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ABSTRACT  

 

Background:  There has been a dramatic increase in the use of dietary creatine 

supplementation among sports men and women, and by clinicians as a therapeutic 

agent in muscular and neurological diseases.  The effects of creatine have been studied 

extensively in skeletal muscle, but knowledge of its myocardial effects is limited.  

Objectives:  To investigate the effects of dietary creatine supplementation with and 

without exercise on 1) basal cardiac function, 2) susceptibility to ischaemia/reperfusion 

injury and 3) myocardial protein expression and phosphorylation and 4) mitochondrial 

oxidative function.  

Methods:  Male Wistar rats were randomly divided into control or creatine supplemented 

groups. Half of each group was exercise trained by swimming for a period of 8 weeks, 5 

days per week. At the end of the 8 weeks the open field test was performed and blood 

corticosterone levels were measured by RIA to determine whether the swim training 

protocol had any effects on stress levels of the rats. Afterwards hearts were excised and 

either freeze-clamped for biochemical and molecular analysis or perfused on the 

isolated heart perfusion system to assess function and tolerance to ischaemia and 

reperfusion. Five series of experiments were performed: (i) Mechanical function was 

documented before and after 20 minutes global ischaemia using the work heart model, 

(ii) A H2O filled balloon connected to a pressure transducer was inserted into the left 

ventricle to measure LVDP and ischaemic contracture in the Langendorff model, (iii) 

The left coronary artery was ligated for 35 minutes and infarct size determined after 30 

minutes of reperfusion by conventional TTC staining methods. (iv) Mitochondrial 

oxidative capacity was quantified. (v) High pressure liquid chromatography (HPLC) and 

Western Blot analysis were performed on blood and heart tissue for determination of 

high energy phosphates and protein expression and phosphorylation.  
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Results:  Neither the behavioural studies nor the corticosterone levels showed any 

evidence of stress in the groups investigated. Hearts from creatine supplemented 

sedentary (33.5 ± 4.5%), creatine supplemented exercised rats (18.22 ± 6.2%) as well 

as control exercised rats (26.1 ± 5.9%) had poorer aortic output recoveries than the 

sedentary control group (55.9 ± 4.35% p < 0.01) and there was also greater ischaemic 

contracture in the creatine supplemented exercised group compared to the sedentary 

control group (10.4 ± 4.23 mmHg vs 31.63 ± 4.74 mmHg). There were no differences in 

either infarct size or in mitochondrial oxygen consumption between the groups. HPLC 

analysis revealed elevated phosphocreatine content (44.51 ±14.65 vs 8.19 ±4.93 

nmol/gram wet weight, p < 0.05) as well as elevated ATP levels (781.1 ±58.82 vs 482.1 

±75.86 nmol/gram wet weight, p<0.05) in blood from creatine supplemented vs control 

sedentary rats. These high energy phosphate elevations were not evident in heart 

tissue and creatine tranporter expression was not altered by creatine supplementation. 

GLUT4 and phosphorylated AMPK and PKB/Akt were all significantly higher in the 

creatine supplemented exercised hearts compared to the control sedentary hearts.  

Conclusion:  This study suggests that creatine supplementation has no effects on basal 

cardiac function but reduces myocardial tolerance to ischaemia in hearts from exercise 

trained animals by increasing the ischaemic contracture and decreasing reperfusion 

aortic output. Exercise training alone also significantly decreased aortic output recovery. 

However, the exact mechanisms for these adverse myocardial effects are unknown and 

need further investigation. 
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OPSOMMING 

 

Agtergrond:  Die gebruik van kreatien as dieetaanvulling het in die afgelope aantal jaar 

dramaties toegeneem onder sportlui, sowel as mediese praktisyns wat dit as ‘n 

terapeutiese middel vir die behandeling van spier- en neurologiese siektes aanwend. 

Die effekte van kreatien op skeletspier is reeds deeglik ondersoek, maar inligting 

aangaande die miokardiale effekte van die preperaat is beperk. 

Doelwitte:  Om die effekte van kreatien dieetaanvulling met of sonder oefening ten 

opsigte van die volgende aspekte te ondersoek: 1) basislyn miokardiale funksie, 2) 

vatbaarheid vir iskemie/herperfusie besering, 3) proteïenuitdrukking en -fosforilering in 

die miokardium en 4) mitochondriale oksidatiewe funksie.  

Metodes:  Manlike Wistar rotte is ewekansig in kontrole of kreatien aanvullings groepe 

verdeel. Helfte van elke groep is aan oefening in die vorm van swemsessies, vir ‘n 

periode van 8 weke, 5 dae per week blootgestel. Gedrags- en biochemiese toetse is 

aangewend om die moontlike effek van die swemprotokol op die rotte se stres vlakke te 

bepaal. In hierdie verband is die oop area toets gebruik, asook bloed kortikosteroon 

vlakke gemeet deur radioaktiewe immuunessais. Harte is daarna uit die rotte 

gedissekteer en gevriesklamp vir biochemiese en molekulêre analise, of geperfuseer op 

die geïsoleerde werkhart perfusiesisteem om sodoende funksie en weerstand teen 

iskemie en herperfusie beskadeging te bepaal. Vyf eksperimentele reekse is uitgevoer: 

(i) Meganiese funksie is noteer voor en na 20 minute globale isgemie in die werkhart 

model; (ii) ‘n Water gevulde plastiek ballon, gekoppel aan ‘n druk omsetter, is in die 

linker ventrikel geplaas om sodoende linker ventrikulêre ontwikkelde druk (LVDP), 

asook iskemiese kontraktuur te meet; (iii) Linker koronêre arterie afbinding is vir ‘n 

periode van 35 minute toegepas en die infarktgrootte bepaal na 30 minute herperfusie 

deur gebruik te maak van standaard kleuringsmetodes; (iv) Mitochondriale oksidatiewe 
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kapasiteit is gemeet; (v) Hoë druk vloeistof chromatografie (HPLC) en Western Blot 

analises is uitgevoer op bloed en hartweefsel vir die bepaling van hoë energie fosfate 

(HEFe), sowel as proteïenuitdrukking en -fosforilering. 

Resultate:  Beide gedragsstudies en kortikosteroonvlakke het geen teken van stres in 

die betrokke groepe getoon nie. Die groep blootgestel aan kreatienaanvulling en 

oefening se harte het na iskemie funksioneel swakker herstel as harte van die 

onaktiewe kontrole groep (18.22±6.2% vs 55.9±4.35%; p<0.01), asook ‘n groter 

ikgemiese kontraktuur in vergelyking met die onaktiewe kontrole groep ontwikkel 

(31.63±4.74 mmHg vs 10.4±4.23 mmHg). Daar was geen verskille in infarktgrootte of 

mitochondriale suurstofverbruik tussen die verskillende groepe waargeneem nie. HPLC 

analise het verhoogde fosfokreatien (44.51±14.65 vs 8.19±4.93 nmol/gram nat gewig, 

p<0.05) en adenosientrifosfaat (ATP) bloedvlakke (781.1±58.82 vs 482.1±75.86 

nmol/gram nat gewig, p<0.05) in kreatien aanvullings vergelyk met die kontrole groepe 

getoon. Daar was egter geen meetbare veranderings in HEF vlakke in hartweefsel nie. 

Gepaardgaande hiermee het kreatienaanvulling geen effek gehad op die uitdrukking va 

die kreatien transporter nie. In vergelyking met onaktiewe kontrole harte was GLUT4, en 

fosforileerde AMPK en PKB/ Akt beduidend hoër in harte van geoefende rotte met 

kreatienaangevulling. 

Gevolgtrekking:  Hierdie data dui daarop dat kreatienaanvulling geen effek op basislyn 

miokardiale funksie het nie. Kreatienaanvulling het egter die miokardium se weerstand 

teen iskemiese skade verlaag in harte van rotte blootgestel aan oefening: iskemiese 

kontraktuur is verhoog en aorta-uitset tydens herperfusie is verlaag. Die presiese 

meganismes hierby betrokke is egter onbekend en vereis dus verdere studie. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 ATP:  The energy currency of the cell  

Each cell needs energy to survive. This energy is primarily in the form of adenosine 

triphosphate (ATP). Contracting myocytes in the heart require an enormous amount of 

energy to maintain uninterrupted contractions. ATP is considered the “molecular unit of 

currency of the cell” [Knowles 1980]. The heart also requires ATP for proper membrane 

functioning, ion homeostasis and contraction and relaxation [Dzeja et al 2000]. ATP 

transports chemical energy within cells in the form of phosphate groups which are used 

for cellular metabolism, and the greater the activity of the heart, the more energy it 

requires. 

 

ATP is produced as an energy source during breakdown of sugars and fats (glycolysis 

and β-oxidation) and consumed by many enzymes and a multitude of cellular processes 

including biosynthetic reactions, and cell division [Campbell et al 2006]. In signal 

transduction pathways, ATP is used as a substrate by kinases that phosphorylate 

proteins and lipids, as well as by adenylate cyclase, which uses ATP to produce the 

second messenger molecule cyclic AMP. Apart from its roles in energy metabolism and 

signaling, ATP is also incorporated into nucleic acids by polymerases in the processes 

of DNA replication and transcription [Formosa 2003]. 
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1.1.1 Availability of energy  

 The ATP to AMP ratio is used by the cell to monitor how much energy is available and 

controls the metabolic pathways that produce and consume ATP [Hardie and Hawley 

2001].  ATP synthase is the enzyme which catalyses the reversable reaction of water 

and ATP to produce ADP and phosphate, or AMP and diphosphate, as shown below:  

 ATP + H2O �    ATP synthase �  ADP + Pi              
 

 ATP + H2O �   ATP synthase � AMP + PPi    
 

When ATP levels are low the enzyme catalyses the recycling of ATP from its 

precursors, ADP or AMP, and phosphate groups.  ATP can also be produced during 

oxidative phosphorylation in the mitochondria.  

Creatine phosphate occurs in muscle and brain tissue and serves as an energy store. It 

can “donate” a phosphate group to ADP to reform ATP anaerobically when needed e.g. 

during exercise.  The reversible reaction is catalyzed by creatine kinase (CK). 

PCr +  ADP     �      Cr  +  ATP 

 

Transfer of energy via this mechanism is called the phosphocreatine shuttle [Bessman 

and Geiger 1981]. This reaction takes place in both the mitochondrion and in the 

cytosol. This reaction also ensures that the ADP / ATP ratio is controlled – to favour 

higher ATP and lower ADP concentrations. Thus PCr acts as an energy buffer in the 

cell [Chung et al 1998]. 

 

   

 

(CK) 
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1.1.2. Energy imbalance  

The heart is an aerobic or oxygen consuming organ and therefore relies almost 

exclusively on the oxidation of substrates for creation of energy. It can only go without 

oxygen for a short while and still have enough energy to function normally. Thus, in a 

steady state, determination of the rate of myocardial oxygen consumption provides an 

accurate measure of its total metabolism. When the supply cannot meet the demand, as 

occurs when the blood supply is cut off during a myocardial infarction, an energy 

imbalance ensues because of myocardial ischaemia. Reperfusion is when the blood 

supply is reinstated, and the energy balance is restored. The hazards and 

consequences of ischaemia and reperfusion will be described in Chapter 2. 

 

1.2 Limitless energy: the principle of creatine sup plementation  

The bidirectional reactions highlighted above prompted the use of creatine 

supplementation that has been predominant in the last decade, particularly in the sports 

sector. Phosphocreatine is particularly important in tissues that are subjected to 

fluctuations in energy demand e.g. muscle, brain and nerve tissue. With the high 

delivery of phosphocreatine to the muscle after supplementation, driving the constant 

restoration of ATP supply, energy supply is expected to be indefatigable.  See Figure 

1.1.  

 

 

 

 



4 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 : A simplified schematic of the phosphocreatine shu ttle. The more 

phosphocreatine that is added to the shuttle with s upplementation, the greater 

the store of energy to meet the demands of the cell . (Reproduced from Williams 

1999) 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Myocardial metabolism  

 

The energy that the heart requires for the maintenance of normal contraction is supplied 

by ATP. This high-energy phosphate is primarily produced in the heart by the 

metabolism of carbohydrates and fatty acids [Lopashuk and Stanley 1997]. Metabolism 

of these substrates alternates between carbohydrate use as fuel in the fed state, of 

which glucose and lactate are the major contributors, and fatty acid use as fuel in the 

fasting state [Most et al 1969, Carlson et al 1972, Drake et al 1980]. This is due to the 

fact that in the fed state there are more circulating carbohydrates available in the blood, 

also leading to insulin secretion [Levine and Haft 1970], and in the fasting state there 

are more free fatty acids (FFA) available. In the latter state, fatty acid oxidation 

dominates, and glucose oxidation is inhibited [Opie 1991]. The glucose that is taken up 

by cells is converted to glycogen and stored instead of undergoing glycolysis (Randle et 

al 1963).  Conversely, in the fed-state, when glucose levels in the blood are high, the 

uptake of fatty acids decreases while glucose uptake and glycolysis increases [Opie 

1998].   
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2.2 Which fuel to use?  

 

2.2.1 Randle's principle of fatty acid and glucose metabolism  

 

The variation in the roles of glucose and fatty acid between the fasting and the fed 

states forms the basis of the glucose-fatty acid cycle first described by Randle et al in 

1962. The basic trigger for the switch in the cycle is the cyclic production and release of 

free fatty acids (FFA) by the adipose tissue. In the fasting state, adipose tissue is 

broken down to release FFA which inhibits the metabolism of glucose by the heart. In 

the fed state the abundance of glucose and insulin inhibits this release of FFA and 

therefore glucose becomes the major fuel. See Figure 2. 

 

2.3 When the oxygen runs out.  

2.3.1 Pasteur effect 

Cardiomyocytes can produce energy using two different metabolic pathways. While the 

oxygen concentration is low, the product of glycolysis, (pyruvate), is turned into lactate 

and carbon dioxide, and the energy production efficiency is low (2 moles of ATP per 

mole of glucose). If the myocardial oxygen concentration increases, pyruvate is 

converted to acetyl CoA that can be used in the Krebs Cycle, which increases the 

efficiency and ATP yield to 16 moles of ATP per 1 moles of glucose used. 

Under low oxygen concentrations (anaerobic conditions), the rate of glucose 

metabolism is faster, as AMP activated protein kinase (AMPK) is activated (see Chapter 

2.4.3), but the amount of ATP produced is less. When exposed to aerobic conditions, 

the rate of glycolysis slows, because the increase in ATP production acts as an 

allosteric inhibitor for the pathway, yet more ATP is produced. So, with respect to ATP 



production, it is advantageous for cells to 

oxygen, as more ATP is produced per glucose molecule [Krebs 1972, 

2004, Meisenberg and Simmons 1998

 
 

 

Figure 2.1:  Simplified diagram to 

such as glucose, and fatty acids both aerobically and anaer obically

Carbohydrates are converted 

(ATP) and carbon dioxide. Py

metabolized in the presence of oxyg

absence of oxygen. Diagram from 

  

production, it is advantageous for cells to utilise the Krebs cycle in the presence of 

P is produced per glucose molecule [Krebs 1972, 

berg and Simmons 1998].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Simplified diagram to illustrate the basic metabolism of carbohydrates 

glucose, and fatty acids both aerobically and anaer obically

Carbohydrates are converted to pyruvate via glycolysis with the release of ener gy 

(ATP) and carbon dioxide. Py ruvate either enters the Krebs c ycle where it is 

metabolized in the presence of oxyg en, or is converted to lactic acid in the 

absence of oxygen. Diagram from www.google.com .  
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2.4 Glucose uptake and metabolism 

 

2.4.1 Glucose uptake 

 

Glucose uptake into muscle cells is accomplished through a series of steps from the 

delivery of blood to the interstitial space to the trans-membrane transport of glucose into 

the cell [Richter 2001]. This uptake is regulated by a chain of signaling pathways.  The 

cell cannot absorb glucose by simple diffusion. Since the cell membrane is hydrophobic 

and glucose is hydrophilic, it uses a special carrier protein, the glucose transporter 

molecule, for this purpose [Lienhard et al 1992]. This carrier requires no energy (ATP) 

for the transport of glucose since the extracellular glucose concentration is so much 

greater than the intracellular concentration and the absorption takes place down the 

concentration gradient (Opie 1991).  

 

2.4.2 Glucose transporters (GLUTs) 

 

The uptake of glucose from the interstitium across the sarcolemma into the myocyte is 

regulated and performed by the glucose transporters or GLUTs [Lopaschuk and Stanley 

1997]. The specific glucose transporters in the heart all belong to the GLUT family and 

are passive carriers which are energy-independent systems. They can only transport 

their substrates down a concentration gradient which conserves energy while gaining 

fuel for the cell. GLUTs are transmembrane proteins containing about 500 amino acid 

residues and 12 membrane-spanning β-helices [Meuckler 1994].   

 

The glucose transporter that is predominantly expressed in cardiomyocytes is the 

insulin-sensitive GLUT4 isotype which is also expressed in adipose tissue and skeletal 
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muscle. GLUT4 is largely confined to an intracellular vesicle storage site in the basal, 

non-stimulated state [Meuckler 1994, Holman and Kasuga 1997]. It becomes recruited 

to the cell surface under the influence of insulin [Fischer et al 1997] or other stimuli such 

as muscle contraction, during exercise [Roy and Marette 1996, Tomàs et al 2001] and 

hypoxia or anoxia (Sun et al 1994).  GLUT4 vesicles respond to insulin in a marked and 

dramatic way, increasing GLUT4 translocation to the membrane up to nine times that of 

basal translocation rates [Holloszy 2003].  As soon as blood insulin and glucose levels 

decrease, the transporter recruitment is reversed and the GLUTs are internalized via 

endocytosis [Lienhard et al 1992].  

 

The GLUT1-transporter, which is present in most tissues and is also a characteristic 

feature of fetal tissues (xxi), is also present in cardiomyocytes although it is about 5 

times less abundant than GLUT4 [Meuckler 1994]. It is thought to be a specialized 

“house-keeping” protein that provides the steady basal flow of glucose into cells for 

homeostasis in their inactive state. 

 

2.4.3 Glucose metabolism  

 

Glucose metabolism comprises two main components, glycolysis and glucose oxidation.  

(See fig 2) 
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Glycolysis 

 

Glycolysis (‘lysis (or breaking down) of glucose’) is the first part of the glucose metabolic 

pathway and produces ATP from either exogenous glucose or from glycogen stored in 

the muscle without requiring oxygen [Depré et al 1998]. It is a biochemical process that 

produces lactate under anaerobic conditions [Opie 1991]. During normal oxidative 

metabolism, glycolysis yields pyruvate, which is then broken down aerobically in the 

Krebs cycle (under conditions of adequate mitochondrial capacity). This process is also 

called aerobic glycolysis. Thus ATP is produced not only during aerobic conditions, but 

anaerobically too [Opie 1991].  

 

Intracellular glucose is rapidly converted to glucose-6-phosphate by hexokinase, and 

glycolysis (or more specifically PFK1, see below) then converts this into a compound 

containing two phosphate groups, fructose-1,6-bisphosphate. After this, each 6-carbon 

hexose phosphate is converted to two three-carbon triose phosphates, eventually 

forming pyruvate. In the first stage of glycolysis, two molecules of ATP are used to 

convert the glucose to two triose phosphate molecules. In the second stage four 

molecules of ATP are made, independent of oxygen availability, for each glucose 6-

phosphate converted to pyruvate. This results in a net production of 2 molecules of ATP 

per molecule of glucose metabolized [Opie 1991]. 

 

Phosphofructokinase 1 (PFK1) is a key enzyme in glycolysis.  When its activity 

increases, fructose-6-phosphate is converted to fructose-1,6-bisphosphate at an 

increased rate. Since the enzyme which catalyses the reverse reaction (glucose-6-

phosphatase) is not present in the heart, this reaction, which uses ATP, is irreversible 

[Opie 1998].  Thus PFK1 serves as a one directional valve to regulate the rate of 
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glycolysis. Increased PFK1 activity causes decreased glucose-6-phosphate levels in the 

cell. PFK1 is allosterically inhibited by ATP and citrate (from the citric acid cycle) and its 

product, fructose 1,6-bisphosphate. PFK1 is allosterically activated by a high 

concentration of AMP, but the most potent activator is fructose 2,6-bisphosphate, which 

is also produced from fructose-6-phosphate by PFK2. Therefore when PFK1 activity is 

increased the inhibition of hexokinase which is normally caused by glucose-6-

phosphate is decreased, and more glucose can be phosphorylated. In contrast, the 

activity of PFK1 can be inhibited when the oxidation of alternate fuels like fatty acid or 

lactate produces citrate, and the opposite then occurs.  This is therefore a coordinated 

intracellular control mechanism which regulates the rate of glycolysis. [Opie 1991, Opie 

1998] 

 

Anaerobic glycolysis is increased during hypoxia and ischaemia and is controlled by the 

activity of enzymes, AMP-activated protein kinase (AMPK), PFK and glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) [Marsin et al, 2000]. The PFK reaction is sensitive 

to the energy status of the myocardial cells, and is therefore ideally suited for metabolic 

control. As ATP levels fall, and those of ADP, AMP and Pi rise, the activity of this 

enzyme is enhanced resulting in increased anaerobic glycolysis and ATP and lactate 

production [Regen et al 1964]. There is also decreased inhibition of PFK1 by citrate 

which means glycolysis is further increased.  

 

When glucose is the substrate of glycolysis, the entire glycolytic pathway uses 2 ATP 

molecules and produces 4 ATP molecules, so the net production is 2 molecules of ATP. 

When glycogen is the source, 3 ATP molecules are produced [Opie 1991].  
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Glucose oxidation 

 

The other component of glucose metabolism is glucose oxidation which involves the 

pyruvate derived from glycolysis being taken up by the mitochondria and its further 

metabolism in the citric acid/ Krebs cycle. Glucose is metabolized to pyruvate in the 

cytosol while glucose oxidation occurs entirely in the mitochondria (see Fig 3). The 

pyruvate dehydrogenase (PDH) complex is a large complex consisting of proteins 

spanning the mitochondrial membrane and is a key regulator of glucose entry into the 

Krebs cycle [Grill and Qvigstad 2000]. Pyruvate is irreversibly converted to acetyl-CoA, 

NADH and CO2 by the (PDH) enzyme, which is active when the concentration of its 

substrates is high and relatively inactive when its substrates are at a low concentration. 

PDH is inactivated when it is phosphorylated by PDH kinases (PDK) and active when it 

is dephosphorylated by phosphatases. Pyruvate is also formed from lactate in the 

healthy human heart [Lopaschuk and Stanley 1997].  PDH links and regulates the flow 

of energy in cells by determining when pyruvate should be used for oxidative 

phosphorylation versus "neutralized" to lactic acid to allow continued glycolysis.  
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Figure 2.2:  Glucose metabolism in muscle 

1. Transmembrane transport of glucose 

2. Phosphorylation of glucose 

3. The glycogen cycle 

4. Glycolysis 

5. Pyruvate oxidation 

6. Lactate dehydrogenase reaction 
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Figure 2.3:  The major fuels of the heart are carbohydrates (gl ucose and lactate) 

and non-esterified fatty acids (free fatty acids (F FA)). All fuels are ultimately 

broken down to acetyl-CoA, which produces hydrogen atoms (H +) by various 

dehydrogenase enzymes to produce NADH 2 (NADH + H+), which enters the 

respiratory chain to produce ATP. Fatty acids also produce FADH 2 from the 

oxidation spiral which enters the cytochrome chain and produces ATP. G-6-P 

(glucose-6-phosphate). [Adapted from  Depré et al 1998, and Opie 2004]. 

  

 
CYTOCHROME  

NAD+ 
FAD 

ADP 

ATP 

32 ATP per glucose 
and 
105 ATP per palmitate 
molecule 

 2H 
 

  2H   2H 



15 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Glucose and fatty acid oxidation with the rate limi ting steps shown. 

Glucose transport is regulated by insulin and the e nergy state of the cell. In the 

well-oxygenated heart, glucose uptake and glycolysi s can be accelerated by heart 

work and glucose, and partially inhibited by fatty acid oxidation. PFK 

phosphofructokinase, PDH pyruvate dehydrogenase. [M odified from Opie 1991] 
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Glycogen storage 
 

During the fed state excess glucose is converted to and stored as glycogen. Glycogen 

is a form of glucose which can be readily mobilized when needed by being broken down 

to yield glucose molecules. It is stored in the liver and muscle where it is present in the 

cytosol in the form of granules. 

Although glycogen is not as high in energy yield as fatty acids, it is an important fuel 

reserve for several reasons. The controlled breakdown of glycogen and release of 

glucose into circulation increases the amount of glucose that is available between 

meals. Hence, glycogen serves as a buffer to maintain blood-glucose levels during 

fasting. Glycogen's role in maintaining blood-glucose levels is especially important 

because glucose is virtually the only fuel used by the brain, except during prolonged 

starvation. In the liver, glycogen synthesis and degradation are regulated to maintain 

systemic blood-glucose levels as required to meet the needs of the organism as a 

whole. In contrast, in muscle, these processes are regulated to meet the energy needs 

of the muscle itself. 

In addition, the glucose from glycogen is readily mobilized and is therefore a good 

source of energy for sudden, strenuous activity like exercise. Unlike fatty acids, the 

released glucose can provide energy in the absence of oxygen and can thus supply 

energy for anaerobic activity [Berg et al 2002]. 

Glycogen metabolism 

Glycogen synthesis requires an activated form of glucose, uridine diphosphate glucose 

(UDP-glucose), which is formed by the reaction of UTP (uridine triphosphate) and 

glucose 1-phosphate. UDP-glucose is added to the nonreducing end of glycogen 

molecules. As is the case for glycogen degradation, the glycogen molecule must be 
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remodeled for continued synthesis. Glycogenin initiates glycogen synthesis. It is an 

enzyme that catalyzes attachment of a glucose molecule to one of its own tyrosine 

residues thus starting the complex branching process of glycogen synthesis. 

(Montgomery et al 1990) See Figure 2.6.  

Glycogen degradation and synthesis are relatively simple biochemical processes. 

Glycogen degradation consists of three steps (see figure 7): (1) the release of glucose 

1-phosphate from glycogen catalysed by glycogen phosphorylase, (2) the remodeling of 

the glycogen substrate to permit further degradation, and (3) the conversion of glucose-

1-phosphate to glucose-6-phosphate for further metabolism. The glucose-6-phosphate 

derived from the breakdown of glycogen can either be used as the initial substrate for 

glycolysis or it can be converted to free glucose for release into the bloodstream. This 

latter conversion takes place mainly in the liver and to a lesser extent in the intestines 

and kidneys.  
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Figure 2.5:  Glycogen synthesis from uridine triphosphate (UTP)  and glucose 1-

phosphate. [Gee 2007] See text for more details. 
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Figure 2.6:  Glycogen degradation via (1) release of glucose 1- phosphate from 

glycogen catalysed by glycogen phosphorylase, (2) t he remodeling of the 

glycogen substrate to permit further degradation, a nd (3) the conversion of 

glucose 1-phosphate to glucose 6-phosphate for furt her metabolism. See text for 

more details. [Gee 2007] 
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2.5 Fatty acid uptake and metabolism  

 

2.5.1 Fatty acid uptake 

 

Fatty acids are presented to the sarcolemma of the cardiomyocyte bound to albumin. 

They can either enter the cell via passive diffusion or with the help of a variety of protein 

carriers. The albumin is not taken up into the cell with the FFA’s and one proposal for a 

mechanism of cellular uptake is that the FFA-albumin complex binds to a specific high 

affinity sarcolemmal albumin receptor binding site before the FFA enters the 

sarcolemma via translocation [Stremmel 1989]. The higher the circulating FFA 

concentration the greater is the FFA uptake into the myocardium. Eventually feedback 

systems will limit the uptake i.e. increased tissue acyl-CoA. See Fig 8.  

 

2.5.2 Fatty acid translocase FAT/CD36 

 

Protein-mediated fatty acid uptake seems to be regulated by the translocation of fatty 

acid translocase/CD36 (FAT/CD36) from intracellular, presumably endosomal, stores to 

the sarcolemma. This translocation has been shown to be mediated through AMP-

activated protein kinase (AMPK) signaling during contraction [Luiken et al 2003]. Insulin 

is another important hormone which is able to contribute to this process [Luiken et al 

2002].   

 
After entry into the cell via either mechanism, fatty acids bind the FABP (fatty acid 

binding protein) and are converted by acetyl CoA synthase (ACS) into fatty acyl-CoA at 

the mitochondrial outer membrane or the sarcoplasmic reticulum. In a carnitine 

mediated process the bulk of these fatty acid derivatives pass through the mitochondrial 

inner membrane where they are degraded in the β-oxidation pathway and citric acid 
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cycle. The rest is incorporated into the lipid pool of the cell (e.g. triacylglycerols or 

phospholipids). [Van der Vusse et al 2000] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7:  A simplified diagram showing fatty acid uptake int o the 

cardiomyocyte. FA (fatty acids), alb (albumin), FAB P (fatty acid binding protein), 

ACS (acetyl-CoA synthase).  [Gees 2007] 
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2.5.3 Fatty acid metabolism 

 

Fatty acid degradation is the process by which fatty acids are broken down, resulting in 

release of energy. It includes three major steps: 

• Fatty acid activation and transport into mitochondria,  

• β-oxidation  

• Electron transport chain  

Fatty acids are transported across the outer mitochondrial membrane by carnitine-

palmitoyl transferase I (CPT-I), and then couriered across the inner mitochondrial 

membrane by carnitine (De Palo et al 1981). Once inside the mitochondrial matrix, the 

enzyme CPT II catalyses the transfer of the acyl group from fatty acyl-carnitine to 

coenzyme A and produce acetyl-CoA. CPT-I is believed to be the rate limiting step in 

fatty acid oxidation [Lopaschuk and Stanley 1997]. 

β-oxidation then converts intramitochondrial long chain acyl-CoA to acetyl-CoA, and the 

fatty acid oxidation spiral then continuously removes acetyl-CoA from the carboxyl end 

of the chain, in the TCA (tricarboxylic acid) Cycle. The TCA (Citric Acid or Krebs) cycle 

is the major energy producing pathway in the body, and starts with the condensation of 

oxaloacetate to acetyl-CoA by citrate synthase to form citrate.  

 

As acetyl-CoA is oxidized to CO2, electrons are donated to the oxidation-reduction 

coenzymes, FAD and NAD+. Three NADH, 1 FADH2, and 1 GTP are produced in the 

Krebs Cycle.  The NADH and FADH2 generate ATP by donating electrons to O2 in the 

process of oxidative phosphorylation. ATP is also produced from GTP (substrate-level 

phosphorylation). One turn of the cycle generates 12 ATP molecules. [Marks 1990, 

Martin et al 1983] 
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Regulation and control of fatty acid oxidation 

 

Malonyl-CoA, which is produced by acetyl-CoA carboxylase (ACC), is a potent inhibitor 

of CPT-1 and acts at a site distinct from the catalytic site of CPT-1. ACC is a very 

important determinant of malonyl-CoA levels and fatty acid oxidation rates in the heart 

[Saddik et al 1993]. A key kinase responsible for the control of ACC activity is AMPK 

[Sakamoto et al 2000] (see Fig 9). Thus AMPK is an important regulator of fatty acid 

oxidation in the heart, since it phosphorylates and inactivates ACC, resulting in a 

decrease in malonyl-CoA production and an increase in fatty acid oxidation rates (Kudo 

et al 1995). It has been shown that the heart contains an active malonyl-CoA 

decarboxylase (MCD) that decarboxylates malonyl-CoA back to acetyl-CoA [Sakamoto 

et al 2000]. 

 

Any activated intracellular fatty acid not oxidized can either be stored as triglycerides or 

transformed to structural lipids and incorporated into the membrane. 
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Figure 2.8:  A simplified diagram showing the role of ACC, AMPK,  and MCD in the 

regulation of fatty acid and glucose oxidation in t he heart. Fatty acids are 

converted to fatty acyl-CoA. These fatty acyl-CoA e sters are then converted to 

fatty acyl carnitines and shuttled into the mitocho ndria via the carnitine 

translocase system. Once inside the mitochondria, t he fatty acyl carnitines are 

converted back into fatty acyl-CoA esters and enter  into the ββββ-oxidation spiral to 

produce acetyl-CoA. In addition, exogenous glucose is transported into the cell 

via the cell glucose transporters, and can be conve rted to pyruvate via glycolysis. 

Pyruvate enters the mitochondria via the pyruvate c arrier and is converted to 

acetyl-CoA by the pyruvate dehydrogenase complex . Fatty acid-derived or  

glucose-derived acetyl-CoA enters the Krebs cycle, which produces reduced 

equivalents that are used by the electron transport  chain to produce ATP.  

(Adapted from Dyck & Lopaschuk, 2002). 
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2.6 Mitochondrial energetics  

 

The mitochondrion has been called the “powerhouse” of the cell as it is the place where 

most of the ATP used by the cell is produced. The Krebs cycle, β oxidation and 

oxidative phosphorylation are all biological processes which occur in the mitochondria 

and are essential to life.  β oxidation has been briefly discussed above and the Krebs 

cycle and oxidative phosphorylation will be discussed below.  

 

2.6.1 Krebs cycle 

 

The Krebs, Citric Acid or tricarboxylic acid (TCA) cycle is a series of reactions which is a 

step in the metabolic pathway that uses oxygen in the conversion of fats, carbohydrates 

and proteins to carbon dioxide (CO2), water and ATP. Glycolysis and β-oxidation occur 

before the Krebs cycle and oxidative phosphorylation occurs afterwards.  

 

The cycle begins with acetyl-CoA transferring its acyl group to oxaloacetate to form the 

6 carbon compound citrate.  This citrate then goes through a series of reactions noted in 

the figure below, losing 2 carboxyl groups in the form of CO2, and forming NADH or 

FADH2 from NAD+ or FAD2+ and electrons. These are energy carriers which then 

convey the electrons to the electron transport system in oxidative phosphorylation, 

where ATP is the end product. At the end of the Krebs cycle, oxaloacetate has been 

reformed and the cycle begins again. 

 

The cycle is regulated by substrate availability and feedback mechanisms from its 

product NADH. Calcium is used as a regulator. It activates pyruvate dehydrogenase, 

isocitrate dehydrogenase and α-ketoglutarate dehydrogenase [Denton et al 1975], 
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which increases the reaction rate of many of the steps in the cycle, and thus increases 

flow throughout the cycle. Citrate formed in the cycle feeds back and inhibits glycolysis 

at the level of PFK1.  

 

 

 

 

 

    

 

 

  

  

 

 

 

 

 

 

 

 

Figure 2.9:  Simplified diagram of the Krebs cycle, showing bas ic substrates, 

products, and energy carriers. Adapted from Montgom ery et al 1990. 
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2.6.2 Oxidative phosphorylation 

 

Oxidative phosphorylation uses the energy released by the oxidation of nutrients to 

produce adenosine triphosphate (ATP). 

During oxidative phosphorylation, electrons are transferred from electron donors to 

electron acceptors such as oxygen. These reactions release energy, which is used to 

form ATP. These reactions occur in protein complexes in the mitochondrial membrane, 

and the whole process is known as the electron transport chain system.  

NAD donates electrons to NADH dehydrogenase (Complex I) which transfers these 

electrons to Ubiquinone and simultaneously pumps protons out of the mitochondrial 

matrix into the inner membrane space. Ubiquinone then donates these electrons to 

Cytochrome b-c1 (Complex III). After affecting the pumping of a proton across the 

membrane, the electron leaves III and enters the mobile carrier protein, cytochrome c 

(C). Cytochrome oxidase (complex IV) uses 4 electrons, 4 hydrogens and an oxygen 

molecule to release 2 water molecules into the matrix and pump 4 protons into the inner 

membrane. ATP synthase (Complex V) accepts one proton from the intermembrane 

space and releases a different proton into the matrix space to create the energy it needs 

to synthesize ATP. It must do this three times to synthesize one ATP molecule from the 

substrates ADP and Pi (inorganic phosphate). The supply of NADH is the rate limiting 

step as when there is no electron transport there is no maintenance of a proton gradient 

to power ATP synthase. Complex II (Succinate dehydrogenase) is not a proton pump. It 

serves to funnel additional electrons by removing electrons from succinate and 

transferring them to Ubiquinone.  [Pedersen, 1999] See Figure 2.10.  
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Figure 2.10:   Diagram  to show the electron transport system. NADH 

dehydrogenase (Complex I), Ubiquinone (U), Cytochro me b-c1  (Complex III), 

cytochrome c (C), Cytochrome oxidase (Complex IV), ATP synthase  (Complex V), 

Succinate dehydrogenase (Complex II). Adapted from images from 

www.google.com). 

 
2.6.3. Phosphocreatine shuttle 

 
ATP is created in the mitochondrion by oxidative phosphorylation, and this ATP is then 

stored in the form of phosphocreatine (PCr) in the cytosol. In the inner membrane space 

in the mitochondrion a phosphate group is transferred from ATP to Cr, forming ADP and 

PCr. This reaction is catalysed by the mitochondrial CK isoform (MiCK). PCr leaves the 

intermembrane space by diffusion and reaches the cytosol where it is used by cytosolic 

myofibrillar creatine kinases (MMCK) for the rephosphorylation of cytosolic ADP into 

creatine and ATP for use by ATPases for energy in cytosolic reactions. Such transfer of 
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energy has been termed the phosphocreatine shuttle. This also ensures that there is 

never a build up of ATP in the mitochondria, thus ensuring a gradient in the 

mitochondria for continuing ATP production [Soboll et al 1997].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11:  Schematic representation of the phosphocreatine sh uttle model, 

adapted from Kongas and Van Beek 2007.  During oxid ative phosphorylation 

(OxPhos), ADP is converted to ATP when phosphocreat ine In the mitochondrial 

intermembrane space, ATP donates a phosphate group to Cr and produces PCr. 

This reaction is controlled by mitochondrial creati ne kinase (MiCK). ADP is 

released into the cytosol where myofibrillar creati ne kinase (MMCK) produces 

ATP and Cr from ADP and PCr, and ATPase controls th e reverse reaction.   
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2.7 Myocardial ischaemia and reperfusion injury  

 

The heart is continually using energy and consuming oxygen for contractions [Graham 

et al 1968], maintenance of cell viability, fatty acid uptake, regulation of coronary blood 

flow and metabolism [Braunwald 1999] to name a few. The disturbance in the 

availability of oxygen, or an increase in the demand for oxygen and substrates above 

the ability to supply it, is termed myocardial ischaemia.  

 2.7.1 Myocardial ischaemia  

Myocardial ischaemia occurs when the heart muscle is deprived of oxygen and this is 

accompanied by inadequate removal of metabolites because of reduced blood flow or 

perfusion [Hoffman and Buckberg, 1977]. During ischaemia, there is in imbalance 

between the energy and oxygen supply to the heart, and the myocardial energy and 

oxygen demand. Myocardial ischaemia can occur as a result of increased myocardial 

oxygen and substrates demand, reduced myocardial oxygen and substrates supply, or 

both. 

2.7.2 Causes of ischaemia 

Myocardial ischaemia is usually due to coronary artery disease (atherosclerosis of the 

coronary arteries). The risk of CAD increases with age [Aronow 2006], smoking 

[Thevenin et al 1986], hypercholesterolaemia (high cholesterol levels) [Gotto 1984], 

diabetes [Lemp et al 1987], and hypertension [Taylor 1991].  
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2.7.3 Pathophysiology of ischaemia 

In the presence of a coronary artery obstruction, an increase in myocardial oxygen 

requirements e.g. through exercise, leads to a temporary imbalance in the demand and 

supply homeostasis. This condition is frequently termed demand ischaemia and is 

responsible for most episodes of chronic stable angina. In other situations, the 

imbalance is caused by acute reduction of oxygen supply due to e.g. coronary 

vasospasm or by marked reduction or cessation of coronary flow as a result of platelet 

aggregates or thrombi. This condition, termed supply ischaemia, is responsible for 

myocardial infarction (MI) and most episodes of unstable angina (UA). In many 

circumstances, myocardial ischaemia results from both an increase in oxygen demand 

and a reduction in supply [Zevitz 2006]. 

2.7.4 Reperfusion injury 

Reperfusion is the process where blood flow is restored to the occluded tissue. This 

procedure, although unavoidable in itself, can bring about a phenomenon known as 

reperfusion injury. The absence of oxygen and nutrients provided by blood creates a 

condition in which the restoration of coronary circulation results in inflammation and 

oxidative damage through the creation of oxidative stress from reactive oxygen species 

(ROS) rather than restoration of normal function. 

2.7.5 Mechanisms of reperfusion injury 

The mere principal of reperfusion injury is a contradiction in itself, as the restoration of 

blood flow to the heart would be expected to be beneficial to the tissue. However, this 

concept was first described in 1960 by Jennings et al and has since been observed and 

documented in detail [Peterson et al 1985, Ravingerová et al 1991, Verma et al 2002, 

Yellon and Hausenloy 2007]. This injury takes place and is described as a series of 
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paradoxes, which ultimately all contribute to the death of cardiac myocytes that were 

viable prior to the ischaemic incident [Piper et al 1998]. 

Oxygen paradox 

Reperfusion of the myocardium creates oxidative stress and free radicals which in itself 

is part of the oxygen paradox and may create more damage than ischaemia alone 

[Zweier 1988].  Super oxide free radicals (O2
-) are generated in the reperfused 

myocardium and are important mediators of reperfusion injury [Zweier 1988]. Oxidative 

stress also decreases the availability of nitric oxide (NO), as the excess super oxide 

binds to and quenches the NO to form peroxinitrite (OONO-), and thus stops the 

beneficial effects of NO i.e. improvement of blood flow, inhibition of neutrophil 

accumulation and inactivation of free radicals [Zweier and Talukder 2006].  

ROS (reactive oxygen species) also activate the Na+/H+ exchanger (NHE), which brings 

more Na+ into the cell, activating the Na+/Ca2+ exchanger (NCE) to expel more Na+ out 

and bring in more Ca2+, producing calcium overload [Sabri et al 1998]. Inhibition of the 

sodium potassium ATPase by ROS also leads to sodium mediated calcium gain [Hess 

et al 1981].  

 

pH paradox 

Under basal conditions, the Na+/H+ exchanger on the cell surface is relatively inactive, 

the Na+/K+ ATPase (Na+ pump) uses ATP to remove Na+ and increase intracellular K+, 

and the bidirectional Na+/Ca2+ exchanger (NCE) works mainly to pump Ca2+ out of the 

cell. This maintains ion homeostasis in the cellular environment.  
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During myocardial ischaemia, the Na+/H+ exchanger becomes activated in response to 

intracellular acidosis from an increase in buildup of lactic acid and protons in the cell 

[Opie 1978] which causes protons to leave the cell down a concentration gradient, 

through the NHE. The resulting influx of Na+, occurring as a result of a reduction in ATP 

and thus a reduction of Na+/K+ pump activity, causes the intracellular accumulation of 

Na+. Such a rise in the intracellular Na+ concentration during ischaemia alters the 

reversal potential of the NCE in that its operation in reverse (Ca2+ influx) mode is 

favoured, thus producing intracellular Ca2+ accumulation (contributing to Ca2+ overload) 

during both ischaemia and subsequent reperfusion [Piper et al 2004]. 

This resulting decrease in pH during ischaemia returns to normal after reperfusion. This 

return to normal pH does not go hand in hand with a recovery in cell viability and this is 

what is termed the pH paradox [Lemasters et al 1996].  
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Figure 2.12:  (A) The cell under basal conditions, and (B) durin g ischaemia, 

showing the pH paradox of ischaemia and reperfusion .   Na+/ Ca2+ exchange (NCX 

in diagram – NCE in text), See text for details. [a dapted from Avkiran and Marber 

2002] 

 

 

Calcium paradox. 

After cellular depolarization and contraction, calcium is released from the sarcoplasmic 

reticulum (Ca2+ store of the cell) into the cytosol, via a channel called the ryanodine 

receptor (RyR). During relaxation Ca2+ is transported back into the SR by an ATP driven 

pump called the SR Ca-ATPase (SERCA) [Zucchi et al 1996]. The RyR is opened by 

increased Ca2+ in the cytoplasm, and this results in calcium induced calcium release. 

The opening of the RyR is also influenced by many intracellular metabolic components 

like lowering ATP concentrations and lowering intracellular pH (Xu et al 1996) and these 

occur during ischaemia, thus opening the RyR. 
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Cytosolic Ca2+ increases in large amounts during the first few moments of ischaemia 

[Lee et al 1987, Kihara et al 1989].  Calcium is then suddenly elevated further in 

reperfusion and this rapid increase in intracellular calcium overwhelms the normal Ca2+ 

regulatory mechanisms. This increased Ca2+ inside the myocyte leads to overload and 

hypercontracture and mitochondrial permeability transition pore (MPTP) opening (Piper 

et al 1998). Many ATP consuming enzymes also require Ca2+ for activation, and thus 

Ca2+ overload causes a concomitant ATP decrease [Nayler 1981]. Phospholipases and 

proteases are also activated by Ca2+, leading to a disturbance in the structures of the 

cell [Suleiman et al 1994, Schwertz and Halverson 1992, Toyo-oka et al 1985].  
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Figure 2.13:  Simplified diagrammatic representation of the sequ ence of events 

induced by ischaemia and reperfusion that promote C a2+ overload. See text for 

details. [Reproduced from Nayler 1981]. 
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Figure 2.14:  Events occurring during A. ischaemia and B. reperf usion. Decreased 
levels of ATP in ischaemia (1), lead to increased p rotons (2) in the cell as well as 
malfunctioning of the ATP-dependent ion exchangers (3) on the cell membrane. 
With more H + ions being released from the cell in exchange for sodium, the 
sodium is exchanged for calcium and leads to increa sed intracellular calcium (5).  
During reperfusion, and the return of oxygen, a sur ge of reactive oxygen species 
(ROS) occurs, which further activates the NHE, and deactivates the Na + and Ca+ 
pumps. The high [Na +] causes the NCE to work in reverse, further aggrav ating the 
Ca overload, and opening of the MPTP. To the left o n Figure B shows events in a 
preconditioned cell. Adapted from Starnes and Taylo r 2007.  
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The damage of reperfusion injury is also partly due to the inflammatory response of 

damaged tissues. Blood returning to the infarcted area carries with it white blood cells 

which release a host of inflammatory factors such as interleukins as well as free radicals 

in response to tissue damage. The restored blood flow reintroduces oxygen to cells that 

damages cellular proteins, DNA, and the plasma membrane, called the oxygen paradox 

–as discussed previously. Damage to the cell's membrane may in turn cause the 

release of more free radicals. Such reactive species may also act indirectly to turn on 

pro-apoptotic signalling.  

 

Cellular levels of oxygen and ATP decrease during ischaemia and this is associated 

with increases in cellular oxidant production, calcium overload and increased levels of 

hydrogen ions. Early in reperfusion, there is an acute increase in both cellular calcium 

overload and free radical production in cardiac myocytes. Collectively, the increased 

levels of calcium and oxidants promote activation of pro-apoptotic proteins which 

contribute to cellular injury, and can lead to cell death. Ischaemia-Reperfusion (IR)-

induced cellular injury results in neutrophil activation and the production of ROS that 

can further contribute to cellular injury. Collectively, these IR-induced disturbances in 

cellular homeostasis contribute to cellular injury and cell death due to both necrosis and 

apoptosis. 
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Figure 2.15:  Factors leading to myocardial injury during ischae mia and 

reperfusion. [Adapted from Powers et al, 2008] See text for more details. 
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2.8 Exercise  

 

In 1992, the American Heart Association declared that physical inactivity is an 

independent risk factor for the development of coronary artery disease [Fletcher et al 

1992], highlighting what a large role physical activity plays in procuring health and 

physiological harmony.  

 

For decades exercise has been described as both a preventative measure and a 

prophylactic for many diseases and ailments. This is especially relevant in 

cardiovascular disease prevention and treatment. The beneficial cardiovascular effects 

of regular exercise were documented as early as 1960 [Raab et al 1960], with many 

studies since providing solid corroborative evidence to support this [Holloszy 1964, 

Froelicher et al 1980, Morris et al 1997, Zhang et al 2007].  

 

2.8.1 Beneficial effects of exercise 

 

Exercise from early on in life has been seen to be beneficial for the myocardium 

[Rockstein et al 1981], and has also been found to prolong life expectancy and quality of 

life in the elderly [Marom-Klibansky et al 2002]. Exercise also protects against death 

from coronary artery disease and death from other causes [Rosengren et al 1997]. An 

increase in physical activity, albeit moderate, can decrease the chances of a myocardial 

infarct (MI) and may accelerate recovery after a MI [Le Page et al 2009]. Animal and 

human studies have also shown that exercise results in reduced myocardial ischaemia/ 

reperfusion injury [Bowles and Starnes 1994, Niederberger et al 1977]. 
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In normal subjects, regular exercise or training results in enhanced body sensitivity to 

insulin [Koivisto 1979]. This has implications for diabetic and insulin sensitive people, 

where increased physical activity is beneficial in counteracting high-fat diet-induced 

insulin resistance [Kraegen 1989] as well as delaying the onset of non insulin-

dependent diabetes mellitus (type 2 diabetes) or even preventing the disease.  

 

Other risk factors for coronary heart disease i.e. body weight, body mass index (BMI), 

cholesterol, LDL cholesterol and triacylglycerols are also decreased with an exercise 

regime [Ponjee et al 1996], as is the progression of atherosclerosis [Kramsch et al 

1981]. Physical training also improves cardiac function as evidenced by increased left 

ventricular end diastolic volumes (LVEDV), stroke volumes, ejection fractions and 

interventricular wall thickening during diastole and systole. Eccentric hypertrophy is due 

to hypertrophic growth of the walls of a hollow organ, especially the heart, in which the 

overall size and volume are enlarged [Cox et al 1986]. This hypertrophy is associated 

with an improved left ventricular systolic and diastolic function rather than fibrosis which 

would be expected to compromise mechanical function [McMullen and Jennings 2007]. 

 

Exercise also results in weight loss, and thus reduces blood pressure resulting in 

reduced hypertension in both men and women [Blumenthal et al 2000, Reger et al 

2006]. Haemodynamic changes in response to exercise can also decrease the chance 

of ischaemic heart disease by reducing platelet aggregation and increased fibrinolytic 

activity [Watts 1991]. 
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2.8.2 Detrimental effects of exercise 

 

Article titles such as ‘‘Runners who don`t train well can have a marathon of miseries’’ 

(Foreman 2006) and ‘‘Ironman athletes put hearts at risk of fatal damage, experts warn’’ 

(Rose 2007), imply that exercise is not necessarily as infallible as it is made out to be. 

Thompson et al [2007] suggests that exercise is not always beneficial as forceful activity 

can also acutely and rapidly increase the risk of sudden cardiac death or myocardial 

infarction in susceptible persons. Exercise is a stress, and although prolonged exposure 

to moderate episodes of this stress may precondition the heart and protect it, the 

question of “how much is too much” has arisen [La Gerche et al 2007, George et al 

2008]. Heart hypertrophy and associated alterations in the structural properties of the 

microvasculature have been seen with chronic strenuous exercise [Loud 1984]. 

Similarly alterations in the structure and function of the sarcoplasmic reticulum with 

acute strenuous exercise have been observed e.g. depression in the rate of Ca2+ 

uptake, a diminished Ca2+ release, and an increase in the intracellular free Ca2+ 

concentration which in turn could activate proteolytic pathways [Byrd 1992].  There is 

also evidence for a simultaneous activation of the coagulation, fibrinolysis, and 

complement system as well as for a release of histamine after a short maximal intensity 

exercise regime [Dufaux et al 1991]. 

 

Short-term, high-intensity exercise can lead to significant and prolonged dysfunction of 

the mitochondrial energy status of peripheral blood leucocytes, and an increased 

predisposition to apoptosis and raised pro-inflammatory mediators [Tuan et al 2008]. 

This could in turn lead to coronary artery disease [Diamant et al 2004]. These results 

support the evidence for the immunosuppressive effects of excessive exhaustive 

exercise training [Hsu et al 2002].  
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2.8.3 Mechanisms of exercise induced cardiac protec tion 

 

As expressed in the preceding sections of this literature review, exercise training has 

been shown to not only protect the heart from ischaemia and reperfusion induced 

damage, but also has the known benefit of reducing the risk of myocardial infarction. 

Briefly stated, some of the mechanisms thought to induce this protection are by 

decreasing many of the causes of ischaemia/ reperfusion injury as described previously 

in this chapter.  To name but a few mechanisms, this exercise training increases 

coronary circulation [Laaksonen et al 2007], increases heat shock protein expression 

(HSPs) in the heart [Hamilton et al 2003, Boluyt et al 2006], increases myocardial 

antioxidant levels [French et al 2008] and improves function of the sarcolemma KATP 

channels [Brown et al 2005].   

 

Sheer stress and vascular remodeling  

 

Exercise increases oxygen demand of working skeletal muscles which leads to an 

increase in cardiac output and blood flow through the vasculature.  Shear stress, the 

stress placed on the vascular wall by the circulating blood, increases during exercise 

and elevates free radical production in endothelial cells, up-regulates protective 

antioxidant enzymes and heat-shock proteins and down-regulates pro-apoptotic factors 

[Marsh and Coombes 2005]. Exercise also activates endothelial- and inducible- nitric 

oxide synthase (eNOS and iNOS) which leads to a greater nitric oxide (NO) availability 

[Davis et al 2001, Shen et al 1995]. NO contributes to vessel homeostasis by inhibiting 

vascular smooth muscle contraction thus inducing blood vessel dilation, platelet 

aggregation, and leukocyte adhesion to the endothelium. See Figure 2.16.  
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Long term chronic exercise training can result in angiogenesis and arteriogenesis in the 

heart [White et al 1998] and skeletal muscle [Gute et al 1996] which results in an 

increased and improved blood flow capacity to the vasculature and muscle [Brown and 

Hudlická 1999, Leung et al 2008]. 

 

 

                           

 

 

 

  

 

Figure 2.16:  Shear stress induced NO production by vascular end othelial cells.  

 

 

 

Heat Shock Proteins 

 

Heat shock proteins (HSP) are a class of functionally related proteins whose expression 

is increased when cells are exposed to stress e.g. increased temperature, ischaemia or 

exercise. HSPs reduce apoptotic and necrotic cell death by antagonising apoptosis 

inducing factors e.g. caspases [Ravagnan et al 2001] or enhancing the activity of 

mitochondrial complexes (complexes I-V) [Summut et al 2001]. HSP70’s role in exercise 

induced cardioprotection has been studied and shown to be effective in protecting 

hearts against ischaemic injury [Paroo et al 2002, Shin et al 2004].  
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Antioxidants 

 

Free radicals are atoms, molecules, or ions with unpaired electrons which are usually 

highly reactive, and are likely to take part in chemical reactions.   

Oxygen-centered free radicals are superoxide, hydrogen peroxide and hydroxyl radical. 

They are derived from molecular oxygen under reducing conditions. Because of their 

reactivity, these free radicals can participate in unwanted side reactions resulting in cell 

damage [Dart and Sanders 1988].  

 

Increased reactive oxygen species (ROS) production by the mitochondria during 

reperfusion as a by product of the electron transport chain from complexes I and II is at 

least in part responsible for injury. An increase in antioxidants thus helps scavenge 

these ROS.  

 

Antioxidants are molecules capable of slowing or preventing the oxidation of other 

molecules which produces free radicals. Antioxidants stop these reactions by removing 

free radicals, and inhibit oxidation reactions by being oxidized themselves [Sies 1997]. 

 

Enzymatic antioxidants include superoxide dismutase (SOD), catalase (CAT), and 

glutathione peroxidase (GPx). SOD exists in cytosolic (requires copper and zinc as 

cofactors) and mitochondrial (requires manganese as the cofactor) isoforms. Important 

nonenzymatic antioxidants include reduced glutathione and vitamins E and C [Powers 

and Hamilton 1999].  

 

Although there are reports suggesting that GPx activity increases with exercise [Husain 

and Somani 2005] there are also reports that suggest the contrary [Demirel et al 2001]. 
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This is also the case with CAT [Demirel et al 2001, Husain and Somani 2005]. MnSOD 

is however the antioxidant which has been conclusively proven to be increased with 

exercise [Yamashita et al 1999, Demirel et al 2001, Hamilton et al 2003, Quindry et al 

2005]. Despite the association between exercise and increased SOD it has still not 

been established whether this antioxidant is essential for cardioprotection [Lennon et al 

2004].  

 

 

 

 

 
 
 
 

 

 

 

 

 

 

Figure 2.17:  Pathways of major cellular oxidant formation and e ndogenous 

antioxidant action. Species noted in gray circles r epresent some of the reactive 

oxygen and nitrogen species capable of mediating da mage to cellular protein, 

lipid, and DNA. GSH, reduced glutathione; GSSG, oxi dized glutathione; H 2O2, 

hydrogen peroxide; H 2O, water; NO, nitric oxide; NOS, nitric oxide synth ase; O 2, 

oxygen; O 2-, superoxide; ONOO-, peroxynitrite. From  Starnes and Taylor 2007. 
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K ATP channels 

 

The ATP-sensitive potassium channel (KATP) is normally inhibited by intracellular ATP 

and opens during periods of energy depletion [Noma 1983]. KATP channels are known to 

exist in the sarcolemmal membrane as well as the mitochondrial membrane of 

cardiomyocytes and there is evidence both for [Das and Sarkar 2003] and against 

[Brown et al 2005] the mitochondrial channels’ role in cardioprotection. It has been 

shown to be a mediator of cardioprotection induced by preconditioning either by 

ischaemia [Budas et al 2004], pharmacological manipulation [du Toit et al 2008, Wan et 

al 2008] or through exercise [Brown et al 2005].  

When the concentration of ATP in the cell falls as during ischaemia, the channel opens 

and there is thus an outward flux of K+, consequently hyperpolarising the cell and 

shortening the cardiac action potential.  This in turn causes the voltage dependant Ca2+ 

channels to be inhibited and thus promotes decreased calcium overload of the cell and 

hypercontractility.  Thus this is the suggested mechanism for the sarcolemmal channel’s 

role in protection. [Sandhiya and Dkhar 2009]. 

 

Although sarcolemmal KATP channel activation in the ischaemic myocardium is critically 

important for cell survival and protection of function, its electrophysiological effects 

include shortening of the action potential duration and the refractory period. These 

effects are potentially proarrhythmic and can promote the development of lethal 

arrhythmias, [Janse and Wit, 1989]. Consequently, the inhibition of sarcolemmal KATP 

channels in ischaemic myocardial cells can prevent lethal ventricular arrhythmias and 

sudden cardiac death [Englert et al 2003, Vajda et al 2007], implicating increased KATP 

opening in sudden cardiac death associated with exercise.  
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The opening of the mitochondrial KATP channels has also been implicated in improved 

calcium handling by the cell, reduced mitochondrial matrix swelling and increased 

oxidative metabolism and the decreased release of ROS by the mitochondria during 

preconditioning [O’Rourke, 2000, Gross and Peart 2003]. However Brown et al [2005] 

have shown that the mitochondrial KATP channels are not an essential mediator in 

exercised induced cardio protection.  

 

Mitochondria 

 

The mitochondria are the “powerhouse” of the cell, and thus, during exercise, when the 

energy demand increases substantially, the mitochondria’s ATP output needs to 

increase to meet this increased demand. Besides ATP synthesis, mitochondria also 

play a significant role in osmotic regulation, pH control, signal transduction and calcium 

homeostasis. [Cadenas 2004, Brookes et al 2004]. 

 

Exercise training has been shown to improve mitochondrial efficiency of oxidative 

phosphorylation by increasing removal of ROS and decreasing free radical production in 

skeletal muscle [Servais et al 2003]. Bo et al [2008] showed that exercise training also 

increases mitochondrial ATP synthetase activity, ADP to oxygen consumption (P/O) 

ratio, respiratory control ratio (RCI = State 3/state 4 respiration), and MnSOD activity in 

cardiac muscle. The increased ATP usage is perhaps what increases the ADP/O ratio 

and drives the production of more ATP in the mitochondria, thus increasing the RCI.  

Inhibition of the cardiac apoptotic pathways has also been observed in response to 

exercise training [Quindry et al 2005]. Ascensao et al [2005] showed that endurance 

training decreased heart mitochondrial susceptibility to MPTP opening.  
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However not all studies have shown that exercise benefits the mitochondrion. In 

exhausted guinea pigs, the rate of oxygen consumption in cardiac mitochondria was 

lower in the exhausted animals than in the controls [Taylor et al 1976].  Leucocyte 

mitochondria show a lowered energisation status and a higher incidence of apoptosis 

during high intensity training [Hsu et al 2002].  

 

Pro-survival pathways 

 

Exercise activates the PI-3 kinase – PKB/Akt pathway in the brain, which is known for 

its role in enhancing neuronal survival [Chen et al 2005]. Exercise training has also 

been shown to both increase PKB/Akt phosphorylation in the hearts of spontaneously 

hypertensive rats [Lajoei et al 2004] and normalise the PKB/Akt phosphorylation in the 

myocardium of Zucker diabetic rats [Lajoei et al 2004b]. Increased PKB/Akt signaling 

would also be expected to increase Glut4 translocation for increased glucose uptake 

and usage [Wang et al 1999]. Cardioprotection via the pro-survival pathways is 

underscored by the findings of Siu et al [2004] who found that exercise training 

decreased the extent of apoptosis in cardiac and skeletal muscle. 

 

Iemitsu et al [2006] concluded that exercise activated multiple mitogen activated protein 

kinase (MAPKs: ERK, JNK, and p38) pathways in the heart. P38-MAPK is important in 

many biological processes including cell growth, differentiation,  myocyte hypertrophy, 

and apoptosis [Wang et al 1998, Bassi et al 2008], but it has been implicated as a 

mediator of ischaemic injury [da Silva 2004]. P38-MAPK activation has been seen to 

gradually decline with the development of exercise-induced cardiac hypertrophy after 

approximately 12 weeks [Iemitsu et al 2006].  
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AMPK 

 

AMPK is an enzyme that is expressed in most mammalian tissues including cardiac 

muscle. One of its functions is the regulation of fuel supply and energy-generating 

pathways in response to the metabolic needs of the organism by regulating the activity 

of acetyl-coenzyme A carboxylase. AMPK affects levels of malonyl-coenzyme A, a key 

energy regulator in the cell. AMPK is generally inactive under normal conditions but is 

activated in response to hormonal signals and stresses such as strenuous exercise, 

anoxia, and ischaemia which increase the AMP/ATP ratio. Once active, muscle AMPK 

enhances both the uptake and oxidative metabolism of fatty acids and glucose transport 

and glycolysis [Arad et al 2007] AMPK enhances glucose uptake via activation of 

GLUT4 translocation, fatty acid oxidation via acetyl-CoA carboxylase [Hardie and 

Carling 1997], and glycolysis by inhibiting glycogen synthase [Halse et al 2003]. AMPK 

is activated during exercise [Chen et al 2000, 2003]. However it has also recently been 

shown that although AMPK is activated by exercise, the alpha2 isoform of AMPK seems 

to not be essential for glucose uptake in exercising, AMPK deficient mice [Maarbjerg et 

al 2009].  
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2.8.4 Swim training as a model in the rat 

 

For many years swim training has been used in rats as an exercise model to elicit a 

number of beneficial physiological and metabolic responses. These benefits include 

enhancement of immunity [Kaufman et al 1994], improved resistance to myocardial 

ischaemia and reperfusion damage [Margonato et al 2000, Freimann et al 2005, Zhang 

et al 2007 See Table 1], improved recovery after spinal cord injury [Smith et al 2006] 

and halting of the deleterious effects of aging [Iemitsu et al 2002, 2006].  

 

Swimming has also been used to elicit stress responses in rats [Salman et al 2000] 

although this stress is usually more pronounced during an acute swim session than 

during chronic swim training where animals are habituated to the swimming program 

[Cox et al 1985]. Raised levels of corticosterone in the rat, as occurs during 

psychological stress [Scheuer and Mifflin 1998], lead to increased myocardial infarct 

size [Scheuer and Mifflin 1997]. 

 

2.8.5 Other models of exercise training in rats 

 

Other models of exercise training in rats include treadmill (Brown et al 2005, Reger et al 

2006, Chicco et al 2007) and wheel running (Chicco et al 2005). These above studies 

have all also shown cardioprotection with these models of exercise training.   
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Table 2.1 Table to show length and duration of swim ming training, interventions 

used and outcomes for myocardial research in rats.  

 

 length duration intervention outcome 
Zhang et 
al 2007 

10 weeks 3hrs/day 
5 days/ week 

Insulin 
stimulated 

Improved contraction 
Increased GLUT4 
translocation and eNOS 
& PKB/Akt, expression  

Margona
to et al 
2000 

3 weeks 2 hrs / day 
7 days/ week 

60 minutes 
low flow 
ischaemia 

� arrythmias 
�RPP recovery 
�diastolic contracture 

Freiman
n et al 
2005 

7 weeks 90mins/ day 
6 days/ week 

MI for 4 weeks Reduced infarct size 

Ravi 
Karan et 
al 2004 

4 weeks 20 mins/day 
2% of body mass, 
weight on tails 

 � Mn-SOD 
�LDL 

Ravi 
Karan et 
al 2004 

4 weeks 20 mins/ day 
3%of body mass 
weight on tails 

 � Mn-SOD 
�LDL 

Ravi 
Karan et 
al 2004 

4 weeks 20 mins/ day 
5%of body mass 
weight on tails 

 No change in Mn-SOD 
or LDL 
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2.9 CREATINE 

 

2.9.1 Creatine biosynthesis 

 

Creatine is a non-essential amino acid derived molecule which is both dietary and 

synthesized de novo from arginine and glycine. [Walker 1979] 

 

Arginine + glycine                                          ornithine + guanidinoacetate (1) 

 

Guanidinoacetate +                    creatine +   

S-adenosylmethionine                                            S-adenosylhomocysteine (2) 

[Borsook and Dubnoff 1941] 

 

This synthesis takes place mostly in the liver and pancreas and to a lesser extent, 

recent evidence suggests, in the brain and testes too [Moore 2000, Braissant et al 

2001]. Glycine Amidinotransferase (AGAT), which is involved in reaction (1) is 

predominantly expressed in the kidney and pancreas and Guanidinoacetate 

methyltransferase (GAMT) which is responsible for reaction (2) is predominantly 

expressed in the liver and pancreas.  This implies there is inter organ movement of the 

metabolites ornithine and guanidinoacetate (GAA) from the kidney to the liver. 

 

The regulation of the process of creatine biosynthesis is thought to be modulated by 

AGAT (Walker 1979). An increase in serum levels of creatine as a result of 

supplementation results in a decrease in AGAT enzyme activity, enzyme level, and 

mRNA expression in rat kidney [McGuire et al 1984], producing less GAA and thus less 

creatine [Edison et al 2007]. 

AGAT 

GAMT 
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Figure 2.18:  Biosynthesis of creatine. GAMT, Guanidinoacetate 

methyltransferase, ADP, adenosine diphosphate, ATP,  adenosine triphosphate, 

CK, creatine kinase. Adapted from  Ensenauer  et al  2004.  

 

 

Creatine is non-enzymatically broken down into creatinine and excreted by the kidneys 

in the urine [Borsook and Dubnoff 1947]. The rate at which creatine is degraded is 1.6% 

which equates to 2g per day. This amount needs to be replenished either by 

endogenous synthesis or by dietary intake [Hoberman et al 1948].  About half of this 

(±1g per day) is provided by the diet, from sources such as meat and fish and the 

remainder is synthesized endogenously [Hoogwerf et al 1986].   

 

Arginine Glycine 

Ornithine 

Guanidinoacetate 

GAMT 

Creatine Phosphocreatine 

ADP                    ATP 

CK 
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2.9.2 Creatine absorption 

 

The mechanism of creatine absorption into the body through the gut is not completely 

clear. Creatine has been seen to be absorbed from the jejunum [Tosco et al 2004] and 

the ileum [Peral-Rubio et al 2002] of the small intestine into the blood stream, via a CT1 

transporter. Creatine is also structurally similar to amino acids arginine and lysine, and 

may enter via amino acid transporters or peptide transporters in the intestine.  

The ingestion of carbohydrate containing solution (e.g. fruit juice) aids in the absorption 

of creatine from the gut, and may increase total creatine in the muscle up to 60% 

[Green 1996].  However, while insulin and insulin–stimulating food appears to enhance 

muscle uptake of creatine, high carbohydrate meals may slow the absorption of creatine 

from the intestine [McCall and Persky 2007].  

 

2.9.3 Creatine Uptake 

 

Skeletal muscle is the tissue in which most (approximately 95%) of the body’s creatine 

is stored. The remaining 5% is stored in the heart, brain and testes [Snow and Murphy 

2001].  Generally, creatine is transported in the blood from areas of production (liver, 

kidney and pancreas) to tissues requiring it (skeletal and heart muscle, brain and 

testes). We also know that the brain and testes have been found to produce their own 

creatine. Creatine is then taken up into cells by a special creatine transporter which is 

located on the cell membrane, called the CreaT.  
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2.9.4 Creatine transporter (CreaT) 

 

Over 90% of cellular creatine uptake occurs via the Na+/Cl- CreaT, against a large 

concentration gradient [Loike 1986]. The extracellular creatine content regulates the 

transport of creatine into cells [Loike 1988]. 2 genes have been isolated that encode for 

the creatine transporter, CreaT1 (SLC6A8) and CreaT2, of which the latter is 

predominantly found in the testes. There is a 97% homology between the 2 transcripts; 

with only small differences in the stop codon [Iyer 1996, Sora 1994]. CreaT1 protein is 

exclusively found in muscle cells, including the heart, and as this study concentrated on 

heart muscle we will be referring to it as CreaT for this paper.  

 

CreaT protein consists of 635 amino acids (~70.5kDa) with 12 membrane spanning 

domains and has been classified as a member of the Na+- dependent plasma 

membrane transporter family [Guimbal and Kilimann 1993] to which the transporters of 

a number of neurotransmitters and osmolytes belong, including transporters for 

serotonin [Blakely et al 1991] and glycine [Smith et al 1992]. They comprise a family of 

proteins related in structure and whose transport substrates are biogenic amines 

(substance produced by a life process, containing an amine group) or zwitterionic 

compounds (a chemical compound that carries a total net charge of 0, thus electrically 

neutral but carries formal positive and negative charges on different atoms)  [Liu et al 

1992, Uhl 1992] . 

 

 Immunoblotting has identified two isoforms (55kDa and 70kDa) of the CreaT in rat 

skeletal and heart muscle, kidney and brain [Wallimann et al 1994], but other isoforms 

(40, 60 and 115 kDa) have also been seen [Tran et al 2000, McCall and Persky 2007]. 

The functional significance of these isoforms is not yet resolved, but recent evidence 
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[Tran et al 2000] suggests that the core CreaT protein is probably a 40kDa protein and 

that all the other isoforms are produced as a result of different levels of glycosylation of 

the CreaT, since there are 3 phosphorylation and 5 glycosylation sites on the protein 

[Sora et al 1994, Nash et al 1994]. This may be important in targeting the CreaT to 

different cellular locations [McCall and Persky 2007]. 

 

CreaT content is reduced in heart failure [Neubauer et al 1999].  This may contribute to 

the depletion of intra-cellular creatine compounds and thus to the reduced energy 

reserve in the failing myocardium. This discovery has clinical implications, suggesting 

that the CreaT is a target for therapeutic studies.  

 

2.9.5 Beneficial effects of creatine 

 

Creatine has been used for years by sportsmen and women as a legal and natural aid 

to enhance their endurance and power and decrease recovery time.  Creatine 

monohydrate, creatine phosphate and creatine ethyl esters are all forms of creatine that 

are taken by athletes and body builders and which are metabolized in the gut for 

absorption and ultimately enhance exercise performance [http://www.creatine-

monohydrate.org].  Whichever form of creatine is used, the outcome achieved is the 

same – building body bulk [Stone et al 1999, Yolek et al 1999], increased muscle power 

and strength [Stone et al 1999, Dempsey et al 2002], increased endurance [Little et al 

2008], increased muscle glycogen accumulation [Op't Eijnde et al 2001, van Loon et al 

2004] for increased energy storage and utilization capacity, decreased lactate 

production [Ceddia and Sweeney 2004] and decreased inflammation and muscle 

soreness [Santos et al 2004]. 
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Not only does creatine have ergogenic effects but it has also been used as a 

prophylactic in many muscular and neurological diseases. Since the decrease in cellular 

creatine in diseased states is a possible reason for muscle weakness and atrophy and 

disturbances in cellular homeostasis, the normalization of creatine in the cells with 

supplementation may be a reason for this [Wyss et al 1998].  Studies with creatine 

supplementation in muscular dystrophies have shown the potential of creatine to 

alleviate the clinical symptoms of the disease [Felber et al 2000, Kley et al 2007]. 

Creatine supplementation in heart failure patients also increases the skeletal muscle’s 

performance due to an increase of creatine in the muscle [Gordon et al 1995].   

 

In MELAS disease (Mitochondrial encephalopathy, lactic acidosis) it has been shown 

that creatine supplementation completely abolished the symptoms after 4 weeks 

[Barisic et al 2002], and in Parkinson’s disease creatine supplementation enhances the 

benefits of weight training [Hass et al 2007].  There is also data to suggest that creatine 

supplementation has positive effects on bone function and structure [Antolic et al 2007]. 

Recent work has eluded to the fact that creatine supplementation may also help 

improve insulin sensitivity in type 2 diabetes [Op't Eijnde et al 2006]. Interestingly, 

creatine has been found to increase antioxidants in skin, and can therefore be 

protective against UV and other environmental damage [Lenz et al 2005].  

 

Therefore it is evident that many positive effects have been documented with the use of 

creatine as a supplement, in the diseased state. Nevertheless, care should be taken 

because the effect of creatine loading on skeletal muscle ergogenics can be negated by 

the intake of caffeine [Vandenberghe et al 1996].  
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2.9.6 Detrimental effects of creatine 

 

However, not all the evidence provided in the literature is encouraging. There have 

been reports of adverse effects of creatine supplementation. For example, creatine 

supplementation has been found to bring about gastrointestinal stress and diarrhea 

[Ostojic and Ahmetovic 2008]. Short-term, high-dose oral creatine supplementation 

increases the production and thus excretion of potential cytotoxic compounds, 

methylamine and formaldehyde but does not have any detrimental effects on kidney 

permeability [Poortmans et al 2005]. In addition creatine supplementation exacerbates 

the lung’s allergic response in mice [Vieira et al 2007]. 

 

There has been a single case study where creatine supplementation was associated 

with atrial fibrillation, in a 30 year old man who was admitted to the emergency room 

with atrial fibrillation and rapid heart rate [Kammer 2005]. The medics could not find any 

reason for his condition, and when his medical history was examined it was revealed 

that he had been using creatine as a supplement.  He was treated with anticoagulants, 

his heart rate stabilized and was sent home 24 hours later, with no obvious adverse 

consequences.  
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2.9.7 Mechanisms of creatine induced cardiac protec tion 

 

The primary mechanism by which creatine supplementation works is highlighted in 

Chapter 1.1.1 and 1.1.2 (see Figure 1.1). This increased intracellular creatine potentially 

acts as a store of phosphate groups to be used during ATP synthesis as energy for the 

cell.  

 

In a study by Brzezińska and colleagues in 1998 they concluded that dietary Cr did 

increase cardiac muscle high energy phosphate reserves and its oxidative potential in 

the rat model after 7 days of supplementation.  Creatine supplementation has been 

shown to increase cardiac creatine reserves only slightly since initial total creatine 

concentrations are high [Ipsiroglu et al 2001]. They also showed that a minimum of 2 

weeks was required to raise levels. However, Boehm et al [2003] showed that there was 

no difference in creatine transporter levels in cardiac muscle from rats after 6 weeks of 

creatine supplementation, nor was there an increase in PCr or Cr in the heart tissue, 

although total creatine levels were raised in the heart and plasma. McClung et al [2003] 

reported similar results after 3 weeks of supplementation, but although the Cr content of 

the heart tissue increased, total Cr (TCr) did not.   

 

These conflicting results may be a consequence of rat model, housing, dosage of 

creatine, duration of study or method of sacrifice and tissue extraction. The manner of 

feeding may also be a factor e.g. intubation tube/ gavage.  

 

In brain tissue from rats, creatine administration stops the inhibition of the Na+,K+ 

ATPase pump in a model of metabolic disease, where the pump is inhibited and thus 
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the membrane potential is negatively affected [Ribeiroa et al 2009]. In a study by Zhu et 

al [2004] creatine supplementation reduced caspase- induced cell death cascades. 

 

GLUT4 expression increases in rat and human skeletal muscle with creatine 

supplementation [Ju et al 2005, Op't Eijnde 2001b], as does AMPK phosphorylation 

[Ceddia and Sweeney 2004]. They have also observed decreased lactate production 

and increased glucose oxidation with creatine supplementation. 

 

Studies have also shown increased glycogen storage in skeletal muscles in humans 

during creatine supplementation [Robinson et al 1999, Derave et al 2003]. 

An increase in myosin heavy chain (MHC) type I and II in human skeletal muscle has 

been shown after 12 weeks of creatine supplementation and resistance training 

[Willoughby and Rosene 2001], however this has not been investigated in the heart.   

 

A combination of swim training and creatine supplementation for 2 months in rats 

increased mitochondrial creatine kinase (MB-CK) expression [Golden et al 1994]. 

Increased MB-CK expression in the myocardium is characteristically associated with 

hypertrophy. However both pressure overload and coronary artery disease cause 

increased CK expression [Ingwall et al 1985]. This anomaly was not addressed in 

Golden et al’s study.  

 

In a study by McClung et al 2003, chronic exercise stress in rats induced a significant 

decrease in cardiac-muscle total RNA. A loss of cardiac RNA results in a decrease in 

muscle protein which is detrimental for the functioning of the heart. Creatine 

supplementation, in conjunction with the same exercise stress, corrected this 
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attenuation and resulted in values of RNA that were comparable to those of control 

animals.  

 

From the above evidence it would seem that creatine supplementation increases the 

energy reserves in the heart and would thus leave it better prepared to overcome an 

ischaemic event. Increased phosphate for regeneration of ATP stores, increased 

glycogen for energy, as well as increased GLUT4 for glucose uptake and glycolysis 

during an ischaemic incident would be expected to afford protection against ischaemia 

and reperfusion injury.  
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HYPOTHESIS 

 

Based on the knowledge that exercise is of benefit to the heart, both under basal 

conditions and as a cardioprotective factor for ischaemic injury, and that creatine has 

been proven to be of advantage to skeletal muscle during contraction and relaxation to 

increase energy and decrease recovery time, it is our opinion that the combination of 

these two interventions will be advantageous to the heart.  

 

We therefore hypothesise that creatine alone, and in combination with exercise, will be 

advantageous to the heart, and provide protection against ischaemia/reperfusion injury. 

 

 AIM 

 

We therefore aimed to investigate the effects of dietary creatine supplementation on 1) 

basal cardiac function,  

2) myocardial susceptibility to ischaemia/reperfusion injury and  

3) myocardial signaling protein expression and phosphorylation and 

4) mitochondrial function 

In addition, we investigated the effects of creatine in combination with exercise on these 

parameters in rats. 
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CHAPTER 3 

 

METHODS 

 

3.1 ANIMAL MODEL  

 

Male Wistar rats weighing between 200-220g were used in all experiments. The project 

was approved by the CEAR (Committee of Experimental Animal Research) of the 

Faculty of Health Sciences, University of Stellenbosch and complied with the guidelines 

of the South African Medical Research Council for the humane use of laboratory 

animals.  The rats were allowed free access to food (standard rat chow) and water, and 

maintained in the University of Stellenbosch (US) Central Research Facility at 22°C with 

a 12 hour day/night cycle.  

 

In this study, swimming was used as exercise. After completion of the 8 week 

supplementation and swimming programme animals were anaesthetised with an 

intraperitoneal injection of pentobarbitone sodium at a concentration of 0.12mg/gram 

body weight. Animals were weighed at the outset of the supplementation and swimming 

program and again at the time of sacrifice and the weight gain over the 4 weeks was 

calculated.  

 

3.1.1 Creatine supplementation  

 

Animals were randomly divided into control or creatine supplemented groups. Creatine 

(EAS Phosphagen Creatine Dietary Supplement) was given daily in jelly cubes (Royal 

jelly, Kraft Foods South Africa Pty Ltd) for multiple reasons. Creatine absorption is 
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enhanced with carbohydrate ingestion [Green et al 1996] and to ensure minimum 

psychological stress to the rat and to ensure that they received appropriate dosages.  

Rats received a dose of 0.07g per kg per day as the supplementation dose for a 70kg 

human male is 5g per day. Starting doses for the first 5 days was a 4 times stronger 

loading dose (0.24g per kg per day). The rest of the 8 weeks regime was with the above 

mentioned maintenance dose. This creatine supplementation program was followed 5 

days a week for 8 weeks. Control animals received jelly cubes without creatine. Thus all 

groups investigated received equal amounts of carbohydrates that are contained in the 

jelly.  

 

3.1.2 Exercise Program  

 

 Each group was randomly divided into exercise trained and sedentary groups. Training 

comprised swimming at set times of the day, each day. Training duration was started at 

5 minutes per day to minimise stress and was increased by 5 minutes increments each 

day to a maximum of 60 min per day.  Rats were exercised for a minimum period of 8 

weeks, 5 days per week in order to elicit metabolic changes (Iemitsu et al 2002, Venditti 

et al 2009) , with a 2 day recovery period in between.  Water temperature was kept at 

30ºC for the duration of the swim session. Rats were sacrificed 24 hours after the last 

bout of exercise and the hearts rapidly excised.  

 

The 4 experimental groups investigated were as follows: Control sedentary (C Sed), 

creatine sedentary (Cr Sed), control exercised (C Ex) and creatine exercised (Cr Ex). 
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3.1.3 Behavioural Studies  

 

The behaviour of the rats was documented the day before rats were sacrificed for the 

myocardial studies. Each rat was placed in the open field for 5 minutes (see figure 3.1) 

to test for differences in anxious-like behaviour and activity.  

 

The open field test is designed to measure behavioural responses such as locomotor 

activity, hyperactivity, and exploratory behaviour. The open field is also used as a 

measure of anxiety. Rats tend to avoid brightly illuminated, novel, open spaces. Open 

field testing is a once off trial test with little or no impact on the animal’s subsequent 

behaviour. The apparatus for the open field test is a square enclosure (1m by 1m) made 

of black Perspex. 

 

 Each rat is placed individually in a corner of the field and its behaviour recorded for 5 

minutes. All activity is recorded using a video camera mounted above the open field and 

scored later by an advanced motion-recognition software package (Noldus Ethovision 

version 3.1 software) that detects and analyzes the movements of the rat. The video 

image of the open field arena is partitioned into 36 equal-size squares; 24 border 

squares and 12 centre zone squares.  
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Figure 3.1:   Schematic to illustrate the rat in the open field .  

 

Total distance, average speed, and time spent in various parts of the field (e.g. the 

border areas vs. the open, middle area) were measured and analyzed. Testing was 

carried out in a temperature, noise and light controlled room. The rats were placed in a 

cage in the testing room an hour before the test in order for them to acclimatize to the 

new environment. The open field was cleaned with 70% ethanol after each rat had been 

tested. 

 

Each rat was tested individually and in a separate test room. Throughout the entire 

testing-session, the sequence of events was always the same and the test 

circumstances (handling, room-features, equipment used) were as standardised and 

controlled as possible. The entire test procedure lasted approx. 20 minutes per animal, 

and was recorded entirely on videotape to allow analysis at a later time. During the test 

procedure silence was maintained in the test room. The behavioural tests were 

performed from 1-1:30pm daily to ensure that normal daily fluctuations in corticosterone, 

circadian rhythm and activity did not affect the results [Richter 2004]. Rats were 

sacrificed the following day and blood collected for analysis of corticosterone levels.  
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3.2 ISOLATED HEART PERFUSIONS  

 

Hearts were excised, arrested in cold (4ºC) Krebs-Henseleit buffer and mounted on a 

working rat heart perfusion system.  

The isolated hearts were perfused with a Krebs-Henseleit buffer equilibrated with 

95%O2 and 5%CO2 at 37oC (Krebs-Henseleit bicarbonate buffer: 119mM NaCl, 25mM 

NaHCO3, 4.75mM KCl, 1.185mM KH2PO4, 0.6mM MgSO4 , 0.6mM NaSO4,1.25mM 

CaCl2.2H2O,  10mM glucose) at a preload of 15cm H2O and at an afterload of 100cm 

H2O. Myocardial temperature was closely monitored for the duration of the experiment 

by placing a temperature probe inside the coronary sinus , Myocardial temperature was 

kept between 36.5 and 37ºC during Langendorff and work heart perfusions.  

 

3.2.1 Working Heart Perfusions  

 

During Langendorff retrograde perfusion, the heart is perfused through the aorta with a 

preload of 100 cm H2O.  After cannulation of the aorta the left atrial cannula was 

inserted into the pulmonary vein for working heart perfusion. In the working heart mode 

the heart functions with a preload of 15 cm H2O and an afterload of 100 cm H2O and 

buffer enters the heart through the left atrium through the pulmonary vein, and is ejected 

by the left ventricle via the aorta.  

 

3.2.1.1 Mechanical function recovery after global i schaemia 

 

During working heart perfusion, mechanical function of the hearts was documented 

(coronary flow (CF), aortic output (AO), heart rate (HR), aortic systolic pressure (SP) 

and aortic diastolic pressure (DP)).  
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Global ischaemia was induced by reverting to retrograde perfusion and stopping 

perfusion of the retrogradely perfused heart for 20min. The temperature was strictly 

monitored and kept between 36 and 36.5 ºC. Hearts were reperfused and mechanical 

function was again documented in the working heart mode. The percentage recovery of 

aortic output was then calculated by expressing the post ischaemic aortic output as a 

percentage of the pre- ischaemic aortic output.  See figure 3.2. 

 

 

 

 
10 mins           20 mins            20 mins 10 min s  20 mins 
 
 
stabilisation            30 mins reperfusion  

   

Figure 3.2:  Diagram to show the perfusion protocol for the iso lated rat heart 

perfusions used to document functional recovery aft er 20 minutes of total global 

ischaemia.   

 

3.2.2 Langendorff Perfusions  

 

A water filled balloon, connected to a pressure transducer (Viggo Spectromed), was 

inserted into the left ventricle via the left atrium. The balloon was inflated with water to a 

volume where the end-diastolic pressure of the left ventricle was between 10 and 

20mmHg.  

 

Myocardial mechanical function was documented by measuring heart rate (HR), and left 

ventricular developed pressure (LVDevP) which is the difference between systolic (SP) 

Langendorff      Work heart Global Ischaemia Langendorff     Work heart 
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and diastolic pressures (DP). By multiplying these 2 parameters (HR x LVDevP), the 

rate pressure product (RPP) is calculated. These functional parameters as well as 

Aortic Output (AO) and Coronary flow (CF) were recorded on a computerised 

GENTRONICS chart recorder v3.00 system throughout the experiment.  

 

During the 20 minutes of global ischaemia, where the temperature was strictly 

maintained between 36 and 36.5ºC, the increases and ischaemic contracture was 

documented. This measurement allows us to determine time to the onset of ischaemic 

contracture and the magnitude (in mmHg) of this contracture. The mechanical function 

during reperfusion was also calculated, and the percentage recovery calculated as post-

ischaemic function divided by pre-ischaemic function. See figure 3.3. At the end of the 

reperfusion period the heart was dabbed dry and weighed for determination of heart 

weight to body weight ratio.  

 

 

 

 

10 mins           20 mins            20 mins 10 min s  20 mins 
 
  
Stabilisation              30 mins reperfusion 

 

Figure 3.3:  Diagram to show the perfusion protocol for the iso lated rat heart 

perfusions used to document ischaemic contracture d uring 20 minutes of global 

ischaemia.   

 

 

Langendorff      Work heart Global Ischaemia Langendorff     Work heart 



71 
 

3.2.3 Infarct size determination  

 

In a separate set of experiments, hearts were subjected to regional ischaemia to 

determine infarct size. After 30 minutes of stabilisation (10 minutes retrograde perfusion 

and 20 minutes working heart perfusion) during which mechanical function was 

documented (AO, CF, RPP), the heart was retrogradely perfused again and the left 

anterior descending coronary artery was ligated for 35min to induce regional ischaemia 

before being reperfused for 30 min. The temperature was strictly maintained at 36-

36.5ºC during regional ischaemia. See figure 3.4. 

 

 

  10 mins         20 mins       35 mins     10 mins     20 mins 

  Stabilisation              30 mins reperfusion 

 

Figure 3.4:   Diagram to show the perfusion protocol used for t he isolated rat heart 

perfusions for the analysis of infarct size after 3 5 minutes of regional ischaemia.   

 

At the end of the experiment the left anterior descending coronary artery was re-ligated 

and hearts were stained with an Evans Blue suspension (0.5%) for demarcation of the 

area at risk. Hearts were then frozen at -20ºC overnight. 

 

The hearts were cut into slices of equal thickness (±2mm), and stained by incubation in 

1% triphenyltetrazolium chloride (TTC) in phosphate buffer (pH7.4) for 15 minutes and 

then fixed in 10% formaldehyde to enhance the stained areas. The area at risk, 

infarcted area and viable tissue were then delineated, drawn and quantified using 

planimetry on the UTHSCSA ImageTool program and the infarct size (IF) expressed as 

a percentage of the Area at Risk (AAR). AAR size was the same for all hearts.  

Langendorff      Work heart Regional Ischaemia Langendorff     Work heart 
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3.3 BLOOD AND TISSUE COLLECTION  

 

3.3.1 Blood Collection  

 

3.3.1.1 Corticosterone levels  

 

Rats were sacrificed the day after the behaviour tests were performed. After excision of 

the heart, blood was taken from the thoracic cavity, placed in BD VacutainerR serum 

separation tubes and spun down at 2000 g for 10 minutes at 4ºC for separation of the 

serum. Serum was stored at -80ºC for later analysis.  An ImmuChem Corticosterone 125I 

RIA kit (MP Biomedicals) was used to determine levels of corticosterone in the serum.   

 

3.3.1.2 HEP analysis  

 

After excision of the heart for isolated heart perfusions, blood was taken from the 

thoracic cavity, placed in eppindorf tubes coated with heparin and spun down at 2000 g 

for 10 minutes at 4ºC for separation of the red blood cells and plasma. This was stored 

at -80ºC for later HEP analysis. 

  

3.3.2 Tissue collection  

 

3.3.2.1 HEP analysis 

 

Hearts were mounted on the perfusion system and after 2 minutes of perfusion to wash 

out the blood, hearts were freeze clamped with pre-cooled Wollenberger tongs and 

immediately plunged into liquid nitrogen and stored for later analysis. Blood was 

collected from the chest cavity of sacrificed animals and centrifuged in heparin coated 

eppindorf tubes to separate red blood cells and plasma. These fractions were stored at -

80ºC until needed. 
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3.4 HIGH ENERGY PHOSPHATE ANALYSIS  

 

3.4.1 Extraction of HEPs  

 

For tissue high energy phosphate (HEP) analysis, 100-200 mg of tissue, blood serum or 

red blood cells were extracted with 1.2ml 6% perchloric acid (PCA). Tissue was 

pulverised to fine powder in a pre-cooled mortar and pestle, weighed, and then placed 

in PCA and the exact time documented.  

 

Exactly 2 hours after this, with frequent vortexing every 10 minutes in between, extracts 

were centrifuged and the supernatant taken for neutralisation. Extracts were neutralised 

gradually with neutralisation mix (40%saturated KOH-KCl and 0.2MTris-HCl in a 2:3 

ratio) and the exact amount of neutralisation mix added to each sample was noted.  

 

Each sample was then filtered through a 0.45µm (Millipore) filter into a clean eppindorf 

tube, and kept on ice for High Pressure Liquid Chromatography (HPLC) separation and 

analysis. Samples not separated the same day were stored at -80ºC overnight and then 

used within 24 hours. 

 

3.4.2 Separation of HEPs  

 

Separation of HEPs (adenosine mono-, AMP, di-, ADP, and tri-phosphate, ATP), 

creatine (Cr) and creatine phosphate (CrP)) was done using a reversed phase HPLC 

technique developed by Victor and co-workers (1987). Samples were separated by a 

LUNA 5µ C18 (2), 250 x 4.6 mm Phenomenex column with on-line UV detection (210 

nm) and quantified with appropriate standards (Sigma). The mobile phase (KH2PO4 
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257mM, Tetrabutylammoniumphosphate 1.18mM, HPLC graded methanol 12.5% (v/v)) 

ran at a flow rate of 2.0 ml/min.  

 

3.4.3 Analysis of HEPs  

 

The concentration for each HEP was determined by dividing its area under the curve by 

the standard’s area under the curve, and multiplied by the total volume and weight of 

the sample analysed.  

 

3.4.3.1 Determination of HEP ratios 

 

Two of the most important cellular energetic signals are the PCr/Cr ratio and the 

ATP/AMP ratio. Cellular metabolism is brought about by the use of PCr to keep ATP 

levels constant, but when PCr levels drop, and ADP and AMP start increasing, then the 

cellular energy reserve may be in jeopardy, and this has negative implications in 

muscular dystrophies, atrophies, myopathies and other energy linked diseases (Ye et al 

2001).  

We determined the PCr/Cr and ATP/ADP as well as the ATP/AMP ratios in all groups, 

from the values obtained from HPLC. 
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3.5 MITOCHONDRIA STUDIES 

 

3.5.1 Isolation of Mitochondria from the rat heart  

 

All procedures were performed on ice.  

 

Freshly excised hearts were cut into smaller pieces and placed in a 30ml glass dounce 

homogeniser and washed 3 to 4 times with ice cold KE isolation buffer (0.18M KCl, 

0.01M EDTA, pH adjusted to 7.4 at 4 degrees C, using a 2M Tris solution) to remove all 

traces of blood. The homogeniser was filled to capacity with ice cold KE isolation buffer 

and tissue homogenised manually into a slurry which was decanted into Beckman 

Centrifuge tubes and centrifuged for 10 minutes at 2300 rpm in a JA20 rotor in a 

Beckman Centrifuge at 4ºC. The supernatant was then transferred to a clean tube and 

centrifuged for 10 minutes at 12000 rpm in a JA20 rotor in a Beckman Centrifuge at 

4ºC. The mitochondrial pellet was then re-suspended in cold isolation buffer and kept on 

ice until further use. A small sample of the suspension was taken for protein 

determination.   

 

NB: Prior to resuspension, the homogeniser was cleaned using chromic acid – soaked 

for 10 minutes and rinsed thoroughly with water between consecutive hearts.  

 

The mitochondrial protein content was determined with the Lowry Protein determination 

method (Lowry et al, 1951). 
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3.5.2 Protein content determination    

 

3.5.2.1 Lowry Protein Determination 

 

1ml of 10% TCA was added to 100 µl of mitochondrial suspension in a glass tube and 

left on ice for at least 30 minutes to precipitate all protein. The sample was then 

centrifuged at 2000 rpm for 10 minutes at 4°C and the supernatant carefully decanted 

and discarded. The sides of the tubes were carefully blotted dry. The precipitate was 

then dissolved in 1N NaOH in a water bath at 70°C. The solution was diluted 1:1 with 

dH2O, rendering a 0.5N NaOH solution. 

The assay was done in triplicate on 50 µl of sample or standard (3 different BSA 

solutions of known concentration dissolved in 0.5N NaOH) or 0.5N NaOH (blank), in 

Lucham tubes. 

1 ml of work solution 1 (98% of a 2% Na2CO3 solution,1% of 2% Na-K-Tartrate solution 

and 1% of a 1% CuSO4.5H2O solution) was added to the 50 µl of sample or standard or 

blank, mixed well and allowed to stand for 10 minutes at room temperature. 0.1 ml of 

work solution 2 (33% Folin-Ciocalteu’s phenol reagent) was then added and very rapidly 

vortexed. After at least 30 minutes, the colour development was read in a 

spectrophotometer at 750 nm against the blank. The unknown protein concentrations 

were plotted from the standard curve (Lowry et al, 1951). 
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3.5.3 Mitochondrial Respiration.  

 

Respiration studies were performed using an Oxytherm respirometer equipped with a 

Clarke-type electrode and a Peltier temperature control unit (Oxytherm, Hansatech, 

Norfolk, UK). The oxygraph was calibrated using oxygenated water for the air line and 

sodium dithionite for the zero air line. It was rinsed out thoroughly and the oxygen 

content of 650µl of the incubation buffer (250mM Sucrose, 25mM Tris pH 7.4, 8.5mM 

KH2PO4) checked until there was a stable baseline. The response of the membrane 

was checked by switching the stirrer on and off.  

 

3.5.3.1 Glutamate 

 

The mitochondrial suspension (25µl) was added to the incubation buffer in the chamber 

and the baseline respiration (State 1) measured. The temperature throughout the 

duration of the experiment was kept at 25ºC.   

 

Glutamate (20µl) was then added to measure O2 tension and the activity of the whole 

oxidative phosphorylation chain, starting at complex I (State 2 respiration).  

This was followed by the addition of 350µM ADP (28µl of a 10mM solution) to measure 

state 3 respiration. The mitochondria were allowed to use up all the ADP and when 

stable, state 4 respiration was measured.  

 

The ADP/O ratio was calculated, which is an indication of the relationship between ATP 

synthesis and oxygen consumption. The respiratory control index (RCI) was also 

calculated. The Respiratory Control Index (RCI) is a measure of mitochondrial 

respiration rate and efficiency of oxygen usage, and is a ratio of State 3 respiration over 
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State 4 respiration rate. Oligomycin (8µl) was then added to measure oxygen 

consumption during inhibition of oxidative phosphorylation, in the presence of ADP. See 

Chapter 3.5.3.1 below for details of the inhibitor used. 

 

 

Inhibitors of Mitochondrial Respiration  

 

Oligomycin  

 

Oligomycin is an antibiotic which acts by binding and inactivating the Fo subunit of ATP 

synthase so that it blocks the proton channel thus inhibiting oxidative phosphorylation. 

Experimentally, oligomycin has no effect on state 4 respiration or electron transport, but 

it completely prevents state 3 respiration. Refer to Figure 3.5 below. Oligomycin was 

added to the chamber to a final concentration of 1ug/ml.  

 

3.5.3.2 Succinate 

 

In another experiment using the same mitochondrial preparation, succinate was used as 

the substrate, and the activity of the oxidative phosphorylation chain from complex II 

was then determined. ADP was added to measure state 3 respiration, as above, and 

then state 4 respiration was measured when all the ADP had been utilised. Oligomycin 

(8µl) was then added, to measure oxygen consumption in the presence of an oxidative 

phosphorylation inhibitor (see Chapter 3.5.3.1 above). GDP (10mM) was added to 

measure the involvement of the uncoupling proteins (UCP) (see Chapter 3.5.3.2 below 

for details of the inhibitor used). 
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Figure 3.5:   Electron Transport System. NAD donates electrons to NADH 

dehydrogenase (Complex I) which transfers these ele ctrons to Uniquinone (U) & 

simultaneously pumps protons out of the mitochondri al matrix into the inner 

membrane space. U then donates these electrons to C ytochrome b-c1  (Complex 

III). After affecting the pumping of a proton acros s the membrane, the electron 

leaves III & enters the mobile carrier protein, cyt ochrome c (C). Cytochrome 

oxidase (coplex IV) uses 4 electrons, 4 hydrogens &  an oxygen molecule to 

release 2 water molecules into the matrix & pump 4 protons into the inner 

membrane. ATP synthase (Complex V) accepts one prot on from the 

intermembrane space & releases a different proton i nto the matrix space to create 

the energy it needs to synthesize ATP. Complex II ( Succinate dehydrogenase) is 

not a proton pump. It serves to funnel additional e lectrons by removing electrons 

from succinate and transferring them to U.  Adapted  from images from 

www.google.com ) 
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Inhibitors of Mitochondrial Respiration  

 

GDP 

 

GDP inhibits the uncoupling proteins (UCP’s), which uncouple oxidative phosphorylation 

from ATP generation. An uncoupling protein is a mitochondrial inner membrane protein 

that can dissipate the proton gradient before it can be used to provide the energy for 

oxidative phosphorylation [Nedergaard 2005] There are five types known in mammals: 

UCP1, also known as thermogenin, UCP2, UCP3, SLC25A27, also known as UCP4 

and SLC25A14, also known as UCP5. Uncoupling proteins play a role in normal 

physiology, as in hibernation, because the energy is used to generate heat instead of 

producing ATP. By inhibiting the UCPs we aimed to see if there is a change in state 4 

respiration. If there is, the greater the decrease in state 4 respiration, the more involved 

the UCPs are, with the percentage change being proportional to the involvement of 

these UCPs 

 

 3.5.3.3 Anoxia / reoxygenation 

 

In yet another experiment on the same mitochondrial suspension, after state 4 

respiration was reached, the mitochondria were given an excess of ADP (100nM) and 

then the oxygen was limited by shutting off the air flow from the chamber. After 20 

minutes of anoxia, the air supply was reintroduced by gently bubbling air through a 

squeeze pipette into the suspension.  

We measured the respiration rates during basal mitochondrial respiration, state 3 and 

state 4 for both succinate and glutamate substrates. We calculated the basal respiratory 

control index (RCI) (state 3 respiration divided by state 4), and ADP/O ratios as well as 

the percentage recovery of state 3 after anoxia/ reoxygenation.  
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3.6 WESTERN BLOT ANALYSIS  

 

3.6.1 Preparation of lysates (protein extraction)  

 

Hearts which had been freeze clamped after 2 minutes of perfusion to wash out the 

blood, hearts freeze clamped at the end of ischaemia, after 10 minutes and 30 minutes 

of reperfusion (end of experiment), were used for lysates (see Figure 3.6).  

 

 Approximately 0.2g of frozen ventricular tissue was pulverised in a liquid nitrogen pre-

cooled mortar and pestle. Pulverised tissue was then added to tubes each containing 

900µl of lysis buffer for extraction (20mM Tris-HCL (pH7.4), 1mM EGTA, 25mM NaCl, 

1mM Na3VO2, 10mM NaF, 1% (vol/vol) Triton X-100, leupeptin (10ug/ml), aprotonin 

(10ug/ml), 1mM benzamidine, 1mM phenylmethyl-sulphonyl fluoride (PMSF, added 

immediately before use). The same lysis buffer was used for all lysates and proteins.  

 

The tissue and lysis buffer was then homogenised mechanically with a Polytron PT10 

homogeniser for 2 cycles of 5 seconds each on setting 5 and spun down in a microfuge 

(15min @ 14000 rpm) to remove the particulate matter. Protein content of each sample 

was determined using the Bradford protein determination method.  Samples were 

diluted with a 3 times Laemmli sample buffer, boiled for 5 min and stored at -20° until 

Western blot analysis was performed within 2 weeks. 

  



82 
 

 

10 mins         20 mins       35 mins    10 mins   20 mins 

                                             reperfusion 

 

2 minutes washout/ baseline     end ischaemia       10min rep          end rep  

 

Figure 3.6:  Diagram to show the time points during the perfusi on experiments 

when hearts were freeze-clamped for preparation of lysates for Western Blot 

analysis.  

 

 

3.6.2 Protein content determination  

 

3.6.2.1 Bradford Protein Determination 

 

The method of Bradford (Bradford, 1976) was used to determine the protein content of 

samples known to have low concentration of protein. Bradford reagent composition: 

(0.01% (w/v) Coomassie Brilliant Blue G-250, 4.7% (v/v) ethanol, and 8.5% (v/v) 

phosphoric acid.  

 

Standard Curve 

 

Protein standards (bovine serum albumin, BSA in dH2O) containing 1 to 20 µg protein 

was pipetted into 12 x 100 mm test tubes. The volume in the test tube was adjusted to 

0.1 ml with Millipore H2O. 0.9 millilitres of Bradford reagent (described above) was 

added to the test tube and the contents mixed by vortexing. The absorbance was 

Langendorff      Work heart Regional Ischaemia Langendorff     Work heart 
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measured at 595 nm after 15 minutes and before 30 minutes had passed. This was 

done in 1ml cuvettes against a blank prepared from 0.1ml of Millipore H2O and 0.9 ml of 

Bradford reagent. The standard curve obtained in this manner was used to determine 

the protein content of the unknown samples. 

 

Protein assay 

 

The protein preparation was diluted 1 to 10 with dH2O in order to dilute all detergents 

present (e.g. Triton-X) that may interfere with the assay. A suitable aliquot of this 

dilution (e.g. 5 µl) was adjusted to 0.1ml with dH2O before the addition of 0.9ml Bradford 

reagent. The absorbance was measured in duplicate at 595 nM not less than 15 

minutes but not more than 30 minutes after the addition of the Bradford reagent. The 

amount of the protein was determined using the standard curve as described above.  

 

The standard curve generated with Bradford reagent saturates at 20 µg of protein/ 

sample. Samples were therefore always diluted to fall on the linear portion of the 

standard curve. 
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3.6.3 Protein Separation  

 

3.6.3.1 General  

 

After boiling each sample for 5min, equal amounts (20-100µg as indicated) of sample 

protein from the various fractions were separated on a SDS-polyacrylamide gel with a 

4% stacking gel using the standard Bio-Rad Mini-PROTEAN III system (Biorad, Life 

Science group, US).  

 

Electrophoretically separated proteins were transferred to a PVDF (polyvinylidene 

fluoride) membrane by electro-blotting.  After staining the membranes with Ponceau-S 

red (reversible staining) for visualisation and verification of transferral of the protein 

bands, membranes were scanned with laser scanning and saved as a record of equal 

loading.  Membranes were then washed with Tris-buffered Saline (TBS) containing 

0.1%Tween-20 (TBST). Non-specific binding sites on the membranes were blocked with 

5% fat-free milk powder in TBST for 2 hours at room temperature. 

 

Following the blocking procedure membranes were washed thoroughly with TBST and 

incubated with the appropriate primary antibody for 5-16 hours at 4°C.  After washing 

the membranes with TBST, the immobilised primary antibody was conjugated with a 

diluted (1:4000) horseradish peroxidase-labelled secondary antibody for 1 hour at room 

temperature.  The membranes were again washed thoroughly with TBST.  Bands were 

visualised with electro-chemiluminescence (ECLTM) detection agents used according to 

the manufacturers instructions and quickly exposed to high performance 

chemiluminescence film (Hyperfilm ECL) to detect the light emission. Bands were 

quantified by laser scanning densitometry and analysed with suitable software (UN-

SCAN-IT, Silkscience, US).  
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3.6.3.2 Creatine Transporter (CreaT) 

 

Western blotting was performed as stated above with minor adjustments for specificity. 

Fractions (50-100ug protein) were separated on a 12% SDS-polyacrylamide gel (4.4ml 

Millipore H2O, 2.5ml 2.5M Tris-HCl, pH 8.8, 100µl 10% SDS, 3ml Acrylamide, 50µl APS 

(0.1g/ml) and 20µl TEMED).  

 

Membranes were incubated with the creatine transporter (CT1, CRT, CRTR) primary 

antibody (US biological and Alpha Diagnostic International) (1:500 dilution in TBS 0.1% 

Tween) overnight at 4ºC. Membranes were exposed to ECL hyperfilm for an hour of 

exposure. 

 

3.6.3.3 Glucose transporter 4 (GLUT4)  

 

Western blotting was also performed as stated above with minor adjustments for 

specificity to quantify GLUT4.  Fractions (50µg protein) were separated on a 10% SDS-

polyacrylamide gel (4.9ml Millipore H2O, 2.5ml 1.5M Tris-HCl, pH 8.8, 100µl 10% SDS, 

2.5ml acrylamide, 50µl APS (0.1g/ml) and 20µl TEMED). 

 

Membranes were incubated with the GLUT4 (H-61): sc-7938 primary antibody (Santa 

Cruz Biotechnology, Inc) (1:1000 dilution in TBS 0.02% Tween) for 5 – 16 hours at 4°C. 

From this point onwards the membranes were washed with TBS 0.02% Tween instead 

of TBS 0.1%Tween.  
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3.6.3.4 Protein kinase B (PKB/Akt)  

 

Western blotting was performed as stated above with minor adjustments for specificity.  

Fractions (20µg protein) were separated on a 12% SDS-polyacrylamide gel. 

Membranes were incubated with the total-Akt or the phospho-Akt (Serine 473) primary 

antibody (Cell Signaling TechnologyTM) for 5 – 16 hours at 4°C. 

 

3.6.3.5 ERK p42/44 

 

Western blotting was performed as stated above with minor adjustments for specificity.  

Fractions (20µg protein) were separated on a 12% SDS-polyacrylamide gel membranes 

were incubated with the total-ERK p42/44 MAP Kinase or the phospho-ERK p42/44 

MAP Kinase (Threonine 202 / Tyrosine 204) primary antibody (Cell Signaling 

TechnologyTM) for 5 – 16 hours at 4°C. 

 

3.6.3.6 P38 MAPK 

 

Western blotting was performed as stated above with minor adjustments for specificity.  

Fractions (20µg protein) were separated on a 12% SDS-polyacrylamide gel membranes 

were incubated with the total-p38 MAP Kinase or the phospho-p38 MAP Kinase 

(Threonine 180 / Tyrosine 182) primary antibody (Cell Signaling TechnologyTM) for 5 – 

16 hours at 4°C. 
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3.6.3.7 AMP-activated protein kinase (AMPK)  

 

Western blotting was performed as stated above with minor adjustments for specificity. 

Protein fractions (30µg protein) were separated on a 10% SDS-polyacrylamide gel. 

Membranes were incubated with the total or phospho-AMPK (Thr172) primary antibody 

(Cell Signaling TechnologyTM) (1:1000 dilution in TBS 0.1% Tween, 5% BSA and 5% 

blocking agent) for 5 – 16 hours at 4°C.  5% blocking agent was also added to the 

secondary, horse-radish peroxidase conjugated antibody. 

 

 

 

3.7 STATISTICAL ANALYSES  

 

In all instances, significance of observed effects was determined using Microsoft 

GraphPad Prism. The one way analysis of variance (ANOVA) with Bonferroni 

corrections for multiple comparisons or the paired Students t-test were used for 

comparisons between 2 groups, and the one or two way ANOVA, as indicated, for 

comparison of 4 groups. All values are expressed as mean ± standard error of the mean 

(SEM). A p-value smaller than 0.05 was considered significant. 
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3.8  MATERIALS  
 
 
 

Materials purchased from Sigma Aldrich (Johannesberg, South Africa) 

HEPES hemisodium salt technical grade minimum 99.5% titration, pyruvate, 

mercaptoethanol, N,N,N’,N’-tetramethylethylenediamine (TEMED), ponceau S, 

phenylmethylsulphonyl fluoride (PMSF), Na-p-nitrophenylphosphate (p-NPP), triton-X-

100, benzamidine. 

 

Materials purchased from Fluka (Sigma Aldrich, St Louis, United States) 

Acrylamide.  

 

Materials purchased from Merck NT laboratory supplies (Pty). LTD [Darmstadt, 

Germany] 

Sodium dodecyl sulphate (SDS), ammonium peroxodisulphate (APS), 

tris(hydroxylmethyl) aminomethane, all other laboratory salts.  

 

Materials purchased from Millipore, UK .(Microsep Pty (ltd) Johannesberg, SA) 

Millipore immobilon-p polyvinylidene fluoride (PVDF) microporous membrane.  

 

Materials purchased from AEC-Amersham Biosciences, UK Ltd (Johannesburg, SA) 

ECL Western blotting detection reagents, anti-rabbit Ig, horseradish peroxidase linked 

whole secondary antibody.  

 

Materials purchased from Santa Cruz Biotechnology Inc. (Heidelberg, Germany) 

GLUT4 (H-61): sc-7938 rabbit polyclonal antibody.  
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Materials purchased from Cell Signaling technology (Laboratory Specialist Services 

(PTY) Ltd , Cape Town, SA) 

Total and phospho-PKB/Akt (Ser473) antibody, total AMPK and phospho-AMPK-α 

(Thr172) antibodies.  
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CHAPTER 4 

 

RESULTS 

 

4.1 ANIMALS  

 

4.1.1 Body weights  

 

Because it is known that creatine supplementation increases body weight in humans, 

and exercise also has effects on body weight, decreasing fat content and increasing 

muscle mass we followed the body weights of the animals in the study closely. The rats 

were weighed at the beginning of the project after they had been randomly divided into 

groups, before either swim training or creatine supplementation began.  

 

Animals were weighed again after the 8 week program of swimming and creatine 

supplementation, before sacrifice.  The control, vehicle supplemented, sedentary group 

will be referred to as C Sed, the creatine supplemented sedentary group as Cr Sed, the 

control, vehicle supplemented, exercised group as C Ex and the creatine supplemented 

exercised group as Cr Ex.  

 

4.1.1.1 Body weight of rats at the end of the 8 wee k protocol 

 

C Sed rats and Cr Sed rats had similar body weights at the end of the training and 

supplementation protocol (396 ± 6.0 grams (g) vs. 390.6 ± 6.0 g). There were no 

significant differences in weight between these groups or the C Ex (380.7 ± 5.3 g) and 

Cr Ex rats (379.3 ± 6.2 g).  See Figure 4.1. 

 



91 
 

C Sed Cr Sed C Ex Cr Ex
0

50
100
150
200
250
300
350
400
450

B
od

y 
w

ei
gh

t 
(g

ra
m

s)

C Sed Cr Sed C Ex Cr Ex
0

25

50

75

100

125

150

175

W
ei

gh
t 

ga
in

 (
gr

am
s)

 

 

 

 

 

 

 

 

 

 

Figure 4.1  Body weights of Control Sedentary (C Sed), Creatin e Sedentary (Cr 

Sed), Control Exercised (C Ex) and Creatine Exercis ed (Cr Ex) rats after 8 weeks 

of creatine supplementation and/or swim training. n =30 per group. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.2:  Average body weight gain of rats after 8 weeks of creatine 

supplementation and/ or swim training. n = 20 per g roup.  
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4.1.1.2 Weight gain 

 

The weight gain, the difference in weight between rats at the beginning and at the end 

of the swimming and/ or creatine supplementation program, was not different between 

groups. [C Sed (140.1 ± 12.7 g), Cr Sed (134.6 ± 14.9 g), C Ex (123.2 ± 15.4 g) and Cr 

Ex (112.5 ± 5.35 g)]. See Figure 4.2.  

 

4.1.1.3 Heart weight / body weight ratio 
 

 
 
The ratio of heart weight to body weight is a measure of hypertrophy of the heart 

[Dadgar et al 1979]. Exercise is known to induce either eccentric or concentric cardiac 

hypertrophy [Mihl et al 2008] depending on the type of exercise (see figure 4.3). 

Hypertrophy has been implicated in heart failure [Hilfiker-Kleiner 2006], and although 

exercise induced hypertrophy is more often physiological than pathological in nature 

(eccentric hypertrophy – see Figure 4.3), recent evidence [Rawlins et al 2009, Hart 

2003] indicates that there is a fine line between these two forms of hypertrophy and a 

possible overlap between the two exists.  For this reason we weighed the hearts at the 

end of the perfusion protocol, after ensuring that all excess fluid had been removed, and 

calculated the heart weight to body weight ratios. These ratios showed no significant 

differences between C Sed (0.003 ± 0.0001), Cr Sed (0.003 ± 0.0001), C Ex (0.003 ± 

0.0001) and Cr Ex groups (0.003 ± 0.0008). See Figure 4.4. 

 

 

 

                 

   Normal     Eccentric Hypertrophy   Concentric Hype rtrophy 

Figure 4.3 : Illustration of eccentric and concentric hypertro phy.  



93 
 

C Sed Cr Sed C Ex Cr Ex
0.000

0.001

0.002

0.003

0.004

H
ea

rt
 w

ei
gh

t: 
B

od
y 

W
ei

gh
t

 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 4.4:  Heart weight: body weight ratio of rats from the 4  experimental groups 

after 8 weeks of creatine supplementation and/ or s wim training. n = 20 per group.  
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4.1.2 Behavioural studies  
 
 

Swimming has been used in animal studies not only as a model for exercise to induce 

cardio-protection [Zhang et al 2007] but also as a model for stress in neurological 

studies [Salman et al 2000, Hall et al 2001]. Although stress studies utilize acute swim 

training to induce this stress, we used chronic swim training in our study. We performed 

behavioural studies to determine whether chronic swim training as used in this study 

induced stress in our animals. 

 

Consequently behavioural tests were performed on the rats to determine whether the 

training protocol elicited a stress response. Parameters measured included time in the 

inner and outer zones, frequency of crossing into the inner and outer zones, and 

distance covered using the open field test as described in Chapter 3.1.3. 

 

To analyze exploratory and locomotor activities, animals were placed in the left rear 

quadrant of an open field. The number of line crossings and the total distance covered 

by the rat were measured over 5 minutes. These are classical measures of locomotor 

and exploratory activities. The more time the rat spends in the inner zone of the open 

field, and the more exploratory the rat is, the less stressed it is perceived to be. 

 

4.1.2.1 Distance covered 

 

There were no differences in the average distance covered between the 4 groups. C 

Sed rats moved an average of 1657±144.6cm in 5 minutes compared to Cr Sed rats 

(1780 ± 119.4cm), C Ex (1810 ± 141.4cm) and Cr Ex (1894 ± 132.8cm) rats.  See 

Figure 4.5.  
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Figure 4.5:  Average distance covered by each of the four groups  of rats in the 

open field. n=10 per group. 
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 4.1.2.2 Frequency of movement between inner and out er zones  

 

No differences were found in the frequency of movement from the inner zone into the 

outer zone and vice versa. Values are given as number of crossings from the inner to 

the outer zone during a 5 minute period, or from the outer to the inner zone during a 5 

minute period. 

 

C Sed rats moved from the inner into the outer zone 9.5 ± 1.3 times, Cr Sed rats 

crossed 9.7 ± 1.3 times, C Ex rats crossed 13.5 ± 2 times and Cr Ex rats crossed 10.67 

± 2.2 times during the 5 minutes.  See Figure 4.6. 

  

C Sed rats moved from the outer to the inner zone 8.7 ± 1.3 times, Cr Sed rats crossed 

9.1 ± 1.4 times, C Ex rats crossed 12.4 ± 1.9 times and Cr Ex rats crossed 9.9 ± 2.0 

times during the 5 minutes.   See Figure 4.7.  

 

4.1.2.3 Time spent in inner and outer zones 

 

As with frequency of movement and distance traveled, there were no significant 

differences found in the time spent in the two zones between groups. C Sed rats spent 

27.44 ± 3.5 sec in the inner zone and 272 ± 3.4 sec in the outer zone.  Cr Sed rats 

spent 26.58 ± 2.6 sec in the inner and 273.4 ± 2.6 seconds in the outer zone. C Ex and 

Cr Ex rats spent 42.0 ± 9.0 sec versus 257.8 ± 9.1 sec and 26.6 ± 8.1 sec versus 266.6 

± 10 sec in the inner and outer zones respectively.  See Figures 4.8 and 4.9.  
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Figure 4.6:  Frequency of movement into the outer zone by rats from each 

experimental group. n = 10 per group 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 4.7:  Frequency of movement into the inner zone by rats from each 

experimental group. n = 10 per group 
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Figure 4.8:  Time spent by the rats from each experimental grou p in the inner zone 

of the open field. n = 10 per group 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9:  Time spent by the rats from each experimental grou p in the outer zone 

of the open field. n = 10 per group 
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4.1.3 Corticosterone levels  

 

Stress increases the levels of circulating corticosterone in the rat (the equivalent of 

cortisone in humans).  Elevated levels of this hormone are indicative of stress in these 

animals.   

The serum corticosterone levels were measured in each rat, to determine whether the 

swim training or creatine supplementation had any effects on stress levels in the 

animals. C Sed (133.3 ± 37.1 ng/ml), Cr Sed (192.4 ± 49.5 ng/ml), C Ex (130.4 ± 30.1 

ng/ml) and Cr Ex (137.8 ± 22.7 ng/ml) rats had similar stress hormone levels.  See 

Figure 4.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10:  Serum corticosterone levels of experimental and co ntrol groups. n = 

10 per group 
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Summary of key findings 

 

These data suggest that neither creatine supplementation nor exercise training had any 

effect on body weight of the rats. Similarly training and creatine supplementation did not 

alter heart weight to body weight ratios which suggests that cardiac hypertrophy did not 

occur.  

 

Behavioural studies and blood corticosterone levels in these animals suggest that 

neither the swim training nor creatine supplementation elicited a stress response in 

these rats.  
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4.2 HEART FUNCTION 

 

The effects of creatine supplementation on skeletal muscle have been extensively 

researched and its effects described (see Chapter 2). However, the effect of creatine 

supplementation on heart muscle function and metabolism is under-investigated and 

poorly understood. We used the isolated perfused rat heart model to determine cardiac 

function and susceptibility to ischaemia and reperfusion injury after creatine 

supplementation of sedentary animals and animals performing an exercise regime.  

 

Hearts were excised, placed on the Langendorff perfusion apparatus and perfused 

retrogradely for 10 minutes. They were then perfused in working heart mode for 20 

minutes. At the end of this stabilization period, the Aortic Output (AO), Coronary flow 

(CF), cardiac output (CO = CF + AO), aortic systolic pressure (aortic SP), aortic diastolic 

pressure (aortic DP), and heart rate (HR) were all measured in work mode. Left 

ventricular developed pressure (LVDevP = SP-DP) and Rate Pressure Product (RPP = 

LVDevP x HR) were all documented in Langendorff mode.  

 

4.2.1 Baseline function of hearts  

 

As indicated in Table 1, none of the baseline functional parameters differed between the 

four experimental groups investigated. 
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Table 4.1:    Table showing all baseline functional data for c ontrol and creatine 

supplemented, sedentary or exercised groups. (n=15)  

 

  

Work Heart  

 

Langendorff 

  

AO 

(ml/min)  

 

CF 

(ml/min) 

 

CO 

(ml/min) 

 

aorticDP  

(mmHg) 

 

aorticSP  

(mmHg) 

 

HR 

(bpm) 

 

LVDevP 

(mmHg) 

 

RPP 

 

 

Control 

Sedentary  

 

40.27 

± 2.13 

 

17.2 

± 1.05 

 

57.47 

± 2.7 

 

33.92 

± 2.64 

 

65.69 

± 3.45 

 

263 

± 15.58 

 

43.4   

± 5.19 

 

12305 

± 1311 

 

Creatine 

Sedentary  

 

44.00 

± 1.97 

 

17.33 

± 0.58 

 

61.33 

± 2.04 

 

35.17 

± 2.23 

 

69.42 

± 2.56 

 

280 

±10.69 

 

48.2 

± 10.82 

 

14064 

± 3012 

 

Control 

Exercised  

 

36.46 

± 3.50 

 

21.54 

± 1.93 

 

58.00 

± 4.40 

 

39.83 

± 1.47 

 

75.33 

± 1.95 

 

270 

±12.12 

 

46.3 

± 6.01 

 

13587 

± 1736 

 

Creatine 

Exercised  

 

39.86 

± 1.76 

 

17.21 

± 0.93 

 

57.07 

± 2.1 

 

38.83 

± 1.13 

 

75.67 

± 1.73 

 

273 

± 9.24 

 

49.3 

± 8.23 

 

14767 

± 2759 
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4.2.2  Ischaemia/ reperfusion  

 

The hearts were subjected to total global ischaemia, as described in Chapter 3, for 20 

min and reperfused for 30 min. The function of the heart was measured before 

ischaemia (See Table 1), and after 30 minutes of reperfusion.   

 

4.2.2.1 Functional recovery after global ischaemia 

 

The reperfusion aortic output was measured and expressed as a percentage of the pre-

ischaemic value. This was calculated with the following formula: post-ischaemic aortic 

output/ pre-ischaemic aortic output multiplied by one hundred. CO recovery, and cardiac 

work recovery (CW= CO x SP) was also calculated.  

 

When Aortic output recovery was analysed with a 2 way ANOVA, exercise was seen to 

show a significant decrease in recovery (F = 20.76, p < 0.001). Creatine also had a 

significant adverse effect (F = 4.84, p = 0.03). C Sed rats aortic output recovery was 

55.5 ± 4.5% in comparison with the hearts from Cr Sed rats which had significantly 

reduced AO recoveries of 33.5 ± 4.5% (p<0.01). C Ex rats had AO recoveries of 26.1 ± 

5.9% which was significantly decreased from that of C Sed (p<0.05). Creatine and 

exercise proved an unfavorable combination as their AO recovery was 18.2 ± 6.2% 

which was significantly lower than hearts from C Sed rats (p<0.001). See Figure 4.11.  

 

In Langendorff mode with the balloon inserted into the left ventricle RPP recovery was 

calculated, as a percentage of post ischaemic RPP divided by pre ischaemic RPP. 

Systolic pressure (SP) recovery was also calculated. 
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RPP recovery showed significance with a one way ANOVA (F=3.36, p=0.03). C Sed 

rats  RPP recovery was 88.1± 7.3 %, in Cr Sed rats it was 72.9 ± 7.9%, and in C Ex rats 

58.4 ± 10.7. Cr Ex rat hearts had RPP recoveries that were significantly decreased 

below C Sed to 49.7 ± 11.1% (p < 0.05). See Figure 4.12. This was also seen in CO 

recoveries, with the Cr Ex hearts (39.9 ± 4.3%) recovering worse than the C Sed hearts 

(58.9 ± 4.1%) (p < 0.05), but Cr Sed (47.1 ± 4.6 %) and C Ex (49.4 ± 5.2%) being no 

different from C Sed recoveries 

 

 

Table 4.2 : Table showing recoveries of SP, CO and CW from all groups of rats.  

n = 12   * = p<0.05 vs C Sed. 

 

 SP recoveries 

(%) 

LVDevP 

recoveries (%) 

CO recovery 

(%) 

CW recovery 

(%) 

Control 

Sedentary 

 

66.8 ± 10.7 

 

92.5 ± 8.5 

 

58.9 ± 4.1 

 

41.3 ± 7.7 

Creatine 

Sedentary 

 

69.8 ± 9.7 

 

90.1 ± 9.3 

 

47.1 ± 4.6 

 

34.9 ± 5.7 

Control 

Exercised 

 

73.5 ± 6.9 

 

70.8 ± 11.6 

 

49.4 ± 5.2 

 

40.0 ± 4.6 

Creatine 

Exercised 

 

77.9  ± 2.8 

 

65.3 ± 12.1 

 

39.9 ± 4.3  * 

 

33.25 ± 4.5 
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Figure 4.11:  Aortic output recovery of hearts from different gr oups perfused in 

the working heart mode. Differences shown are 2 way  ANOVA Bonferroni post 

hoc differences.   n = 15 per group.  * p < 0.01,  ** p < 0.05, #  p < 0.001. 

 

 

 

 

 

 

 

 

 

Figure 4.12:  Rate pressure product (RPP) recoveries in Langendo rff mode. 

Differences shown are one way ANOVA Bonferroni post  hoc differences.    n = 15 

per group.  * p < 0.05. 
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4.2.2.2 Ischaemic contracture during global ischaem ia 

 

In another set of experiments a balloon was inserted into the left ventricle through the 

left atrium and the heart was retrogradely perfused (Langendorff mode). This balloon 

was connected to a pressure transducer, and the left ventricular pressure during 

normoxia and ischaemia measured. 

 

Hearts from the Cr Ex group showed significantly higher peak ischaemic contracture 

development (31.6 ± 4.7 mmHg) compared to the C Sed group(10.4 ± 4.2 mmHg) (p< 

0.05). Cr Sed (22 ± 6.7 mmHg) and C Ex hearts (23.8 ± 5.8 mmHg) did not differ 

significantly from C Sed hearts. See Figure 4.13. 

 

The time taken from the onset of ischaemia, for the pressure in the left ventricle to start 

rising, was measured and referred to as the time to onset of ischaemic contracture. 

 

There was no difference in the time to onset of contracture with C Sed (17.9 ± 0.9 min), 

Cr Sed (17.7 ± 0.8 min), C Ex (17.1 ± 0.8 min) and Cr Ex (15.6 ± 0.7 min) taking the 

same time to go into contracture.  See Figure 4.14.  
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Figure 4.13 : Peak pressure development during ischaemic contra cture in hearts 

from C Sed, Cr Sed, C Ex and Cr Ex groups. Differen ces shown are one way 

ANOVA Bonferroni post hoc differences.     * p < 0. 05  n = 8 per group.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 : Time to onset of ischaemic contracture (TOIC) in hearts from C Sed, 

Cr Sed, C Ex and Cr Ex groups. n = 8 per group. 
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     TOIC 

 

Figure 4.15 : Graph depicting the development of ischaemic cont racture in 

isolated balloon- perfused hearts [Lopez et al 2007 ]. Time to onset of ischaemic 

contracture (TOIC) is the time taken from the start  of ischaemia until a rise in 

pressure of 4mmHg.   A = time to peak pressure, C =  Peak developed pressure.  
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4.2.2.3 Damage after regional ischaemia 

 

Infarct size 

 

After a 30 minutes equilibration perfusion, the left anterior descending coronary artery 

was ligated to induce 30 minutes of regional ischaemia. The area was then reperfused 

by untying the ligation. After 30 minutes reperfusion the ligation was tied again and the 

heart stained for infarct size determination as described in Chapter 3.2.3. The infarct 

size was expressed as percentage of the area at risk which did not differ between 

groups and was 40 ± 10%.  

 

C Sed hearts had an infarct size of 25.1 ± 3.5% which was no different to the infarcts in 

Cr Sed animals (29.9 ± 3.0%), C Ex animals (26.3 ± 4.8%) or Cr Ex animals (30.8 ± 

4.3%). See Figure 4.16.  

 

 

 

 

 

 

 

 

 

 

Figure 4.16:  Infarct size as percentage of the area at risk (AA R) in C Sed, Cr Sed, 

C Ex and Cr Ex rats. n = 15 per group. 
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Summary of key findings 

 

Our infarct size and reperfusion function data suggest that dietary creatine 

supplementation did not protect hearts against ischaemia/reperfusion injury. Neither 

functional recovery nor infarct size was improved by creatine supplementationin in our 

rat model. Creatine supplementation appeared to be detrimental to the ischaemic heart 

as hearts from both control and exercised animals had poorer functional recoveries after 

ischaemia and more severe ischaemic contracture than their controls. 
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4.3 HIGH ENERGY PHOSPHATES 

 

Blood and heart tissue were analyzed to determine whether the high energy phosphates 

(AMP, ADP, ATP, CrP) and creatine levels were altered by exercise training or creatine 

supplementation.   

 

Hearts were freeze clamped after 2 minutes of perfusion to wash out the blood, and 

blood collected from the thoracic cavity and separated by centrifugation into red blood 

cells and plasma. Tissue and blood samples were then extracted as described in 

Chapter 3.4 and analyzed by reverse phase HPLC.  

 

4.3.1 Blood  

 

4.3.1.1 Red blood cells 

 

To elucidate what the distribution of HEPs were within the blood, red blood cells (RBCs) 

and plasma were separated and then analysed.  

 

RBC ATP content 

 

The ATP concentration in the red blood cells of Cr Sed group (781.1 ± 58.82 nmol/gram 

wet weight (gww)) was higher than C Sed rats (320.3 ± 76.9 nmol/gww, p<0.05). The 

ATP concentration in the red blood cells of the C Ex (405.1 ± 64.7 nmol/gww) and Cr Ex 

group (446.0 ± 51.8 nmol/gww) were 25 and 40% higher respectively than C Sed levels. 

However they were both significantly lower than the Cr Sed group (p<0.01). See Figure 

4.17.  

 



112 
 

C Sed Cr Sed C Ex Cr Ex
0

100
200
300
400
500
600
700
800
900

# *
**

A
T

P
(n

m
ol

/g
w

w
)

RBC creatine content 

 

As with the ATP concentration, the creatine content of the red blood cells increased in 

the Cr Sed group vs C Sed (74.9 ± 3.1 vs 94.1 ± 5.5 nmol/gww, p<0.05) but no increase 

was seen between the C Ex or Cr Ex groups (55.7 ± 3.6 vs 53.9 ± 2.84nmol/gww). 

However these values were significantly less than the Cr Sed group (p<0.01). See 

Figure 4.18.  

 

RBC phosphocreatine content 

   

No differences were seen between the phosphocreatine concentrations in the red blood 

cells in the 4 groups. C Sed levels were 39.8 ± 20.4 nmol/gww compared to Cr Sed 

levels of 44.9 ± 16.9 nmol/gww, C Ex levels of 37.3 ± 9.6 nmol/gww and Cr Ex levels of 

36.7 ± 4.5 nmol/gww.  See Figure 4.19.  

 

 

  

 

 

 

 

 

 

 

Figure 4.17:  ATP concentration  in the red blood cells (RBCs) from C Sed, Cr Sed, 

C Ex and Cr Ex rats. Differences shown are one way ANOVA with Bonferroni post 

hoc test. n = 10 per group. * p < 0.05; ** p < 0.01 , # p < 0.001 
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Figure 4.18:  Creatine concentration  in the red blood cells (RBC’s) in blood from 

the experimental groups of rats. Differences shown are one way ANOVA with 

Bonferroni post hoc test.  n = 10 per group.  * p <  0.05; ** p < 0.001 

 

 

 

 

 

 

 

 

 

 

Figure 4.19:  Phosphocreatine concentration  in the red blood cells (RBCs) from C 

Sed, Cr Sed, C Ex and Cr Ex rats. n = 10 per group.  * p < 0.05; ** p < 0.001  
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4.3.1.2 Blood plasma 

 

Plasma creatine content 

 

No differences were found in the levels of creatine in the blood plasma in the respective 

groups. Plasma creatine levels in C Sed (93.74 ± 11.05 nmol/gww), Cr Sed (92.93 ± 

13.41 nmol/gww), C Ex (58.63 ± 9.28 nmol/gww) and Cr Ex (79.17 ± 9.05 nmol/gww) 

groups were not significantly different from each other. See Figure 4.20.  

 

Plasma phosphocreatine content 

 

Phosphocreatine levels in the blood plasma of C Sed rats were 8.2 ± 4.4 nmol/gww. 

These were significantly lower than phosphocreatine levels in Cr Sed rats, which were 

49.5 ± 15.4 nmol/gww.  However phosphocreatine levels were no different between C 

Ex (28.1 ± 5.1 nmol/gww), Cr Ex (36.2 ± 8.5 nmol/gww) and C Sed rats. See Figure 

4.21.  
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Figure 4.20:  Creatine  concentration in the blood plasma from C Sed, Cr Se d, C Ex 

and Cr Ex rats. n = 10 per group 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21:  Phosphocreatine concentration  in the blood plasma from C Sed, Cr 

Sed, C Ex and Cr Ex rats. . Differences shown are o ne way ANOVA with 

Bonferroni post hoc test.   p = 0.03. n = 10, per g roup. * p < 0.05 
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4.3.2 Heart tissue  

 

The ATP, phosphocreatine, creatine and total creatine content of the heart tissue did 

not differ between any of the groups investigated.  (ATP concentrations were: C Sed 

4308 ± 205.5 nmol/gww; Cr Sed 4928 ± 103.7 nmol/gww; C Ex 4541 ± 257.9 nmol/gww; 

Cr Ex 4628 ± 140.5 nmol/gww) (Creatine concentrations were: C Sed 1477 ± 130.7 

nmol/gww; Cr Sed 1554 ± 37.6 nmol/gww; C Ex 1513 ± 193.3 nmol/gww; Cr Ex 1510 ± 

90.4 nmol/gww) (Phosphocreatine concentrations were: C Sed 4531 ± 342.8 nmol/gww; 

Cr Sed 5343 ± 159.9 nmol/gww; C Ex 4971 ± 380.4 nmol/gww;  Cr Ex 4906 ± 217.2 

nmol/gww). (Total creatine: C Sed 6009± 405.6 nmol/gww, Cr Sed 6897 ± 138.4 

nmol/gww, C Ex 6485 ± 539.3 nmol/gww and Cr Ex 6318 ± 244.8 nmol/gww)  See 

Figures 4.22, 4.23 and 4.24. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22:  ATP concentration  in the heart tissue from C Sed, Cr Sed, C Ex and 

Cr Ex rats.  n = 5 per group. 
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Figure 4.23:  Creatine concentration  in the heart tissue from C Sed, Cr Sed, C Ex 

and Cr Ex rats. n = 5 per group. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24:  Phosphocreatine concentration  in the heart tissue from C Sed, Cr 

Sed, C Ex and Cr Ex rats. n = 5 per group.  
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4.3.3 HEP ratios in heart tissue  

 

The high energy phosphate ratios, particularly the PCr/ATP ratio, indicate how much 

energy reserve the heart has, and is an indication of the efficiency of the heart to 

replenish energy stores.  Decreases in PCr/ATP ratios are often an indication of heart 

failure [Neubauer et al 1995].  

 

4.3.3.1 PCr/ATP 

 

The PCr/ATP ratios for all groups were similar to each other, with the ratios being 1.054 

±0.07 for C Sed hearts, 1.085 ± 0.03 for Cr Sed hearts, 1.094 ± 0.05 for C Ex hearts 

and 1.037 ± 0.03 for Cr Ex hearts. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25:  PCr/ATP ratios in the heart tissue from C Sed, Cr Sed, C Ex and Cr Ex 

rats.   n = 5 per group.  
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4.3.3.2 ATP/AMP  

 

The ATP/AMP ratios showed no significant differences between groups. C Sed (14.1 ± 

1.1), Cr Sed (16.9 ± 1.5), C Ex (14.0 ± 2.7) and Cr Ex (15.9 ± 4.8) all showed similar 

ratios. See Figure 4.26. 

 

4.3.3.3 ATP/ADP   

 

Similarly, ATP/ADP ratios were no different between groups, C Sed (3.7±0.26) Cr Sed 

(4.4±0.22) C Ex (4.3±0.15) and Cr Ex (4.1±0.16) hearts ATP/ADP ratios showed no 

differences. See Figure 4.27.  

 

4.3.3.3 PCr/Cr  

 

The PCr/Cr ratios were similar for the C Sed (3.1 ± 0.3), Cr Sed (3.5 ± 0.2), C Ex (3.4 ± 

0.3) and Cr Ex (3.2 ± 0.2) hearts. They were all within the same range of values.  See 

Figure 4.28. 

 

 4.3.3.4 PCr/TCr 

 

The PCr/TCr ratios were no different between groups, C Sed (0.75 ±0.02), Cr Sed (0.77 

± 0.01), C Ex (0.77 ± 0.02) and Cr Ex (0.76 ± 0.01). See Figure 4.29. 

 

Thus there were no differences in the HEP ratios between any of the groups 

investigated. 
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Figure 4.26:  ATP/AMP ratios in the heart tissue from C Sed, Cr Sed, C Ex and Cr 

Ex rats.   n = 5 per group.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27:  ATP/ADP ratios in the heart tissue from C Sed, Cr Sed, C Ex and Cr 

Ex rats. n = 5 per group.  
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Figure 4.28:  PCr/Cr ratios in the heart tissue from C Sed, Cr S ed, C Ex and Cr Ex 

rats. n = 5 per group.  

 

 

 

 

 

 

 

 

 

 

Figure 4.29:  PCr/TCr ratios in the heart tissue from C Sed, Cr Sed, C Ex and Cr Ex 

rats. n = 5 per group.  
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Summary of key findings 

 

Creatine supplementation elevated ATP and creatine levels in the RBCs of sedentary 

animals but not exercised animals. Creatine supplementation also resulted in high 

plasma PCr levels. An effect that was also lost with exercise. 

In heart tissue neither creatine supplementation nor exercise significantly affected the 

myocardial levels of HEP or their ratios to one another. 
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4.4 MITOCHONDRIAL FUNCTION  

 

Mitochondria are the energy centre of the cell. We therefore tested their basal function 

and function after being given different substrates or after being exposed to anoxia.  

 

Mitochondria were isolated from hearts from the different groups of animals, and 

suspended in incubation buffer. Their baseline respiration was measured, as well as 

their respiration when given glutamate as a substrate. They were subsequently given 

ADP and their state 3 and 4 respiration measured.  

 

Different aliquots from the same mitochondrial sample were subjected to anoxia and re-

oxygenation and their function was subsequently measured. In addition, other aliquots 

were given succinate, GDP and oligomycin and their state 3 and 4 respirations 

monitored. This was to determine the effect of these inhibitory compounds on 

respiration rate and the efficiency of complex I and II of the mitochondrial respiratory 

chain as well as possible leaking of hydrogen back into the mitochondria as described in 

Chapter 3.5.2. 
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Figure 4.30:  Representation of an oxygen consumption curve. A: state 1 

respiration, mitochondrial basal respiration, B: st ate 2 respiration, in the 

presence of substrate. C: state 3 respiration, and D: state 4 respiration. E: state 3 

in the presence of excess ADP (100nM) to induce ano xia (F).  

   A         B   

C   

D  

E 
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4.4.1 Respiration states   

 

Once a substrate (i.e. glutamate or succinate) and ADP is added to the mitochondrial 

suspension, oxygen is used by these mitochondria to produce ATP, and state 3 

respiration is defined as ADP-stimulated respiration of a given substrate. State 4 

respiration is oxygen consumption in the absence of ADP or any metabolic poisons or 

inhibitors [Caprette 2005]. 

 

4.4.1.1 State 1 respiration  

 

The basal amount of oxygen consumed by the mitochondria (state 1) showed no 

significant differences between the groups studied. C Sed rat heart mitochondria had a 

basal oxygen consumption of 9.3 ± 2.3 natoms O2/mg protein/min while Cr Sed 

mitochondria used 9.3 ± 2.2 natoms O2/mg protein/min. C Ex (10.2 ± 2.4 natoms O2/mg 

protein/min) and Cr Ex (8.9 ± 1.6 natoms O2/mg protein/min) were no different from 

control values. See figure 4.31.  

 

 

 

 

 

 

 

 

 

Figure 4.31:  Baseline oxygen consumption of mitochondria isolat ed from C Sed, 

Cr Sed, C Ex and Cr Ex rats. n = 10 per group. 
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4.4.1.2 State 2 respiration 

 

State 2 respiration is the respiration of the mitochondria when a substrate (either 

carbohydrate or fatty acid, in this case glutamate or succinate) is added. 

 

Glutamate as substrate 

 

C Sed rat heart mitochondrial oxygen consumption during state 2 respiration with 

glutamate was 5.1 ± 1.4 natoms/mg/min, Cr Sed oxygen consumption was 5.0 ± 1.6 

natoms O2/mg protein/min, while C Ex oxygen consumption was 6.1 ± 1.2 natoms 

O2/mg protein/min and Cr Ex oxygen consumption was 5.7 ± 1.8 natoms O2/mg 

protein/min. See Table 4.3. 

 

Succinate as substrate 

 

C Sed heart mitochondrial oxygen consumption during state 2 respiration with succinate 

was 81.7 ± 6.6 natoms O2/mg protein/min, Cr Sed mitochondrial oxygen consumption 

was 67.3 ± 4.0 natoms O2/mg protein/min, while C Ex mitochondrial oxygen 

consumption was 81.9 ± 8.4 natoms O2/mg protein/min and Cr Ex mitochondrial oxygen 

consumption was 78.9 ± 5.0 natoms O2/mg protein/min. See Table 4.3. 

 

4.4.1.3 State 3 respiration 

 

State 3 respiration is ADP-stimulated respiration and is the actively respiring state of the 

mitochondria, with the use of oxygen and substrate (in our study, glutamate or 

succinate), and the concurrent production on ATP. 
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Glutamate as substrate 

 

The state 3 respiration rates were as indicated below in Table 4.3, with no significant 

differences were seen between any of the groups. Mitochondrial oxygen consumptions 

were as follows: C Sed: 73.3 ± 5.4 natoms O2/mg protein/min, Cr Sed: 77.5 ± 4.8 

natoms O2/mg protein/min, C Ex: 91.6 ± 5.4 natoms O2/mg protein/min and Cr Ex: 78.9 

± 4.3 natoms O2/mg protein/min.  

 

Succinate as substrate 

 

State 3 respiration rates were as indicated in Table 4.3 and no significant differences 

were seen between any of the groups: C Sed: 104.7 ± 9.0 natoms O2/mg protein/min, 

Cr Sed: 87.1 ± 7.2 natoms O2/mg protein/min, C Ex: 111.9 ± 8.4 natoms O2/mg 

protein/min and Cr Ex: 106.6 ± 7.9 natoms O2/mg protein/min.  

 

4.4.1.4 State 4 respiration 

 

State 4 is reached when ADP is depleted and no more ATP can be produced, so that a 

state of uncoupled respiration ensues. The oxygen that is used is uncoupled from ATP 

production.  

 

Glutamate as substrate 

 

State 4 respiration was also similar for all groups investigated. Mitochondrial oxygen 

consumption was as follows: C Sed: 8.7 ± 1.0 natoms O2/mg protein/min, Cr Sed:  9.8 ± 
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0.8 natoms O2/mg protein/min, C Ex 10.6 ± 1.4 natoms O2/mg protein/min and Cr Ex: 

8.5 ± 1.4 natoms O2/mg protein/min.  

 

Succinate as substrate 

 

The state 4 respirations of succinate stimulated mitochondria were not measured.  
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Table 4.3 Table to show the oxygen consumption rate (nmolO 2/mg protein/min) 

with glutamate and succinate in State 2, 3 and 4 in  the 4 experimental groups. 

 

 State 1   State 2  State 3  State 4 

Control Sedentary   

9.3 ± 2.3 

Glutamate 

Succinate 

5.1± 1.4 

81.8 ± 6.6 

73.3 ± 5.4 

104.7 ± 9.0 

8.7± 1.0 

Creatine Sedentary   

9.3 ± 2.2 

Glutamate 

Succinate 

5.0 ± 1.6 

67.3 ± 4.0  

77.5 ± 4.8 

87.1 ± 7.2 

9.8 ± 0.8 

Control Exercise   

10.2 ± 2.4 

Glutamate 

Succinate 

6.1 ± 1.2 

81.9 ± 8.4 

91.6 ± 5.4 

111.9 ± 8.4 

10.6 ± 1.4 

Creatine Exercise  

8.9 ± 1.6 

Glutamate 

Succinate 

5.7 ± 1.8 

78.9 ± 5.0 

78.9 ± 4.3 

106.6 ± 7.9 

8.5 ± 1.4 
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4.4.2 Respiratory control index (RCI)  

 

The Respiratory control index (RCI) is a measure of mitochondrial respiration rate and 

efficiency of oxygen usage, and is a ratio of the state 3 respiration rate over the state 4 

respiration rate. Glutamate was added to the mitochondria and this was followed by 

350uM of ADP. The state 3 and state 4 respiration rates were measured and then RCI 

calculated. 

 

C Sed mitochondrial RCI of 8.49 ±0.6 was not increased by creatine supplementation 

(8.8 ± 0.9). Exercise increased the RCI (C Ex: 11.7 ± 1.7), but the combination of 

exercise and creatine had no effect (9.5 ± 0.7). See Figure 4.32.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.32:  Respiratory control index (RCI = state 3 / state 4  respiration) of 

mitochondria during glutamate respiration. n = 10 p er group. * p<0.05 (unpaired 

Students t-test) 
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4.4.2.5 Inhibitors of respiration 

 

Oligomycin 

 

Oligomycin inactivates ATP synthase so that it blocks the proton channel thus inhibiting 

oxidative phosphorylation. Experimentally, oligomycin has no effect on state 4 

respiration or electron transport, but it completely prevents state 3 respiration. Thus by 

adding oligomycin basal proton leak can be measured, as any oxygen used is a result 

of protons entering the mitochondria independently of complex IV.  

C Sed mitochondria had a 5.4 ± 23.2 % decrease in respiration, while Cr Sed had an 

increase in respiration of 5.6 ± 15.2 %. C Ex had a 9.3 ± 12.9% increase in respiration 

whereas Cr Ex had a 0.3 ± 5.8% decrease. Neither of these changes was significantly 

different from each other. See Figure 4.33. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.33:  Percentage change in state 4 respiration with the addition of 

oligomycin in glutamate fueled mitochondria as a me asure of basal proton leak.  

n=10.  
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GDP 

 

GDP inhibits the uncoupling proteins (UCP’s)\. By inhibiting the UCPs we aimed to 

establish whether there is a change in state 3 respiration. If there is, the greater the 

decrease in state 3 respiration, the more involved the UCPs are, with the percentage 

change being proportional to the degree of involvement of these UCPs.  

 

C Sed mitochondria had a 10.3 ± 1.8 % decrease in respiration, while Cr Sed had a 

decrease in respiration of 15.5 ± 1.7 %. C Ex had a 14.9 ± 1.5% decrease in respiration 

whereas Cr Ex had a 16.6 ± 1.8% decrease. These changes are however not 

significantly different. See Figure 4.34. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.34:  Percentage decrease in state 3 respiration in resp onse to oligomycin 

inhibited respiration with addition of GDP in succi nate fueled mitochondria as a 

measure of UCP involvement.  n=10.  



133 
 

C Sed Cr Sed C Ex Cr Ex
2.0

2.5

3.0

3.5

4.0

A
D

P
 / 

O
 r

at
io

 g
lu

ta
m

at
e

4.4.3 ADP/O ratio  

 

This ratio illustrates the relationship between ATP synthesis and oxygen consumption.  

 

Glutamate as substrate 

 

ADP/O ratios were as follows: C Sed:  2.89 ± 0.09, Cr Sed: 2.85 ± 0.12, C Ex: 2.77 ± 

0.18 and Cr Ex: 3.03 ± 0.11. These respiration rates were no different from each other. 

See Figure 4.35.  

 

 

 

 

 

 

 

 

 

 

Figure 4.35:  ADP/ O ratio of mitochondria from the 4 experiment al groups during 

glutamate oxidation. n = 10 per group.  

 

Succinate as substrate 

 

The ADP/ O ratios for succinate were not determined. 
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4.4.4 Recovery after anoxia / reoxygenation  

 

Mitochondria were given 100mM ADP and allowed to use up all the oxygen in the 

chamber. They were then sealed and left anoxic for 20 minutes. The mitochondria were 

subsequently reoxygenated by bubbling air through the chamber with a squeeze 

pipette. 

 

 After being subjected to anoxia and reoxygenation, mitochondria from C Sed rats 

recovered 20.95 ± 4.97 % of their initial state 3 respiration as compared to Cr Sed 

mitochondria which recovered 30.98 ± 8.7 %. C Ex mitochondria recovered 20 ± 3.9 % 

and Cr Ex mitochondria 24.81 ± 6.6 %.   There were no significant differences in post-

anoxic oxygen consumption.  See Figure 4.36.  

 

 

 

 

 

 

 

 

  

 

 

Figure 4.36:   Percentage recovery of mitochondrial state 3 resp iration after anoxia 

and re-oxygenation. n = 10 per group.   
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Summary of key findings 

The RCI of mitochondria from exercised animals was significantly elevated when  

compared to control sedentary animals. This increase in RCI was however lost with   

creatine supplementation. 
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4.5 SIGNALLING PATHWAYS IN THE HEART  

 

(i) To obtain myocardial tissue samples for baseline (pre-ischaemic) protein expression 

and activation determinations, heart were perfused for two minutes after excision from 

the animal and freeze clamped for later Western blot analysis 

(ii) Separate hearts were subjected to 20 minutes of global ischaemia, and freeze 

clamped without reperfusion. 

(iii) A third series of hearts were perfused, subjected to 20 minutes of global ischaemia 

and after 10 minutes of retrograde reperfusion, hearts were freeze clamped and the 

protein levels measured.  

(iv) In a last series of experiments, hearts were perfused for half an hour, made globally 

ischaemic for 20 minutes and then reperfused for 30 minutes, and freeze-clamped at 

the end of 30 minutes of reperfusion.  

See Chapter 3.6 for more details.  

 

4.5.1 Myocardial creatine transporter  

 

Creatine is taken up into the cell through the creatine transporter (CreaT). To determine 

whether the CreaT expression was upregulated with creatine supplementation and/or 

exercise, Western Blot analysis was carried out on samples from hearts perfused for 2 

minutes before being freeze-clamped in precooled Wollenberger tongs, for baseline 

values. No significant up- or down- regulation was found with creatine supplementation 

or with exercise at baseline. In C Sed hearts CreaT levels were 91475 ± 2760 total 

pixels, while Cr Sed levels were 94351 ± 14590 total pixels. C Ex levels (119298 ± 6912 

total pixels) and Cr Ex levels (96409 ± 7714 total pixels) were not significantly different. 

See Figure 4.37.  
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Figure 4.37:  A: Representative Western blot to show the levels of CreaT 

expression in hearts from C Sed, Cr Sed, C Ex and C r Ex rats. 

 

 

 

 

 

 

 

 

 

 

 

B 

 

Figure 4.37:  B: Graph to show the levels of creatine transporte r in the heart tissue 

of rats C Sed, Cr Sed, C Ex and Cr Ex groups. n = 9  

 

 

-55 kDa 
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4.5.2  Myocardial GLUT4  

 

Glucose Transporter 4 (GLUT4) is the insulin stimulated glucose transporter, and can 

be up-regulated with exercise. Baseline GLUT4 was measured. GLUT4 in Cr Sed 

hearts (39890 ± 10548 total pixels) was not significantly increased from C Sed hearts 

(17481 ± 3815 total pixels),  but expression was significantly higher in C Ex (80609 ± 

12213 total pixels) but not in Cr Ex hearts (46318 ± 11899 total pixels). See Figure 4.38. 

 

 

A   C Sed  Cr Sed             C Ex                  Cr Ex 

 

 

Figure 4.38:   A: Representative Western blot of GLUT4 expression from C Sed, Cr 

Sed, C Ex and Cr Ex rats.  

 

 

 

 

 

 

 

 

 

B 

Figure 4.38:   B:  Graph to show expression of GLUT4 in hearts n = 3, * = p < 0.05, # 

= p < 0.01.  

- 46kDa 
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4.5.3 Myocardial AMPK  

 

AMP-activated protein kinase is phosphorylated and activated during both exercise and 

stress e.g. ischaemia [Kudo et al 1995] and has a key role in many biological processes 

which include lipid and glucose metabolism, muscle contraction and energy 

homeostasis. To ascertain the total levels of the protein and whether it was 

phosphorylated in hearts from exercised and/or creatine supplemented rats, Western 

Blot analysis was performed on heart tissue.   

 

 4.5.3.1 Total AMPK expression 

 

End of 20 minutes global ischaemia 

 

In the heart, AMPK activity increases during ischaemia and functions to sustain ATP, 

cardiac function and myocardial viability. AMPK has a fundamental role in glucose 

metabolism and fatty acid oxidation and therefore increased levels during ischaemia 

can decrease ischaemic damage [Russel RR 3rd 2004].  

 

Total AMPK values did not differ between the experimental groups. C Sed (178809 ± 

3461 total pixels), Cr Sed (149505 ± 16464 total pixels), C Ex (125099 ± 28648 total 

pixels) and Cr Ex (145364 ± 15931 total pixels) total AMPK levels were all similar (n=3).  

See Figure 4.39. 
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10 minutes reperfusion 

 

All total AMPK values for 10 minutes reperfusion were similar with C Sed (20440 ± 2394 

total pixels), Cr Sed (23451 ± 1651 total pixels), C Ex  (19344 ± 978.5  total pixels) and  

Cr Ex   (18892  ± 478.9 total pixels) not being significantly different from each other. 

See Figure 4.39. 

 

End of 30 minutes reperfusion 

 

End of reperfusion levels of total APMK were also similar in all the experimental groups. 

They were: C Sed (217943 ± 7848 total pixels), Cr Sed (191743 ± 12241 total pixels), C 

Ex (197891 ± 8229 total pixels) and Cr Ex (231106 ± 18124 total pixels) and were all 

statistically similar. See Figure 4.39. 
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Figure 4.39 :  Representative Western blot and graphs of total APMK at A: the end 

of 20 minutes global ischaemia, B: 10 minutes reper fusion and C: at the end of 30 

minutes reperfusion in all 4 experimental groups. n =3-6.  
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4.5.3.2 Phosphorylated AMPK 

 

Baseline 

 

AMPK phosphorylation was significantly higher in Cr Sed (56649 ± 8928 total pixels), C 

Ex (67242 ± 4346 total pixels) and Cr Ex (39054 ± 7268 total pixels) hearts compared to 

the values for C Sed (20466 ±4571 total pixels) (p < 0.05). See figure 4.40.  

 

End of 20 minutes global ischaemia  

 

There were no differences in AMPK phosphorylation at the end of ischaemia when 

comparing C Sed (39054 ± 7068 total pixels), Cr Sed (27177 ± 10508 total pixels), C Ex 

(16876 ± 744.9   total pixels) and Cr Ex (21926 ± 677.7 total pixels) hearts.  See Figure 

4.40 

 

10 minutes reperfusion  

 

Phosphorylated AMPK levels in C Sed hearts were 5982 ± 695 total pixels, Cr Sed 

levels were 6677 ± 237 total pixels and C Ex 7325 ± 941 total pixels.  Phosphorylated 

AMPK levels in Cr Ex hearts (18399 ± 2130 total pixels) were significantly higher than 

all other groups (p < 0.05).  See Figure 4.40    

 

End of 30 minutes reperfusion 

 

There were no differences in the levels of phosphorylated AMPK between groups at the 

end of reperfusion. C Sed hearts (35698 ± 10862   total pixels), Cr Sed hearts (79255 ± 

15155    total pixels), C Ex hearts  (25812 ± 384 total pixels) and Cr Ex hearts (45655 ± 

12511 total pixels) all had similar levels of AMPK phosphorylation.  See Figure 4.40. 
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Figure 4.40:  Representative Western blot and graphs of AMPK pho sphorylation in 

the experimental groups during A: baseline, B: end of 20 mins global ischaemia, 

C: 10 mins reperfusion and D: end of 30 minutes rep erfusion time points.  n = 3-5, 

* = p<0.05,  
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4.5.4 Myocardial PKB  

           

Phosphokinase B (PKB/ Akt) is involved in glucose metabolism, and it is also a pro-

survival kinase with key functions in cell survival. It is also seen to be phosphorylated 

with exercise leading to increased insulin sensitivity [Jessen 2002]. However basal PKB/ 

Akt phosphorylation has been seen to be decreased  with creatine supplementation 

[Deldicque 2008]. For these reasons we determined the total and phosphorylated 

PKB/Akt levels under baseline conditions.  

 

4.5.4.1 Total PKB/ Akt expression 

 

Baseline 

 

In C Sed hearts total PKB/ Akt (57734 ± 9287 total pixels) was no different than Cr Sed 

(68358 ± 8976 total pixels), C Ex (62994 ± 7116 total pixels) or Cr Ex (49717 ± 5470 

total pixels) hearts. See figure 4.41.  

 

End of 20 minutes global ischaemia 

 

Total PKB/Akt in C Sed hearts after 20 minutes of global ischaemia was 58212 ± 3614 

total pixels. Cr Sed hearts were no different with 55543 ± 8482 total pixels of total 

PKB/Akt.  C Ex hearts had total PKB/Akt of 45070 ± 14158 total pixels and Cr Ex hearts 

had 42985 ± 11241 total pixels. See Figure 4.41. 
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10 minutes reperfusion 

 

Total PKB/ Akt expression was similar in all of the experimental groups at 10 minutes of 

reperfusion. (C Sed: 60766 ± 2348 total pixels; Cr Sed 62441 ± 1058 total pixels;  C Ex 

64060 ± 1742 total pixels and Cr Ex  68786 ± 1440 total pixels). See Figure 4.41. 

 

End of 30 minutes reperfusion 

 

PKB/ Akt levels for C Sed hearts were 20407 ± 2425 total pixels and did not differ from 

levels in Cr Sed hearts (15448 ± 159 total pixels). C Ex hearts (15321 ± 176 total pixels) 

and Cr Ex (18503 ± 2857 total pixels) total PKB/ Akt were also no different. See Figure 

4. 41. 
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Figure 4.41 : Representative blots and graphs of total PKB/Akt in the experimental 

groups during A: baseline, B: end of 20 mins global  ischaemia, C: 10 mins 

reperfusion and D: end of 30 mins reperfusion time points.  n = 3-5 
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4.5.4.2 Phosphorylated PKB/ Akt 

 

The activation of prosurvival kinases, such as PKB/Akt and ERK42/44 (which are 

termed the reperfusion injury salvage kinase [RISK] pathway kinases), at the time of 

reperfusion, has been demonstrated to confer powerful cardioprotection against 

myocardial ischaemia-reperfusion injury [Zhu et al 2006]. However other data has also 

shown that this is not always the case, as Schwartz and Lagranha [2006] have shown 

that activation of PKB/Akt is not accompanied by concurrent cardioprotection.  

 

Baseline 

 

PKB/Akt phosphorylation in C Sed hearts was 49609 ± 25665 total pixels in comparison 

with phosphorylated PKB/Akt in Cr Sed hearts (167900 ± 16220 total pixels). PKB/Akt 

was phosphorylated significantly more in C Ex hearts (266527 ± 19982 total pixels) and 

Cr Ex hearts (234546 ± 31600 total pixels)than C Sed hearts (p<0.01).   See Figure 

4.42. 

 

End of 20 minutes global ischaemia 

 

End of ischaemia values for phosphorylated PKB/ Akt were low, with C Sed (3223 ± 98 

total pixels), Cr Sed (3200 ± 82 total pixels), C Ex (3911 ± 336 total pixels) and Cr Ex 

(3225 ± 803 total pixels) being no different from each other. See Figure 4.42.     
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10 Minutes reperfusion 

 

After 10 minutes of reperfusion the phosphorylated PKB/Akt levels increased. 

Phosphorylation in C Sed hearts increased to 18320 ± 3530 total pixels, Cr Sed to 

21880 ± 1761 total pixels and C Ex to 42041 ± 11997 total pixels, all statistically similar. 

However PKB/Akt phosphorylation in Cr Ex hearts (58274 ± 5444 total pixels) was 

significantly higher than both C Sed and Cr Sed hearts (p < 0.05). See Figure 4.42.     

 

End of 30 minutes reperfusion 

 

By the end of 30 minutes reperfusion the differences seen at 10 minutes reperfusion 

were gone. C Sed (17561 ± 3005 total pixels), Cr Sed (20858 ± 1022 total pixels), C Ex 

(20345 ± 1820 total pixels) and Cr Ex (27602 ± 3127 total pixels) levels were all 

decreased and no different from each other. See Figure 4.42. 
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Figure 4.42 : Representative Western blots 

phosphorylation pattern in the experimental groups during 

20 mins global ischaemia, 

reperfusion time points.  n = 3
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4.5.5  Myocardial ERK 42/44  

 

ERK42 and ERK44 can be phosphorylated and thus activated by extracellular stresses 

thus activating cellular survival pathways leading to cell survival [Bogoyevitch 2000].  

Therefore we determined the phosphorylation of these survival kinases in the hearts 

from the four experimental groups.  

 

4.5.5.1 Total ERK 42/44 expression 

 

End of 20 minutes global ischaemia 

 

There were no significant differences between total ERK 42 values. Values were C Sed: 

34420 ± 1678, Cr Sed: 30107 ± 618, C Ex: 20810 ± 3507 and Cr Sed: 19743 ± 5195.  

The total ERK 44 content of C Sed hearts was 69192 ± 3523 total pixels. Cr Sed (62953 

± 1318 total pixels) and C Ex (46083 ± 5887 total pixels) hearts did not differ from C 

Sed hearts, but Cr Ex hearts ERK 44 was significantly lower (40264 ± 8254 total pixels) 

than C Sed heart levels. See Figure 4.43 

 

 10 minutes reperfusion 

 

At 10 minutes reperfusion the total ERK42/44 did not differ between groups, with levels 

of C Sed (ERK42: 7659 ± 1495, ERK44: 40056 ± 6535 total pixels), Cr Sed, (ERK42: 

10264 ± 100, ERK44: 32603 ± 1234 total pixels), C Ex (ERK42: 11045 ± 1259, ERK44: 

33571 ± 1271 total pixels) and Cr Ex (ERK42: 14994 ± 1888, ERK44: 41337 ± 4095 

total pixels) hearts being similar. See Figure 4.43 
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End of 30 minutes reperfusion 

 

Similarly, total ERK 42/44 levels at the end of reperfusion did not differ between the 

groups. C Sed (ERK42: 35818 ± 1068, ERK44: 20114 ± 5468 total pixels), Cr Sed 

(ERK42 39292 ± 548, ERK44: 37249 ± 2595 total pixels), C Ex (ERK42: 39264 ± 1578, 

ERK44: 37361 ± 287 total pixels) and Cr Ex (ERK42: 43829 ± 905, ERK44: 35902 ± 

1769 total pixels) values were all similar. See Figure 4.43.  
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Figure 4.43 : Representative 

experimental groups at A: 

reperfusion and C: end of 30 mins
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4.5.5.2 Phosphorylated ERK 42/44 

 

Baseline 

 

There were no differences in ERK 44 phosphorylation between C Sed (5393 ± 2049 

total pixels), Cr Sed (5603 ± 551 total pixels), C Ex (6629 ± 530 total pixels) or Cr Ex 

(6184 ± 597 total pixels) hearts. Neither were there any differences in ERK 42 

phosphorylation in these hearts at baseline [C Sed: 30986 ± 8329, Cr Sed: 29305 ± 

2779, C Ex: 31161 ± 3141 and Cr Ex: 29179 ± 1367]. See Figure 4.44.  

 

End of 20 minutes global ischaemia 

 

ERK phosphorylation was no different between the 2 isoforms nor the experimental 

groups during ischaemia, with C Sed (ERK44: 18504 ± 5602, ERK42: 23854 ± 3850 

total pixels), Cr Sed (ERK44: 24700 ± 3215, ERK42: 29765 ± 4742 total pixels), C Ex 

(ERK44: 23891 ± 4775, ERK42: 26008 ± 6228 total pixels) and Cr Ex (ERK44: 22337 ± 

3874, ERK42: 19307 ± 4911 total pixels) values being similar. See figure 4.44. 

 

10 Minutes reperfusion 

 

At 10 minutes of reperfusion there were also no differences in the phosphorylation 

pattern of ERK42/44 in any of the groups. C Sed ERK 42 was 35394 ± 2672 total pixels, 

Cr Sed was 36222 ± 4850 total pixel, C Ex was 33498 ± 8285 total pixels and Cr Ex 

was 39694 ± 8699 total pixels, while C Sed ERK 44 was 44506 ± 6499 total pixels, Cr 

Sed was 31712 ± 3470 total pixels, C Ex was 37304 ± 10586 total pixels and Cr Ex was 

36831 ± 8804 total pixels. See Figure 4.44. 
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End of 30 minutes reperfusion 

 

As with the rest of the time points, C Sed (ERK44: 9450 ± 1096, ERK42: 21236 ± 6060 

total pixels), Cr Sed (ERK44: 9641 ± 2518, ERK42: 12505 ± 3187 total pixels), C Ex 

(ERK44:7628 ± 550, ERK42: 22765 ± 4796 total pixels) and Cr Ex (ERK44: 13016 ± 

1621, ERK42: 35606 ± 9671 total pixels) phosphorylated ERK 42/44 was no different in 

any of the groups. See Figure 4.44.    
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4.5.6 P38 MAPK 

 

P38 MAPK is strongly activated by environmental stresses and inflammatory cytokines 

and is therefore also known as stress-activated protein kinase. [Sugden and Clark 

1998]. Increased p38 MAPK activation has been implicated in ischaemia and 

reperfusion injury. For this reason we determined its levels of expression and 

phosphorylation in the experimental hearts [Clark et al 2007]. 

 

4.5.6.1 Total p38 MAPK expression 

 

Baseline 

 

Total p38 MAPK expression was 97066 ± 8934 total pixels in C Sed hearts, 94687 

±7313 total pixels in Cr Sed hearts, 79599 ± 7762 total pixels in C Ex hearts, and 98893 

±1943 total pixels in Cr Ex hearts. These values were all comparable. See Figure 4.45. 

 

End of 20 minutes global ischaemia 

 

Total p38 MAPK levels in exercised hearts (C Ex: 46415 ± 4658 total pixels) were 

significantly increased compared to C Sed hearts (30715 ± 2409 total pixels).  However 

both Cr Sed (38402 ± 1433 total pixels) and Cr Ex (38779 ± 2402 total pixels) heart total 

p38 MAPK levels were not significantly different from either C Sed or C Ex values. See 

Figure 4.45.  
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10 Minutes reperfusion 

 

There were no differences in the levels of total p38 MAPK, between any of thel groups 

(C Sed 48874 ± 3637 total pixels;  Cr Sed 47445 ± 3337 total pixels; C Ex 40437 ± 5039 

total pixels and  Cr Ex 39972 ± 1986 total pixels). See Figure 4.45.    

 

End of 30 minutes reperfusion 

 

The levels of total p38 MAPK expression in hearts were similar in all groups at the end 

of 30 minutes reperfusion. These levels were C Sed (66638 ± 2796 total pixels), Cr Sed 

(62632 ± 3096 total pixels), C Ex (71182 ± 3169 total pixels) and Cr Ex (69827 ± 1079 

total pixels). See Figure 4.45.    
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Figure 4.45 : Representative 

experimental groups at A: baseline, B: 

mins reperfusion and D: end 
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4.5.6.2 Phosphorylated p38 MAPK 

 

Baseline 

 

Phosphorylated p38 MAPK levels in hearts were similar in C Sed (43937 ± 21099 total 

pixels), Cr Sed (39004 ± 8114 total pixels) and C Ex (41694 ± 9327 total pixels) groups 

while p38 MAPK phosphorylation levels in Cr Ex hearts (8544 ± 5529 total pixels) were 

significantly lower than in both Cr Sed and C Ex hearts (p<0.05, Students t-test). See 

figure 4.46.  

 

End of 20 minutes global ischaemia  

 

After 20 minutes of global ischaemia C Sed hearts (9039 ± 884 total pixels) had 

substantially less phosphorylated P38 MAPK than Cr Ex hearts (35712 ± 5314 total 

pixels, p<0.05).  C Sed (15978 ± 5642 total pixels) and C Ex (19222 ± 5789 total pixels) 

hearts levels of phosphorylated p38 MAPK were no different to those of C Sed hearts. 

See Figure 4.46.    

 

10 minutes reperfusion 

 

By 10 minutes reperfusion levels of phosphorylated P38 MAPK had equalized and no 

significant differences existed between groups. Levels in C Sed hearts were 75749 ± 

20862 total pixels, levels in Cr Sed hearts were 42755 ± 1590 total pixels, C Ex heart 

levels were 46758 ± 4909 total pixels and Cr Ex heart levels were 40979 ± 5755 total 

pixels. See Figure 4.46.    
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End of 30 minutes reperfusion 

 

As was the case after 10 minutes of reperfusion, by the end of reperfusion levels of 

phosphorylated p38 MAPK were not significantly different between groups, with levels 

being as follows: C Sed 29402 ± 19163 total pixels; Cr Sed 17926 ± 4924 total pixels; C 

Ex 40001± 6605 total pixels and Cr Ex 50523 ± 9262 total pixels. See Figure 4.46. 
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Figure 4.46 : Representative Western blots 

phosphorylation pattern in the experimental groups during

20 mins global ischaemia, 

reperfusion time points.  n = 3
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Summary of key findings  

 

CreaT was not upregulated by creatine supplementation.  

 

Either creatine supplementation or exercise alone increased basal phosphorylated 

AMPK, but the combination of these interventions had no effect on basal AMPK 

phosphorylation. During ischaemia phosphorylated AMPK in the Cr Ex group was 

increased compared  to the Cr Sed group and after 10 minutes of reperfusion the Cr Ex 

group had higher AMPK phosphorylation than any of the other groups.  

 

Exercise increased basal PKB/Akt phosphorylation, but only Cr Ex had elevated 

phosphorylated PKB/ Akt levels after 10 minutes of reperfusion.  

 

Total ERK 44 expression decreased in the Cr Ex group after 20 minutes of global 

ischaemia, and total ERK 42 expression increased in the Cr Ex group after 10 minutes 

of reperfusion. 

 

The combination of creatine supplementation and exercise decreased basal p38 

phosphorylation and increased its phosphorylation at the end of 20 minutes of global 

ischaemia.  
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CHAPTER 5 

 

DISCUSSION 

5.1 ANIMALS  

 

5.1.1 Body weights  

 

 5.1.1.1 Body weight gain 

 

According to Francaux and Poortmans [1999] total body water, including intracellular 

water is increased with creatine supplementation, which leads to increased body weight 

in users. Corroborating this, the study of Kutz and Gunter [2003] reported that a 4 week 

creatine supplementation and exercise regime increased total body weight and total 

body water in human subjects. Similarly Brilla et al [2003] showed supplementation with 

Mg-Cr increased total body water and intracellular body water after 2 weeks. Taes et al 

[2004], however, found no changes in body weights in sedentary patients during a 4 

week period of creatine supplementation. These findings are supported by Young and 

Young [2007] who also found that creatine supplementation for 5 weeks had no affect 

on body mass in rats where the gastrocnemius and plantaris skeletal muscles were 

ablated to induce muscle hypertrophy. It is possible that the increase in body weight 

with creatine supplementation is reliant on exercise and because of the sedentary 

nature of these studies this increase in body weight was not seen.   

 

No change in body weights or accelerated weight gain was evident in our animals with 

either exercise training or creatine supplementation. This is consistent with results 

documented by Diffee et al [2003] who failed to see increased body weight with 11 
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weeks of treadmill running in rats. McClung et al [2003] showed 3 weeks of swimming 

and creatine supplementation did not change body weights, and Silva et al [2007] found 

that 21 days of creatine supplementation and swimming in humans had no effect on 

body composition or body weight. Horn et al [1998] actually found that creatine 

supplementation of rats with a high dose of creatine (5 & 7% of body weights), for 40 

days resulted in a decrease in body weight. Supplementation with creatine equivalent to 

1% of body mass, which is similar to the dose we used, had no effect on body weight in 

their study. We propose that the exercise model we used did not elicit changes in body 

weight with creatine supplementation because it was not high resistance exercise, 

which would be expected to elicit an increase in body weight.  

 

 5.1.1.2 Heart weight: body weight ratio 

 

Heart weight to body weight (HW: BW) ratios were no different in any of our 

experimental groups. McClung et al [2003] also found that neither body weights nor 

HW: BW ratios were changed in either their exercise or creatine supplemented groups. 

Their exercise regime was 30 minutes of swimming per day, 5 days per week, for 3 

weeks, with a weight equivalent to 2% of the rat’s body weight attached to the tails and 

15.6mg (less than 0.1% of body weight) creatine fed to the rats via oral gavage half an 

hour before exercise. As was seen in our study the combination group of both 

interventions failed to affect HW: BW ratios. Similar results have been noted in humans, 

where creatine supplementation and exercise for a month did not change cardiac 

structure or function as measured echocardiographically [Murphy et al 2005]. However, 

Fenning et al [2003] showed increased HW: BW ratios after 6 and 12 weeks of treadmill 

exercise training (5 days per week, 30 mins per day).   
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Treadmill endurance exercise training (11 weeks, 5 days per week) has been shown to 

increase myosin heavy and light chain RNA expression in cardiac muscle, leading to an 

increase in protein synthesis and physiological hypertrophy [Diffee et al 2003]. McClung 

et al [2003] however found decreased total cardiac RNA, and decreased MHCα with 

endurance exercise (21 days of swimming) in the rat model. It was postulated that their 

training was not intense enough to elicit cardiac changes and hypertrophy. Although our 

training protocol was double the time course of theirs, it is possible that our swimming 

protocol was not intense enough to induce cardiac hypertrophy. Kaplan et al [1994] saw 

no change in MHCα in the heart after 4 weeks of a 3 hour swim training protocol for 5 

days a week.  McMullen et al [2003] increased this program to 7 days per week, and 

indeed saw exercise induced hypertrophy in hearts, with increased HW: BW ratios, but 

no change in MHCα levels. Therefore we propose that the changes in ischaemic 

tolerance that we saw in our study were unrelated to exercise induced cardiac 

hypertrophy, as the 1 hour swim for 5 days per week, over an 8 week time period in our 

study was not intense enough to induce heart weight changes in the hearts of our 

animals.  

However, these lack of changes in body and heart weights were not too disconcerting in 

this study, as we followed the protocol which is most similar to that of athletes, and we 

also did not differ too greatly from many studies described here, both in protocol and in 

results.   

 

5.1.2 Behaviour  

 

Contrary to the effects of increased corticosterone and depressive behaviour of acute 

forced swim stress on rats [Racca et al 2005, Armario et al 1995, Porsolt et al 1978], the 

long term swim training in our study elicited no stress response as reflected by either 

behaviour or corticosterone levels at rest in our rats.  
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The open field test is a measure of the amount of stressful behaviour displayed by the 

rats [Walsh and Cummins 1976]. Although we found no significant differences in 

behaviour between the groups, the control exercised group tended to move into the 

inner and outer zone and remain in the inner zone longer than control sedentary group. 

Although these differences were not significant, it may indicate that they may have been 

less stressed than the other groups.  

Contarteze et al [2008] have shown that only acute swimming elicits elevations in the 

stress hormones ACTH and corticosterone in rats, and Cox et al [1985] showed that 

training and familiarization with swimming decreases levels of corticosterone during 

swimming in rats. The forced swim test is used as a model of stress and depression in 

neurological studies [Armario et al 1995] where rats are subjected to a once off swim for 

15 minutes. It has been shown that during these tests, Wistar rats display more passive 

behaviour compared to other rat strains [Armario et al 1995]. In our model, rats were 

acclimatized to the swim training, starting with a swim duration of 5 minutes per day and 

increasing the duration incrementally daily. Acute exposure to swimming rather than 

trained or chronic swimming has been shown to increase stress hormone levels in rats 

[Avital et al 2001]. Therefore the effects that were elicited by ischaemia/reperfusion in 

our model can not be attributed to elevated levels of stress hormones because of the 

exercise regime. 

 

5.1.3 Choice of exercise program  

 

Body builders, triathlon competitors, sprinters and other athletes are all advised to train 

5 days per week and rest for 2 [http://www.thetriathloncoach.com/End-of-season-break-

do-athletes-need-it.php]. Exercise for 6 days per week with too little time for recovery is 

not associated with any improvement in training parameters (i.e. increased performance 
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and decreased recovery) [Lehmann et al 1991].  Decreased infarct size has been 

shown in rats exercised 5 days per week, by both swimming and treadmill running 

[Thorp et al 2007, Zhang et al 2007], but no beneficial effect was seen with a daily 

exercise program (every day of the week) over 20 weeks [Brown et al 2003], which may 

be due to the absence of a recovery time. For this reason, our swim and creatine 

supplementation protocol of 5 days per week was in our opinion sufficient, and 

representative of the training regimes used by most athletes. Although it has been 

shown to not necessarily bring about physiological cardiac hypertrophy, or “athlete’s 

heart”, this approach has previously been shown to induce cardioprotection [Brown et al 

2003, Reger et al 2006, Zhang et al 2007, Chicco et al 2007].  
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5.2 HEART FUNCTION 

 

5.2.1 Baseline Function  

 

No differences in baseline heart function (AO, HR, CF, aortic SP, and aortic DP) were 

found in our study with either creatine supplementation or exercise or a combination of 

the two interventions. Zhang [2007b] showed that resting heart rate and systolic blood 

pressures were not affected by exercise training in healthy individuals.  

 

Although it has been shown that exercise training decreases resting heart rate in young 

and old healthy subjects after 12 weeks of running [Carter et al 2003],   Rakpongsiri and 

Sawangkoon [2008] also recently showed that supplementation with creatine and an 

exercise regime did not alter resting heart rate. In a study done on obese individuals, 

exercise training decreased resting heart rate, and decreased systolic and diastolic 

blood pressures [King et al 2009]. In Type II diabetic patients, exercise training for a 

year lowered body weight along with insulin, HbA1c’s and cholesterol levels and 

increased HDL  but did not have an effect on systolic blood pressure or heart rate at 

rest [Loimaala et al 2007]. 

 

Murphy et al [2005] presented work which showed that creatine supplementation and 

exercise in humans had no detectable effects on cardiac structure or function as 

determined by echocardiography. Resting LVDP, heart rate and coronary flow were not 

influenced by creatine supplementation in rats [Horn et al 1998]. Our findings are 

consistent with both of these studies of no alterations in basal heart function. Lennon et 

al [2004] also found unchanged baseline cardiac function (HR, CF, RPP or cardiac 

work) in hearts from moderate and high intensity exercise trained rats. 
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5.2.2 Myocardial susceptibility to ischaemia/ reper fusion injury  

 

Global ischaemia is clinically similar to myocardial injury following cardiac arrest, and 

regional ischaemia with coronary artery ligation similar to that of coronary bypass 

surgery [Song et al 2009]. In order to obtain a clinically relevant answer to the question 

what is the effect of creatine supplementation and exercise on the heart, it was 

necessaru to investigate both these types of ischaemia and their effects on function and 

infarct size in these hearts. 

 

5.2.2.1 Effect of creatine and swim training on inf arct size  

 

Neither exercise training nor creatine supplementation had an effect on infarct size after 

regional ischaemia in our study. The AAR for all groups averaged 40% of the left 

ventricle. The functional recovery after CAL and 25 minutes of regional ischaemia was 

also no different between groups, although creatine supplemented in combination with 

exercise decreased AO recoveries below those of the control sedentary group.  

 

Reduction in infarct size with exercise was reported as far back as the 1970’s [McElroy 

et al 1978]. Infarct size was reduced in exercised rats after 48 hours in vivo coronary 

artery occlusion which may be partly related to increased myocardial vascularity which 

was observed in this study [McElroy et al 1978]. Melling et al [2009] found decreased infarct 

size in the heart after 24 hours of acute exercise (60mins treadmill running) with an increase in 

HSP70, possibly providing the protection. Brown et al [2003] showed decreased cardiac infarct 

sizes with treadmill run training in rats trained for an hour a day for 20 weeks. Exercise training 

also induced a reduction in infarct size in vivo in rats subjected to an 8 week swimming 

regime (3 hours per day, 5 days per week) [Zhang et al 2007]. 
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De Waard and Duncker [2009] however found that although exercise in mice using 

voluntary wheel running for 8 weeks reduced post-MI mortality and reduced LV 

dysfunction it did not reduce infarct size. In these studies the thickness and area of 

infarct worsened in the exercise trained group.  

 

Infarct size was reduced in the brain after 3 weeks of creatine supplementation in an 

induced stroke model in mice [Prass et al 2007]. This was independent of levels of Cr, 

PCr or ATP which were found to be unaltered in the brain tissue. The same group found 

that life-long creatine administration failed to protect adult mice against having a stroke, 

suggesting that adaptive mechanisms could compromise the beneficial roles of creatine. 

Data from Rawson et al [2007] implied that oral creatine supplementation does not 

reduce skeletal muscle damage or improve functional recovery after hypoxic resistance 

exercise. 

 

These data illustrate that information on CAL, infarct size and the effect of creatine 

supplementation and exercise on these parameters are contradictory, and while our 

data on infarct size is contrary to many previous observations [Prass et al 2007, Zhang 

et al 2007, McElroy et al 1978, Brown et al 2003], it corroborates others [de Waard and 

Duncker 2009, Rawson et al 2007]. It has been suggested in previous work that 30 

minutes of reperfusion is not substantial enough for calculation of infarct size [Birnbaum 

et al 1997]. However, previous work done in our laboratory has shown that 30 minutes 

reperfusion is sufficient to measure differences in infarct size, as no differences were 

seen between 30 minutes and 2 hours reperfusion time [Marais et al 2005, Fan et al 

2009]. 
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5.2.2.2 Post ischaemic cardiac function 

 

Effect of exercise on post ischaemic cardiac function 

 

Aortic output recoveries were decreased in our control (vehicle treated) and creatine 

supplemented exercised groups. 

Zhang et al [2007] found that LVSP improved in rats subjected to regional ischaemia in 

vivo, after 8 weeks of free loading swim training (3 hours per day, 5 days per week). 

Demirel et al [2001] found an improved myocardial LVDP and RPP recovery after 5 

days of treadmill exercise training for 20 minutes per day. This was associated with an 

increased HSP72 expression and antioxidant enzyme activity, showing beneficial 

effects of short term exercise.  Lennon et al [2004] found that moderate (55% VO2max) 

and high intensity treadmill training provided protection against 20 minutes of global 

ischaemia as reflected by enhanced recovery of CO and cardiac work, while RPP 

recovery, heart rate and coronary flow were no different from controls. 

 

Burelle et al [2004] also found that treadmill training for 10 weeks (4 days per week) 

protected isolated hearts against reperfusion injury when using CO as the end point, 

however they used both palmitate and glucose in the perfusion buffer, which may have 

affected the outcome. They found the hearts from exercise trained animals had higher 

glucose and palmitate oxidation rates before and after ischaemia and lower glycolysis 

rates at these times. 

 

Cardioprotection against ischaemia/reperfusion damage was seen in hearts from 

exercised rats in males but not females [Thorp et al 2007]. The female’s hearts 

displayed better recovery of LVDP than the male‘s hearts, but not better than their 
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control, post-ischaemic values. It was postulated that the female heart was possibly 

already maximally protected by estrogen and could therefore not be further protected by 

exercise training. Starnes et al [2005] found low intensity training (55-60% VO2max) did 

not improve cardiac recovery of heart work after 20 minutes global ischaemia and 

reperfusion. Brown et al [2003] found no LVDP or CF differences under baseline conditions, 

and although LVDP was greater immediately after ischaemia in trained hearts, LVDP had 

decreased to values comparable to those of control hearts by the end of reperfusion.  One 

study by Mancardi et al [2008] has shown that stressful forced exercise using treadmill 

training is detrimental to the ischaemic heart, increasing infarct size and decreasing 

LVDP recoveries in the heart.  

 

Many of the studies that have documented cardioprotection with exercise training have 

used different end points to assess reperfusion myocardial viability (e.g. CF, active 

tension, LVDP recovery, cardiac output and cardiac work recovery, infarct size)   [Le 

Page et al 2009, Zhang et al 2007, Reger et al 2006, Brown et al 2005], all of which 

were unchanged in our study. This is possibly because these groups looked at the 

effects of regional [Zhang et al 2007, Brown et al 2005] or low flow ischaemia [Le Page 

et al 2009, Reger et al 2006] on these parameters, while our study was performed using 

total global ischaemia. The exercise models used were also different, Zhang et al [2007] 

used swim training similar to our model and Brown et al [2005], Reger et al [2006] and 

Le Page et al [2009] used treadmill training. These differences in model could also lead 

to differences seen in our results.  

 

Bowles and Starnes [1994] and Lennon et al [2004] looked at cardiac output and 

cardiac work recovery and found that it was increased, however considering that 

cardiac output is a function of both aortic output and coronary flow, this increased CO 
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may have been due to an increase in CF without an increase in AO. These latter values 

were not shown. Our CF values remained unchanged, while both AO and CO 

recoveries were decreased.  Cardiac work, which is a function of cardiac output and 

systolic pressure, was also unchanged between groups in our study.  

 

Effect of creatine supplementation on post ischaemic cardiac function 

 

Aortic output, cardiac output and rate pressure product recoveries were decreased in 

the hearts of the creatine supplemented exercised group. Creatine supplementation 

alone also decreased AO recoveries in hearts from sedentary rats. Myocardial function 

(pressure and stroke work) was preserved by creatine infusion in a model of coronary 

artery bypass grafting. Creatine infusion for 10 minutes during CAL and 10 minutes of 

reperfusion increased myocardial cellular ATP levels during ischaemia and reperfusion 

in the treated animals [Woo et al 2005]. Creatine supplementation in cardioplegic 

solution during heart surgery also resulted in better post surgery left ventricular work 

[Thelin et al 1987].  

 

Interestingly, in 1992, Thorelius showed that creatine phosphate in a cardioplegic 

solution led to better stroke work after aortic valve surgery, even though no increases in 

myocardial ATP or PCr levels were observed. Creatine supplementation (1% body 

weight in powdered rat chow) for 21 days did not provide cardioprotection during global 

ischaemia (which was induced until ATP was completely depleted in the heart - ± 13 

minutes) in rats in a study by Osbakken et al [1992]. Here the Langendorff perfusion 

apparatus was used and  mechanical functional measured was HR multiplied by systolic 

pressure.  The time taken to restore function to normal after ischemia was similar in 

untreated and creatine supplemented hearts. This was similar to our study, in that an 
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extended period of creatine supplementation did not provide protection to the heart for 

mechanical functional recovery. 

 

No other studies have looked at AO recovery after 20 minutes global ischaemia. Neither 

have the effect of creatine supplementation alone or in combination with exercise been 

investigated. Our study is, to our knowledge the first to demonstrate decreased recovery 

of function after ischaemia with creatine supplementation.  

 

Pulido et al [1998] found that creatine pretreatment of muscular dystrophic (mdx) 

skeletal muscle cells improved the calcium handling of these cells in which the baseline 

calcium concentration is abnormally high. They proposed that creatine supplementation 

improved calcium handling due to improved function of either the sarcolemmal or SR 

Ca2+ATPase pumps. This data is refuted by their observations showing that creatine 

pretreatment of mdx myotubes did not affect the stress-induced increase in Ca2+ in the 

cell. These observations rule out the proposed role for altered cellular Ca2+ handling in 

creatine induced improved muscle function. 

 

In our study we found an increased peak ischaemic contracture in the creatine 

supplemented exercised group. We propose that the creatine supplementation, when 

used in combination with exercise, impairs the ability of the cardiomyocyte to manage 

the high calcium levels in the cell during ischaemia. This may be due to a creatine 

supplementation induced increase in intracellular sodium in the heart. The CreaT is part 

of the family of sodium: neurotransmitter symporters which derive energy from the co-

transport of Na+ and Cl-, in order to transport molecules into the cell against their 

concentration gradient [http://en.wikipedia.org/wiki, Nash et al 1994]. Thus with 

increased creatine uptake, there may be a concurrent increase in the Na+ concentration 
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in the cell. This increased intracellular Na + could compromise the ability of the 

cardiomyocyte to export Ca2+ via the Na+/ Ca2+ antiport system which may be crucial 

during ischaemia and early reperfusion. This elevated intracellular Na+ accompanying 

creatine uptake may contribute to calcium overload and hypercontracture.  

 

 

 

 

 

 

 

 

Figure 5.1 : Diagram to show ion channels and transporters in th e cell membrane 

and proposed mechanism for creatine induced exacerb ation of calcium overload, 

hyper-contracture and decreased post-ischaemic func tion. 
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5.3 HIGH ENERGY PHOSPHATES 

 

Blood was analysed for HEP concentrations to ensure that creatine was indeed being 

absorbed from the gut into the blood steam for transport to the muscles, and also to 

determine what the effect was on adenosine phosphate and creatine phosphate 

profiles. For interest’s sake, the blood was separated into plasma and red blood cells to 

elucidate in which fraction these HEPs were.  

 

5.3.1 Blood  

 

In our study Cr content increased by approximately 20% in RBCs of creatine 

supplemented sedentary rats, and PCr in the plasma increased 5 fold in creatine 

supplemented sedentary rats. Although the exercised groups both had between 2 and 3 

fold increases in PCr content in the blood plasma, these increases were not significantly 

more than the control sedentary group. McMillen et al [2001] found that creatine 

supplementation resulted in a tenfold increase in blood creatine content. Thus, although 

not as pronounced as in McMillen et al’s study, our results are consistent with the 

observations of increased Cr and PCr levels in blood with creatine supplementation.  

 

ATP in the RBC’s was significantly increased in creatine supplemented sedentary rats. 

In the exercised groups RBC ATP was 33% higher than the control sedentary group but 

this increase was not significant.  Brodthagen et al [1985] compared whole blood of 

control sedentary individuals with that of elite long distance runners and found that ATP 

concentrations in the blood were no different at rest or post-exercise.  Harmer et al 

[2000] and Hellsten et al [2004] demonstrated that resting muscle ATP levels were 

actually decreased by exercise training, however to our knowledge this is the first study 
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showing that resting ATP levels in the blood are unaffected by creatine 

supplementation. 

 

A possible explanation for not observing a significant increase in blood Cr, PCr or ATP 

in the exercised groups is that the increase in energy expenditure associated with 

exercise may result in a decrease in the high energy phosphates because they are used 

for muscle contraction during the exercise. During Cr supplementation, ATP donates a 

phosphate group to Cr, thus forming PCr, so that there is effectively less ATP and Cr 

and more PCr in the blood, which is also consistent with our findings.  

 

5.3.2 Heart Tissue  

 

In our study, 2 months of creatine supplementation had no effect on high energy 

phosphate or creatine levels in the heart tissue. Isolated hearts perfused with a 

cardioplegic solution with an increased creatine content for 20 minutes have been 

shown to have increased tissue creatine [Thelin et al 1987]. A short term creatine 

supplementation program of 7 days also showed increased myocardial levels of 

phosphocreatine and ATP in the rat [Brzezińska et al 1998].  

 

However Osbakken et al [1992] used nuclear magnetic resonance NMR spectroscopy 

and showed that 21 days of creatine supplementation did not increase the half life of 

ATP in the heart during ischaemia i.e. ATP stores were depleted during ischaemia 

within the same time as control hearts that did not receive creatine supplementation 

suggesting that there were not increased ATP stores in the creatine supplemented 

hearts. Horn et al [1998] also found unchanged high energy phosphate levels in hearts 

from rats supplemented with creatine for 40 days . McMillen [2001] demonstrated tissue 
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specific uptake of creatine in skeletal muscle after 2 weeks of supplementation. They 

found increases in creatine stores with creatine supplementation in the gastrocnemius 

but not the soleus muscle. These data suggest creatine uptake may be fibre specific, 

and may also rely on training and supplementation model. 

 

5.3.3 HEP ratios  

 

The preservation of normal intracellular levels of high-energy phosphates is essential for 

myocardial function and protection. High energy phosphates include ATP, ADP, AMP 

and PCr, and these are intermediates in energy transfer in the cell.  The ratios between 

the HEPs are used by the cell as a measure of intracellular energy levels, and 

determine whether it is necessary to start producing more ATP via glycolysis and the 

electron transport chain.  

 

In a model of congestive heart failure PCr and total creatine levels were reduced while 

in severe heart failure ATP was also reduced [Zhang et al 1996]. PCr/ATP ratios are low 

in infracted hearts and in CHF [Murakami et al 1999]. PCr/ATP  ratios are closely 

correlated with the severity of heart failure and are a prognostic indicator of mortality in 

patients [Ten Hove and Neubauer 2007]. PCr/ATP ratios for normal human hearts 

range between 1.2-2.4 [Ten Hove and Neubauer 2007], We measured PCr/ATP ratios 

of between 1.04 and 1.09 for all our groups. These are perhaps lower than expected not 

because of heart failure, but because of species differences between humans and the 

rat model.  

 

Although the cardiac PCr/ATP ratio is decreased in several pathological conditions, 

such as ischemia and heart failure, it is increased in the heart muscle of GLUT4 null 
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mice [Weiss et al 2002]. There is currently no information available on the effect of 

creatine supplementation on heart PCr/ATP ratio. For this reason we looked at studies 

done on skeletal muscle. Creatine supplementation resulted in elevated PCr/ATP ratios 

(4.2 ±0.7 vs 3.3 ± 0.3 in control athletes) in the calf muscle of athletes [Zange et al 

2002] while run trained rats had decreased PCr and PCr/ATP ratios (1.70 ± 0.24 vs 1.32 

± 0.06) with increased cardiac creatine, AMP and ADP concentrations [Fenning et al 

2003]. We found no change in PCr/ATP ratio suggesting no apparent influence of 

exercise or creatine supplementation on energetic status of the hearts.  

 

PCr/TCr (total creatine) ratio for skeletal muscles ranges between 0.6 and 0.8 

depending on muscle type. We observed a ratio of 0.7 in heart muscle for all our study 

groups, with no changes in this ratio suggesting that there is no apparent influence of 

either exercise or creatine supplementation on energetic status in the hearts.  
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5.4 MITOCHONDRIAL FUNCTION 

 

5.4.1 Respiration states and RCI  

 

5.4.1.1 Effect of exercise on mitochondrial respira tion 

 

Isolated mitochondria showed no significant difference in state 3 or 4 respiration with 

either glutamate or succinate as substrate in the four groups in our study. Using 

glutamate and succinate as substrates therefore demonstrated that the different 

interventions did not change the activity of either complex I or complex II of the 

mitochondrial respiratory chain as glutamate in the presence of malate measures only 

the activity of complex I while succinate measures both complex I and II activities. 

 
Basal RCI of mitochondria of control exercised hearts was higher than that of control 

sedentary hearts, which suggests a heightened mitochondrial respiratory potential with 

exercise. This increased respiratory potential was however attenuated with creatine 

supplementation.  

 
Our findings are similar to work published by Starnes et al [2009] who showed that state 

3 respiration, state 4 respiration and ADP/O ratios were no different between exercise 

trained and control rat myocardial mitochondria with either  succinate or glutamate as 

substrates.   

 

Exercise training results in changes in mitochondrial proteins which may contribute to a 

cardioprotective phenotype [Kavazis et al 2009]. Farrar et al [1981] reported that 

exercise training decreased the decline in state 3 respiration in skeletal muscle 

mitochondria of aged animals. 
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In a study by Ascensao et al [2006], state 3 respiration in heart mitochondria was 

improved by 14 weeks of treadmill exercise training, both before and after 1 minute of 

anoxia. There was however no pre-anoxic differences in RCI or ADP/O ratio.  However 

the attenuation of RCI by anoxia and re-oxygenation was not as pronounced in the 

exercised group. In streptozitosin induced Type 1 diabetic rats, a 10 week exercise 

training program normalized state 3 respiration rates in heart mitochondria [Mokhtar et 

al 1993] and Ferström et al [2004] reported increased state 3 respirations in skeletal 

muscle mitochondria after 6 weeks of endurance training.  

 

An 8 week period of training, 3 times per week, did not elicit changes in oxygen 

consumption in skeletal muscle mitochondria from subjects exposed to a continuous 

training regime. However, in the same study interval training did increase the 

mitochondrial oxygen consumption. Interval training consisted of 5 minute episodes of 

90% maximal power output exercise interspersed with low power output exercise, and 

continuous training consisted of 20-35 minutes of uninterrupted exercise at the same 

mean power output as the interval training. Thus, even though the same total amount of 

work was performed during the two different training protocols, the higher intensity short 

burst exercise seemed to elicit changes whereas the constant moderate intensity 

exercise did not [Daussin et al 2008]. 

 

Fregosi et al [1987] found that exercise training did not affect state 3 respiration rate, 

RCI or ADP/O ratios in the rat plantaris or the diaphragm muscle mitochondria from rats 

exercise trained for 8 weeks. No differences were seen either in state 3 respiration or 

ADP/O ratios in exercised obese rats subjected to treadmill running daily for 7 weeks 

[Wardlaw et al 1986]. In similar studies endurance training on a treadmill for 5 days a 

week for 16 weeks did not alleviate the loss of myocardial mitochondrial ATP production 
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seen in response to calcium overload. [Starnes et al 2007b]. These studies support the 

data that we collected.  

 

It would thus seem that the effect of exercise on myocardial mitochondria function is 

limited and diverse, and that our observations do not differ from several previous 

studies. Mitochondrial respiration was unaltered by the type and intensity of exercise 

employed in our study.  

 

5.4.1.2 Effect of creatine supplementation on mitoc hondrial respiration 

 

Creatine supplementation whether on its own or in combination with exercise had no 

effect on mitochondrial respiration, RCI or recovery of state 3 respiration after anoxia.  

In mice with muscular dystrophy, creatine supplementation normalized skeletal muscle 

mitochondrial respiration which was decreased by the disease [Passaquin et al 2002]. 

In another study 16 days of Cr supplementation, reduced state 2 respiration (i.e. in the 

absence of ADP) but had no effect on state 3 respiration [Walsh et al 2001]. However, 

there is no other data available regarding the effect of creatine supplementation on its 

own or in combination with exercise on cardiac mitochondrial respiration. To our 

knowledge this is the first study showing that creatine supplementation has no effects 

on basal cardiac mitochondrial respiration or recovery of respiration after anoxia. 

 

5.4.1.3 Effects of inhibitors of mitochondrial resp iration  

 

GDP inhibits the uncoupling proteins, which uncouple oxidative phosphorylation from 

ATP generation. Increased mitochondrial UCPs have been associated with less efficient 

ATP synthesis [Murray et al 2008], but have also been seen to be down regulated in the 
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failing heart [Laskowski and Russel [2008]. Murray et al [2004] found increased UCP 

expression with increased plasma free fatty acid concentrations and have suggested 

that energy deficiency in heart failure might result from increased mitochondrial UCPs. 

We thus felt it would be important to determine whether creatine or exercise influenced 

UCP’s in any of the study groups we investigated. 

 

We found no differences in the change in respiration rates between the groups in our 

study after the addition of GDP. If UCP's were influenced by our interventions we would 

have expected to see an increase in state 4 respiration in the presence of GDP and 

succinate. We propose that UCP’s were not influenced by exercise training or creatine 

supplementation in our study.  

 

The inhibition of state 4 respiration with GDP was significantly higher in heart 

mitochondria from 14 weeks treadmill run trained animals than in heart mitochondria 

from sedentary animals [Ascensao et al 2006], showing that the UCPs were more 

activated in trained heart mitochondria. Boss et al [1998] found that 4 weeks of treadmill 

running (5 days per week for 90 minutes per day) decreased UCP2 and 3 expression in 

skeletal muscle and the heart. These results were corroborated by Fernström et al 

[2004] who found down regulation of UCP3 with exercise training, showing less 

activation of UCPs with long term exercise training. It would appear that neither the 

length nor intensity of our exercise program brought about changes in the activity of 

UCPs involved in respiration in our study. Creatine supplementation did not affect the 

UCPs activity in our study.  

 
 
Oligomycin (which inactivates complex IV, which produces ATP) was added to 

mitochondria to measure basal proton leak. If the mitochondria leak H+ back across the 
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mitochondrial inner membrane without releasing ATP, then they are not efficient. 

However, neither exercise training nor creatine supplementation (at the dose and time 

given), conferred any advantage or cardioprotection on the rat hearts. 

 

One would have anticipated that exercise and/or creatine supplementation would be 

beneficial to the rats, as the theory behind creatine supplementation is based on the 

premise that creatine phosphate is the cell's readily available supply of phosphate 

groups to phoshorylate ADP, as the ADP import export mechanism limits energy 

availability during exercise. Having a readily available pool of creatine to phosphorylate 

would have been expected to be of benefit against an acute anoxic stress, but this was 

not the case in our study. 
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5.5 SIGNALLING PATHWAYS IN THE HEART  

 
5.5.1 Myocardial Creatine Transporter  

 

There were no differences in myocardial CreaT protein expression in any of the groups 

we studied. 

It has been shown that CreaT is not upregulated with creatine supplementation 

[Tarnopolsky et al 2003]. It has however also been reported to be downregulated in 

certain skeletal muscle types after 3-6 months of supplementation [Guerrero-Ontiveros 

and Wallimann 1998, Loike et al 1988]. Brault et al [2003] also found that 7 weeks of 

creatine supplementation resulted in no increased Cr, PCr, or total adenonucleotides 

(ATP+ADP+AMP), and no alterations in CreaT levels in skeletal muscle. After a 6 week 

creatine supplementation regime no effect was found on CreaT protein expression or 

PCr, Cr or ATP levels in the heart [Boehm et al 2003]. Consistent with the findings of 

Boehm et al [2003], we found that myocardial CreaT protein expression and ATP, PCR 

or Cr levels were unchanged by creatine supplementation.  

 

Our findings are therefore consistent with these data and also provide additional insight 

about the effect of training on CreaT protein expression. One study examined the effect 

of exercise and creatine supplementation on intracellular creatine levels and reported 

increased creatine in the muscle after training [Robinson et al 1999]. However this study 

did not analyse the CreaT content or the effect of exercise training on it. Neubauer et al 

[1997] have shown that CreaT is downregulated in the failing human myocardium and in 

experimental heart failure. Lourdes Guerrero-Ontiveros and Wallimann in [1998] found a 

downregulation of the CreaT with supplementation in skeletal muscle. This is a possible 

protective mechanism induced to prevent Cr overload in the cell. This is particularly 

likely  since Wallis et al [2005] found overexpression of CreaT in mouse hearts to be 
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detrimental, leading to cardiac hypertrophy and LV dysfunction (decreased ejection 

fraction). They speculated that the high levels of ADP, which they also observed, led to 

an energy imbalance in the cells. 

 

5.5.2 Myocardial GLUT4  

 

We found a significant increase in basal GLUT4 expression with exercise, but there was 

no increase in GLUT4 with creatine supplementation alone (creatine sedentary) or in 

combination with exercise (creatine exercised).   

 

Information about GLUT4 expression or translocation in the heart or skeletal muscle 

after creatine supplementation is sparse. Treadmill running of diabetic rats for 6 days a 

week for 10 weeks increased the GLUT4 expression in cardiac muscle [Osborn et al 

1997) while glucose transporters (GLUT4) in rat cardiac muscle showed increased 

translocation to the membrane in response to 10 weeks of swim training (5 days per 

week, 3 hours per day) [Zhang et al 2007c].   

  

Skeletal muscle GLUT4 translocates to the plasma membrane in response to 2 hours of 

treadmill exercise [Fushiki et al 1989]. Total GLUT4 translocation but not total tissue 

GLUT4 protein expression increased in the skeletal muscle of rats after 6 weeks of 

exercise training in wheelcages [Goodyear et al 1992]. However, Rodnick et al [1990] 

used the same experimental protocol and found increased GLUT4 expression in the rat 

skeletal muscle.  Langfort et al [2003] also found an increase in GLUT4 expression in 

human skeletal muscle after 8 days of cycle training.  
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Thus our data is consistent with other research findings which indicate that GLUT4 

expression is increased after exercise training, particularly in the myocardium in our 

study.  

Op’t Eijnde et al [2001b] found an attenuated decrease in GLUT4 protein content in 

skeletal muscle immobilized for 2 weeks in creatine supplemented patients, and a 

subsequent increase in GLUT4 expression after 3 weeks of rehabilitation resistance 

exercise and creatine supplementation. However this increase in GLUT4 above control 

values was no longer evident after 10 weeks of creatine supplementation and 

resistance exercise. Ceddia and Sweeney (2004] found no increase in GLUT4 with 48 

hours of creatine supplementation (0.5mM) in cultured L6 myoblasts.  

 

Rooney et al [2002] have shown that creatine supplementation for 8 weeks increased 

fasting plasma insulin levels and increased insulin secretion in response to a glucose 

tolerance test in rats, but did not affect the overall glucose uptake. This was confirmed 

by Newman et al [2003] in sedentary male subjects with both acute (5 days), and short 

term (28 days) creatine supplementation, where no effect of creatine supplementation 

was seen on glucose tolerance.  GLUT4 translocation and protein expression was not 

investigated. However, Gualana et al [2008] studied glucose tolerance in response to 

creatine supplementation and high intensity exercise run training 3 times per week for 3 

months in human subjects. They showed that creatine supplementation and exercise 

increased glucose tolerance above that observed with exercise alone. Once again, 

GLUT4 protein expression and translocation was not examined.  

 

To our knowledge ours is the first study to show that simultaneous exercise and 

creatine supplementation attenuates myocardial GLUT4 protein expression. It is 

therefore possible that the GLUT4 translocation was increased with both exercise and 

creatine in our study, as described previously. However GLUT4 expression is down 



188 
 

regulated by their combination. This could be a sensitization response and adaptive 

mechanism to prevent over stimulation of translocation and excess absorption of 

glucose and a resulting hypoglycemia.  

 

5.5.3 Myocardial AMPK  

 

5.5.3.1 AMPK phosphorylation at baseline  

 

At baseline, creatine supplemented sedentary and exercised control rats had 

significantly raised phosphorylated AMPK levels compared with the control sedentary 

rats. However, creatine supplemented exercised rats had the same levels of 

phosphorylated AMPK as control sedentary rats.  

 

Musi et al [2005] also found that an acute bout of exercise increased phosphorylation of 

AMPK in mice hearts. These observations were corroborated by Coven et al [2003], 

with moderate and high intensity exercise for 10 minutes increasing AMPK 

phosphorylation. Pold et al [2005] exercised diabetic Zucker rats for 5 days per week for 

8 weeks, and found no changes in total AMPK expression in the heart muscle, but 

found an increased expression of total AMPK in the red gastrocnemius skeletal muscle. 

However they did not look at phosphorylation or activity of AMPK in the heart. There is 

little published data available on the effect of long term exercise on the activity or 

phosphorylation of AMPK in the heart.  

 

Gibala et al [2009] reported that after 4 bouts of acute exercise AMPK phosphorylation 

was increased in skeletal muscle, and Langfort et al [2003] found increased AMPK 

content in skeletal muscle after 1 month of training.  
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Ceddia and Sweeney [2004] found AMPK phosphorylation was increased with Cr 

supplementation in skeletal muscle cells but contrarily Op‘t Eijnde et al [2005] showed 

that neither AMPK phosphorylation nor protein expression was increased by creatine 

supplementation after 6 weeks of recovery in skeletal muscle previously immobilized for 

2 weeks.  Ponticos et al [1998] demonstrated that in the presence of PCr in an in vitro 

assay, AMPK activity was inhibited, but the presence of Cr even at supra-physiological 

doses, had no effect.  They also showed that active AMPK phosphorylates and 

inactivates MM-CK, thus stopping the conversion of PCr and ADP to ATP and Cr. Thus, 

less phosphorylation of AMPK would translate to more ATP being available for use by 

the cell. We propose that simultaneous creatine supplementation and exercise training 

may decrease the AMPK phosphorylation and stop the inhibition of the MM-CK and 

consequently provide a larger pool of energy for the heart. 

 

5.5.3.2 AMPK during Ischaemia and Reperfusion 

We found no differences in total AMPK expression in the heart during ischaemia, but 

creatine supplemented exercised hearts had higher levels of phosphorylated AMPK 

than creatine supplemented sedentary hearts. There were no differences between the 

control sedentary, control exercised and creatine exercised hearts. There was however 

a significant increase in AMPK phosphorylation in the creatine supplemented exercised 

group above all the other groups at 10 minutes of reperfusion.  

There have been several reports that indicate that the activation of AMPK during 

ischaemia is a protective mechanism of the heart to preserve and generate ATP and 

protect the heart from the detrimental effects of ischaemia and reperfusion [Beauloye et 

al 2001, Baron et al 2005, and Sakamoto et al 2006]. However, one of these studies 

looked at the effect of AMPK activation on cardiac post-ischaemic functional recovery, 
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and only Lopaschuk [2008] reports that the activation of AMPK during ischaemia is 

detrimental. They have also shown that the inhibition of AMPK during reperfusion does 

not lead to a decrease in cardiac function or an energy supply impairment [Folmes et al 

2009]. 

Our results indicate that increased AMPK phosphorylation during ischaemia and 

reperfusion was associated with reperfusion injury in the heart, but whether the APMK 

phosphorylation caused the decreased function, or vice versa, remains to be 

determined in further studies. 

 

5.5.4 Myocardial PKB/Akt   

 

5.5.4.1 Baseline expression and phosphorylation 

 

In our study 8 weeks of exercise training increased PKB/Akt phosphorylation in the 

heart muscle, as did a combination of exercise and creatine supplementation. There 

were no changes in total protein expression of PKB/Akt.  

 

Zhang et al [2007] has shown that long term exercise (3 hours per day, 5 days per 

week, 8 weeks of swimming) increases PKB/Akt phosphorylation in rat hearts. Similarly, 

Kemi et al [2008] showed that exercise on a treadmill for 5 days per week for 8 weeks 

increased phosphorylation of PKB/Akt in the heart. They also showed that this type of 

exercise induced physiological hypertrophy in cardiomyocytes, increasing cell width and 

length.  

 

Pathological hypertrophy was also induced by pressure overload after 8 weeks of 

transverse aortic constriction [Kemi et al 2008]. This increased HW: BW ratios, left 

ventricle posterior wall and interventricular wall thickness, and down regulated the 
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Akt/mTOR pathway in these hearts. Thus this implicates PKB/Akt phosphorylation in 

physiological hypertrophy and may differentiate it from pathological hypertrophy. 

McMullen et al [2003] also showed that PKB/Akt was phosphorylated after 3 weeks of 

swim training in rats. When comparing our results to these, it could be speculated that 

we may have had physiological hypertrophy (cardiac remodeling) without increases in 

heart weight in our model. This has been shown by Evangelista et al [2003] who 

showed that an increased heart weight did not necessarily go hand in hand with 

physiological hypertrophy.  

 

Lajoie et al [2003] documented decreased PKB/Akt phosphorylation after a 13 week 

swimming program, however the same exercise program increased and thus 

normalised the levels of PKB/Akt in diabetic rats. Deldicque et al [2007] found that 

exercise decreased phosphorylation of PKB/Akt in skeletal muscle directly after 

exercise, but had no effect on baseline levels of phosphorylated protein 72 hours after 

exercise. They also found that creatine supplementation for 5 days decreased PKB/Akt 

phosphorylation in the resting state. This differs from our results, in that we found a 50% 

increase in PKB/Akt phosphorylation with creatine supplementation in sedentary rat 

hearts – although this was not significantly different when compared to hearts from 

control sedentary rats. However, the study done by Deldique et al [2007] is the only one 

published that provides some insight into the effect of creatine and exercise on 

PKB/Akt. 

 

5.5.4.2 PKB/Akt during ischaemia and reperfusion 

 

Phosphorylation of PKB/Akt was increased after 10 minutes reperfusion in creatine 

supplemented exercised hearts compared to control and creatine supplemented 

sedentary hearts. Hearts from control exercised rats had phosphorylated PKB/Akt levels 
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that were twice as high as hearts from sedentary rats, but did not reach significance. 

This was possibly due to a small number of hearts analysed.  There were no differences 

in PKB/Akt expression or phosphorylation during ischaemia or at the end of 30 minutes 

of reperfusion.  

 

Zhang et al [2007] has shown that long term exercise (3 hours per day, 5 days per 

week, 8 weeks of swimming) increases PKB/Akt phosphorylation in rat hearts subjected 

to regional ischaemia. This was accompanied by a smaller infarct size in these 

exercised hearts. On the other hand, Ravingerova et al [2009] has shown that the 

activation of PKB/Akt is not essential for cardioprotection, because inhibiting its activity 

still resulted in cardioprotection after ischaemia in pre-conditioned rat hearts. Skyschally 

et al [2009] has also recently shown that inhibition of the RISK pathway and PKB/Akt 

with wortmannin did not decrease infarct size in ischaemic preconditioned hearts, 

suggesting that this kinase did not play a role in cardioprotection. 

 

Taking this conflicting evidence and our own data into consideration, we propose that 

the phosphorylation of PKB/Akt at 10 minutes of reperfusion in the hearts from creatine 

supplemented exercised rats was not cardioprotective in this study 

 

5.5.5 Myocardial ERK 42/44   

 

Our study showed that expression of ERK 44 in the creatine supplemented exercised 

group was significantly decreased at the end of 20 minutes of global ischaemia when 

compared to control sedentary hearts. Total ERK 42 expression was significantly higher 

in creatine supplemented exercised hearts compared to control sedentary hearts after 

10 minutes of reperfusion. Neither creatine supplementation nor exercise had any effect 

on the levels of ERK42/44 phosphorylation.   



193 
 

Deldicque et al [2007] found that 5mM creatine supplementation in the culture medium 

did not affect ERK phosphorylation in cultured skeletal muscle cells, and in 2008 they 

showed that neither Cr supplementation for 5 days nor short term acute maximal 

exercise effected ERK phosphorylation in human skeletal muscle cells. McMullen et al 

[2003] also showed no effect of swim training for 4 weeks on myocardial ERK 

phosphorylation or expression. Iemetsu et al [2006b] demonstrated that 8 weeks of 

swim training increased basal ERK 42 and ERK 44 phosphorylation. They did not 

however look at the effect of this increase on the heart functional parameters. One 

would expect, with an increase in this pro-survival kinase, that protection would be 

elicited, however this was not the case in our study, and an increase in total basal ERK 

42 in the creatine supplemented exercised group during reperfusion did not protect 

these hearts against reperfusion injury. However, the decrease in ERK 44 during 

ischaemia in creatine supplemented, exercised hearts, corresponded with a decreased 

reperfusion function. 

 

Kovacs et al [2009], du Toit et al [2008] and Yu et al [2008] have all recently showed a 

correlation between ERK activation during ischaemia and reperfusion, and increased 

cardioprotection. Taking this into consideration, the decreased ERK 44 levels that we 

found in the creatine supplemented exercise trained group correlates with decreased 

cardioprotection. This is supported by the evidence presented above. 

 

5.5.6 Myocardial p38 MAPK  

 

In our study, basal phosphorylated p38 MAPK expression was decreased by a 

combination of 8 weeks of exercise training and creatine supplementation, and after 20 

minutes of global ischaemia, the phosphorylation of p38 MAPK was increased in these 

hearts compared to control sedentary hearts. 
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The activation of p38 MAP kinase during ischaemia has been studied in depth by 

several research groups. Notwithstanding the fact that p38 has been implicated as a 

trigger and a mediator of the protection elicited by ischaemic preconditioning, there is 

contradictory evidence concerning its role in cardioprotection. For this reason we 

documented the p38 expression and phosphorylation profiles in the exercised and 

creatine supplemented hearts of animals from our study.  

 

Deldicque et al [2007] found that immediately after exercise p38 MAPK increased in 

skeletal muscle but creatine supplementation for 5 days had no effect on the p38 MAPK 

phosphorylation. Musi et al [2005] showed increased p38MAPK phosphorylation after a 

single bout of acute exercise. McMullen 2003 also showed no influence of swim training 

for 4 weeks on p38 MAPK phosphorylation or expression.  

 

Limited research has been done on the effect of long term exercise training on p38 

MAPK levels in the heart and the only study that was done showed that chronic long 

term (8 weeks) swim training had no effect on basal MAPK levels [Iemitsu et al 2006b].  

To our knowledge this is the first study to show that p38 MAPK may be down regulated 

with simultaneous long term exercise training and creatine supplementation, and 

increased during ischaemia in hearts from animals of the same group.  

 

P38 MAPK phosphorylation and activation during ischaemia and reperfusion has been 

associated with myocardial ischaemia/reperfusion injury [Kim et al 2009] and apoptosis 

[Ma et al 1999]. The combination of creatine supplementation and exercise increased 

levels of p38 MAPK phosphorylation during ischaemia. This p38 MAPK phosphorylation 

is associated with a decreased functional recovery of these hearts during reperfusion 

and increased susceptibility to myocardial ischaemia/reperfusion injury.  

 



195 
 

CONCLUSIONS 

 

Data from this study suggests that creatine supplementation has no effects on basal 

cardiac function but does reduce myocardial tolerance to ischaemia/reperfusion in the 

hearts of sedentary and exercise trained animals. The combination of creatine 

supplementation and exercise increases ischaemic contracture and decreases aortic 

output recoveries in the rat hearts. Creatine supplementation alone or in combination 

with exercise, had no effect on mitochondrial respiration or tolerance to anoxia. Exercise 

with and without creatine supplementation increased basal PKB/Akt phosphorylation 

however only the combination of creatine supplementation and exercise increased 

PKB/Akt phosphorylation after 10 minutes of reperfusion, suggesting that PKB/Akt 

phosphorylation was not associated with cardioprotection in this study. Although both 

GLUT4 expression and AMPK phosphorylation increased with exercise training, 

creatine supplementation attenuated this increase. AMPK phosphorylation in hearts 

from creatine supplemented exercised rats was much higher after 10 minutes of 

reperfusion than all other groups, as was p38 MAPK phosphorylation during ischaemia. 

P38 MAPK phosphorylation was also increased during ischaemia in this group. Basal 

total ERK44 expression was decreased in hearts from creatine supplemented exercised 

animals, while ERK42 expression was increased in this group after 10 minutes of 

reperfusion. This data suggests that increased ERK44, AMPK and PKB/Akt 

phosphorylation did not offer cardioprotection in this study. The exact mechanisms for 

the decreased aortic output recoveries in creatine supplemented exercised rat hearts 

are unknown and need further investigation. 

 



196 
 

FURTHER STUDIES 

 

The exact mechanism involved in the exercised and creatine supplemented, exercised 

heart’s susceptibility to ischaemia/ reperfusion injury remains elusive. While an 

increased ischaemic contracture in these hearts has been seen in this study, the 

precise reason for this is also mysterious.  

Since one of the possibilities for contracture is an imbalance in calcium concentrations, 

it becomes obvious that this is the next step in trying to find the mechanism in this 

paradox. If raised calcium concentration is a factor, then the membrane transporters 

activity need to be examined.  

A possible shortcoming of this study is that baseline values of proteins and signaling 

molecules were examined at 2 minutes perfusion time. This is the time the hearts were 

freeze clamped for optimal HEP determination, but it has recently been implied that this 

is not optimal for baseline signaling molecule assessment [Stenslokken et al 

2009].However this study used the balloon model to compare differing lengths of 

perfusion time on the phosphorylation of stress induced kinases, and we used the 

working heart model, which in itself is less stressful that the balloon model, and thus has 

been shown to reduce inadvertent phosphorylation of these kinases. We could also 

have taken reperfusion samples at more than 30 minutes reperfusion, as 30 minutes 

may not have been long enough of changes in total protein synthesis to have been 

brought about. However in our lab it has been shown that for most survival kinases 

analysed here (Erk, p38, PKB) 30 seconds perfusion is substantial for baseline values 

and 30 minutes reperfusion is adequate for post-ischaemic values of these proteins 

[Fan et al 2009].  
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Our balloon perfusions for determination of ischaemic contracture and heart pressures 

were performed without the perfusionist having extensive experience on the isolated rat 

heart perfusion system. This may have contributed to the low LVDevPs (and high DPs) 

obtained in some experiments. This was a weakness in the study and we are aware of 

the errors and recognize that the diastolic pressures and LVDevP were not always 

optimal. We do however believe that as these technical weaknesses were applied to all 

groups of hearts studied and would therefore have a similar impact on all experimental 

groups.  

   

Bearing these weaknesses in the study in mind, the data obtained from functional 

recovery is indeed both surprising and worrying. The fact that exercise alone and in 

combination decreased the functional recovery of hearts post-ischaemia in this model is 

disturbing, as it has for decades been thought that exercise training is highly 

cardioprotective, and sportsmen and - women have for years been and are still using 

creatine supplementation without being aware of possible risks to their health.  

   

This study draws our attention to the possibility that although creatine supplementation 

may have beneficial effects on sport performance and post training recovery, there may 

be long term health risks associated with the use of this supplement. More studies 

looking at the long-term effects of creatine supplementation are advisable.  
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