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Abstract 
 

Introduced species displace native species and alter ecological communities, affect 

agriculture as well as human health and are economically costly to eradicate. Long term 

monitoring of introduced species including the documentation of levels of genetic variation is 

therefore of the utmost importance. This study investigated the distribution of genetic variation 

in two introduced species distributed across South Africa the bud gall-forming wasp 

Trichilogaster acaciaelongifoliae and the Argentine ant Linepithema humile. 

 

The bud gall-forming wasp was introduced into South Africa as a biological control 

agent to curb the spread of the invasive long-leaved wattle Acacia longifolia. In addition to the 

intended (target) host, the bud gall-forming wasp has also colonised A. floribunda, a non-

invasive ornamental plant. Limited genetic variation was found across South Africa based on 

the mitochondrial DNA cytochrome oxidase subunit I (COI) gene. Only 3 haplotypes 

characterized 53 individuals collected from 23 localities (nucleotide diversity π = 0.002 ± 

0.001, haplotype diversity h = 0.482 ± 0.045). No significant partitioning of genetic variation 

was found across South Africa including between host plants (target host = A. longifolia, non 

target host = A. floribunda) or between the core (sites of introduction) and edge (naturally 

dispersed) sites (ST = 0.094, P = 0.288). The limited genetic variation and the absence of 

significant genetic structure are congruent with patterns described for many other introduced 

species and may suggest that propagule pressure plays only a minor role in species 

establishment and spread of the gall-forming wasp across South Africa.  

 

Mitochondrial and nuclear markers were used to describe the distribution of genetic 

variation within Argentine ants across their introduced range in South Africa. For the 

mitochondrial DNA, low genetic diversity was found for the COI gene with only five 
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haplotypes, separated by single mutational changes, characterizing 101 specimens from 35 

localities (nucleotide diversity π = 0.001 ± 0.001, haplotype diversity h = 0.151 ± 0.048). 

Notwithstanding the low levels of genetic diversity, mitochondrial variation was significantly 

structured (ST = 0.54, P < 0.001) across the landscape. In contrast, microsatellite analyses of 

230 ants from 23 localities, employing six polymorphic microsatellite markers, revealed a 

relatively high amount of genetic diversity (HE = 0.51 ± 0.22). Significant population structure 

was similarly evident (RST = 0.14, P < 0.001) with the localities of Elim2, Porterville2 and 

Bloemfontein2 clustering as a distinct population from the remainder of the localities. 

Importantly, individuals from these localities also had a unique mitochondrial haplotype and, 

when taken with the nuclear results, may indicate the occurrence of more than one introduction 

event (and possibly more than one colony) in South Africa. This is further underscored by the 

presence of unique microsatellite alleles in these three populations. 

 

In an attempt to establish the source populations for the introduction of Argentine ants 

into South Africa, mitochondrial cytochrome b sequences were generated for a subset of ants 

representing the two major genetic clades across South Africa. A comparison with the 

published data from across the world including the native range of the Argentine ant in South 

America grouped Argentine ants from South Africa with three potential source populations 

namely Ocampo and Rosario in Argentina and Passo do Lontra in Brazil.  

 

The results of this study underscore the role of human-mediated dispersal in shaping the 

levels of genetic variation in both species. Human-mediated dispersal can lead to genetic 

homogenization across populations. 
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Opsomming 
 

Indringer spesies verplaas of verander ekologiese gemeenskappe, beinvloed landbou 

asook menslike gesondheid en is ekonomies duur om te verwyder. Langtermyn monitering van 

indringer spesies asook die dokumentasie van genetiese variasie is dus baie belangrik. Hierdie 

studie bestudeer die verspreiding van genetiese variasie in twee indringer spesies wat regoor 

Suid-Afrika voorkom, naamlik die kroongal-vormende wespe Trichilogaster 

acaciaelongifoliae en die Argentynse mier Linepithema humile. 

 

Die kroongal-vormende wesp is na Suid Afrika gebring as biologiese beheeragent om  

die verspreiding van indringer lang-blarige wattle Acacia longifolia te beveg. Die kroongal-

vormende wespe het sowel die teiken spesies, asook A. floribunda, ‘n nie-indringer 

ornamentele plant gekoloniseer. Beperkte genetiese variasie is gevind regoor Suid Afrika 

gebasseer op die mitochondriale DNA sitokroom-oksidasie subeenheid I (COI) geen. Slegs 3 

haplotipes karakteriseer 53 indiviue van 23 bevolkings (nukleotied diversiteit π = 0.002 ± 

0.001, haplotiep diversiteit h = 0.482 ± 0.045). Geen beduinde groepering van genetiese variase 

is gevind regoor Suid Afrika nie (ST = 0.094, P = 0.288). Hierdie bevinding geld onafhanklik 

van die gasheer plant (teiken gasheer = A. longifolia, nie-teiken gasheer = A. floribunda). Ook 

is geen beduidende genetiese groepering gevind tussen die sentrale (plek van inisiele 

blootstelling) en perifêre (natuurlik verspreide) lokaliteite nie. Die kleinskaalse genetiese 

variase en die afwesigheid van beduidende genetiese struktuur wat hier gevind is, verskil van 

die patrone wat voorheen vir baie ander indringer-spesies beskryf is. Dit mag daarop dui dat 

‘propagule’ druk slegs ’n klein rol speel in spesies-vestiging en verspreiding van die gal-

vormende wespe regoor Suid-Afrika.  
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Mitochondriale asook kern merkers is gebruik om die verspreiding van genetiese 

variasie in Argentynse miere in Suid Afrika te beskryf. Vir die mitochondriale DNA is lae 

genetiese variase gevind vir die COI geen, met slegs 5 haplotipes, gedifferensieer deur enkele 

mutasie veranderinge wat 101 monsters van 35 lokaliteite karakteriseer (nukleotied diversiteit 

π = 0.001 ± 0.001, haplotiep diversiteit h = 0.151 ± 0.048). Desondanks die lae genetiese 

variasie, is gevind dat mitochondriale variasie beduidend gestruktureerd is (ST = 0.54, P < 

0.001) oor die landskap. Hierteenoor het mikrosatelliet analises van 230 miere van 23 

lokaliteite, deur gebruik te maak van ses polimorfiese mikrosatelliet merkers, ’n relatiewe hoë 

hoeveelheid genetiese diversiteit aangedui. Beduidende bevolkingstruktuur was ook gevind 

(RST = 0.14, P < 0.001) in die areas Elim2, Porterville2 en Bloemfontein2 wat saam groepeer 

as eiesoortige bevolkings vergeleke met die res van die areas. Ook van belang is dat individue 

van die areas ’n unieke mitochondriale haplotipe besit, en in kombinasie met die kern resultate, 

mag dit die voorkoms van meer as een blootstellingsgeleentheid (en moontlik meer as een 

kolonie) in Suid Afrika aandui. Hierdie bevinding word verder beklemtoon deur die 

teenwoordigheid van unieke mikrosatelliet allele in die drie bevolkings.  

 

In ‘n poging om die oorsprong van die oorsprong-bevolking vir die blootstelling van 

Argentynse miere in Suid Afrika vas te stel, is mitochondriale sitokroom b volgordes 

gegenereer vir ’n substel miere wat die twee hoof genetiese klades in Suid Afrika voorstel. 

Vergelyking met gepubliseerde data van regoor die wêreld, insluitende die endemiese gebied 

van die Argentynse mier in Suid Amerika, het die Argentynse mier van Suid Afrika met drie 

potensiele oorsprong-bevolking verbind, naamlik Ocampo en Rosario in Argentina en Passo do 

Lontra in Brazil.  
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Chapter 1: General Introduction  
 

 Alien invasive species are taxa deliberately or unintentionally introduced outside their 

native range that colonize, establish and spread in new environments in such a way that they 

displace endemic species (Di Castri et al. 1990, Richardson & Pyšek 2006, Zee & Holway 

2006). Such invasions often culminate in significant environmental, conservation and 

economic crises (Mack et al. 2000, Pimental et al. 2000, Christian 2001, Sakai et al. 2001, 

Olson 2006). Purposely introduced species are released because it is believed that they will 

benefit the environment in some way for example as biological control agents (Slade & Moritz 

1998, Hill et al. 2000). In addition to benefiting the environment, many species have been 

introduced to benefit humans directly (like animals and plants for food) (Diamond 2002). To 

adequately manage and control alien species, studies of risk assessment and monitoring of 

factors associated with success and failure of biological invasions are of the utmost importance 

(Loeb 1994, McEvoy 1996, Louda et al. 1997, Corry & Myers 2000). Included here is 

information regarding the genetic structure of species across their native and introduced ranges, 

whether genetic variation is geographically structured, and the source of introduction which is 

often unknown for unintentionally introduced species. The aim of this study is to contribute 

genetic information on alien species in South Africa. This kind of information, which is mostly 

lacking, is essential in improving control measures for species through biological, chemical and 

cultural approaches.  

  

1.1 Genetics of alien biological introductions 

Ecological approaches have identified many of the factors associated with successful 

invasions such as a high tolerance to environmental heterogeneity and the ability to reproduce 

both asexually and sexually (Groves & Di Castri 1991, Pappert et al. 2000, Sakai et al. 2001, 

Johnson & Starks 2004, Kolbe et al. 2004, Petit et al. 2004). In contrast, studies investigating 
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the genetic aspects associated with invasion success of a species have received less attention. 

These kinds of information are crucial for several reasons. First, levels of genetic diversity of a 

species in its native range can determine how its members might respond to various biotic and 

abiotic factors including those encountered in introduced areas (van Driesche & Bellows 1996, 

Falk et al. 2001, Sakai et al. 2001). Secondly, knowledge about the geographic distribution of 

genetic variation across the species’ native range can aid in understanding (and predicting) the 

nature and origin of the genetic differences between populations in the introduced range 

(Merrel 1981, Franks et al. 2004, Miura 2007). Third, comparative phylogeographic studies of 

invasive species in their introduced versus native ranges may highlight special genetic features 

of the colonists (Parsons 1983, Tsutsui et al. 2000, Petit et al. 2004). These kinds of studies 

provide ideal opportunities to investigate the occurrence of rapid evolution in a species 

following its introduction (Ferraris & Palumbi 1996, van Klinken & Edwards 2002, Frankham 

2005). Fourth, understanding the patterns of population structure and variation at different 

scales can provide additional information about the nature of gene flow and likelihood of 

genetic drift (Hengeveld 1990, McDonald & Potts 1997, Schäfer et al. 2001, Kalisz et al. 

2001). This genetic information can be used to infer likely vectors of dispersal and patterns of 

spread; information that is essential for the management of biological control agents as well as 

for prevention and eradication of invasive species. 

 

1.2 Study species: Biology and background to introductions  

Within South Africa, the bud gall-forming wasp, Trichilogaster acaciaelongifoliae and 

the Argentine ant, Linepithema humile provide models for the study of genetic aspects 

associated with the success of an introduced species. Trichilogaster acaciaelongifoliae was 

introduced into South Africa from Australia as a biocontrol agent for the Australian long-

leaved wattle, Acacia longifolia. Linepithema humile was accidentally introduced into South 
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Africa with animal fodder at the turn of the previous century (~1900) and has since spread 

through large parts of the country. 

 

1.2.1 Trichilogaster acaciaelongifoliae (Frogatt) (Hymenoptera: Pteromalidae) 

The bud gall-forming wasp was introduced into South Africa to curb the spread of the 

invasive long-leaved wattle (Dennill 1987). The introduced specimens all came from the 

coastal regions of New South Wales, Victoria and Tasmania and were mainly collected from A. 

longifolia and the sally (gossamer) wattle A. floribunda (Costermans 1981, Dennill 1987, 

Wrigley & Fagg 1996). Two releases were made into the Western Cape Province in 1981 and 

1982. All further releases into others parts of the country were drawn from the subsequent 

generations that emerged from these initial releases (Dennill 1987). The bud gall-forming wasp 

has spread through large parts of South Africa where its host plants A. longifolia and A. 

floribunda are found (although the latter is not considered an invasive in South Africa, it is also 

host to the wasp). Trichilogaster acaciaelongifoliae’s current range includes the Eastern and 

Western Cape Provinces, KwaZulu-Natal, Gauteng and Mpumalanga (Dennill 1987, McGeoch 

& Wossler 2000, Hoffman 2001, Dennill & Gordon 1990). Its establishment has been marked 

with varied success associated with climatic variability and also shade provided by other tree 

species (Dennill 1987, Dennill & Gordon 1990).  

 

The bud gall-forming wasp is characterized by a univoltine, and occasionally bivoltine, 

life cycle including parthenogenic reproduction (Dennill et al. 1993). Males are haploid and 

females are diploid (Manongi & Hoffman 1995, Hoffman 2001). The sex ratio of this wasp 

varies according to host plant with both male and female eggs being deposited in a single gall 

(Noble 1940). Adult wasps with a life span of 2 – 3 days emerge between October and January 

reaching their peak in November (Dennill 1987).  
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They exhibit sexual dimorphism with males being smaller and darker than the females 

(Hoffman 2001). Females lay up to 400 eggs inserted in batches of 15 eggs per batch. These 

batches are mostly laid into immature buds and, to a lesser extent, into the vegetative parts of 

the host plant (Hoffman 2001). Eggs hatch in spring producing wasp larvae, which then initiate 

the formation of galls with up to eight larvae, each with its own chamber (Dennill 1987).  

 

1.2.2 Linepithema humile (Hymenoptera: Formicidae) 

Linepithema humile is one of the most successful invaders world-wide (Suarez et al. 

1999, Silverman & Brightwell 2008) and has successfully established on all continents with the 

exception of Antarctica (Suarez et al. 2001, Corin et al. 2007a). Much is known about the 

biology and spread of the Argentine ant (Tsutsui & Case 2001, Vega & Rust 2001, Wild 2004, 

Silverman & Brightwell 2008) and it is agreed that in introduced ranges it is detrimental to the 

local diversity of flora and fauna (Skaife 1953, Christian 2001, Nauman et al. 2004). Within 

South Africa, this species was first recorded in Stellenbosch in 1908 and is said to have 

accidentally entered the country in forage imported from South America (Skaife 1953, Prins 

1978). Previously, the distribution of the Argentine ant in South Africa was not well known but 

it was reported to be extremely common throughout the south-western Cape area (Skaife 1953, 

Slingsby & Bond 1981). However, data gathered by Luruli (2007) as well as in the present 

study indicate the species to be widely distributed throughout South Africa. 

 

The native range of the Argentine ant covers north-eastern Argentina, Brazil and 

southern Paraguay along the Paraná drainage system (Tsutsui et al. 2001, Vega & Rust 2001, 

Wild 2004). Its distribution, both in its native and introduced ranges, has been associated with 

high humidity and mild winter temperatures, disturbance and specific soil and vegetation types 
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(Markin 1969, Krieger & Keller 1999, Slingsby & Bond 1981, 1983; Witt & Giliomee 1999, 

Holway et al. 2002, Walters & Mackay 2004, Wild 2004).  

 

The Argentine ant has low levels of genetic diversity across its introduced ranges and 

occurs almost exclusively as single large colonies (Tsutsui et al. 2000, Corin et al. 2007b but 

see Ingram & Gordon 2003, Buczkowski et al. 2004). This is in contrast to the pattern across 

its native range where ants display a multi-colonial social structure with aggression between 

workers of different nests. In addition, it also coexists with other ants in species-rich 

communities (Krieger & Keller 1999, Suarez et al. 1999, Tsutsui et al. 2000).  

 

Argentine ant workers are aggressive and although they do not have stings they bite 

when provoked. Argentine ants also employ chemical defences when provoked. Queens and 

drones are winged and reproductive (Skaife 1953, Passera & Keller 1994, Krieger & Keller 

1999, Krieger & Keller 2000, Nauman et al. 2004). The workers are monomorphic, whereas 

the queen is almost twice the length of worker ants. The males and queens mate within the 

colony, and the queens disperse by budding rather than nuptial flights.  This information is 

important for investigating expected patterns of isolation-by-distance in natural populations 

(Passera & Keller 1994, Vega & Rust 2001). Under reduced chances of mating due to the 

presence of only a few females, males may disperse to other colonies (Passera & Keller 1994, 

Nauman et al. 2004). The queens lay a large number of eggs which are gathered and cared for 

by the workers although queens may infrequently also care for eggs (Skaife 1953, Nauman et 

al. 2004). 
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1.3 Molecular phylogeography and evolution of alien introduced species 

Natural or native populations of a species are expected to exhibit varying degrees of 

genetic diversity and differentiation depending on the relative roles of factors such as isolation-

by-distance, mutation, natural dispersal and selection (Gardner & Snustad 1984, Epperson 

2003, Lowe et al. 2004). Intuitively it would be expected that (recently) introduced populations 

of a species would be characterized by lower levels of genetic diversity when compared to the 

species in its natural range (see for example Baker et al. 2003, Grapputo et al. 2005, Lloyd et 

al. 2005, Zayed et al. 2007). This has not always been the case with several studies that have 

compared levels of diversity between introduced and native populations showing no 

differences between these two ranges. For example, Johnson and Starks (2004) found no 

significant reduction in mitochondrial DNA diversity of the invasive wasp Polistes dominulus 

in the United States of America relative to its European native range.  

 

It is difficult to a priori predict the amount of genetic structuring present in introduced 

alien species. Whereas population genetic structuring across introduced ranges may arise as a 

result of directional selection, lack of gene flow between geographically distant populations, 

mutation, host specificity and isolation-by-distance or genetic drift (Filchak et al. 2000, Carrol 

et al. 2007, Frankham et al. 2002, Lee 2002), many species show very little genetic structuring 

across their introduced ranges. For example, Goodisman et al. (2001) found significant allelic 

differentiation at three polymorphic microsatellite loci of the introduced wasp, Vespula 

germanica across Australia. Likewise, Lakatos et al. (2003) found significant genetic 

differentiation between introduced populations of the leaf miner moth Parectopa robiniella in 

North America and Europe. In contrast, Kim et al. (2003) found no genetic differentiation in 

the introduced populations of the diamond-back moth Plutella xylostella in Korea. Similarly, 
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no genetic differentiation was observed in the introduced populations of springtail species on 

Marion Island (Myburgh et al. 2007). 

 

Even within a single species it is impossible to extrapolate results from one geographic 

area to another with much certainty. For example, introduced Argentine ant populations across 

the world show almost no genetic differentiation among nests (Dreier et al. 2005, Corin et al. 

2007b) with substantial gene flow (Krieger & Keller 2000). However, significant partitioning 

of genetic variation has been reported for this species in Jasper Ridge Biological Preserve in 

California (Ingram & Gordon 2003) and in the Northeastern USA (Buczkowski et al. 2004). 

 

1.4 Factors affecting genetic variation in introduced species 

Many factors, either singly or in concert, shape the amount of genetic variation in 

introduced species (Sakai et al. 2001, Lee 2002, van Klinken & Edwards 2002). Variation may 

be reduced through population bottlenecks (with concomitant genetic drift in small 

populations) typically expressed during introduction events. Similarly, small population sizes 

(although this is not confined to small numbers only) may facilitate local adaptation in 

response to selection associated with the new environmental conditions thereby reducing 

variation (Allendorf & Lundquist 2003). In contrast, a high propagule pressure (including both 

the number of individuals introduced and the number of release events) can result in the alien 

species having high genetic variation (Johnson & Starks 2004, Kolbe et al. 2004, Miura 2007). 

Multiple introductions from different source populations will also increase variation. In 

addition, hybridization between individuals from different native populations may even cause 

introduced populations to have higher genetic variation compared with native populations 

(Ellstrand & Schierenbeck 2000, Allendorf & Lundquist 2003, Miura 2007).  
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Changes in genetic composition may cause shifts in the behaviour of a species in its 

introduced range (Money & Cleland 2001). For example, Pickett & Wenzel (2000) found that 

introduced populations of the paper wasp P. dominulus in the USA display changes in life 

history traits such as higher productivity and survivorship relative to native populations. 

Similar examples have also been reported for the fire ant Solenopsis invicta where the 

polygyne form of this species is more widely distributed in the introduced range compared to 

the distribution in the native range (Mescher et al. 2003, Shoemaker et al. 2003). Also, in 

contrast to their natural behaviour, Argentine ants in introduced ranges are unicolonial and lack 

aggression between nests (Tsutsui et al. 2000, Corin et al. 2007b) possibly due to the loss of 

genes associated with recognition cues (Giraud et al. 2002 but see Pedersen et al. 2006 who 

argues that these differences are largely the result of colony size).  

 

1.5 Objectives 

The main objective of this study is to provide genetic information for two species 

introduced to South Africa; the bud gall-forming wasp (T. acaciaelongifoliae) and the 

Argentine ant (L. humile). Broad research aims are given below. More specific questions and 

hypothesis are provided in Chapters 2 and 3. 

1.5.1 Research aim for T. acaciaelongifoliae  

1. To describe the spatial distribution of genetic variation within T. acaciaelongifoliae 

across its South African distribution range. 

1.5.2 Research aims for L. humile  

1. To describe the spatial distribution of genetic variation within L. humile across its 

South African distribution. 

2. To establish whether L. humile constitutes a single supercolony in South Africa as 

observed in other parts of the world. 
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3. To determine the source population(s) for the Argentine ant introduced into South 

Africa. 
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Chapter 2: Distribution of genetic variation of the Bud gall- 
forming wasp in South Africa 

 
2.1 Introduction 

The use of biological control agents has not always been met with success. Several 

cases have been documented where biocontrol agents failed to curb the spread of target species 

(Myers 2000) or where bio-control agents underwent a host-shift to non-target or non-intended 

species (Louda et al. 1997, Corry & Myers 2000, Freckleton 2000, Myers 2000). The reasons 

behind these failures may include factors such as the Allee effect (Grevstad 1999, Liebhold & 

Bascampte 2003, Lockwood et al. 2005, van Kleunen & Johnson 2005, Ward & Johnson 2005, 

Deredec & Courchamp 2007), host plant quality including age, size and nutrient levels (Alstad 

1998), founder effects (Liebhold & Bascompte 2003), population bottlenecks (Hufbauer et al. 

2004) and/or genetic systems such as haplodiploidy (Packer & Owen 2001). 

 

Haplodiploid hymenopterans are typically characterized by reduced levels of genetic 

variation (Ayala 1976, Crozier 1977, Graur 1985). This is because heterozygosity is restricted 

to the diploid sex (females) resulting in reduced recombination and rapid evolution (Crozier 

1977, Hedrick & Parker 1997). Although moderate to high levels of genetic variation, 

compared to their native ranges, have been reported for certain introduced hymenopteran 

species such as the primitive sawflies of the genus Cephalacia and the European paper wasp P. 

dominulus (Boato & Battisti 1996, Johnson & Starks 2004), these are typically associated with 

populations that comprise multiple introductions or where hybridization occurs among 

different populations or even species (Allendorf & Lundquist 2003, Suarez & Tsutsui 2008).  

 

The bud gall-forming wasp T. acaciaelongifoliae is native to Australia where it occurs 

on several Acacia sp. including A. longifolia and A. floribunda (Noble 1940, Dennill 1987). It 

was introduced to South Africa as a biocontrol agent to curb the spread of the highly invasive 
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A. longifolia (long-leaved wattle) (Dennill 1987); this species poses a threat to water courses 

and the fynbos biome (Boucher & Stirton 1978, Macdonald et al. 1985). Trichilogaster 

acaciaelongifoliae larvae release a substance that causes the flowering bud to develop into 

galls instead of seeds thereby reducing seed production (Dennill 1987). In 1981, 1466 females 

collected from four localities across New South Wales were released in the Western Cape 

Province in equal proportions at Banhoek, Vergelegen and Eerste Rivier and allowed to spread 

naturally (Dennill 1987). In 1982, a second batch of approximately 14791 females were 

imported from nine localities; these included the original sites of capture in New South Wales 

as well as six localities from Victoria and Tasmania in Australia (Dennill 1987). These wasps 

were mixed and released at four additional (experimental) sites in the Western Cape namely 

Stellenbosch Mountain, Die Boord, Klein Drakenstein and La Motte (Dennill 1987). The first, 

second and third generation wasps that emerged from these experimental sites were 

subsequently released at 17 sites throughout the Western Cape Province (during 1983), 49 sites 

in the Eastern Cape Province (during 1984) and at 18 sites in KwaZulu-Natal (during 1985) 

(Dennill 1987). This species have since spread across South Africa and now occurs throughout 

the entire range of A. longifolia. In addition, T. acaciaelongifoliae has expanded its host range 

locally and now also parasitizes the sally wattle A. floribunda (Wrigley & Fagg 1996, 

McGeoch & Wossler 2000) which is a non-invasive ornamental plant in South Africa.  

 

Although the bud gall-forming wasp has spread across the entire range of both acacias 

in South Africa and is estimated to reduce seed production in A. longifolia by about 80% in 

some areas (Dennill 1987), low levels of genetic diversity may make haplodiploid organisms 

particularly vulnerable to processes that reduce genetic variability including introductions but 

also connectivity among populations or other founder events (Zayed & Packer 2005). 

However, information pertaining to the genetic variation present in the wasp has largely been 
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lacking. This information might proof vital to guide future introductions should the ability of 

the wasp to reduce seed production of the host trees decline in the future. 

 

Introduced populations of the bud gall-forming wasp are expected to show low levels of 

genetic variation across its range. To document genetic variation in the introduced T. 

acaciaelongifoliae and determine whether variation is geographically structured, a portion of 

the cytochrome oxidase subunit I (COI) gene was sequenced. This gene, which is situated in 

the mitochondria and therefore maternally inherited, is frequently used to document variation 

at the population level (Smith 2005, Ros & Breeuwer 2007). This gene region was further 

selected since it is the region of choice for the barcoding of vertebrates and invertebrates 

(Hebert et al. 2003). The use of this gene is, however, not without controversy with various 

authors suggesting that it may not represent a strictly neutral marker (see for example Ballard 

& Kreitman 1995, Confalönieri et al. 1998, Blier et al. 2001, Bazin et al. 2006). Mitochondrial 

DNA as a non-neutral molecule would imply that certain haplotypes would be favoured under 

different environmental conditions thereby reducing genetic variation through selection. If a 

specific haplotype has a significant selective advantage, mitochondrial DNA variation may 

rapidly be reduced until a single haplotype characterizes all specimens. 

 

2.2 Research questions and hypotheses: 

The following specific questions were posed; 

 Given that the distribution of T. acaciaelongifoliae in South Africa spans areas that 

were initially considered climatically unsuitable for the species, is there any evidence of 

geographic diversification such that the populations are genetically distinct? 
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 Given that T. acaciaelongifoliae oviposit eggs and preys on both A. longifoliae and A. 

floribunda as host plants, are there any genetic differences in wasps associated with the 

different host plants?  

 Are populations at the core (introduced sites) genetically distinct from those at the 

periphery (naturally dispersed sites) across the distribution range? 

The above mentioned questions rotate around two hypotheses; 

 Individuals of T. acaciaelongifoliae from different geographic or climatic zones, host 

plants and distribution range across South Africa are genetically distinct. 

 Observed levels of genetic variation in T. acaciaelongifoliae in South Africa is a 

reflection of founder effects and human-mediated dispersal. 

 

2.3 Materials and methods 

2.3.1 Sample collection. 

Field sampling was done at 23 localities covering the distribution range of the bud gall-

forming wasp in South Africa (see Fig. 1 and Table 1). Two trees approximately 100 m apart  

were sampled per locality resulting in a total of 46 trees. Host trees were identified to species 

level (A. longifolia or A. floribunda). Collection sites were classified as “core” (the original 

release sites) or “edge” (areas into which the wasp is considered to have spread naturally). 

Fifteen (15) galls were collected from each tree and brought to the laboratory. Following 

dissection of these galls, adults, pupae and larvae were collected and stored in absolute ethanol 

at 4° C. 
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Fig. 1 Map of South Africa indicating the collection localities for T. 
acaciaelongifoliae. Provincial boundaries are indicated. Core sites are 
indicated in green filled circles and edge sites in yellow filled circles. 

 

2.3.2    Laboratory procedures and sequence treatment 

 Genomic DNA was extracted from one to four individuals from each locality using the 

DNeasy Tissue Kit (Quiagen) following the manufacturer’s instructions. Whole individual 

adults, pupae or larvae were used in the DNA extraction. A fragment on the 5’ portion of the 

mitochondrial COI gene was amplified using the insect primers (LCO1490 and HCO2198) as 

described by Folmer et al. (1994). PCR reaction conditions were as follows: an initial 

denaturation step at 96º C for 5 min. followed by 35 cycles of 96º C for 30 s, annealing at 42° 

C for 30 s and 72° C for 55 s. A final extension step at 72° C for 1 min. completed the 

reactions. PCR products were electrophoresed in 1% agarose and gel purified using the DNA 

purification Kit (GE Healthcare). Sequencing reactions were performed using Big Dye 

chemistry (version 3; Applied Biosystems, Inc.). Centrisep spin columns (Princeton 
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Separations) were used to clean sequencing cocktails. The products were analyzed on a 3100 

ABI automated sequencer (Applied Biosystems, Inc.). Electropherograms of the raw sequences 

were checked by eye and edited with Sequence EditorTM software version 1.0.3a (Applied 

Biosystems, Inc.). 

 

2.3.3    Data analysis 

Sequences were aligned using Clustal X (Thompson et al. 1997) and verified by eye. 

Haplotype (h) and nucleotide diversities ( ) were calculated using Arlequin 3.1 (Excoffier et 

al. 2005). A haplotype network was constructed using TCS 1.21 (Clement et al. 2000). The 

genetic structure coefficient ST was calculated using Arlequin 3.1 and 1000 permutations 

were used to test if the ST value was significantly different from random data. Relationships 

between the observed haplotypes and host plants (A. longifolia or A. floribunda) as well as 

between the observed haplotypes and distribution range classification (core or edge) under a 

null hypothesis of no dependence among variables, were analysed using a one-way Chi-square 

test implemented in PAST (Palaeontological Statistics, Hammer et al. 2001). The chi-square 

test is designed to determine the relationship between two variables, and the level of 

significance is assessed by comparing the observed chi-square value with the tabulated value 

for the given degrees of freedom (Sokal & Rohlf 1995, Zar 1999).  

 

Rarefaction is an interpolation method that estimates the (assumed) total number of 

species in a given area based on partial sampling of the area (Gotelli & Colwell 2001, Hughes 

& Hellmann 2005). This method, although typically applied in ecological studies, has recently 

been used to determine whether haplotype diversity has been sampled to completion and if not, 

what the expected number of haplotypes would be (Fornia et al. 2007, Myburgh et al. 2007). 

To determine whether genetic variation in T. acaciaelongifoliae across South Africa was 
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adequately sampled (Muirhead et al. 2008) a sample-based rarefaction curve was generated 

using 50 randomizations and sampling without replacement in EstimateS 8.0 (Gotelli & 

Colwell 2001, Colwell 2005). Haplotypes of T. acaciaelongifoliae were plotted against the 

number of localities sampled. Estimators were compared with one another based on their 

deviations from the observed sample-based rarefaction curves for the localities (see Palmer 

1990, Brose et al. 2003, Hortal et al. 2006).  

 

2.4 Results 

2.4.1 Sequence variation  

 Polymerase chain reaction (PCR) and sequencing resulted in a complete data set of 633 

bp of the COI gene for 53 T. acaciaelongifoliae specimens. The most frequent haplotype (TH1) 

was found at all the localities except East London in the Eastern Cape and Elim in the Western 

Cape. Haplotype TH2 was found in 13 of the 23 localities. The third haplotype (TH3) was 

found only at the locality of Grahamstown (Eastern Cape Province) (Table 1).  
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Table 1 Sampling localities (including geographic coordinates) for T. acaciaelongifoliae. 
Sample sizes, core and edge localities are indicated, as well as host plant included per 
locality. The occurrence of the three mitochondrial DNA haplotypes is indicated. 

 

 

 Two variable sites were found resulting in three haplotypes (Table 2). These haplotypes 

occurred at frequencies 0.64 (34 of 53 specimens) (TH1), 0.34 (18 of 53 specimens) (TH2) and 

0.02 (1 of 53 specimens) (TH3). Nucleotide diversity (π) was 0.002 ± 0.001 and haplotype 

diversity (h) was 0.482 ± 0.045. 

Table 2 Two polymorphic sites (positions 63 and 255) resulted in three haplotypes. The 
frequencies of haplotypes are indicated (number of specimens are indicated in parenthesis). 

 

 



 

 18

2.4.2 Genetic structure 

The haplotype network constructed for T. acaciaelongifoliae is shown in Figure 2. 

Single mutational differences separate the three haplotypes. No significant geographic 

structuring of haplotypes was found when considering all populations as a single group; an 

AMOVA indicated that 90.6% of the genetic variation was accounted for by within-population 

variation (ΦST = 0.094, P = 0.288). There was also no significant relationship between the 

geographic occurrence of haplotypes and host plant (2 = 2, P = 0.157, n = 6) with haplotypes 

TH1 and TH2 found on both A. longifolia and A. floribunda (see Table 1). Haplotype TH3 was 

found only on A. longifolia but this may be a sampling artefact rather than a host preference. 

Likewise, no significant relationship was found between haplotypes and distribution range of 

the wasp (core vs. edge) (2 = 3.333, P = 0.068, n = 6). 

 

 
Fig. 2 Statistical parsimony network created in TCS depicting the relationships between 
haplotypes. Oval sizes are drawn according to the number of individuals (given in brackets). 
   

The calculated rarefaction curve was asymptotic. Both rarefaction curve and the Jack2 

estimator indicate that three was the maximum number of haplotypes present across South 

Africa. It therefore shows that T. acaciaelongifoliae haplotypes were sampled to completion 

for the number of localities (Fig. 3). Jack2 was found to be the best estimator for the localities 

data. 
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Fig. 3 Rarefaction curve of T. acaciaelongifoliae haplotypes in South Africa based on 23 
sampling localities. Number in front of the curve refers to the estimated number of haplotypes 
based on Jack2.  

 

2.5 Discussion 

Within South Africa, the bud gall-forming wasp is characterized by low levels of 

genetic variation. Although this study is based on a limited sample size, it is doubtful whether 

the inclusion of additional specimens will result in a significant increase in genetic diversity 

since the rarefaction analysis indicated that all haplotypes have been sampled to completion. 

Reduced levels of genetic diversity are also in line with previous findings which similarly 

document reduced levels of mitochondrial DNA variation and lack of genetic structure in 

introduced species (Lloyd et al. 2005, Myburgh et al. 2007, Zayed et al. 2007, Puillandre et al. 

2008, but see also Stone et al. 2003, Hufbauer et al. 2004). Several factors may singly or in 
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concert account for the low levels of variation and absence of genetic structure in T. 

acaciaelongifoliae. The relative importance of these is discussed below.  

 

Genetic markers differ in their rates of evolution. The choice of a genetic marker that 

adequately addresses the questions being raised in a study is therefore of utmost importance 

(Parker & Reichard 1998, Ross 2001, Miura 2007). The mitochondrial COI gene is a marker of 

choice for insect population level studies (see for example Gunasekera et al. 2005, Ball & 

Armstrong 2006, Scheffer et al. 2006, Lee et al. 2007) and is suitable for study of genetic 

structure in situations where reproduction is solely propagated by females as is the case in T. 

acaciaelongifoliae (Noble 1940, Graur 1985). Several studies provide evidence of high levels 

of mitochondrial DNA variation and structuring in introduced insects. For example, Stone et al. 

(2003) reported mitochondrial DNA structuring in introduced populations of the wasps A. 

kollari and A. quercuscalicis. Similarly, Laffin et al. (2005) reported structuring in the 

introduced cabbage seedpod weevil Ceutorhynchus obstricus. It is unlikely that the choice of 

the marker might have contributed substantially to the observed patterns within the wasp in 

South Africa. 

 

Founder events occur when a subset of a larger population establishes itself in a new 

environment carrying with it a fraction of the genetic diversity of the parental population. 

During this process, the founding population passes through a bottleneck further reducing the 

amount of genetic variation as a result of a reduction in the number of individuals as well as 

through the effects of genetic drift (Hufbauer & Roderick 2005). This is a well-studied 

phenomenon with numerous case studies documenting changes in genetic composition and 

variation as a result of founder events and bottlenecks. For example Stone et al. (2003) using 

allozymes data reported reduced levels of genetic diversity for the introduced wasp Andricus 
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quercuscalicis compared to the co-occurring introduced wasp A. kollari and attributed the 

reasons for the decline in genetic diversity in the former to severe founder effects compared to 

the latter. Similarly, Baker et al. (2003) using microsatellite data reported reduced levels of 

genetic diversity, fixed alleles and high relatedness in the introduced parasitoid wasp 

Diaeretiella rapae and associated these with a founder effect at the time of introduction. 

Hinomoto et al. (2006) using microsatellite markers found reduced levels of genetic variation 

in commercial populations of the biocontrol agent poppius Orius strigicollis relative to field 

populations in Japan, and this reduction in diversity was attributed to the effects of a genetic 

bottleneck and drift.  

 

It is arguable whether a founder effect would have contributed significantly to the 

observed low levels of genetic variation in the present study. Introductions of the bud gall-

forming wasp into South Africa were from different source populations throughout their 

natural range in Australia thereby (potentially) capturing large proportions of natural diversity 

(Dennill 1987). In addition, the numbers of introduced individuals (in total, 16257 individuals 

were released) might have been large enough to avert the negative effects of a bottleneck as the 

effective population size for T. acaciaelongifoliae should not be significantly different to the 

number of individuals introduced. This species is known to reproduce parthenogenically with a 

female biased sex ratio (Noble 1940) and displays site fidelity. Although several deaths 

characterized the first introduction event in 1981, no deaths were reported for the second 

release event in 1982 (Dennill 1987). There was therefore not a significant decline in the 

number of individuals that established per se from the number originally introduced. This 

would lend some support to the views that reduced genetic variation is not always a 

consequence of bottlenecks, and that reduced variation may not necessarily affect the 
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establishment and successful spread of an introduced species (Hufbauer & Roderick 2005, 

Miura 2007).  

 

Several authors have argued that mitochondrial DNA may not be selectively neutral 

(see Ballard & Rand 2005, Hurst & Jiggings 2005, Behura 2006). If true, this would imply that 

selection could favour specific mitochondrial haplotypes causing those haplotypes to become 

abundant whilst other, less optimal haplotypes, disappear from a population resulting in a loss 

of genetic diversity. Following the work of Bazin et al. (2006), selection seems to be more 

prevalent among invertebrates compared to vertebrates. These authors documented the number 

of adaptive amino acid substitutions compared to those that are non-adaptive (dN/dS ratio) for 

13 mitochondrial DNA genes and reported significant differences between vertebrates (average 

0.086) and invertebrates (average 0.151) which they attributed to recurrent selective sweeps. In 

addition, Confalönieri et al. (1998) documented mitochondrial DNA variation in the 

grasshopper Trimerotropis pallidipennis along an altitudinal cline. They found no clinal 

variation (isolation-by-distance) with no correlation between haplotype and geographic 

sampling locality and attributed this lack of genetic structure along the geographic cline to 

selection acting along the cline. Therefore selection may have acted on the introduced 

populations of T. acaciaelongifoliae in South Africa resulting in the observed level of genetic 

variation. 

 

When considering haplodiploid systems (also characterizing T. acaciaelongifoliae), 

much of the neutral variation at nucleotide sites targeted by selection will be rapidly lost in 

haploid males (because of a lower Ne) leading to a decrease in overall genetic diversity 

(Maynard Smith & Haigh 1974, Nielsen 2001, Packer & Owen 2001). In addition, should 

selection favour specific mitochondrial haplotypes, there will be a rapid increase in the 
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frequency of these haplotypes having the selective advantage, such that some alleles or 

haplotypes in introduced population will be found in large frequencies relative to others. In the 

present study, two haplotypes (TH1 and TH2) occurred at high frequency with TH3 found only 

at a single locality which corresponds to a site of original introduction.  

 

Interestingly, the present study detected no difference in mitochondrial variation or 

haplotype frequencies when considering two host species (A. longifolia and A. floribunda) nor 

when considering core vs. edge sites in the distribution. Previous work have shown co-

adaptation among host and parasite haplotypes such that host-specific races of parasites arise 

through selection on parasite haplotypes to more accurately match their hosts' genetic profiles 

(see Hufbauer & Roderick 2005, Goolsby et al. 2006a & b). This does not appear to be the case 

with the bud gall-forming wasp in South Africa. Although speculative, this may be the result of 

environmental selection for specific haplotypes outweighing the formation of haplotypes 

driven by host specificity. Alternatively, the haplotypes characterizing T. acaciaelongifoliae 

specimens in South Africa may have arisen prior to the divergence of A. floribunda from A. 

longifolia, suggesting that the ability to parasitize both hosts evolved prior to the 

diversification of the hosts' mitochondrial DNA. This was similarly argued for Diaeretiella 

rapae, a parasitoid of aphids introduced into Northern America (see Baer et al. 2004). 

Although these findings would suggest that selection is playing a role in shaping the variation 

in T. acaciaelongifoliae in South Africa, the finding from this study can not be taken as 

conclusive and further studies would be needed to confirm or refute this. 

 

The time since introduction plays an important role in the amount of genetic variation 

present in species. Mutations would accumulate over time (this would be proportional to 

generation time rather than real time), and if the introduction occurred relatively recent, there 
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might not have been a sufficient number of generations in which to have accumulated genetic 

variation (in the form of new mutations) (Roderick & Navajas 2003, Crispo & Hendry 2005). 

The wasp introductions into South Africa occurred ~26 years ago (1981 and 1982) and with a 

generation time of between 6 months to 1 year (see Noble 1940, Dennill 1987), this would 

leave between 26 – 52 generations in which mutations could accumulate. Also, given that 

mutations accumulate at only ~ 2.3% per million years for the COI gene (Brower 1994, 

Knowles 2000), 26 years would not be enough to accumulate a noticeable amount of genetic 

variation. However, rapid evolution has been shown to occur over short time scales and few 

generations (Carroll et al. 2007). For example, Gilchrist et al. (2001) reported changes in the 

wing size of the fruit fly Drosophila subobscura with latitude two decades after its introduction 

into the new world. Similarly, rapid evolution for increased growth and survival rates, and 

development of a cline in flowering phenology has been observed in populations of Hypericum 

canariense, a perennial shrub introduced to Hawaii and California less than fifty years ago 

(Dlugosh & Parker 2008).  

 

Human-mediated dispersal may add to low genetic variation and homogenization of 

populations (Therriault et al. 2005). Given the low agility of the bud gall-forming wasp (Noble 

1940) in combination with the lack of diversification across the entire range of several 

thousand kilometres in South Africa, I would suggest that human mediated dispersal is partly 

responsible for generating the observed levels of genetic variation within the wasp (see also 

Dennill 1987, Hufbauer 2002, Therriault et al. 2005). 

 

Although it is widely believed that propagule pressure plays an important role in the 

successful establishment and spread of an introduced species (Allendorf & Lundquist 2003, 

Lockwood et al. 2005, Miura 2007), this study adds to the growing body of literature that 
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suggest that propagule pressure may not be of vital importance in some species becoming 

invasive (or even establishing) (see Grevstad 1999). Memmott et al. (2005) showed that 

invasion success was associated with the first introduction event and not subsequent events of 

introduction in the biological control psyllid Arytainilla spartiophila. Likewise, Hänfling et al. 

(2002) demonstrated that invasive populations of the Chinese mitten crab Eriocheir sinensis in 

America were founded by a single introduction event. Similarly, Myburgh et al. (2007) 

reported low COI sequence variation in invasive populations of springtails on Marion Island 

and associated that with small propagule size at the time of introduction. Furthermore, Zayed et 

al. (2007) reported establishment of large populations becoming invasive from an initial 

introduction of few individuals. Although two introductions of wasps into South Africa 

occurred, only the second introduction of T. acaciaelongioliae is considered to have been 

successful (Dennill 1987). 

 

The indications that some of the well known factors (e.g. large population sizes and 

propagule pressure) associated with successful establishment and spread of an introduced 

species in a novel environment may not be a prerequisite for the successful establishment and 

spread of introduced species, raises an important question; how can a species such as the 

biocontrol agent T. acaciaelongifoliae establish successfully, reach large population sizes and 

spread across the range of its host despite low genetic diversity? One possible explanation may 

be that the levels of genetic diversity in the host are matched by the levels of variation in the 

biocontrol agent. One of the main reasons postulated for the failure to successfully control 

Lantana camara, a highly successful invasive weed, has been the fact that this host species has 

very high levels of genetic and phenotypic variation with no single biocontrol agent that can 

match these levels of variation. Although speculative since no data are available for the long-

leaved wattle in South Africa, it may be that the levels of variation between host and parasitoid 
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are equally matched. Given that T. acaciaelongifoliae in South Africa is characterized by very 

low levels of mitochondrial DNA variation, it may be that the genotypes present perfectly 

match host plant genotype. 

 

In conclusion, T. acaciaelongifoliae across South Africa does not seem to suffer any 

negative effects in spite of low genetic variation. This is because the species have successfully 

spread across most of South Africa, is characterized by high population sizes, and suffer low 

rates of parasitism. The species is arguably having an impact on host plant reproduction 

(Dennill 1987, Dennill & Gordon 1990, Manongi & Hoffman 1995, McGeoch & Wossler 

2000). It is very difficult to single out one factor responsible for the low levels of genetic 

variation in T. acaciaelongifoliae, and several factors may have contributed to the low levels of 

genetic variation observed in T. acaciaelongifoliae populations in South Africa. This study 

adds to a growing body of literature which would question the traditional view about the role of 

propagule pressure in the establishment and successful spread of introduced species.  
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Chapter 3: Distribution of genetic variation in Argentine ants 
across South Africa 

 
3.1 Introduction 

The Argentine ant, a species native to South America, has established and become 

invasive on most continents (Sugiyama 2000, Suarez et al. 2001) where it significantly impacts 

local economies and biodiversity (Christian 2001, Olson 2006, Silverman & Brightwell 2008). 

It would appear that the spread and success of this ant is largely human-mediated through 

repeated introductions (Skaife 1953, Markin 1970, Ingram & Gordon 2003, Hirata et al. 2008). 

In both introduced and native range, Argentine ants form colonies or supercolonies (Tsutsui et 

al. 2000, Giraud et al. 2002, Pedersen et al. 2006). A colony refers to many interconnected 

nests that are characterized by the presence of several queens and lack of intracolony or 

internest aggression (Markin 1970, Tsutsui et al. 2000). A supercolony denotes several 

interconnected nest of multi-queen colonies spread over large geographic area with no 

aggression between mates (Jaquiéry et al. 2005, Corin et al. 2007a).    

 

Throughout the introduced range of the Argentine ant, colony number and size varies 

greatly. For example, a single colony has been reported from Chile and New Zealand (Dreier et 

al. 2005, Corin et al. 2007a) compared with more than six colonies throughout the USA 

(Buczkowski et al. 2004, Thomas et al. 2006). One of the smallest colonies reported to date 

stretches across less than 1 km in the USA (Holway & Suarez 2004) whereas a single colony is 

distributed across more than 6000 km in Europe (Jaquiéry et al. 2005, Wetterer & Wetterer 

2006). There is also a noticeable difference in the amount of genetic variation reported for 

invasive colonies with the majority of colonies displaying reduced levels of variation compared 

to colonies in their native range (Tsutsui et al. 2000, Giraud et al. 2002).  
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Several factors may account for the reduced level of genetic diversity which largely 

facilitates the formation of super colonies. Amongst these are bottlenecks during introduction, 

selection for specific genotypes and/ or allelic cleansing. However, empirical evidence 

implicating these evolutionary processes is scanty (Buczkowski et al. 2004). Tsutsui et al. 

(2000) proposed that bottlenecks reducing genetic variation facilitated the formation of a large 

supercolony in California. In contrast, Giraud et al. (2002) argued that Argentine ant colonies 

in southern Europe did not experience a major genetic bottleneck since the populations or 

colonies they studied were comparatively genetically diverse. Instead, these authors attributed 

the formation of the supercolony in southern Europe to selection against (or cleansing of) 

alleles coding for recognition cues. Importantly, the specific alleles coding for the recognition 

cues in ants have not been identified and this hypothesis therefore still needs to be verified. 

 

Various levels of genetic structuring have been reported across the introduced range of 

the Argentine ant. Colonies from California and the south-eastern USA tend to be characterized 

by little to moderate genetic structuring (Buczkowski et al. 2004) whereas colonies from 

southern Europe and Japan show higher levels of geographic structuring (Jaquiéry et al. 2005, 

Hirata et al. 2008). Geographic partitioning of genetic variation has been linked to aggression 

displayed between ant colonies (Thomas et al. 2007) and these two characteristics (behavioural 

aggression and genetic distinctness) are frequently used to delimit colony boundaries (Tsutsui 

et al. 2000, Buczkowski et al. 2004, Jaquiéry et al. 2005, Hirata et al. 2008).  

 

The Argentine ant was accidentally introduced into South Africa along with animal 

fodder and was first recorded in Stellenbosch around 1908 (Skaife 1953, Prins 1978). The 

occurrence of Argentine ants in South Africa has been documented mainly through ecological 

studies (Christian 2001, Wild 2004). Few investigations have documented population genetic 
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profiles of Argentine ants in South Africa. To date, only a single study included samples from 

South Africa (Tsutsui et al. 2001) with the findings from this study being somewhat restricted 

in that ants from only three sites in the Western Cape Province were included. Notwithstanding 

limited geographic coverage, Tsutsui et al. (2001) suggested that more than one introduction 

event of the Argentine ant into South Africa may have taken place based on large genetic 

differences between ant populations. Specifically, ant populations from Caledon were 

significantly different to those from Cape Point and Betty’s Bay. A cluster analysis indicated 

that ants from South Africa clustered with ants from Rosario, Otamendi and Buenos Aires 

(Argentina) indicating the possibility of multiple introductions into South Africa. 

  

3.2 Research questions 

To address the lack of genetic information about the Argentine ant in South Africa, five 

questions were posed for this study: 

 What are the levels of genetic variation characterizing the Argentine ant in South 

Africa? 

 Are Argentine ant populations in South Africa genetically structured? 

 If the Argentine ant is indeed genetically structured, might these represent more than 

one supercolony?  

 Can the source population(s) for the introductions into South Africa be identified? 

 Is there evidence for demographic and evolutionary processes such as genetic 

bottlenecks or natural selection as well as population expansion in shaping the 

distribution of genetic diversity in Argentine ants across South Africa? 
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3.3 Material and methods 

3.3.1 Sample collection and DNA extraction 

A total of 314 ant workers were collected from 35 geographic localities throughout 

South Africa (Fig. 4). Ants were brought back to the laboratory at Stellenbosch University and 

stored in absolute ethanol at 4° C. Total genomic DNA was extracted from worker ants using a 

commercial DNA extraction kit (Qiagen).  
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Fig. 4 Map of South Africa indicating the sampling locations for the 
Argentine ant, L. humile. The main road network in South Africa is 
indicated. Red circles indicate sites that were visited but where Argentine 
ants were not found. Localities where Argentine ants were present and for 
which mitochondrial sequence data are available are indicated in green. 
Localities where Argentine ants were present and for which both 
mitochondrial and microsatellite data are available are indicated in yellow.  
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3.3.2 Mitochondrial DNA data analysis 

3.3.2.1 Laboratory procedures and sequence treatment 

To assess genetic variation across South Africa, a portion of the mitochondrial COI 

gene was targeted. For this, sequences were generated for 101 ants from 35 localities using the 

Folmer et al. (1994) insect primers LCO1490 and HCO2198 (see Fig. 4 and Table 3). PCR 

profiles included an initial denaturation step of 5 min. at 94° C followed by 30 cycles of 94° C 

for 30 s, annealing at 42° C for 30 s and extension at 72° C for 45 s. A final extension for 7 

min. at 72° C completed the reactions.  

 

Comparative cytochrome b data for non-South African populations were available. To 

determine possible source population for introduction into South Africa, cytochrome b data 

were generated for a subset of ants included in the COI analyses (11 workers from 11 

localities) using the primer pair CB1 and CB2 (Chiotis et al. 2000). These localities (Elim2, 

Porterville2, Bloemfontein2, Nigel, Springbok, Lady Brand, Lady Grey, Lady Brand, Caledon, 

Betty’s Bay and Kogelberg Nature Reserve; see Table 3) were selected to provide good 

geographic coverage with ant specimens chosen to be representative of the COI and 

microsatellite variation. PCR parameters were identical to those used for the COI gene. 

 

Amplicons were electrophoresed in 1% agarose. Bands were excised and purified using 

a commercial DNA purification Kit (GE Healthcare). Sequencing reactions were performed 

using Big Dye chemistry (version 3; Applied Biosystems, Inc.). Centrisep spin columns 

(Princeton Separations) were used to clean sequencing cocktails. The products were analyzed 

on an ABI 3100 automated sequencer (Applied Biosystems, Inc.). Electropherograms of the 

raw sequences were checked by eye and edited with Sequence EditorTM software version 1.0.3a 

(Applied Biosystems, Inc.). All sequences (COI and cytochrome b) were manually edited and 

aligned using the Clustal X algorithm (Thompson et al. 1997). 
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Table 3 List of localities, geographic positions (latitude and longitude in decimal degrees, 
altitude in metres), composition of the observed COI and cytochrome b haplotypes as well 
as localities (= populations) for which microsatellite data were included. 
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3.3.2.2  Genetic diversity 

Standard measures of genetic diversity such as nucleotide (π) and haplotype (h) 

diversities were estimated using Arlequin 3.1 (Excoffier et al. 2005). Uncorrected (p) sequence 

divergences separating specimens were calculated in PAUP*4.0b10 (Swofford 2003). A 

haplotype network, indicating the evolutionary relationships among the COI haplotypes, was 

constructed in TCS (Clement et al. 2000).  

 

To determine whether genetic variation in Argentine ants across South Africa was 

adequately sampled (see Fornia et al. 2007, Muirhead et al. 2008), a sample-based rarefaction 

curve was generated using 50 randomizations and sampling without replacement in EstimateS 

8.0. COI haplotypes were plotted against the number of localities sampled. Estimators were 

compared with one another based on their deviations from the observed sample-based 

rarefaction curves for localities. The best estimator for the COI data was Jack1 (following 

Palmer 1990, Brose et al. 2003, Hortal et al. 2006). Like Jack2, Jack1 is a nonparametric 

estimator and it is based on number of species (rare species) occurring in one sample (Colwell 

2005). 

 

3.3.2.3 Genetic differentiation across South Africa based on COI sequence data 

To determine whether genetic variation in Argentine ant populations across South 

Africa is geographically structured, two approaches were followed. First, ST as implemented 

in Arlequin 3.1 was calculated. For this, all sampling localities were considered as a single 

group. Significance was determined through 1000 permutations. Second, a non-metric 

multidimensional scaling (NMDS) method, an ordination that groups similar populations 

together, was performed using PAST software (Hammer et al. 2001) and the resulting figure 

was edited in CorelDraw 12 (Corel Corporation 2003). The algorithm of NMDS implemented 
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in PAST uses random initial conditions, one of which is the principal coordinate (PCO) with 

11 iterations for each run (Hammer et al. 2001). The NMDS estimates a spatial representation 

for a given dissimilarity matrix whereby the rank order of the distances between the embedded 

objects agrees with the rank order of the dissimilarities in as much as possible (Kruskal 1964). 

The NMDS does this by minimizing a cost function called stress (Kruskal 1964). Stress value 

measures how the configuration matches the original data and it ranges from zero (perfect 

match) to one (total mismatch).  

 

3.3.2.4 Colony structure and composition 

Given the presence of significant genetic structuring (see results section) the possible 

presence of multiple colonies in South Africa was investigated. A one-way analysis of 

similarity (ANOSIM; Clarke & Green 1988) implemented in PAST was used to estimate the 

level of differentiation between groups (possibly colonies) within South Africa. Significance 

for the coefficient of similarity R was obtained through 10000 permutations. ANOSIM 

compares within and among group differences such that when two groups are identical or very 

similar, the “within group” difference would be small relative to the “between groups” value. 

The reported R value is an estimate of degree of similarity. Similarity coefficient R ranges 

from -1 to 1 where large positive R values signifies dissimilarity between groups, 0 means lack 

of pattern (random) and values below zero denote similarity.  

 

The absence of gene flow between groups would provide further evidence to support 

distinct colonies (Jaquiéry et al. 2005, Thomas et al. 2006). Gene flow was determined 

between groups (possibly colonies) using the Hudson et al. (1992) model implemented in 

DnaSP 4 (Rozas et al. 2003).  
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3.3.2.5 Putative source population(s) for Argentine ants in South Africa based on cytochrome b 
data. 

Cytochrome b sequence data were generated for Argentine ants representing their 

distribution range in South Africa and compared to those from across the world (data were 

kindly donated by Andrew Suarez, University of Illinois, and Neil Tsutsui, University of 

California, Berkeley). The final dataset represented haplotypes from ten countries (Argentina, 

Brazil, Australia, New Zealand, South Africa, Italy, USA, Chile, Bermuda and Hawaii; the 

latter two are considered separately from the USA based on geographic location). All 

specimens included as well as geographic sampling localities are provided in Table 4.  

 

Putative source population(s) was investigated following Corin et al. (2007a). A 

neighbour joining tree was constructed from HKY + G (0.211) distances because it is the 

optimal model selected by Modeltest (Posada & Crandal 2001, Miller III & Crespi 2003). A 

haplotype network clustering the South African haplotypes with those from across the world 

was constructed in TCS 1.21 to depict evolutionary relationship among haplotypes.  
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Table 4 Argentine ants were included from across the world in an attempt to 
identify putative source populations for introduction into South Africa. 
Haplotypes are based on 407 bp of cytochrome b data. The South African 
localities are shown in bold. The South African haplotypes indicated here are 
based on 738 bp of sequence data 
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3.3.3 Microsatellite data analysis 

3.3.3.1 Laboratory procedures and data treatment 

For the microsatellite analyses, 10 worker ants were included per population (= 

sampling locality) (see Table3 & Fig. 4). In total, 230 specimens from 23 localities were 

analysed for six polymorphic microsatellite loci (Lhum11, Lhum13, Lhum28, Lhum35, 

Lhum39 and Lhum52; Krieger & Keller 1999). PCR reactions followed the methodology 

described in Krieger & Keller (1999) with optimization in the laboratory. PCR cycles included 

an initial denaturation at 96° C for 5 min. followed by 35 cycles of 96° C for 30 s, specific 

primer annealing for 45 s and 72° C for30 s. A final extension for 2 min. at 72° C completed all 

reactions. Microsatellite reactions were analysed on an ABI 3100 automated sequencer 

(Applied Biosystems, Inc.). Allele sizes were scored in Genemapper Software 3.7 using 

standard allelic sizes (Applied Biosystems, Inc.). 

 

3.3.3.2 Genetic diversity 

Standard measures of genetic diversity (mean number of alleles (AO), observed (HO) 

and expected (HE) heterozygosities) were estimated for each population across all loci. Hardy-

Weinberg equilibrium tests (HWE) were performed for each locus and population individually 

as well as across all loci and populations to determine whether the loci and populations are in 

equilibrium.  

 

To determine whether genetic variation was adequately sampled (Muirhead et al. 

2008), a sample-based rarefaction curve was generated using 50 randomizations and sampling 

without replacement in EstimateS 8.0. Alleles were plotted against the number of localities 

sampled (Leberg 2002, Kalinowski 2004, Belkhir et al. 2006). Estimators were compared with 

one another based on their deviations from the observed sample-based rarefaction curves for 
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the localities. Jack1 was the best estimator for the data (see Palmer 1990, Brose et al. 2003, 

Hortal et al. 2006). 

 

Although deviations from HWE may be caused by factors such as genetic drift and 

selection, genotyping artefacts such as null alleles have also been shown to affect equilibrium 

and cause heterozygosity deficits. Notwithstanding, very few studies to date have tested for the 

presence of null alleles (but see Ingram & Gordon 2003, Buczkowski et al. 2004, Jaquiéry et 

al. 2005, Hirata et al. 2008). In the present study, the presence of null alleles was assessed 

using MICROCHEKER 2.1.3 (van Oosterhout et al. 2004). Adjusted allele frequencies based 

on Brookfield (1996) was compared to the observed allele frequencies using the chi square test 

in STATISTICA 7.0 (Stat soft).  

 

3.3.3.3 Genetic differentiation 

To determine how genetic variation, based on microsatellite data, is spatially 

distributed, several approaches were followed. First, to determine whether variation is 

significantly structured across the landscape, RST was calculated in Arlequin 3.1 considering all 

populations as a single group. Significance was determined through 1000 permutations of the 

data. Second, a pattern of isolation-by-distance occurs when gene flow is significantly 

correlated with geographic distances among populations. To test whether such a correlation 

exist across South Africa, a Mantel test was implemented in SPAGeDi 1.2 (Hardy & 

Vekermans 2002). Significance for the relationship between genetic and geographic distances 

was tested through 1000 permutations. Third, similar to the mitochondrial DNA analyses, 

NMDS was performed using PAST and the resulting figure was edited in CorelDraw 12 (Corel 

Corporation 2003).  
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3.3.3.4 Colony structure and composition 

To investigate the possible presence of multiple colonies in South Africa, several 

approaches were followed. First, the presence of private alleles might suggest distinct 

populations with limited gene flow. CONVERT (Glaubitz 2004) was used to identify 

populations with high numbers of private alleles. Secondly, ANOSIM as implemented in 

PAST was performed with significance for R determined through 10000 permutations. Third, 

the number of migrants (gene flow) between groups was determined using the private allele 

method of Slatkin (1985) as implemented in GENEPOP (Raymond & Rousset 1995) with all 

populations treated as a single cluster (colony). Gene flow was also calculated between 

putative colonies (based on the results of this study) using GENEPOP.  

 

Relatedness (overall) was estimated considering all populations as a single colony as 

well as for putative colonies (populations within a colony would be more related than across 

colonies). For this, the program RELATEDNESS 5.0 (Queller & Goodnight 1989) was used, 

with relatedness coefficient r weighted by individuals and standard errors obtained by jack-

knifing over populations. Significance for the observed r value (considering all populations as a 

single colony as well as within the two groups) was obtained using a one sample t-test 

implemented in PAST.  

 

3.3.3.5 Demographic and evolutionary processes 

3.3.3.5.1 Bottleneck 

It was argued by Tsutsui et al. (2000) that a reduction in population size (bottleneck) 

during an introduction would lead to reduced levels of genetic variation across the introduced 

range thereby facilitating the formation of large super colonies. To test whether Argentine ants 

suffered a bottleneck during their introduction into South Africa, heterozygosity excess was 
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determined across all loci for each population using the two phase mutation model (TPM) (Di 

Rienzo et al. 1994) implemented in BOTTLENECK 1.2 (Cornuet & Luikart 1996). Under this 

approach, populations that have undergone a genetic bottleneck will show increased levels of 

heterozygosity compared to that of a population in mutation-drift equilibrium given the same 

number of alleles. Significance for heterozygosity excess was determined using the Wilcoxon 

sign-rank test (Cornuet & Luikart 1996, Piry et al. 1999).  

 

3.3.3.5.2 Natural selection and population expansion  

Spatial autocorrelation measures the degree of similarity between pairs of alleles at a 

given distance; the null hypothesis being no spatial autocorrelation (Sokal & Oden 1978a & b, 

Reusch et al. 1999). The spatial autocorrelation coefficient used here is Moran’s I (Moran 

1950) and it was calculated as pairwise relationship coefficient (kinship coefficient) across all 

localities (18 distance intervals) included in the microsatellite analyses. Spatial autocorrelation 

analysis was implemented in SPAGeDi 1.2 (Hardy & Vekermans 2002). Moran’s I coefficient 

varies from -1 to +1 depending on the magnitude and direction of the correlation. Several 

predictions can be tested. First, for a population under selection, a plot of Moran’s I 

coefficients against linear distance will reveal a genetic cline for a locus or some loci but not 

for all loci in a study (Reusch et al. 1999, Stone et al. 2003). Under this prediction, Moran’s I 

values for certain loci at small spatial scale are expected to decline from highly significant 

positive values to highly significant negative values at large spatial scale. Secondly, for a 

population expanding its range, a plot of Moran’s I coefficient against distance will show a 

genetic cline for the whole genome (all loci will be affected) (Long & Singh 1995, Kennington 

et al. 2003, Stone et al. 2003). Under this pattern, Moran’s I coefficients for all loci studied are 

expected to drop from significantly positive and high values at small distances to highly 

significantly negative at large distances. Thirdly, for populations under the influence of 
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isolation-by-distance and thus affected by genetic drift and short range gene flow, a plot of 

Moran’s I values against distance will indicate the presence of fine scale genetic structure 

(McFadden & Aydin 1996, Kennington et al. 2003, Fredsted et al. 2005). Here Moran’s I 

values are expected to decrease from highly significant values at small distances to non-

significant at large distances. Results from this analysis were considered in combination with 

the Mantel test results which tests for isolation-by-distance across the entire geographic range 

of Argentine ants in South Africa. Significance tests for the Morans’ I values were determined 

using 10000 permutations. 

 

3.4 Results 

3.4.1 Mitochondrial DNA 

3.4.1.1 Genetic diversity 

For the mitochondrial COI gene, 618 bp was generated for 101 specimens from 35 

localities. Low genetic diversity characterized Argentine ant populations across South Africa. 

Nucleotide diversity π (standard deviation) was 0.001 (0.001) and haplotype diversity h 

(standard deviation) was 0.151 (0.048). The highest uncorrected sequence divergence 

separating specimens was 0.5 % (3 mutational steps) between ants collected from Elim2 and 

Stellenbosch. As is typical for mitochondrial DNA, the nucleotide composition of the COI 

sequences was AT-biased [A (32.05 %), C (17.96 %), G (13.09 %), T (36.89 %)] 

(Wolstenholme 1992, Crozier & Crozier 1993, Crease 1999, Althoff & Pellmyr 2002).  

 

A close inspection of the COI sequence alignment indicated the presence of four 

variable sites resulting in five haplotypes (Table 5). Haplotype LH5 characterized 93 of the 101 

specimens and was found at all localities included in the present study with the exception of 

Elim2, Porterville2 and Bloemfontein2 (see Table 3). Haplotype LH1, which characterized five 



 

 43

specimens, was restricted to the localities of Elim2, Porterville2 and Bloemfontein2. The 

haplotype network is shown in Fig. 5. All haplotypes are separated by single mutational 

differences and connect to the common haplotype LH5. 

 

Table 5 Argentine ant haplotypes identified for the COI gene. Polymorphic nucleotide 
positions, distribution of haplotypes across South Africa and number of specimens 
characterized by haplotypes are indicated. 

 

 

 
Fig. 5 Statistical parsimony network generated in TCS for Argentine ants sampled from 
across South Africa. This network is based on 618 bp of COI sequence for 101 ant 
specimens. The square (haplotype LH5) represents the presumed ancestral haplotype. The 
sizes of haplotypes are drawn according to their respective frequencies. 
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The rarefaction analysis (bootstrap estimator) suggested that many additional 

haplotypes might be found, but the Jack1 estimator suggested that only six are likely present in 

South Africa (Fig. 6). This is similar to the five haplotypes detected on the present study. 

Differences in sample size are not expected to influence the overall number of haplotypes 

observed since the analyses corrects for this variable. As such, the presence of rare alleles 

would not bias the expected number of six haplotypes.  

 

 
Fig. 6 Rarefaction curve showing the observed COI haplotypes and the number of sampling 
localities. The estimated number of Argentine ant haplotypes based on Jack1 is given in front 
of the curve. 
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3.4.1.2 Genetic differentiation 

The analysis of molecular variance indicated significant structuring of genetic variation 

across South Africa with 54 % (ST = 0.54, P < 0.001) of the variation accounted for by 

differences among sampling localities. The NMDS plot (Fig. 7) confirmed structuring with 

three distinct groups being evident. These were Elim2, Porterville2 and Bloemfontein2 

(indicated in red), Stellenbosch (indicated in blue) and the remainder of localities (indicated in 

green). The stress value was < 0.1 indicating that the obtained configuration is reliable. 

 

 
Fig. 7 Non-metric multidimensional scaling (NMDS) of Argentine ant genetic distances. The 
plot is based on 618 bp of COI gene sequences for 101 ant specimens from 35 geographic 
localities. Stress value S is < 0.1.  
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3.4.1.3 Colony structure and composition 

To verify the clusters detected with NMDS, these three groups were analyzed using an 

analysis of similarity (ANOSIM). The within clusters mean rank was 265.5 and the between 

clusters mean rank was 417.8 (R = 0.512, P < 0.01). It is possible for ANOSIM to be 

influenced if some of the groups are very different to the others. To verify that all three groups 

are indeed significantly differentiated, these three groups were compared in a pair-wise 

manner. The comparison between Stellenbosch and the rest of the localities were not 

significantly different (within cluster mean rank = 264, between cluster mean rank = 16, R =  

-1, P = 1). When testing whether the comparison between Stellenbosch and the group 

comprising Elim2, Portervile2 and Bloemfontein2, the R value was positive (R = 1), however, 

this was not a significant finding (within cluster mean rank = 2, between cluster mean rank = 5, 

R = 1, P = 0.25). The comparison between Elim2, Poreterville2 and Bloemfontein2 and the rest 

of localities indicated significant differences between them (within cluster mean rank = 234.5, 

between cluster mean rank = 515, R = 1, P < 0.001). These results suggest that there are only 

two clusters that are significantly differentiated namely Elim2, Porterville2 and Bloemfontein2 

compared with the rest of the localities (including Stellenbosch; within clusters mean rank was 

250 and the between clusters mean rank was 547.5; R = 1, P < 0.001). 

 

Gene flow was estimated at 0.05 individuals (queens) per generation between the two 

clusters (Elim2, Porterville2 and Bloemfontein2 as the first group and the remainder of the 

localities as the second group). This estimate is negligible small and suggests the absence of 

gene flow between the two groups.  
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3.4.1.4 Putative source population(s) for Argentine ants in South Africa based on cytochrome b 

data. 

In an attempt to identify the (putative) source population(s) for introduction into South 

Africa, 738 bp of cytochrome b sequences were generated for 11 specimens from 11 localities 

across South Africa (see Table 3). Nucleotide diversity π (standard deviation) for this subset 

was 0.006 (0.035) and haplotype diversity h (standard deviation) was 0.890 (0.055). Four 

haplotypes (SA4 to SA7) were identified for the South African ants analyzed in the present 

study. These were separated by a maximum of 3 mutational steps. 

 

The data generated in the present study were aligned to those provided by A. Suarez 

and N. Tsutsui (see Table 4). Since these sequences were of shorter length, the final dataset 

was truncated to 407 bp for 42 ants from 10 countries. This was done to avoid missing data in 

the final dataset given that missing data can have a profound effect on building networks and 

the retrieval of evolutionary relationship (see Joly et al. 2007). Following this truncation, 

haplotypes SA4 to SA7 (data from the present study) collapsed into a single haplotype. The 

three haplotypes (SA1, SA2 and SA3) identified by Tsutsui et al. (2001) collapsed into two 

haplotypes (SA1 from Cape Point was identical to SA3 from Caledon) with SA2 from Betty's 

Bay being most divergent. In total, 22 haplotypes were identified in Argentine ants from across 

the world. 

 

The neighbour-joining tree, constructed from HKY + G (0.211) distances, is shown in 

Fig. 8. These results were largely congruent with results obtained from the haplotype network 

constructed in TCS (Fig. 9). The Brazilian haplotypes SJ1, SJ2, MV and PL2 could not be 

connected within the 95% confidence interval. The haplotype identified in the present study 

(SA4, SA5, SA6, and SA7) was identical to haplotypes from Argentina (Ocampo), Australia 

(Crozier) and New Zealand. This group (haplotype) was one step different from haplotype SA1 



 

 48

and SA3 and grouped with haplotypes from Brazil (PL1, Passo do Lontra) and Argentina 

(Ocampo and Rosario) (putative group circled in blue on Fig. 9). The South African haplotype 

SA2, identified by Tsutsui et al. (2001) did not cluster closely with any other haplotypes with 5 

steps separating it from haplotype RIW (Italy) and SW2 (USA). Tsutsui et al. (2001) indicated 

that the South African samples also grouped with haplotypes from Buenos Aires; however, 

these samples were not available to us for inclusion. 

 

 
Fig. 8 Neighbour-joining tree based on 407 bp of cytochrome b. The 
tree was constructed from HKY+G corrected sequence divergences. 
South African haplotypes are indicated in bold. Two of the South 
African haplotypes grouped with those from Argentina, Brazil, New 
Zealand and Australia (indicated in blue). Refer to Table 4 for 
abbreviations. 
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Fig. 9 The haplotype network constructed in TCS. Four haplotypes could not be connected 
within the 95% probability interval and these are shown on the side. Sizes of haplotypes are 
drawn according to their respective frequencies. Number of mutational steps between the 
haplotypes is indicated. South African haplotypes are shown in bold. Two of the South 
African haplotypes grouped with haplotypes from Brazil, Argentina, New Zealand and 
Australia and are shown in blue Refer to Table 4 for abbreviations.
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3.4.2 Microsatellites 

3.4.2.1 Genetic diversity 

Standard measures of diversity (see Table 6) were calculated for 230 ants from 23 

localities. There was no significant difference between observed (HO) and expected (HE) 

heterozygosities with Hardy Weinberg equilibrium across all loci and populations (P = 1.0). 

However, when performing locus specific tests, loci Lhum13, and Lhum35 did not conform to 

HWE (P < 0.01).  

 

Table 6 Populations and samples (n) included in the microsatellite analyses. Mean number 
of alleles (AO), observed (HO), expected heterozygosities (HE) and RST are reported. 

 

 

A rarefaction curve indicating the sufficiency of the number of samples collected to 

capture the level of microsatellite alleles variation in South Africa is shown in Fig. 10. Once 

more, the rarefaction curve asymptotically approaches the maximum of alleles available in 
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South Africa with Jack1 estimating the number of alleles at 67 (see the front of the curve) 

which is only marginally higher than the observed number of alleles (60, see Table 11 in the 

Appendix) reported in this study.  

 

 
Fig. 10 Rarefaction curve of observed microsatellite allele variation and the number of 
localities sampled. Jack1-based estimated number of alleles is given in front of the 
curve. 

 

 Four loci (Lhum13, Lhum28, Lhum35, and Lhum52) contained null alleles with null 

allele frequencies ranging from -0.182 (for Lhum28 in Lady Brand) to 0.242 (for Lhum35 in 

Betty’s Bay population; and for Lhum52 in the Upington population) (Table 7). Negative null 

allele’s frequencies are the result of algorithm calculations but are nonetheless reported here. 

All null alleles detected at locus Lhum52 and one case involving locus Lhum35 (Betty’s Bay) 

were due to scoring errors associated with stuttering as indicated by MICROCHECKER. The 

remaining six were neither associated with scoring errors nor with allele dropout. However, the 
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presence of null alleles in the Clanwilliam population may be due to significant inbreeding 

within the population (RIS = 0.45, P = 0.016).  

 

Table 7 Null allele frequencies for four loci and 12 populations of Argentine ants in South 
Africa. The negative frequencies are a result of the algorithm used (see discussion). 

 

 Chi square results of observed allele frequencies and the adjusted allele frequencies (for 

the 12 populations) following the detection of null alleles were not significant meaning that 

population parameters estimation based on the original data are valid (see Table 8). Therefore 

the observed pattern is a reflection of the variation present in Argentine ant populations in 

South Africa. 

 



 

 53

Table 8 Comparisons between observed and adjusted allele frequencies for loci in populations 
where null alleles were detected. Significance was determined through a Chi square test with 
degrees of freedom (DF) and significance indicated (Ns = non significant).  
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3.4.2.2 Genetic differentiation 

Microsatellite analysis supported the findings of the mitochondrial data analysis with 

significant structure detected across the landscape (RST = 0.14, P < 0.001). Much of the 

observed variation (86 %) was within populations. Isolation-by-distance was not detected 

across South Africa with mantel correlograms indicating no correlation between genetic 

distances (expressed as RST/ (1-RST)) and pairwise geographic distances (r2 = 0.005, P > 0.05).  

 

Similar to the mitochondrial DNA analysis, the NMDS plot based on microsatellite data 

grouped populations from Elim2, Porterville2 and Bloemfontein2 separate from the remainder 

of the localities (red circle) (Fig. 11). The stress value score S was < 0.150.  

 

 
Fig. 11 Non-Metric Multidimensional Scaling of genetic distances of Argentine ants in 
South Africa showing the clustering of populations from Elim2, Porterville2 and 
Bloemfontein2 (Red). Stress value (S) was < 0.150. 
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3.4.2.3 Colony structure and composition 

Rare (frequency of alleles less than 0.1 in a population; Luikart et al. 1998) and unique 

alleles were present in nine (Bloemfontein1, Bellville, Elim2, Laingsburg, Nieuwoudtville, 

Springbok, Uniondale, Lady Grey and Caledon) of the 23 Argentine ant populations sampled 

in South Africa (Table 9). Six additional alleles were found to be present in all populations 

with the exception of Elim2, Porterville2 and Bloemfontein2. These three populations were 

further characterized by two unique alleles which were absent from the other populations.  

 

Table 9 Rare alleles and their frequencies per Argentine ant population in South Africa. 
Unique alleles are listed per group. 
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When performing ANOSIM based on microsatellite dataset with two groups specified 

(one group comprised populations from Elim2, Porterville2 and Bloemfontein2 and the other 

group represented populations from the remaining 20 localities), these two clusters were 

significantly different from each other. Within mean rank was (97), between mean rank was 

(223.5), and global R = 1 (P < 0.001). Once more this result suggests that the two clusters of 

populations might be from two different genetic pools. 

 

When considering the two groups as defined for the ANOSIM analyses above, gene 

flow between these was estimated at 0.23 individuals (queens and drones) per generation. To 

test whether this pattern of gene flow is a true reflection of the presence of multiple colonies or 

rather typical of all Argentine ant populations across South Africa, overall gene flow was 

calculated for all populations within South Africa. In sharp contrast to the 0.23 individuals 

(queens and drones) migrating between the two groups, overall gene flow was estimated at 

3.40 individuals (queen and drones) per generation.  

 

Global relatedness for all 23 Argentine ant populations was not significantly different 

from zero (r = 0.001 ± 0.276, n = 23, t = 0.726, P = 0.475). Cluster (colony)-wise relatedness 

were also not significantly different from zero r1 [(0.001 ± 0.014, n = 20, t = 0.876, P = 0.392)] 

and r2 [(-0.001 ± 0.009, n = 3, t = -0.859, P = 0.482) respectively].  
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3.4.2.4 Demographic and evolutionary processes 

3.4.2.4.1 Bottleneck test 

Excesses in heterozygosity were detected in three Argentine ant populations from 

Clanwilliam, Springbok and Upington (P < 0.05). This would suggest these populations 

experienced a bottleneck sometime during their past (Table 10). However, the heterozygosity 

excess averaged over all populations was not significant. 

 

Table 10 Heterozygosity excess and P-values of Argentine ant populations in South 
Africa. Bottlenecked populations are indicated by *. 
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3.4.2.4.2 Natural selection and population expansion 

Moran’s I values did not differ from zero accepting the null hypothesis of no 

autocorrelation. There was no genetic cline and no fine genetic structure in Argentine ant 

populations in South Africa (Fig. 12).  

 

 
Fig. 12 Moran’s I correlogram showing Moran’s I coefficients plotted against geographic 
distance for Argentine ant populations in South Africa based on microsatellite data. Black 
squares represent autocorrelation coefficients of the Moran I statistics.  
 

3.5 Discussion 

3.5.1. Genetic diversity  

Argentine ants in South Africa are characterized by relatively low levels of 

mitochondrial DNA variation. These low levels of variation can not be attributed to incomplete 

lineage sampling since rarefaction analyses indicated that COI haplotypes have been 

adequately sampled (see Fornia et al. 2007). Low levels of variation are not uncommon for 

Argentine ants across their introduced ranges (see for example Kaufmann et al. 1992) and have 
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been attributed to various factors including allelic cleansing or bottlenecks associated with 

introduction events. Slightly higher levels of variation were detected for cytochrome b which is 

consistent with this gene having a slightly faster mutation rate. Moderate levels of cytochrome 

b variation for Argentine ants in the native range were also reported by Pedersen et al. (2006) 

(but see Dreier et al. 2005 and Corin et al. 2007b which reported low levels of variation for 

Chile and New Zealand).  

 

Moderate to high levels of overall microsatellite variation was found for ants in South 

Africa compared to the rest of the world (see for example Krieger & Keller 2000, Buczkowski 

et al. 2004). Expected heterozygosity in the present study was (HE = 0.51) overall. This value 

is higher than that reported for several introduced colonies from across the world such as 

southern France (HE = 0.42, Krieger & Keller 2000), California (HE = 0.44, Buczkowski et al. 

2004) and New Zealand (HE = 0.25, Corin et al. 2007b). Although speculative, these high 

levels of variation may be as a result of high population numbers or multiple matings of queens 

(Gadagkar 1985, Ingram 2002a & b), and reflect the level of variation available in Argentine 

ants in South Africa as suggested by the rarefaction analysis for the microsatellites data 

(Leberg 2002). It is important to note that Stellenbosch represent the first locality in South 

Africa where Argentine ants were documented from, and high heterozygosity, at least in this 

locality, may be a remnant signature of the site of introduction into South Africa; this is further 

substantiated by a unique mitochondrial COI haplotype. 

 

Populations from Elim2 (HE = 0.36), Bloemfontein2 (HE = 0.23) and Porterville2 (HE = 

0.46) were characterized by lower levels of variation. Although inbreeding and bottlenecks 

could account for the lower levels of genetic variation, this was conclusively ruled out in this 

study since the coefficients of inbreeding as well as bottleneck tests for these three populations 
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were not significant (p > 0.05). Low levels might, at least in part, be accounted for by lower 

effective population sizes. 

 

3.5.2  Genetic differentiation 

The findings of this study clearly demonstrate that Argentine ants in South Africa are 

genetically structured. This structuring is not in terms of isolation-by-distance but due to 

presence of two distinct populations that may have arisen from two different introductions. 

Both mitochondrial and nuclear DNA support the presence of two groups/clusters 

corresponding to the localities of Elim2, Porterville2 and Bloemfontein2 as a cluster distinct 

from the remainder of localities included in the study. These might represent two colonies with 

behavioural data indicating high levels of aggression between the Elim population compared to 

other populations in the Western Cape (Theresa Wossler and Natasha Mothapo personal 

communication). To confirm that these genetic clusters do indeed represent distinct colonies, 

additional behavioural assays and cuticular hydrocarbon profiles (Tsutsui et al. 2001, 

Buczkowski et al. 2004, Jaquiéry et al. 2005, Corin et al. 2007a) should be collected. 

 

An important finding to emerge from this study is that the genetic clusters (possibly 

colonies) in South Africa are not continuously distributed but rather show a disjunct and 

interspersed distribution pattern. For example, two geographic sites, separated by ~ 4 

kilometers, were included for the localities of Elim, Porterville and Bloemfontein. In each of 

these cases were the two sampling sites characterized by vastly different genetic patterns. This 

is not a finding unique to South Africa and agrees with Giraud et al. (2002) and Tsutsui et al. 

(2003) who reported that some colonies are small, isolated and found between larger colonies 

in Southern Europe and California respectively. Pedersen et al. (2006) similarly found that 

some colonies in the native range of Argentina are not continuously distributed but are 
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interspersed by other colonies (see also Tsutsui et al. 2000, Tsutsui & Case 2001).  It has been 

argued by Wetterer and Wetterer (2006) that the presence of single large colonies (so-called 

super colonies) may prevent the introduction and establishment of secondary colonies. 

However, from our own sampling efforts as well as the work done by Luruli (2007) it is clear 

that the distribution of Argentine ants in South Africa is by no means continuous. Although 

these ants have largely reached the extend of their distribution, there remains large areas within 

this range that is unoccupied (Melodie McGeoch, personal communication). This might 

explain why two genetically distinct colonies can occur in geographical proximity.  Why some 

colonies remain relatively small and isolated while others become large, quasi-continuously 

distributed and occupy expansive ranges raises an important question namely why are some 

Argentine ant colonies small and restricted in their distribution and others are not? Is it because 

they are ecologically and evolutionary constrained? Answers to these questions can influence 

where to direct or concentrate control efforts. 

 

The grouping of populations from different localities and provinces into clusters of 

closely related populations suggests considerable transfer of Argentine ants between localities 

within and across South Africa. Two factors might have contributed to this. First, the 

introduction of the Argentine ant into Cape Town coincided with the onset of the Anglo-Boer 

War at the turn of the century (Skaife 1953). At that time, Cape Town was receiving British 

troop reinforcements and supplies such as fodder for the horses as well as construction material 

for building barracks and supply routes for the troops to facilitate goods movement between 

Cape Town and the frontlines (de Villiers 1984, Vernon 1985) (Fig. 13). Second, contemporary 

factors such as agricultural activities and an expanding nursery trade may largely facilitate the 

current movement of ants across South Africa. 
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Fig. 13 Map of British troop movements during the Anglo-Boer War redrawn from 
Vernon (1985). Path followed by the British troops is indicated by the truncated black 
line. Railway lines and important towns at the time are indicated. 

 

No isolation-by-distance was observed in South Africa at both local and regional scales. 

Although this might be the result of the present study being based on workers rather than 

queens (Reuter et al. 2001 reported isolation-by-distance when analyses are based on queens 

alone since they are philanthropic), no isolation-by-distance have similarly been reported for 

introduced populations of this species in the USA (Buczkowski et al. 2004 but see Ingram & 

Gordon 2003) and Europe (Jaquiéry et al. 2005). Furthermore, our finding is in line with the 

suggestion that natural barriers to gene flow may be playing a limited role, as the dispersal of 

Argentine ants over long distances is almost certainly assisted by humans (Suarez et al. 2001, 

Roura-Pascual et al. 2004). This is based on the notion that if dispersal in the South African 

Argentine ants were predominantly by budding (queens) and flight (males) as is the case in the 

native range (Tsutsui & Case 2001), there would have been a decrease in gene flow with 

increasing distance. 
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3.5.3 Colony structure and composition 

The assertion by Tsutsui et al. (2001) that Argentine ants in South Africa might be a 

result of multiple introductions was largely confirmed in this study. The clear grouping of 

Argentine ant mitochondrial haplotypes into two major clusters was corroborated by the 

microsatellite data. Divergence in both allelic frequencies and composition is in line with 

Suarez & Tsutsui (2008) argument that populations introduced several times from sources in 

their native range would be characterized, among, others by differences in allelic frequencies 

and unique alleles.  

 

Argentine ants from South Africa conform to the trend found for ants from across the 

world in that an overall low (non-significant) mean relatedness among populations and within 

clusters (colonies) was found (Kaufmann et al. 1992, Krieger & Keller 2000, Ingram & 

Gordon 2003). The observed low levels of relatedness across populations and clusters may be 

explained by multiple queens with multiple matings in different colonies (Gadagkar 1985, 

Reuter et al. 2001, Vega & Rust 2001, Ingram & Gordon 2002a & b). The consequences of 

low overall inter-population and intra-colony relatedness are two fold. First, Tsutsui et al. 

(2003) have argued that populations that differ in levels of genetic diversity tend to be 

aggressive towards each other. The rationale is that populations that are highly related will tend 

to suffer from inbreeding which will reduce genetic diversity. The findings from this study 

report overall low levels of relatedness suggesting that relatedness may not be playing a 

significant role in the levels of genetic structure among the Argentine ant populations. Second, 

the observed inbreeding in some Argentine ant populations in South Africa may not only be 

due to the group living of related individuals (Keller & Fournier 2002). This is because inbred 

and non-inbred populations have been found to have similar levels of relatedness that did not 

differ from zero (Ross 2001, Pedersen et al. 2006). Furthermore, the coefficients of relatedness 
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reported in this study may be high if compared to native populations suggesting relatedness 

may not necessarily constitute a problem for the kin selection theory (see Tsutsui & Suarez 

2003, Suarez et al. 2008). 

  

3.5.4 Putative source population(s) for Argentine ants in South Africa  

Cluster analyses indicated that Argentine ants in South Africa group with ants from 

Argentina (Ocampo and Rosario) as well as from Brazil (Passo do Lontra). Tsutsui et al. 

(2001) further indicated Buenos Aires (Argentina) as potential source for ants in South Africa 

(data from Buenos Aires were not available for the present study).  

 

Argentine ants in South Africa also shared a haplotype with ants from Australia and 

New Zealand (Tsutsui et al. 2001, Ward et al. 2006, Corin et al. 2007b). This raises the 

important point that introductions of ants across the world may not necessarily be from source 

populations in their native range but may be introduced from other introduced populations. 

Indeed, Corin et al. (2007a) implicated mainly Australia and to a lesser degree South Africa as 

sources of Argentine ants in New Zealand.  

 

3.5.5. Demographic and evolutionary processes 

Evidence for bottlenecks was detected in three Argentine ant populations in South 

Africa.  Although a founder event (the introduction of relatively few individuals) may account 

for the bottlenecks, the reduction in size of an initially healthy population may also result from 

ecological factors such as severe weather conditions (Roura-Pascual et al. 2004, Menke & 

Holway 2006). This finding agrees with several other investigators who reported bottlenecks in 

Argentine ants in other introduced areas (Tsutsui et al. 2001, Giraud et al. 2002, Buczkowski et 

al. 2004).  
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The lack of isolation-by-distance may point to long-jump dispersal (such as would 

result through human-mediated dispersal) as playing a role in the observed genetic pattern 

(Meixner et al. 2002, Therriault et al. 2005, Cameron et al. 2008). Range expansion or natural 

dispersal in Argentine ants may follow a stepping stone model or radial model (Ingram & 

Gordon 2003, Liebhold & Tobin 2008). Under the stepping stone model, a naturally expanding 

population will be characterized by decrease in the number of rare alleles and the overall level 

of genetic diversity with increasing distance. Radial mode of dispersal (Liebhold & Tobin 

2006) will result in a star-like haplotype network with the presumed old or ancestral haplotype 

situated in the middle (see Slatkin & Hudson 1991, Myburgh et al. 2007). The genetic pattern 

observed for Argentine ants across South Africa does not match any of these two models and 

natural range expansion may therefore not have played a major role in the observed pattern 

since no parallel patterns of spatial genetic structure could be detected (Sokal & Oden 1978a & 

b, Kennington et al. 2003, Roff 2003, Stone et al. 2003). 

 

No evidence was found to suggest that natural selection is acting on Argentine ant 

populations in South Africa. Assuming that the methodology used in the present study is 

sensitive enough to detect selection, the lack of genetic clines as well as fine scale genetic 

structure in the studied populations indicates no spatially varying selection (Slatkin & Arter 

1991, Kennington et al. 2003, Stone et al. 2003).  

 

The fact that spatial autocorrelation analysis could not reveal the action of selection 

does not mean that the search for the role of selection in shaping the observed patterns of 

genetic structure should be halted. Three reasons would indicate that natural selection may 

indeed play a role in shaping the variation across South Africa. First, rare alleles were observed 

for all loci but one (Table 9). Second, several localities were fixed for specific alleles 
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suggesting that these populations might have experienced negative selection. Third, our 

analyses did not include morphological measurements. A morphological analysis of the studied 

population may reveal cline in body size of the Argentine ant in South Africa which may be 

due to selection (see Huey et al. 2000, De Jong & Bochdanovits 2003). 

 

3.6 Lessons from this study for the control of Argentine ants in South Africa 

The results from this study have several implications for the way Argentine ant 

populations in South Africa are managed. Some mitochondrial haplotypes and nuclear 

genotypes are widespread throughout South Africa indicating considerable movement of ants 

across large geographic areas. These movements might be largely human-mediated through 

agriculture and the nursery trade. In addition, mitochondrial and nuclear results indicate the 

presence of distinct genetic groups which might correspond to two colonies. In addition, 

several putative source populations from geographically diverse localities in the native range 

are implicated. These findings would hold implications should biocontrol measures be 

considered in the future. It is further important to consider that South Africa may act as a 

potential source of introduction for other countries. For example, a recent study implicated 

South Africa (and Australia) as source for the introduction of Argentine ants into New Zealand. 

Care should therefore not only be taken regarding the import of potential invasive species but 

also not to export these. 
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Chapter 4: Summary and avenues for future research 
 
Information on the population genetics of introduced solitary and social insects across 

South Africa is needed. This study attempts to provide such information on two species with 

two different modes of introduction (intentional and unintentional) and two different life 

histories (solitary and social) into South Africa. The findings from this study may serve as 

baseline information needed to promote management and control efforts for these introduced 

species. In addition, this study provides possible scenarios and mechanisms underlying the 

observed patterns.  

 

4.1 Trichilogaster  acaciaelongifoliae (Chapter 2) 

4.1.1 Summary of the main findings 

The bud gall-forming wasp T. acaciaelongifoliae was introduced into South Africa 

from Australia as a biocontrol agent to curb the spread of the invasive long-leaved wattle A. 

longifolia. Two separate introduction events took place early in the 1980s: the first mainly 

comprised localities in and around Stellenbosch (Western Cape Province) with the second 

event involving the release of subsequent generation derived from some 14,000 wasps 

introduced to several localities in the Western and Eastern Cape Provinces. The wasp has since 

spread throughout South Africa and has also shifted from the target host to the Sally wattle (A. 

floribunda) that is commonly used as an ornamental plant.  

 

Mitochondrial COI sequences were generated for wasps collected from across the 

distribution in South Africa. Sequence data revealed low genetic diversity within South Africa 

with only three haplotypes detected for 53 wasps from 23 localities. Two haplotypes were 

wide-spread and found at most sampling localities with the third haplotype characterizing a 

single individual from Grahamstown (one of the sites of original introduction). Populations of 
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T. acaciaelongifoliae were neither geographically nor host specifically differentiated. The 

observed pattern in T. acaciaelongifoliae may be largely due to human-mediated jump-

dispersal. However, selection for specific (optimal) haplotypes may also account for the 

success of the two common haplotypes; unfortunately we could not unequivocally test this 

hypothesis in the present study.  

 

4.1.2 Implications of the study for T. acaciaelongifoliae and future directions 

Records of human-mediated dispersal of biological control agents are important 

because human-facilitated dispersal can affect levels of genetic variation and its distribution 

across the range. Therefore, if members of the public are involved in the release of the 

biological control agents, then members of the public and biological control authorities should 

keep records of the released populations and the released sites. This would enable the close 

monitoring and management of the released agents, both at small and large spatial scales. 

 

Future work on the bud gall-forming wasp in both native Australian and introduced 

South African range should include the use of wasp-specific hypervariable genetic markers 

such as microsatellites. The use of more sensitive markers may possibly reveal genetic patterns 

that remained obscured in the present study.  

 

4.2 Linepithema humile (Chapter 3) 

4.2.1 Summary of the main findings 

The Argentine ant L. humile was accidentally introduced into South Africa in animal 

fodder imported from South America. The initial introduction as well as early spread is 

believed to be linked to the Anglo-Boer war at the turn of the previous century. The spread of 
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Argentine ants across South Africa is largely through human-mediated jump-dispersal through 

agricultural and nursery trade.  

 

Across its native range, the Argentine ant forms small colonies (dispersed over tens to 

hundreds of meters) with inter-nest aggression. In sharp contrast, across its introduced range 

this species form large super colonies that may cover several thousands of kilometres with no 

inter-nest aggression; a factor that greatly increases its potential and success as a world 

invader.  An earlier study by Tsutsui et al. (2001) found divergent haplotypes in South Africa 

leading them to suggest that Argentine ants in South Africa may be a result of multiple 

introductions with the establishment of more than one colony. To investigate this and to 

determine putative source populations for Argentine ants in South Africa, mitochondrial COI 

and cytochrome b sequences as well as microsatellite data were generated for 101 (from 35 

localities), 11 (from 11 localities) and 230 ants (from 23 localities) respectively. 

 

The results from the mitochondrial COI and cytochrome b sequences were largely 

congruent with those obtained from the microsatellite markers. Although mitochondrial data 

displayed lower levels of genetic diversity compared to the microsatellite markers, both marker 

systems suggested significant partitioning of genetic variation across the South African 

distribution range. Cytochrome b sequences indicated that ants in South Africa originated from 

at least three source populations (two in Argentina and a third in Brazil) with Tsutsui et al. 

(2001) suggesting an additional site in Argentina.  

 

4.2.2 Implications of this study for the control of Argentine ants in South Africa  

Argentine ant males are vital for the maintenance of genetic variation within 

populations and colonies. This is because gene flow in Argentine ants is male biased. Although 
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male Argentine ants are short-lived, control efforts should aim to prevent successful matings 

from taking place. This will reduce population growth and consequently lead to the gradual 

control of this pest. Within South Africa, it would appear that human-aided dispersal of 

Argentine ants as well as the number of introductions was considerable, both within and 

between the provinces. This observation calls for more strict local control measures. Strict 

enforcement of control measures will reduce the number of fresh introductions.  

 

4.2.3 Future directions 

 Future work should include analysis of male genetic structure and relatedness 

alongside that of queens and workers and test the hypothesis that gene flow in Argentine ants is 

male-biased. Furthermore, comparative study of genetic variation and morphological variation 

between the small and expansive colonies across the introduced ranges may reveal whether 

Argentine ant populations differ in their degree of invasiveness. 
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Appendix 
 
Table 11 Allele frequencies of Argentine ants in South Africa 

 

 

 

 

 

 


