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Abstract

We propose a new methodology, based on proper scoring rules, for the evalu-
ation of the goodness of pattern recognizers with probabilistic outputs. The
recognizers of interest take an input, known to belong to one of a discrete set
of classes, and output a calibrated likelihood for each class. This is a general-
ization of the traditional use of proper scoring rules to evaluate the goodness
of probability distributions. A recognizer with outputs in well-calibrated prob-
ability distribution form can be applied to make cost-effective Bayes decisions
over a range of applications, having different cost functions. A recognizer
with likelihood output can additionally be employed for a wide range of prior
distributions for the to-be-recognized classes.

We use automatic speaker recognition and automatic spoken language
recognition as prototypes of this type of pattern recognizer. The traditional
evaluation methods in these fields, as represented by the series of NIST Speaker
and Language Recognition Evaluations, evaluate hard decisions made by the
recognizers. This makes these recognizers cost-and-prior-dependent. The pro-
posed methodology generalizes that of the NIST evaluations, allowing for the
evaluation of recognizers which are intended to be usefully applied over a wide
range of applications, having variable priors and costs.

The proposal includes a family of evaluation criteria, where each member
of the family is formed by a proper scoring rule. We emphasize two members
of this family: (i) A non-strict scoring rule, directly representing error-rate
at a given prior. (ii) The strict logarithmic scoring rule which represents
information content, or which equivalently represents summarized error-rate,
or expected cost, over a wide range of applications.

We further show how to form a family of secondary evaluation criteria,
which by contrasting with the primary criteria, form an analysis of the good-
ness of calibration of the recognizer’s likelihoods.

Finally, we show how to use the logarithmic scoring rule as an objective
function for the discriminative training of fusion and calibration of speaker
and language recognizers.
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Opsomming

Ons wys hoe om die onsekerheid in die uittree van outomatiese
sprekerherkenning- en taalherkenningstelsels voor te stel, te meet, te kalibreer
en te optimeer. Dit maak die bestaande tegnologie akkurater, doeltreffender
en meer algemeen toepasbaar.
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Preface

The following is a children’s story, in Afrikaans, which illustrates much of
the essence of this work. An English translation is provided afterwards. In
summary, the protagonist, an intelligent monkey, tries to solve a problem by
asking for information from a few less than perfect information sources. He
solves the problem by first measuring and then calibrating these sources.

Die aap en die gevaarlike rivier

—Niko Brümmer, 2007—

************

Die aap het deur die bos geswaai, toe kom hy by ’n rivier. Aan die
oorkantste oewer sien hy ’n paar bome met die aanloklikste vrugte. Hy is
baie honger, maar hy is te versigtig om sommer die rivier oor te steek. Hy kyk
eers rond en ontdek ’n padda vir wie hy vra: “Goeiedag padda, gee jy om as
ek jou ’n paar vrae vra?”

“Nee”, sê die padda.
“Dankie, padda. Is hier enige krokodille in die rivier?”
“Nee”, sê die padda.
“Ek is bly om dit te hoor! Is hier ander gevaarlike diere of miskien selfs

groot honger visse?”
“Nee”, sê die padda.
“A! So dan kan ek veilig oorswem na daardie vrugtebome.”
“Nee”, sê die padda.
“Hoekom nie? Is daar ander gevare?”
“Nee”, sê die padda.
“Nou hoekom kan ek nie oorswem nie?”
“Nee”, sê die padda. Die aap kry toe hond se gedagte en vra:
“Antwoord jy altyd nee op elke vraag?”
“Nee”, sê die padda. Toe vra die aap:
“Is jy ’n padda?”
“Nee”, sê die padda.
“Nouja dankie vir jou hulp padda en totsiens”, groet die aap beleefd.

xii
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“Nee”, groet die padda.

************

Die aap soek toe maar verder en kry ’n vis in die vlak water, vir wie hy
vra: “Goeiedag vis, kan ek jou maar ’n paar vrae vra?”

“Ja”, antwoord die vis vriendelik.
“Is dit veilig om oor die rivier te swem?”
“Ja”, sê die vis.
“Maar is hier krokodille in die rivier?”, vra die aap net om seker te maak.
“Ja”, sê die vis.
“Nou hoe kan dit dan veilig wees?”
“Ja”, sê die vis.
“Is jy ’n padda?” vra die uitgeslape aap.
“Ja”, sê die vis.
“Jy antwoord altyd ja op elke vraag!”
“Ja”, erken die vis skamerig.
“Nouja dankie vir jou hulp en totsiens.”
“Ja”, groet die vis effens teleurgesteld en swem weg.

************

Die aap ondervra volgende ’n waterskilpad: “Goeiedag skilpad, is dit veilig
om oor die rivier te swem?”

“Ek weet nie”, sê die waterskilpad.
“Maar is hier krokodille?”
“Ek weet nie”, sê die waterskilpad.
“Is hier ander gevaarlike goed?”
“Ek weet nie”, sê die waterskilpad.
“Is jy ’n waterskilpad?”
“Ek weet nie”, sê die waterskilpad.
“Dankie skilpad. Totsiens.”
“Ek weet nie”, groet die waterskilpad.

************

Die aap is nou moedeloos gesukkel, en hy raak al hoe hongerder. Toe
ontdek hy met ’n groot skrik dat daar juis ’n krokodil besig is om hom vanuit
die vlak water te bekruip! Hy spring net betyds na veiligheid op ’n boomtak,
maar besluit toe om tog ’n geselsie met die krokodil aan te knoop: “Hallo
krokodil, hoe gaan dit?”

“Baie goed dankie aap,” antwoord die krokodil, “ek is so bly om jou te
ontmoet!”

“Hoekom?” vra die aap, “jy wil my seker eet!”
“Nog nooit! Ek eet net plante en so af en toe ’n klein vissie.”



PREFACE xiv

“Jok jy, krokodil?”
“Nee aap, ek jok nooit!”, sê die krokodil terwyl hy ewe lomp aan ’n graspol

kou.
“Is jy ’n krokodil?”
“Nee”, sê die krokodil, “ek is eintlik ’n vegetariese likkewaan.”
“Is hier enige ander veilige plek om oor die rivier te kom?”
“Nee, nêrens nie”, sê die krokodil.
“Is die oorgangplek ver?”, vra die aap.
“Ja”, sê die krokodil, “al loop jy vir drie dae en drie nagte aaneen, sal jy

dit nog nie bereik nie!”
“Is dit stroomop of stroomaf?”
“Ja, stroomop,” sê die krokodil, “maar onthou dis baie ver. Swem liewer

oor, dis baie makliker en heeltemaal veilig. En ek sal jou help!”
“Nee dankie, krokodil, maar dankie vir jou hulp. Totsiens.” Die krokodil

grynslag net.
Die aap swaai vinnig stroomaf deur die bome langs die oewer en kry som-

mer gou ’n tak wat regoor die rivier hang. Hy klouter veilig oor en bereik
die vrugtebome, waar hy hom trommeldik vreet en lekker lag vir sy eie slim-
migheid.

************

The monkey and the treacherous river

—translated by Edward de Villiers, 2009—

************

T he monkey was swinging through the trees when he came to a river. On
the opposite bank, he saw a clump of trees bearing the most delicious fruit.
He was very hungry, but he was cautious about crossing the river. He looked
around and saw a frog. He addressed the frog: “Good day Mr Frog, would
you mind if I asked you a few questions?”

“No”, answered the frog.
“Thank you, Mr Frog. Are there any crocodiles in this river?”
“No”, answered the frog.
“I am very pleased to hear that! Are there any other dangerous animals or

maybe even large hungry fish?”
“No”, answered the frog.
“Ah! So then I can safely swim over to those fruit trees.”
“No”, answered the frog.
“Why not? Are there other dangers?”
“No”, answered the frog.
“Then why should I not swim across?”
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“No”, answered the frog. The monkey became suspicious and asked:
“Do you answer no to every question?”
“No”, answered the frog. Then the monkey asked:
“Are you a frog?”
“No”, answered the frog.
The monkey politely took his leave of the frog: “Well, thank you for your

help Mr Frog and goodbye”.
“No”, was the frog’s farewell.

************

T he monkey searched further and found a fish in the shallow water. He
asked the fish, “Good day Mr Fish, may I ask you a few questions?”

“Yes”, the fish responded pleasantly.
“Is it safe to swim across the river?”
“Yes”, said the fish.
“But are there crocodiles in the river?”, asked the monkey, just to be

certain.
“Yes”, said the fish.
“Then how can it be safe?”
“Yes”, said the fish.
“Are you a frog?” asked the shrewd monkey.
“Yes”, said the fish.
“You always answer yes to every question!”
“Yes”, admitted the embarrassed fish.
“Well, thank you for your help and goodbye.”
“Yes”, responded the fish sadly and swam away.

************

N ext, the monkey questioned a turtle: “Good day Mr Turtle, is it safe to
swim across the river?”

“I don’t know”, said the turtle.
“But are there crocodiles in the river?”
“I don’t know”, said the turtle.
“Are there other dangerous creatures in the river?”
“I don’t know”, said the turtle.
“Are you a turtle?”
“I don’t know”, said the turtle.
“Thank you, Mr Turtle. Goodbye.”
“I don’t know”, responded the turtle.

************
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T he monkey was now fed up and was getting hungrier and hungrier. Just
then he saw a crocodile in the shallow water stalking him! He jumped to the
safety of a tree branch just in time, but then decided to use the opportunity
to pick the crocodile’s brain: “Hello Mr Crocodile, how are you?”

“Very well, Mr Monkey,” answered the crocodile, “I am so pleased to meet
you!”

“Why?” asked the monkey, “I suppose you want to eat me!”
“Certainly not! I only eat plants and occasionally a small fish.”
“Surely you’re telling a fib Mr Crocodile?”
“No, Mr Monkey, I never lie!”, said the crocodile while clumsily chewing

on a tuft of grass.
“Are you a crocodile?”
“No”, answered the crocodile, “I’m actually a vegetarian monitor lizard.”
“Is there any other safe place to cross the river?”
“No, nowhere”, said the crocodile.
“Is the crossing far?”, asked the monkey.
“Yes”, said the crocodile, “even if you walk for three days and three nights,

you won’t reach it!”
“Is it upstream or downstream?”
“It’s upstream,” said the crocodile, “but remember it is very far away.

Rather swim across here—it will be much easier and it is completely safe. I’ll
even help you!”

“No thank you, Mr Crocodile, but thank you for your help. Goodbye.”.
The crocodile just grinned.
The monkey quickly swung downstream through the trees beside the bank

and soon found a branch that grew right over the river. He crossed safely to
the other side and reached the fruit trees where he stuffed himself, grinning
all the while at his own ingenuity.



Chapter 1

Introduction

The subject of this dissertation is how to evaluate the goodness of a certain
class of automatic pattern recognizers. The problem with automatic pattern
recognizers is that they are not infallible. They make errors—and some more
than others. If one wants to design, improve, sell, buy, or use a pattern
recognizer, then it is important to have some understanding of these errors
and their implications. In short, the need exists to evaluate the goodness of
pattern recognizers.

In this chapter we introduce the evaluation problem, summarize the solu-
tions proposed in this work and mention the response of other researchers to
this work.

1.1 Outline of the problem

The experience of the author is in speech processing and specifically in auto-
matic speaker recognition and automatic spoken language recognition. Stan-
dard problems from speaker and language recognition will serve throughout
this work as prototypes of the class of pattern recognition of interest. More-
over, this work is grounded in the literature and terminology of the traditional
evaluation methods in speaker and language recognition. However, the new
evaluation methods proposed here are applicable in a more general context of
pattern recognition.

In this section, we outline the class of pattern recognizers of interest and
introduce the problem of evaluating them.

1.1.1 The recognizer and its output format

We are interested in pattern recognition problems where an input is given
that is known to belong to one of a set of discrete classes. The recognizer is
expected, broadly speaking, to recognize the class of the input. Our running
examples throughout this work are:

1
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Speaker detection. A pair of speech segments is given as input. The two
classes to be recognized are: (i) the proposition that both segments were
spoken by the same speaker, or (ii) the proposition that the segments
were spoken by two different speakers.

Language recognition where a single speech segment is given, known to
belong to a pre-defined set of language classes.

The recognition result may take different forms. We use speaker detection as
an example to discuss output forms. Given a pair of speech segments, the
speaker detector may respond in any of the following ways:

1. A categorical statement: The segments are/are not of the same speaker.

2. A decision: Accept/reject the same-speaker hypothesis as the best deci-
sion under the circumstances.

3. A score, with the sense that larger scores favour the same-speaker hy-
pothesis and smaller scores favour the different-speaker hypothesis. The
user may, for example, apply a pre-determined threshold to the score to
make an accept/reject decision.

4. A probability for the same-speaker hypothesis. This is a specialized form
of calibrated score.

5. A likelihood-ratio for the same-speaker against the different-speaker hy-
pothesis. This is another specialized form of calibrated score.

The main subject of this work is how to evaluate recognizer outputs of the last
form. Below we briefly introduce each form. Except for the first, the others
will be discussed in more detail in later chapters.

Categorical statements

Form 1, the categorical statement, is a bad idea. If the recognizer gets it
wrong it is viewed by the user as a bug. It should only be considered for a
very accurate recognizer that has a very low probability of being wrong. We
exclude this form from further consideration in this work.

Hard decisions

Form 2, the hard decision, is subtly different from the categorical statement.
We assume these decisions are made with the objective of minimizing the risk
of the consequence of each decision, where the circumstances define the risk
parameters. This will be analysed in detail in chapter 2, where we use Bayes
decision theory to quantify the risk via prior and cost function. Although such
hard decisions can be made and understood in a principled way, they limit the
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recognizer to very restricted use, because the prior and cost are hard-coded
into the recognizer. Not only are they hard-coded, they are also hidden from
view, so that the user may not understand why the recognizer seems biased
towards one or the other decision.

Scores

Form 3, the score, is in practice a very good format. It shifts the responsibility
for making decisions from the recognizer to the user and with it gives the user
the ability to effectively adjust not only the risk parameters, but also to correct
for miss-calibration in the recognizer. It is also very useful in applications
where hard decisions are not required but where inputs just need to be sorted
to prioritize them for further action.

The speaker detection score represents an important part of the state-of-
the-art in speaker recognition and is well supported with evaluation tools such
as ROC/DET curves, which we analyse in chapter 7. In general, scores play an
important part in pattern recognition and machine learning, where the SVM
(support vector machine) classifier is a prototypical example of a recognizer
with non-probabilistic scores [1].

For multi-class problems, the raw recognizer outputs are also typically re-
ferred to as scores. But in this case it is less clear how to define the sense for
an uncalibrated score format or how to evaluate the goodness of such scores.
Multi-class score evaluation is discussed in chapter 8. The main subject of this
work is however the evaluation of calibrated scores.

Probabilities

Form 4, the probability, can be used in the same way as a score, but if well-
calibrated, can do more. For multi-class pattern recognition, the probability
generalizes in a straight-forward and unproblematic way to a probability dis-
tribution.

To make hard decisions with uncalibrated scores, the user needs to exercise
the recognizer to gain some experience of the behaviour of the score and to thus
learn where to put the thresholds. In contrast, given a well-calibrated proba-
bility distribution, the user can calculate risk expectation in a straight-forward
way and thus make minimum risk decisions with no previous experience of the
recognizer. The probabilistic output is in general more widely applicable than
the hard decision or the score. This idea is not new in pattern recognition,
see for example [2], where a method was proposed to transform uncalibrated
SVM scores into calibrated probabilities.

Although this form of output is not our final goal in this work, it is very
closely related to that goal and we will use the probability distribution format
extensively as an analysis tool. This format and its evaluation are analysed in
detail in chapters 2 and 3.
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Likelihoods

Form 5, the likelihood-ratio, can be more appropriate than the probability
form for certain types of two-class problems. Likewise, for some multi-class
problems, an output in the form of a set of class likelihoods is more appropriate
than a probability distribution over the classes. This form of recognizer output
is introduced in chapter 4.

Consider a spoken language recognizer, built to distinguish between the
eleven official languages in South Africa. The prior probability distribution
over these languages should be strongly dependent on where in the country
the speech is collected. A recognizer that gives its output as a set of likelihoods,
one for each of the eleven languages, would be more generally useful than one
which gives a posterior distribution over these languages. The likelihoods
supplied by the recognizer can be combined in a straight-forward way with a
prior supplied by the user1 via Bayes’ rule to produce the posterior.

The situation for speaker detection is similar. In an access control appli-
cation, the prior for the same-speaker hypothesis is high, while in a database
search, or monitoring application, the prior may be very low. The speaker
detector would be most generally useful if its output is in prior-independent,
likelihood-ratio form, so that the user may specify the applicable prior as
needed.

The proviso for such use, as in the case of the probability form, is that the
likelihoods should be well-calibrated. This naturally raises some questions:
What is the definition of well-calibrated? How does one tell by looking at a
likelihood or a probability that it is well-calibrated? Is calibration all that
matters?

Calibration of pattern recognizer outputs is an important part of the sub-
ject matter of this dissertation and will be discussed throughout. Below, we
give a brief intuitive introduction.

1.1.2 Accuracy, precision and calibration

Consider the example of two weather forecast sources: A predicts a maximum
of 40 degrees for tomorrow and B predicts 10 degrees. The next day, the
temperature barely reaches 5 degrees Celsius. Which forecaster was better?
The second appears to be closer to the actual temperature. However if we
observe both forecast sources for a few days, comparing their predictions to
the actual temperature, it becomes clear that A uses Fahrenheit and B uses
Celsius, so that A (at about 4.5◦C) was in fact more accurate on the day
in question. If Celsius is the agreed standard, then source A is not well-
calibrated, even though (after re-calibration to the standard scale) it may be
more accurate than source B.

1or installer, if the user prefers not to have to understand what a prior is
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An important lesson to remember from this example is that the calibration
problem of A could not be deduced by looking at a single forecast. (The
discrepancy between 40 and 5 was so big that the misunderstanding may have
been obvious. But if the temperature is around -40 where the two scales
intersect, then one would indeed need to observe the source for several days to
see whether Fahrenheit or Celsius gives a better fit to the actual temperature.)

Calibration and accuracy are both important. The same applies to prob-
abilistic forecasts or to probabilistic pattern recognition outputs. Below we
revisit the weather forecasting example to introduce precision, which makes
those forecasts probabilistic.

Precision

The temperature forecasts above were point estimates. If the forecaster wants
to acknowledge the uncertainty in the forecast, it may be stated, for example:
‘The maximum temperature tomorrow is estimated to be t±δ’. This is roughly
equivalently to an explicit probabilistic forecast of the form: ‘The probability
distribution for the maximum temperature tomorrow is normal with mean t
and variance σ2.’ The precision of the forecast increases as δ, or σ, is made
smaller.

Here t can still be judged as before by the criteria of calibration and ac-
curacy, but δ or σ is purely a matter of calibration. An inaccurate, precise
forecast source, or conversely, an accurate, imprecise source can both be con-
sidered to be badly calibrated.

Precision is built into categorical probability distributions

We used the temperature forecast example to introduce precision, but in the
type of recognizer output that is discussed in this work, the precision is not
specified as a separate parameter. We are interested in recognizing discrete
classes, not a continuous value like temperature.

Consider therefore the example of a weather forecast for the discrete events
of rain, or no rain, tomorrow. A probabilistic forecast is now just a single
number, the probability, p, for rain. This number indicates (i) which of the
two events is favoured (p > 0.5 favours rain) and (ii) the degree of precision of
the forecast. The maximum precision is when p = 0 or p = 1 and the minimum
precision is at p = 0.5, where neither event is favoured. In pattern recognition,
when there are more than two classes, a categorical probability distribution
over the classes includes the degree of precision in a similar way.

In the case of the temperature prediction, evaluating the quality of the
forecasts is done in the obvious way, because the true temperature is revealed
every day and one can do a straight-forward comparison between predicted and
actual temperature. In the case of the probability for rain, no ‘true’ probability
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is revealed the next day: it either rains or it doesn’t. How does one judge p?
This is the basic question that is addressed in this work.

1.2 Summary of solutions

In this work, we propose and analyse the use of proper scoring rules for the
evaluation of probabilistic pattern recognition outputs.

Background

Proper scoring rules were known at least since 1950, see [3] where the Brier
score was proposed for evaluating probabilistic weather forecasts. They are
now well-known in statistics [4, 5, 6, 7, 8]. Their use in pattern recognition and
machine learning [9, 10, 11, 1] and speech recognition [12] is mostly limited to
implicit application of the logarithmic scoring rule in discriminative training.
In [13] a family of proper scoring rules is explicitly associated with boosting
and other discriminative training techniques. In [14], the logarithmic scoring
rule is employed as an evaluation criterion for Gaussian process recognizers,
although it is not identified as a proper scoring rule. The logarithmic scoring
rule has been used in the guise of normalized cross-entropy (NCE), to evaluate
confidence in speech recognition [15].

Introduction of proper scoring rules to speaker and language
recognition

Proper scoring rules as an evaluation tool were introduced to the speaker
recognition field by the author in 2004 [16], followed by a journal paper in
2006 [17] and a book chapter [18], co-authored with David van Leeuwen. This
proposal was generalized to the multi-class case by the author in 2006 [19] for
language recognition and again, in 2010 for more general multi-class speaker
recognition problems [20].

Taking the proposed evaluation criterion a step further, the author em-
ployed it as a discriminative training criterion for speaker recognition, as de-
scribed in the journal paper [21], and also for language recognition as described
in [22, 23, 24].

This dissertation is a compendium of the material in the above publica-
tions, interleaved with detailed analysis of traditional speaker and language
recognition evaluation methods. There are two, as yet unpublished, proofs in
appendices C and D.

The remainder of this section is a summary of the contents and structure
of this dissertation.
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1.2.1 The NIST Speaker and Language Recognition
Evaluations

We use as a starting point for our proposed evaluation methodology, the series
of NIST Speaker Recognition Evaluations2 (SREs) and the NIST Language
Recognition Evaluations3 (LREs), which have served as a significant driving
force for the state-of-the-art in these fields in the last decade. For recent
publications describing them, see [25, 26]. The author has participated in 7
SREs and 3 LREs between the years 2000 and 2010.

In both SRE and LRE series, the evaluations are formed by exercising the
to-be-evaluated recognizers on a supervised evaluation database. The recog-
nizers submitted to evaluation are of form 3, which compute scores. The
scores themselves are analysed with secondary evaluation criteria, such as
DET-curves, but hard decisions of form 2 are also required to be explicitly
submitted. These hard decisions are evaluated with the primary evaluation
criterion, known as the detection cost function, which evaluates the goodness
of the decisions as minimum-expected-cost Bayes decisions. We analyse Bayes
decisions in detail in chapter 2 and discuss the specific forms used in the SREs
and LREs, respectively in chapters 7 and 8.

1.2.2 Evaluation by Bayes decision

NIST’s primary criteria in the SREs and LREs ask the recognizer for hard
decisions. We show this generalizes in a straight-forward way to a recipe for
evaluating probability distributions output by the recognizer. This is done by
simply shifting the responsibility of making hard decisions from the evaluee to
the evaluator and proceeding with evaluation as before.

For a given trial, the evaluee outputs a (posterior) probability distribution
for the to-be-recognized classes and the evaluator makes the Bayes decision
that minimizes the expected value of the agreed-upon decision cost function,
where the expectation is taken w.r.t. the submitted probability distribution.
These Bayes decisions are then evaluated just like the hard decisions were
evaluated before, with the same decision cost function.

However, as mentioned above, we really would like the recognizer to output
likelihoods, rather than posteriors. This is solved by also shifting the respon-
sibility of applying Bayes’ rule from the evaluee to the evaluator. For a given
trial, the recognizer outputs a likelihood for each class. Then the evaluator: (i)
applies Bayes’ rule, using an agreed-upon prior, to get a posterior probability
distribution over the classes, (ii) makes the Bayes decision, and (iii) evaluates
the decision, just as before.

If the evaluee makes hard decisions for submission to the traditional SRE
or LRE by applying steps (i) and (ii) to go from likelihood via posterior to

2See http://www.itl.nist.gov/iad/mig//tests/sre/.
3See http://www.itl.nist.gov/iad/mig//tests/lre/.

http://www.itl.nist.gov/iad/mig//tests/sre/
http://www.itl.nist.gov/iad/mig//tests/lre/
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decision, then the evaluation result of the new proposal and the traditional
recipe would be identical, so we seem not to have gained very much.

However, the evaluator can now go a step further. The evaluator can apply
more than one prior and perhaps also more than one cost function to the
submitted class likelihoods for each trial. In this way, the evaluator can sweep
the operating point and exercise the decision-making ability of the submitted
likelihoods over a range of applications, where each application is represented
by a prior and a cost function.

The result of such an operating point sweep may be represented graphically
to show the evaluation criterion at every evaluated operating point. Alterna-
tively, the evaluation criterion may be summed or integrated over the sweep
to provide an application-spanning, scalar, summary evaluation criterion.

This evaluation methodology is treated in depth in the rest of this work.
We analyse Bayes decisions in chapter 2, discuss the recognizer’s format for
submitting likelihoods in chapter 4 and motivate the recipe for empirical eval-
uation over a given supervised evaluation database in chapters 5 and 6.

One of our main results is that the integration over operating points, to
produce a scalar summary, can be achieved analytically by using a variety
of proper scoring rules. In chapter 7 we discuss the choice of proper scoring
rules for two-class problems and show that the logarithmic rule is a sensible
default choice. In chapter 8 we show that the logarithmic rule has this same
interpretation for the multi-class case.

1.2.3 Evaluation by proper scoring rule

Evaluation by Bayes decision as described above and evaluation by proper
scoring rule are two sides of the same coin. For any cost function, the cost of
the associated Bayes decision forms a proper scoring rule. Conversely, every
proper scoring rule can be interpreted as the cost of a Bayes decision made
with some cost function. We discuss proper scoring rules in detail in chapter 3.

Proper scoring rules come in two flavours, strict and non-strict. The proper
scoring rules induced by the above-described Bayes decision evaluation recipe
are of the non-strict variety. In other words, non-strict proper scoring rules are
closely associated with pattern recognition applications that require hard dis-
crete decisions. The strict proper scoring rules, which form better evaluators
for probabilistic pattern recognition outputs (or probabilistic weather fore-
casts) are not as obviously associated with applications. However, we show in
this work how integration over a continuous range of applications forms fami-
lies of strict proper scoring rules. This interpretation is introduced in chapter 3
and revisited in chapters 6, 7 and 8.

In particular, in this work and in our above-mentioned publications, we
single out and propose the logarithmic scoring rule as a general purpose eval-
uation tool with desirable properties. See section 1.3 for the response of other
researchers to this proposal.



CHAPTER 1. INTRODUCTION 9

1.2.4 Generalized information theory

Evaluating the goodness of a probability distribution by proper scoring rule is
equivalent to measuring the information content in the probability distribution.

In the pattern recognition context, the prior probability distribution can
be interpreted as the uncertain state of knowledge about the to-be-recognized
class of the input, before processing the input. The recognizer extracts from
the input some information about the class of the input and delivers that
information to its user in the form of class likelihoods. The user can then
combine the prior information with the information in the likelihoods, using
Bayes’ rule, to produce the posterior distribution. The recognizer is useful in
this role, provided its output is well-calibrated, in which case the posterior will
on average contain more information (be less uncertain) about the identity of
the to-be-recognized class.

In the case of the logarithmic scoring rule, the above concept of uncertainty
becomes Shannon’s entropy [27, 28], which then serves to quantify the change
in information content between prior and posterior. The decrease in entropy
(uncertainty) between prior and posterior equals the information that was
gained by processing the input through the recognizer.

However, as we explain in chapter 2, any proper scoring rule induces a
generalized entropy, which obeys the same key inequalities4 as Shannon’s en-
tropy. This interpretation shows that information can be viewed in a more
general sense than that defined by Shannon’s entropy. Generalized informa-
tion content can be interpreted as the cost-effective decision-making ability of
the data. If the likelihoods or posteriors are well-calibrated, then on average
they make better (lower cost) decisions than those made with the prior alone.

This generalized information-theoretic interpretation helps to give a deeper
understanding of the proposed evaluation methodology and in particular helps
to define the somewhat slippery concept of calibration.

1.2.5 Calibration analysis

As noted in the temperature forecasting example above, it is not obvious how
to define calibration of a probability distribution, if no ‘true’ or reference prob-
ability distribution is given for comparison. We put ‘true’ between quotes,
because there is no such thing. The posterior probability distribution, for the
class given the input data, is dependent on some generative probability model
which jointly models the classes and the data. The posterior changes as dif-
ferent models are assumed. In the context of evaluation, no such model is
given.

It is not the role of the evaluator to model the data, or indeed to build a
reference recognizer against which the evaluated recognizer can be compared.

4(i) Cross-entropy is lower bounded by entropy. (ii) Average posterior entropy is upper
bounded by prior entropy. (iii) The data processing inequality.
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This would make evaluation extremely difficult and would in any case give a
non-objective and ill-defined evaluation criterion.

Calibration analysis is achieved by a subtle shift in thinking. Given some
evaluation criterion, the evaluator can ask by how much this criterion can
be improved by re-calibrating the submitted likelihoods. The re-calibration
transformations are strongly constrained, so that the re-calibration improve-
ment is not overly optimistic and represents a result that the evaluee could
have reasonably obtained in the original submission.

The NIST SRE series uses exactly this principle to effect a calibration
analysis. The primary evaluation criterion, which evaluates submitted hard
decisions, is known as DCF. A secondary evaluation criterion, minDCF, is
computed from the submitted scores, by finding the score decision threshold
that minimizes DCF. The discrepancy between DCF and minDCF indicates
the quality of calibration of the original submission. We generalize this recipe
to work with submitted likelihoods, rather than with hard decisions. Calibra-
tion analysis is discussed in chapters 2, 5, 7 and 8.

1.2.6 Discriminative training

There is a close connection between evaluation and discriminative training. If
one adjusts parameters of the recognizer to optimize an evaluation criterion,
that is discriminative training. Bishop [1] defines a discriminative model as
a pattern recognizer that outputs posterior probability distributions, which
agrees with the class of recognizer subject to our evaluation methods.

To do discriminative training, one needs the following ingredients: (i) an ob-
jective function, (ii) a set of parameters to adjust, (iii) partial derivatives of the
objective function w.r.t. the adjustable parameters and (iv) an optimization
algorithm. In chapter 8, we show how to apply this recipe for discriminative
training of the fusion and calibration of both speaker and language recognition
systems. We choose the logarithmic scoring rule, which when applied to an
affine fusion and calibration transformation, reduces the training problem to
the well-known logistic regression, for which efficient optimization algorithms
are known in the literature.

Our logistic regression algorithm differs from the standard approach in that
we train the pattern recognizer to output likelihoods, rather than posterior
probabilities. This is explained in chapter 8. This makes our implementation
especially suitable for use in speaker and language recognition and we have
used it in our own submissions to NIST SREs and LREs, from 2005 to the
present. This implementation was made publicly available as a toolkit, see the
response in section 1.3 below.
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1.2.7 Comment on experiments

In this dissertation, we do not exhaustively reproduce the experimental results
of our above-mentioned publications. We prefer to concentrate on theoretical
analysis of the proposed evaluation methodology. We do present selected ex-
perimental results as examples throughout this work. For further experimental
results, the reader is referred to our publications5 and also to the experiments
others performed by using our discriminative training toolkit, as listed below
in section 1.3.

1.3 Response

The author’s proposals and work in this field have led to various responses,
mainly from the speaker and language recognition research community, of
which the most important are listed here.

Forensic speaker recognition. In response to the author’s publications [16,
17, 18], which proposed the logarithmic scoring rule as an evaluation
criterion, it has been advocated by Daniel Ramos for use in forensic
speaker recognition in his Ph.D. dissertation [29] and related publica-
tions [30, 31, 32, 33, 34]. Citations by other authors in forensic speaker
recognition include [35, 36, 37]. The logarithmic cost function is also
proposed in [38] for use in forensic glass fragment analysis.

NIST SRE and LRE. The logarithmic evaluation criterion proposed in [17]
was included as an alternative evaluation criterion in both of NIST’s
Speaker and Language Recognition Evaluations. See the evaluation
plans6 for SREs 2006, 2008 and 2010 and LREs 2007 and 2009.

Discriminative training. The publicly available FoCal Toolkit,7 our im-
plementation for discriminative training for fusion and calibration, using
the logarithmic cost function, has been used by many research laborato-
ries in their submissions for NIST’s SRE and LRE as well as for other
purposes. See, for speaker recognition [39, 40, 41, 42, 43, 44, 45, 46], for
language recognition [47, 48, 49, 50, 51], and also for automatic emotion
recognition [52, 53].

Research workshops. The author was invited to participate in two extended
research workshops to work on discriminative training in speaker recog-
nition. These were the JHU 2008 CLSP Summer Workshop in Baltimore,

5available online at http://niko.brummer.googlepages.com
6The evaluation plans for SRE are available at http://www.itl.nist.gov/iad/mig/

/tests/sre/ and for LRE at http://www.itl.nist.gov/iad/mig//tests/lre/.
7The FoCal Toolkit, coded in MATLAB, is freely available at: http://focaltoolkit.

googlepages.com.

http://niko.brummer.googlepages.com
http://www.itl.nist.gov/iad/mig//tests/sre/
http://www.itl.nist.gov/iad/mig//tests/sre/
http://www.itl.nist.gov/iad/mig//tests/lre/
http://focaltoolkit.googlepages.com
http://focaltoolkit.googlepages.com
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MD. USA [54] and the 2010 BOSARIS Workshop hosted by the Speech
Group at the Brno University of Technology.

Odyssey 2008. The author and his supervisor, Johan du Preez, jointly orga-
nized Odyssey 2008: The Speaker and Language Recognition Workshop
in Stellenbosh in January 2008.

Evalita 2009. The author was involved in the organizing of the Evalita 2009
speaker recognition evaluation track, and in particular, implemented all
of the evaluation procedures. See [55].

Research stay. Daniel Ramos spent three months in 2006 in Stellenbosch,
collaborating with the author as part of his Ph.D. study.

Seminar. The author was invited by the ATVS Group at the Universidad
Autónoma de Madrid to give a seminar talk on this subject in February
2008.8

1.4 Electronic version

For readers who prefer an electronic version of this document, with hot-linked
cross-references, see:
http://dl.dropbox.com/u/7377794/phd/msli.pdf

8The slides are available at http://arantxa.ii.uam.es/~jms/seminarios_
doctorado/abstracts2007-2008/20070226NBrummer.html.

http://dl.dropbox.com/u/7377794/phd/msli.pdf
http://arantxa.ii.uam.es/~jms/seminarios_doctorado/abstracts2007-2008/20070226NBrummer.html
http://arantxa.ii.uam.es/~jms/seminarios_doctorado/abstracts2007-2008/20070226NBrummer.html


Chapter 2

From Decision Theory to
Information Theory

In this chapter we show in detail how the theory of optimal Bayes decisions, as
applied to the pattern recognition problems of interest, leads to a generalized
information theory. We work from the assumption that pattern recognizers
are useful only in as far as they can be used to make cost-effective decisions
in the face of uncertainty. We show that the expected cost, or risk, associated
with such decisions forms a natural generalization of Shannon’s well-known
entropy [27]. This generalized entropy provides a useful and intuitively sat-
isfying way to quantify the amount of relevant information that a recognizer
can extract from its input and deliver to the user.

This decision-and-information-theoretic analysis forms the basis for deriv-
ing, motivating and understanding the evaluation methodology for assessing
the goodness of pattern recognizers that is proposed in this work. It also serves
to establish the vocabulary and notation in which everything that follows will
be expressed.

This chapter is largely a re-interpretation, in terms of pattern recognition,
of material in M.H. DeGroot’s book [56] on Bayes decisions, and of a tech-
nical report [57] by A.P. Dawid, which explored the generalized information-
theoretic interpretation of proper scoring rules. We also rely on the book [28]
by Cover and Thomas as a standard reference on information theory.

Original ideas in this chapter include: (i) The device, introduced in sec-
tion 2.2.2, which we call the observer. It makes explicit the fact that all the
probability distributions that we use in this work are conditional on some prob-
ability model. We do not work with the abstraction that there is an underlying
‘true’ probability distribution that produced the data. Our probability distri-
butions quantify what some ‘observer’ knows or assumes about the data. (ii)
The conclusion in section 2.3.3 that the optimal output, the observer’s poste-
rior distribution, is the most processed form of the relevant information in the
data, even though the data processing inequality shows that all processing can
only reduce and never increase the amount of relevant information.

13
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This chapter is organized as follows: In section 2.1 we show how the ex-
pected cost of Bayes decisions forms a generalized entropy measure. In sec-
tion 2.2 we apply generalized entropy to define our primary criterion for judging
the usefulness of pattern recognizers. In section 2.3 we examine how functions,
which are the basic building blocks of recognizers, affect information content
and which functions form optimal recognizers. Finally, in section 2.4, we in-
troduce our secondary evaluation criterion, called calibration.

2.1 Bayes decisions, proper scoring rules and

entropy

This work is about extracting useful information from speech. The setting is
the following:

• An input, x, is given to a pattern recognizer. In our context of interest,
x represents one or more utterances of speech, or processed versions of
these utterances such as sequences of feature vectors.

• There is a set of N contrastive propositions, each of which makes a state-
ment about the input x, but exactly one of which is true. In the canonical
speaker recognition problem N = 2 and in the canonical language recog-
nition problem N ≥ 2.

• Before processing x we don’t know which proposition is true, but this
uncertainty is quantified by a given prior probability distribution. The
information in the prior is independent of the information in the speech.
In this work, we are interested only in extracting information from the
speech and not from other sources. We will therefore consider the prior
(i.e. information from other sources) as given. We cannot ignore the
prior, because the amount of information that can be extracted from the
speech is dependent on the prior: If there is no prior uncertainty, then
no further relevant information can be extracted from the speech. More
generally, the amount of relevant information than can be extracted from
the speech cannot exceed the prior uncertainty. We therefore regard the
prior as a given parameter and analyse how the amount of information
that is extracted from speech varies as a function of the prior.

• The given input speech, x, is processed by a speaker or language rec-
ognizer in order to increase the information (or reduce the uncertainty)
about which proposition is true. The recognizer’s output is in the form
of a posterior probability distribution for the unknown proposition.

• By using the recognizer, we can potentially gain some benefit, or equiv-
alently avoid some cost, provided the recognizer is accurate enough.
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In this section we show that the expected benefit (or cost) incurred when
using the posterior to make recognition decisions is a general way to quantify
information and uncertainty. Shannon’s information measure is a special case,
induced by choosing a logarithmic cost function. Below we discuss these points
in more detail.

The reader may want to look ahead at figure 2.3, which summarizes the
agenda of this section. The notation in that figure will be defined in what
follows.

2.1.1 The set of propositions

Let the set of N contrastive propositions be denoted ΘN = {θ1, θ2, . . . , θN}.
Examples are:

• In the canonical speaker recognition problem a pair of speech utterances
is given. There are two contrastive propositions, θ1: The utterances were
spoken by the same speaker ; and θ2: The utterances were spoken by two
different speakers.

• In the canonical language recognition problem, one speech utterance is
given, which is known to belong to one of N ≥ 2 languages. Hence, there
are N contrastive propositions, θ1: The utterance is in language 1; θ2:
The utterance is in language 2; etc.

As is customary in pattern recognition, we shall also use the terminology that
input x is in class i, if proposition θi is true of x.

2.1.2 Probability distributions over the propositions

Let PN denote the set (simplex) in which categorical probability distribu-
tions for θ ∈ {θ1, θ2, . . . , θN} live. If q = (q1, q2, . . . , qN) ∈ PN , then qi ≥ 0,∑N

i=1 qi = 1, and qi = P (θi|q) denotes the probability for1 proposition θi. When
recognizing the propositions from speech input, the following probability dis-
tributions are of primary interest:

• The prior probability distribution for θ is denoted: π =
(π1, π2, . . . , πN) ∈ PN , the components of which are the prior proba-
bilities:

πi = P (θi|π) . (2.1)

1We follow the recommendation of Jaynes [7] to use the preposition for, rather than of.
The probability is not a property of the event. The probability is given by the distribution
q and different distributions give different probabilities for the same event.
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• The speaker or language recognizer is represented as a function, R, which
maps the input, x, and the prior to a posterior. This mapping is denoted
r = R(x,π), where r = (r1, r2, . . . , rN) ∈ PN is the posterior probability
distribution, the components of which are the posterior probabilities:

ri = P (θi|r) = P (θi|x,π,R) . (2.2)

2.1.3 Cost functions

Next, we employ the posterior, r, to do some useful work, namely to make deci-
sions. We start by introducing cost functions, which quantify the consequences
of decisions. Then we introduce Bayes decisions, which optimize expected con-
sequences. Finally, we analyse the properties of the expected consequences of
Bayes decisions to show that such expected consequences form a generalized
measure of uncertainty (or entropy), which forms a calculus of information
very similar in form to Shannon’s information theory.

We consider decisions where an action, a, from some set of actions A is cho-
sen. The outcome of a decision, a, is the pair, (a, θ), where θ is the proposition
that is really true. The consequence of the decision is C(a|θ), where C is a cost
function which maps outcomes to the real line. The cost function provides a
preferential ordering of outcomes—outcomes with low cost are deemed better
than outcomes with high cost.

Some examples may help to facilitate understanding.

Cost function examples

Perhaps the most natural form of cost function identifies the action set with
the proposition set: A = ΘN . The function C(θj|θi) is interpreted as the
cost of recognizing proposition θj, when θi is really true. The most familiar
example of this form is the zero-one cost, Cerr, expressed in terms of Kronecker
delta, as Cerr(θj|θi) = 1− δij. Here the outcome (θj, θi) when i 6= j is deemed
a recognition error and is penalized with a cost of 1, while the outcome (θi, θi)
is deemed a correct decision, which has zero cost.

However, the Bayes decision framework accommodates more general cost
functions, where the number of elements of the action set, A, can be different
from the number of propositions. Consider for example an automatic language
recognizer that pre-processes speech inputs in order to refer them to suitable
human agents for further processing. Assume the inputs may be in any of N
different languages (i.e. N propositions) and there are M different agents, each
with different language skills. In a small facility, with M multilingual agents,
it is possible that M < N . In a big facility, with multiple agents per language,
one could have M > N . Here the decision, a, takes the form of assigning one of
the M agents to the speech input. The cost function could penalize choosing
an agent that is not fluent in the true language of the input. Moreover, it
could give a larger penalty for choosing an agent that cannot even recognize
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which language it is. Our point here is that applications of a recognizer can
require a rich variety of cost functions that are significantly different from the
simple zero-one cost.

So far we have considered only hard decisions, where A has a finite number
of elements, but we can also accommodate continuous-valued decisions. In
fact, in this work we are particularly interested in soft decisions, in the form
of probability distributions, where A = PN . The canonical example is the
logarithmic cost, Clog : PN ×ΘN 7→ [0,+∞], where Clog(q|θi) = − log qi.

Cost function properties

We could alternatively and equivalently order outcomes with a utility function,
with the opposite sense, where higher values are better. In this work, we choose
to use cost rather than utility for two reasons: Expected cost generalizes error-
rates, which are familiar in pattern recognition. Moreover, expected cost of
Bayes decisions generalizes information-theoretic cross-entropy.

It will be shown later that we can assume without loss of generality, that
the cost function value is non-negative and that, for every θi ∈ ΘN , there is
at least one ‘best’ decision, which has zero cost:

min
a∈A

C(a|θi) = 0 . (2.3)

In the rest of this work (except in chapter 3 where we analyse this assumption),
we assume that this condition holds.

In what follows, we shall use the short-hand notation C(a|q) to denote
expected cost:

C(a|q) =
〈
C(a|θ)

〉
θ|q

=
N∑
i=1

qiC(a|θi) (2.4)

where qi = P (θi|q). (In places, we shall alternatively use the above triangular
bracket notation to indicate expectation w.r.t. the probability distribution in
the bracket subscript.)

Now, let A∗q ⊆ A denote the subset that minimizes expected cost:

A∗q = arg min
a′∈A

C(a′|q) =
{
a ∈ A

∣∣∣C(a|q) = min
a′∈A

C(a′|q)
}
. (2.5)

We require for every well-defined cost function that A∗q be non-empty for every
q ∈ PN .

A cost function for which A∗q has a single element for every q is denoted
strict. If it has multiple elements for some q, then the cost function is non-
strict. For example, logarithmic cost is strict and zero-one cost is non-strict.

For notational convenience in what follows, we shall require that for every
cost function there is an auxiliary tie-breaking function, b, that selects a unique
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element from every A∗q. We require that b is defined for every A∗q and that
b(A∗q) ∈ A∗q. Of course, for strict cost functions the tie-breaker is trivial.

The details of the tie-breaking function are unimportant in what follows, it
is just a mechanism to simplify our notation for Bayes decisions. We use the
tie-breaking function to define the special argmin* operator, which returns a
unique minimizing argument:

argmin*
a∈A

C(a|q) = b(A∗q) . (2.6)

Of course, we have:

C
(
argmin*

a∈A
C(a|q)

∣∣q) = min
a∈A

C(a|q) . (2.7)

2.1.4 Bayes decisions

The Bayes decision mechanism works as follows: It cannot always choose a
zero cost outcome, because the true proposition θ is unknown. Instead it uses
a given probability distribution q = (q1, q2, . . . , qN) for θ, which enables the
computation of C(a|q) =

∑N
i=1 qiC(a|θi), the expected cost of choosing a, for

every a ∈ A. A Bayes decision is any action that minimizes the expected cost,
i.e. any a ∈ A∗q.

For general cost functions, a Bayes decision is a minimum-expected-cost
decision. For zero-one cost, it is also a minimum-probability-of-error decision,
and if q is a posterior distribution, then it may also be called a maximum-
posterior (MAP) decision.

To see that the Bayes decision is not necessarily unique, consider the ex-
ample of the non-strict zero-one cost and q1 = q2 = · · · = qN , in which case
every a ∈ A is a minimizer. In contrast, the logarithmic cost, Clog(p|θ), is
strict, because q = arg minp

∑
−qi log pi.

Next, we ask the natural question:

How good are the Bayes decisions made with q and therefore how
good is the probability distribution q for the purpose of making
decisions?

In the rest of this section we analyse in general the cost of Bayes decisions.
Then in the next section we specialize to the case where posterior probability
distributions are used to make Bayes decisions.

2.1.5 Bayes cost is a proper scoring rule

In what follows, the Bayes decision itself, a ∈ A∗q, is not important, but the
cost of the outcome of this decision is of primary interest. In order to express
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this cost as a function of q, we need to choose a unique Bayes decision, denoted
a∗q, for every q and we do this with argmin*:

a∗q = b(A∗q) = argmin*
a

N∑
j=1

qjC(a|θj) . (2.8)

The cost of the outcome, (a∗q, θ), of this decision is denoted with the special
notation C∗:

C∗(q|θ) = C(a∗q|θ) . (2.9)

Notice that (2.9) transforms any cost function C, defined on A×ΘN , to a new
cost function C∗, defined on PN ×ΘN . If A has a finite number of elements,
then a ∈ A is termed a ‘hard decision’, while C∗ assigns costs to ‘soft decisions’
in the form of probability distributions, q ∈ PN . This special cost function is
known as a proper scoring rule. An explanation of why it is called ‘proper’ is
deferred to chapter 3, where proper scoring rules are discussed in more detail.

For non-strict cost functions (such as zero-one cost), the tie-breaking func-
tion b influences the value of C∗, for some values of q. To see this, consider
two-class zero-one cost, for ΘN = {θ1, θ2}, where Cerr(θj|θi) = 1 − δij. Now
C∗err(q|θ1) = 1 − u(q1 − 0.5) and C∗err(q|θ2) = u(q1 − 0.5), where u denotes
the unit step function. However, the value of u(0) and of C∗err(q1 = 0.5|θ) is
undefined. If we now let b({θ1, θ2}) = θ1, then u(0) = 1 and the step func-
tions are right-continuous. Choosing b({θ1, θ2}) = θ2, gives left-continuous
step functions.2

For strict cost functions (such as logarithmic cost), the value of C∗ is de-
termined without consulting the tie-breaker, since A∗q has a unique element
for every q.

Condition (2.3) still holds for C∗, because C∗(qi = 1|θi) = minaC(a|θi) = 0.
Figure 2.1 shows two examples of proper scoring rules, for N = 2. Notice

that C∗(q1|θ1) is decreasing, because when θ1 is true, then a larger q could
make lower cost decisions. Similarly, when θ2 is true, then the scoring rule
is increasing, because then a smaller q could make lower cost decisions. A
probability distribution q is judged by a proper scoring rule according to the
cost of the decisions that could be made with the distribution.

Next, we analyse further properties of proper scoring rules in terms of their
expected values.

2In fact, we can construct a similar proper scoring rule defined in terms of a unit step
with an arbitrary value at u(0). Let the decision be compound: (θj , θk) ∈ A = ΘN ×ΘN .
With 0 ≤ α ≤ 1, define Cα

(
(θj , θk)|θi

)
= αCerr(θj |θi) + (1 − α)Cerr(θk|θi) and choose the

tie-breaker as b(A) = (θ1, θ2). Then C∗α(q|θ1) = 1− u(q1 − 0.5) and C∗α(q|θ2) = u(q1 − 0.5),
where u(0) = α.
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Figure 2.1: The proper scoring rules C∗log and C∗err, where q = (q, 1− q).

2.1.6 Bayes risk is generalized entropy

The expected cost of the outcome of a Bayes decision is known as the Bayes
risk, denoted as:

C∗(q|p) =
〈
C∗(q|θ)

〉
θ|p

=
N∑
i=1

piC
∗(q|θi) (2.10)

where C∗(q|θ) is the above-defined cost of the Bayes decision made with q
and where in general the expectation over θ is w.r.t. some other probability
distribution, p ∈ PN .

Below, we consider in more detail two variants of Bayes risk:

• The special case, where p = q, forms a generalized entropy function.

• The general case, where p may be different from q, forms a generalized
cross-entropy.

Generalized entropy

The expected cost of a Bayes decision, made with probability distribution q,
where the expectation is that of the maker of the decision is the generalized
entropy, denoted3 with the short-hand C∗(q) = C∗(q|q):

C∗(q) = C∗(q|q) = C(a∗q|q) = min
a∈A

C(a|q) . (2.11)

3The reader may feel burdened at this stage with notation overload. However compare
it to the traditional Cover and Thomas notation for information theory, which has separate
notations for entropy, cross-entropy, KL-divergence and mutual information. We avoid in-
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Notice from the form of rightmost expression that C∗(q) is not dependent on
the tie-breaker, b. This is because if there are multiple Bayes decisions for a
given q, then all of them have the same expected cost under q.

Generalized entropy has the following properties which follow directly from
definition (2.11), and which help to make it an intuitively satisfying measure
of the uncertainty about θ when q is given:

• It is non-negative, C∗(q) ≥ 0.

• It is zero at every vertex of PN : C∗(qi = 1) = 0, for every 1 ≤ i ≤ N .
When qi = 1, then q leaves no uncertainty about θ and zero-expected-
cost decisions can be made.

• It is a concave function.4 It is therefore continuous and has a maximum
somewhere on the simplex. We shall use the concavity below to derive
further properties.

• Generalized entropy is the link that establishes equivalence between
Bayes decisions and proper scoring rules. We elaborate in chapter 3,
where we discuss proper scoring rules.

Figure 2.2 shows two examples of (generalized) entropy functions: For zero-
one cost, C∗err(q) is the probability of error of the minimum-probability-of-
error Bayes decision: C∗err(q) = mini(1 − qi). For logarithmic cost, C∗log(q) =∑N

i=1−qi log qi is the canonical entropy function of Shannon.

Generalized cross-entropy

Although our Bayes decision is made with q, the goodness of this decision may
be judged by an independent observer who has a different state of knowledge
about which proposition may be true. If the observer knows the true propo-
sition θ with certainty, then the cost of the Bayes decision made with q is
C∗(q|θ). If however, the observer also has uncertainty about θ, in the form of
a different probability distribution p ∈ PN , then the observer may judge q via
the generalized cross-entropy of q, given p, denoted C∗(q|p):

C∗(q|p) = C(a∗q|p) . (2.12)

The salient property of generalized cross-entropy follows by comparing
right-hand-sides of (2.11) and (2.12):

C∗(q|p) ≥ C∗(p|p) = C∗(p) (2.13)

from which we note:

troducing notations for generalized divergence and mutual information, preferring to express
everything in terms of entropy or cross-entropy. In the next subsection, we will summarize
the notation introduced in this section with graphical aids.

4For any p,q ∈ PN and any 0 ≤ t ≤ 1, C∗(tp + (1− t)q) ≥ tC∗(p) + (1− t)C∗(q).
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Figure 2.2: Generalized entropy functions C∗log and C∗err, where p = (p, 1− p).

• If your state of knowledge about θ is the distribution p, then the best
Bayes decisions you could make are those made with p—and not with
some other distribution.

• While generalized entropy C∗(q) is concave and therefore bounded from
above, the generalized cross-entropy C∗(q|p) can be unbounded above for
certain cost functions. For example, C∗log(qi = 0|pi = 1) = − log(qi) =∞.
A decision made in good faith, given some q, can nevertheless have
consequences that are arbitrarily bad.

Interpretation as a measure of information

In Shannon’s information theory, a decrease in entropy is an increase in the
amount of information. Here our categorical probability distributions for the
unknown proposition carry information about the proposition. The generalized
entropy quantifies that amount of information. If we change a probability
distribution, for example by going from prior to posterior via Bayes’ rule,
there is an associated change in the information about the proposition, which
is quantified by the change in the entropies between the two distributions.

Although we use the term information everywhere, we do not intro-
duce a notation for quantifying information. Because of the relationship
∆information = −∆entropy, such a notation would be redundant and we
prefer to express our equations in terms of entropy.
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2.1.7 Bayes decision summary

This section is summarized in figure 2.3. The cost of a Bayes decision is a
proper scoring rule. The expected value of a proper scoring rule, or Bayes
risk, forms a generalized entropy measure. Generalized entropy measures the
uncertainty of a given probability distribution as the risk of making decisions
with this probability distribution.

Generalized entropy is defined in terms of some cost function. When this
cost is logarithmic cost, then the resultant entropy is the canonical Shannon’s
entropy.

proper scoring rule: 
cost of Bayes decision

cost

C*(q) = C*(q|q)

entropy

C(a|θ)

C*(q|p)

expectation

cross-entropy

C(a|q)

C*(q|θ) = C(a*|θ)

P(θ|q)

a*

P(θ|q)P(θ|p)

← expected costs of Bayes decision →

expected 
cost

Bayes decision:
minimizes 
expected cost

Figure 2.3: Summary of section 2.1: From cost function, via Bayes decision, to
proper scoring rule, to generalized entropy. C(a|θ) is the cost of having made decision
a, when it turns out that θ is the true class. Expectation and minimization of cost
define the quantities of interest. The main result is C∗(q|p) ≥ C∗(p).

2.2 Posterior cross-entropy

In this section, we return to our agenda of analysing the usefulness of the
information extracted from speech by a recognizer.

Our tool is still the expected cost of making Bayes decisions, but now
these decisions are made with posterior distributions. Since the posterior-
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distributions are data-dependent, we now have to extend our analysis to in-
clude expectations over the data. The resultant expectation is a generalized
posterior cross-entropy.

Below we discuss the recognizer in more detail; introduce a new role player
called the observer ; derive posterior cross-entropy from posterior Bayes risk
and finally analyse its basic properties.

Again, the reader may want to look ahead at figure 2.4, which summarizes
this section. The notation in that figure will be defined in what follows.

2.2.1 The recognizer

Let x ∈ X denote the input to the recognizer. Here x represents one or
more utterances of speech—or processed versions thereof, such as sequences of
feature vectors. The goal of the pattern recognizer is to recognize which one
of the N propositions {θ1, θ2, . . . , θN} is true for the given input data x ∈ X .

To be generally applicable in the face of uncertainty, our analysis will show
that the output of the recognizer should be in the form of a posterior proba-
bility distribution over the propositions.

In addition to x, a further input, π, namely a prior probability distribution
over the propositions is given. We regard the prior as a variable input and not
as a fixed part of the pattern recognizer. The pattern recognizer is therefore
a function R : X × PN 7→ PN , where PN is the simplex where categorical
probability distributions over the N propositions live. We denote the function
output as r = (r1, r2, . . . , rN) = R(x,π), so that:

ri = P (θi|r) = P (θi|x,π,R) . (2.14)

It is worth emphasizing that the recognizer R gives only the posterior for θ.
It does not specify any probability distributions for x, so that in the general
case, distributions of the form P (x|π,R) or P (x|θ,R) are not defined. In the
special case where the recognizer uses a fully specified generative model, such
distributions for x would be defined, but we want to be able to analyse a more
general class of recognizers.

2.2.2 The observer

Thus far in our analysis we have worked only with expectations over θ. In
what follows, we shall also need to express expectations over x, for which we
shall need probability distributions for x.

For this purpose, we introduce the concept of an independent observer,
denoted O. The only purpose of this new role player is to have a probability
distribution for x of the form P (x|θi,O), for every i = 1, . . . , N .

In what follows, we shall always analyse recognizer performance from the
point of view of an observer. In this chapter, we treat the case of a general,
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unspecified observer. In chapter 3, we let the recognizer observe itself as a
mechanism for analysing the key properties of proper scoring rules. In contrast,
in chapter 5, we construct a special independent observer called the evaluator,
which observes and thereby evaluates the recognizer.

The observer’s posterior

Notice that the observer’s distribution P (x|θ,O) also determines the observer’s
posterior, P (θ|x,π,O). In analogy to the recognizer’s posterior, R(x,π), we
define5 the function OX(x,π) which maps x to the observer’s posterior distri-
bution:

p = (p1, p2, . . . , pN) = OX(x,π),

pi = P (θi|p) = P (θi|x,π,O) =
πiP (x|θi,O)∑N
j=1 πjP (x|θj,O)

.
(2.15)

2.2.3 Posterior Bayes risk

We now have the tools in place to express the expected cost of using the
recognizer’s posterior to make Bayes decisions. As shown in section 2.1.5, when
proposition θ is true for x, the cost of the Bayes decision that was made (before
knowing the true proposition) by using the recognizer’s posterior, r = R(x,π),
is given by the proper scoring rule C∗(r|θ). The expected value of this cost as
seen by an observer O, is the posterior Bayes risk, denoted C̄(R|O). It can
be expressed as:

C̄(R|O) =
〈
C∗(R(x,π)|θ)

〉
x,θ|�,O

(2.16)

=
N∑
i=1

πi

〈
C∗(R(x,π)|θi)

〉
x|θi,O

(2.17)

where the expectation is w.r.t. the joint distribution for θ and x, factored as:
P (θi, x|π,O) = πiP (x|θi,O).

Although not explicit in the notation C̄(R|O), it should be understood that
it is dependent on the prior π, as well as on the details of the cost function
C. In later chapters, when we consider varying the prior and cost function, we
shall use a more explicit notation.

The posterior Bayes risk C̄(R|O) will play a central part in what follows,
because it forms the basis of our evaluation criterion for the goodness of pattern
recognizers. Below, we examine some of its properties.

5The subscript inOX serves two purposes. First, it distinguishesOX , andO. The former
is the function that outputs the posterior. The latter is the conditioning for P (x|θ,O).
Secondly, it distinguishes OX from other similar observer’s posteriors that we shall define
later.
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2.2.4 Posterior Bayes risk is posterior cross-entropy

Now we express C̄(R|O) in a different way by factoring the joint distribu-
tion the other way round: P (θi, x|π,O) = P (θi|x,π,O)P (x|π,O), where
P (θi|x,π,O) is the observer’s posterior and where the marginal for x is
P (x|π,O) =

∑N
i=1 πiP (x|θi,O).

By using OX(x,π), defined in (2.15), for the function that computes the
observer’s posterior, we can now express the posterior Bayes risk in terms of
expected cross-entropy between observer’s and recognizer’s posteriors:

C̄(R|O) =
〈
C∗
(
R(x,π)|OX(x,π)

)〉
x|�,O

. (2.18)

In analogy to the notation in Cover and Thomas [28], we denote this expecta-
tion as the generalized posterior cross-entropy.

In summary, posterior Bayes risk, C̄(R|O), is also posterior cross-entropy.
This identity turns out to be very useful below in determining some of the
properties of Bayes risk.

2.2.5 Minimum posterior cross-entropy is posterior
entropy

By applying (2.13) for every x in (2.18), we find that if we minimize C̄(R|O)
by considering all possible functions of the form R : X × PN 7→ PN , then a
global minimum (not necessarily unique) is given by the observer’s posterior
function OX . The minimum posterior cross-entropy is therefore:

C̄(OX |O) =
〈
C∗
(
OX(x,π)

)〉
x|�,O

. (2.19)

Again, in analogy to Cover and Thomas, we denote the expected value of the
entropy of the posterior simply as the generalized posterior entropy, for which
we adopt the short-hand C̄(OX). The far-reaching result of this subsection is
now summarized as:

C̄(OX) = C̄(OX |O) ≤ C̄(R|O) . (2.20)

2.2.6 Summary of generalized entropy notation

At this point, a summary of our notation defined so far may help the reader:
C∗(q|p) is cross-entropy and C∗(p) = C∗(p|p) is entropy, when categorical

distributions p and q are given. In particular, we shall refer to C∗(π) as the
prior entropy.

C̄(R|O) is posterior cross-entropy and C̄(OX) = C̄(OX |O) is posterior
entropy. These are the expected entropies of the outputs of the functions
R and OX , where the expectation is conditioned on O. Figure 2.4 gives a
graphical summary of posterior entropy.
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Figure 2.4: Summary of section 2.2: The class prior, π, is given. An observer,
O, additionally defines class-conditional distributions for the data. This forms a
complete generative model which defines not only (i) the expected value of any
function of the data, but also (ii) the observer’s posterior. The expectations of
interest are of the costs, C∗, of making Bayes decisions with the recognizer’s or
observer’s posterior. The main result is C̄(R|O) ≥ C̄(OX |O) ≤ C∗(π), where
C∗(π) is the cost of making Bayes decisions with the prior alone.

2.2.7 Maximum posterior entropy is prior entropy

If we use the observer’s posterior to make decisions, these decisions are on
average at least as good as those made with the prior:

C̄(OX) ≤ C∗(π) (2.21)

or posterior entropy cannot exceed the prior entropy.

Proof. This proof is based on [57]. Note that the expected value of the poste-
rior, OX(x,π), is just the prior:〈

OX(x,π)
〉
x|O,�

= π (2.22)
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and by using Jensen’s inequality and the concavity of C∗(q):

C̄(OX) =
〈
C∗
(
OX(x,π)

)〉
x|�,O

≤ C∗
(〈
OX(x,π)

〉
x|�,O

)
= C∗(π)

(2.23)

which proves (2.21).

2.2.8 Interpretation via mutual information

The entropy difference C∗(π) − C̄(OX) forms a useful definition of the gen-
eralized mutual information between x and θ. Mutual information quantifies
the relevant information about θ that the observer sees in x. In the case of
logarithmic cost, this definition agrees with the classical definition, as given
for example by Cover and Thomas [28].

Equation (2.21) and the non-negativity of our cost functions show that the
mutual information is bounded between 0 and the prior entropy, C∗(π).

For reasons noted above, we do not provide a notation for mutual infor-
mation. Moreover, we will find that we will not be able to do meaningful
practical measurement of mutual information. This is explained in chapter 5.
In contrast, we will be making practical measurement of quantities that can
be interpreted as generalized cross-entropy.

2.2.9 Posterior cross-entropy summary

In this section, we defined the posterior Bayes risk, C̄(R|O), which we will
use in the rest of this work as the basis for our evaluation criterion for pattern
recognizers.

Posterior Bayes risk may be expressed as (2.17), which as we will show
in chapter 5, is useful for deriving a practical evaluation recipe. However, it
also has the alternative formulation of (2.18), as generalized posterior cross-
entropy. This formulation proved useful in this section for deriving some im-
portant properties of this evaluation criterion, which we summarize below.

C̄(R|O) is the observer’s expectation of the cost of making Bayes deci-
sions with a recognizer R. C∗(π) is the expected cost of making Bayes deci-
sions using the prior alone. A recognizer may therefore be deemed useful if
C̄(R|O) ≤ C∗(π). By combining (2.20) and (2.21), we find:

min
R

C̄(R|O) = C̄(OX |O) ≤ C∗(π) (2.24)

which shows that a useful recognizer exists for every cost function, C, and
every prior, π.

In the next section, we make further use of the posterior cross-entropy
interpretation to demonstrate that there exist also other useful recognizers,
which are not as theoretically optimal as OX , but which can be much easier
to realize in practice.
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2.3 Data processing

In the previous section we showed that the best recognizer, from the point of
view of the observer, is the one that computes the observer’s posterior OX . We
also showed thatOX is useful in the sense that the expected cost of its decisions
is no greater than the expected cost of using the prior to make decisions.

Here we show that other useful recognizers also exist. The search for other
useful recognizers is important, because the ideal recognizer OX is in general
not available, for two reasons:

• Usually P (x|θ,O) (which defines OX) is not available.

• Even if P (x|θ,O) were available, the computational complexity to im-
plement OX may be prohibitive.

We therefore examine here the consequences of processing the input data, x,
not via OX(x,π), but via some other function of x.

The results of this section will further provide us with the tools to analyse
a secondary evaluation criterion, namely calibration, that will be introduced
in the next and final section of this chapter.

2.3.1 Statistics of the data

A function S(x) that processes x in order to infer the value of θ is called a
statistic of x, for θ. The key to analyse the effect of data processing with S(x)
is the observer’s posterior, given the output of S(x).

Posteriors given statistics

We have already defined the observer’s posterior OX(x,π), which can be
viewed as a function of the identity statistic, x = X(x).

We now generalize this to other statistics. Let s = S(x), where S is some
statistic of x. Then the observer’s conditional distributions for s may be
written in terms of the Dirac delta, δ, as:

P (x, s|θi, S,O) = P (s|S, x)P (x|θi,O) = δ
(
s− S(x)

)
P (x|θi,O), (2.25)

P (s|θi, S,O) =

∫
X
P (x, s|θi, S,O) dx (2.26)

which in turn defines the observer’s posterior, given s as:

P (θi|s,π, S,O) =
πiP (s|θi, S,O)∑N
j=1 πjP (s|θj, S,O)

. (2.27)

In analogy to OX , we now define the function OS(s,π) as one that outputs
the posterior distribution with components as defined in (2.27).
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Note on expectation

Let f(s) be some function of s, then (see e.g. [56]) for s = S(x):〈
f(s)

〉
s

=
〈
f
(
S(x)

)〉
x
. (2.28)

(To see this, define the LHS in terms of (2.26) and integrate out s, which is
trivial because of the Dirac delta.) We shall make use of this fact several times
in this work—the first two applications follow in the next two equations below.

Posterior entropy

In analogy to the posterior entropy C̄(OX), we now define the posterior entropy
of OS, for which we use short-hand C̄(OS):

C̄(OS) = C̄(OS|O) =
〈
C∗
(
OS(s,π)

)〉
s|�,O

=
〈
C∗
(
OS(S(x),π)

)〉
x|�,O

.
(2.29)

As we show below, C̄(OS) has properties analogous to C̄(OX).

Minimum posterior cross-entropy is posterior entropy

Consider a recognizer, R, which processes the data only via some statistic
s = S(x), so that R(x,π) = RS

(
S(x),π

)
. The posterior Bayes risk, or

posterior cross-entropy, for this recognizer is:

C̄(RS|O) =
〈
C∗
(
RS

(
S(x),π

)∣∣∣θ)〉
x,θ|�,O

=
〈
C∗
(
RS(s,π)

∣∣θ)〉
s,θ|�,O

=
〈
C∗
(
RS(s,π)

∣∣OS(s,π)
)〉

s|�,O
.

(2.30)

As before, applying (2.13) for every s, we find:

C̄(RS|O) ≥ C̄(OS|O) = C̄(OS) . (2.31)

Since RS is an arbitrary function of s, this shows that the best recognizer of
the form RS

(
S(x),π

)
, is the observer’s own posterior, OS

(
S(x),π

)
.

Maximum posterior entropy is prior entropy

Here we show that OS is also a useful recognizer:

C̄(OS) ≤ C∗(π) . (2.32)

Proof. By making use of (2.28), we can re-use the proof of (2.21).
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The benefit of a statistic

In section 2.2 we demonstrated the existence of at least one useful recognizer,
OX(x,π). Here we have just shown that ‘pre-processing’ the input x with
some statistic, s = S(x), can give another useful recognizer, OS(s,π). This
can be exploited by designing the statistic, S, to give its output in a form that
is more easily modelled than the original x. Then it may be easier for the
recognizer, RS

(
S(x),π

)
, to approximate OS

(
S(x),π

)
. In speech processing,

the feature extractor may be understood in this way.
However, there may be a downside to using S(x), rather than the original

x. By computing S(x), some relevant information that was present in x may
be irretrievably lost. This is made explicit in the form of the data processing
inequality.

2.3.2 The generalized data processing inequality

The data processing inequality is traditionally stated in terms of mutual in-
formation, see e.g. Cover and Thomas [28]. As mentioned above, mutual
information is just prior entropy minus posterior entropy and we prefer to give
an equivalent statement in terms of posterior entropy.

The generalized data processing inequality states, when s = S(x) and
OX(x,π) and OS(s,π) are the observer’s posteriors given respectively x and
s, then the posterior entropies are related as:

C̄(OX) ≤ C̄(OS) . (2.33)

This means that the best decisions the observer could make using s as input
cannot have better expected cost than the best decisions the observer could
make by using x as input. Equivalently, the relevant information in s cannot
exceed that in x.

Proof. This proof of (2.33) is based on [57]. Since s is a function of x, θ is
conditionally independent of s, given x, or P (θi|x, s,π,O) = P (θi|x,π,O).
We can use this to show the following relation between the two posteriors:〈

P (θ|x,π,O)
〉
x|s,�,O

=

∫
X
P (θ|x,π,O)P (x|s,π,O) dx

=

∫
X
P (θ|x, s,π,O)P (x|s,π,O) dx

=

∫
X
P (θ, x|s,π,O) dx

= P (θ|s,π,O)

(2.34)

or in short-hand:〈
OX(x,π)

〉
x|s,�,O

= OS(s,π) . (2.35)
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Again, we use Jensen’s inequality and the concavity of C∗(q):〈
C∗(OX(x,π))

〉
x|s,�,O

≤ C∗
(〈
OX(x,π)

〉
x|s,�,O

)
= C∗(OS(s,π))

(2.36)

and then take the expectation w.r.t. s on both sides of the inequality:〈
C∗(OX(x,π))

〉
x|�,O

≤
〈
C∗(OS(s,π))

〉
s|�,O

(2.37)

which by definitions (2.20) and (2.29) proves (2.33).
Finally, we ask the devil’s advocate question: If processing the data can-

not create information, and has the potential to destroy information, why do
we process the data? The answer is that we need to compute the posterior
OX(x,π), or at least some approximation R(x,π), in order to be able to uti-
lize the information in the data. In fact, as we show below, OX(x,π) is the
most processed form of the relevant information in x.

2.3.3 The posterior is minimal sufficient

Any function S(x) can be denoted a statistic of x. Here we give the conditions
for a statistic to be a sufficient statistic and a minimal sufficient statistic [58,
59].

As before, let s = S(x), and let respectively OX(x,π) and OS(s,π) denote
the observer’s posteriors for θ, given x and given s. The statistic S is a
sufficient statistic[56] of x for θ, if for every x and π:

OX(x,π) = OS(S(x),π) . (2.38)

A sufficient statistic can therefore be used to make decisions which are as good
as those made via the original data. Trivially, OX(x,π) is a sufficient statistic
of x, for θ, because it is the posterior that defines sufficiency.

A sufficient statistic is minimal sufficient if it is a function of every sufficient
statistic. That is, a sufficient statistic M(x) is minimal sufficient, if for every
sufficient statistic s = S(x) there exists some function g(s), so that M(x) =
g(S(x)).

We now show that OX(x,π) is a minimal sufficient statistic of x for θ, by
choosing the function g, such that g(s) = OS(s,π). Definition (2.38) shows
that if S(x) is sufficient, then OX(x,π) = g(S(x)). Since S(x) is arbitrary,
the posterior OX(x,π) is a function of every sufficient statistic S(x) and is
therefore minimal sufficient.

Our point is that since OX(x,π) is a function of every sufficient statistic,
it is at least as much processed as any other sufficient statistic and is therefore
the most processed form of the relevant information in x.
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2.3.4 Invertible functions preserve information

We conclude this section by pointing out that statistics can be partitioned
into equivalence classes, where all statistics in an equivalence class extract the
same amount of relevant information. Two statistics are equivalent if one can
be derived from the other via an invertible transformation.

Let s = S(x) and z = Z(x) be two statistics of x, with associated posteriors
OS(s,π) and OZ(z,π). Further, let there be a bijection6 f from the range of
S to the range of Z, such that f(S(x)) = Z(x) and f−1(Z(x)) = S(x), for
every x ∈ X . Then the posteriors are equal and so is the relevant information
about θ extracted by each statistic:

OS
(
S(x),π

)
= OZ

(
Z(x),π

)
(2.39)

and

C̄(OS) = C̄(OZ) . (2.40)

2.3.5 Data processing summary

In summary of this section, suppose that x = X(x), s = S(x) = f−1(Z(x))
and z = Z(x) = f(S(x)), then the best possible recognizers (according to the
observer), that take respectively x, s and z as their inputs are OX , OS and
OZ . The expected costs of using these recognizers are related as:

C̄(OX) ≤ C̄(OS) = C̄(OZ) ≤ C∗(π) (2.41)

where C∗(π) is the expected cost of decisions made with the prior alone. Thus
all of the observer’s posteriors, OX , OS and OZ are useful recognizers in the
sense that they make decisions with lower expected cost than decisions that
can be made with the prior.

Processing with non-invertible functions can reduce the relevant informa-
tion content (equivalently the decision making ability). Processing with in-
vertible functions preserves the information content.

Even though processing can destroy relevant information, processing is
unavoidable. In order to optimally use the information in data, the data has
to be processed to compute the posterior. In fact we showed that the posterior
is the most processed form of the relevant information.

2.4 Calibration

The bulk of this chapter was dedicated to deriving and analysing posterior
Bayes risk as basis for our primary evaluation criterion. In this section, we
introduce calibration as a secondary evaluation criterion.

6See appendix A, which explains the difference between invertible and bijective.
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In section 2.3, we analysed how processing the data through a statistic
affects the information content, or decision-making ability, of the data. In this
section, we regard the given recognizer, R, as a statistic and then ask what
may be gained by further processing of the recognizer’s output.

The recognizer’s output is already formatted to be application-ready, in
the form of a posterior probability distribution. We define a calibration trans-
formation as the further processing of the recognizer’s posterior, to produce
another, hopefully better, version of the posterior. The calibration transforma-
tion essentially treats the original posterior merely as a statistic (or a feature)
and then computes the new posterior, given this statistic.

The calibration transformation mechanism allows us to define calibration as
a criterion of the goodness of the original recognizer: If the original recognizer
cannot be improved by such transformation, then we say the calibration of the
original recognizer is good.

The term calibration can be used in a second, related sense, namely as the
act of trying to improve the calibration criterion.

In order to use calibration as a practical criterion of recognizer goodness,
we need a more precise definition. A candidate for this definition, which we
analyse below, is what is known in the literature as the calibration-refinement
decomposition. Unfortunately, this definition, via its immediate intuitive ap-
peal, led this work into an extended wild-goose chase. Ironically, it was the
inspiration for the title of this dissertation, but it was also the most signifi-
cant impediment to its completion. The problem lay in trying to interpret the
practical mechanism for computing a calibration criterion which is proposed
later in this dissertation, as an instance of this decomposition.

The key to finally resolving this difficulty was the idea of viewing our proba-
bility distributions as conditioned on the observer. The calibration-refinement
decomposition makes theoretical sense for the case of some general hypothet-
ical observer, but it reduces to a trivial and useless decomposition in the case
of the special observer that we use for practical evaluation.

Below, we explain the calibration-refinement decomposition. In chapter 5
we explain how it breaks down and we propose how to modify the definition
of calibration, so that it leads to a practical criterion. It is important for
the reader to understand the calibration-refinement decomposition, since our
final solution is very closely related and will be explained in terms of concepts
introduced here.

2.4.1 The calibration-refinement decomposition

The calibration-refinement decomposition was shown in [5] to be applicable
when a probabilistic forecaster is evaluated via any proper scoring rule. This
decomposition can be conveniently explained in terms of the tools we developed
in this chapter.

In particular, the decomposition can be based on inequality (2.31), which
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shows that posterior entropy is minimum posterior cross-entropy, also for the
case where the posterior is conditioned on a statistic. As explained above, the
statistic of interest here is the recognizer’s posterior, r = R(x,π).

The observer’s posterior for θ given r is defined by (2.27) and we denote
it as OR(r,π). Notice that OR is a calibration transformation as defined
above, because it takes the recognizer’s posterior as input and outputs another
posterior.

We already know by the data processing inequality that by computing r,
we may have lost some information, so that C̄(OR) ≥ C̄(OX). But OR(r,π)
is the best we can do with input r, so that using r itself may be a worse
recognizer. These two facts can be summarized as:

C̄(R|O) ≥ C̄(OR) ≥ C̄(OX) ≥ 0 . (2.42)

If OR(r,π) = r, for every r and π then, according to the observer, R is
perfectly calibrated. In this case, C̄(R|O) = C̄(OR), for every prior and cost
function.

More generally, we want a degree of goodness of calibration. We do this by
defining the following loss quantities:

Ltot = Lcal + Lref = C̄(R|O) , (2.43)

Lcal = C̄(R|O)− C̄(OR) , (2.44)

Lref = C̄(OR) ≤ Ldef , (2.45)

Ldef = C̄(R0|O) = C∗(π) . (2.46)

Here

Ltot, the total loss, is our original, undecomposed, posterior Bayes risk (cross-
entropy) evaluation criterion.

Lref, the refinement loss (posterior entropy), is the loss incurred by having the
information in r, rather than the complete information we would have
had if θ itself were available.

Lcal, the calibration loss (the object of the whole exercise), is the additional
loss due to imperfect calibration, incurred when using r to make Bayes
decisions. Note that Lcal can be interpreted as a divergence between the
observer’s and recognizer’s posterior distributions. In fact, for the loga-
rithmic cost function, this is the Kullback-Liebler, or KL-divergence [28].

Ldef (prior entropy) is the reference value obtained by evaluating the default
recognizer, R0, which always outputs the prior independently of the in-
put: R0(x,π) = π. Notice that although the default recognizer discards
all relevant information in the data (by not processing it), it is neverthe-
less perfectly calibrated.
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All of these losses are non-negative. By (2.32), Ldef serves as upper bound for
Lref. In general, there is no upper bound for Lcal or for Ltot, unless the cost
function C is bounded above.

We can interpret the generalized mutual information, Ldef − Lref, as the
amount of relevant information that r carries about the unknown θ. Lcal is the
amount of information that is lost due to bad calibration. Note the calibration
loss can be larger than Ldef−Lref, so that the total effective information gain,
Ldef − Ltot, is negative. This happens when the calibration is so bad that the
decisions give larger cost than the default recognizer.

In summary: If Lcal = 0, calibration is perfect. If Lcal is small, calibration
is good. If Lcal ≤ Ldef − Lref, calibration is useful. If Lcal > Ldef − Lref then
calibration is bad.

Example of bad calibration

The above equations show that perfect calibration exists. Here we show by
example that at the other end of the scale, calibration can also be arbitrarily
bad. Take the example of a potentially good recognizer with Lref � Ldef,
but where the components of the posterior r have been permuted. Since the
permutation is invertible, Lref remains unaffected, but Bayes decisions will be
adversely affected, so that for any cost function with high relative penalties
we will find: Ltot � Ldef � Lref.

To see this, consider a good two-class recognizer that outputs r = (1−α, α)
whenever θ1 is true and (α, 1−α) whenever θ2 is true, for some small 0 < α� 1.
If we evaluate with Clog (which we show later to be a combination of cost
functions, including some with very high cost ratios), then Ltot = − log(1 −
α) ≈ α, is small. But if we permute the components of r, then Ltot = − log(α)
is large for small α. Since Lcal ≥ Ltot − Ldef this means Lcal is also large.

The beauty and the difficulty

In practice, for the special observer that plays the role of evaluator, the proba-
bility distributions are going to be conditioned on available evaluation data. If
one chooses to let P (x|θ,O) represent some unknown distribution from which
the evaluation data was drawn, then since Ltot is the expected value (2.17) of
a function of the evaluation data, it can be approximated as an average over
a sufficiently large database. Since the function of the data, C∗(R(x,π)|θ), is
independent of O, this plan works regardless of the details of the probability
model, as long as we assume the law of large numbers holds for the model.
This is the beauty of evaluation by proper scoring rule.

This blind averaging plan unfortunately does not also work for computing
Lref, because it is the expected value (2.29) of the function C∗

(
OR(r,π)

)
,

which is defined by the observer’s probability model. In other words, Ltot can
be computed in a purely data-driven manner, but Lref is also model-dependent.
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2.4.2 Bad calibration is obvious, regardless of the
definition of calibration

Finally, note that bad calibration can be spotted given only Ltot, without
having to evaluate Lref, because:

Lcal ≥ Ltot − Ldef . (2.47)

If Ltot is large it can be attributed to bad calibration, independently of the
evaluator’s probability model.

2.5 Summary

In this chapter we showed that the risk of using a probability distribution to
make a Bayes decision obeys similar inequalities to Shannon’s entropy. The
Bayes risk can therefore be interpreted as a generalized entropy.

The risk of making decisions with the posteriors computed by a recognizer,
R, is quantified by a given observer, O, as the posterior cross-entropy, or
equivalently posterior Bayes risk, C̄(R|O). We shall base the rest of this work
on C̄(R|O), using it as our primary evaluation criterion. We also introduced
the concept of calibration as an auxiliary evaluation criterion.

In this chapter, these criteria were based on the hypothetical observer, O,
whose role it was to define the necessary probability distributions. In chapter 5
we propose a special observer, called the evaluator, which leads to a practical
evaluation recipe.

However, before we do that, we need to take care of some technical details
of cost functions in chapter 3 and of the recognizer in chapter 4.



Chapter 3

Proper Scoring Rules

Proper scoring rules were briefly introduced in the previous chapter. In the
following chapters, they will play a central role, because we shall use them to
evaluate the goodness of the probabilistic outputs of pattern recognizers. The
purpose of this chapter is to properly introduce them and to discuss some of
their properties that we shall need later.

The idea of proper scoring rules dates back at least to Brier [3], who pro-
posed the Brier score as a means of evaluating the goodness of probabilistic
weather forecasts in 1950, and Good [4], who proposed the logarithmic score
in 1952. The term proper is attributed to Winkler and Murphy [60]. For a
wide-ranging review see [8].

Bayes decisions and proper scoring rules are two sides of the same coin.
In section 2.1.5 we showed that all Bayes decisions form proper scoring rules.
Below we mention a result from the literature that shows the converse is also
true, that all proper scoring rules can be interpreted as Bayes decisions. This
equivalence is one of the ground principles on which this work is based. Our
study of Bayes decisions helped to keep the proposed evaluation methodology
relevant to real applications. Our study of proper scoring rules helped (i)
to understand calibration and (ii) to introduce a much richer variety of cost
functions. Pure application-centred reasoning would probably not have led to
considering strict cost functions, like logarithmic cost. In this chapter we will
close the loop by showing that logarithmic cost has a very close connection to
simple applications that require hard decisions.

In the rest of this chapter, we define proper scoring rules, discuss key prop-
erties, establish equivalence with Bayes decisions, explore equivalence between
proper scoring rules and show that combinations of proper scoring rules form
new and useful proper scoring rules.

38
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3.1 Definition

In the literature, a proper scoring rule is defined as a special cost function,
f(q|θ), that satisfies

p ∈ arg min
q

〈
f(q|θ)

〉
θ|p

equivalently
〈
f(p|θ)

〉
θ|p
≤
〈
f(q|θ)

〉
θ|p

(3.1)

for any p,q ∈ PN . Moreover, if p is the unique minimizer, then f is called
a strictly proper scoring rule. Expressed in the argmin* notation, a strictly
proper scoring rule satisfies

p = argmin*
q

〈
(q|θ)

〉
θ|p
. (3.2)

A proper scoring rule ‘scores’ the goodness of q, given the truth reference θ and
it is called ‘proper’ by virtue of satisfying condition (3.1). We illustrate this
condition with some examples and then discuss some important properties.

3.1.1 Examples

The definition is clarified with three examples of proper scoring rules. We let
N = 2 and q = (q, 1− q) and p = (p, 1− p).

Logarithmic score, for two classes, can be expressed as: Clog(q|θ1) =
− log(q) and Clog(q|θ2) = − log(1 − q). The expectation w.r.t. p is
〈Clog(q|θ)〉θ|p = −p log(q) − (1 − p) log(1 − q). This can be minimized
w.r.t. q, by differentiating w.r.t. q and setting the derivative to zero. The
unique minimum is found at q = p, which shows that Clog is a strictly
proper scoring rule.

Brier score, defined as CBrier(q|θ1) = (1 − q)2 and CBrier(q|θ2) = q2 can be
analysed in the same way to show that it is also strictly proper.

Zero-one score, C∗err, derived by (2.9) from zero-one cost, is a proper scoring
rule, but it is not strict, because minimization of its expected value
behaves1 as follows:

arg min
q
C∗err(q|p) =


[
0, 1

2

)
if p ∈

[
0, 1

2

)
,[

0, 1
]

if p = 1
2
,[

1
2
, 1
]

if p ∈
(

1
2
, 1
]
.

(3.3)

Note that in each case p ∈ arg minq C
∗
err(q|p), as required by (3.1).

1with tie-breaker b
(
{θ1, θ2}

)
= θ1
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3.2 Key Properties

Here we show that proper scoring rules have two desirable properties as eval-
uation criteria. These properties are discussed in many sources, see for exam-
ple [7], chapter 13, the section entitled ‘The honest weatherman’.

3.2.1 Encouragement of honesty: minimization of
calibration loss

Consider a weather forecaster who has computed, to the best of his ability, a
probability, p, for rain tomorrow. It is required of the forecaster to report some
probability, q, for rain tomorrow, but it may not be clear to the forecaster that
the best output would indeed be q = p, or whether the forecaster himself, or the
consumers of his forecast, could not perhaps derive greater benefit if q were
modified (warped, or re-calibrated) in some way. If however, the forecaster
knows that his reported forecast, q, will be evaluated as f(q|θ), tomorrow
when it will be known whether it rains (θ1) or not (θ2), then he will compute
his own expected evaluation result as 〈f(q|θ)〉θ|p. If f is a proper scoring rule,
he will optimize his own expected evaluation result by choosing to report q = p.
The proper scoring rule therefore encourages him to honestly report what he
calculated and not to try to game the system by reporting something else.

The same result would be achieved if a conscientious weather forecaster
(who is not necessarily subject to such explicit evaluation) believes that her
consumers would effectively use her report, q, to make Bayes decisions to
determine their plans for tomorrow. Then by reporting q = p, she would be
maximizing her expectation of the benefit to her consumers.

Actually, the above motivations of the male and female forecasters are
equivalent, because as we showed in the previous chapter, if q is evaluated as
the cost of the Bayes decision it makes, then that forms a proper scoring rule.

Recalling the calibration-refinement decomposition of section 2.4.1, this
honesty inducing effect of proper scoring rules corresponds to optimization of
calibration—the forecaster minimizes the calibration loss by reporting q = p.
But the forecaster is further motivated by the scoring rule to also make p
as good a forecast as possible, where the goodness of p corresponds to the
posterior entropy (refinement loss). This is explained below.

3.2.2 Encouragement of diligence: minimization of
refinement loss

We continue the example of the weather forecaster. The forecaster has avail-
able a prior for rain, π, deduced from the climatological average for that time
of the year. The prior could serve as a default, lazy forecast. A forecaster who
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has no data to process (or who neglects to do so) could satisfy the calibration-
minimizing property of the proper scoring rule by just reporting q = π.

In contrast, a diligent forecaster would process some data, x, gathered
from a variety of meteorological sensors and process it through his forecast-
ing model, R, to calculate the posterior, p = P (rain|x, π,R). Being diligent,
the forecaster would also ask: Which forecast is better, the prior or the pos-
terior? If goodness is measured by proper scoring rule and if the forecaster
evaluates himself by equating R = O, then the answer is given by the result
of section 2.2.7: the posterior has better expected cost than the prior. Thus
diligence is encouraged by the proper scoring rule.

3.3 Equivalence between proper scoring rules

and Bayes decisions

For any cost function, the cost of the associated Bayes decision forms a proper
scoring rule. Conversely, every proper scoring rule can be interpreted as the
cost of a Bayes decision made with some cost function.

3.3.1 Construction via Bayes decisions

As shown in the previous chapter, a proper scoring rule can be derived form
any cost function by making minimum-expected-cost Bayes decisions. For
convenience, we repeat (2.9) here.

Start with some cost function C(a|θ). Recalling the short-hand notation,
C(a|q) =

∑N
i=1 qiC(a|θi), the derived cost function, C∗, is defined as:

C∗(q|θi) = C
(
argmin*

a
C(a|q)

∣∣θi) . (3.4)

This transformation takes a given cost function, C, on A×ΘN and creates a
new cost function C∗ on PN×ΘN . By inequality (2.13), we see C∗ satisfies (3.1)
and is therefore a proper scoring rule.

Idempotence of transformation

Let the cost function, C(q|θ), be a strictly proper scoring rule, so that by
definition it satisfies q = argmin*q′ C(q′|q). If we apply (3.4) to derive C∗,
we find C∗(q|θ) = C(q|θ). A strictly proper scoring rule is therefore left
unchanged by transformation (3.4). An example is: C∗log = Clog.

This also means (trivially) that any strictly proper scoring rule can be
interpreted as having been constructed via (3.4).
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3.3.2 All proper scoring rules are Bayes decisions

The above remark establishes that all strictly proper scoring rules can be
expressed as the cost of some Bayes decision. This is true in general also of
non-strict proper scoring rules.

In [8], theorem 2, it is shown that every generalized entropy function (recall
our section 2.1.6) defines at least one proper scoring rule and conversely that
any proper scoring rule can be defined by a generalized entropy function. The
link between entropy functions and proper scoring rules involves generalized
differentiation, involving sub-gradients, the details of which need not concern
us here. Since generalized entropy is just minimum Bayes risk, this establishes
that any proper scoring rule can be interpreted as the cost of some Bayes
decision.

3.4 Equivalence between cost functions

Here we analyse a different equivalence that exists between proper scoring
rules and indeed between cost functions in general. Apparently different cost
functions can give the same Bayes decision for every probability distribution.
If this is the case, we consider them to be equivalent for our purposes, because
when used to construct evaluation criteria, the equivalent cost functions and
the associated equivalent proper scoring rules will lead to equivalent evaluation
results. If one is faced with the problem of choosing which cost function to use
for evaluation, it is important to understand this equivalence. This concept of
equivalence is based on DeGroot’s book [56].

Cost function equivalence is what allows us, without loss of generality, to
impose on all our cost functions the condition (2.3). To show this, let Ceq be
a cost function for which (2.3) is not necessarily true. We do however require
that Ceq is bounded from below. Now define the new cost function:

C(a|θi) = k0Ceq(a|θi) + ki (3.5)

where 0 < k0 <∞ and −∞ < ki <∞ for i = 1, 2, . . . , N , and notice that this
transformation does not alter the Bayes decision:

argmin*
a

N∑
j=1

qjC(a|θj) = argmin*
a

N∑
j=1

qjCeq(a|θj) (3.6)
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Now we examine the proper scoring rule constructed from C via (3.4):

C∗(q|θi) = C
(
argmin*

a

N∑
j=1

qjC(a|θj)
∣∣θi)

= k0Ceq

(
argmin*

a

N∑
j=1

qjCeq(a|θj)
∣∣θi)+ ki

= k0C
∗
eq(q|θi) + ki

(3.7)

from which we see that the proper scoring rules are related in the same way
as the cost functions. Finally, we plug C∗ into our Bayes risk criterion (2.16)
for the evaluation of a recognizer R:

C̄(R|O) =
〈
C∗(R(x,π)|θ)

〉
x,θ|�,O

= k0

〈
C∗eq(R(x,π)|θ)

〉
x,θ|�,O

+
N∑
i=1

πiki

= k0C̄eq(R|O) +
N∑
i=1

πiki

(3.8)

so that the criteria C̄ and C̄eq are related via scaling and shift (just like Fahren-
heit and Celsius).

The main result of this section is now that, if C and Ceq are related as
in (3.5), then C̄(R|O) and C̄eq(R|O) are equivalent criteria for the evaluation
of R. By equivalent we mean that if we compare two recognizers, R and R′,
then

C̄(R|O) ≤ C̄(R′|O) if and only if C̄eq(R|O) ≤ C̄eq(R′|O) . (3.9)

3.4.1 Canonical form for cost functions

Since the choice of ki is irrelevant for evaluation, we can set each ki to a con-
venient value. We therefore use (3.5) to transform an arbitrary cost function
Ceq, which is bounded from below, but for which (2.3) may not be true, to a
cost function C for which (2.3) is true, by choosing for every i = 1, 2, . . . , N :

ki = −min
a∈A

Ceq(a|θi) . (3.10)

If we require all our cost functions to satisfy (2.3), then we have already elim-
inated N degrees of freedom from the cost function definition. Then, there is
one more degree of freedom as represented by the scale factor, k0. If we addi-
tionally assume some condition that standardizes the scale of the cost function,
then we can also eliminate this degree of freedom.



CHAPTER 3. PROPER SCORING RULES 44

Example: Normalized error-weighted cost

Here we generalize zero-one cost for the case N = 2, by assigning different
weights to each of the four possible outcomes. Then we show that the canonical
form gives a one-parameter family of cost functions.

The particular normalization we introduce here to obtain a canonical form
is original and as we show in chapter 7, leads to a new characterization of
proper scoring rules for two classes.

If we have two propositions, ΘN = {θ1, θ2}, and we identify the action set
A with ΘN , then there are four possible outcomes, of which two are correct
decisions and two are errors. If we weight each outcome with a different pa-
rameter, then we get a four-parameter family of cost functions. We assume for
each i, that if θi is true, then choosing θi has a smaller cost than choosing the
other proposition. If we now use (3.10) to enforce (2.3), then the weights for
correct decisions become zero, leaving us with just two parameters, namely a
positive weight for each error. Here we follow the standard speaker recognition
terminology and denote these two costs as Cmiss and Cfa.

Now, we can also impose some convenient constraint on the scale. For our
purposes, the most convenient constraint is to let the expected cost (of any
decision) at the Bayes decision threshold be unity: ηCmiss = (1 − η)Cfa = 1,
for some 0 < η < 1. This gives Cmiss = 1

η
and Cfa = 1

1−η , where η is the Bayes
decision threshold. Notice that when η approaches either 0 or 1, then one of
the costs becomes arbitrarily large, while the other cost is close to unity.

We have now derived a parametric cost function family, Cη, with parameter
0 < η < 1, where for i, j ∈ {1, 2}:

Cη(θj|θi) =


0 if i = j ,
1
η

if i = 1 and j = 2 ,
1

1−η if i = 2 and j = 1 .

(3.11)

The associated proper scoring rule, C∗η , expressed in terms of the unit step, u,
is:

C∗η(q|θ1) =
1− u(q − η)

η
, C∗η(q|θ2) =

u(q − η)

1− η
(3.12)

where q = P (θ1|q) and where η is the Bayes decision threshold: θ1 is recognized
if q ≥ η, and θ2 otherwise.2

Finally, notice that Cη and zero-one cost, Cerr are related as

Cerr(q|θ) =
1

2
C 1

2
(q|θ) . (3.13)

In what follows, we shall make extensive use of Cη as a representative cost
function for two-class recognition problems.

2with tie-breaker b
(
{θ1, θ2}

)
= θ1
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3.5 Combinations of proper scoring rules

Here we discuss combinations of proper scoring rules, which we show are also
proper scoring rules. Such combinations are naturally constructed via com-
pound decisions. These combinations will play an important role in the rest of
this work.

3.5.1 Compound decisions

Consider the minimization of the expected value of the weighted sum of K
different cost functions, w.r.t. a compound decision, a = (a1, a2, . . . , aK) ∈ AK
and notice that:

min
a∈AK

〈 K∑
k=1

ρkCk(ak|θ)
〉
θ|q

= min
a∈AK

K∑
k=1

ρkCk(ak|q)

=
K∑
k=1

ρk min
ak∈A

Ck(ak|q)

(3.14)

provided the weights are positive: ρk > 0.
If we make compound Bayes decisions, we need to re-examine the behaviour

of argmin*, which was introduced in section 2.1.3. We now adopt the conven-
tion that argmin* for the compound decision behaves as follows:

argmin*
a∈AK

〈 K∑
k=1

ρkCk(ak|θ)
〉
θ|q

=
(
argmin*

a∈A
C1(a|q), . . . , argmin*

a∈A
CK(a|q)

)
.

(3.15)

This is achieved by defining the tie-breaker for the compound decision as:

b(A∗q,1 × · · · × A∗q,K) =
(
b1(A∗q,1), . . . , bK(A∗q,K)

)
(3.16)

where bk(A∗q,k) is the tie-breaker associated with Ck.

Decision functions

We can generalize the above by letting the compound decisions be functions.
Let K be some subset of RN . In this chapter we shall consider an example
where K is the real interval, (0, 1), and in a later chapter we shall generalize
this to the interior of the simplex PN . Let AK denote the set of functions from
K to A. Let some family of cost functions, C� , be parametrized by τ ∈ K and
let ρ(τ ) > 0 be some weighting function over the parameters. We minimize the
expected cost of the continuous combination over τ , by pointwise minimization
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at every η:

min
a∈AK

〈∫
K
ρ(τ )C�

(
a(τ )

∣∣θ)dτ
〉
θ|q

= min
a∈AK

∫
K
ρ(τ )C�

(
a(τ )

∣∣q)dτ

=

∫
K
ρ(τ ) min

a∈A
C� (a|q) dτ

(3.17)

and we define argmin* for continuous combination, such that:

a∗ = argmin*
a∈AK

∫
K
ρ(τ )C�

(
a(τ )

∣∣q)dτ (3.18)

is given by

a∗(τ ) = argmin*
a∈A

C� (a|q) . (3.19)

We shall refer to a as a decision function. This can be understood in two ways:
(i) the whole function a is the result of a compound decision, or (ii) a(τ ) gives
a simple decision for every τ .

3.5.2 Closure under combination

Let the compound decision a = (a1, . . . , aK) ∈ AK be evaluated with a
weighted combination of K different cost functions Ck:

Cρ(a|θ) =
K∑
k=1

ρkCk(ak|θ) (3.20)

where ρk > 0. Now we apply (3.4) to form C∗ρ and then use (3.15) to find:

C∗ρ(q|θ) = Cρ
(
argmin*

a∈AK
Cρ(a|q)

∣∣θ)
=

K∑
k=1

ρkCk
(
argmin*

a∈A
Ck(a|q)

∣∣θ)
=

K∑
k=1

ρkC
∗
k(q|θ) .

(3.21)

This shows that proper scoring rules are closed under conical3 combination:
A positively weighted combination of proper scoring rules is also a proper
scoring rule. Moreover, compound decisions are a natural way to construct
such combinations of existing scoring rules.

3Conical combination is linear combination with weights that are constrained to be
positive. Compare this to convex combination, where the weights are positive and sum to
one.
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Proper scoring rule combination tends to reduce the size of the subsets
that minimize the expectation. Let the subset that minimizes C∗k(q|p) =〈
C∗k(q|θ)

〉
θ|p

be denoted as:

Pp,k = arg min
p∈PN

C∗k(q|p) (3.22)

then the subset that minimizes the expectation of the combination C∗ρ is the
intersection:

Pp,ρ = arg min
p∈PN

C∗ρ(q|p) = Pp,1 ∩ Pp,2 ∩ · · · ∩ Pp,K . (3.23)

We shall explore this effect in the examples below, where we show that a
continuous combination over a family of simple, non-strict scoring rules gives
a strict rule.

Continuous combination

A continuous combination results when constructing a proper scoring rule from
function-valued compound decisions. Let some decision function, a ∈ AK, be
evaluated by the cost function:

Cρ(a|θ) =

∫
K
ρ(τ )C� (a(τ )|θ) dτ (3.24)

where ρ(τ ) > 0. Forming the proper scoring rule, C∗ρ , by using (3.19) we find:

C∗ρ(q|θ) =

∫
K
ρ(τ )C∗� (q|θ) dτ . (3.25)

3.5.3 Examples

Here we make use of the parametric family of two-class, non-strict proper
scoring rules, C∗η , as defined by (3.12). The minimization of the expected
value, C∗η(q|p), behaves as follows:

arg min
q
C∗η(q|p) =


[0, η) if p ∈ [0, η) ,

[0, 1] if p = η ,

[η, 1] if p ∈ (η, 1]

(3.26)

where p = P (θ1|p) and q = P (θ1|q). Now consider the combination of two
such scoring rules, C∗η and C∗η′ , where 0 < η < η′ < 1. The minimization of
the expected value of this combination behaves as follows:

arg min
q
αC∗η(q|p) + βC∗η′(q|p) =



[0, η) if p ∈ [0, η) ,

[0, η′) if p = η ,

[η, η′) if p ∈ (η, η′) ,

[η, 1] if p = η′ ,

[η′, 1] if p ∈ (η′, 1]

(3.27)
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for any α, β > 0.
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Figure 3.1: Scoring rule combination gives a stricter rule. This is most dramatic
for p ∈ (0.5, 0.55), where the range of q decreases from [0.5, 1] on the left to [0.5, 0.55)
on the right.

Figure 3.1 graphically compares the simple scoring rule C∗η with the com-
bination C∗η +C∗η′ . The shaded area on the left shows combinations of p, q that
satisfy (3.26) and on the right (p, q) that satisfy (3.27). Notice in particular
that for the combination, when p ∈ (η, η′), then also q ∈ [η, η′) and that if we
choose the interval (η, η′) to be arbitrarily small, then locally in this interval,
the scoring rule becomes arbitrarily close to a strict scoring rule. Now intu-
itively, by combining infinitely many of the C∗η , with η ranging from 0 to 1, we
can make the resultant combination strict over the whole range of p.

In fact, for the two-class case, it is easy to prove with a few inequali-
ties that this is indeed the case: Any continuous combination of the form∫ 1

0
C∗η(q|θ)ρ(η) dη, where

∫ 1

0
ρ(η) dη <∞ and ρ(η) > 0, forms a strictly proper

scoring rule.
We illustrate this for the simplest case of ρ(η) = 1, which gives the loga-
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rithmic rule:∫ 1

0

C∗η(q|θ1) dη =

∫ 1

0

1− u(q − η)

η
dη =

∫ 1

q

1

η
dη = − log(q)∫ 1

0

C∗η(q|θ2) dη =

∫ 1

0

u(q − η)

1− η
dη =

∫ q

0

1

1− η
dη = − log(1− q) .

(3.28)

In other words, recalling q = (q, 1− q) and Clog(q|θi) = − log(qi), we find:∫ 1

0

C∗η(q|θ) dη = Clog(q|θ) . (3.29)

This shows that the logarithmic scoring rule has an interpretation as a con-
tinuous combination over simple binary decisions problems. In chapter 8, we
show that this generalizes also to multi-class, where N > 2.

Finally, it may be helpful to examine this example as a minimization w.r.t.
the decision function, a : (0, 1) 7→ {θ1, θ2}. The Bayes decision,

a∗q = argmin*
a∈AK

∫ 1

0

Cη
(
a(η)

∣∣q) dη (3.30)

is given4 by:

a∗q(η) =

{
θ1, if q ≥ η ,

θ2, if q < η
(3.31)

and the proper scoring rule formed by this decision is:∫ 1

0

Cη
(
a∗q(η)

∣∣θ) dη =

∫ 1

0

C∗η(q|θ) dη = Clog(q|θ) . (3.32)

3.6 Summary

We showed that our derived cost function, C∗(q|θ), which is the cost of us-
ing q to make a Bayes decision, satisfies the classical requirements for it to
be a proper scoring rule. Evaluation of a recognizer via C∗ encourages the
recognizer to output good probability distributions that can be used to make
cost-effective Bayes decisions. This evaluation recipe is dependent on which
proper scoring rule is used. This chapter examined some of the aspects of how
different proper scoring rules are related and how new ones may be constructed
by combining existing ones. In particular, we showed how the strictly proper
logarithmic scoring rule for two classes can be interpreted as a combination
over a range of non-strict scoring rules associated with binary decisions.

4with tie-breaker b({θ1, θ2}) = θ1



Chapter 4

The Recognizer

In this chapter, we revisit the recognizer in order to add the additional re-
quirement that the recognizer’s posterior be calculated according to Bayes’
rule.

References for this chapter include any text on probability theory that
states Bayes’ rule, e.g. [7, 1, 56] and any text that gives the axioms for a
vector space, e.g. [61]. The representation of log-likelihoods in an abstract
vector space is original.

4.1 Bayes’ rule

Thus far, we have required the recognizer to implement the function R(x,π),
of which we specified the output to have the form of a posterior probability
distribution, denoted thus:

r = (r1, r2, . . . , rN) = R(x,π) , (4.1)

ri = P (θi|r) = P (θi|x,π,R) . (4.2)

This requirement was sufficient for our analysis up to this point. Now, we
place an additional requirement on how R is to be implemented, namely that
R should process the prior in accordance with Bayes’ rule. Specifically, we
require R to be implemented as the function composition:

R(x,π) = B(W(x),π) (4.3)

where W : X 7→ R
N is a new recognizer function, which maps the input

to a vector of log-likelihoods. Bayes’ rule is represented by the function B :
R
N × PN 7→ PN , where the components of r = B(w,π) are:

ri = P (θi|r) = P (θi|w,π) =
πi exp(wi)∑N
j=1 πj exp(wj)

. (4.4)

The log-likelihood vector, w = (w1, w2, . . . , wN) ∈ R
N is the output of W .

The new function W now defines the recognizer, because R is completely

50
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determined by W . Henceforth we shall use either R, or W , to refer to the
recognizer, depending on which is more convenient.

In the next section, we discuss the nature of the recognizer’s log-likelihood
vector w in more detail.

4.2 The recognizer’s log-likelihoods

The interpretation of w = (w1, w2, . . . , wN) = W(x) is based on its purpose,
namely to serve as input to Bayes’ rule B(w,π) as defined in (4.4).

Component wi of w is the recognizer’s log-likelihood for the proposition θi,
given the data x.

The log-likelihood vector is closely related to the posterior distribution,
except that it is independent of the prior and thus represents only the relevant
information extracted from the speech by the recognizer. In contrast, the pos-
terior distribution is the combination of the independent prior information, π,
with the speech information, w.

There is another superficial difference between the posterior and w. The
posterior is normalized in the sense that its components sum to one. In con-
trast, the log-likelihood vector as defined by (4.4) is not normalized, because
it has one degree of freedom in the sense that:

B
(
(w1, w2, . . . , wN),π

)
= B

(
(w1 + k, w2 + k, . . . , wN + k),π

)
(4.5)

where k is any real number. Any such log-likelihood offset, k, or equivalently
likelihood scale factor, exp(k), cancels when computing the posterior, or when
computing any other ratio of likelihoods. The value of any wi is meaningless
on its own, because of the arbitrary additive constant. It always has to be
interpreted relative to one or more of the other components.

Finally, recall that thus far we have required of the recognizer to compute
only the posterior and not also to have to assign probability distributions of
the form P (x|θi,R). This is still the case. The only purpose of w is to compute
the posterior. Distributions of the form P (w|θi,R) do not have to be defined
by the recognizer.

4.2.1 The vector space of log-likelihood lines

In what follows, especially when analysing calibration functions, it will be con-
venient to have a somewhat more technical (but also more concise) description
of the log-likelihood vectors, which will help us to encapsulate the degree of
freedom described by (4.5).

When there are N classes, the log-likelihood vectors live in the N dimen-
sional Euclidean vector space RN , but they have the above-mentioned one
dimensional degree of freedom. If we remove this degree of freedom, the resul-
tant vectors live in N −1 dimensions. In speaker detection for example, where
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N = 2, it is customary to work with the (one dimensional) difference between
the two log-likelihoods, which is called the log-likelihood-ratio.

We now define a general scheme, for N ≥ 2, for representing the log-
likelihood vectors in an N − 1 dimensional vector space which we denote1

LN .
The elements of LN are lines in RN and all of the lines are parallel. For any
w = (w1, . . . , wN) ∈ RN , we define the line, ẃ ∈ LN , as the set of points:

ẃ =
{

(w1 + k, . . . , wN + k) ∈ RN |k ∈ R
}
. (4.6)

The notation ẃ can be read as the log-likelihood line through w, the direction
of all log-likelihood lines being diagonal, as determined by (4.6). A given line,
ẃ, which is represented here by the point w on the line, can also be represented
by any other point, v on the line. That is to say, ẃ = v́ if and only if w−v ∈ 0́,
the log-likelihood line through the origin of RN .

The addition operator is defined for every ẃ, v́ ∈ LN as

ẃ + v́ = ś , where s = w + v . (4.7)

Equivalently, if x ∈ ẃ and y ∈ v́, then x + y ∈ ẃ + v́. The origin, or additive
identity of LN is 0́.

Scalar multiplication, with a scalar, α ∈ R, is defined as:

αẃ = ś , where s = αw . (4.8)

The dimensionality of LN is N − 1, because any ẃ ∈ LN can be represented
in terms of an N − 1 dimensional basis, {v́1, . . . , v́N−1}, as:

ẃ =
N−1∑
i=1

αiv́i (4.9)

provided {v1,v2, . . . ,vN−1, (1, 1, . . . , 1)} is a basis for RN .

Example: log-likelihood-ratio

We can choose as basis for L2, the set {v́1}, where v1 = (1, 0). Any given ẃ,
where w = (w1, w2), is represented as ẃ = αv́1, where α = (w1 − w2) is the
above-mentioned log-likelihood-ratio.2

Recognizer redefined

For notational convenience in the rest of this work, we now redefine the recog-
nizer function as W : X 7→ LN , so that the recognizer outputs are, in theory,
lines in RN .

1Note, LN has dimension N − 1. This is analogous to our notation for the simplex PN ,
which is also N − 1 dimensional.

2To see this, solve α(1 + k, k) = (w1 + k′, w2 + k′). The solution, α = w1 − w2, is
independent of k and k′.
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In practical implementations the author uses the one dimensional log-
likelihood-ratio representation for speaker recognition where N = 2, but a
redundant, N dimensional, symmetrical log-likelihood vector representation
for language recognition where N > 2.

Bayes’ rule

We now adopt the convention that by B(ẃ,π) we mean B(v,π), for any v ∈ ẃ,
all of these values being equal.

This allows us to attach some meaning to the origin and the two operations
of the vector space LN . The origin 0́ has the meaning that is does not modify
the prior: B(0́,π) = π. For scalar multiplication, consider any ẃ 6= 0́ and
observe that B(αẃ,π) moves closer to π as |α| becomes smaller, eventually
reaching π at α = 0. Conversely, increasing |α| moves B(αẃ,π) away from π,
ending up at the boundary of PN , as |α| → ∞.

For vector addition, let π̄ = ( 1
N
, . . . , 1

N
) denote the uniform prior and

let log π́ denote the log-likelihood line through (log π1, . . . , log πN), then
B(ẃ,π) = B(ẃ+log π́, π̄). Translation in LN has the same effect as modifying
the prior.

4.3 Log-likelihood calibration

We conclude this chapter by briefly revisiting the topic of calibration as intro-
duced in section 2.4. We give an equivalent definition of calibration in terms
of the log-likelihoods, rather than the posterior. The definitions are equiva-
lent, because when the prior is given, Bayes’ rule forms a bijection3 between
log-likelihood line and posterior distribution and we showed in chapter 2 that
bijections do not alter information content.

We define a log-likelihood calibration transformation to be any function,
f : LN 7→ LN , so that a posterior B(ẃ,π) is recalibrated as B

(
f(ẃ),π

)
.

In a similar derivation to section 2.4.1, we now regard ẃ = W(x) as a
statistic, for which the hypothetical observer, O, has the likelihoods `i =
P (ẃ|θi,O), for i = 1, . . . , N . If we let λ = (log `1, . . . , log `N), then the
observer’s optimal calibrator, which gives lowest posterior Bayes risk for any
prior and cost function, is fO(ẃ) = λ́. A recognizer has perfect calibration if
its output, ẃ, always satisfies ẃ = fO(ẃ). The default recognizer,W0, defined
as W0(x) = 0́, extracts no information from the data, but nevertheless has
perfect calibration.

Because of the above-mentioned information-content equivalence, all of the
losses defined in section 2.4.1 could alternatively be defined in terms of the log-
likelihood calibration of this section.

3See appendix A, which explains the difference between invertible and bijective.
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4.4 Summary

In this chapter we revisited the recognizer to add the requirement that the
recognizer implements its mapping from prior to posterior in accordance with
Bayes’ rule. This redefines the recognizer as a calculator of log-likelihoods,
rather than as a calculator of posteriors.



Chapter 5

The Evaluator

In this chapter, we use the framework of chapter 2 to derive a practical recipe
for the evaluation of the goodness of the class of pattern recognizers of interest.

Thus far, the role of the hypothetical observer, O, has been to have proba-
bility distributions for the data, so that we could analyse qualitatively the ex-
pected consequences of processing data though a recognizer. Here, we consider
a special observer called the evaluator, denoted E . The role of the evaluator is
to judge the goodness of a recognizer quantitatively.

5.1 Evaluation by Bayes risk

As explained in chapter 2, we choose as evaluation criterion, the posterior
Bayes risk. We let the evaluator, E , play the role of the observer, O, in (2.17)
in order to judge the decision-making ability of the recognizer as C̄(R|E). We
now switch to a modified notation, which will be more convenient for our
further purposes. We represent C̄(R|E) as:

E� (W|π) =
N∑
i=1

πi

〈
C∗�

(
B
(
W(x),π

)∣∣∣θi)〉
x|θi,E

. (5.1)

As before, C∗� is the proper scoring rule derived via (3.4) from the cost func-
tion C� . We now qualify the cost function with the subscript τ , because in
what follows we shall explore different cost functions. For the same reason
we also make explicit the dependence on the prior π. Finally, as discussed
in chapter 4, we now refer to the recognizer as W , rather than R, because
R(x,π) = B

(
W(x),π

)
. Recall that B maps the log-likelihoods produced by

W to the recognizer’s posterior distribution.

5.2 The evaluator’s expectation

We present two alternative motivations for the same implementation of our
proposed evaluation recipe. The first is motivated as an approximation, the
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second as an exact calculation. Both motivations are useful as alternative
interpretations of the evaluation recipe.

5.2.1 Approximating expected cost by average cost

As mentioned in section 2.4.1, since the evaluation criterion (5.1) is an ex-
pected cost, it may be approximated via averaging cost over a given evaluation
database, if we assume that the evaluation data was sampled from some un-
known1 probability model P (x|θ, E)P (θ|π). In short, such averaging is exactly
what our proposed evaluation recipe (5.4) below does. But first, we will give
an alternative motivation for it.

5.2.2 Exact calculation by assigning probability
distributions

Here we consider explicitly assigning2 the evaluator’s probability distribu-
tions P (·|θi, E) and then using them for an exact calculation of the expec-
tation (5.1). To do this, the evaluator apparently has some choices, because of
property (2.28) of expectations: It could compute the expectations by assign-
ing class-conditional probability distributions for any of x, ẃ, r, or c, where
ẃ =W(x), r = B(ẃ,π), and c = C∗� (r|θi). However we rule out all but ẃ:

• The input x has the highest dimensionality and most complex form.
In the worst case it can be the original speech waveform. To build an
evaluator that does probabilistic modelling of x would be even more
difficult than building the to-be-evaluated recognizer. Then also, the
evaluator typically is not given the evaluator’s function, W , it is only
given some input-output pairs. This alone effectively rules out using
distributions of the form P (x|θi, E) to compute the expectation (5.1).

• The posterior r depends on the parameter π. The cost, c, further de-
pends on the details of the cost function, C� . In this work, we want to be
able to freely vary both π and C� and this should not have complicating
implications for the evaluation procedure.

1The prior, π, is considered given, so that only the factor P (x|θ, E) is unknown.
2We follow the recommendation of Jaynes [7] and use the terminology of assigning, rather

than estimating probability distributions. Estimating a probability distribution makes sense
only if the probability distribution is interpreted as some unknown random process gener-
ating the data. If a probability distribution is interpreted more generally as representing a
state of uncertain knowledge, then the probability distribution itself is the estimate of the
unknown variable (here the recognizer output). This estimate is assigned (or just made) by
the evaluator. In particular, the distribution (5.3) that we end up assigning below cannot
be interpreted as an estimate.
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This leaves ẃ, in terms of which we now rewrite (5.1):

E� (W|π) =
N∑
i=1

πi

〈
C∗�

(
B
(
ẃ,π

)∣∣∣θi)〉
ẃ|θi,E

. (5.2)

The role of the evaluator is now to have a conditional probability distribution
of the form P (ẃ|θi, E), for every i = 1, 2, . . . , N . For this purpose it has
available the resource of the supervised evaluation database, on which these
distributions should be conditioned.

5.2.3 Evaluation database

The evaluation database has a set of T trials, each with an associated speech
input, x1, x2, . . . , xT . These inputs are made available to W , the recognizer
under evaluation, which computes ẃt = W(xt), for every t. The recognizer
outputs are given, in turn, to the evaluator.

For ease of exposition, we make the mild assumption that the speech inputs
are all different: x1 6= x2 6= · · · 6= xT and that the processing precision is high
enough so that the recognizer’s outputs, ẃt, are also all different.

We assume that for every xt, exactly one of the propositions {θ1, θ2, . . . , θN}
is true and also that for every proposition, θi, there is at least one (preferably
many) xt for which θi is true.

The supervision is given by a partitioning of the set of input indices,
{1, 2, . . . , T}, into N non-empty subsets T1, T2, . . . , TN , such that if index
t ∈ Ti, then proposition θi is true for input xt.

Now the problem is, how do we use this database?

5.2.4 The evaluator should not do predictive modelling

There are very many ways to assign probability distributions, given data. It is
difficult to choose among them and some of them are difficult to implement.
Most of them also require prior assumptions to be made about the data that
is being modelled. In fact, methods such as maximum likelihood that do not
require explicit prior assumptions, still have implicit assumptions, correspond-
ing to flat priors. Here we are modelling the outputs of the recognizers under
evaluation. It may be that the assumptions on which the modelling is based
apply to some of the recognizers under evaluation, but not to others. This
may lead to unfair comparisons between evaluators.

In summary, we do not want the evaluator to be yet another pattern rec-
ognizer which has to do complex modelling of data. Rather, we want the
evaluation procedure to be objective, easy to define, easy to understand and
easy to apply.

The resolution to this problem is to realize that when we write P (ẃ|θ, E),
which can be rephrased as P (ẃ|θ, evaluation database, some assumptions),
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this is really a prediction of what the values of ẃ may be in some other,
as yet unseen database. It is this perceived predictive role that is making the
evaluation difficult. We now make the following choice as to the purpose of
the evaluator:

The primary purpose of the evaluation is to document the per-
formance of the recognizer on the given, supervised evaluation
database, rather than to estimate what the performance could be
on some other as yet unseen data.

We argue that measuring performance on a given database is a necessary first
step, without which estimates of performance on unseen databases would be
undefined. This is in the same spirit as the traditional error-rates obtained
by counting errors in a supervised evaluation database—we need to define the
error-rate on given data, before we can consider estimates of the error-rate
on unseen data. The focus of this work is on defining evaluation criteria as
measured on given data, while estimates of the values of these criteria on
unseen data are out of scope.

If we are not interested in prediction, but just in the data at hand
in the evaluation database, then probability distributions for the data
are in fact inappropriate. But we also do not want to just throw
away our laboriously constructed probabilistic evaluation criterion! The
solution is to use empirical distributions, which can be understood as
P (ẃ|θ, evaluation database, ẃ is in the database).

5.2.5 Empirical evaluation

The evaluator’s empirical probability distribution for ẃ is concentrated as
impulses3 at the values of the given supervised evaluation data:

P (ẃ|θi, E) =
1

|Ti|
∑
t∈Ti

δ(ẃ − ẃt) (5.3)

where Ti is the subset of input indices for which θi is true and where |Ti|
denotes the subset size. Using this in (5.2), we get:

E� (W|π) =
〈
C∗�
(
B(ẃ,π)

∣∣θ)〉
ẃ,θ|�,E

=
N∑
i=1

πi
|Ti|

∑
t∈Ti

C∗�
(
B(ẃt,π)

∣∣θi) . (5.4)

This is finally the practical form of our evaluation objective. It is still general
in the sense that the prior and cost function remain unspecified. Later we shall
specialize it by making specific choices for π and C� . Some comments are in
order:

3i.e. Dirac deltas
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• The prior π = (π1, π2, . . . , πN) appears twice in each version of the RHS
of (5.4) and indeed it plays two roles: It is the prior for both the evaluator
and the recognizer.

• By concentrating the distributions at the values of the evaluation data,
the expectation becomes a weighted average over the costs of the recog-
nizer’s Bayes decisions on the trials of the evaluation database.

• The choice we made above as to what variable to model now becomes
irrelevant in any case. We could equivalently have modelled any of the
other variables with empirical distributions, with the same numerical
result.

• If we use zero-one cost and let πi = |Ti|
T

, then (5.4) is just the well-known
empirical error-rate as obtained by counting the errors in the decisions
made with the recognizer’s posterior.

• If one does want to interpret (5.4) as an estimate of the cost of using
the recognizer on unseen data, then if one assumes the unseen data is
‘similar’ to the evaluation data, then the average cost over a sufficiently
large evaluation database is not an unreasonable estimate for the average
cost on unseen data. This is in fact the interpretation mentioned in
section 5.2.1.

The evaluator’s posterior

Thus far in this chapter, there was no need to explicitly consider the evaluator’s
posterior, P (θ|ẃt,π, E), because it is not needed to practically compute the
evaluation criterion (5.4). However, we will need it when discussing calibration
in the next section.

Under the empirical distribution (5.3), and because we assumed every ẃt to
be unique, this posterior would have zero entropy, i.e. it would assign posterior
probability of 1 to the true proposition for every t.

5.3 Evaluation of calibration

Recall the calibration-refinement decomposition, Ltot = Lref + Lcal, of sec-
tion 2.4.1. Here Ltot refers to our main evaluation criterion which is computed
via (5.4). To judge calibration, Lcal, as a secondary evaluation criterion, we
additionally need to compute Lref. Unfortunately, both of our interpretations
given so far of Ltot are unhelpful for defining a meaningful Lref:

• If we use the average-as-approximate-expectation interpretation of sec-
tion 5.2.1, the probability model remains unknown and undefined and so
does Lref and Lcal.
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• If we use the empirical distribution of section 5.2.5, the evaluator’s zero
posterior entropy trivializes the calibration-refinement decomposition be-
cause now Lref = 0 and Lcal = Ltot. The total loss is attributed to cal-
ibration. Since Ltot is our primary evaluation criterion, this leaves us
without a secondary criterion.

To make the calibration-refinement decomposition work, the evaluator
needs to explicitly assign probability distributions to the recognizer output,
but this cannot be the empirical distribution. This is indeed what was done
in [5], where the decomposition was proposed. Their probabilistic model for
the posterior probability of a two-class recognizer (or forecaster) was a his-
togram approach. They quantized the (one dimensional) posterior probability
into a small number of discrete bins and counted occurrences under each of
the two classes. The problem with this approach is that Lref is entirely depen-
dent on the number of bins in the histogram: For sufficiently fine binning, this
reduces to the empirical solution, with Lref = 0, while for the coarsest binning,
we reach the maximum entropy at Lref = Ldef. How many bins should one
use? This effectively still leaves Lref undefined.4

So how do we clean up this mess? We have one answer that says Lref = 0
and another that says Lref is undefined. But this is as it should be:

• In the first case, our model is: ‘The only values of (θ, ẃ) you will see are
those that you have already seen in the database.’ In this case, if the
values of ẃ in the database are all distinct, then when given one such
value of ẃ, the evaluator has no further uncertainty about θ, so that
Lref = 0.

• In the other case, in the interpretation of section 5.2.1, or indeed in the
histogram solution of [35], the evaluator is not committing to any model
and Lref remains undefined.

The evaluator’s posterior entropy, Lref, or equivalently the amount of rele-
vant information, Ldef−Lref, that the evaluator sees in the recognizer output,
is not an intrinsic property of the recognizer output. The information gained
by revealing the value of a previously uncertain variable depends on what was
known beforehand about the variable and what probability model was used
for the remaining uncertainty. For example, if a clear proof of P=NP would be
revealed to a theoretical computer scientist, she would probably regard that as
a very large amount of information.5 In contrast, for someone6 who has never
heard of P=NP, such a proof would contain only about 1 bit of information.

4For a contrast to this conclusion, see [35], where the histogram method of [5] was indeed
proposed for use in speaker recognition.

5In bits of Shannon entropy this information would be − log2 p, where p, the probability
that such a proof exists and will be found, is very small for most computer scientists.

6Speech engineers are seldom concerned with P vs NP. For us the boundary between
easy and hard is between linear and polynomial.
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Different observers see different amounts of information. These hypothet-
ical observers are not directly relevant to our problem of evaluating the rec-
ognizer. We do not want to compare the recognizer under evaluation to some
other recognizers somehow constructed by the evaluator. We just want to
evaluate how well the recognizer works on the evaluation data.

5.3.1 Calibration redefined

We hereby relinquish the calibration-refinement decomposition, but not cal-
ibration. The key to salvaging calibration is to define it slightly differently.
Here we propose to use as reference for the decomposition, the best recog-
nizer that could reasonably have been submitted to the evaluation. We let
this alternative recognizer be related to the submitted one via a calibration
transformation, such as defined in sections 2.4 and 4.3.

The difference between the old and new plans is subtle. The idea of an op-
timal reference recognizer is common to both plans as is the requirement that
the submitted and reference recognizers be related via calibration transforma-
tion. But we are no longer interpreting the reference recognizer as defined by
a probability model somehow assigned by the evaluator. Instead, we constrain
the allowed calibration transformations and then optimize Ltot subject to this
constraint.

An example of an unreasonable calibration transformation that should be
disallowed is the one given by the evaluator’s empirical distribution. This
transformation could not reasonably have been submitted by the evaluee, be-
cause it is defined by the full detail of the supervised evaluation database.

For now, let us defer to later chapters detailed specification of reasonable
calibration transformations and just denote by Φ the set of allowed transfor-
mations. If we work with log-likelihood transformations, then Φ is a set of
functions from LN to LN , so that if f ∈ Φ, then f(ẃ) is the recalibrated
version of ẃ. If the original recognizer is W , then the recalibrated recognizer
is denoted Wf , where Wf (x) = f

(
W(x)

)
. We can now define:

Ltot = E� (W|π) , and Lmin = min
f∈Φ
E� (Wf |π) (5.5)

where as before, Ltot is the primary evaluation criterion for the actual, un-
modified recognizer under evaluation, while Lmin is the criterion for the rec-
ognizer with the best calibration that could reasonably have been submit-
ted. The calibration loss can now be redefined as the non-negative difference,
Lcal = Ltot − Lmin.

We require that f0, f1 ∈ Φ, where f0(ẃ) = 0́ is the null calibrator and
f1(ẃ) = ẃ is the identity calibrator. Including the null calibrator guarantees
that Lmin ≤ Ldef. Including the identity calibrator allows the possibility that
the original recognizer is already optimally calibrated.

Since Lmin ≤ Ldef, we shall denote a recognizer that has Ltot > Ldef as badly
calibrated at (C� ,π). This definition of bad calibration holds independently
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of the definition of the set Φ, as long as f0 is in that set. This agrees with our
previous definition of bad calibration of section 2.4.1, where that definition
held independently of the probability model.

5.4 Summary

In this chapter, we formed our evaluation criterion from the posterior Bayes
risk C̄(R|E), by constructing a special observer, E , known as the evaluator.
The evaluator measures the performance of the recognizer on a given, super-
vised evaluation database. This measurement is not intended, in the first place,
as an estimate of what recognizer performance might be on other unseen data,
rather it is just a measurement of the performance on the given evaluation
data.

We argued against the calibration-refinement decomposition of the cross-
entropy interpretation of the evaluation criterion, where we would have needed
explicit probabilistic modelling of the recognizer outputs by the evaluator. In-
stead, we proposed a solution for quantifying calibration loss as a minimization
over suitably constrained calibration transformations.



Chapter 6

The Application

In this work we are interested in how to evaluate the goodness of pattern
recognizers that are designed to be applied to a range of different applications.
We model real-world applications mathematically via two parameters: prior
π and cost C� . We refer to (C� ,π) or just (τ ,π) as the application.

In this chapter, we are interested in how the application interacts with the
evaluation recipe. How does the evaluation criterion behave as a function of
the application and how can we vary the application? We have already laid
most of the groundwork in chapter 3, where we analysed cost function variation
in terms of equivalence and cost function combination. Here we generalize our
analysis to equivalence and combination of applications. We start our analysis
by stating the general application-dependent evaluation criterion.

6.1 The general evaluation criterion

For convenience, we repeat the general evaluation criterion of (5.4):

E� (W|π) =
N∑
i=1

πi
|Ti|

∑
t∈Ti

C∗�
(
B(W(xt),π)

∣∣θi) . (6.1)

The recognizer under evaluation is W , which is a function that maps an in-
put xt to a log-likelihood vector ẃt = W(xt). The recognizer’s posterior is
B(ẃt,π), where B is Bayes’ rule and π = (π1, . . . , πN) is the prior. The evalu-
ation criterion is the expected cost of using the recognizer’s posterior to make
Bayes decisions, when the cost of the outcomes of those decisions is computed
via some cost function C� . The subscript τ identifies and/or parametrizes the
cost function. C∗� is the proper scoring rule derived from the cost function,
C� . The supervised evaluation database consists of the inputs, xt, where trial
t is in class i if t ∈ Ti. Note that the prior, πi, for class i can be chosen
independently of the number of trials, |Ti|, in that class.

The important point for this chapter is that the general evaluation criterion
is parametrized by the application, (C� ,π).
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6.2 Application combination

In chapter 3 we examined cost function combinations. Here we generalize to
application combinations, where the prior is also varied over the combination.
Let there be K different applications of the form (Ck,πk), indexed by k =
1, 2, . . . , K. Here we evaluate every trial t, by using the recognizer output,
ẃt =W(xt), to make a different Bayes decision for each of the K applications.
The combined evaluation criterion is a weighted sum over the application-
dependent criteria, Ek(W|πk), with weights ρk ≥ 0:

K∑
k=1

ρkEk(W|πk)

=
K∑
k=1

ρk

N∑
i=1

πik
|Ti|

∑
t∈Ti

C∗k
(
B(ẃt,πk)

∣∣θi)
=

K∑
k=1

ρk

N∑
i=1

πik
|Ti|

∑
t∈Ti

Ck
(
argmin*

a

N∑
j=1

exp(wjt)πjkCk(a|θj)
∣∣θi)

(6.2)

where (w1t, . . . , wNt) ∈ ẃ is any point on the log-likelihood line ẃ. Now define
a new application-dependent cost function, C̃k, such that

πikCk(a|θi) = π̃iC̃k(a|θi) (6.3)

for some convenient and constant π̃ = (π̃1, . . . , π̃N), with π̃i > 0. This gives:

K∑
k=1

ρkEk(W|πk)

=
N∑
i=1

π̃i
|Ti|

∑
t∈Ti

K∑
k=1

ρkC̃k
(
argmin*

a

N∑
j=1

exp(wjt)π̃jC̃k(a|θj)
∣∣θi)

=
N∑
i=1

π̃i
|Ti|

∑
t∈Ti

K∑
k=1

ρkC̃
∗
k

(
B(ẃt, π̃)

∣∣θi) .
(6.4)

Finally, by defining

C∗ρ(q|θ) =
K∑
k=1

ρkC̃
∗
k(q|θ) , (6.5)

or equivalently, recalling section 3.5.2

Cρ
(
(a1, . . . , aK)

∣∣θ) =
K∑
k=1

ρkC̃k(ak|θ) (6.6)
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we find:

K∑
k=1

ρkEk(W|πk) = Eρ(W|π̃) . (6.7)

This shows that the generalized evaluation recipe of (6.2), which exercises the
recognizer on each of multiple applications, with variable priors and costs,
is in fact not a generalization. It is numerically equivalent to an evaluation
parametrized by a suitably defined single application, (Cρ, π̃).

The same holds for continuous combination of applications. A similar
derivation shows that an integral of the form

∫
K ρ(τ )E� (W|π� ) dτ can also

be written as an evaluation parametrized by a single application.
Finally note that if ρk or ρ(τ ) is a normalized probability distribution, then

the combination can also be interpreted as an expectation over a mixture of
applications, distributed according to ρ.

6.3 Application equivalence

The above derivation further shows that (6.3) defines an equivalence relation
between applications. The applications (C,π) and (C̃, π̃) are equivalent for
evaluation purposes, if:

πiC(a|θi) = π̃iC̃(a|θi) (6.8)

and therefore also

πiC
∗(B(ẃ,π)

∣∣θi) = π̃iC̃
∗(B(ẃ, π̃)

∣∣θi) . (6.9)

6.3.1 Canonical form for applications

This equivalence allows us to standardize the prior, without loss of generality.
The prior does not contribute any more degrees of freedom to the variability of
application-dependent evaluation. As far as evaluation is concerned, the full
scope of application variation can be represented with a family of applications
that has variable cost, but a fixed prior π̃. A convenient choice is π̃ = π̄,
where π̄ is the uniform prior with π̄1 = · · · = π̄N = 1

N
. We can now define an

application to be in canonical form, if the cost function is in canonical form
and the prior is uniform.

6.4 Examples: Interpretations of logarithmic

cost

Here we show two examples of continuous application combinations. In the
first, we fix the prior and integrate over a parametrized cost function. In the
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second, we fix the cost function and integrate over a parametrized prior. Both
simplify to the evaluation criterion parametrized by (Clog, π̄).

6.4.1 Example 1: Fixed prior, variable cost

Recall the non-strict, proper scoring rule, C∗η(q|θ), as defined in (3.12), which
is derived from the two-class, normalized error-weighted cost. Let the prior be
constant and uniform: π = π̄ = (1

2
, 1

2
). The result of integrating over the cost

function parameter with constant weight, ρ(η) = 1, is given by (3.29), so that
the evaluation criterion for this application combination is:∫ 1

0

Eη(W|π̄) dη

=
2∑
i=1

π̄i
|Ti|

∑
t∈Ti

∫ 1

0

C∗η
(
B(ẃt, π̄)

∣∣θi) dη
=

2∑
i=1

π̄i
|Ti|

∑
t∈Ti

Clog

(
B(ẃt, π̄)

∣∣θi)
= Elog(W|π̄)

(6.10)

where Clog(q|θi) = − log(qi). Since
∫ 1

0
ρ(η) dη = 1, we can interpret ρ(η)

as a probability distribution over cost functions, or over applications. Now
Elog(W|π̄) can be interpreted as the expected cost of using a recognizer,W , to
make Bayes decisions in a mixture of applications distributed as ρ(η). Recall
that Cη weights the two types of errors as Cmiss = 1

η
and Cfa = 1

1−η , so
that this mixture includes cost functions that range from a weight ratio of
limη→0

Cmiss

Cfa
→∞ down to limη→1

Cmiss

Cfa
→ 0.

6.4.2 Example 2: Fixed cost, variable prior

Here we use the fixed cost function, Cerr = 1
2
C0.5, where by C0.5 we mean Cη

at η = 0.5. We parametrize the prior as πτ =
(
π(τ), π(−τ)

)
, where

π(τ) = 1− π(−τ) = logit−1(τ) =
1

1 + exp(−τ)
(6.11)

for −∞ < τ < ∞. Notice that τ = logit(π) = log π
1−π is the prior log odds.

We choose constant weight, ρ(τ) = 1 for the integration. Letting π̄ = (1
2
, 1

2
),
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the evaluation criterion for this combination is:∫ ∞
−∞
Eerr(W|πτ ) dτ

=
2∑
i=1

π̄i
|Ti|

∑
t∈Ti

∫ ∞
−∞

πi(τ)

π̄i
C∗err

(
B(ẃt,πτ )

∣∣θi) dτ
=

2∑
i=1

π̄i
|Ti|

∑
t∈Ti

∫ ∞
−∞

πi(τ)C∗0.5
(
B(ẃt,πτ )

∣∣θi) dτ .
(6.12)

Now do a change of variables, with η = 1 − π(τ) = logit−1(−τ) and dη =
−η(1− η)dτ and use the fact that

C∗0.5

(
B
(
ẃt, (1− η, η)

)∣∣∣θi) = C∗η
(
B(ẃt, π̄)

∣∣θi) (6.13)

to find∫ ∞
−∞
Eerr(W|πτ ) dτ

=
2∑
i=1

π̄i
|Ti|

∑
t∈Ti

∫ 1

0

C∗η
(
B(ẃt, π̄)

∣∣θi) dτ
=

∫ 1

0

Eη(W|π̄) dη

= Elog(W|π̄)

(6.14)

where we recalled (6.10) for the final equality. Now we have
∫∞
−∞ ρ(τ) dτ →

∞, so that ρ(τ) cannot be normalized to a proper probability distribution.
Therefore,

∫∞
−∞ Eerr(W|πτ ) dτ as an interpretation of evaluation by logarithmic

cost is not an expectation. We can interpret it as total expected error-rate of
the combination over the specified range of priors, because Eerr(W|πτ ) is the
expected error-rate at πτ .

6.5 Summary

The general evaluation criterion is parametrized by some specified application.
Evaluating over combinations or mixtures of applications does not generalize
this recipe. However, these mechanisms do provide insightful interpretations of
strictly proper scoring rules like logarithmic cost in terms of non-strict proper
scoring rules, which are more directly related to simple decision problems.

Our tools for evaluation are now in place. In the next chapter, we ap-
ply them to find specific evaluation solutions for two-class problems such as
speaker recognition. Thereafter we turn to multi-class problems such as lan-
guage recognition.



Chapter 7

Solutions for two-class
recognition

In this chapter we assemble concrete evaluation solutions for two-class pattern
recognition, for which we choose the canonical speaker detection problem as
representative.1

We are interested in two-class pattern recognition problems where there
may be variable cost functions and priors for different applications and where
it makes sense for the pattern recognizer to give its output in cost-and-
prior-independent log-likelihood form, rather than in prior-dependent posterior
probability form, or prior-and-cost-dependent hard decision form.

We consider two-class evaluation separately from multi-class, because we
present analysis and solutions that work only for two-classes. The multi-class
case will be treated in chapter 8.

In this rather large chapter, we will make use of almost all of the material
discussed up to this point, first to analyse traditional speaker detection eval-
uation methods and then to generalize them to new methods with new and
complementary capabilities.

7.1 Speaker detection

In this chapter, the recognizer of interest is a speaker detector. The input,
x, to the speaker detector consists of a pair of speech segments. We assume
that both segments do contain speech and that each segment has speech of
only one speaker. For each such input x, exactly one of the following two
propositions may be true: θ1: the segments in x are of the same speaker; or
θ2: the segments are of two different speakers. It is traditional to denote θ1 as
the target class and θ2 as the non-target class.

1For a unified view of a large class of very general speaker recognition problems, see our
paper [20], but here we consider only the speaker detection problem.
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As explained in section 4.2.1, the output of the speaker detector is in the
form of the one dimensional log-likelihood-ratio, where the numerator of this
ratio is understood to be the likelihood for θ1 and the denominator the like-
lihood for θ2. For a well-calibrated log-likelihood-ratio, positive values favour
the target class, while negative values favour the non-target class. The magni-
tude is an indication of the confidence, or the degree of support for the favoured
class. We use the symbol w for log-likelihood-ratio. It is related to our more
general log-likelihood notation, ẃ, as: (w, 0) ∈ ẃ.

By well-calibrated we do not mean perfectly calibrated as we have defined
it, we just mean that calibration is reasonably good, so that w makes good
Bayes decisions. Calibration is a joint property of all of the scores of a given
detector on a given evaluation database. Calibration is not a property of a
score for a single trial: for a single target trial the best score is +∞ and for a
single non-target trial the best score is −∞ and there is nothing more to say.
Calibration asks whether we can transform all the scores of the database with
a single transformation to get better Bayes decisions. Calibration of a given
detector can vary from database to database—it could be good for one and
bad for another.

If the output of a speaker detector cannot be assumed to be well-calibrated,
it is called the score, rather than the log-likelihood-ratio. The score can be
interpreted in the sense that larger (more positive) scores favour the target
class and smaller (more negative) scores favour the non-target class. However,
the zero score has no special reference value. A score may be subjected to a
calibration transformation, the output of which is intended to act as a well-
calibrated log-likelihood-ratio. The log-likelihood-ratio also qualifies as a score,
but not vice-versa.

7.2 Idealized scores

Here we analyse idealized detection scores, the properties of which will inspire
some of the choices we have to make below when choosing practical evaluation
strategies.

7.2.1 Assumptions

Let f(s) and g(s) be probability densities, with support R, so that they are
non-zero for every s ∈ R, but f(∞) = f(−∞) = g(∞) = g(−∞) = 0. We also
assume both are differentiable for any s ∈ R. We interpret these functions as
the score likelihoods, f(s) = P (s|target,O) and g(s) = P (s|non-target,O). As
before, O plays the role of conditioning these probability distributions. We
further assume that f and g are related such that the likelihood-ratio,

`(s) =
f(s)

g(s)
(7.1)
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is a strictly monotonic rising bijection2 from [−∞,∞] to [0,∞], with `(−∞) =
0 and `(∞) = ∞, so that the inverse function `−1(y) is defined for every
y ∈ [0,∞] and the derivative, `′(s) > 0, for every s ∈ R.

In the notation of section 4.3, w = log `(s) is a calibration transformation
between score and log-likelihood-ratio. The above assumptions are equivalent
to requiring that there exists a strictly monotonic rising, continuous, differen-
tiable bijection between scores and log-likelihood-ratios.

We give three examples that satisfy these criteria:

Example 1: Gaussian scores

For normal distributions, f(s) = N (s|µ1, σ
2) and g(s) = N (s|µ2, σ

2), where

µ1 > µ2, we find: `(s) = exp(µ1−µ2

σ2 s +
µ2

2−µ2
1

2σ2 ). Note this doesn’t work when
the variances are different, because then `(s) is not monotonic.

Example 2: Calibrated scores

If the score s is a perfectly calibrated log-likelihood-ratio, so that s = log f(s)
g(s)

=

log `(s), then `(s) = exp(s).

Example 3: Calibratable scores

If s = α+ β log `(s), for β > 0, then `(s) = exp s−α
β

. This also works for more

general bijections between s and log `(s).

7.2.2 Properties

Under the above assumptions, the following properties hold:

Scores can make optimal decisions

We already know thresholding the likelihood-ratio, `(s), can be used to make
optimal detection decisions. However, thresholding the score can do so too,
because for any likelihood-ratio threshold, y ∈ [0,∞], the score threshold,
γ = `−1(y), makes equivalent decisions, since: s ≥ γ if and only if `(s) ≥ y.

For some score threshold, γ ∈ [−∞,∞], define the miss rate, F (γ), and
false-alarm rate, G(γ), as:

F (γ) = P (s < γ|target) =

∫ γ

−∞
f(s) ds (7.2)

G(γ) = P (s >= γ|non-target) =

∫ ∞
γ

g(s) ds (7.3)

2See appendix A, which explains the difference between invertible and bijective.
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with derivatives F ′(γ) = f(γ) and G′(γ) = −g(γ). This shows F and G are
continuous, strictly monotonically increasing and decreasing respectively, and
both invertible.

For a given prior, (π, 1− π), let the expected error-rate be:

E(π, γ) = πF (γ) + (1− π)G(γ) . (7.4)

For any 0 < π < 1, we can use first and second derivatives w.r.t. γ to verify
that E has a unique minimum at

γ∗ = `−1
(1− π

π

)
(7.5)

where the first derivative is zero and the second derivative is π`′(γ∗)g(γ∗) > 0.
At the boundaries, π = 0 or π = 1, we have the minima respectively at
E(0,∞) = E(1,−∞) = 0. Here 1−π

π
is the likelihood-ratio threshold and γ∗

is the score threshold and both give the same minimum-expected-error-rate
Bayes decisions.

We use the notation E∗, for the minimum:

E∗(π) = E(π, γ∗) = min
γ
E(π, γ) (7.6)

As mentioned above, E∗(0) = E∗(1) = 0. It is easy to show3 that E∗(π) is
concave and therefore has a unique maximum. E∗(π) can be interpreted as the
error-rate of the detector at the prior, π, provided the optimal score threshold
is used. For well-calibrated detectors, the error-rate vanishes when there is
no prior uncertainty, but is non-zero in between. (Our experiments on real
speaker detection scores show that the maximum invariably occurs somewhere
near π = 0.5.)

ROC properties

If we sweep the score threshold, γ, from −∞ to ∞ (with F increasing and G
decreasing) and plot G against F , this gives4 what is known as the receiver
operating characteric, or ROC [62]. It gives a trade-off between false-alarm-rate
and miss-rate as the threshold is varied. This curve is a strictly decreasing and
strictly convex function, which maps false-alarm-rate, in [0, 1], to miss-rate, in
[0, 1]:

Pmiss = F
(
G−1(Pfa)

)
. (7.7)

The curve end-points are at (Pfa, Pmiss) = (0, 1) and (1, 0). The slope of this
function, at a given threshold γ is −`(γ). The convexity follows from the
strictly increasing property of `.

3This can be done as in section 2.1.6, or by noting that together G and F satisfy the
contract of a cost function, with A ∈ [−∞,∞], so that E∗ has the form of a generalized
entropy function.

4ROC is often plotted as G vs 1− F , but for convenience we use G vs F here to agree
with the DET-curve in speaker recognition.
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EER interpretation

The equal-error-rate, or EER, is a special point on the ROC, which acts as
a scalar summary of the whole curve. It can be defined as the point on the
ROC for which (Pfa, Pmiss) = (EER,EER). Below we show how it acts as a
summary for the whole curve [6].

Under the assumptions above, the expected error-rate, E(π, γ), satisfies
the conditions for Sion’s minimax theorem [63], which allows interchanging
of nested minimum and maximum over the two variables. In particular, E
is quasi-convex in γ, since it has a unique minimum. E is linear in π and
therefore quasi-concave in π. We can now interpret the EER as the maximum
optimal error-rate:

max
π

E∗(π) = max
π

min
γ
E(π, γ)

= min
γ

max
π

E(π, γ)

= min
γ

max
(
E(0, γ), E(1, γ)

)
, by linearity in π

= min
γ

max
(
G(γ), F (γ)

)
= G(γeer) = F (γeer)

= EER

(7.8)

where the last step can be understood by noting that F increases from 0 to
1, while G decreases from 1 to 0, forming a rough X, of which the top v is
the inner discrete maximum, which in turn has its minimum w.r.t. γ at the
cusp—where the two functions are equal.

The max min form of the first line of (7.8) shows that the EER summa-
rizes the curve as a tight upper bound on error-rate: Provided you use the
optimal threshold (found by the inner minimization), the error-rate at any
prior (scanned by the outer maximization) will not exceed the EER.5

If a detector is optimized by using EER as an objective to be minimized,
error-rates at all operating points will be driven down. E∗ is concave, so that
by ‘pushing down’ on its maximum at EER, you cannot make a local dent
that violates concavity, instead (if anything budges) the whole curve has to go
down.

5Although the min max form seems to show that maximum is always found at π = 0,
or π = 1, E actually becomes locally independent of π at the EER saddle-point.
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Generalization of EER

In fact, we can interpret any point on the ROC via a generalization of (7.8).
Letting α, β > 0, a similar derivation shows:

Cα,β = max
π

min
γ
παF (γ) + (1− π)βG(γ)

= αF (γα,β) = βG(γα,β)
(7.9)

so that
(Cα,β

β
,
Cα,β
α

)
is a point on the ROC. By varying the error-rate ratio, α

β
,

from 0 to ∞, we can plot out the whole ROC. In this sense, any point on the
ROC can be seen as an upper bound on the weighted cost of errors, provided
the optimal threshold is used.

AUC

The area under the ROC, often called AUC, is the probability that a randomly
picked non-target score will exceed a randomly picked target score [62]. This
can be seen by integrating the joint probability, f(s̃)g(s) of a target score s̃
and a non-target score s over the region where s > s̃:

P (s > s̃) =

∫ ∞
−∞

g(s)

∫ s

−∞
f(s̃) ds̃ ds

=

∫ ∞
−∞

g(s)F (s) ds

=

∫ 1

0

F
(
G−1(p)

)
dp

= AUC

(7.10)

where we used the change of variables p = G(s), dp = −g(s) ds. Although
this is a useful figure of merit for applications where scores are sorted to prior-
itize targets, rather than comparing each score to a fixed threshold, AUC has
apparently not had much exposure in the speaker recognition literature.

For practical computation of AUC, we propose using the ROCCH variant
of the empirical ROC, which we shall discuss in section 7.3.6 below. But so
far, we have not used this metric in practice.

7.3 Analysis and generalization of DCF and

ROC

The speaker recognition literature is large and spans several decades. The
general pattern recognition literature is even larger. Many evaluation solu-
tions have been used and we will not attempt a review here. Instead, in this
section we analyse the evaluation solutions that have been the main tools in
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the speaker recognition community that has been participating in the regu-
lar NIST Speaker Recognition Evaluations over the last decade. We consider
these tools to be representative of the state-of-the-art.

We discuss three tools: DCF, DET-curves and EER. The first two have
been used by the evaluator, NIST, to evaluate the performance of speaker
detectors. EER, although not used by NIST, is reported in almost every
publication on speaker recognition. The solutions proposed in this work were
inspired by DET, DCF and EER, and they can be viewed as a generalization
and a synthesis of some of their properties, and as complementary to them.

We discuss these three tools in turn, comparing them to our proposed
solution.

7.3.1 DCF vs Bayes error-rate

The DCF, or detection cost function,6 has been used by NIST as their primary
speaker detection evaluation criterion for more than a decade, from 1997 to
the present.7 In this section, we define and analyse DCF and compare it with
our proposed evaluation recipe.

DCF can be specified concisely (as NIST does):

DCF = πCmissPmiss + (1− π)CfaPfa (7.11)

or laboriously as we do below to relate to our analysis. (For the uninitiated,
the symbols in (7.11) will be defined in due course.)

In our terminology, DCF is an evaluation criterion parametrized by a
specified application. Evaluation by DCF requires the detector to make
hard binary decisions. The decision set is A = {accept, reject}, where ac-
cept means the target hypothesis has been recognized and reject means the
non-target hypothesis has been recognized. A miss is defined as the erro-
neous outcome (reject, target) and a false-accept as the erroneous outcome
(accept, non-target). As explained in section 3.4.1, these respective errors are
weighted with the specified parameters Cmiss and Cfa. The remaining two
correct outcomes have zero cost. Let us denote this cost function as Cdcf. Ad-
ditionally, there is specified a prior parameter, in our notation: π = (π, 1−π),
where π = P (target|π).

The triplet (Cmiss, Cfa, π), parametrizes a family of applications of the form
(Cdcf, π). As explained in section 3.4 on the equivalence of cost functions and
section 6.3 on the equivalence of applications, a three-parameter specification
is redundant—for evaluation we need only a single parameter. We give two

6This terminology may be confusing. Our cost function, C� , evaluates a single detection
trial. DCF is the expected cost over all the trials in an evaluation.

7See www.itl.nist.gov/iad/mig//tests/sre/, where the “Speaker Recognition Eval-
uation Plans” from 1997 to 2010 are available.

www.itl.nist.gov/iad/mig//tests/sre/
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such single-parameter application families that are equivalent to the three-
parameter family, (Cdcf,π):

(Cdcf, π) ≡ (Cerr, π̃) ≡ (Cη, 0.5) (7.12)

where

π̃ = logit−1

(
logit(π) + log

Cmiss

Cfa

)
(7.13)

η = 1− π̃ (7.14)

where8 Cerr is zero-one cost as defined in section 2.1.3 and Cη is the normalized
cost defined in section 3.4.1. A good name for π̃ is the effective prior. The
Bayes decision threshold for all three families is η.

As previously explained, these three families are equivalent for evaluation
purposes because they would rank recognizers in the same order. All three
share the same Bayes decision threshold, all three would give the same Bayes
decision for a given posterior and all three would give the same miss and false-
alarm rates for a given recognizer. This equivalence can be expressed in terms
of our evaluation criterion as Edcf(W|π) = kEerr(W|π̃) = k′Eη(W|0.5), where k
and k′ are unimportant positive scale factors.

Our evaluation criterion, Edcf is a generalization of DCF in the following
sense. For evaluation by DCF, the detector is required to submit a hard
accept/reject decision for every trial, while for Edcf, the detector is required to
submit a log-likelihood-ratio for every trial. DCF evaluates the actual decisions
made by a detector, while Edcf measures the ability of the detector to make
Bayes decisions. In the DCF recipe, the evaluee (the recognizer) makes the
decisions. In our recipe, the evaluator makes the decisions. DCF evaluates by
cost function, while Edcf evaluates by proper scoring rule. In the DCF recipe,
for a given submitted detector, there are fixed miss and false-alarm rates:

DCF =
2∑
i=1

πi
|Ti|

∑
t∈Ti

Cdcf(at|θi) = πCmissPmiss + (1− π)CfaPfa (7.15)

where

Pmiss =
1

|T1|
∑
t∈T1

Cerr(at|target) (7.16)

Pfa =
1

|T2|
∑
t∈T2

Cerr(at|non-target) (7.17)

8Recall logit(p) = log p
1−p and logit−1(x) = 1

1+exp(−x) .
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and where at ∈ {accept, reject} is the detector output for trial t. In our
recipe, for a given detector, the error-rates vary as a function of the application
parameter, as shown by the equivalent parametrization (Cerr, π̃):

Eerr(W|π̃) =
2∑
i=1

πi
|Ti|

∑
t∈Ti

C∗err

(
B(wt, π̃)

∣∣θi)
= π̃Pmiss(π̃) + (1− π̃)Pfa(π̃)

(7.18)

where

Pmiss(π̃) =
∑
t∈T1

C∗err

(
B(wt, π̃)

∣∣target
)

Pfa(π̃) =
∑
t∈T2

C∗err

(
B(wt, π̃)

∣∣non-target
) (7.19)

and where wt is the detector’s submitted log-likelihood-ratio for trial t.
DCF does not allow the application to be varied. The prior and cost

function are effectively hard-coded into the detector. Up to 2008, NIST had
always parametrized the DCF at (Cmiss, Cfa, π) = (10, 1, 0.01), or equivalently
at an effective prior of π̃ ≈ 0.091. In 2010 they specified Cmiss = Cfa = 1
and π̃ = 0.001. Now π̃ = 0.091 is referred to as the old operating point
and π̃ = 0.001 is referred to as the new operating point. The limitation of
DCF evaluation is that only a single operating point is evaluated in a given
evaluation.

Our innovation with Edcf is that the application can be varied for a given
detector, in order to evaluate it over a range of different operating points.
By using the equivalence Edcf(W|π) = kEerr(W|π̃) = k′Eη(W|0.5), we can
conveniently parametrize the range of applications in terms of π̃, or in terms
of η. We demonstrate with an example below, where we parametrize with π̃.
(The η-parametrization will come in handy later.)

In what follows, we shall refer to Eerr as Bayes error-rate, since it is the
error-rate obtained when making Bayes decisions.

Example: Normalized Bayes error-rate plot

In this example we do an evaluation of a single speaker detector, W . We use
a fixed evaluation database of about a hundred thousand trials, but the Bayes
error-rate evaluation criterion, Eerr(W|π̃), is varied by adjusting π̃. That is,
we are evaluating the recognizer over a range of different applications, where
the effective prior is varied, but the cost function, Cerr, remains fixed.

To illustrate our point, we use a typical uncalibrated speaker detector.
Its output scores are evaluated as is, as if they were calibrated log-likelihood
ratios.
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The result of the evaluation is given in figure 7.1, where the horizontal axis
represents the prior on a log odds scale and the vertical axis is a normalized
version of Eerr(W|π̃).

The horizontal axis of the plot represents the prior and at the same time
the Bayes decision threshold. The horizontal axis is the prior log odds: h =
logit(π̃) = log π̃

1−π̃ . The logit is a monotonic rising invertible transformation
that sends the interval [0, 1] to the extended real line, [−∞,∞]. The h-axis
is infinite, so we have to be content with plotting a limited interval, which we
centre at logit(0.5) = 0.

The Bayes decision threshold is just λ = −h, so that scores wt ≥ −h give
accept decisions, while those below give reject decisions.

The vertical axis, v, of the plot is our evaluation criterion normalized thus:

v =
Eerr(W|π̃)

Eerr(W0|π̃)
=
π̃Pmiss(π̃) + (1− π̃)Pfa(π̃)

min(π̃, 1− π̃)
(7.20)

where W0 is the default recognizer that always outputs W0(xt) = 0. The
denominator changes abruptly at π̃ = 0.5, hence the cusp at h = 0. The
numerator is the Bayes error-rate, where everything varies as functions of h:
π̃ = logit−1(h), Pmiss(π̃) is the proportion of target trials with scores below the
threshold and Pfa(π̃) is the proportion of non-target trials with scores above
the threshold, as given by (7.19).

The normalization places the reference value at 1 for default performance.
This is indicated by the dashed red line. This plot shows the uncalibrated
detector, W , is useful for applications with prior log odds greater than about
−2, while for applications with smaller prior, this recognizer is badly calibrated
and would not be useful, since performance is worse than the default detector.

The important message here is that if we had evaluated the detector at
just one specific application (Cerr, π̃), as represented by just one point on the
horizontal axis, then the measurement at that point would not necessarily
give a good indication of usefulness at some other point (application) along
the axis.

The above graphical evaluation procedure forms the essence of the author’s
current favourite tool for judging the calibration of speaker recognition scores.
We made extensive use of this tool during the 2010 NIST Speaker Recognition
Evaluation. Examples will be given in section 7.6 below.

This graphical solution is applicable only to two-class problems, because
for multi-class problems, applications cannot be parametrized by a single pa-
rameter. This makes graphical representation difficult, especially when there
are several classes. We defer discussion of multi-class evaluation solutions to
chapter 8.

Moreover, the graphical solution does not provide an application-spanning,
scalar summary criterion. In practice, such scalar summary criteria are invalu-
able tools for discriminative training of fusion and calibration parameters of
pattern recognizers. We discuss summary criteria in section 7.4.
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Figure 7.1: Normalized Bayes error-rate for a speaker detector, as a function of
the prior.

7.3.2 Limitations of empirical evaluation

Before continuing, a word of caution is appropriate. The empirical evaluation
methodology discussed in this work is data-driven and therefore subject to
the limitations of the available evaluation data. For a speaker detector to be
strictly useful when the effective target prior, π̃, is arbitrarily close to 0 or to
1—when the log-likelihood-ratio threshold is very large positive or negative—
the recognizer will also have to be able to output log-likelihood-ratio scores of
arbitrarily large magnitude. If there were no scores of large magnitude, the
detector assisted decisions would never differ from the Bayes decision made
with the prior alone. But for a well-calibrated recognizer, such large scores will
be rare and will most likely not be observed at all if the evaluation database
is too small. In this case, the decision-making ability of the scores at the large
threshold will not be exercised by the evaluator and a meaningful evaluation at
this operating point will not be achieved. In short, if the threshold magnitude
is very large, the evaluation will just give the uninteresting result of either
(Pmiss, Pfa) = (0, 1), or (Pmiss, Pfa) = (1, 0).

For a quantitative statement of this effect, based on a binomial error dis-
tribution model, see Doddington’s Rule of 30 [64], or see our interpretation in
appendix B. In summary, the rule says you need at least 30 false-alarms and at
least 30 misses for meaningful evaluation. In our development for SRE 2010,
where the new operating point made false alarms rare, we found this rule to
be a good practical rule of thumb for choosing the sizes of our development
databases.

Apart from the size of the evaluation database, the accuracy of its super-
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vision also becomes increasingly important as the threshold magnitude gets
larger. In short, if error-rates are below the supervision label noise floor, we
cannot measure those error-rates accurately.

Indeed, with the new operating point in the 2010 NIST Speaker Recognition
Evaluation [65], both of these problems, data scarcity and label accuracy,
presented significant challenges to both evaluator and participants.

In view of these limitations, our solutions for evaluation will either elimi-
nate, or minimize, the effect of extreme applications that have Bayes decision
thresholds very close to the boundaries of the posterior simplex. The first
example is our graphical evaluation of figure 7.1, where we limited the range
of evaluation to | logit π̃| ≤ 5.

7.3.3 minDCF

NIST uses an auxiliary evaluation criterion, called minDCF, that effectively
does a calibration analysis, similar to our proposal discussed in section 5.3.1.
In contrast with DCF, which evaluates hard decisions made by the detec-
tor, minDCF evaluates scores produced by the detector. Given scores, the
evaluator—rather than the detector—now makes the decisions.

For evaluation by minDCF, the (implicit) contract between the evaluator
and the evaluee is that the scores submitted by the evaluee conform to the
idealized score assumptions of section 7.2.1. In the notation of that section:
f(s) = P (s|target,R) and g(s) = P (s|non-target,R), where s is the score and
R represents the probability model of the evaluee. As discussed in chapter 5,
the evaluator uses a different, empirical probability model. Under this con-
tract, the evaluator can now use score thresholds to make detection decisions
that are equivalent to the decisions that could have been made by calibrated
log-likelihood-ratios submitted by the evaluee.

Since the log-likelihood-ratios are not given and the calibration transforma-
tion is also not given, the evaluator optimizes over all possible strictly mono-
tonic rising calibrations to find out what the DCF of the detector could have
been if the best possible such transformation had been used. Since DCF is
defined for a single operating point, the evaluator does not have to find the
whole function, but only the single optimal score threshold. This proceeds as
follows:

Let γ be a score threshold, so that Pmiss(γ) is the fraction of target trials
with scores below the threshold and Pfa(γ) the fraction of non-target trials
with scores above the threshold. Then

minDCF = min
−∞≤γ≤∞

πCmissPmiss(γ) + (1− π)CfaPfa(γ) . (7.21)

Note that the evaluator does the minimization, while making use of the true
class labels (without which Pmiss(γ) and Pfa(γ) could not be computed).
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Consider hard decisions evaluated by DCF and scores evaluated by
minDCF: if the decisions are made by thresholding the scores, with a single
fixed threshold, then indeed: minDCF ≤ DCF.

Under the evaluator’s empirical probability model, the minDCF optimiza-
tion is a discrete one. The evaluator does not need to consider all possible
thresholds. If the scores are sorted, then one threshold at −∞, one at ∞
and one in every interval between adjacent scores needs to be considered. In
contrast to the result of section 7.2.2, which was based on idealized continuous
probability densities, the discrete minimum is often not unique.

In practice, minDCF has two uses:

• It can be used in conjunction with DCF to judge calibration loss, as
the difference, Lcal = DCF − minDCF. Since DCF is confined to a
fixed operating point, so is this rendering of Lcal. It measures point
calibration of hard decisions. However, by generalizing DCF to Eerr, we
can overcome this limitation and sweep the prior parameter over a range
of applications, measuring calibration everywhere in this range. This will
be demonstrated in section 7.6.

• It can be used on its own, without DCF, as a calibration-insensitive eval-
uation criterion. It is commonplace for publications in speaker detection
to quote just minDCF and EER, which is also calibration-insensitive.

In section 7.7, we will present a generalization of minDCF, where the eval-
uator indeed optimizes the whole calibration transformation function, so that
it is applicable to a range of applications, not just a single operating point.

7.3.4 Empirical ROC

We have already introduced the idealized, continuous ROC in section 7.2.2.
An analogous, empirical ROC can be obtained by score thresholding, exactly
as done to compute minDCF above. Let Pmiss(γ) and Pfa(γ) be defined as
above, where γ is the score threshold. As a function of γ, Pmiss(γ) increases
in discrete steps of size 1

|T1| and Pfa(γ) decreases in steps of 1
|T2| . Making the

database large will make these functions smoother in the sense of making the
steps small.

The result on the ROC plane is not a continuous curve, but a set of discrete
(Pfa, Pmiss) points. The points at (1, 0) and (0, 1) correspond to the two thresh-
olds at infinity and each of the other points corresponds to a threshold in the
interval between two adjacent scores. The points are separated by horizontal
or vertical steps, where each horizontal step corresponds to a non-target score
and each vertical step to a target score.

The ROC is seldom used as is in speaker recognition, but is usually trans-
formed to the DET-plot as explained below.
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7.3.5 DET-plot

The detection error trade-off, or DET-plot, is used by NIST and is ubiquitous
in the speaker recognition literature [66]. The DET-plot evaluates speaker
detection scores, rather than hard decisions. In this respect it agrees with
minDCF. It also agrees with minDCF in the sense that the evaluator effectively
performs a threshold optimization as part of the evaluation procedure, so that
both are calibration-insensitive. It is however different from minDCF in the
sense that it does not just evaluate at a single operating point. It represents
detection performance over a range of operating points.

The DET-plot is derived from the empirical ROC plot by transforming both
axes with the probit transformation, which can be expressed as probit(p) =√

2 erf−1(2p − 1), where erf−1 is the inverse error function [67]. It sends the
interval [0, 1] to [−∞,+∞], in a very similar way to the logit transform.

A plot of probit(Pfa) against probit(Pmiss) is known as a DET-plot. Since
the probit axes are infinite, the DET is confined to a finite rectangle, defined
by choosing Pfa and Pmiss intervals of interest. The DET is useful to distinguish
small differences between detectors, even in regions of the plot with low error-
rates. As in the case of ROC, it is also just a finite set of discrete points, which
if connected with horizontal and vertical line-segments, forms a steppy curve,
which appears smooth if the database is large enough.

To see that the ROC/DET is calibration-insensitive, notice that any strictly
monotonic rising calibration transformation of the scores does not change the
plot. (A non-strict rising transformation, with flat regions, can lump scores
together, thus removing some of the points.) In fact, the ROC/DET depends
only on the order of the scores, not on their absolute values.

7.3.6 ROCCH

There is an attractive and principled solution for defining a continuous curve
to summarize the points on the discrete ROC plot, known as the ROC convex
hull, or ROCCH. The ROCCH is not new, having been introduced9 in [68], but
it is new to speaker recognition, where we believe it deserves more attention.

The ROCCH is obtained by interpolating between the discrete points of the
ROC, effectively forming the convex hull of these points. We shall specifically
refer to the bottom, left boundary of the convex hull as the ROCCH. See
figure 7.2 for examples.

The ROCCH is a piecewise linear, convex, monotonically decreasing curve,
with endpoints at (Pfa, Pmiss) = (0, 1) and (1, 0). It has some of the same prop-
erties as the idealized continuous ROC discussed in section 7.2.2. Specifically,
it is convex, and the negative of the slope gives a meaningful value for the
likelihood-ratio which can be used in calibration analysis. Compare this to the

9See http://home.comcast.net/~tom.fawcett/public_html/ROCCH for more publica-
tions on the ROCCH.

http://home.comcast.net/~tom.fawcett/public_html/ROCCH
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Figure 7.2: Examples of ROC (green) vs ROCCH (red). The ROC curves are
steppy, the ROCCH curves are convex. The ∆ marks ROCCH vertices and the ∇
marks ROC vertices. Where ROC and ROCCH coincide, the ROC obscures the
ROCCH (the red is behind the green). The top left plot is for the case of two scores:
a target (tar) and a non-target (non), where the non-target score is smaller than the
target score. Similarly, the middle top has two scores; right top has three, with a
non-target sandwiched between two targets; and bottom left has three, sandwiched
the other way. The remaining two have many scores.

discrete ROC, which has only horizontal or vertical line-segments and thus no
useful slope. (We elaborate on ROCCH calibration analysis in section 7.7.)

What follows is mostly contained in the results in [68], but the definition
and proof of equivalence below are original.
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Definition

Let the K points on the discrete ROC plot10 be denoted ei =(
Pmiss(γi), Pfa(γi)

)
, for i = 1, 2, . . . , K. Let π = (π, 1−π) and Cmiss = Cfa = 1,

then the DCF at operating point π and threshold γi can be expressed in inner
product notation as:

DCFi(π) = π · ei = πPmiss(γi) + (1− π)Pfa(γi) . (7.22)

Now consider the convex hull of the points ei, which is the set of all interpolated
points of the form:

e(α) =
K∑
i=1

αiei (7.23)

where the interpolating weights are positive and sum to one: α =
(α1, . . . , αK) ∈ PK . Now define E∗ch, which minimizes the DCF within the
convex hull:

E∗ch(π) = min
�∈PK

π · e(α) . (7.24)

The minimization ensures that for any minimizing α, the interpolated point
e(α) is on the bottom, left boundary of the convex hull—thus being a point
on the ROCCH curve.

Equivalence between ROC and ROCCH

The points on the continuous ROCCH curve are equivalent to the discrete
points of the ROC in the sense that they have the same minDCF, for any prior
and cost weighting. To see this, we now show that for any DCF parametriza-
tion, π:

E∗ch(π) = minDCF(π) (7.25)

where minDCF(π) = mini DCFi(π).

Proof. Let m be a minimizing index, so that

minDCF(π) = DCFm(π) ≤ DCFi(π) . (7.26)

10Here we work with the ordering, (Pmiss, Pfa), to facilitate the concise inner-product
notation. The reader is reminded that when we plot it, Pfa is on the horizontal axis and
Pmiss on the vertical axis.
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By representing the summation constraint as αm = 1−
∑

i 6=m αi, we can express
the DCF of any point in the convex hull as:

π · e(α) = π ·
K∑
i=1

αiei

= π · em +
∑
i 6=m

αi (π · ei − π · em)

= minDCF(π) +
∑
i 6=m

αi
(
DCFi(π)−DCFm(π)

)
.

(7.27)

By (7.26) and since αi ≥ 0, no term in the summation can be negative, so
that (7.27) is minimized at αm = 1, proving (7.25).

This minimum at αm = 1 is of course not very interesting, because it is
not an interpolation, it is just one of the existing points on the discrete ROC.
But it is easy to see that other, interpolated points on the ROCCH will also
satisfy (7.24). Notice that the slope of the vector π is non-negative and that
any line-segment on the ROCCH (the bottom, left boundary of the convex hull)
has non-positive slope, so that we can always find some π orthogonal to the
line-segment. For that value of π, all points on the line-segment satisfy (7.24).
By varying π, and minimizing DCF, we can plot all points on the ROCCH.

It is straight-forward to generalize these results to DCF parametrization
with any non-negative values for Cmiss and Cfa.

In summary: Minimizing DCF over any interpolation of the discrete ROC
points does not give any over-optimistic result. The possible values for
minDCF are the same, whether one does a discrete minimization over the
discrete ROC points, or over the continuous interpolation weights. This holds
for any DCF parametrization, at any prior and any cost weighting.

Computation

The ROCCH can be conveniently and efficiently computed via the PAV algo-
rithm, see [69]. We elaborate on the ROCCH-PAV relationship in section 7.7.

The ROCCH can be plotted11 as a DET-curve, by using the probit trans-
formation, but we doubt if it will replace the traditional steppy DET. See
figure 7.3 for examples and note that the straight line-segments of the ROCCH
become curves under the probit transform. More examples of ROCCH-DET-
curves, plotted by the author as part of the Evalita 2009 Speaker Recognition
Evaluation are available in [55].

The ROCCH is also a convenient tool for practical computation of minDCF
in very large score sets. The ROCCH is efficiently computed via the PAV algo-
rithm and the vertices of the ROCCH then give a very economical summary of

11The author’s MATLAB tools for ROCCH-DET are available here: http://
focaltoolkit.googlepages.com.

http://focaltoolkit.googlepages.com
http://focaltoolkit.googlepages.com
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Figure 7.3: Two examples of ROCCH-DET vs classical steppy DET. The equality
of ROCCH-EER and max minDCF is demonstrated.

the whole ROC, from which minDCF can be computed for any parametriza-
tion. We make use of this property in the calibration-analysis tools in sec-
tion 7.6.

Finally, the ROCCH provides a principled way of computing EER, as dis-
cussed in the next subsection.

7.3.7 ROCCH-EER

We define the ROCCH-EER, which is newly proposed here, as the point on
the ROCCH where Pfa = Pmiss.

The traditional EER, as used in speaker recognition, is actually not clearly
defined for the case of the discrete ROC. Usually none of the points in it
satisfies Pfa = Pmiss exactly. One has to do some interpolation to make it so.
The ROCCH-EER is a principled way of defining this interpolation, which
conserves the value of minDCF. Since the ROCCH is readily computed, the
ROCCH-EER is also readily computed.

Let us analyse the ROCCH-EER is some more detail. It turns out we can
use an analogy to (7.8) to interpret the ROCCH-EER. We could try any of
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four ways to interpret EER:

EER1 = max
π

min
�∈PK

π · e(α) (7.28)

EER2 = max
π

min
i

π · ei (7.29)

EER3 = min
�∈PK

max
π

π · e(α) (7.30)

EER4 = min
i

max
π

π · ei . (7.31)

By (7.25) we already know that EER1 = EER2. Since π · e(α) is bilinear,12

this satisfies not only the conditions for Sion’s minimax theorem [63], but also
of Von Neumann’s original minimax theorem [70], so that EER1 = EER3.
However, it is easy to construct counter-examples that show that EER4 is the
odd one out. In summary: EER1 = EER2 = EER3 ≤ EER4. Finally, we can
use the formula for EER3 in the same way as we did in (7.8) to show that
(EER3,EER3) is a point on the ROCCH. We conclude:

ROCCH-EER = EER1 = EER2 = EER3

= max
π

E∗ch(π)

= max
π

minDCF(π) .

(7.32)

As before, the last form interprets ROCCH-EER as an upper-bound on error-
rate at any prior, provided optimal thresholds are used. This is graphically
demonstrated in figure 7.3.

Maximization over minDCF may also be a convenient way to compute
ROCCH-EER if no implementation for ROCCH is available. It requires an iter-
ative maximization search over π, but this is a nicely-behaved, one dimensional
search for the maximum of a concave function. Our preferred implementation
however, which is fast even for very large score sets, uses the above-mentioned
PAV-algorithm to explicitly compute the vertices of the ROCCH.

Finally, it is interesting to note that in our experiments, when we generalize
the formula for EER4 in the way of (7.9), the resulting curve is just the tradi-
tional steppy curve connecting the points of the discrete ROC. Note however
that this defines the whole continuous curve, not just the discrete points at
the vertices of the steps. Treating the formula for EER3 in the same way, plots
out the ROCCH, as expected.

7.3.8 PRBEP

The EER generalization (7.9) may be employed to compute another stan-
dard point on the ROCCH curve. The precision-recall-break-even-point, or
PRBEP [71], is the point at which the absolute numbers of misses and false-
alarms are equal. (The EER equates normalized error-rates.) This is achieved

12linear in each of π and α



CHAPTER 7. SOLUTIONS FOR TWO-CLASS RECOGNITION 87

by choosing α = |T1| and β = |T2| in equation (7.9) and applying it to the
ROCCH. This criterion squeezes the last bit of use out of a database by choos-
ing the operating point that maximizes the minimum of the two absolute error
counts.

We find it good practice to report the PRBEP as the absolute number of
errors (i.e. not normalized), to (i) emphasize that it can be used to compare
different detectors on the same database, but that comparing PRBEP across
databases is not meaningful, and (ii) to alert the evaluator if the errors are
running out. If PRBEP is read off the ROCCH, the number of errors is
typically not an integer, because of the interpolating nature of the ROCCH.

7.3.9 Summary of DCF and ROC and Bayes error-rate

We summarize this section in table 7.1, where all of the evaluation criteria
discussed in this section are compared. Some notes are in order:

The table includes three criteria not discussed in this section: Elog, which
is the subject of the next section and also Emin

err , Emin
log , which will be discussed

in sections 7.6 and 7.7.
We are not aware of publications in speaker recognition where the

parametrization of minDCF has been varied over applications. Usually
minDCF is just presented as a single number at the NIST-specified operat-
ing point. However, there is nothing in principle that prevents it from being
used to produce an application-spanning plot similar to our figure 7.1. This is
indeed what we shall do in section 7.6 below.

The main innovation presented in this section was the generalization of
DCF to Eerr. The former evaluates hard decisions, while the latter evalu-
ates soft decisions in log-likelihood-ratio (llr) form. Eerr forms an evaluation
criterion that is at the same time calibration-sensitive and variable over appli-
cations.

In the next section, we discuss how Elog forms a calibration-sensitive sum-
mary over applications.

7.4 Calibration-sensitive summary criteria

In the previous section, we showed how to complement the existing detec-
tion evaluation tools, by introducing Eerr, which is calibration-sensitive in the
manner of DCF (which does not span applications), and which also spans ap-
plications in the manner of the DET-curve (which does not evaluate goodness
of calibration).
Eerr spans applications by essentially doing a separate evaluation at each of

very many operating points and graphically representing all of them. However,
for some purposes one needs a scalar criterion. Most notably, for discrimina-
tive training, a scalar objective function is imperative. If the discriminatively
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Table 7.1: Evaluation criterion comparison

criterion evaluates calibration- spans scalar
sensitive applications summary

DCF decision yes no no
minDCF/Emin

err score no as plot no
EER score no as upper bound yes
AUC score no as integral yes

ROC/DET score no as plot no
Emin

log score no as integral yes

Eerr llr yes as plot no
Elog llr yes as integral yes

trained detector is intended for use over a range of different applications, then
the discriminative training objective should also somehow span this range of
applications.

The tools for constructing such application-spanning summaries were
presented in chapters 3 and 6, where we showed how to form ex-
pectations/combinations over families of cost functions/proper scoring
rules/applications. In particular, we showed in section 6.4 that evaluation
by logarithmic cost can be interpreted as such:

Elog(W|0.5) =

∫ ∞
−∞
Eerr

(
W| logit−1 τ

)
dτ =

∫ 1

0

Eη
(
W|0.5

)
dη . (7.33)

The experience of this author and others has shown that this criterion, Elog,
works very well in practice as a discriminative training objective. It was intro-
duced to the speaker recognition community by the author in 2004, see [16],
followed by a journal paper in 2006, see [17]. We have used it for discrimina-
tive training purposes in all of the NIST SREs from 2005 to 2010. It works
equally well for multi-class problems, where we have used it also for the NIST
Language Recognition Evaluations between 2005 and 2009. It is also the prin-
ciple behind the author’s FoCal Toolkit,13 which has been used by many other
laboratories, from 2005 to the present, for speaker and language recognition.
We will discuss discriminative training using Elog in chapter 8.

Moreover, the information-theoretic interpretation of Elog has made it at-
tractive to researchers in the forensic speaker recognition community, as a tool
to evaluate the goodness of speaker recognition evidence delivered to court in
likelihood-ratio form [29, 32, 31].

In the rest of this section we are interested in how Elog forms a calibration-
sensitive summary :

13The FoCal Toolkit, coded in MATLAB, is freely available here: http://focaltoolkit.
googlepages.com.

http://focaltoolkit.googlepages.com
http://focaltoolkit.googlepages.com
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• The integrals of (7.33) already show that Elog is a summary, but they
do not yet make it clear whether it summarizes all possible two-class
applications. In the next subsection, we show that indeed it does.

• Elog is by no means the only such summary. We discuss a family of
summary measures and then motivate why we prefer Elog out of this
family.

• We conclude this section with a discussion of calibration sensitivity.

7.4.1 Regular binary proper scoring rules

Here we show that Clog is a member of a family of proper scoring rules, each of
which acts as a linear (additive) summary over all applications that make
Bayes decisions with categorical probability distributions over two classes.
That is, we are interested in all applications where the recognizer provides
a posterior probability, q, for the target class, which has to be used to make
some decision, a ∈ A, that optimizes the expected value, C� (a|q), of some cost
function C� .

Chapter 2 showed that every such application can be evaluated via proper
scoring rule, C∗τ (q|θ). When there are two classes (N = 2), we use the termi-
nology binary proper scoring rule. What remains now is (i) to show how to
represent all binary proper scoring rules as an appropriately defined family,
and (ii) that some members of this family, including Clog, act as summaries
for the whole family.

It is possible to construct pathological proper scoring rules that are always
infinite. Excluding such pathologies, we are left with what are known in the
literature as regular proper scoring rules, see [8] and references there-in. There
are different ways to characterize all regular binary proper scoring rules. Here
we propose a variant of previously published characterizations and then show
how it is equivalent to those characterizations. Our characterization is:

C∗ρ(q|θ) =

∫ 1

0

C∗η(q|θ)ρ(η) dη (7.34)

where ρ(η) is a normalized probability distribution, with
∫ 1

0
ρ(η) dη = 1. By

choosing the distribution ρ(η), we can form any regular binary proper scoring
rule in canonical form. As already shown, ρ(η) = 1 gives Clog. We give other
examples later. If we insert definition (3.12) of C∗η , we get:

C∗ρ(q|θ1) =

∫ 1

q

ρ(η)

η
dη , C∗ρ(q|θ2) =

∫ q

0

ρ(η)

1− η
dη . (7.35)

To see that C∗ρ is in canonical form, notice that C∗ρ(1|θ1) = 0 and C∗ρ(0|θ2) = 0
and that the scale is normalized by virtue of the normalization of ρ(η). By
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equivalence, as explained in section 3.4, we do not have to consider any proper
scoring rules that are not in canonical form.

What happens when ρ(η) ≥ 0, but it cannot be normalized, so that∫ 1

0
ρ(η) dη → ∞? Since 1

η
ρ(η) ≥ ρ(η) ≤ 1

1−ηρ(η) in the interval η ∈ [0, 1],

we have
∫ q

0
1

1−ηρ(η) dη +
∫ 1

q
1
η
ρ(η) dη ≥

∫ 1

0
ρ(η) dη. This means that if ρ(η)

cannot be normalized, then one or both of C∗ρ(θ1, q) and C∗ρ(θ2, q) must also be
infinite, for every q. This pathology is clearly not a useful proper scoring rule.
We can therefore, without loss of generality, restrict ρ(η) to be a normalized
distribution.

In the literature, the class of regular binary proper scoring rules has
been expressed by integrals that are equivalent (but not identical in form)
to our (7.35). See for example [35], where the form∫ 1

q

ρ′(η) dη,

∫ q

0

η

1− η
ρ′(η) dη, ρ′(η) ≥ 0, for 0 ≤ η ≤ 1

is used; or [13] and [8] where∫ 1

q

(1− η)ρ′′(η) dη,

∫ q

0

ηρ′′(η) dη, ρ′′(η) ≥ 0, for 0 ≤ η ≤ 1

is used. Equivalence to (7.35) is established by letting ρ′(η) = ρ(η)
η

and

ρ′′(η) = ρ(η)
η(1−η)

. The advantage of the form (7.35) which we adopt here, is

that the weighting function ρ(η) is always in the form of a normalized prob-
ability density, which gives the natural interpretation of expectation to these
integrals. In contrast, if for example we wanted to construct the logarithmic
scoring rule via ρ′ or ρ′′, we would need to choose ρ′(η) = 1

η
, or ρ′′(η) = 1

η(1−η)
,

neither of which can be normalized.
Next we consider some concrete examples of what (7.34) gives with different

distributions, ρ(η):

Binary decisions

If we concentrate the distribution to a point mass, or Dirac-delta, as ρ(η) =
δ(η − η1), we recover the integrand at η1, so that C∗ρ = C∗η1 . This is just the
normalized proper scoring rule obtained when making binary accept/reject de-
cisions, where the cost ratio gives a Bayes threshold of η1. See equation (3.12).

Ternary decisions

If we use the convex combination of two point masses: ρ(η) = αδ(η − η1) +
(1 − α)δ(η − η2), we get a proper scoring rule associated with applications
that require ternary accept/reject/undecided decisions. If η1 < η2, then the
decision is reject if q < η1, undecided if η1 ≤ q < η2, or accept if η2 ≤ q. There
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are 2× 3 = 6 outcomes, two of which, (accept, target) and (reject, non-target)
have zero cost. The remaining four have non-zero weights, determined by the
three parameters η1, η2, α. There are only 3 parameters for 4 weights, because
of the normalization constraint (just as η1 determines 2 weights in the previous
example). The reader may want to refer back to equation (3.27) and figure 3.1
where we analysed (a scaled version of) this two-threshold proper scoring rule.

M-ary decisions

We can generalize the above with ρ(η) =
∑M−1

i=1 αiδ(η − ηi). This represents
an application requiring M -ary decisions, with a set, A = a1, a2, . . . , aM , of
M discrete decisions. These decisions could, for example, represent a discrete
scale, ranging from strong support for the target class, through neutrality, to
strong support for the non-target class.

Strictly proper scoring rules as summary criteria

Any applications requiring discrete decisions can be represented with one or
more point masses in ρ(η). This is also true for applications that require
compound decisions and it is also true for mixtures of applications. We can
construct a summary evaluation criterion, summarizing all discrete-decision
applications (still constrained to N = 2 classes), by weighting all operating
points with non-zero weight. In fact, if we let ρ(η) > 0 everywhere in the
interval η ∈ (0, 1), then C∗ρ is a strictly proper scoring rule, see section C.3 in
the appendix, or [8] theorem 3.

We now have the desired result: The family C∗ρ , the regular binary proper
scoring rules, represents all two-class Bayes decision applications. If ρ(η) is
strictly positive, we get the family of regular binary strictly proper scoring
rules, each of which summarizes all these applications as a weighted combina-
tion. What remains is which weighting to choose. Examples are:

• ρ(η) = 1 gives: C∗ρ(q|θi) = Clog(q|θi).

• ρ(η) = 6η(1− η) gives: C∗ρ(q|θi) = 3CBrier(q|θi), where

CBrier(q|θ1) = (1− q)2 , CBrier(q|θ2) = q2 . (7.36)

The Brier scoring rule is possibly the oldest proper scoring rule. It was
proposed in 1950, for evaluating probabilistic weather forecasts [3].

• ρ(η) = 1

π
√
η(1−η)

gives: C∗ρ(θ, q) = 2
π
Cboost(θ, q), where

Cboost(q|θ1) =

√
1− q
q

, Cboost(q|θ2) =

√
q

1− q
(7.37)

is a proper scoring rule which has recently been shown to be the objec-
tive that is effectively optimized by the discriminative machine-learning
technique of boosting, see [13].
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7.4.2 Choice of strictly proper scoring rule

We have now established that a strictly proper scoring rule forms the kind
of summary criterion we seek. What remains is to analyse some different
candidates and to show in which respects the logarithmic rule is preferable.
To do this, we follow [13], and embed the Brier, logarithmic and boosting rules
into a parametric family.

(In [13] they use both parameters of the beta independently to create asym-
metric scoring rules, but our solution to introducing asymmetry in the appli-
cation is to vary the prior instead. This will be discussed under discriminative
training in chapter 8.)

Symmetric beta family of proper scoring rules

The Brier, logarithmic and boosting rules have in common that each is induced
by a distribution of the form ρ(η) = kηγ(1−η)γ, for some exponent γ. In fact,
this is just a special case of the beta or Dirichlet14 distributions [1]. The
beta distribution has two parameters and if they are equal, the distribution is
symmetric. We now limit our attention to the subset of strictly proper scoring
rules that are induced when ρ is a symmetric beta distribution and we analyse
their nature for different values of the exponent γ. Let

ρ(η) = Beta(η|γ + 1, γ + 1) =
Γ(2γ + 2)

Γ2(γ + 1)
ηγ(1− η)γ (7.38)

where Beta is the beta distribution [1] and Γ is the gamma function [67, 72].
Since Beta(η|a, b) can be normalized only when a, b > 0, this also limits γ >
−1.

The proper scoring rules induced by the integrals of (7.35), with this choice
of ρ can be analytically solved for the cases γ = −1

2
, 0, 1

2
, 1, 11

2
, 2, 21

2
, · · · , or

they can be numerically evaluated for −1 < γ < ∞ via implementations of
the beta,15 incomplete beta and/or gamma functions [13, 72, 67].

We already know γ = −1
2

gives Cboost, γ = 0 gives Clog and γ = 1 gives
CBrier. Increasing γ further takes the proper scoring rule closer to a step
function, until at γ → ∞ it degenerates into the non-strict C∗η , with η = 0.5.
This is shown in figure 7.4.

Choice of γ

Here we motivate our preferred value of γ = 0, which finally clinches the deal
for logarithmic cost.

14The beta distribution is the special case of the N -state Dirichlet distribution, when
N = 2.

15The beta function is not to be confused with the beta distribution. The former is the
normalization factor of the latter.
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Figure 7.5: Weighting distribution, ρ(η), of (7.38), for a few values of γ.

The salient effect of varying γ is the behaviour of ρ(η) at η = 0 and
η = 1. Recall that η is the Bayes decision threshold as applied to the posterior
distribution. For −1 < γ ≤ 0, these two values of η get non-zero weight, while
for γ > 0, they get zero weight. For example, for γ = 0, ρ(0) = ρ(1) = 1; but
for γ = 1, ρ(0) = ρ(1) = 0. This is demonstrated in figure 7.5.

The effect of γ on the induced proper scoring rule is as follows:
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• When −1 < γ ≤ 0, then C∗ρ(0|θ1) = C∗ρ(1|θ2) =∞ is unbounded.

• When γ > 0, then C∗ρ(0|θ1) = C∗ρ(1|θ2) <∞ is bounded.

This is demonstrated in figure 7.6.
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Figure 7.6: Comparison of three strictly proper scoring rules, showing that when
γ > 0, the rule is bounded. C(q|θ2) is shown, C(q|θ1) is symmetrical about 0.5.

To understand why this is important, recall that η parametrizes the ap-
plication, where (Cmiss, Cfa) = ( 1

η
, 1

1−η ). As η approaches 0 or 1, it repre-
sents applications for which the risk of bad decisions may be arbitrarily high.
The weighting function ρ(η) forms an expectation over these applications. If
the weighting function goes to zero at η = 0 and η = 1, then we are ef-
fectively excluding these applications from consideration. It is obvious from
equation (7.38) that this happens for any γ > 0.

In real-world applications, the consequences of bad decisions can
be arbitrarily bad. If a recognizer outputs a log-likelihood-ratio of
±∞, which translates to a posterior probability of exactly 1 for one
of the propositions, then a Bayes decision would be made in favour
of that proposition, regardless of the cost of error. But if the recog-
nizer is wrong, then that potentially high cost would be incurred.
More generally, the larger the log-likelihood-ratio magnitude, the
larger the potential costs of bad decisions. The proper scoring rule
that evaluates the recognizer output should reflect this.
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We therefore consider it imperative when evaluating recognizers that are to be
used to make real decisions, to also include such consequences into considera-
tion. For this reason, we choose to work only with strictly proper scoring rules
that effectively include these extremes and that therefore satisfy ρ(η) > 0 over
the closed interval η ∈ [0, 1]. For the γ-family, this translates to γ ∈ (−1, 0],
which gives C∗ρ(0|θ1) = C∗ρ(1|θ2) = ∞. Note however, that 0 < C∗ρ(q|θ) < ∞
when 0 < q < 1 and that the zeros and infinities happen only at q = 0 or
q = 1.

But this is not the only reason for wanting unbounded cost functions.
There is also the further practical consideration of obtaining an objective that
is amenable to numerical optimization. As has been shown with the recent
successes of machine-learning techniques such as support-vector-machines and
boosting, convex optimization objectives are a great advantage. It turns out
that unbounded proper scoring rules tend to lead to convex optimization prob-
lems such as boosting and logistic regression, while bounded proper scoring
rules such as the quadratic Brier score lead to non-convex optimizations such
as are common in neural networks [73, 13].

We have now established that if we work within the γ-family, then our
choice of parameter must be limited to −1 < γ ≤ 0. Let us now finally
make a choice within this interval. The more negative we make γ, the more
weight is placed at the extremities, see figure 7.5. We argue here that placing
too much weight at the extremities is bad for the purpose of constructing a
general evaluation criterion. This is because of the limitations imposed by
the size and accuracy of the evaluation database, as discussed in section 7.3.2.
Placing too much weight near η = 0 or η = 1 amplifies the inaccuracies in
error-rate estimates that result there. By this argument it is desirable to place
as little weight as possible on the extremities.

Minimizing weight at the extremities, subject the the unboundedness con-
straint gives γ = 0 and therefore the logarithmic scoring rule.

This argument for preferring the logarithmic scoring rule does not exclude
the use of other scoring rules for all purposes. There may be situations in which
using others gives useful results, as has been demonstrated by the success of
boosting for certain machine learning problems [13]. However, in the absence
of good reasons to choose something else, the logarithmic scoring rule is a
sensible default choice.

7.4.3 The logarithmic evaluation criterion

Here we assemble the evaluation criterion, Elog, which results when using the
logarithmic scoring rule for two classes.

The logarithmic scoring rule is usually defined as Clog(q|θi) = − log qi,
where q is the posterior probability distribution output by the recognizer. In
our context however, for the case of two classes, we are using it to evaluate the
detector output in log-likelihood-ratio form. For a log-likelihood-ratio w and
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a target prior π we find:

Clog(B(w, π)|target) = log
(
1 + exp(−w − logit π)

)
Clog(B(w, π)|non-target) = log

(
1 + exp(w + logit π)

) (7.39)

where B is Bayes’ rule. To see how this rule works as a function of w, notice first
that logitπ just causes a translation along the input axis. Let us arbitrarily
zero this shift at logit 1

2
= 0 and then examine the behaviour of the cost given

that the target proposition is true: log
(
1 + exp(−w)

)
:

• For a good recognizer output, with w � 1, the cost vanishes: log
(
1 +

exp(−w)
)
≈ exp(−w)� 1.

• For a bad recognizer output, with w � −1, the cost grows linearly (and
thus unboundedly) with the magnitude of w: log

(
1+exp(−w)

)
≈ −w �

1.

• For a non-committal recognizer output, w ≈ 0: log
(
1+exp(−w)

)
≈ log 2.

The case of non-targets is symmetric on the w axis about logitπ. See figure 7.7.
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Figure 7.7: Logarithmic cost vs log-likelihood-ratio, w, at logit π̃ = 1.

Forming our empirical evaluation criterion, with the supervised evaluation
database, by plugging (7.39) into (5.4), we get:

Elog(W|π) =
π

|T1|
∑
t∈T1

Clog(B(w, π)|target)

+
1− π
|T2|

∑
t∈T2

Clog(B(w, π)|non-target) .
(7.40)
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Nomenclature

In our paper [17], we denoted the criterion formed at π̃ = 0.5, as:

Cllr(W) =
1

log 2
Elog(W|0.5) (7.41)

where the subscript llr indicated that the criterion evaluates log-likelihood-
ratios.

In the Ph.D. dissertation [29] of Daniel Ramos, Elog(W|π) is referred to as
empirical cross-entropy, or ECE.

Computation

Practical computation of Elog via (7.40) is straight-forward and very similar in
implementation to traditional evaluation performed by counting of errors. The
only detail that needs some care is for example when doing discriminative train-
ing, when large scores can result, to avoid numerical overflow of the exponent.
If exp(w) would overflow, just use the approximation log(1 + exp(w)) ≈ w.

Calibration sensitivity

To see that Elog is calibration-sensitive, consider that the value of Clog and
therefore Elog can be arbitrarily large. If there is but one target trial for which
the recognizer gives posterior 0, or one non-target for which the recognizer
gives posterior 1, then the whole evaluation criterion becomes infinite. Recall
that we concluded that large values, greater than the reference, Elog(W0|π),
given by the default recognizer, must be due to bad calibration, whatever the
definition of calibration.

Applications differ appreciably in their sensitivity to calibration. An
extreme case is Eerr(W|0.5), which will show bad calibration that exceeds
Eerr(W0|0.5) = 0.5 only if the signs of all the scores are reversed, in which
case the value may reach 1. However, Eη, if η is close to 0 or to 1, can attain
large values. Evaluation by logarithmic cost can be understood to reach large
values because as a summary over applications, it also includes such high-cost
applications.

The calibration-sensitivity of Elog (as well as evaluation by other strictly
proper scoring rules) is in contrast to the traditional summary measures such
as EER and AUC, which evaluate uncalibrated scores.

7.4.4 Summary of summary criteria

In this section, we showed that binary strictly proper scoring rules form linear
additive summaries over all applications that make two-class Bayes decisions.
This forms a class of application-spanning, calibration-sensitive, summary cri-
teria. We argued that Elog is a good default choice within this class.
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7.5 Evaluating calibration

So far in this chapter, we showed how to generalize the traditional evalua-
tion criteria to create new, calibration-sensitive, application-spanning criteria.
These criteria are useful when developing and testing detectors that are de-
signed to make hard Bayes decisions over a range of applications.

Now we investigate how to complement our new calibration-sensitive crite-
ria with calibration-insensitive versions, so that the contrast effectively evalu-
ate goodness of calibration. In short, in the same way that DCF−minDCF tra-
ditionally evaluates calibration, we now define Emin

err and Emin
log , so that Eerr−Emin

err ,
or Elog − Emin

log , can be used in the same way.
The traditional way of measuring calibration as Lcal = DCF − minDCF

in section 7.3.3 agrees with our conclusion in section 5.3.1 of how to measure
calibration. However it has the limitation that it is fixed at the specific DCF
parametrization and therefore represents only the single application that re-
quires binary decisions at the given prior and cost. In the next two sections,
we show how to overcome this limitation in two ways:

• We replace DCF by Eerr, thereby allowing a sweep over applications and
thus giving a plot of calibration quality against the application parame-
ter. This is presented in the next section, directly below.

• The above is already a very useful tool, but it is limited to evaluation by
the proper scoring rule C∗err. We go further and show how to generalize
this recipe to arbitrary proper scoring rules. This effectively defines
scalar summary criteria for goodness of calibration. This is presented in
section 7.7.

7.6 Normalized Bayes error-rate plots

Here we generalize the traditional DCF/minDCF calibration decomposition,
which evaluates decisions and scores at a fixed application, to the Eerr/Emin

err de-
composition, which evaluates log-likelihood-ratios over a range of applications.
Given our analysis in this chapter, the recipe is straight-forward:

The recognizer, W , provides output, wt, in calibrated log-likelihood-ratio
format for every trial t of the supervised evaluation database. This is evaluated
by (7.18) as Eerr(W|π̃). As already demonstrated in figure 7.1, this criterion
can be normalized and plotted as a function of the application parameter (the
effective prior), π̃.

Now treat the same submitted log-likelihood-ratios, wt, as uncalibrated
scores and let the evaluator do the calibration. This takes the form of comput-
ing the traditional minDCF (which evaluates scores), but for multiple closely
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Figure 7.8: Normalized Bayes error-rate plot for an SRE 2010 speaker detector
with good calibration. Here eval denotes the evaluation database and dev the devel-
opment database. DCF and minDCF refer to Eerr and Emin

err . Pmiss and normalized
Pfa are also shown separately. DR30 refers to the point to the left of which there
are fewer than 30 false-alarms. The vertical magenta dashed line represents the new
operating point at π̃ = 0.001.
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Figure 7.9: Normalized Bayes error-rate plot for an SRE 2010 speaker detector
with bad calibration. See caption of figure 7.8 for details.

spaced values of π̃ over the plotting range range of interest. We define:

Emin
err (W|π̃) = minDCF(π̃) = min

i
π̃Pmiss(γi) + (1− π̃)Pfa(γi) (7.42)
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where as explained above, the γi are all of the score threshold values that give
different (Pfa, Pmiss) points in the empirical ROC. Now Emin

err can be normalized
and plotted alongside Eerr.

The minimization ensures: Emin
err (W|π̃) ≤ Eerr(W|π̃). If these two are close,

the calibration is good, if they are very different, the calibration is bad. For a
good detector, it is desirable to have good calibration everywhere.

As before, we assume all the scores are finite, so that there is always a
threshold that makes either one of the error-rates zero, so that Emin

err (W|π̃) ≤
Eerr(W0|π̃) = min(π̃, 1− π̃). If we normalize by Eerr(W0|π̃), then:

Eerr(W|π̃)

Eerr(W0|π̃)
≥ E

min
err (W|π̃)

Eerr(W0|π̃)
≤ 1 . (7.43)

This agrees with our previous conclusion: any performance worse than the
default is due to bad calibration.

This plot of normalized Eerr and Emin
err vs h = logit π̃ is the author’s current

favourite tool for judging the calibration of a given speaker detector and it is
the tool we used both in preparation for the NIST 2010 Speaker Recognition
Evaluation (SRE2010) and for our analysis of the results afterwards. In fig-
ures 7.8 and 7.9, we show examples of two subsystems submitted to SRE2010,
with respectively good and bad calibration.

Notice that when the horizontal axis is h = logit π̃, then for the region
h < 0, which we plot in these figures, the vertical axis (normalized error-rate)
is:

v =
Eerr(W|π̃)

min(π̃, 1− π̃)

=
π̃Pmiss(π̃) + (1− π̃)Pfa(π̃)

π̃
= Pmiss(π̃) + exp(− logit π̃)Pfa(π̃)

= Pmiss(logit−1 h) + exp(−h)Pfa(logit−1 h)

(7.44)

where we used (7.18). The exponential amplification of false-alarms induced
by this normalization explains the shape of the Eerr curves for regions of bad
calibration. Some form of amplifying normalization is needed to make the
effects of calibration visible in regions of low error-rate. This normalization
is the main difference between these curves and APE-curves (see section 7.7.4
below). The normalized Bayes error-rate plot is able to display a wider range
of operating points than the APE-curve.

Finally, recall the discussion of section 7.3.2, which effectively means one
cannot extend the horizontal axis indefinitely in either direction, because the
errors will run out somewhere along the way. To make this effect explicit, we
plot what we call the DR30 point, to the left of which the absolute number
false-alarms drops below 30. This point is on the Emin

err curve, because we use
the false-alarm count which results from the evaluator’s optimized threshold.
DR30 refers to Doddington’s Rule of 30, see appendix B.
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7.6.1 Computation

In SRE2010, large score sets—up to a few million trials—were needed to sup-
port the new operating point. With inefficient algorithms, evaluation of a
single detector by Eerr and Emin

err may take several minutes. We propose the fol-
lowing efficient algorithms, which in our implementation takes a few seconds
to execute:16

To efficiently compute Eerr, pool all the scores, wt, with all the different
thresholds, − logit π̃i, at which Eerr(W|π̃i) is to be evaluated. Sort them all
together, keeping track of where the thresholds end up. A simple calculation
involving the index of each threshold gives the desired miss and false-alarm
rate at each threshold.

To efficiently compute Emin
err , compute the vertices of the ROCCH, using the

PAV algorithm (to be discussed below). There are typically very few of these
vertices and as shown in section 7.3.6, the original large ROC can be replaced
with these vertices, without changing the value of minDCF.

7.7 PAV calibration analysis

In the previous subsection, we solved the problem of calibration analysis by
explicitly finding an optimal threshold at every operating point of interest.
This works for applications that require binary accept/reject decisions and
that therefore have a single score threshold per operating point.

A similar strategy would probably still work for applications that require
ternary accept/reject/undecided decisions, involving optimization of two inde-
pendent thresholds per operating point. But it certainly does not generalize
to the case of continuous-valued (soft) decisions in any obvious way.

To make progress with such problems, we need to forget about discrete
thresholds and think again in terms of calibration transformations, as dis-
cussed in section 5.3.1. If the evaluator can optimize the whole calibration
function from score to log-likelihood-ratio, inside of a suitably constrained
function space, then the evaluator can apply the optimized function to the
scores and then evaluate the output as log-likelihood-ratios, with any desired
proper scoring rule (including the strict ones which are not amenable to thresh-
old optimization).

Here we need to: (i) define a suitably constrained function space, (ii) find an
optimization algorithm that works in this space and (iii) interpret the result of
the optimization. For two classes there are good solutions to all three problems:
(i) The function space is naturally defined and has useful properties. (ii) An
efficient optimization algorithm, called PAV, exists in the literature and (iii)

16The algorithms, coded in MATLAB, are freely available here: http://focaltoolkit.
googlepages.com.

http://focaltoolkit.googlepages.com
http://focaltoolkit.googlepages.com
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we show it gives a unique solution that is optimal for all regular binary proper
scoring rules.

The idea to use PAV for a calibration transformation is due to [74]. The
original PAV algorithm was published in 1955 [75].

7.7.1 Calibration function space

Our analysis of idealized scores in section 7.2 and the related discussion of
the interpretation of minDCF in section 7.3.3 already suggest the definition
of our function space in which calibration transformations should live, namely
that they should be monotonic rising bijections. These criteria (i) preserve
the sense of the scores (more positive favours target, more negative favours
non-target) on both sides of the transformation and (ii) ensure that there is a
one-to-one correspondence of thresholds on either side of the transformation.

Consider a transformation, wt = f(st), applied by the evaluee (the de-
tector) to transform the raw scores, st, to calibrated log-likelihood-ratios, wt,
which are submitted to the evaluator. To judge the calibration of the wt, the
evaluator in turn applies a calibration transformation: w′t = g(wt). The eval-
uator optimizes g to find out how good the wt could have been, if the evaluee
had submitted w′t = g(f(st)), instead of wt = f(st).

Now if the family of calibration transformations is closed under function
composition, then h, where h(st) = g(f(st)), would also be a calibration trans-
formation. Then, provided f is invertible, by optimizing g, the evaluator is at
the same time answering the question of how good the wt could have been if
the evaluee had instead submitted w′t = h(st). This is a simpler and perhaps
more natural question. The proviso of the invertibility of f is so that there can
be no information loss through f . If there could be information loss17 through
f , then optimizing g would in general not reach as good an optimum as would
be possible by directly optimizing h.

We now have two requirements: closure and invertibility. A third require-
ment is inclusion of the identity transformation, to allow for the possibility
that the submitted wt are already optimally calibrated. Since function com-
position is associative, it is now clear that the problem is telling us that the
set of calibration transformations really wants to be a group,18 with function
composition as the group operator [76].

Two technical details need to be taken care of. First, the condition of
invertibility is not strong enough. We need all of the functions of the group
to be bijections, so that inversions work in both directions. Second, in sec-
tion 5.3.1, we required the family to include the null transformation which
maps its input to 0. This is in conflict with the invertibility requirement, so

17Recall section 2.3.4.
18A group is a set that is closed under an associative binary operation, where every group

element has an inverse. When the operation is applied to an element and its inverse, it gives
the unique identity element in the group.
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we have to exclude the null transformation from the group. But fortunately it
ends up on the boundary, where it effectively still plays the required role. In
fact, the set of invertible transformations is open and all the optima will be
on the boundary, just outside the set.

Example: affine score calibration

Working with score transformations, we can define the group elements to be
all affine transformations of the form f(s) = αs + β, provided α > 0. Every
such function has an inverse and composition of two such functions is still an
affine transform. The null transformation is on the boundary of this group, if
we agree that these functions live in a metric space where by making α > 0
very small, we can bring f(s) = αs and g(s) = 0 arbitrarily close to each
other.

In the multi-class case, in chapter 8, we shall indeed limit ourselves to
affine calibration transformations. For two-class, however, we consider a more
general set of functions.

7.7.2 Non-parametric calibration transformation

For what follows, it will be convenient to work with calibration transforma-
tions between posterior probabilities. Once we have formulated the solution
in posterior space, we will translate it back to log-likelihood-ratio space.

Let the detector be denoted by R and let qt = R(xt, π) = P (θ1|xt, π,R)
be the detector’s target posterior for trial t. Let f : [0, 1] 7→ [0, 1] be the
calibration transform and let Rf denote the recalibrated version of the original
detector, so that pt = Rf (xt, π) = f

(
R(xt, π)

)
= f(qt).

Our evaluation criterion, defined by plugging any regular binary proper
scoring rule, C∗ρ , into (5.4), is denoted as Eρ(Rf |π).

The problem at hand, namely to choose a group of calibration transforma-
tions and to optimize our evaluation criterion inside this group, is simplified
by realizing we need only a finite number of points on the function. If we have
T input scores, q1, . . . , qT , and the transformation is pt = f(qt), then all we
really need, in order to compute Eρ(Rf |π), are the T values p1, . . . , pT .

For the reasons given above, we now constrain f to be strictly monotonic
rising. The input scores qt can be sorted by the evaluator, without changing
the problem (provided we remember to keep track of the labels). We can
therefore assume, without loss of generality, that q1 < q2 < · · · < qT . Now the
strict monotonicity requires also p1 < p2 < · · · < pT . As explained above, this
restriction forms an open set and for a well-defined optimization, we need a
closed set, so we optimize instead within the closure given by the requirement:

0 ≤ p1 ≤ p2 ≤ · · · ≤ pT ≤ 1 (7.45)
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where we have added the boundaries 0 and 1 to make it clear the pt are prob-
abilities. For strict (i.e. smooth) proper scoring rules, the criterion, Eρ(Rf |π),
on the boundary will be arbitrarily close to that of some nearby solution in
the interior of the set.

This monotonicity constraint will now serve as the definition of our fam-
ily of allowed calibration transformations: any sequence, p1, p2, . . . , pT , that
satisfies (7.45) is allowed as the output of the calibration transformation.

7.7.3 The PAV solution

The evaluator’s problem in optimizing the calibration transformation can now
be stated as follows. There is given:

• a regular binary proper scoring rule, C∗ρ(q|θ),

• a prior, (π1, π2) = (π, 1− π), where 0 < π < 1,

• and (after sorting) a sequence of trial indices, t = 1, 2, . . . , T , which is
partitioned into the target subset, T1, and the non-target subset, T2.

The evaluator has to minimize the evaluation criterion, Eρ(Rf |π), to find:

Emin
ρ (R|π) = min

p1,...,pT

2∑
i=1

πi
|Ti|

∑
t∈Ti

C∗ρ(pt|θi) (7.46)

subject to (7.45). This optimization problem is discussed in detail in ap-
pendix C, where we give proofs and references to the relevant literature. Re-
markably, the problem has a unique solution, independent of the proper scoring
rule, which can be expressed in closed form as:

p∗t = max
1≤i≤t

min
t≤j≤T

r(i, j) = min
t≤j≤T

max
1≤i≤t

r(i, j) (7.47)

r(i, j) =
πb1(i, j)

πb1(i, j) + (1− π)b2(i, j)
(7.48)

bk(i, j) =
nk(i, j)

nk(1, T )
(7.49)

where n1(i, j) is the number of target trials, and n2(i, j) is the number of
non-target trials in the subsequence indexed by t′, such that i ≤ t′ ≤ j.

As shown19 in appendix C, if we translate this optimization problem to
the log-likelihood-ratio domain, then the log-likelihood-ratio solution is also
independent of the prior:

w∗t = logit p∗t − logit π = log `∗t (7.50)

19Another way to see this is simply that (7.48) processes the prior in accordance with
Bayes’ rule.
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where

`∗t = log
b1(it, jt)

b2(it, jt)
(7.51)

and where it, jt are the indices as found in the minimax problem (7.47). For
R(x,π) = B(W(x),π), we find:

Emin
ρ (W|π) = Emin

ρ (R|π) . (7.52)

This works, because of the correspondence (7.50) and because the monotonicity
constraint (7.45) can be equivalently stated in terms of sorting the input log-
likelihood-ratios, rather than sorting the input posteriors as in our explanation
above. Some comments about this solution are in order:

• The optimum log-likelihood-ratio solution, w∗t , is independent of the prior
and of the proper scoring rule. The posterior solution, p∗t , is dependent
on the prior, but independent of the scoring rule. The value of the
minimized evaluation criterion, Emin

ρ (R|π), is dependent on the prior
and the proper scoring rule C∗ρ .

• The independence of w∗t of the proper scoring rule and the prior is a
rather special property. If, for example, we use a more constrained set of
calibration functions, such as the set of affine transforms, w∗t = αst + β,
of the example above, then the optimizing solution is dependent on both
the proper scoring rule and the prior.

• The solution partitions the sequence into a number of blocks, each of
which has a constant solution, typically spanning several trials. This
corresponds to flat regions in the calibration function, making it non-
invertible, so that it is on the boundary of the set of invertible calibration
functions.

• Ironically, this solution, which by (7.49) effectively counts labels in score
bins, is very close to the histogram solution of [35], which we mentioned
during our discussion of the calibration/refinement decomposition in sec-
tion 5.3. The difference is that here, the number of bins and the size of
each bin is adaptively determined by optimizing a well-defined criterion,
rather than just arbitrarily choosing some number of fixed-width bins.

• The solution is dependent only on the order of the input scores. After
sorting the input scores, it is only the sequence of target and non-target
labels that matters, not the values of the scores. (This is also true
of ROC, EER and minDCF.) This means it does not matter whether
the input scores are uncalibrated scores, likelihood-ratios, log-likelihood-
ratios or probabilities. This solution works for all sortable scores, with
the sense that larger scores favour the target and smaller scores favour
the non-target.
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• It is shown in [69] that the slopes of the line-segments of the ROCCH
are given by −`∗t , where it, . . . , jt are the indices of the scores spanned
by that line-segment. Compare this to section 7.2.2, where the slope of
the ideal continuous ROC also gives the likelihood-ratio.

• We shall refer to this solution as the PAV solution, because it is efficiently
computed with the PAV algorithm.

Computation: the PAV algorithm

Notice that the computational complexity of a straight-forward solution
to (7.47) increases as T 2. Fortunately the pool adjacent violators (PAV) algo-
rithm solves this problem with linear complexity. See appendix C for details
and references. Note, however that the PAV algorithm must be preceded by
sorting, which typically has complexity of order T log(T ). In our implementa-
tion, sorting and applying PAV takes a few seconds for a few million scores.

7.7.4 Applications of PAV calibration analysis

We can use (7.46) to compute Emin
ρ (W|π), which is a calibration-insensitive

version of any evaluation criterion, Eρ(W|π). The contrast between Eρ and
Emin
ρ can be used to evaluate quality of calibration, or Emin

ρ can be used on its
own, when calibration is not of immediate interest. In the author’s experience
thus far, the main interest has been in Emin

err and Emin
log :

• Eerr and Emin
err form the normalized Bayes error-rate plot, which as de-

scribed above, proved useful for preparation and post-analysis in NIST
SRE 2010. They also appear in APE-curves, described below.

• Lcal = Elog−Emin
log forms a scalar, application-spanning, summary criterion

of the goodness of calibration. We used this criterion extensively for
SREs 2005, 2006 and 2008.

APE curves

In our journal paper [17], we used all four of the above criteria together in what
we called applied probability of error, or APE, plots. An APE plot includes
the following:

• Unnormalized curves of Eerr(W|π̃) and Emin
err (W|π̃) against the horizontal

axis, h = logit π̃.

• The default reference curve Elog(W0|π̃).

• Ldis = Emin
log (W|0.5), called discrimination loss, and Lcal = Elog(W|0.5)−

Emin
log (W|0.5), called calibration loss are plotted as a single, stacked bar
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graph, so that the total height is the total loss, Ltot = Ldis + Lcal =
Elog(W|0.5). The logarithmic criterion is not varied as a function of the
prior, since it is already an integral over the prior.

The APE-plot has the following, graphically interpretable properties:

• Ltot =
∫∞
−∞ Eerr(W| logit−1 h) dh.

• Ldis =
∫∞
−∞ E

min
err (W| logit−1 h) dh.

• Lcal =
∫∞
−∞ Eerr(W| logit−1 h)− Emin

err (W| logit−1 h) dh.

• ROCCH-EER = max
h
Emin

err (W| logit−1 h).

See our book chapter [18] for more on APE-plots. We have used APE plots
from 2005 to the present as a standard tool for evaluating calibration of many
speaker recognition systems, including those we submitted to NIST SREs in
2005, 2006 and 2008.

ECE curves

Daniel Ramos introduced empirical-cross-entropy (ECE) curves in his Ph.D.
dissertation [29], as an alternative to APE curves, more suitable20 for the foren-
sic interpretation of speaker recognition evidence. In these curves, Elog(W|π̃)
and Emin

log (W|π̃) are plotted against logit π̃. The canonical Shannon entropy, in-
duced by the logarithmic cost function, lends a standard information-theoretic
interpretation of the quantities on this graph, as the effective information de-
livered by the detector to the decision-maker.

(As an irrelevant21 aside: The quantity maxπ̃ Elog(W0|π̃) − Emin
log (W|π̃)

has an interesting communications engineering interpretation. Elog(W0|π̃) −
Emin

log (W|π̃) behaves similarly to mutual information between the detector out-
put and the proposition. Maximizing mutual information over the prior is the
channel capacity [27].)

7.8 Summary

In this chapter we applied the theoretical first part of this work for analysing
traditional speaker detection evaluation criteria and to generalize them to new
criteria with complementary properties. Table 7.1 gives a comparison of prop-
erties.

20When the legal professions are involved, one cannot use the word error as freely as one
does in a pure engineering environment. This disqualifies Eerr in favour of Elog, where the
errors are hidden from view by integrating over them.

21The footnote above may be irreverent, but not irrelevant.
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Traditional evaluation criteria are either calibration-sensitive or
application-spanning. The new criteria presented here do both, while
still providing auxiliary application-insensitive versions for comparative
calibration analysis.

The new criteria span applications in one of two ways, either by plotting the
criterion over a range of applications, or by creating a linear additive summary
via analytical integration over applications. Both are useful for evaluation,
while the latter is useful for discriminative training.

This chapter treated two-class recognition in great detail. The next chapter
treats multi-class in lesser detail, because for multi-class most of the two-class
methods don’t work, are not useful, are too complicated, or remain to be dis-
covered. Fortunately, as we shall show, the logarithmic cost function provides
most of what we need for practical development and testing of application-
spanning multi-class recognizers.



Chapter 8

Solutions for multi-class
recognition

In this chapter, we use language recognition as a prototype for multi-class rec-
ognizers that provide their output in cost-and-prior-independent log-likelihood
form.

We are interested in the pattern recognition problem where an input, x, is
given, for which it is known that exactly one of a set of N ≥ 2 propositions,
ΘN = {θ1, . . . , θN}, is true and where the recognizer, W , outputs a vector of
log-likelihoods ẃ =W(x), as discussed in section 4.2.1.

In this chapter we consider both evaluation solutions and discriminative
training solutions. Except for logarithmic cost, our evaluation solutions for
multi-class are not generalizations of our two-class solutions. The discrimina-
tive training solutions are however of the same form for N = 2 and for N > 2
and for that reason are convenient to treat as one topic in this chapter.

As in chapter 7, the evaluation methods of the NIST Language Recognition
Evaluations provide a valuable starting point for our discussion.

8.1 LRE’s CAVG as discrete summary

criterion

Here we analyse the evaluation criterion of the primary task in the NIST
Language Recognition Evaluations (LREs) of 2005, 2007 and 20091, in terms
of our notation.

The primary evaluation task involves N > 2 language classes. The input,
xt, for each trial, t, is a single speech segment, known to contain speech in ex-
actly one of these classes. NIST’s primary evaluation criterion, called2 CAVG,
is formed by a mixture of N different applications, as explained in section 6.2.

1See the evaluation plans here: www.itl.nist.gov/iad/mig/tests/lre.
2NIST renders CAVG as Cavg, but this is confusable with our notation for cost functions,

which evaluate trials. CAVG evaluates all the trials in an evaluation database, just like DCF.
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The mixture components are detection applications, where accept/reject deci-
sions are required.

The language recognizer is required to output a compound, N -component
decision, at = (a1t, . . . , aNt) ∈ {accept, reject}N , for each trial, t. The com-
pound decision is evaluated with an N -fold combination of the criteria formed
by N different applications. The prior and the cost function are both varied
across applications. For application k, class θk is denoted the target class, and
the prior, πk = (π1k, π2k, . . . , πNk), is

πik =
δik
2

+
1− δik

2(N − 1)
(8.1)

where δik denotes Kronecker delta. The target class gets half of the probability
mass and the rest, the non-targets, share the other half. The cost function for
application k, which evaluates each decision, akt, is

Ck(a|θi) =

{
1− δik if a = accept ,

δik if a = reject
(8.2)

so that detection errors, when θk is the target, are penalized with zero-one cost.
NIST’s evaluation criterion, CAVG, is now assembled as the average over the
N applications:

CAVG =
1

N

N∑
k=1

N∑
i=1

πik
|Ti|

∑
t∈Ti

Ck(akt|θi) . (8.3)

As we showed in section 6.2, such a mixture of applications can be rewritten as
a single application, by absorbing the priors into the cost functions and then
forming a new combined cost function:

CAVG =
N∑
i=1

π̃i
|Ti|

∑
t∈Ti

N∑
k=1

C̃k(akt|θi) (8.4)

=
N∑
i=1

π̃i
|Ti|

∑
t∈Ti

Clre(at|θi) (8.5)

where π̃i = π̄ = 1
N

is now constant and

Clre(at|θi) =
N∑
k=1

C̃k(akt|θi) (8.6)
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where

C̃k(a|θi) = πikCk(a|θi)

=

(
δik
2

+
1− δik

2(N − 1)

){
1− δik if a = accept ,

δik if a = reject

=
1

2

{
1−δik
N−1

if a = accept ,

δik if a = reject .

(8.7)

We have thus shown that the criterion CAVG can be equivalently parametrized
with the single application (Clre, π̄). The cost function Clre(a|θ) evaluates a
vector, a, of accept/reject decisions. Since the decision vector has binary
values, a can also be interpreted as a subset of ΘN . The decision space is
therefore just the power set: A = 2ΘN .

In summary, unlike NIST’s speaker detection criterion, DCF, which rep-
resents a single operating point, the language recognition criterion, CAVG,
represents a discrete mixture of operating points, which exercises the decision-
making ability of the recognizer’s output more thoroughly.

8.1.1 CAVG as proper scoring rule

We now follow the same process as for speaker detection, where we generalized
DCF to Eerr, by requiring log-likelihoods from the recognizer, rather than hard
decisions. We convert CAVG to Elre by replacing each C̃k by the proper scoring
rule C̃∗k .

The expected-cost, C̃k(a|q), is minimized by the Bayes decision, to accept
if and only if qk ≥ π̄. Notice that for a given q = (q1, . . . , qN), more than
one component may exceed the threshold, so that the compound decision a =
(a1, . . . , aN) may contain more than one accept decision, even though it is
known that exactly one proposition must be true for trial t. This is not an
anomaly, because the cost function for each application k is different.

The individual proper scoring rules are now:

C̃∗k(q|θi) =
1

2

(
u(qk − π̄)

1− δik
N − 1

+ (1− u(qk − π̄))δik

)
(8.8)

where u denotes the unit step function. The combination is the proper scoring
rule:

C∗lre =
N∑
k=1

C̃∗k(q|θi) (8.9)

=
1− u(qi − π̄)

2
+

∑
k 6=i u(qk − π̄)

2(N − 1)
. (8.10)
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Notice that the first term gives a penalty of 1
2

if the true class θi is missed,
when qi < π̄. The second term gives an additional, smaller penalty of 1

2(N−1)

for each false-accept, when k 6= i and qk ≥ π̄. Since the decisions are sets of
classes, multiple penalties can be incurred at once.

The minimum score is 0, for a region (polytope) of q including the vertex
at qi = 1. The maximum score is 1, for the opposed region including the
point where qi = 0 and all the other qk = 1

N−1
> 1

N
. In this region all possible

detection errors happen, the target θi is missed and every one of the non-targets
is falsely accepted. The decision regions for the case N = 3 are illustrated in
figure 8.1.

The evaluation recipe is completed by requiring the recognizer to output
a log-likelihood vector, ẃt = W(xt), for every trial t, to form the evaluation
criterion:

Elre(W|π) =
N∑
i=1

πi
|Ti|

∑
t∈Ti

C∗lre (B(ẃt|π)) . (8.11)

Some comments are in order:

• If the hard decisions submitted to CAVG are made with Bayes decisions
using the ẃt, then CAVG = Elre(W|π̄), where π̄ is the uniform prior.

• CAVG and Elre can be interpreted as the average error-rate over the
mixture of detection applications, and are bounded between 0 and 1.

• In principle we could do the same as for speaker detection, to perform
a more exhaustive evaluation by sweeping the prior, π, over a range of
values and recording all the values of Elre(W|π). However, for a con-
tinuous variation of the prior, that would be difficult to plot, since π is
multidimensional. Instead, in section 8.3.3 we show an example of a plot
representing thousands of discrete points in prior space, each evaluated
by Elre(W|π).

8.2 Logarithmic cost as continuous summary

criterion

Since C∗lre is defined via hard decisions, it is a non-strict scoring rule. Here we
examine a strict proper scoring rule for multi-class, namely logarithmic cost,
Clog.

We will show that, like in the two-class case, multi-class Clog can also be
interpreted as a continuous combination over a parametrized family of simple
hard-decision applications. However, this simple ‘building block’ will not be
the above-discussed LRE application (Clre, π̄). Instead, we generalize our two-
class building block, Cη, to a multi-class version, C�.
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Figure 8.1: Comparison of the decision regions in the simplex q = (q1, q2, q3),
as respectively induced by the proper scoring rules C∗lre, on the left, and C∗�, with
η = (0.5, 0.3, 0.2), on the right.

In the two-class version, the Bayes decision threshold is just the point η on
the one dimensional simplex, or line-segment [0, 1]. In multi-class, we have a
multidimensional simplex and thresholding becomes more complex—compare
the two-class threshold to the tessellations of the simplex in figure 8.1.

We now define C� : Θ2
N 7→ R as:

[C�(θj|θi)] = 1
N−1


0 1

η1
··· 1

η1
1
η2

0 ··· 1
η2

...
...

...
...

1
ηN

1
ηN

··· 0

 , where η = (η1, . . . , ηN) ∈ PoN (8.12)

for row i and column j of the matrix.3 The decision, θj, when the true propo-
sition is θi, is evaluated as C�(θj|θi). The cost of a correct decision is 0 and the
cost of missing class θi is 1

ηi
, regardless of which class, θj, was falsely recog-

nized. As before, the costs are parametrized by the vector η, which is confined
to the interior, PoN , of the probability simplex PN . In other words,

∑N
i=1 ηi = 1

and 0 < ηi < 1.
As in the case of two classes, the penalties can grow arbitrarily large, but

this cost function is normalized in the sense that the expected value of C�
w.r.t. η is C�(θj|η) = 1

N−1
, for every decision θj.

The decision regions for the associated proper scoring rule C∗� are com-
pared to those of C∗lre in figure 8.1, for the case N = 3. Notice that the simple

3We could alternatively have derived CAVG by letting the k-th cost function also be
of the form Θ2

N → R, by letting Ck(θj |θi) = (δik − δjk)2. This would still have required
compound decisions.
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decisions required by C� lead to a simpler tessellation than the compound de-
cisions required by Clre. Comparing the proper scoring rules directly, C∗lre(q|θ)
exercises the decision-making ability of q more thoroughly than C∗�(q|θ). But
the latter is just a building block for an exhaustive exercising of q, effected by
varying the parameter η.

To see this, note that η is the point in the simplex where the decision
boundaries meet. This is shown in the right-hand part of figure 8.1, where
the boundaries are line-segments. In the general case, the boundaries will be
hyperplane-segments. If we vary η over the whole simplex where q lives, we
will be involving all possible values of q in making decisions. This general-
izes the sweeping of the scalar threshold, which gave us the two-class result,∫ 1

0
C∗η(q|θ) dη = Clog(q|θ). This also works for multi-class:∫

PN

ρ(η)C∗�(q|θi) dη = − log(qi) = Clog(q|θi) (8.13)

if ρ(η) = Γ(N) is the uniform distribution4 over the simplex.

Proof. The proof is in appendix D.
Several comments follow:

• For the two-class case, proper scoring rules formed by integrals similar
to (7.34) have been studied at least since 1966, see [77]. However, we are
unaware of any such formulations for the multi-class case.5 In particular,
our result (8.13) appears to be a new interpretation of the logarithmic
cost function.

• As in the two-class case, generalizing (8.13) by choosing different distri-
butions for ρ(η) will form a large family of multi-class proper scoring
rules, because of closure under combination. Different parametrizations
of the Dirichlet distribution may give similar results to those of sec-
tion 7.4.2. We leave this for future work.

• It is not clear whether or not (8.13), with general ρ(η), could charac-
terize any multi-class proper scoring rule, as (7.34) does for two-class.
For example, we are not aware of a choice for ρ(η) that would induce
C∗lre. We therefore cannot repeat the claim we made for two-class: we
cannot claim that the multi-class logarithmic cost summarizes all multi-
class Bayes decision applications. For now we have to be content with

4Here Γ(N) = 2×3×· · ·× (N−1) is the gamma function. To see that this is the correct
normalization factor for the uniform distribution over the simplex, note that the uniform
distribution is a special case of the Dirichlet distribution [1].

5There is however a general categorization of multi-class proper scoring rules formed by
generalized differentiation (subgradients) of convex (negative generalized entropy) functions,
see [8], theorem 2. This implies a corresponding integral characterization, which however
seems not to have been explicitly developed in the literature.
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our interpretation above that shows that the logarithmic cost exercises
the whole probability simplex by sweeping the boundary intersection
everywhere.

• As in the two-class case, the multi-class logarithmic cost function is un-
bounded,6 by virtue of including applications where the cost of errors
are arbitrarily high, when any ηi ≈ 0. For the same reasons as before,
we prefer an unbounded proper scoring rule, both as a representative
of real-world applications and as a discriminative training criterion with
optimizer-friendly qualities.

• ForN > 2, the logarithmic scoring rule has been shown [78] to be the only
strictly proper scoring rule with the property that when θi is true, then
its value depends only on qi and not on any of the other probabilities.
We argue this is appropriate in applications where there is no concept of
distance between the classes. In such cases, the probability distribution
over the other classes is unimportant. As a counter-example, consider
a multi-class age recognition application, where age is binned into a
number of age classes. Here adjacent bins can be regarded as ‘close’
and a recognizer that outputs a low probability for the true bin, but
a high probability for an adjacent bin should be less harshly penalized
than one that assigns low probabilities also for the adjacent bins. See
for example [79].

• For the two-class case, we found an alternative representation of the
logarithmic evaluation criterion, by integrating error-rate as a function of
the prior log odds:

∫∞
−∞ Eerr(W| logit−1 h) dh = Elog(W|π̄). To generalize

this to the multi-class case, one needs a non-uniform weighting over a
multidimensional integral. This is briefly demonstrated (with a nice
graphic) in appendix D.1.

8.2.1 Logarithmic evaluation criterion

The evaluation recipe is completed by requiring the recognizer to output a
log-likelihood vector, ẃt = W(xt), for every trial t, to form the evaluation
criterion:

Elog(W|π) =
N∑
i=1

πi
|Ti|

∑
t∈Ti

Clog

(
B(ẃt|π)

∣∣θi) . (8.14)

When N = 2, this is equal to the two-class version (7.40) and it has similar
properties. In our work in language recognition, we used Elog(W|π̄), with the
uniform prior, as an optimization-friendly surrogate for Elre(W|π̄).

6The well-known multi-class version of the Brier score, CBrier(q|θi) = 1− 2qi+
∑N
j=1 q

2
j ,

is an example of a bounded proper scoring rule.
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8.3 Discriminative training

Here we describe how we use the logarithmic proper scoring rule to form an ob-
jective function for discriminative training of two-class and multi-class pattern
recognizers.

In [1] chapter 1, Bishop distinguishes between two flavours of discrimina-
tive pattern recognition, namely discriminative models, which output poste-
rior distributions and discriminant functions, which directly output decisions.
Logistic regression is an example of discriminative modelling, while support
vector (SVM) classifiers are discriminant functions. Since the recognizers dis-
cussed in our work output posteriors (or equivalently likelihoods), they qualify
as discriminative models.

To discriminatively train a model, one needs an objective function that
maps the model parameter set to a real scalar. Depending on the sense of the
objective, it must be either minimized or maximized to discriminatively train
the parameters. Our empirical evaluation criterion, E� (W|π), when computed
on a supervised training database, can fulfil the role of discriminative training
objective, for certain proper scoring rules, C∗� .

For the two-class case, the PAV solution of section 7.7.3 can be viewed as
discriminative training of the non-parametric calibration transformation. In
this special case, it does not matter which proper scoring rule is used, since
PAV optimizes all of them. In the parametric case which we consider here, it
does matter.

Since we defined proper scoring rules with the sense of cost rather than
utility, the objective, E� (W|π), must be minimized. Non-strict proper scor-
ing rules give non-differentiable objective functions and are therefore not
optimization-friendly. Even some strict proper scoring rules, such as the
quadratic Brier score, which give differentiable objectives, tend to give non-
convex objective functions, which are still difficult to optimize. The unbounded
cost functions, at least for models with log-likelihoods that are linear func-
tions of the parameters, give convex, optimization-friendly [80] objective func-
tions [13].

We start our discussion by letting the discriminatively trained recognizer
output be in posterior form. We switch to log-likelihood form later. Let
R� represent a recognizer with adjustable parameter set, λ. The recognizer
output for every trial, t, in a supervised training database is qt = R�(xt,π).
The evaluation criterion is now the discriminative training objective function
and is defined/parametrized by (C∗� ,π), where C∗� is some proper scoring rule.
The objective function is:

E� (R�|π) =
N∑
i=1

πi
|Ti|

∑
t∈Ti

C∗�
(
R�(xt,π)

∣∣θi) . (8.15)

Discriminative training is the minimization of E� (R�|π) w.r.t. λ. Notice that
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π plays two roles: the same prior is used by both recognizer and evaluator.
In this respect, our formulation of discriminative training is different from
the usual formulation (see e.g. [1] chapter 4), where the recognizer’s prior is
included in λ. The latter may be more appropriate for some tasks such as
speech recognition, where learning the prior (over phones for example) is part
of the training task. In our context, however, we regard the prior as variable
and not part of the recognizer.

Our proper scoring rule of choice for discriminative training is Clog, which
works for both two-class and for multi-class. The objective, Elog(R�|π), is very
well known in several fields as a discriminative training objective:

• If the model log-likelihoods are linear functions of the parameters, then
the result is logistic regression, see e.g. [1] chapter 4. We elaborate on
this below.

• Since the logarithmic cost function induces the canonical Shannon
entropy, discriminative training based on it is often referred to as
maximum-mutual-information (MMI), see e.g. [12].

• The sum of logarithms of posteriors is also the logarithm of the product
of posteriors. In the special case where the prior, π, is chosen to reflect
the proportions of classes in the training database, and under appropriate
conditional independence assumptions, minimizing Elog is equivalent to
maximizing the posterior probability of all the class labels, given all of
the input data [9, 10].

8.3.1 Logistic regression for fusion and calibration

Thus far, our efforts at large-scale discriminative training for both speaker
recognition [54] and language recognition [23] have not been able to convinc-
ingly outperform state-of-the-art generative models. However, in both of these
fields, discriminative training of a small number of parameters involved in fus-
ing and recalibrating the outputs of existing recognizers has been very success-
ful.

Affine fusion and calibration

The following recipe works for two-class and for multi-class. Let there be K
recognizers, denoted Wk, for k = 1, . . . , K. They are all designed to recognize
the same N classes and have outputs in the same log-likelihood format. In
what follows it is unimportant whether these outputs are in the log-likelihood
line format, ẃ, of section 4.2.1, or whether they are Euclidean vectors, w ∈ ẃ.
In the two-class case they may also be scalar log-likelihood-ratios, w, where
(w, 0) ∈ ẃ. For all of these formats, addition and scalar multiplication have
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the appropriate meaning. For generality, we formulate our equations in log-
likelihood-line format. We form a new recognizer, W�, with parameter set
λ = (α1, α2, . . . , αN , b́), where the αk are real, scalar weights and b ∈ LN is a
log-likelihood line of the same dimension as the output of the recognizer. For
a given input xt, simultaneously given to each existing recognizer, the output
of the new recognizer is formed as:

W�(xt) = b́ +
K∑
k=1

αkWk(xt) . (8.16)

The weighted sum over recognizers forms what is known as a fusion or com-
bination of recognizers. By adding the offset, b́, we are also simultaneously
performing an affine calibration transformation on the fusion output. (There
is no additional calibration scaling factor required for the fusion output, be-
cause this scaling is implicit in the fusion weights, αk. In our work, we do
not constrain the fusion weights to be positive and indeed we have found good
solutions which included negative weights [21]. Note that (8.16) is still useful
for the case of one system, when K = 1. In this case it is not a fusion, but
just an affine log-likelihood calibration.

Linear model and logarithmic cost gives logistic regression

Discriminative training of (8.16) is performed by minimizing the objective,

Elog(W�|π) =
N∑
i=1

πi
|Ti|

∑
t∈Ti

Clog

(
B
(
W�(xt),π

)∣∣∣θi) (8.17)

w.r.t. λ. Note that for two-class, Bayes’ rule, B, is the logistic sigmoid of
w + logit(π), while for multi-class, Bayes’ rule is the softmax function of
w + (log π1, . . . , log πN). This shows the close relationship between our objec-
tive (8.17) and the traditional formulations of two-class or multi-class logistic
regression in [1] chapter 4. The only difference is in how the prior is handled.
In our case the given, fixed log priors are explicitly added to the model log-
likelihoods, while in [1], the model is expected to implicitly include the prior
in its log-likelihoods.

Our objective Elog(W�|π) changes as a function of the prior. For different
priors, slightly different solutions are obtained, but in general we have found
that models trained at one prior, and then evaluated over a range of priors,
tend to perform well over a large range of priors. Examples are given below.

Optimization algorithms

Logistic regression optimization does not have a known closed-form solution
and is done via iterative numerical optimization. Efficient optimization meth-
ods for this problem typically make use of first and second-order derivatives
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of the objective function w.r.t. the parameters. See e.g. [1] for formulas of the
derivatives. These derivatives can be used in various optimization algorithms,
such as non-linear conjugate gradient, or quasi-Newton methods [80]. Our
implementations are based on [73] and are available here.7

8.3.2 Examples: Speaker recognition

When fusing and calibrating speaker recognition systems for submission to a
NIST Speaker Recognition Evaluation where the evaluation criterion is DCF,
we parametrize our training objective, Elog(W�|π), at NIST’s operating point:
π = 0.091 for the old and π = 0.001 for the new, as explained in section 7.3.1.

In figure 8.2 we show an example of the DET-curve of the fusion of multiple
speaker recognizers for SRE 2006. See our journal paper [21] for further details.
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Figure 8.2: DET-curve of logistic regression fusion (red) of multiple speaker recog-
nition sub-systems (blue).

Also recall figure 7.8, where a speaker recognition system was calibrated
at the new operating point on a development database and then performed
well over the whole displayed range of operating points on the independent
evaluation data of SRE 2010.

7FoCal, a MATLAB toolkit for fusion and calibration, based on logistic regression, is
freely available at http://focaltoolkit.googlepages.com.

http://focaltoolkit.googlepages.com
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Calibration is not normalization

Now also recall figure 7.9, where calibration did not work. The fact that the
term calibration is used to refer to the calibration criterion as well as the act
of calibrating a recognizer may be confusing here. The calibration criterion for
this system was bad, but in this case was not due to a bad calibration strat-
egy. Logistic regression effectively computes the log-likelihood-ratio between
smooth (exponential family) probability distributions [1]. If these distributions
shift between training and evaluation, then there is nothing calibration can do
to correct the problem. The calibration transform takes only the score as in-
put and cannot normalize or compensate the score in any data-dependent way.
The recognizer of figure 7.8 has good calibration, because its (pre-calibrated)
scores did not shift between training and evaluation as did the scores of the
system of figure 7.9.

8.3.3 Examples: Language recognition

When fusing and calibrating language recognition systems for submission to
a NIST Language Recognition Evaluation where the evaluation criterion is
CAVG, we parametrize the training criterion, Elog(W�|π), at the uniform prior,
π = π̄ = ( 1

N
, . . . , 1

N
).

Figure 8.3 shows an example from NIST LRE 2007, where there were
N = 14 languages. We trained a fusion, W�, of multiple subsystems at the
uniform prior πi = 1

14
on an independent training database. Then we per-

formed evaluations on LRE 2007 data, at 16369 different priors. By zeroing
some of the prior components, and renormalizing the remaining components,
we effectively formed a different LRE over each of the 16369 non-empty subsets
of the 14 languages. The LRE for each subset was evaluated with Elre(W�|π),
and plotted on the vertical axis of figure 8.3. Every dot represents the perfor-
mance of one subset. This experiment shows that calibration trained at one
prior gives a recognizer that works over a large range of different applications.
We argue that this is due to the application summarizing character of the
logarithmic cost function.

For further examples of fusion of multiple language recognition systems in
LRE 2009, see our paper [24].

Multi-class vs one-against-the-rest calibration

The formulation of CAVG as a mixture of discrete applications may have
served as inspiration for several LRE 2007 participants to build a separate,
one-against-the-rest, two-class detector for each target language. Each of the
14 language detectors was calibrated independently of the others. In figure 8.4
we show the CAVG performance of four anonymous participants in this evalu-
ation. The blue bars represent the performance of the original systems as they
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System 5 (original scores)

Figure 8.3: Evaluation of a single well-calibrated recognizer on LRE 2007 data
reorganized into all the non-empty subsets of 14 languages. Each dot represents
CAVG = Elre(W�|π), where the non-zero components of π define the subsets.

were submitted. The brown bars represent our experiments at re-calibrating
these recognizers, each done with a single multi-class transform as defined
by (8.16), with K = 1. The calibration parameters were trained with lo-
gistic regression on independent training data. In each case, the multi-class
calibration outperformed the original one-against-the-rest calibration.

8.4 Calibration analysis

In previous chapters, we have already done most of the groundwork for ex-
plaining calibration analysis. For the two-class case, we showed that the PAV
solution has some attractive properties in the sense that (i) the calibration
analysis is independent of the prior and of the proper scoring rule and (ii) the
monotonic rising restriction on calibration transformations agrees with the
score thresholding principle that defines ROC, ROCCH, DET, minDCF and
EER analysis.

We were unable to find any such neat solution for the multi-class case. One
of the big problems as we see it, is that the considerably more complex be-
haviour of decision boundaries in the multi-class probability (or log-likelihood)
space does not suggest an analogue to the above monotonicity principle. Here
we present our solution that was originally proposed in [19].

In the absence of a suitable restriction on non-parametric calibration trans-
formations, we instead choose a family of parametric transformations. As
shown in section 7.7.1, a principled restriction to place on calibration transfor-
mations is that they form a group under function composition. This restric-
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Figure 8.4: Calibration experiments on LRE 2007. The blue bars represent CAVG
of four language recognizers as originally submitted to LRE’07 and which used
one-against-the-rest calibration. The brown bars represent the same recognizers,
re-calibrated with multi-class logistic regression. The re-calibration was done using
independent training data.

tion leads to the interpretation that if the evaluator optimizes the calibration
transformation it can be interpreted as the optimal calibration that the evaluee
could have used.

For the multi-class case, we work with calibration transformations which
are bijections from LN to LN . (The reader may need to review section 4.2.1
to recall how LN , the space where log-likelihood vectors live, is defined.) The
input to the transformation, even though it is in LN , can be regarded as
an uncalibrated score vector, while the output fulfils the role of a calibrated
log-likelihood vector. If it is assumed that the evaluee used some calibration
transformation in this group to convert score vector to log-likelihood vector,
then the evaluator’s subsequent transformation of the submitted log-likelihood
vector can be interpreted as undoing the original calibration transformation
to recover the original score vector and then re-calibrating it.

8.4.1 Affine calibration transformations

Here we show how to define a practical implementation of a calibration trans-
formation F : LN 7→ LN . Let ś ∈ LN be the input to the calibration trans-
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formation and let ẃ = F (ś) ∈ LN be the output. We can interpret ś as the
uncalibrated score vector and ẃ as the calibrated log-likelihood vector. Recall
from section 4.2.1 that ś and ẃ are diagonal lines in RN , such that any point
on the line is equivalent when used in Bayes’ rule.

Now we implement ẃ = F (ś), by using a function f : RN 7→ R
N that maps

any point u ∈ ś to some point in ẃ:

f(u) ∈ F (ś) for every u ∈ ś . (8.18)

This places a restriction on f , because different points u ∈ ś, must all be
mapped to the same output line ẃ. Another way to state this condition is as
follows:

Let 1 = (1, 1, . . . , 1) ∈ RN . For any u,v ∈ RN and k ∈ R, such that
u−v = k1, there must be some k′ ∈ R, such that f(u)−f(v) = k′1.

This condition is satisfied by letting f be an affine transform:

f(u) = Au + b (8.19)

where b ∈ RN and where A is an N -by-N matrix for which 1 is an eigenvector.

Pure calibration excludes rotation

We now present arguments for further restriction on A. Recall that we want to
limit the evaluator’s calibration transformations to ones that could reasonably
have been used by the evaluee. A full N -by-N matrix allows too many degrees
of freedom, which allows the evaluator, who has access to the true class labels,
to over-optimize.8

Moreover a full matrix does rotation of the log-likelihood vector which we
argue violates the sense of the submitted scores. Consider the case of N = 3,
where the to-be-recognized classes are Spanish, German and Czech. The sub-
mitted log-likelihood vector, represented in RN , is w = (w1, w2, w3), where w1

is the log-likelihood for Spanish, w2 for German and w3 for Czech. Now sup-
pose a prior, π = (π, 1−π, 0), is given which excludes the possibility of Czech.
The posterior, B(w,π), is independent of the value of w3, so that Spanish
and German are distinguished without using the log-likelihood for Czech. If
however, we use the re-calibrated w′ = Aw + b, then the posterior B(w′,π)
becomes dependent on w3. Such calibration transformations could therefore
use the Czech log-likelihood to distinguish between Spanish and German.

8Compare this to the non-parametric PAV solution for two classes, where if there are
millions of scores, we also seem to have millions of degrees of freedom. But the monotonicity
constraint also allows very little leeway for each individual score. The more scores there are,
the more they ‘crowd’ each other, since they are not allowed to move past each other. The
effective number of degrees of freedom is the number of distinct blocks in the PAV solution,
which is typically very small.
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It turns out that in many state-of-the-art language recognition systems,
such rotating score transformations can indeed improve accuracy. Both gener-
atively and discriminatively trained, full-matrix, transformations can be used.
See for example [48] and also our work [19, 24].

However, we argue that such transformation are fusions, which combine
information sources, rather than calibrations which just re-format the available
information. If we want to limit our calibration analysis to use transformations
that have a pure calibration sense, we need to restrict A to be diagonal.

We now have two constraints on A: It should have 1 as an eigenvector and
it should be diagonal. This is satisfied if the diagonal elements are all equal.
The calibration transformation now reduces to:

f(u) = αu + b (8.20)

for some scalar α > 0. Notice this family of transformations forms a group
under function composition as required. Since this transformation involves
only the vector-space operations of scaling and translation, we can equivalently
specify it as:

F (ś) = αś + b́ . (8.21)

8.4.2 Optimization of calibration transform

We are now ready to specify the full recipe for multi-class calibration analysis.
Let W be the original submitted recognizer. Given a supervised evaluation
database,W can be evaluated as Elog(W|π), or Elre(W|π). Now letWF be the

recalibrated recognizer, such thatWF (x) = αW(x) + b́, where we used (8.21).
Now we define:

W∗ = arg min
WF

Elog(WF |π) (8.22)

Eopt
log (W|π) = Elog(W∗|π) (8.23)

Eopt
lre (W|π) = Elre(W∗|π) (8.24)

where the minimization is w.r.t. α and b. Notice that we optimize only the
logarithmic objective and then use the optimum calibration parameters to
define both Eopt

log and Eopt
lre . As before, when optimizing for calibration analysis,

we relax the restriction of positive α to α ≥ 0.
Letting W0 be the default recognizer (which corresponds to WF at α =

0, b́ = 0́), we find:

Elog(W|π) ≥ Eopt
log (W|π) ≤ Elog(W0|π) = C∗log(π) (8.25)

which shows for example that Lcal = Elog(W|π) − Eopt
log (W|π) forms a well-

defined, non-negative, calibration loss criterion. We used this in preparation
and post-analysis for LREs 2007 and 2009.
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The above inequalities do not apply to Elre(W|π) and Eopt
lre (W|π), because

the optimization here was not done for the (optimization-unfriendly) Elre cri-
terion itself. Nevertheless, if performance in a NIST LRE is of interest, this
contrast is a useful indicator of calibration problems in the recognizer. Also
Eopt

lre on its own forms a useful criterion when calibration is not of immedi-
ate interest. We used this as evaluation criterion in our language-recognition
paper [23].

Finally notice that for the case N = 2: Emin
log (W|π) ≤ Eopt

log (W|π), because
the affine calibration restriction is stricter than the monotonicity constraint of
the PAV solution.

Computation

The optimization (8.22) is just multi-class logistic regression and can be im-
plemented with the methods discussed in section 8.3.1.

8.4.3 Example: Three-class calibration

We conclude this section with an example of the application of calibration
analysis in a three-class speaker recognition problem, as originally published
in our paper [20].

test train Elog Eopt
log Lcal % err

2006 - 0.92 0.24 0.68 6.67
2006 2006 0.24 0.24 0.00 5.44
2008 - 0.78 0.21 0.57 8.20
2008 2006 0.23 0.21 0.01 6.54
2008 2008 0.21 0.21 0.00 6.05

Table 8.1: Logarithmic cost and error-rate, when recognizing the number of speak-
ers present in three speech segments. The test databases were assembled from the
male speakers in SRE 2006 or 2008. An optional calibration transformation was
trained on either 2006 or 2008.

The problem of interest was, given three input speech segments, to recog-
nize how many speakers, 1, 2 or 3, are present. This is a three-class problem.
A recognizer for this problem was built (using independent development data)
and then tested on each of two supervised databases, respectively assembled
from NIST SRE 2006 and 2008. The results are shown in table 8.1.

The recognizer output was in log-likelihood form and was therefore suitable
for evaluation by Elog. We evaluated the raw recognizer outputs, as is (rows
with ‘-’ in the second column) as well as a re-calibrated version, re-calibrated
via a discriminatively trained affine calibration transform of the form (8.21).
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The training was done with logistic regression on either 2006 or 2008, as indi-
cated in the second column.

To do calibration analysis, we reported Eopt
log and Lcal = Elog − Eopt

log . In

the rows that report train and test on the same database: Elog = Eopt
log , per

definition. In the last column we report the total percentage of misclassification
errors. For details, see [20].

The conclusion is that discriminatively trained re-calibration gives a
dramatic improvement when evaluating by Elog, even when train and test
databases are independent. The effect of re-calibration on the misclassifica-
tion error-rate is less dramatic, because for that criterion, which has fixed prior
and cost, the log-likelihood scaling is unimportant. If one sweeps the prior or
cost function parameters, as Elog effectively does, then calibration becomes
important.

The most important point however, is to appreciate the fact that by mea-
suring the calibration loss of the original solution, we saw that there was indeed
a calibration problem and that results could be dramatically improved with
re-calibration, which involves a minor effort compared to building the original
recognizer.

8.5 What happened to DET, minCAVG and

EER?

Readers that are familiar with the language recognition literature and the
NIST language recognition evaluations in particular, will have seen the use
of DET-curves, minCAVG and EER applied to language recognition. See for
example [26, 48]. We analysed DET-curves, minDCF and EER for the two-
class problem at great length in chapter 7. Why are they being ignored here?

The reason is that those tools, in the way they have been applied in the
language recognition literature are not multi-class evaluation criteria, but are
still the two-class versions. The multi-class language recognition scores are
subjected to a non-invertible transformation to form what appear to be two-
class scores, which are then plugged into the existing two-class machinery for
computing DET-curves, minDCF and EER. The problem is that by so doing,
these criteria lose most of their meaning. In particular, the threshold sweep
that is implicit in all these criteria no longer plays the role of calibration
optimization as explained in chapter 7.

The problem starts with the format of the scores. The NIST LRE evalua-
tion plans to date9 have asked for N detection scores for every speech segment,
such that score k can be thresholded to accept or reject the proposition that
the speech segment is in target language k. Given a log-likelihood vector,
w = (w1, . . . , wN), a detection score can be computed for each target, k, for

9See www.itl.nist.gov/iad/mig/tests/lre.

www.itl.nist.gov/iad/mig/tests/lre
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example, as:

sk = wk − log
K∑
j=1

exp(wj) . (8.26)

If w is regarded as well-calibrated, then so is sk and it can be thresholded at
− logN to make the optimal Bayes decision, which minimizes CAVG. (Any
other form for sk, which differs from (8.26) by a continuous, strictly monotonic
rising transformation could do the same job.) So far there is no problem.

The first problem arises if the input to (8.26) is not well-calibrated. If we
still assume that w is well-calibrated, but that the input to (8.26) is scaled
and shifted, then the resultant detection score is

s′k = αwk + βk − log
K∑
j=1

exp(αwj + βj) . (8.27)

The problem is now that in general, there is no function f , such that sk =
f(s′k). Re-calibrating the s′k individually can improve accuracy, but not as
much as re-calibrating the input w, as was demonstrated in figure 8.4.

The next problem occurs because we still have N score streams and we want
to evaluate them with two-class tools that expect a single score stream. Now
since all the scores have the same sense (larger, more positive, scores favour
the target, smaller ,more negative, scores favour the non-target), it sounds like
a good idea just to pool the score streams into a single score stream. Moreover,
as we pointed out above, each of the pooled score streams has the same optimal
threshold.

The problem is that the miss-calibrations in the different score streams are
of opposing sense. If the recognizer is biased towards one class, the scores for
that class would be shifted towards the positive side and all the other scores
towards the negative. Now sweeping a single threshold cannot find a threshold
that would be optimal for both senses. For these reasons, late calibration and
score pooling, any two-class threshold-sweeping score analysis tool, like DET,
minDCF and EER, cannot give a calibration-insensitive criterion like they do
for a true two-class problem.

The argument has been voiced that the intention for using these two-class
tools is not calibration insensitivity, but just to sweep a range of operating
points for scores that are intended to be well-calibrated. Yes, the DET-curve
does sweep operating points, but its (now broken) calibration compensation
mechanism is still conflated with the operating point sweep. (We propose be-
low how a pure operating point sweep can be achieved.) Moreover, if the inten-
tion is for the evaluator to not optimize calibration, then what is the meaning
of minCAVG, which goes through the motions of optimizing a threshold for a
fixed operating point? Likewise, the meaning and utility of EER remains un-
clear. It certainly does not give a calibration-insensitive, application-spanning
summary as it does for speaker detection.
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Finally, the argument has been voiced that in speaker detection, the scores
of many speakers are pooled for analysis by DET, minDCF and EER. Why
should scores not be pooled across languages? But speaker detection is a two-
class problem—and nobody has ever suggested pooling the scores for the target
and the non-target propositions. Specifically a speaker detection evaluation is
structured in such a way that an equation of the form (8.26) does not apply.
The speaker detection score for every trial is not computed via the likelihoods
of a fixed set of speakers.

8.5.1 Proposal for sweeping the LRE operating point

Here we propose a way to sweep a parametrized CAVG-like evaluation criterion
over a range of operating points, defined in such a way that all targets are
rejected in the one extreme and all are accepted in the other extreme. This
is done by introducing a variable target prior, say α, into (8.1), which then
becomes:

πik = αδik +
(1− α)(1− δik)

(N − 1)
. (8.28)

where α is varied from 0 to 1. The same derivation can then be followed as
before, to find a version of C∗lre that is parametrized by α. A curve of Elre

(maybe normalized) against α, or maybe logitα, can then be plotted to show
error-rate as a function of the target prior. In addition, Eopt

lre may be added as
a contrast to analyse calibration.

8.6 Summary

In this chapter we analysed LRE’s CAVG by viewing it as a mixture of applica-
tions that exercises the recognizer’s output at a number of discrete operating
points in the probability simplex. We showed that the multi-class logarith-
mic cost function forms a continuous mixture of applications that exercises
the recognizer’s output everywhere in the probability simplex. In this way
logarithmic cost forms a representative evaluation criterion for a wide range
of applications. Moreover, logarithmic cost forms a convenient discriminative
training criterion, which reduces to logistic regression for linear models.

For multi-class, a direct analogue to the continuous application-sweeping
plots of chapter 7 are problematic because of high dimensionality. Instead we
showed how to form a scatter-plot of very many discrete operating points.

For multi-class, a generalization of the non-parametric PAV calibration
analysis is not available. Instead we derived a simple, affine, parametric trans-
form that can be optimized via logistic regression. We showed how it can be
applied to both measure and improve calibration of a multi-class recognizer.



Chapter 9

Conclusion

In this work we examined data-driven methods to evaluate the goodness of
probabilistic pattern recognizer outputs in a very direct way, by effectively us-
ing the outputs to make decisions and then recording how good those decisions
are. There is a close connection between this form of evaluation and discrimi-
native modelling, where the model parameters are discriminatively trained by
optimizing the evaluation criterion.

This forms an interesting contrast with generative modelling for pattern
recognition [1, 10]. Like discriminative modelling, generative modelling is also
data-driven, but the concept of training differs. Ideally, a generative model
should not be trained—all hidden model parameters should be integrated out
in a fully Bayesian way. However, in practice one usually has to resort to mak-
ing point estimates of some of the parameters in the model and this constitutes
training of those parameters. This training is accomplished by optimization
of an objective function, which makes it similar to discriminative training.
However, the optimization objective is different.

In generative training, one optimizes the model to maximize the evidence,
P (data, classes|model), while in discriminative training one maximizes1, or
more generally optimizes, P (classes|data,model).

In the last decade in text-independent speaker recognition research, there
has been an interesting tug-of-war between generative and discriminative train-
ing techniques. Some landmark papers (by no means exhaustive), in chrono-
logical order, are: [81], which represented the state-of-the-art in generative
GMM-based speaker recognition; [82, 83], which established SVM as a dis-
criminatively trained alternative to GMM (although the associated NAP-
transformation was more generative than discriminative in nature); [21], an
example of the power of discriminative system fusion; [84], which introduced
the large-scale generatively trained JFA as a new monolithic state-of-the-art,
which often outperformed the best heterogeneous fusions; [54], the 2008 JHU
summer workshop, originally conceived to explore new discriminative training

1for the logarithmic cost function
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techniques, but which ended up instead improving on generative JFA, as well
as seeding the new, generative, i-vector modelling [85, 86], which is currently
an important part of the state-of-the-art.

This leaves the question whether there may be good generative alternatives
to solving the problems addressed in this work. Thus far, good generative mod-
els have been a partial answer to discriminative fusion, but as far as we know,
no convincing generative alternative for implementing calibration transforma-
tion has been demonstrated.

Ideally, if generative modelling works well enough, then both fusion and
calibration transformation should become unnecessary. The raw scores of an
ideal generative model should be accurate enough not to have to fuse with any
other recognizer and moreover, should be naturally well-calibrated.

The problem that remains however, is how do we know a recognizer is well-
calibrated? Can one ever get away with not explicitly testing calibration as
we proposed here, or with some equivalent method? The problem with the
methodology in our proposal is, as we pointed out, that it breaks down at
extreme operating points, where the errors become too scarce to count. But is
there any other way of judging the goodness of calibration that does not rely
on large amounts of evaluation data?

A contrast exists between the evaluation methods proposed in this work
and the field of forensic DNA, as represented by Balding in [87], where gener-
ative models are used to compute likelihood-ratios, which are very similar in
interpretation and function to the likelihood-ratios in speaker detection. The
big difference is that the DNA is typically more discriminative than speaker
recognition by orders of magnitude, so that DNA can be employed to literally
find a single individual out of millions of candidates. The problem is that
performing data-driven evaluation to test calibration at such extreme operat-
ing points would be intractable. The result is that evaluation of the goodness
of the calibration of DNA likelihood-ratios can only be performed by expert
perusal of the generative modelling strategies that are used to compute them.

Is there a good way to bridge this gap between the blind data-driven evalu-
ation paradigm proposed in this work and the pure expert evaluation paradigm
of DNA?



Appendix A

Functions: Surjective, injective,
bijective

This note explains the difference between an invertible function and a bijec-
tion. Bijections are invertible, but there are invertible functions which are not
bijections. See for example [88].

A.1 Domain, codomain, range

For a function that is defined as f : X 7→ Y , we have the following definitions:

domain is the set X of input values which are allowed.

codomain is the set Y , in which this function may take values.

range which we write: range(f) = {y ∈ Y : y = f(x) and x ∈ X} is the set of
output values that can actually be reached with inputs from the domain.
Note that in general1, range(f) ⊆ Y .

Consider for example the function that is defined as:

f : R2 7→ R, such that f(x, y) = x2 + y2.

Here R2 is the domain, or the set of inputs (x, y) for which the function is
defined. The codomain of this example is R, and the range is the subset of
non-negative real numbers.

A.2 Surjective, injective, bijective

A succinct definition of these terms is:

1If there is an x ∈ X , such that f(x) /∈ Y, then the function definition is malformed.
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A function f : X 7→ Y is surjective/injective/bijective, if for every
y ∈ Y , there is at least/at most/exactly one x ∈ X , such that
f(x) = y.

A bijective function is both surjective and injective. An injective function
is invertible, but there are invertible functions which are not surjective. An
example is f : R 7→ R, where p = f(x) = 1

1+exp(−x)
, which has inverse x =

f−1(p) = log p
1−p , but range(f) = (0, 1) ⊂ R. The inverse, f−1, is not defined

everywhere in the codomain, R.



Appendix B

Doddington’s Rule of 30

Given a few assumptions to be listed below, Doddington’s Rule of 30 applies
when estimating an unknown error-rate p, as p̂ = t

T
, when t errors are observed

out of a total of T independent trials [64]:

If you want to be 90% confident that p̂ is within 30% of p, you need
t ≥ 30.

This rule may be derived given the following assumptions:

1. The number of errors, t, is distributed according to a binomial distri-
bution with parameters p (the true error-rate) and T (the number of
trials).

2. p is small

3. The expected number of errors, Tp is sufficiently large for the normal
approximation to the binomial distribution to hold. (Sufficiently large
is often taken as Tp ≥ 5. This is well below the 30 errors prescribed by
Doddington’s rule, so that this assumption will most probably1 hold.)

Using the normal approximation, we may write:

t ∼ N
(
Tp, Tp(1− p)

)
, p̂ ∼ N

(
p,
p(1− p)

T

)
(B.1)

where ∼ denotes is distributed as and N (µ, σ2) is the normal distribution with
mean µ and variance σ2. Now let the normalized2 error of the estimate be

e =
p̂− p
p̂

(B.2)

1Given only experimental data, we cannot guarantee it is satisfied, because p is unknown.
In fact we cannot guarantee that any of the assumptions hold.

2We could have defined the normalized error as e′ = p̂−p
p , but e = p̂−p

p̂ gives a more
convenient result. Note that when p̂ ≈ p, then also e′ ≈ e.
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so that

e ∼ N
(
0, σ2

e

)
, σ2

e =
(1− p)

t
≈ 1

t
. (B.3)

This final approximation σ2
e ≈ 1

t
is very convenient because the error-variance

is now expressed as a function of the error-count t alone.
The derivation is completed by requiring a probability of ≥ 90% that e

is in the interval [−0.3, 0.3]. Using the inverse error-function [67, 72] gives:
σ2
e ≤ 0.033, which by the above approximation gives t ≥ 30.



Appendix C

PAV optimizes regular binary
proper scoring rules

In this appendix we prove via a series of lemmas and theorems that the PAV
algorithm assigns optimal probabilities w.r.t. any regular binary proper scoring
rule, subject to a monotonicity constraint. The problem of interest may be
stated as follows:

• A regular binary proper scoring rule (RBPSR), as defined in section 7.4.1,
is a function C∗ρ : {θ1, θ2} × [0, 1] 7→ [0,∞], such that

C∗ρ(q|θ1) =

∫ 1

q

1

η
ρ(η) dη, C∗ρ(q|θ2) =

∫ q

0

1

1− η
ρ(η) dη (C.1)

where ρ(η) is a probability distribution over [0, 1]. If ρ(η) > 0 almost
everywhere, then the RBPSR is denoted strict, otherwise it is non-strict1.

• We are given as input:

– A sequence of T indices, denoted (1, T ) = 1, 2, . . . , T with a corre-
sponding sequence of labels `1, `2, . . . , `T ∈ {θ1, θ2}.

– A pair of positive weights, v1, v2 > 0. We shall use the notation
v(`t) to associate one of these weights with every label, by letting
v(θ1) = v1 and v(θ2) = v2.

• The problem is now to find the sequence of T probabilities, denoted
p1,T = p1, p2, . . . , pT , that minimizes the following objective:

O1,T (p1,T ) =
T∑
t=1

v(`t)C
∗
ρ(pt|`t) (C.2)

1We define below in the proof of lemma 4 what we mean by almost everywhere and how
this affects the behaviour (strictness) of the RBPSR.
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subject to the monotonicity constraint :

0 ≤ p1 ≤ p2 ≤ · · · ≤ pT ≤ 1 . (C.3)

We require the solution to hold (be a feasible minimum) simultaneously
for every RBPSR C∗ρ . We already know that if such a solution exists, it
must be unique, because the original PAV algorithm, as published in [75]
in 1955, was shown to give a unique optimal solution for the special case
of
(
C∗ρ(p|θ1), C∗ρ(p|θ2)

)
=
(
− log(p),− log(1 − p)

)
. See theorem 1 and

lemma 1 below for details.

We construct a proof that the PAV algorithm solves the above problem, by
roughly following the pattern of the unpublished document [89], where the
optimality of PAV was proved for the case of strictly convex cost functions.
That proof is not applicable as is for our purposes, because while some RBPSRs
like the logarithmic and Brier scores are strictly convex, some are not (recall
figure 7.4, which shows three examples of non-convex RBPSRs.).

We will show however in lemma 4 below, that all RBPSRs and their expec-
tations are quasiconvex and that the proof can be based on this quasiconvexity,
rather than on convexity. Note that when working with convex cost functions,
one can use the fact that positively weighted combinations of convex functions
are also convex, but this is not true in general for quasiconvex cost functions.
For our case it was therefore necessary to prove explicitly that expectations of
RBPSRs are also quasiconvex.

A further complication that we needed to address was that non-strict RBP-
SRs lead to unidirectional implications in places where the strictly convex cost
functions of the proof in [89] give if and only if relationships. We note that
although the more general case of PAV for non-strict convex cost functions
was treated in [90], we could not base our proof on theirs, because they used
properties of convex functions, such as subgradients, which are not applicable
to our quasiconvex RBPSRs.

Finally, we then show that the PAV algorithm can also be applied to find
optimal log-likelihood-ratios, subject to a similar monotonicity constraint and
that this solution is not only independent of the RBPSR, but also of the prior.
We shall call this application of the PAV algorithm the PAV-LLR algorithm.

See figure C.1 for a roadmap of the proof: Theorem 1 and lemma 1 give
the closed-form solution for the logarithmic RBPSR. For the PAV-algorithm,
we use lemma 1 just to show there is a unique solution, but we also use it later
to prove the prior-independence of the PAV-LLR algorithm. Inside the dashed
box, theorem 2 shows how optimal subproblem solutions can constitute the
optimal solution to the whole PAV problem. Theorems 3 and 4 show how to
find and combine optimal subproblem solutions, so that the PAV algorithm
can use them to meet the requirements of theorem 2.
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Lemmas 2&3

Theorem 2

PAV algorithm

Lemma 4

Theorem 3

Theorem 4

Lemmas 5 & 6

Theorem 5: PAV-LLR algorithm

Theorem 1

Lemma 1

Figure C.1: Proof structure: PAV is optimal for all RBPSRs and PAV-LLR is
optimal for all RBPR’s and priors.

C.1 Unique solution (lemma 1)

In this section, we use the work of Ayer et al, reproduced here as theorem 1, to
show via lemma 1 that if our problem does have a solution for every RBPSR,
then it must be unique, because the special case of the logarithmic scoring rule
(when ρ(η) = 1) does have a unique solution.

Theorem 1 (Ayer et al., 1955). Given non-negative real numbers at, bt, such
that at + bt > 0 for every t = 1, 2, . . . , T , the maximization of the objective
O′1,T (p1,T ) =

∏T
t=1(pt)

at(1−pt)bt, subject to the monotonicity constraint (C.3),
has the unique solution, p1,T = p1, p2, . . . , pT , where:

pt = max
1≤i≤t

min
t≤j≤T

r′i,j = min
t≤j≤T

max
1≤i≤t

r′i,j , (C.4)

r′i,j =

∑j
k=i ak∑j

k=i ak + bk
. (C.5)

Proof. See2 [75], theorem 2.2 and its corollary 2.1. In that work, the mono-
tonicity constraint was non-increasing, rather than the non-decreasing con-
straint (C.3) that we use here. The solution that they give therefore has to be
transformed by letting the index t go in reverse order, which means exchang-

2Available online (with open access) at http://projecteuclid.org/euclid.aoms/
1177728423.

http://projecteuclid.org/euclid.aoms/1177728423
http://projecteuclid.org/euclid.aoms/1177728423
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ing the roles of the subsequence endpoints i, j, which then has the result of
exchanging the roles of max and min in the solution.

We now show that this theorem supplies the solution for the special case
of the logarithmic RBPSR:

Lemma 1. If
(
C∗ρ(p|θ1), C∗ρ(p|θ2)

)
=
(
− log(p),− log(1 − p)

)
, then the prob-

lem of minimizing objective (C.2), subject to constraint (C.3), has the unique
solution, p1,T = p1, p2, . . . , pT , where:

pt = max
1≤i≤t

min
t≤j≤T

ri,j = min
t≤j≤T

max
1≤i≤t

ri,j , (C.6)

ri,j =
mi,jv1

mi,jv1 + ni,jv2

(C.7)

where mi,j is the number of θ1-labels and ni,j the number of θ2-labels in subse-
quence `i, `i+1, . . . , `j.

Proof. Observe that if we let

(at, bt) =

{
(v1, 0), if `t = θ1,

(0, v2), if `t = θ2,

then r′i,j = ri,j and O′1,T (p′1,T ) = exp
(
−O1,T (p1,T )

)
so that the constrained

maximization of theorem 1 and the constrained minimization of this lemma
have the same solution.

By this lemma, we now have a closed-form solution to the problem, and
from [75] we also know that this is the solution that is calculated by the
iterative PAV algorithm.3 As noted in the introduction, it has so far [75, 89, 90]
only been shown that this solution is valid for logarithmic and other RBPSRs
which have convex expectations. In the rest of this appendix therefore, we
prove that this same solution also holds for all other RBPSRs.

C.2 Decomposition into subproblems

(theorem 2)

We need to consider subsequences of (1, T ): For any 1 ≤ i ≤ j ≤ T , we denote
as (i, j) the subsequence of (1, T ) which starts at index i and ends at index j.
We may compute a partial objective function over a subsequence (i, j) as:

Oi,j(pi,j) =

j∑
t=i

v(`t)C
∗
ρ(pt|`t) . (C.8)

3The PAV algorithm, if efficiently implemented, is shown in the references cited here
to have linear computational load (of order T ), which is superior to a straight-forward
implementation of the explicit form (C.6).
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where pi,j = pi, pi+1, . . . , pj. We can now define the subproblem (i, j) as the
problem of minimizingOi,j(pi,j), simultaneously for every RBPSR, and subject
to the monotonicity constraint 0 ≤ pi ≤ pi+1 ≤ · · · ≤ pj ≤ 1. In what follows,
we shall use the following notational conventions:

• The subproblem (1, T ) is equivalent to the original problem.

• We shall denote a subproblem solution, pi,j, as feasible when the mono-
tonicity constraint is met and non-feasible otherwise.

• By subproblem solution we mean just a sequence pi,j, feasible or not,
such that pi, pi+1, . . . , pj ∈ [0, 1].

• Since any subproblem is isomorphic to the original problem, lemma 1
also shows that if4 it has a feasible minimizing solution for every RBPSR,
then that solution must be unique. Hence, by the optimal subproblem
solution, we mean the unique feasible solution that minimizes Oi,j(·), for
every RBPSR.

• By a partitioning of the problem (1, T ) into a set, S, of adjacent, non-
overlapping subproblems, we mean that every index occurs exactly once
in all of the subproblems, so that:

O1,T (p1,T ) =
∑

(i,j)∈S

Oi,j(pi,j) . (C.9)

Our first important step is to show with theorem 2, proved via lemmas 2 and 3,
how the optimal total solution may be constituted from optimal subproblem
solutions:

Lemma 2. For a given RBPSR and for a given partitioning, S, of (1, T ) into
subproblems, let:

(i) p∗1,T = p∗1, p
∗
2, . . . , p

∗
T be a feasible solution to the whole problem, with

minimum total objective O1,T (p∗1,T ); and

(ii) for every subproblem (i, j) ∈ S, let q∗i,j = q∗i , q
∗
i+1, . . . , q

∗
j denote a feasible

subproblem solution with minimum partial objective Oi,j(q∗i,j); and

(iii) q∗1,T = q∗1, q
∗
2, . . . , q

∗
T denote the concatenation of the all subproblem so-

lutions q∗i,j, in the correct order, to form a (not necessarily feasible)
solution to the whole problem (1, T ),

4The object of this whole exercise is to prove that the optimal solution exists for every
subproblem and is given by the PAV algorithm, but until we have proved this, we cannot
assume that the optimal solution exists for every subproblem.
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then

O1,T (q∗1,T ) =
∑

(i,j)∈S

Oi,j(q∗i,j) ≤
∑

(i,j)∈S

Oi,j(p∗i,j) = O1,T (p∗1,T ) . (C.10)

Proof. Follows by recalling equation (C.9) and by noting that for every (i, j),
Oi,j(q∗i,j) ≤ Oi,j(p∗i,j), because (except at i = 1 and j = T ) minimization of
the RHS is subject to the extra constraints p∗i−1 ≤ p∗i and p∗j ≤ p∗j+1.

Lemma 3. For a given RBPSR and for a given partitioning, S, of (1, T )
into subproblems, let p∗1,T = p∗1, p

∗
2, . . . , p

∗
T be a feasible solution to the whole

problem, with minimum total objective O1,T (p∗1,T ); and let q1,T = q1, q2, . . . , qT
be any feasible solution to the whole problem, with total objective O1,T (q1,T ).
Then

O1,T (q1,T ) =
∑

(i,j)∈S

Oi,j(qi,j) ≥ O1,T (p∗1,T ) . (C.11)

Proof. Follows directly from equation (C.9) and the premise.

Theorem 2. Let q∗1,T = q∗1, q
∗
2, . . . , q

∗
T be a feasible solution for (1, T ) and let S

be a partitioning of (1, T ) into subproblems, such that for every (i, j) ∈ S, the
subsequence q∗i,j = q∗i , q

∗
i+1, . . . , q

∗
j is the optimal solution to subproblem (i, j),

then q∗1,T is the optimal solution to the whole problem (1, T ).

Proof. The premises make lemmas 2 and 3 applicable, for every RBPSR. Since
both inequalities (C.10) and (C.11) are satisfied, O1,T (q∗1,T ) = O1,T (p∗1,T ),
where p∗1,T is an optimal solution for each RBPSR. Hence q∗1,T is optimal for
every RBPSR and is by lemma 1 the unique optimal solution.

C.3 Constant subproblem solutions

(theorem 3)

In what follows, constant subproblem solutions will be of central importance.
A solution pi,j is constant if pi = pi+1 = · · · = pj = q, for some 0 ≤ q ≤ 1.
In this case, we use the short-hand notation Oi,j(q) = Oi,j(pi,j) to denote the
subproblem objective, and this may be expressed as:

Oi,j(q) = Oi,j(pi,j) =

j∑
t=i

v(`t)C
∗
ρ(q|`t)

= mv1C
∗
ρ(q|θ1) + nv2C

∗
ρ(q|θ2)

(C.12)

where m is the number of θ1-labels and n the number of θ2-labels. Note:

• A constant subproblem solution is always feasible.
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• If it exists, the optimal solution to an arbitrary subproblem may or may
not be constant.

Whether optimal or not, it is important to examine the behaviour of sub-
problem solutions that are constrained to be constant. This behaviour is gov-
erned by the quasiconvex5 properties of Oi,j(q) as summarized in the following
lemma:

Lemma 4. Let ri,j = v1m
v1m+v2n

, where m is the number of θ1-labels and n the
number of θ2-labels in the subsequence (i, j), and let Oi,j(q) = mv1C

∗
ρ(q|θ1) +

nv2C
∗
ρ(q|θ2) be the objective for the constant subproblem solution, pi = pi+1 =

· · · = pj = q, then the following properties hold, where C∗ρ is any RBPSR, and
where we also note the specialization for strict RBPSRs:

1. If q ≤ q′ ≤ ri,j, then Oi,j(q) ≥ Oi,j(q′) ≥ Oi,j(ri,j).

strict case: If q < q′ ≤ ri,j, then Oi,j(q) > Oi,j(q′).

2. If q′ ≥ q ≥ ri,j, then Oi,j(q′) ≥ Oi,j(q) ≥ Oi,j(ri,j).

strict case: If q′ > q ≥ ri,j, then Oi,j(q′) > Oi,j(q).

3. minqOi,j(q) = Oi,j(ri,j),

strict case: q = ri,j is the unique minimum.

This is just the defining property of a (strict) binary proper scoring rule.

Proof. For convenience in this proof, we drop the subscripts i, j, letting r =
ri,j = mv1

mv1+nv2
. The expected value of C∗ρ(q|θ) w.r.t. probability r is:

e(q) = Eθ|r
{
C∗ρ(q|θ)

}
= 1

mv1+nv2
Oi,j(q)

= rC∗ρ(q|θ1) + (1− r)C∗ρ(q|θ2) .
(C.13)

Clearly, if the above properties hold for e(q), then they will also hold forOi,j(q).
We prove these properties for e(q) by letting q ≤ q′ and by examining the sign
of ∆e = e(q′)− e(q), which by equation (C.1) can be expressed, for q < q′, as:

∆e =

∫ q′

q

(η − r) ρ(η)

η(1− η)
dη . (C.14)

Properties 1,2 and 3 now follow from the following observations:

• If q′ = q, then ∆e = 0.

5A real-valued function f(p), defined on a real interval, is quasiconvex, if every sublevel
set of the form {p|f(p) < a} is convex, in this case, a real interval [91]. Lemma 4 shows that
Oi,j(q) is quasiconvex.
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• Since ρ(η) ≥ 0, for 0 ≤ η ≤ 1, when q < q′, the sign of the integrand and
therefore of ∆e depends solely on the sign of (η − r), giving:

∆e ≥ 0, if r ≤ q < q′

∆e ≤ 0, if q < q′ ≤ r .

• We say ρ(η) > 0 almost everywhere, if, for any 0 ≤ q < q′ ≤ 1, we have
|∆e| > 0. In this case, the RBPSR is denoted strict and we have:

∆e > 0, if r ≤ q < q′

∆e < 0, if q < q′ ≤ r .

For now, we need only the proper scoring rule definition (property 3) to
proceed. We use the other properties later. The optimal constant subproblem
solution is characterized in the following theorem:

Theorem 3. If the optimal solution to subproblem (i, j) is constant, then:

1. The constant is ri,j. This follows directly from property 3 of lemma 4.

2. For any index k, such that i ≤ k ≤ j, the following are both true:

a) ri,k ≥ ri,j

b) rk,j ≤ ri,j

where ri,k and rk,j are defined in a similar way to ri,j, but for the sub-
problems (i, k) and (k, j).

Proof. We use contradiction: If the negation, ri,k < ri,j, of property 2a
were true, then the non-constant solution pi = · · · = pk = ri,k < pk+1 =
· · · = pj = ri,j would be feasible and (by property 3 of lemma 4) would
have lower objective, Oi,k(ri,k)+Ok+1,j(ri,j), for any strict RBPSR, than
that of the constant solution, Oi,k(ri,j) + Ok+1,j(ri,j). This contradicts
the premise that the optimal solution is constant, so that 2a must be
true. Property 2b is proved similarly.

C.4 Pooling adjacent constant solutions

(theorem 4)

This section shows (using lemmas 5 and 6 to prove theorem 4) when and how
optimal constant subproblem solutions may be assembled by pooling smaller
adjacent constant solutions:
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Lemma 5. Given a subproblem (i, j), for which the optimal solution is con-
stant (at ri,j), we can form the augmented subproblem, with the additional
constraint that the solution at j must satisfy pj ≤ α, for some 0 ≤ α < ri,j.
That is, the solution to the augmented subproblem must satisfy 0 ≤ pi ≤ pi+1 ≤
· · · ≤ pj ≤ α < ri,j. Then the augmented subproblem solution is optimized, for
every RBPSR, by the constant solution pi = pi+1 = · · · = pj = α.

Proof. Feasible solutions to the augmented subproblem must satisfy either (i)
pi = · · · = pj = α, or (ii) pi < α. We need to show that there is no feasible
solution of type (ii), which has a lower objective value, for any RBPSR, than
solution (i).

For a given solution, let k be an index such that i ≤ k ≤ j and pi =
pi+1 = · · · = pk. By combining the premises of this lemma with property 2a
of theorem 3, we find: pi = · · · = pk ≤ α < ri,j ≤ ri,k, or more succinctly:
pi = · · · = pk ≤ α < ri,k. Now the monotonicity property 1 of lemma 4 shows
that the value of pi = · · · = pk, which is optimal for all RBPSRs must be
as large as allowed by the constraints. This means if we start at k = i, then
pi is optimized at the constraint pi = pi+1. Next we set k = i + 1 to see
that pi = pi+1 is optimized at the next constraint pi = pi+1 = pi+2. We keep
incrementing k, until we find the optimum for the augmented subproblem at
the constant solution pi = · · · = pj = α.

Lemma 6. Given a subproblem (i, j), for which the optimal solution is con-
stant (at ri,j), we can form the augmented subproblem, with the additional
constraint that the solution at i must satisfy α ≤ pi, for some ri,j ≤ α ≤ 1.
That is, the solution to the augmented subproblem must satisfy ri,j < α ≤ pi ≤
pi+1 ≤ · · · ≤ pj ≤ 1. Then the augmented subproblem solution is optimized,
for every RBPSR, by the constant solution pi = pi+1 = · · · = pj = α.

Proof. The proof is similar to that of lemma 5, but here we invoke property 2b
of theorem 3, to find: rk,j < α ≤ pk = · · · = pj and we use the monotonicity
property 2 of lemma 4 to show that the value of pk = · · · = pj, which is optimal
for all RBPSRs, must be as small as allowed by the constraints.

Theorem 4. Given indices i ≤ k ≤ j such that the optimal subproblem so-
lutions for the two adjacent subproblems, (i, k) and (k + 1, j), are constant
and therefore (by theorem 3) have the respective values ri,k and rk+1,j, then,
whenever ri,k ≥ rk+1,j, the optimal solution for the pooled subproblem (i, j) is
also constant, and has the value ri,j.

Proof. First consider the case ri,k = rk+1,j. Since this forms a constant solution
to subproblem (i, j), by theorem 3, the optimal solution is ri,j.

Next consider ri,k > rk+1,j. The solution pi = · · · = pk = ri,k > pk+1 =
· · · = pj = rk+1,j is not feasible. A feasible solution must obey pk ≤ α ≤ pk+1,
for some α. There are three possibilities for the value of α: (i) α ≤ rk+1,j; (ii)
rk+1,j < α < ri,k; or (iii) ri,k ≤ α. We examine each in turn:
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(i) If α ≤ rk+1,j < ri,k, then the left subproblem (i, k) is augmented by the
constraint α < ri,k, so that lemma 5 applies and it is optimized at the
constant solution α, while the right subproblem (k + 1, j) is not further
constrained and is still optimized at rk+1,j. We can now optimize the
total solution for (i, j) by adjusting α: By the monotonicity property 1
of lemma 4, the left subproblem objective and therefore also the total
objective for (i, j) is optimized at the upper boundary α = rk+1,j. In
other words, in this case, the optimum for subproblem (i, j) is a constant
solution.

(ii) If rk+1,j < α < ri,k, then lemma 5 applies to the left subproblem and
lemma 6 applies to the right subproblem, so that both subproblems and
therefore also the total objective for (i, j) are all optimized at α. In this
case also we have a constant solution for (i, j).

(iii) If rk+1,j < ri,k ≤ α, then the right subproblem is augmented while the
left subproblem is not further constrained. We can now use lemma 6 and
property 2 of lemma 4, in a similar way to case (i) to show that in this
case also, the optimum solution is constant.

Since the three cases exhaust the possibilities for choosing α, the optimal
solution is indeed constant and by theorem 3 the optimum is at ri,j.

C.5 Total solution: PAV algorithm

We can now use theorems 2, 3 and 4 to construct a version of the pool-adjacent-
violators (PAV) algorithm for solving problem (1, T ). The strategy is to satisfy
the conditions for theorem 2, by starting with optimal constant subproblem
solutions of length 1 and then to iteratively combine them via theorem 4, into
longer optimal constant solutions until the total solution is feasible:

input:

labels, `1, `2, . . . , `T ∈ {θ1, θ2}.

weights, v1, v2 > 0.

variables:

S, a partitioning of problem (1, T ) into adjacent, non-overlapping sub-
problems.

q∗1,T = q∗1, q
∗
2, . . . , q

∗
T , a tentative (not necessarily feasible) solution for

problem (1, T ).
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loop invariant:

For every subproblem (i, j) ∈ S:

(i) The optimal subproblem solution is constant.

(ii) The partial solution q∗i,j = q∗i , q
∗
i+1, . . . , q

∗
j is equal to the optimal sub-

problem solution, i.e. constant, with value ri,j (by theorem 3).

initialization:

Let S be the finest partitioning into subproblems, so that there are T sub-
problems, each spanning a single index. Clearly every subproblem (i, i) has a
constant solution, optimized at q∗i = ri,i, which is 1, if `t = θ1, or 0, if `t = θ2.
This initial solution q∗1,T respects the loop invariant, but is most probably not
feasible.

iteration:

While q∗1,T is not feasible:

1. Find any pair of adjacent subproblems, (i, k), (k + 1, j) ∈ S, for which
the solutions are equal or violate monotonicity: ri,k ≥ rk+1,j.

2. Pool (i, k) and (k+1, j) into one subproblem (i, j), by adjusting S and by
assigning the constant solution ri,j to q∗i,j, which by theorem 4 is optimal
for (i, j), thus maintaining the loop invariant.

termination:

Clearly the iteration must terminate after at most T − 1 pooling steps, at
which time q∗1,T is now feasible and is still optimal for every subproblem. By
theorem 2, q∗1,T is then the unique optimal solution to problem (1, T ).

C.6 The PAV-LLR algorithm (theorem 5)

The PAV algorithm as presented above finds solutions in the form of probabil-
ities. However, in this work, when working with binary problems, we are more
interested in assigning log-likelihood-ratios. In particular, we are interested in
solving the following problem:

There is given:

• An RBPSR C∗ρ

• Prior log-odds π, where −∞ < π <∞.

• Labels, `1, `2, . . . , `T ∈ {θ1, θ2}.
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There is required a solution, w1,T = w1, w2, . . . , wT , that minimizes
the following objective:

O1,T (w1,T ) =
T∑
t=1

v(`t)C
∗
ρ(pt|`t) , (C.15)

pt = σ(wt + π) , (C.16)

v1 = v(θ1) =
σ(π)

T1

, (C.17)

v2 = v(θ2) =
σ(−π)

T2

(C.18)

where T1 and T2 are the respective numbers of θ1-labels and θ2-
labels in `1, `2, . . . , `T ; and where σ() is the inverse of the logit
function. The minimization is subject to the monotonicity con-
straint:

−∞ ≤ w1 ≤ w2 ≤ · · · ≤ wT ≤ ∞ . (C.19)

This problem is solved by first finding the probabilities p1, p2, . . . , pT via the
PAV algorithm and then inverting (C.16) to find wt = logit(pt)−π. We already
know that the solution is independent of the RBPSR, but remarkably, it is also
independent of the prior π. This is shown in the following theorem:

Theorem 5. Let p1,T = PAV
(
(`1, `2, . . . , `T ), (v1, v2)

)
denote an application

of the PAV algorithm, then the problem of minimizing objective (C.15), subject
to monotonicity constraint (C.19) has the unique solution:

w1,T = logit PAV
(
(`1, `2, . . . , `T ), (1, 1)

)
− logit

T1

T
. (C.20)

This solution is simultaneously optimal for every RBPSR, C∗ρ , and any prior
log-odds, −∞ < π <∞.

Proof. By the properties of the PAV as proved in section C.5 and since logit
is a strictly monotonic rising bijection, it is clear that for all RBPSRs and for
a given π, this minimization is solved as

w1,T = logit PAV
(
(`1, `2, . . . , `T ), (v1, v2)

)
− π (C.21)

where π determines v1 and v2 via (C.17) and (C.18). By lemma 1, we can
write component t of this solution, in closed form:

wt = logit

(
max
1≤i≤t

min
t≤j≤T

ri,j

)
− π

= max
1≤i≤t

min
t≤j≤T

logit ri,j − π .
(C.22)
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Now observe that:

logit ri,j = logit
v1mi,j

v1mi,j + v2ni,j

= logit
mi,j

mi,j + ni,j
− logit

T1

T
+ π

(C.23)

which shows that wt is independent of π. Now the prior may be chosen con-
veniently equal to the label proportion, π = logit T1

T
, to give an un-weighted

PAV, with v1 = v2 = 1.



Appendix D

Proof of multi-class logarithmic
cost integral

Here we prove (8.13), which we repeat for convenience:

Clog(p|θi) = − log(pi) =

∫
PN

Γ(N)C∗�(p|θi) dη (D.1)

where Γ(N) = 2× 3× · · · × (N − 1) and η = (η1, . . . , ηN). We start by noting
that when θi is true, the cost of making a Bayes decision,1 given cost function
C� and a probability distribution p = (p1, . . . , pN) is:

C∗�(p|θi) = 1
N−1

{
0, if pi

ηi
≥ maxNj=1

pj
ηj
,

1
ηi
, otherwise.

(D.2)

The integral (D.1) can now be formed with integrand Γ(N−1)
ηi

and with bound-
aries that need to respect not only the simplex PN , but also the negation of
the condition pi

ηi
≥ maxNj=1

pj
ηj

. The joint boundaries are uncomfortable to work

with, so we transform the simplex to RN−1, conveniently mapping its bound-
aries to infinity. What follows is notationally easier if we let, without loss of
generality, i = N . We perform a change of variables by letting:2

x = (x1, . . . , xN−1) =
(
log

η1

ηN
, . . . , log

ηN−1

ηN

)
(D.3)

y = (y1, . . . , yN−1) =
(
log

p1

pN
, . . . , log

pN−1

pN

)
. (D.4)

The simplex boundaries are now trivial to handle, because the simplex is
mapped to the whole of RN−1; while the other condition, pi

ηi
≥ maxNj=1

pj
ηj

,

1with tie-breaker b
(
{θ1, θ2}

)
= θ1

2In the general case, we choose ηi and pi as denominators and omit the components
xi = 0 and yi = 0 from the vectors.
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is mapped to the negation of the conjunction of the N − 1 conditions:
xj ≥ yj, j 6= i. The inverse transform gives:

ηN =
1

1 +
∑N−1

k=1 exp(xk)
and ηj = exp(xj)ηN (D.5)

where j < N and the Jacobian determinant gives:

dη =
N∏
k=1

ηk dx . (D.6)

We can now rewrite the integral (for the case i = N) as:∫
PN

Γ(N)C∗�(p|θN) dη

=

∫ y1

−∞

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞
I(x) dxN−1 dxN−2 · · · dx1

+

∫ ∞
y1

∫ y2

−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞
I(x) dxN−1 dxN−2 · · · dx1

+

∫ ∞
y1

∫ ∞
y2

∫ y3

−∞
· · ·
∫ ∞
−∞
I(x) dxN−1 dxN−2 · · · dx1

+ · · ·

+

∫ ∞
y1

∫ ∞
y2

∫ ∞
y3

· · ·
∫ yN−1

−∞
I(x) dxN−1 dxN−2 · · · dx1

(D.7)

where

I(x) =
Γ(N − 1)

ηN

N∏
k=1

ηk = Γ(N − 1)
e

PN−1
k=1 xk(

1 +
∑N−1

k=1 e
xk

)N−1
(D.8)

and where the multiple terms of (D.7) are the result of applying the boundaries,
one dimension at a time, to exclude from the integral a semi-infinite rectangular
region. Each term of nested integrals can be solved from the inside out, by
using the antiderivatives

∫
ex

(k+ex)n
dx = −1

n−1
1

(k+ex)n−1 , for n = 2, 3, 4, . . .; or∫
ex

1+ex
dx = log(1 + ex). After some simplification, the terms of (D.7) can be
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written as:∫
PN

Γ(N)C∗�(p|θN) dη

= log(1 + ey1)

+ log(1 + ey1 + ey2)− log(1 + ey1)

+ log(1 + ey1 + ey2 + ey3)− log(1 + ey1 + ey2)

+ · · ·
+ log(1 +

∑N−1
j=1 eyj)− log(1 +

∑N−2
j=1 eyj)

= log(1 +
∑N−1

j=1 eyj)

= − log(pN)

(D.9)

where the inverse transform (D.5) was applied in the last line. This completes
the proof for i = N . The cases for i < N follow by symmetry.

D.1 Alternative integral representation

For the two-class case, we found an alternative representation of the loga-
rithmic evaluation criterion, by integrating error-rate as function of the prior
log odds:

∫∞
−∞ Eerr(W| logit−1 h) dh = Elog(W|π̄). To generalize this to the

multi-class case, one needs a non-uniform weighting over an N − 1 dimen-
sional logarithmic parametrization of the prior. An example of this weighting
for N = 3 is shown in figure D.1.
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Figure D.1: Weighting function for error-rate as a function of the prior to integrate
to the logarithmic evaluation criterion. The axes are x1 = log(π1) − log(π3) and
x2 = log(π2)− log(π3), where π = (π1, π2, π3), is the prior.
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[40] Boštjan Vesnicer and France Mihelič, “The likelihood ratio decision cri-
terion for nuisance attribute projection in GMM speaker verification,”
EURASIP Journal on Advances in Signal Processing, vol. 2008, no. 158,
Jan. 2008.

[41] Tomi Kinnunen, Juhani Saastamoinen, Ville Hautamäki, Mikko Vinni,
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University of Technology system for Interspeech 2009 emotion challenge,”
in Proceedings of Interspeech, Brighton, UK, Sept. 2009.

[53] Pierre Dumouchel, Najim Dehak, Yazid Attabi, Réda Dehak, and Narjès
Boufaden, “Cepstral and long-term features for emotion recognition,” in
Proceedings of Interspeech, Brighton, UK, Sept. 2009.
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