2 |z〉

=
θ

2
〈z|
(
b2 + (b†)2 + 2b†b+ 1

)
|z〉

=
θ

2
(z2 + z̄2 + 2z̄z + 1). (A.15)

Therefore ∆x1 =
√
〈z| (x̂1)2 |z〉 − (〈z| x̂1 |z〉)2 =

√
θ
2
and similarly ∆x2 =

√
θ
2
. It follows

that ∆x1∆x2 =
θ
2
, and hence |z〉 is a minimum uncertainty state on Hc.



Appendix B

Useful Mathematical Identities

B.1

Let z and k be complex variables, i.e. z = zx+ izy and k = kx+ iky, with zx, zy, kx, ky ∈
R. Then

1

4π2

∫
d2k e

i
2(kz̄+k̄z) =

1

4π2

∫
dkxdky e

i
2
((kx+iky)(zx−izy)+(kx−iky)(zx+izy))

=

(
1

2π

∫
dkx e

ikxzx

)(
1

2π

∫
dky e

ikyzy

)

= δ(zx)δ(zy), (B.1)

where δ denotes the Dirac delta function. In this thesis the shorthand notation δ(z) =

δ(zx)δ(zy) is employed.

B.2

e−∂z∂z̄e−|z−w|
2

= πδ(z − w). (B.2)

Proof:

e−∂z∂z̄e−|z−w|
2

=
1

4π

∫
d2v e−

1
4
|v|2+ i

2
v∂z+

i
2
v̄∂z̄e−|z−w|

2

=
1

4π

∫
d2v e−

1
4
|v|2e−(z+

i
2
v−w)(z̄+ i

2
v̄−w̄)

= πe−|z−w|
2 1

4π2

∫
d2v e

i
2
(v(w̄−z̄)+v̄(w−z))

= πe−|z−w|
2

δ(z − w)

= πδ(z − w). (B.3)
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Appendix C

Important Calculations

C.1 Calculations for Chapter 1

C.1.1 Diagonal Representation of Operators in Terms of Coherent States

Suppose we have a (normal ordered) operator Ô(b†, b). We may insert the identity

operator on each side of this operator to obtain

Ô(b†, b) =
1

π2

∫
d2zd2w |z〉 〈z| Ô(b†, b) |w〉 〈w|

=
1

π2

∫
d2zd2w |z〉O(z̄, w) 〈z|w〉 〈w| .

(O(z̄, w) here means that we have simply let the b†’s act to the left and the b’s to the

right such that they may be replaced by z̄ and w respectively.) After making the change

of variables w = z + v and w̄ = z̄ + v̄ and performing some manipulations, one obtains

Ô(b†, b) =
1

π2

∫
d2zd2v e−|v|

2

ezb
† |0〉O(z̄, z + v)e−z(z̄+v̄) 〈0| e(z̄+v̄)b

=
1

π2

∫
d2zd2v e−|v|

2

ezb
† |0〉

(
ev∂zO(z̄, z)

) (
ev̄∂z̄e−zz̄ 〈0| ez̄b

)

=
1

π

∫
d2z |z〉 〈z|

(
1

π

∫
d2v e−|v|

2+v∂z−v̄∂z̄O(z̄, z)

)

=
1

π

∫
d2z |z〉 〈z|

(
e−∂z∂z̄O(z̄, z)

)
. (C.1)

Between the second and third line integration by parts was used to make ∂z̄ act in on

O(z̄, z). We can thus conclude that any operator on Hc has a diagonal representation in

the coherent state basis.

C.1.2 Origin of the Star Product

We define the mapping

M : S → C,

M(Â) = A(z̄, z), (C.2)
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with A(z̄, z) = 〈z| Â |z〉. We will now show that this is a homomorphism from S to C with

the product ⋆z = e
←−
∂z
−→
∂z̄ :

M(ÂB̂) = 〈z| ÂB̂ |z〉

=
1

π

∫
d2w 〈z| Â |w〉 〈w| B̂ |z〉

=
1

π

∫
d2w |〈z|w〉|2A(z̄, w)B(w̄, z). (C.3)

We now introduce a new variable v = w − z. Noting that |〈z|w〉|2 = e−|z−w|
2
= e−|v|

2
we

therefore have

M(ÂB̂) =
1

π

∫
d2v e−|v|

2

A(z̄, z + v)B(z̄ + v̄, z)

= A(z̄, z)

(
1

π

∫
d2v e−|v|

2+v
←−
∂z+v̄

−→
∂z̄

)
B(z̄, z)

= A(z̄, z)e
←−
∂z
−→
∂z̄B(z̄, z)

= 〈z| Â |z〉 ⋆z 〈z| B̂ |z〉 . (C.4)

Since M is clearly onto and M(Î) = 〈z| Î |z〉 = 1, we conclude that M is an isomorphism.

C.2 Calculations for Chapter 2

C.2.1 Conserved Currents in the z-basis

We start by reminding of the Schrödinger equation in the non-commutative position

basis:

i~
∂

∂t
ψ(z) = − ~

2

mθ

∂2

∂z∂z̄
ψ(z) + V (z̄, z) ⋆z ψ(z). (C.5)

The conjugate of this is (assuming that V (z̄, z) is real)

−i~ ∂
∂t
ψ̄(z) = − ~

2

mθ

∂2

∂z∂z̄
ψ̄(z) + ψ̄(z) ⋆z V (z̄, z). (C.6)



C. Important Calculations 68

Using (C.5) and (C.6) one therefore has

∂

∂t
P (z) =

1

π

(
∂

∂t
ψ̄(z)

)
⋆z ψ(z) +

1

π
¯ψ(z) ⋆z

(
∂

∂t
ψ(z)

)

=
~

iπmθ

(
∂

∂z∂z̄
ψ̄(z)

)
⋆z ψ(z)−

1

i~π
ψ̄(z) ⋆z V (z̄, z) ⋆z ψ(z)

− ~

iπmθ
ψ̄(z) ⋆z

(
∂

∂z∂z̄
ψ(z)

)
+

1

i~π
ψ̄(z) ⋆z V (z̄, z) ⋆z ψ(z)

=
~

iπmθ

{(
∂

∂z∂z̄
ψ̄(z)

)
⋆z ψ(z)− ψ̄(z) ⋆z

(
∂

∂z∂z̄
ψ(z)

)}
. (C.7)

However, we may use the product rule to write

(
∂

∂z∂z̄
ψ̄(z)

)
⋆z ψ(z) =

1

2

{
∂

∂z

[(
∂

∂z̄
ψ̄(z)

)
⋆z ψ(z)

]
−
(
∂

∂z̄
ψ̄(z)

)
⋆z

(
∂

∂z
ψ(z)

)

+
∂

∂z̄

[(
∂

∂z
ψ̄(z)

)
⋆z ψ(z)

]
−
(
∂

∂z
ψ̄(z)

)
⋆z

(
∂

∂z̄
ψ(z)

)}
,(C.8)

Hence,

∂

∂t
P (z) = − ~

2iπmθ

{
∂

∂z

[
ψ̄(z) ⋆z

(
∂

∂z̄
ψ(z)

)
−
(
∂

∂z̄
ψ̄(z)

)
⋆z ψ(z)

]

− ∂

∂z̄

[
ψ̄(z) ⋆z

(
∂

∂z
ψ(z)

)
−
(
∂

∂z
ψ̄(z)

)
⋆z ψ(z)

]}
, (C.9)

and by defining the currents

jz =
~

2iπmθ

[
ψ̄(z) ⋆z

(
∂

∂z̄
ψ(z)

)
−
(
∂

∂z̄
ψ̄(z)

)
⋆z ψ(z)

]
,

jz̄ =
~

2iπmθ

[
ψ̄(z) ⋆z

(
∂

∂z
ψ(z)

)
−
(
∂

∂z
ψ̄(z)

)
⋆z ψ(z)

]
, (C.10)

we obtain the continuity equation

∂

∂t
P (z) +

∂

∂z
jz +

∂

∂z̄
jz̄ = 0. (C.11)
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C.2.2 Polar Currents

Using (2.6) and (2.5)

∂

∂z
jz +

∂

∂z̄
jz̄ =

e−iφ

2

[
∂

∂r
− i

r

∂

∂φ

]
jz +

eiφ

2

[
∂

∂r
+
i

r

∂

∂φ

]
jz̄

=
∂

∂r

[
e−iφ

2
jz +

eiφ

2
jz̄

]
− ie−iφ

2r

∂

∂φ
jz +

ieiφ

2r

∂

∂φ
jz̄

=
∂

∂r

[
e−iφ

2
jz +

eiφ

2
jz̄

]
+

1

r

∂

∂φ

(−ie−iφ
2

jz

)
− 1

r

∂

∂φ

(−ie−iφ
2

)
jz

+
1

r

∂

∂φ

(
ieiφ

2
jz̄

)
− 1

r

∂

∂φ

(
ieiφ

2

)
jz̄

=
∂

∂r

[
e−iφ

2
jz +

eiφ

2
jz̄

]
+

1

r

∂

∂φ

[−ie−iφ
2

jz +
ieiφ

2
jz̄

]
+

1

r

[
e−iφ

2
jz +

eiφ

2
jz̄

]

=
1

r

∂

∂r

[
r

(
e−iφ

2
jz +

eiφ

2
jz̄

)]
+

1

r

∂

∂φ

[−ie−iφ
2

jz +
ieiφ

2
jz̄

]
. (C.12)

Since eiφ =
√
z/z̄ and r =

√
zz̄, we may define the radial and angular currents

jr =
1

2

(√
z̄

z
jz +

√
z

z̄
jz̄

)
,

jφ = − i

2

(√
z̄

z
jz −

√
z

z̄
jz̄

)
, (C.13)

satisfying the radial continuity equation

∂

∂t
P (z) +

1

r

∂

∂r
(rjr) +

1

r

∂

∂φ
jφ = 0. (C.14)

C.2.3 Explicit Form of the Lippmann-Schwinger Equation

Consider the second term of (2.14). By inserting the momentum representation of the

identity operator we have

(z| 1

E − Ĥ0 + iε
V̂ |ψ+) =

∫
d2p (z| 1

E − Ĥ0 + iε
|p)(p|V̂ |ψ+)

=

∫
d2p (z|p) 1

E − p2

2m
+ iε

(p|V̂ |ψ+). (C.15)
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E corresponds to the energy of the incoming particle, and we may write E = q2/2m, with

q the momentum of the incoming particle. If we also redefine ε′ = 2mε we can write

(z| 1

E − Ĥ0 + iε
V̂ |ψ+) = 2m

∫
d2p (z|p) 1

q2 − p2 + iε′
(p|V̂ |ψ+)

=
2m

π

∫
d2pd2w (z|p) 1

q2 − p2 + iε′
(p|w) ⋆w (w|V̂ |ψ+)

=
mθ

π2~2

∫
d2pd2w

e−
θ

2~2
|p|2+ i

~

√
θ
2
(p(z̄−w̄)+p̄(z−w))

q2 − p2 + iε′
e
←−
∂w
←−
∂w̄(w|V̂ |ψ+)

=
mθ

π2~2

∫
d2pd2w

e
i
~

√
θ
2
(p(z̄−w̄)+p̄(z−w))

q2 − p2 + iε′
(w|V̂ |ψ+). (C.16)

In the last step we let the star product act backwards, and its action exactly cancels

the Gaussian term in p. For convenience, let us temporarily introduce a new variable

r =
√
2θ
~
(z−w). Furthermore let φ denote the angle between the momentum vector p and

the relative position vector r. One can then show that the momentum integral evaluates

as follows:

∫
d2p

e
i
~

√
θ
2
(p(z̄−w̄)+p̄(z−w))

q2 − p2 + iε
=

∫
d|p|dφ |p| ei|p||r| cosφ

|q|2 − |p|2 + iε

= 2π

∫
d|p| |p| 1

|q|2 − |p|2 + iε
J0(|p||r|)

= −2π
πi

2
H

(1)
0 (|q||r|)

= −iπ2H
(1)
0 (|q||r|). (C.17)

Jn denotes Bessel functions of the first kind and H
(1)
0 is the first Hankel function. We thus

have

(z| 1

E − Ĥ0 ± iε
V̂ |ψ+) = − imθ

~2

∫
d2wH

(1)
0 (

√
2θ

~
|q||z − w|)(w|V̂ |ψ+). (C.18)

We next note that

lim
|r|→∞

H
(1)
0 (

√
2θ

~
|q||z − w|) =

√
2

π
√
2θ
~
|q||z − w|

ei
√
2θ
~
|q||z−w|e−i

π
4 . (C.19)
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We also note that if |z| ≫ |w|, i.e. the observation point is far away,

|z − w| =
√

(z − w)(z̄ − w̄)

= |z|
√

1− wz̄ + w̄z)

|z|2 − |w|2
|z|2

≈ |z|
√

1− 2|w||z| cosα
|z|2

≈ |z| − |w| cosα, (C.20)

where α is the angle between z and w. If we assume that the scattering is elastic then the

outgoing momentum p of a particle scattered in the direction of the observation point z

has magnitude |q| and direction α relative to w. Thus,

ei
√
2θ
~
|q||z−w| ≈ ei

√
2θ
~
|q||z|e−i

√
2θ
~
|q||w| cosα

= ei
√
2θ
~
|q||z|e−

i
~

√
θ
2
(pw̄+p̄w). (C.21)

Finally, we let 1/|z−w| ≈ 1/|z|. (Note that all the approximations we have made are the

same as the approximations that are made in commutative scattering theory, see [24]).

Putting everything back into (2.14) we finally obtain

(z|ψ+) =

√
θ

2π~2


e−

θ

4~2
|q|2+ i

~

√
θ
2
(qz̄+q̄z) +

√
i
ei

√
2θ
~
|q||z|

√√
2θ
~
|q||z|

f(q, p)


 , (C.22)

where

f(q, p) = −mθ
~2

√
2

π

√
2π~2

θ

∫
d2w e−

i
~

√
θ
2
(pw̄+p̄w)(w|V̂ |ψ+), (C.23)

is the scattering amplitude for a particle to have outgoing momentum p given an incident

momentum of q.

C.2.4 Outgoing Current

The exact form of the scattered outgoing wave is given by (C.18), where no approxi-

mations have yet been made. We also note that the Hankel functions can be expressed in
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terms of the Bessel and von Neumann functions as

H(1)
n (x) = Jn(x) + iNn(x),

H(2)
n (x) = Jn(x)− iNn(x), (C.24)

and hence H̄
(1)
n (x) = H

(2)
n (x). Using this together with (2.5) we may calculate the current

joutz :

joutz =
~

2iπmθ

[(
imθ

~2

∫
d2wH

(2)
0 (

√
2θ

~
|q||z − w|)(ψ+|V̂ |w)

)

⋆z

(
− imθ

~2

∂

∂z̄

∫
d2w′H

(1)
0 (

√
2θ

~
|q||z − w′|)(w′|V̂ |ψ+)

)

−
(
imθ

~2

∂

∂z̄

∫
d2wH

(2)
0 (

√
2θ

~
|q||z − w|)(ψ+|V̂ |w)

)

⋆z

(
− imθ

~2

∫
d2w′H

(1)
0 (

√
2θ

~
|q||z − w′|)(w′|V̂ |ψ+)

)]

=
~

2iπmθ

(
mθ

~2

)2 ∫
d2wd2w′ (ψ+|V̂ |w)(w′|V̂ |ψ+)

{
H

(2)
0 (

√
2θ

~
|q||z − w|) ⋆z

(
∂

∂z̄
H

(1)
0 (

√
2θ

~
|q||z − w′|)

)

−
(
∂

∂z̄
H

(2)
0 (

√
2θ

~
|q||z − w|)

)
⋆z H

(1)
0 (

√
2θ

~
|q||z − w′|)

}
. (C.25)

The terms in curly brackets may be evaluated by expanding the star product, writing

|z| =
√
zz̄ and noting that the following properties hold for Hankel functions (with i = 1, 2

and a ∈ R):

∂

∂z

[(
−a
2

√
z̄

z

)n

H i
n(a

√
zz̄)

]
=

(
−a
2

√
z̄

z

)n+1

H i
n+1(a

√
zz̄),

∂

∂z̄

[(
−a
2

√
z

z̄

)n
H i
n(a

√
zz̄)

]
=

(
−a
2

√
z

z̄

)n+1

H i
n+1(a

√
zz̄), (C.26)

(this may easily be verified using software such as in Mathematica) and

lim
x→∞

H i
n(x) =

√
±2i

πx
e±ix±

n
2
π, (C.27)
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with + for i = 1 and - for i = 2.

We now evaluate the terms in the curly brackets of (C.25), making the abbreviation

a =
√
2θ
~
|q|:

H
(2)
0 (a|z − w|) ⋆z

(
∂

∂z̄
H

(1)
0 (a|z − w′|)

)

=
∞∑

n=0

1

n!

(
∂n

∂zn
H

(2)
0 (a|z − w|)

)(
∂n+1

∂z̄n+1
H

(1)
0 (a|z − w′|)

)

=
∞∑

n=0

1

n!

(
−a
2

√
z̄ − w̄

z − w

)n(
−a
2

√
z − w′

z̄ − w̄′

)n+1

×H(2)
n (a|z − w|)H(1)

n+1(a|z − w′|). (C.28)

If we now take the limit |z| → ∞, |z| ≫ |w|, |w′| and therefore
(√

z̄−w̄
z−w

)n (√
z−w′

z̄−w̄′

)n+1

≈
√

z
z̄
. (C.28) then becomes

lim
|z|→∞

: −a
2

√
z

z̄

∞∑

n=0

1

n!

(a
2

)2n
√

−2i

πa|z|e
−ia|z−w|−n

2
π

√
2i

πa|z|e
ia|z−w′|+n+1

2
π

= −i
√
z

z̄
e

a2

4
1

π|z|e
ia(|z−w′|−|z−w|)

≈ −i
√
z

z̄
e

θ

2~2
|q|2 1

π|z|e
i
~

√
θ
2
(q(w̄−w̄′)+q̄(w−w′)). (C.29)

In the last line we substituted back a =
√
2θ
~
|q| and used (C.20) to write |q||z − w| ≈

|q||z| − |q||w|cosα = |q||z| − i
2
(wq̄ + w̄q) and similarly |q||z − w′| ≈ |q||z| − i

2
(w′q̄ + w̄′q).

Similarly to (C.28) and (C.29) we obtain

lim
|z|→∞

(
∂

∂z̄
H

(2)
0 (a|z − w′|)

)
⋆z H

(1)
0 (a|z − w|)

≈ i

√
z

z̄
e

θ

2~2
|q|2 1

π|z|e
i
~

√
θ
2
(q(w̄−w̄′)+q̄(w−w′)). (C.30)

Substituting everything back into (C.25) we have

joutz =
~

2iπmθ

(
mθ

~2

)2 −2i

π|z|

√
z

z̄
e

θ

2~2
|q|2
∣∣∣∣
∫
d2w (w|V̂ |ψ+)e

i
~

√
θ
2
(qw̄+q̄w)

∣∣∣∣
2

=

√
z

z̄

1

4π2m~|z|e
θ

2~2
|q|2 |f(q, p)|2, (C.31)
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where in the last line we have substituted in (2.16). Similarly,

joutz̄ =

√
z̄

z

1

4π2m~|z|e
θ

2~2
|q|2 |f(q, p)|2, (C.32)

and hence, using (2.8), we obtain

jr =
1

4π2m~|z|e
θ

2~2
|q|2 |f(q, p)|2,

jφ = 0. (C.33)

C.2.5 Alternative Form of Scattering Amplitude

We note first that

1

π

∫
d2w e−

i
~

√
θ
2
(pw̄+p̄w)(w|V̂ |ψ+) = e−

θ

2~2
|p|2 1

π

∫
d2w e−

i
~

√
θ
2
(pw̄+p̄w) ⋆w (w|V̂ |ψ+)

= e−
θ

4~2
|p|2 1

π

∫
d2w e−

θ

4~2
|p|2− i

~

√
θ
2
(pw̄+p̄w) ⋆w (w|V̂ |ψ+)

=

√
2π~2

θ
e−

θ

4~2
|p|2 1

π

∫
d2w (p|w) ⋆w (w|V̂ |ψ+)

=

√
2π~2

θ
e−

θ

4~2
|p|2(p|V̂ |ψ+). (C.34)

Hence, from (2.16)

f(q, p) = −mπθ
~2

√
2

π

2π~2

θ
e−

θ

4~2
|p|2(p|V̂ |ψ+)

= −2mπ2

√
2

π
e−

θ

4~2
|p|2(p|V̂ |ψ+). (C.35)
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C.2.6 Scattering Amplitude in the Born Approximation

f(q, p) = −2mπ2

√
2

π
e−

θ

4~2
|p|2(p|V̂ |q)

= −2mπ

√
2

π
e−

θ

4~2
|p|2
∫
d2w(p|w) ⋆w (w|V̂ |q)

= −2mπ

√
2

π
e−

θ

4~2
|p|2
∫
d2w(p|w) ⋆w V (w̄, w) ⋆w (w|q)

= −2mπ

√
2

π

θ

2π~2
e−

θ

4~2
|p|2
∫
d2we−

θ

4~2
|p|2− i

~

√
θ
2
(pw̄)+p̄w

⋆w

(
V (w̄, w) ⋆w e

− θ

4~2
|q|2+ i

~

√
θ
2
(qw̄)+q̄w

)

= −2mπ

√
2

π

θ

2π~2
e−

θ

4~2
(2|p|2+|q|2−2|p|2−2q(q̄−p̄))

∫
d2we

i
~

√
θ
2
((q−p)w̄)+(q̄−p̄)wV (w̄, w)

= −4mπ2

√
2

π

θ

2π~2
e

θ

4~2
(|q|2−2qp̄)Ṽ (

√
2θ(q − p)

~
), (C.36)

with Ṽ (
√
2θ(q−p)

~
) the normal Fourier transform of V (z̄, z).

C.2.7 The Optical Theorem

Proof of the non-commutative optical theorem, following the steps of [24]:

Im(q|T̂ |q) = Im(q|V̂ |ψ+)

= Im

[(
(ψ+| − (ψ+|V̂ 1

E − Ĥ0 − iε

)
V̂ |ψ+)

]

= −Im(ψ+|V̂ 1

E − Ĥ0 − iε
V̂ |ψ+), (C.37)

because the hermiticity of V̂ implies that the first term vanishes.

We next use the relation

1

E − Ĥ0 − iε
= Pr.

1

E − Ĥ0

+ iπδ(E − Ĥ0). (C.38)
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We then get

−Im(ψ+|V̂ 1

E − Ĥ0 − iε
V̂ |ψ+) = −Im(ψ+|V̂ P r. 1

E − Ĥ0

V̂ |ψ+)

−Im(ψ+|V̂ iπδ(E − Ĥ0)V̂ |ψ+)

= −π(ψ+|V̂ δ(E − Ĥ0)V̂ |ψ+). (C.39)

Again the one term vanishes because of the hermiticity of V̂ and Pr. 1

E−Ĥ0
. We thus end

up with

Im(q|T̂ |q) = −π(ψ+|V̂ δ(E − Ĥ0)V̂ |ψ+)

= −π(q|T̂ †δ(E − Ĥ0)T̂ |q)

= −π
∫
d2p (q|T̂ †δ(E − Ĥ0)|p)(p|T̂ |q)

= −π
∫
d2p (q|T̂ †|p)(p|T̂ |q)δ(E − p2

2m
)

= −π
∫
d|p|dφ |p||(p|T̂ |q)|2δ(E − |p|2

2m
)

= −mπ
∫
dφ |(p|T̂ |q)|2, (C.40)

where |p| = |q|. Therefore, using C.35 and T̂ |q) = V̂ |ψ+),

Im (f(φ = 0)) = −2mπ2

√
2

π
e−

θ

4~2
|q|2Im

(
(q|T̂ |q)

)

= −2mπ2

√
2

π
e−

θ

4~2
|q|2
(
−mπ

∫
dφ |(p|T̂ |q)|2

)

= 2m2π3

√
2

π
e−

θ

4~2
|q|2
∫
dφ

∣∣∣∣
−1

2mπ2

√
π

2
e

θ

4~2
|p|2f(q, p)

∣∣∣∣
2

=
1√
8π
e

θ

4~2
|q|2
∫
dφ|f(q, p)|2

=
1√
8π
e

θ

4~2
|q|2
∫
dφ

( |q|
~
e

θ

2~2
|q|2 dσ

dφ

)

=
1√
8π

( |q|
~

)
e−

θ

4~2
|q|2σtot, (C.41)

i.e.

σtot =

√
8π~

|q| e
θ

4~2
|p|2Im (f(φ = 0)) . (C.42)
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C.3 Calculations for Chapter 3

C.3.1 Overlap of N-Particle Position States

Using the definition (3.17) we have

± (z1, ..., zN | w1, ..., wN )± =
1

N !

∑

P,Q∈S(N)

(±)ǫP+ǫQ
(
zP (1), ..., zP (N)

∣∣ wQ(1), ..., wQ(N)

)

=
1

N !

∑

P,Q∈S(N)

(±)ǫP+ǫQ

N∏

i=1

e−|zP (i)−wQ(i)|2

=
1

N !

∑

P,Q∈S(N)

(±)ǫP+ǫQ

N∏

i=1

e−|zi−wQ(P−1(i))|2

=
1

N !

∑

P∈S(N)

∑

Q′∈S(N)

(±)ǫQ′

N∏

i=1

e−|zi−wQ′(i)|2

=
∑

Q′∈S(N)

(±)ǫQ′

N∏

i=1

e−|zi−wQ′(i)|2 , (C.43)

where we have introduced Q′ = QP−1.

C.3.2 Action of the Creation Operator

ψ̂‡(z)|z1, ..., zN )± = |z, z1, ..., zN )±. (C.44)

Proof:

ψ̂‡(z)|z1, ..., zN )±

=
∞∑

N ′=0

1

N ′!πN ′

∫
d2z′1...d

2z′N ′ |z, z′1, ..., z′N ′)± ⋆z′1,...,z′N′ ±(z
′
1, ..., z

′
N ′ |z1, ..., zN )±

=
1

N !πN

∫
d2z′1...d

2z′N |z, z′1, ..., z′N )± ⋆z′1,...,z′N ±(z
′
1, ..., z

′
N |z1, ..., zN )±

=
1

N !πN

∫
d2z′1...d

2z′N |z, z′1, ..., z′N )±e
∑N

i=1

←−−
∂z′i
−→
∂z̄′

i

∑

P

(±)P
N∏

a=1

e−|z
′
a−zP (a)|2

=
1

N !πN

∫
d2z′1...d

2z′N |z, z′1, ..., z′N )±e
∑N

i=1−
−−→
∂z′i
−→
∂z̄′

i

∑

P

(±)P
N∏

a=1

e−|z
′
a−zP (a)|2

(C.45)
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=
1

N !πN

∑

P

(±)P
∫
d2z′1...d

2z′N |z, z′1, ..., z′N )±
N∏

a=1

πδ(z′a − zP (a))

=
1

N !

∑

P

(±)P |z, zP (1), ..., zP (N))±

=
1

N !

∑

P

(±)P (±)P |z, z1, ..., zN )±

= |z, z1, ..., zN )±. (C.46)

Here we have used integration by parts to make the derivative operators work forward,

and B.2 has been used repeatedly to turn the Gaussian factors into Dirac deltas.

C.3.3 Action of the Annihilation Operator

ψ̂(z)|z1, ..., zN )± =
N∑

a=1

(±)a+1e−|z−za|
2 |z1, ..., za−1, za+1, ..., zN )±. (C.47)

Proof:

ψ̂(z)|z1, ..., zN )

=
∞∑

N ′=0

1

N ′!πN ′

∫
d2z′1...d

2z′N ′ |z′1, ..., z′N ′)±e
−∑N′

i=1

−−→
∂z′i
−→
∂z̄′

i±(z, z
′
1, ..., z

′
N ′ |z1, ..., zN )±

=
1

(N − 1)!πN−1

∫
d2z′1...d

2z′N−1|z′1, ..., z′N−1)

×e−
∑N−1

i=1

−−→
∂z′i
−→
∂z̄′

i±(z, z
′
1, ..., z

′
N−1|z1, ..., zN )±

=
1

(N − 1)!πN−1

∫
d2z′1...d

2z′N−1|z′1, ..., z′N−1)±

×e−
∑N−1

i=1

−−→
∂z′i
−→
∂z̄′

i

∑

P

(±)P e−|z−zP (N)|2
N−1∏

a=1

e−|z
′
a−zP (a)|2

=
1

(N − 1)!πN−1

∑

P

(±)P
∫
d2z′1...d

2z′N−1|z′1, ..., z′N−1)±

e−|z−zP (N)|2
N−1∏

a=1

πδ(z′a − zP (a))

=
1

(N − 1)!

∑

P

(±)P e−|z−zP (N)|2 |zP (1), ..., zP (N−1))±

=
N∑

a=1

(±)a+1e−|z−za|
2 |z1, ..., za−1, za+1, ..., zN )±. (C.48)
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C.3.4 Commutation Relation Between Non-Commutative Position Annihila-

tion and Creation Operators

[ψ̂(z), ψ̂‡(w)]∓ = e−|z−w|
2

. (C.49)

Proof:

ψ̂(z)ψ̂‡(w)|z1, ..., zN )± = ψ̂(z)|w, z1, ..., zN )±

=
N∑

a=0

(±)ae−|z−za|
2 |w, ..., za−1, za+1, ..., zN )±

= e−|z−w|
2 |z1, ..., zN )±

+
N∑

a=1

(±)ae−|z−za|
2 |w, ..., za−1, za+1, ..., zN )±, (C.50)

where we used z0 = w. Also,

ψ̂‡(w)ψ̂(z)|z1, ..., zN )± = ψ̂‡(w)
N∑

a=1

(±)a+1e−|z−za|
2 |z1, ..., za−1, za+1, ..., zN )±

=
N∑

a=1

(±)a+1e−|z−zP (N)|2 |w, ..., za−1, za+1, ..., zN )±. (C.51)

Hence, [ψ̂(z) ˆ, ψ
†
(w)]⋆∓ = [ψ̂(z) ˆ, ψ

†
(w)]∓ = e−|z−w|

2
.

C.3.5 Action of a Two-Particle Operator

Suppose we have a two-particle operator Ŵ as defined in (3.53). We wish to show how

such an operator acts on an n-particle state. To do this we follow the same steps as in

3.4.5:

[ψ̂(z), Ŵ ] =
1

2π2

∫
d2ud2v [ψ̂(z), ψ̂†(u)ψ̂†(v)] ⋆u,v W (ū, u, v̄, v) ⋆u,v ψ̂(v)ψ̂(u)

=
1

2π2

∫
d2ud2v

{
[ψ̂(z), ψ̂†(u)]∓ψ̂

†(v)± ψ̂†(u)[ψ̂(z), ψ̂†(v)]∓

}

⋆u,vW (ū, u, v̄, v) ⋆u,v ψ̂(v)ψ̂(u)

=
1

2π2

∫
d2ud2v

{
e−|z−u|

2

ψ̂†(v)± ψ̂†(u)e−|z−v|
2
}

⋆u,vW (ū, u, v̄, v) ⋆u,v ψ̂(v)ψ̂(u). (C.52)
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We may swap the integration labels u and v around for the second term and use the fact

that ψ̂(v)ψ̂(u) = ∓ψ̂(u)ψ̂(v) to obtain

[ψ̂(z), Ŵ ] =
1

π2

∫
d2ud2v e−|z−u|

2

ψ̂†(v) ⋆u,v W (ū, u, v̄, v) ⋆u,v ψ̂(v)ψ̂(u)

=
1

π2

∫
d2ud2v

(
e−∂u∂ūe−|z−u|

2
)
ψ̂†(v) ⋆v W (ū, u, v̄, v) ⋆u,v ψ̂(v)ψ̂(u)

=
1

π

∫
d2v ψ̂†(v) ⋆v W (z̄, z, v̄, v) ⋆z,v ψ̂(v)ψ̂(z)

= V̂W (z)ψ̂(z), (C.53)

where we have introduced the operator V̂W (z) = 1
π

∫
d2v ψ̂†(v) ⋆v W (z̄, z, v̄, v) ⋆z,v ψ̂(v)

which acts as a single-particle operator.

Next we note that

±(z1, ..., zN |Ŵ |ψ) = (Ω|ψ̂(zN)...ψ̂(z1), Ŵ |ψ)

= (Ω|[ψ̂(zN)...ψ̂(z1), Ŵ ]|ψ)

= (Ω|ψ̂(zN)...[ψ̂(z1), Ŵ ]|ψ)

+(Ω|ψ̂(zN)...[ψ̂(z2), Ŵ ]ψ̂(z1)|ψ)

+...+ (Ω|[ψ̂(zN), Ŵ ]ψ̂(zN−1)...ψ̂(z1)|ψ). (C.54)

For each of these terms we have

(Ω|ψ̂(zN)...[ψ̂(zi), Ŵ ]ψ̂(zi−1)...|ψ) = (Ω|ψ̂(zN)...V̂W (zi)ψ̂(zi)ψ̂(zi−1)...|ψ) (C.55)

Furthermore,

(Ω|ψ̂(zN)...V̂W (zi)ψ̂(zi)...|ψ) = (Ω|[ψ̂(zN)...V̂W (zi)]ψ̂(zi)...|ψ)

=
N∑

a=i+1

W (z̄i, zi, w̄a, wa) ⋆zi,za ±(z1, ..., zN |ψ), (C.56)

as was shown in (3.52). Combining (C.54), (C.55) and (C.56) we finally obtain

±(z1, ..., zN |Ŵ |ψ) =
N∑

a=1

N∑

b=a+1

W (z̄a, za, z̄b, zb) ⋆za,zb ±(z1, ..., zN |ψ). (C.57)
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C.4 Calculations for Chapter 4

C.4.1 The Exchange Potential

We start from the expression

P (z1, z2) = trQ
[
π±z1,z2 ρ̂

]

=
1

π2
trQ[|z1, z2)± ⋆z1,z2 ±(z1, z2|ρ̂], (C.58)

with Ĥ denoting the two-particle free Hamiltonian. To proceed, we will exploit the fact

that the star product may be decomposed as follows:

e
←−
∂z
−→
∂z̄ =

1

π

∫
d2u e−|u|

2+u
←−
∂z+ū

−→
∂z̄ . (C.59)

It is also a well known fact that eu∂z and eū∂z̄ are translation operators, i.e.

eu∂zf(z̄, z) = f(z̄, z + u),

eū∂z̄f(z̄, z) = (z̄ + ū, z), (C.60)

for an arbitrary function f . Having split up the star product, we may express (C.58)

in terms of an overlap. We must, however, be careful to ensure that the derivatives

with respect to z1 and z2 only act on the the ket |z1, z2)±, whereas the derivatives with

respect to z̄1 and z̄2 only see the bra ±(z1, z2|. To ensure this we will temporarily let

|z1, z2)± → |w1, w2)± and then let w1 → z1 and w2 → z2 at the end of the calculation.

As a first step we have

P (z1, z2) =
1

π2
trQ[|z1, z2)± ⋆z1,z2 ±(z1, z2|ρ̂]

= lim
w1→z1,w2→z2

1

π4

∫
d2ud2v e−|u|

2+u∂w1+ū∂z̄1e−|v|
2+v∂w2+v̄∂z̄2

×±(z1, z2|ρ̂|w1, w2)±. (C.61)

For non-interacting particles the Hamiltonian has the form of a sum of two single-particle

Hamiltonians, i.e. Ĥ = Ĥ1 ⊗ Î2 + Î1 ⊗ Ĥ2. Therefore e−βĤ = e−βĤ1 ⊗ e−βĤ2 , and if Ĥ1

and Ĥ2 are free Hamiltonians, the overlap in C.61 becomes

±(w1, w2|e−βĤ |z1, z2)± = (w1|e−βĤ |z1)(w2|e−βĤ |z2)± (w1|e−βĤ |z2)(w2|e−βĤ |z1)

= Γ2
{
e−Γ(|z1−w1|2+|z2−w2|2) ± e−Γ(|z1−w2|2+|z2−w1|2)

}
, (C.62)
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where Γ = mθ
mθ+β~2

, and we have used the result

(w|e−βĤ |z) =

∫
d2p (w|e−βĤ |p)(p|z)

=
θ

2π~2

∫
d2p e−(

β

2m
+ θ

2~2
)|p|2+ i

~

√
θ
2
(p(w̄−z̄)+p̄(w−z))

= Γe−Γ|z−w|
2

, (C.63)

Acting in on (C.62) with the operators eu∂w1 , ev∂w2 , eū∂z̄1 and eū∂z̄1 simply translates

the respective function arguments. We therefore have

P (z1, z2)

= lim
w1→z1,w2→z2

Γ2

π4Z

∫
d2ud2v e−|u|

2−|v|2 {e−Γ((z1−w1−u)(z̄1+ū−w̄1)+(z2−w2−u)(z̄2+v̄−w̄2))

± e−Γ((z1−w2−v)(z̄1+ū−w̄2)+(z2−w1−u)(z̄2+v̄−w̄1))
}

=
Γ2

π4Z

∫
d2ud2v

{
e−(1−Γ)(|u|

2+|v|2)

±e−(|u|2+|v|2)+Γ(−2|z1−z2|2+u(z̄2−z̄1+v̄)+ū(z2−z1+v)−v(z2−z1)−v̄(z2−z1))
}

=
Γ2

π3Z

∫
d2v

{
e−(1−Γ)|v|

2

1− Γ
± e−(2Γ−Γ

2)|z2−z1|2e−(1−Γ
2)|v|2+(Γ2−Γ)v(z̄2−z̄1)+(Γ2−Γ)v̄(z2−z1)

}

=
Γ2

π2Z(1− Γ)2
± Γ2

π2Z(1− Γ2)
e
−
(

2Γ−Γ2− (Γ2−Γ)2

1−Γ2

)

|z2−z1|2
. (C.64)

Upon insertion of Γ = mθ
mθ+β~2

this simplifies to

P (z1, z2) =
1

Zπ2

(
mθ

β~2

)2{
1± β~2

β~2 + 2mθ
e
− 2mθ

2mθ+β~2
|z2−z1|2

}
. (C.65)

We now define the exchange potential analogous to [34]:

Veff (z1, z2) = − 1

β
ln(P (z1, z2))

= − 1

β
ln

[
1± β~2

β~2 + 2mθ
e
− 2mθ

2mθ+β~2
|z2−z1|2

]
+ const. (C.66)
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