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Abstract

The �nite element method (FEM) is a powerful tool for the computational analysis of a wide range

of electromagnetic problems. As the complexity of the problems is increased so are the demands

in terms of the computational resources required to obtain a su�ciently accurate solution. In an

attempt to obtain a desired accuracy at a lower computational cost adaptive and higher order

methods are often employed. These methods generally entail re�ning the solution only in the areas

where greater complexity is required, thus decreasing the total computational demand.

The adaptive �nite element method is implemented and used to analyse the transverse electric

cuto� eigenmodes of 2D waveguiding structures. The higher order hierarchical vector basis functions

that form part of this implementation are automatically generated to very high orders, with the

results presented in excellent agreement to analytical ones where applicable. Accuracy to the order of

numeric precision is attained. Using these adaptive methods, it is also possible to achieve improved

cost e�ciency of the error metrics considered with respect to storage requirements and computational

cost.
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Opsomming

Die eindige element metode (EEM) is 'n kragtige stuk gereedskap wat gebruik kan word vir die

numeriese analiese van 'n wye verskeidenheid elektromagnetieseprobleme. Soos die kompleksiteit

van hierdie probleme toeneem, word die berekeningskostes wat benodig word om 'n oplossing van

voldoende akuraatheid te verkry ook verhoog. In 'n poging om die nodige akuraatheid teen 'n laer

berekingskoste te behaal word daar dikwels gebruik gemaak van aanpasbare en hoër-orde metodes.

Met hierdie metodes word die oplossing in die algemeen net verfyn in die areas waar 'n hoër kom-

pleksiteit noodsaklik is en dus word die totale berekingingskoste verminder.

'n Volledig-aanpasbare eindige element metode is geïmplimenteer en gebruik om die transversale

elektriese afsny-moduse van 2D gol�eierstrukture te analiseer. Die hoër-orde hierargiese vektorba-

sisfunksies wat deel vorm van hierdie implementasie word outomaties gegenereer en baie hoë ordes

word bereik. Die resultate stem goed ooreen met die analitiese resultate wat beskikbaar is, met

akuraatheid tot die orde van numeriesepresiese behaal. Deur die gebruik van hierdie aanpasbare

metodes is dit moontlik om die koste van 'n gegewe oplossing in terme van stoorspasievereistes en

berekeningskoste te verminder.
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Chapter 1

Introduction

The role of a scientist or engineer can be divided into two broad categories. The �rst is the the-

orisation and modelling of natural phenomena to provide a better understanding of the natural

world, and the second involves the utilisation of these theories and models for the development of

new technologies that will bene�t mankind. One example of such phenomena are electromagnetic

waves, the understanding of which was contributed to greatly by the work of James Clerk Maxwell

in the middle of the nineteenth century. It is quite safe to assume that without the analytical and

predictive power of his equations life as we know it would not exist.

At their core Maxwell's equations are a set of equations describing the interactions between

electric and magnetic �elds, charges, and currents and can be written in either integral or di�erential

form. These equations provide us with the tools to explain the behaviour of electromagnetic �elds

which in turn gives us the power to use them to perform a wide array of functions including,

communication, power generation and computation.

The complex nature of these equations, especially when applied to typical engineering problems,

often require that a number of careful assumptions and resultant simpli�cations be made. These

may include the assumption that the �elds are quasistatic in nature or that their spatial dependence

is symmetric or that the problem can be simpli�ed to one in a lower dimension. Even with such

simpli�cations it may be that the problems are still too complex to be solved analytically. At this

point one turns to computational electromagnetics (CEM).

Computational electromagnetics can be de�ned as the numeric solution of Maxwell's equations

which govern electromagnetic problems and include methods such as the �nite di�erence time do-

main (FDTD) method, the method of moments (MoM), and the �nite element method (FEM),

each with their relative strengths and weaknesses. When considering the �nite element method,

its strengths include the ability to accurately model complex geometries with varying material

properties as well as the fact that the formulation of the method results in sparse matrices which

can signi�cantly reduce storage requirements. One of the chief disadvantages is the di�culty in

modelling in�nite domains present in radiation and scattering problems.

1
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In this thesis, the �nite element method is investigated with special focus on its implementation

using adaptive methods to improve its performance in the sense of cost e�ciency. Adaptivity is

achieved by selectively increasing the polynomial orders of the basis functions used in the �nite

element formulation or decreasing the size of the elements used to represent the computational

domain. The reasoning behind this is that if problems can be solved at a lower computational or

storage cost, then the solution of larger problems becomes feasible, possibly resulting in improved

designs of a current technology or a new technology all together. For the problems considered here,

a more e�cient solution is one that obtains the desired accuracy with fewer degrees of freedom.

As a speci�c application of the �nite element method, the cuto� eigenanalysis of two dimensional

waveguides is considered. Although this may seem restrictive, discussions are kept as general as

possible to allow for the adaptation of the methods to other applications with minimal e�ort. This

group of problems also has the advantage that it is not required to model an in�nite domain, since

the guide structure is bounded.

With a fully adaptive �nite element method as a �nal goal, a number of components are required

and presented in the following order. Firstly, a general overview of the �nite element method is

presented in Chapter 2, with the speci�cs related to two dimensional waveguide analysis discussed.

In Chapter 3, this background is built upon by a theoretical introduction to higher order hierarchical

vector basis functions as well as some optimisations for the construction of the �nite element system

matrices.

Chapter 4 deals with the implementation of the higher order functions with one of the main con-

tributions being the development of a computer algebra system (CAS) for the automatic generation

of the basis functions and their corresponding matrix entries to an arbitrary order. The automatic

generation does not require the use of numeric integration rules which are a possible source of error

in the �nite element method. Furthermore, this automatic generation process greatly simpli�es the

addition of new basis functions for use in adaptive methods which are discussed in Chapter 5 and

make it possible to easily obtain results for basis functions of several orders higher than currently

available in the literature.

The results for two benchmark problems are presented in Chapter 6 for a number of adaptive

procedures for basis functions of a much higher order than presently found in the literature. For the

simplest of these problems, a hollow rectangular waveguide, solutions are obtained which are accu-

rate to numeric precision. An analysis of the e�ect of matrix conditioning on the attainable accuracy

of a solution is also presented. General conclusions and recommendations follow in Chapter 7.



Chapter 2

The Finite Element Method as Applied

to 2D Waveguide Analysis

2.1 Introduction

In this chapter, the �nite element method (FEM) is introduced. A brief discussion of its history is

followed by background and a general formulation. The method is then applied to the vector wave

equation as used in computational electromagnetics to obtain a functional for general full-wave

problems. When considering the sub-class of transverse electric waveguide eigenmode problems, the

formulation can be simpli�ed to the extent where it is essentially a problem over a two dimensional

domain. Concepts such as domain discretisation and basis functions are introduced and the notion

of spurious solution modes is mentioned.

2.2 Background and Theory

In essence, the �nite element method is a numerical technique used to obtain approximate solutions

to boundary value problems posed in mathematical physics. Although it could be argued that

ancient civilisations made use �nite elements to solve relatively simple problems [38], the method

as it is used today was �rst proposed by Courant in a 1942. It was presented as an appendix in

an address to the American Mathematical Society where he provided an example as to how the

variational methods of Lord Rayleigh could be applied to potential theory [46].

In the 1950's the method was applied in the �eld of aircraft design and other structural analysis

problems. When considering the application of this method to the �eld of electromagnetics, the

�rst publication is that of Silvester in Alta Frequenza in 1969 [55] where a formulation for a hollow

waveguide problem was presented. A slightly earlier paper by Arlett, Bahrani and Zienkiewicz [6]

also addressed guides and cavities, but the development was based on an incorrect formulation of

the electromagnetic �eld problem [56]. Since then, the number of publications on the topic has

3
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grown rapidly, with books such as [57], [63], and [32] devoted entirely to various aspects of the �nite

element method as applied to electromagnetics.

When a mathematical model of a physical system is obtained, it often takes the form of a

boundary-value problem (BVP). This BVP is de�ned by a di�erential equation over the problem

domain Ω
Lφ = f (2.2.1)

and boundary conditions on the boundary, Γ, enclosing the domain. In (2.2.1) L is a di�erential

operator, φ is the unknown quantity and f is a forcing function. The idea behind the �nite element

method is to break the domain Ω into a number of sub-domains, Ωi with i = 1, 2 . . .M such that

Ω1 ∪ Ω2 ∪ . . . ∪ ΩM = Ω, and then approximate the unknown function φ on each one of these

sub-domains, or elements, using known interpolation (basis) functions, vi. This can be stated

mathematically as follows

φ ≈ φ̃ =
∑

αivi. (2.2.2)

Here φ̃ is the approximation to the unknown function φ, with αi an unknown coe�cient correspond-

ing to ith basis function. Thus, if the coe�cients αi can be found, then the approximation φ̃ will be

known. Using a Ritz or Galerkin procedure a system of equations related to the original boundary

value problem can be obtained. Solving this system of equations yields the unknown coe�cients αi

[32].

2.3 Electromagnetic Boundary Value Problem and Variational

Formulation

In electromagnetics, the behaviour of the electric and magnetic �elds are described by Maxwell's

equations [32, 59]. Using the di�erential formulation of these partial di�erential equations, various

BVP formulations are possible depending on the problem being solved. In the case of time-harmonic

�elds, the equation used is the vector wave equation which can be written in terms of either the

electric �eld, ~E, or the magnetic �eld, ~H [32, p. 6-8]. The electric �eld formulation of this equation

is given by

∇×
(

1
µ
∇× ~E

)
− ω2εc ~E = −jω ~J, (2.3.1)

where µ is the permeability of the medium and ω is the frequency in radians per second. εc = ε−jσ/ω
is the complex permittivity and thus the term ω2εc ~E represents both the displacement current

(jεω ~E) and the induced conduction current (σ ~E), with σ the conductivity of the medium. The

current ~J is the impressed current which acts as a driving function or source term. When the

investigation is restricted to source-free problems in lossless and possibly inhomogeneous media
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with boundaries made up of electric or magnetic walls, (2.3.1) reduces to

∇×
(

1
µr
∇× ~E

)
− ko2εr ~E = 0 (2.3.2)

in the domain Ω subject to the boundary conditions

n̂× ~E = 0, on ΓD (2.3.3)

n̂×
(
∇× ~E

)
= 0, on ΓN , (2.3.4)

on electric (ΓD) and magnetic (ΓN ) walls respectively. µr and εr are the relative permeability and

permittivity of the medium and ko
2 = ω

√
ε0µ0 is the free-space wavenumber. The vector n̂ is the

outward pointing unit normal vector to the boundary in question.

With the BVP now speci�ed, it is possible to give an equivalent variational formulation. When

considering real εr and µr, the problem of solving for the electric �eld, ~E, reduces to rendering the

following variational functional stationary [32]

F ( ~E) =
1
2

ˆ
Ω

[
1
µr

(∇× ~E) · (∇× ~E)∗ − k0
2εr ~E · ~E∗

]
dΩ. (2.3.5)

2.3.1 Application To Waveguide Eigenproblems

One class of problems to which the formulation discussed in �2.3 can be applied is the eigenanalysis

of waveguides with perfectly electrically conducting (PEC) walls. An example of a waveguide with

arbitrary cross-section is shown in Figure 2.1. Also shown is the choice of Cartesian coordinate

system with the length of the guide parallel to the z-axis resulting in the guide cross-section being

parallel to the xy-plane. Furthermore, if the guide is su�ciently long, the z-dependence is simply

Ez = e−jkzz and the �eld can be written as ~E(x, y, z) = ~E(x, y)e−jkzz, with kz the propagation

constant in the z-direction [48]. This known z-dependence of the �eld is assumed and the functional

given in (2.3.5) can be rewritten as

F ( ~E) =
1
2

ˆ
Ω

[
1
µr

(∇t × ~Et) · (∇t × ~Et)∗ − k0
2εr ~E · ~E∗

+
1
µr

(∇tEz + jkz ~Et) · (∇tEz + jkz ~Et)∗
]
dΩ,

(2.3.6)

with ∇t the transverse del operator and ~Et and Ez the transverse component and z-component of

the electric �eld respectively. The integration domain, Ω, is now the guide cross-section and the

boundary, ΓD, as in (2.3.3) is the PEC wall of the guide in the cross-sectional plane. By minimizing

this functional, ~Et and ko can be obtained for a given kz. In practice it is however usually required

to solve for kz. In [32, �8.2] the functional is further modi�ed to facilitate this calculation. This
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Figure 2.1: A waveguide with an arbitrary cross-section orientated along the z-axis.

is however outside the scope of this thesis where only transverse electric (TE) cuto� modes of an

homogeneous waveguide are considered.

At cuto�, the propagation constant and the electric �eld in the z-direction are zero [48]. Thus,

starting with the functional in (2.3.6), and making the substitution kz = 0 and Ez = 0 yields the

following variational functional [32]

F ( ~E) =
1
2

ˆ
Ω

[
1
µr

(∇t × ~Et) · (∇t × ~Et)∗ − kc2εr ~Et · ~E∗t
]
dΩ, (2.3.7)

which can be used to obtain the TE cuto� modes of the waveguide. In (2.3.7), the free-space wave

number ko has been replaced with kc, the cuto� wavenumber, since the two are equal if kz = 0 [48].

With the choice of axis system as shown, this problem is a two dimensional one, with the solution

being calculated in the xy-plane. For the sake of simplifying notation, ~E will be used instead of ~Et

in (2.3.7) since ~E = ~Et when Ez = 0. Similarly the transverse del operator ∇t and ∇ will be used

interchangeably.

2.3.2 Discretisation of the Domain

The formulations in the previous section are still continuous in nature and cannot yet be seen as

�nite element formulations. As already mentioned, one of the important steps in the �nite element
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method is dividing the domain into a number of subdomains, or elements. In two dimensional

problems, such as the one considered here, the elements are most often chosen as triangular. For

one-dimensional problems a natural choice is line elements while in 3D tetrahedral elements are

often employed. The advantage of the triangular elements is that they allow for the accurate

approximation of arbitrary geometries as long as su�ciently many elements are used.

The process of dividing the computational domain, such as a waveguide cross-section, into a

number of non-overlapping triangles (or elements) is referred to as meshing, and the resultant

triangulation is called a mesh. Certain restrictions may be placed on the mesh, depending on the

exact nature of the �nite element implementation. These restrictions may include limitations on

the interior angles of an element as it has been shown that these angles can a�ect the conditioning

of the system of equations obtained and ultimately the accuracy of the solution [7, 10]. It is thus

required that none of the interior angles of the mesh approach π. A second restriction that is often

enforced is that the mesh must be conformal. This means that all nodes must be the common

vertices of one or more elements and there can therefore be no hanging nodes in the mesh.

An example mesh for the cross-section of the waveguide shown in Figure 2.1 is shown in Fig-

ure 2.2. The second step in the process of domain discretisation is the selection of the basis functions

Figure 2.2: Example meshing of an arbitrary waveguide cross section in the xy-plane.

used to interpolate the unknown electric �eld, in this case, in each element and thus piece-wise over
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the entire domain. For general electromagnetic problems involving unknown �elds, vector basis

functions are typically used and are discussed further in �2.4. Thus, in element e, the approximate

electric �eld, ~Eeh, can be interpolated by n basis functions as follows

~E ≈ ~Eeh =
n∑
i=1

aei ~N
e
i , (2.3.8)

with ~N e
i the ith basis function de�ned on the element and aei its corresponding coe�cient.

By substituting (2.3.8) into the functional given in (2.3.7), a discrete functional is obtained

which can be written in matrix-vector form as follows

F =
1
2

Ne∑
e=1

({ae}T [Se]{ae}∗ − kc2{ae}T [Te]{ae}∗). (2.3.9)

The functional is thus the sum of the elemental contributions for each of the Ne elements with

{ae} = [a1, a2, . . . an]T a column vector consisting of the elemental basis function coe�cient of

(2.3.8). The matrices [Se] and [Te] are the elemental sti�ness and mass matrices respectively, with

entries given by

Seij =
1
µer

ˆ
Ωe

(∇× ~N e
i ) · (∇× ~N e

j )dΩ, (2.3.10)

and

T eij = εer

ˆ
Ωe

~N e
i · ~N e

j dΩ. (2.3.11)

The matrix entries are thus determined by the interactions of the curls of the basis functions and

the basis functions themselves over a particular element. In order to obtain the required solution,

the elemental formulation of (2.3.9) is written in a global form by ensuring tangential inter-element

continuity. The resultant global form can be expressed as follows

F =
1
2

({a}T [S]{a}∗ − kc2{a}T [T]{a}∗), (2.3.12)

with its minimisation equivalent to solving the matrix equation [32]

[S]{a} = kc
2[T]{a}, (2.3.13)

which has the form of a general eigenproblem that can be solved with a variety of techniques [25]

thereby obtaining the cuto� wavenumber from the eigenvalue and the corresponding �eld distribu-

tion coe�cients as the eigenvector.
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2.4 Basis Function Selection

Early �nite element implementations for electromagnetics made use of interpolation functions asso-

ciated with the nodes (vertices) of each element [55]. These functions are scalar in nature and the

problems usually involve solving Laplace's or Poisson's equation [57, �2]. When full-wave problems

such as the one discussed in �2.3 are considered the basis functions are no longer su�cient. One op-

tion would be to represent each of the components of a vector �eld as a separate scalar interpolation,

but this complicates the enforcement of electromagnetic boundary conditions [64]. In addition to

this di�culty, there exists the problem of spurious modes. Mathematically, these modes represent

solutions to the eigensystem in (2.3.13) corresponding with the null-space of the curl (∇×) operator
in (2.3.2) but have no physical signi�cance [11]. For a detailed description of spurious modes, the

reader is directed to [50, �7.2], [32, �5.8.4], [11, �9.3.3], [57, p 312�313] and [16, �9.5]

An alternative to the scalar nodal basis functions are vector basis functions which are associated

with the edges of each element in the mesh. These edge elements, as they have become known,

greatly simplify the implementation of the boundary conditions (local and global) that occur in

electromagnetics and make it easier to identify and deal with spurious modes in a solution [16, 64]. In

addition, these edge-based vector functions signi�cantly improve the modelling of certain quantities

in the presence of singularities such as sharp conducting boundaries.

Many possibilities exist for choices of vector basis functions [65, 58, 31, 1] which are all realisations

of the curl-conforming elements proposed by Nédélec in [41]. The basis functions considered here

are polynomial functions of a given order, p, and are hierarchical in the sense that a set of basis

functions of order p + 1 contain all the functions of order p. This is advantageous as it allows

for di�erent orders of approximation within a given mesh, which makes them ideal for use in p-

adaptive methods. Further discussion of the basis functions and p-adaptivity is left to Chapter 3

and Chapter 5 respectively.

2.5 Conclusion

A general overview of the �nite element method has been presented and speci�cs pertaining to its

use in computational electromagnetics discussed. More speci�cally, the formulation for the solution

of cuto� eigenmodes of arbitrary waveguides was introduced and the theoretical basis for further

discussion laid down.



Chapter 3

Higher Order Hierarchical Vector Basis

Functions: Theory

3.1 Introduction

Hierarchical vector basis functions of high order are the cornerstone of p-adaptivity in the �nite

element method. Without them, the representation of an unknown �eld using di�erent polynomial

degrees in the same �nite element mesh would be nearly impossible. In this chapter, a mathematical

background for these basis functions is discussed in terms of the function spaces in which they reside.

A speci�c set of basis functions is then investigated with expressions to generate basis functions to

arbitrary order. A representation of general polynomial basis functions is given and the use of

this representation in obtaining expressions for the elemental mass and sti�ness matrices used in

calculating the �nite element solution is presented.

Although a speci�c set of basis functions is considered, the formulation is kept general enough to

be applied to the other available basis functions which are also mentioned. The theoretical base and

basis function representations presented here are built upon in Chapter 4 where details pertaining

to the actual implementation of the basis functions are discussed.

3.2 Literature Review

When consulting any publication on the �nite element method in electromagnetics where vector ele-

ments are employed, reference will undoubtedly be made to the paper by Nédélec [41]. In this paper,

the structure of the polynomial spaces that should be spanned by curl-conforming �nite element

basis functions is investigated. Many researchers have derived sets of basis functions conforming to

the criteria put forth by Nédélec to impose tangential but not normal continuity of the vector being

represented as well as ensuring unisolvence [62, 41, 42].

When restricting investigation to sets of hierarchical basis functions, contributions include those

10
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of Webb [65], Ainsworth [1], Sun et al. [62], Schöberl [53] and Ingelström [31]. Although these basis

function sets span similar spaces, it must be pointed out some of them do not conform to all the

criteria originally presented by Nédélec [30, 58]. For this reason adjustments to the Webb basis

functions [65] have been suggested by Slone et al. in [58] and are further discussed in �3.4.2.3.

In the original work by Nédélec as well as subsequent publications by other authors [31, 65, 58]

the space in which the functions reside is divided into two disjoint subspaces. In the �rst, the

vector functions can be expressed as the gradients of scalar polynomials and since ∇×∇φ = 0, it
is clear that the functions in this space are irrotational. The second sub-space contains functions

that have a non-zero curl. These two spaces are referred to as gradient spaces and rotational spaces

respectively. This separation of the function spaces allow for specifying the order of the rotational

and irrotational parts of the interpolated �eld independently. Such mixed-order representations

with rotational components of a higher order than the irrotational ones have been found to be

advantageous in problems where the electric �eld and its curl are of equal importance [15, 65].

For the purpose of this thesis, the Webb set of basis functions as described in [65] as well as the

adjustments proposed by Slone [58] are further discussed.

3.3 Mathematical Background

3.3.1 De�nition of Finite Element Function Spaces

Let Pk be the space of polynomials of degree at most k, with a general n-variate polynomial fk ∈ Pk
expressed as follows

fk =
m∑
i=1

ci

n∏
j=1

xj
pij , with

n∑
j=1

pij ≤ k ∀i. (3.3.1)

Thus, for each term of a general polynomial of degree k, the sum of the powers of each variable in the

term is at most k. If it is speci�ed that the sum of the powers must be exactly k, or mathematically,

n∑
j=1

pij = k, ∀i, (3.3.2)

then the polynomial is called homogeneous. The space P̃k ⊆ Pk is de�ned as the space of homoge-

neous polynomials of degree exactly k and

Pk = Pk−1 ⊕ P̃k, k ≥ 1, (3.3.3)

with ⊕ the direct sum of two subspaces de�ned as follows:

Let X ,Y ⊂ V be two subspaces with X ∩ Y = 0, then V = X ⊕ Y and for every vector v ∈ V,
there exist unique vectors x ∈ X and y ∈ Y such that v = x + y [68].

In addition the space (Pk)l is the extension of Pk to an l-dimensional vector space and likewise
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for (P̃k)l and P̃k. In this thesis discussion is restricted to two dimensions and thus l = 2.
In [41], the function space Rk ⊂ (Pk)2 is introduced and de�ned as

Rk = {~u ∈ (Pk)2; εk~u = 0}, k ≥ 1, (3.3.4)

with εk related to Dk, the kth di�erential operator associated with ~u [41]. The constraint εk~u = 0
is equivalent to ~u ·~r = 0 for ~u ∈ Rk and ~r a position vector in R2, and is chosen to remove functions

in (Pk)2 that are in the nullspace of the curl operator [41, 50].

The space Sk ⊂ Rk is the subspace of all homogeneous polynomials in Rk and is de�ned as

Sk = {~u ∈ Rk; ~u ∈ (P̃k)2}, (3.3.5)

and it can be shown that [41]

Rk = (Pk−1)2 ⊕ Sk, k ≥ 1. (3.3.6)

A third function space Gk is de�ned as

Gk = {~u ∈ (P̃k)2; ~u = ∇φ, φ ∈ P̃k+1}, (3.3.7)

and consists of all homogeneous polynomials of degree k that can be written as the gradient of

homogeneous polynomials of degree k + 1 and since ∇×∇φ = 0 [59], it follows that

∇× ~u = 0, ∀~u ∈ Gk. (3.3.8)

Furthermore, the spaces Sk and Gk are disjoint and divide the space of k-degree homogeneous

polynomials into rotational and irrotational components respectively which can be expressed math-

ematically as

Gk ∩ Sk = 0, (3.3.9)

Gk ⊕ Sk = (P̃k)2. (3.3.10)

Using (3.3.3), (3.3.6) and (3.3.10), it follows that Rk can now be written in terms of these spaces

as follows

Rk = (P0)2 ⊕ S1 ⊕ G1 ⊕ S2 ⊕ G2 ⊕ . . .⊕ Sk−1 ⊕ Gk−1 ⊕ Sk, k ≥ 1, (3.3.11)

with P0 the constant polynomials. It should also be clear from (3.3.11) that

Rk = Rk−1 ⊕ Gk−1 ⊕ Sk, k ≥ 1. (3.3.12)

Thus Rk forms a hierarchical space with Rk−1 ⊂ Rk and the dimensions of the spaces Rk, Sk, and
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Gk are given by

NRk = k(k + 2), (3.3.13)

NSk = k, (3.3.14)

NGk = k + 2, (3.3.15)

in two dimensions.

Now de�ne the space Ck as

Ck = Rk ⊕ Gk = (Pk)2, k ≥ 1, (3.3.16)

from which follows that Rk ⊂ Ck, with Ck an extension of Rk to include a gradient (irrotational)

subspace Gk of the same degree as the rotational subspace Sk and has dimension

NCk = (k + 1)(k + 2). (3.3.17)

The spaces Rk and Ck di�er only in the degree of the subspace of gradient functions. In Rk, the
gradient subspace has degree k − 1, one less than the rotational subspace, Sk. In the space Ck, this
is not the case, and the gradient and rotational subspaces are of the same degree k. The space Rk
is referred to as a mixed-order space, while the space Ck is the complete-order space.

3.3.2 The Nédélec Degrees of Freedom

In order to �nd the projection of a given function onto a particular function space, it is necessary

to de�ne a number of degrees of freedom associated with the basis functions of that space. In the

[41, 42], the degrees of freedom are associated with either the edges or face of a particular element

and are de�ned as follows.

Let ~u ∈ Vhk be any vector in the approximation space of degree k, with

Vhk = Rk, (3.3.18)

or

Vhk = Ck, (3.3.19)

for mixed order or complete order approximations respectively. The degrees of freedom associated

with each edge of the element are then given as

aek(~u) =
ˆ
e

(~u · t̂e)qede, ∀qe ∈ Ve, k ≥ 1 (3.3.20)
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with t̂e a unit-vector tangential to the edge. The test function space Ve is dependent on the

approximation space and in the case of Rk and Ck, Ve is given by Pk−1 and Pk respectively.
The degrees of freedom associated with the face of the elements are de�ned by

afk(~u) =
ˆ
f

(n̂f × ~u) · qfdf, ∀qf ∈ Vf , k ≥ 2. (3.3.21)

Here n̂f is a unit-vector normal to the plane of the element with the space Vf depending on the

choice of approximation space Vhk . If Vhk = Ck then

Vf = (Pk−2)2 ⊕ P̃k−2 · ~r, (3.3.22)

and

Vf = (Pk−2)2, (3.3.23)

in the case where Vhk = Rk [41, 42].
In order for the �nite element formulation using these degrees of freedom to be unisolvent, if

for all vectors ~u in the approximation space Vhk , all the degrees of freedom ak(~u) are zero, then it is

implied that ~u = 0, or stated mathematically,

∀~u ∈ Vhk , ak(~u) = 0; ∀ak ⇒ ~u = 0. (3.3.24)

The Nédélec degrees of freedom de�ned in (3.3.20) and (3.3.21) have this property and a unique

projection, Πh
k(~v), of any ~v ∈ R2 onto the approximation space can be de�ned by

ak(~v −Πh
k(~v)) = 0, ∀ak, Πh

k(~v) ∈ Vhk . (3.3.25)

A summary of the number of degrees of freedom for the mixed and complete order approximation

spaces is given in Table 3.1. These degrees of freedom correspond to the dimension of the approxi-

mation space and are indicative of the number of independent basis functions that are required to

span the space.

Table 3.1: Number of degrees of freedom for the mixed-order and complete order approximation spaces of
degree k.

Vhk Edges Face Total

Rk 3k k(k − 1) k(k + 2)
Ck 3(k + 1) (k + 1)(k − 1) (k + 1)(k + 2)
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3.3.3 Conforming Unisolvent �nite Elements

If the approximation spaces discussed in �3.3.1 and the degrees of freedom as given in (3.3.20) and

(3.3.21) in �3.3.2 are used to specify a �nite element formulation, the formulation can be shown

to be curl-conforming and unisolvent [41, 42]. A function is said to be curl-conforming if both the

function and its curl are square integrable. Two options exist for the choice of approximation space

over an element, namely the complete order space Ck or the mixed order space Rk. The optimal

choice is problem dependant [65, 15] and may di�er from one region of a �nite element mesh to

another[66].

According to Helmholtz's theorem, a �eld can be represented as the sum of an irrotational

(gradient of a scalar function) and solenoidal part [5, �1.16]. When considering the FE functional

as in (2.3.7), it is clear that both the curl of the electric �eld and the �eld itself contribute to

the solution. Furthermore, the components of the ~E-�eld that contribute to the curl cannot be

irrotational. With this in mind, and considering the spaces just discussed, it is clear that if the

basis functions for the FE solution are chosen from either Rk or Ck, only those basis functions in

the subspace Sk will contribute to the curl of the �eld.
In elements where the curl of the �eld is of equal importance to the �eld itself, the advantage

of increasing the degree of the gradient subspace is reduced. In these cases, Rk should be used

as the approximation space, whereas in cases where the �eld and not the curl make the most

signi�cant contribution, then a gradient subspace of equal degree is advantageous and Ck is used as

an approximation space instead.

3.4 The Webb Basis Functions

A set of basis functions that is widely used is that of Webb [65]. The reason for their popularity in

the engineering community could most likely be attributed to the fact that general expressions for

basis functions of arbitrary order are given and that the formulations can be grasped (or at least

implemented) with minimal understanding of the underlying mathematics.

In his formulation Webb does not make speci�c reference to degrees of freedom in the Nédélec

sense. Instead, the ith degree of freedom is simply the coe�cient of the ith basis function as in (2.3.8).

Thus to ensure tangential continuity across an edge, as is required in electromagnetic problems, it

is su�cient to set the coe�cients of the basis functions associated with that edge equal taking into

consideration the direction of the edge vector [65].

In [65] a basis function orthogonalisation procedure is also described that should lead to better

conditioned system matrices. This procedure is mentioned but not implemented in [35] where

the basis functions presented in [58] are used to analyse waveguide structures. Also since the

orthogonalisation process relies on the inner product of the basis functions over a reference element,

the resultant basis functions will only be orthogonal if all elements in the actual �nite element
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mesh had the same physical dimensions as the reference element. Although the e�ect of the said

orthogonalisation procedure is not shown directly, results such as those in [29] and [30] seem to

indicate that even the orthogonalised basis functions su�er from ill-conditioned system matrices for

higher than mixed 3rd order. The orthogonalisation procedure is not implemented here and the

conditioning of the matrices is further discussed in Chapter 5.

The basis functions are given as polynomials in the simplex coordinates of a triangular element.

For a more detailed discussion on the simplex coordinate system the reader is referred to [57, �4]

with some properties given in Appendix A.

3.4.1 Function Spaces for the Webb Basis

In two dimensions, the complete set of Webb basis functions span the space (Pk)2 which is the

same as the Nédélec space Ck with dimension as given by (3.3.17) [65]. The approximation space is

divided into edge-based and face-based subspaces with each being further divided into a gradient or

rotational subspace. This allows for either a mixed or complete order representation of the unknown

�eld.

De�ne the edge-based subspace as

E(e)
k = (G(e)

g ⊕R(e)
r ), (3.4.1)

with G(e)
g and R(e)

r the subspaces of gradient and rotational edge functions of order g and r respec-

tively. Also de�ne the face-based subspace

F (f)
k = (G(f)

g ⊕R(f)
r ), (3.4.2)

with the G(f)
g and R(f)

r once again gradient and rotational subspaces of the same order as in (3.4.1).

Now the Webb approximation space, Wh
k , can be written as follows

Wh
k = E(e)

k ⊕F
(f)
k ,

= (G(e)
g ⊕R(e)

r )⊕ (G(f)
g ⊕R(f)

r ).
(3.4.3)

In the case of a complete order representation, (g, r) = (k, k) with (g, r) = (k − 1, k) when a mixed

order approximation is used. The dimensions of each of the Webb approximation subspaces are

given in Table 3.2 and correspond to the number of degrees of freedom as originally stipulated by

Nédélec [41, 42] and listed in Table 3.1.

3.4.1.1 Subspace of Edge Functions

From Table 3.2, it is evident that the subspace of edge functions contains 3 + 3g functions in total.

This equates to g + 1 functions associated with each of the three elemental edges.
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Table 3.2: Dimension of the gradient and rotational approximation subspaces for the edges and face of an
element as well as the dimension of the mixed and complete order approximation spaces.

Edge E(e)
k Face F (f)

k Total Wh
k

Gradient Subspace 3g g(g − 1)/2 g(g + 5)/2

Rotational Subspace 3 (r − 1)(r + 2)/2 p(p+ 1)/2 + 2
Mixed Order

(g, r) = (k − 1, k) 3k k(k − 1) k(k + 2)
Complete Order

(g, r) = (k, k) 3(k + 1) (k − 1)(k + 1) (k + 1)(k + 2)

In general, the edge-based function ~Vk ∈ E
(e)
k of degree k associated with an edge emn can be

written as

~Vk = f(k−1)(sm, sn)sn∇sm + g(k−1)(sm, sn)sm∇sn, (3.4.4)

with f(k−1), g(k−1) ∈ P(k−1) polynomials of degree k − 1 in sm and sn, the two simplex coordinates

associated with the edge. Each of these basis functions has the property that its tangential com-

ponent along the edge emn is a polynomial of degree g and it is zero on the other two edges of the

element.

The gradient subspace of the edge functions for edge emn is made up of functions of the form

~Vg = ∇(smsnF(g−1)(sm, sn)), (3.4.5)

with F(g−1) ∈ P(g−1) and has dimension g. To complete the basis for the subspace with dimension

g + 1 associated with a particular edge, an additional basis function ~R(e) 6∈ G(e)
g is required. This is

in fact the well known Whitney edge function [11] and can be written in the form

~R(e) = sm∇sn − sn∇sm, (3.4.6)

for edge emn. Although this is not a purely rotational function, as it contains a constant gradient

component [66], it does have a rotational component and thus a non-zero curl.

3.4.1.2 Subspace of Face Functions

Now consider the subset of two dimensional face functions F (f)
k ofWh

k in (3.4.3). This subspace has

dimension (k−1)(k+ 1) and consists of functions of degree k de�ned on the face of an element that

have a zero tangential component on every edge of the element. These functions can be written in
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the form [65]

~V
(f)
k = s1s2f(k−2)(s1, s2, s3)∇s3

+ s2s3g(k−2)(s1, s2, s3)∇s1

+ s1s3h(k−2)(s1, s2, s3)∇s2,

(3.4.7)

with f(k−2), g(k−2), and h(k−2) ∈ Pk−2 polynomials of degree k − 2 in s1, s2 and s3, the simplex

coordinates associated with the element.

When these equations are of the form

~V (f)
g = ∇(s1s2s3F(g−2)(s1, s2, s3)), (3.4.8)

they are elements of the gradient face function space, G(f)
g , with dimension g(g − 1)/2 and Fg−2 ∈

P(g−2) a polynomial of degree g − 2. The remaining functions of F (f)
k belong to the subspace R(f)

r

with dimension (r − 1)(r + 1)/2 and no non-zero function in common with the gradient subspace,

thus

R(f)
r ∩ G(f)

g = 0. (3.4.9)

3.4.2 Webb Basis Function Construction

In the previous section, a general framework for the function spaces from which the Webb basis

functions are to be chosen is given. The focus is now on the construction of explicit expressions for

the Webb basis functions as put forth in [65]. In this construction, a distinction is made between the

edge basis functions and the face basis functions associated with an element. The approach followed

is much the same as that of the original paper and the gradient and rotational basis functions are

handled separately allowing for both mixed and complete order representations.

The basis functions discussed are either symmetric or antisymmetric in exchange of (s1, s2),
(s2, s3) or (s3, s1) meaning, for example,

f(s1, s2) =

f(s2, s1) if f is symmetric,

−f(s2, s1) if f is antisymmetric.
(3.4.10)

The symmetry property is important in ensuring the tangential continuity across an edge shared

by two elements. For symmetric functions, it is enough to assign the same coe�cient to the basis

function in each element, whereas for antisymmetric functions it is important that direction of the

edge in terms of its nodes is the same in each element and it may be necessary to negate one of the

coe�cients if the relative edge directions di�er.
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3.4.2.1 Edge Basis Functions

The gradient basis function of order g ≥ 1 associated with edge emn can be expressed as

~G(emn)
g = ∇(smsn(sm − sn)g−1), g ≥ 1. (3.4.11)

This expression has the form introduced in (3.4.5) and is symmetric or antisymmetric in exchange

of (sm, sn) for g odd or even respectively.

As discussed in �3.4.1.1, there is only one rotational function per edge in the rotational subspace

as given by (3.4.6). These edge functions are antisymmetric.

3.4.2.2 Face Basis Functions

In the case of the edge basis functions, a single additional basis function per edge is required to

span a space one degree higher. For the face basis functions it is a little more complex, since g − 1
and r basis functions are required to increase the order of the gradient and rotational subspaces

respectively [65].

To facilitate the use of these basis functions in the modelling of three dimensional problems

where tangential continuity between faces of adjacent tetrahedra needs to be enforced, these basis

functions are required to be either antisymmetric or symmetric in one of the pairs (s1, s2), (s2, s3) or
(s1, s3). The functions are de�ned as a triplets (F, ρF, ρ2F ), with F = F (s1, s2, s3), the �rst function
in a triplet and ρ an operator that cyclically rotates the simplex indices of F as 1 → 2 → 3 → 1
and thus

ρF (s1, s2, s3) = F (s2, s3, s1), (3.4.12)

ρ2F (s1, s2, s3) = F (s3, s1, s2). (3.4.13)

In order to distinguish between the functions of the di�erent triplet, subscripts are added for

the triplet number j as well as the degree of the triplet k. The �rst function of the jth triplet of

degree k, Fk,j , is de�ned by

Fk,j = (s1s2s3)js1s2(s1 − s2)k−3j−2, if 0 < j < τk, (3.4.14)

and

Fk,τk =


(s1s2s3)τ if (k mod 3) = 0,

(s1s2s3)τ (s1 − s2) if (k mod 3) = 1,

(s1s2s3)τs1s2 if (k mod 3) = 2,

(3.4.15)

if j = τk. Here τk = int
(
k
3

)
is the number of triplets for a given degree k with int (x) de�ned as the

integer part of x. Using this de�nition, expressions for the gradient and rotational face functions
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can be given.

The jth triplet in (3.4.14) as well as the (k mod 3) = 2 case in (3.4.15) both consist of three

functions, with the additional functions obtained by applying the ρ operator successively on the

�rst function. For the (k mod 3) = 0 case, Fk,τk = ρFk,τk = ρ2Fk,τk and the triplet consists of a

single function. If (k mod 3) = 1, it can be shown that Fk,τk + ρFk,τk + ρ2Fk,τk = 0 and thus there

are only two independent functions in the triplet [65].

Gradient Face Basis Functions

From Table 3.2, it is clear, that for g < 2, there are no gradient face functions. For the gradient

face subspace, G(f)
g , the (g − 1) functions required to increase the order of the space from (g − 1)

to g are constructed by taking the gradient of the int
(
g+1

3

)
triplets of degree g + 1 as de�ned in

(3.4.14) and (3.4.15) with the �rst function of the ith gradient triplet given by

~G
(f)
g,i = ∇Fg+1,i, for i = 1, . . . ,int

(
g + 1

3

)
; g > 1. (3.4.16)

Note that in this case τk = τg+1 = int
(
g+1

3

)
and ((k mod 3)) = (((g + 1) mod 3)).

Rotational Face Basis Functions

As was the case for the gradient face function subspace, the rotational face function subspace only

contains functions if r > 1. The r functions required for the increase in rotational subspace order

from r − 1 to r can be written as σ + 1 triplets with σ = int
(
r−1

3

)
.

The �rst functions of the triplets are once again de�ned in terms of (3.4.14) and can be expressed

as follows

~R
(f)
ri = Fr,(i−1)∇s3, for i = 1, . . . , σ; r > 1. (3.4.17)

However, when considering (3.4.17) in conjunction with (3.4.14) and (3.4.15) and since

σ ≤ τk = int
(r

3

)
, ∀r > 1, (3.4.18)

it follows that

i− 1 < τk, ∀r > 1. (3.4.19)

Thus the expressions for the last triplet (3.4.15) cannot be used for the rotational face functions and

an additional de�nition for the last triplet is required. The �rst function of triplet σ + 1 is de�ned

as

~R
(f)
r,σ+1 =


Fr,σ∇s3 if (r mod 3) = 0,

(s1s2s3)σR1(s1, s2, s3) if (r mod 3) = 1,

(s1s2s3)σR2(s1, s2, s3) if (r mod 3) = 2,

(3.4.20)
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with

R1(s1, s2, s3) = (s2 − s3)∇s1 + (s3 − s1)∇s2 + (s1 − s2)∇s3, (3.4.21)

and

R2(s1, s2, s3) = s2s3∇s1 + s3s1∇s2 − 2s1s2∇s3, (3.4.22)

introduced to simplify notation. When (r mod 3) = 1, the triplet is made up of a single function

since ~R
(f)
r,σ+1 = ρ~R

(f)
r,σ+1 = ρ2 ~R

(f)
r,σ+1 in this case. For (r mod 3) = 2 we have ~R

(f)
r,σ+1 + ρ~R

(f)
r,σ+1 +

ρ2 ~R
(f)
r,σ+1 = 0 and there are only two independent basis functions. In the other cases, the triplet

consist of three independent functions obtained by applying the ρ and ρ2 operators to the �rst

function in the triplet.

3.4.2.3 Slone Adjustments to the Face Basis Functions

In [58], it is stated without proof that the basis functions as put forward by Webb in [65] and

discussed here do not conform to the Nédélec criteria and adjustments to the rotational face functions

are proposed. The adjustments a�ect only some of the rotational face functions and results in [36]

indicate that the di�erence in performance between the original and modi�ed basis functions is

negligible for rectangular waveguide eigenvalue problems in two dimensions. This may be due to

the fact that the tangential continuity of the face-based basis functions need not be enforced in two

dimensions as is required across the shared faces of tetrahedra in three dimensions.

Only the �rst function of the ith triplet as given in (3.4.17) and the (r mod 3) = 0 case of

(3.4.20) is a�ected. The Slone adjusted form of these representations is given by [58]

~R
(f)
r,i = Fr−1,i−1(s2∇s3 − s3∇s2), for i = 1, . . . , σ + 1, (3.4.23)

with the remaining basis functions unchanged and the dimensions of the subspaces the same as for

the Webb set of basis functions as given in Table 3.2.

It should once again be mentioned that the non-conformance of the Webb basis functions to

the criteria of Nédélec is simply stated in [58] with no comparative results or further explanation

provided. Also, since the Webb basis functions span the spaces proposed by Nédélec [65], one must

assume that the deviation from the Nédélec criteria is in the de�nition of the degrees of freedom.
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3.5 Function Representation

The following representation of the ith basis function ~Ni is used as starting point for further discus-

sion pertaining to the implementation of the basis functions

~Ni =
3∑

m=1

Nim(s1, s2, s3)∇sm. (3.5.1)

Here si is the i
th simplex coordinate and each coe�cient function, Nim ∈ P̃p, is a homogeneous

polynomial of degree p in 3 variables as introduced in �3.3, with xi = si for i = 1, 2, 3. In addition,

from (A.0.1) follows that the substitutions, s3 = 1− s1 − s2 and ∇s3 = −∇s1 −∇s2, can be made

resulting in (3.5.1) being only dependent on the simplex coordinates s1 and s2. This would, however

complicate the manipulation of the basis functions somewhat and is thus not considered.

The construction of the basis functions entails writing them in the form of (3.5.1) to facilitate

their use in construction of the FE matrices as described in �3.6. It should also be noted that in

(3.5.1), the coe�cient functions are not dependent on the shape of the element over which the basis

function is de�ned.

3.6 Calculation of Finite Element Matrices

Using the basis function representation introduced in �3.5, expressions for the elemental mass ([Te])
and sti�ness ([Se]) matrices can be derived. The approach here involves using universal matrices

as in [65, 35] in an attempt to decrease the amount of time required in calculating each matrix.

To achieve this, all the element shape information is stripped from the basis functions allowing for

a set of independent (universal) matrices to be obtained. These matrices need only be calculated

once and can be stored and reused for every element.

3.6.1 The Elemental Mass Matrix

Considering (2.3.11), it should be clear that in order to obtain a general expression for the elemental

mass matrix, [Te], the dot product of the ith and jth basis functions is required. Substituting (3.5.1)
into ~Ni · ~Nj for both basis functions yields the following

~Ni · ~Nj =
3∑

m=1

3∑
n=1

NimNjn(∇sm · ∇sn). (3.6.1)

This can be further simpli�ed to [65]

~Ni · ~Nj =
3∑

m=1

m∑
n=1

θmn(NimNjn +NinNjm)(∇sm · ∇sn), (3.6.2)
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with

θmn =

0.5 , if m = n,

1 , if m 6= n.
(3.6.3)

Substituting the above expressions into (2.3.11),

[Te] = 2A
3∑

m=1

m∑
n=1

(∇sm · ∇sn)[Tmn], (3.6.4)

is obtained as an expression for the elemental mass matrix. Each [Tmn] is one of six universal mass
matrices with entries, Tmnij , de�ned by

Tmnij = θmn

ˆ
Ω′

(NimNjn +NinNjm)dΩ′, (3.6.5)

and
´

Ω′ dΩ′ indicates integration over a reference element as de�ned by Appendix A.

3.6.2 The Elemental Sti�ness Matrix

An expression for the elemental sti�ness matrix, [Se], can be obtained in a similar way. In this case,

the starting point is (2.3.10). It is clear that expressions for the curl of the basis functions, ∇× ~Ni,

as well as the dot products of the resulting vectors are required. The curl of basis function ~Ni is

given by the following expression [65]

∇× ~Ni =
3∑

m=1

Cim(s1, s2, s3)~em. (3.6.6)

This equation has the same form as (3.5.1) with each Cim a polynomial coe�cient function de�ned

as follows

Ci1 =
∂Ni3

∂s2
− ∂Ni2

∂s3
, (3.6.7)

Ci2 =
∂Ni1

∂s3
− ∂Ni3

∂s1
, (3.6.8)

Ci3 =
∂Ni2

∂s1
− ∂Ni1

∂s2
, (3.6.9)

and ~em a vector obtained from the cross product of the gradient of two simplex coordinates [65],

~e1 = ∇s2 ×∇s3, (3.6.10)

~e2 = ∇s3 ×∇s1, (3.6.11)

~e3 = ∇s1 ×∇s2. (3.6.12)



CHAPTER 3. HIGHER ORDER HIERARCHICAL VECTOR BASIS FUNCTIONS: THEORY 24

Further, in two dimensions, it can be shown that

~e1 = ~e2 = ~e3, (3.6.13)

and

∇s1 ×∇s2 =
1

2A
ẑ, (3.6.14)

where A is the area of the element and ẑ is a unit-vector in the z-direction.

Recalling the construction for basis function dot products in �3.6.1, an expression for the dot

product of the curls of two basis functions can now be obtained by combining these de�nitions with

(3.6.6) and (3.5.1)

∇× ~Ni · ∇ × ~Nj =
3∑

m=1

m∑
n=1

θmn(CimCjn + CinCjm)~em · ~en, (3.6.15)

which can be simpli�ed to

∇× ~Ni · ∇ × ~Nj =
1

(2A)2

3∑
m=1

m∑
n=1

θmn(CimCjn + CinCjm), (3.6.16)

by substituting (3.6.13) and (3.6.14).

Similar to the mass matrix case, substituting (3.6.16) into (2.3.10) results in the following ex-

pression for the elemental sti�ness matrix

[Se] =
1

2A

3∑
m=1

m∑
n=1

[Smn], (3.6.17)

with each [Smn] one of six shape-independent sti�ness matrices with entries of the form

Smnij = θmn

ˆ
Ω′

(CimCjn + CinCjm)dΩ′, (3.6.18)

with
´

Ω′ dΩ′ integration over a reference element as de�ned by Appendix A.

3.7 Conclusion

A brief introduction to the mathematics of higher order polynomial basis functions based chie�y on

the work of Nédélec has been given. Using a similar formulation, the Webb set of basis functions were

introduced and general expressions for the functions given for mixed and complete order formulations

of arbitrary order. A general basis function representation as well as its use in calculating the various

�nite element matrices has been discussed. In the calculation of the matrices, a universal matrix
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approach is used to allow for the precomputation of certain contributions to the elemental matrices

and thereby reducing the matrix �ll time.



Chapter 4

Higher Order Hierarchical Vector Basis

Functions: Implementation

4.1 Introduction

The basis functions as discussed in Chapter 3 often take on quite complex forms at higher polynomial

order and coding these functions explicitly is generally not an option. This makes adding support

for additional basis functions tedious. Given the universal matrix approach discussed in �3.6, it

would be possible to use computer algebra tools such as Maxima [39] or Maple [37] to calculate the

universal matrices beforehand thus allowing for the computation of the mass and sti�ness matrices

for a given set of basis functions, although the evaluation of the basis functions can still be somewhat

problematic as it would be required to interface with these external tools.

The purpose of this chapter is to discuss the development of a simple computer algebra system

(CAS) built around a method for representing multi-variate polynomials electronically. Using this

polynomial representation, the expressions for the basis functions given in �3.4 are implemented

allowing for the automatic generation of these functions to an arbitrary order. The CAS implemen-

tations of the mathematical operations on the basis functions required to calculate the mass and

sti�ness matrix entries are also discussed.

Although the Webb basis functions are used as an example, the CAS itself can be applied to

any general polynomials represented in the de�ned way. The methods used are applicable to other

basis function sets that can be expressed in the form (3.5.1) allowing for the implementation and

comparison of various basis function sets.

4.2 Implementation of a Basic Computer Algebra System

When storing a polynomial in a single variable, many programming languages such as Matlab and

Python make use of a single vector, with each position in the vector representing the coe�cient of

26
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the said variable raised to a certain power. For example, the k-degree polynomial in the variable x

f =
k∑
i=0

cix
i, (4.2.1)

will be represented as the vector with k + 1 elements

fT = [ck, ck−1, . . . , c0]. (4.2.2)

One shortcoming of this representation is that it does not allow for the representation of multi-

variate polynomials, such as the polynomials in the simplex coordinates used to construct the basis

functions discussed here. In this section, a method is developed to represent such polynomials and

to allow for the automatic generation of the Webb basis functions as introduced in �3.4.

4.2.1 Simplex Polynomial Representation

For the purpose of this discussion, consider the following expression for anm term general polynomial

of degree p in the three simplex coordinates which follows from (3.3.1) and is given by

fp(s1, s2, s3) =
m∑
i=1

cis1
pi1s2

pi2s3
pi3 , with

3∑
j=1

pij ≤ p ∀i. (4.2.3)

Each term, ti, of such a single term polynomial is itself a general polynomial of at most degree p

and can be represented as follows

ti = ci

3∏
j=1

sj
pij . (4.2.4)

The question arises as to how an n-variate polynomial can be represented electronically. A direct

extension of the vector representation for a polynomial in a single variable, is to store the coe�cients

of the terms of the polynomial in an n dimensional matrix. Here each dimension represents a di�erent

variable and the index in that dimension, starting from zero, the power to which the variable is raised

in a given function term. It should not be di�cult to see that this method does not scale well in

the number of variables as well as the degree of the polynomial being represented. For example, to

represent the function f = x5y5, a 6 × 6 matrix is required and in general, a polynomial of degree

p in n variables requires a matrix of (p+ 1)n elements and is thus not feasible.

An alternative representation, and the one implemented here, also uses a matrix to store the

polynomial function. However, instead of requiring an n dimensional matrix for an n-variate poly-

nomial as in the previous case, the function fp as in (4.2.3) is stored as a matrix [Fp] with a row

corresponding to each term of the function. This row contains �rst the powers for each of the

variables in the function followed by the coe�cient of the term in the last position. Thus, the ith
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term as given in (4.2.4) is stored as

{f ip}T =
[
pi1, pi2, pi3, ci

]
. (4.2.5)

This representation can easily be extended to n-variate polynomials with such a polynomial

begin represented by a K× (n+ 1) matrix where K is the number of stored terms. To optimise this

representation somewhat in terms of storage requirements terms with zero coe�cients, ci = 0, need
not be stored and thus K ≤ m.

As an example, consider the function g = 1+2s1 +4s2 +7s3
3s1 in three variables which consists

of four terms. The matrix, [G] representing the function will thus be 4× 4 and is given by

[G] =


0 0 0 1
1 0 0 2
0 1 0 4
1 0 3 7

 . (4.2.6)

4.2.2 Mathematical Operations

When considering equations related to the construction of the mass and sti�ness matrices in �3.6,

there are a number of mathematical operations that are required to be performed on the polynomial

coe�cient functions de�ned in (3.5.1). These are addition, multiplication, partial di�erentiation

and integration over a reference element. When these operations are performed on polynomials, the

results are themselves polynomials and can thus be handled by the framework introduced in �4.2.1.

Let fp and gq be polynomials of the form speci�ed in (4.2.3) with matrix representations [Fp] and
[Gq] respectively. Using these de�nitions, the individual operations will now be discussed.

4.2.2.1 Addition and Subtraction

Addition is one of the most basic of the operations and in its most simple form simply involves

matrix concatenation, or symbolic form

fp + gq ≡
[
[Fp]T [Gq]T

]T
. (4.2.7)

Consider f = 1 + s1 and g = s1
2 + 2s2 with matrix representations [F] and [G] given by

[F] =

[
0 0 0 1
1 0 0 1

]
, (4.2.8)

and

[G] =

[
2 0 0 1
0 1 0 2

]
. (4.2.9)
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If h = f + g, the matrix representation of h is given by

[H] =


0 0 0 1
1 0 0 1
2 0 0 1
0 1 0 2

 . (4.2.10)

The subtraction of two polynomials can be written as follows

fp − gq = fp + (−1(gq)) (4.2.11)

and can thus be simpli�ed into a multiplication and addition operation. Let g−q = −1(gq) and [G−q ]
be the negative of function gq and its matrix representation respectively, then subtraction can be

de�ned as follows

fp − gq ≡
[
[Fp]T [G−q ]T

]T
. (4.2.12)

The negation of a function and its corresponding matrix representation is discussed in �4.2.2.2.

4.2.2.2 Multiplication

For multiplication, three cases are considered. These are multiplication by an arbitrary constant, a

single term and lastly a general polynomial. The �rst has already been encountered in �4.2.2.1 where

negation is required to implement subtraction. In matrix form, the multiplication of a polynomial

fp by a constant β can be expressed as

βfp ≡ [Fp][Dβ], (4.2.13)

where [Dβ] is diagonal matrix with diagonal [1, 1, 1, β] in the case of a simplex polynomial. In

general, the number of ones on the diagonal is equal to the number of variables in the polynomial

fp.

For multiplication by a general term, as in (4.2.4), the product, tifp, is given by

tifp ≡ [Fti
p ] = [Fp][Dci

] + {1}K
[
pi1, pi2, pi3, 0

]
. (4.2.14)

Here {1}K is a column vector of K ones, where K is the number of rows in the matrix [Fp] and
[Dci

] is a diagonal matrix as de�ned for constant multiplication.

Since multiplication of two general polynomials, fp and gq, can be considered as the multiplica-

tion of fp by each of the terms of gq and the summation of the results, this multiplication can be

expressed as follows

fpgq ≡
[
[Ft1

p ]T [Ft2
p ]T . . . [FtK

p ]T
]T
, (4.2.15)
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where each [Fti
p ] is the matrix obtained multiplying fp by the ith term of gq as in (4.2.14) and

concatenating each of the K resultant matrices as in (4.2.7).

4.2.2.3 Partial Di�erentiation

Since
∂

∂sk

∑
ti =

∑ ∂

∂sk
ti, (4.2.16)

it is clear that for a polynomial, di�erentiation reduces to the sum of the derivatives of each term.

Thus consider the partial derivative of ti, as in (4.2.4), with respect to the variable sk. This can

then be written symbolically as

∂

∂sk
ti =

∂

∂sk

ci 3∏
j=1

sj
pij


= ci

 3∏
j=1

sj
pij

 piksk
−1

= ti(piksk−1).

(4.2.17)

We note that terms constant in sk will be zero as pik = 0 in this case.

In terms of manipulating the function matrix, partial di�erentiation can be expanded as follows

∂

∂sk
fp ≡ [Pk][Fp][U4] + [Fp][Z4]− {1}K{uk}T (4.2.18)

with [Pk] a diagonal matrix with pik as the ith diagonal entry. The matrix [Um] is a zero matrix

with a one at the mth position on the diagonal and thus

[U4] =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 . (4.2.19)

Similarly, [Zm] is an identity matrix with a zero at the mth position on the diagonal with

[Z4] =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 . (4.2.20)

The vector {uk}T is a row vector with a one as the kth entry and zeros elsewhere.
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4.2.2.4 Integration Over a Reference Element

The discussion of integration is limited to the special case of integration of a polynomial in the

simplex coordinates over a reference element. As is the case with di�erentiation, the integral of a

polynomial can be written as the sum of integrals of its terms and thus, with a polynomial in the

simplex coordinates de�ned in (4.2.3), the integral can be written as

ˆ
Ω′
fpdΩ′ =

n∑
i=1

ˆ
Ω′
tidΩ′ (4.2.21)

=
n∑
i=1

ci

(ˆ
Ω′
s1
pi1s2

pi2s3
pi3dΩ′

)
. (4.2.22)

When the closed form expression for simplex integration over a reference element (A.0.4), is now

substituted, the resultant expression for the integration is

ˆ
Ω′
fpdΩ′ =

n∑
i=1

ci

(
pi1!pi2!pi3!

(2 + pi1 + pi2 + pi3)!

)
. (4.2.23)

Due to the rather complex nature of (4.2.23), no direct matrix representation is given. Instead,

a loop is used to calculate the integral for each row of the function matrix and sum the results

obtaining a scalar value for the integration.

4.2.2.5 Cyclic Permutation

As seen in �3.4.2.2, it is sometimes necessary to perform a cyclic permutation of the simplex indices

once a basis function has been calculated. In the case of the face-based basis functions, the functions

in a triplet other than the �rst are given by exactly such and operation indicated by the operator

ρ as in (3.4.12). To perform a single step of cyclic permutation, the matrix representation of a

function can be right-multiplied by the following matrix

[P] =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 , (4.2.24)

thus

ρfp = [Fp][P], (4.2.25)

and

ρ2fp = [Fp][P][P]. (4.2.26)
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4.3 Manipulation of Webb Basis Functions

In this section the basis functions presented by Webb in [65] and discussed in detail in �3.4 are

considered. derivations for the expression of these basis functions in the matrix form as presented in

�4.2.1 are given. The grouping of the basis functions into edge-based and face-based sets of gradient

and rotational functions is once again used. The Slone adjustment to the basis functions [58] is also

investigated.

In order to simplify the notation somewhat, the following de�nitions are made:

Cnk =
n!

(n− k)!k!
, (4.3.1)

x+ = x+ 1, (4.3.2)

x− = x− 1. (4.3.3)

4.3.1 Edge Basis Functions

4.3.1.1 Gradient Functions

Using this de�nition of the gradient edge functions for edge emn in (3.4.11) and rewritten as follows

~G(emn)
g = ∇(smsn(sm − sn)g−1)

= Ng
m∇sm +Ng

n∇sn,
(4.3.4)

it can be shown that the coe�cient functions of ∇sm and ∇sn are given by

Ng
m =

g−1∑
i=0

M i,g
m sm

isn
g−i (4.3.5)

and

Ng
n =

g−1∑
i=0

M i,g
n sm

i+1sn
g−i−1 (4.3.6)

respectively with M i,g
m and M i,g

n constant coe�cients dependent on i and g given by

M i,g
m = Cg−1

i (−1)g−i−1(i+ 1), (4.3.7)

M i,g
n = Cg−1

i (−1)g−i−1(g − i). (4.3.8)

In both (4.3.5) and (4.3.6), the argument of the summation corresponds with the ith term of an

homogeneous polynomial coe�cient function.

As an example as to how these representations can be used, consider edge e12 and the coe�cient

functions as given in (4.3.5) and (4.3.6), the corresponding matrices, [Ng
m] and [Ng

n], for these
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functions will consist of rows of the form

[i, g − i, 0, M i,g
m ] (4.3.9)

and

[i+ 1, g − i− 1, 0, M i,g
n ] (4.3.10)

respectively with M i,g
m and M i,g

n given by (4.3.7) and (4.3.8).

4.3.1.2 Rotational Functions

There is only one rotational basis function associated with each edge. These Whitney functions can

be written as follows

~R
(e12)
1 = s1∇s2 − s2∇s1, (4.3.11)

~R
(e23)
1 = s2∇s3 − s3∇s2, (4.3.12)

~R
(e13)
1 = s1∇s3 − s3∇s1. (4.3.13)

Table 4.1 shows the matrix representations of the polynomial coe�cient functions of the three

Whitney functions.

Table 4.1: Polynomial coe�cient function matrices for the Whitney edge basis functions. Blank entries
represent zero coe�cient functions.

~Ni Ni1 Ni2 Ni3

~R
(e12)
1 [0, 1, 0, −1] [1, 0, 0, 1]
~R

(e23)
1 [0, 0, 1, −1] [0, 1, 0, 1]
~R

(e13)
1 [0, 0, 1, −1] [1, 0, 0, 1]

4.3.2 Face Basis Functions

4.3.2.1 Gradient Functions

The general expression for the �rst function of the ith triplet of the gradient face basis function of

degree g is given in (3.4.16) and can be written as follows

~G
(f)
g,i = ∇Fg+1,i

= Ng,i
1 ∇s1 +Ng,i

2 ∇s2 +Ng,i
3 ∇s3

for i = 1, . . . , int
(
g + 1

3

)
; g ≥ 2.

(4.3.14)
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Here Fg+1,i is either given by (3.4.14) or (3.4.15) depending on the values of g and i with τk =
τg+1 = int

(
g+1

3

)
. Furthermore, due to the di�erent possible representations of Fg+1,i, there exist

four possible encodings for the coe�cient functions Ng,i
1 , Ng,i

2 and Ng,i
3 . To simplify notation, let

τ = τg+1

For i < τ , the triplet is a general one and the coe�cient functions of (4.3.14) are given by

Ng,i
1 =

k−1∑
n=0

Mk,n
1,1 s1

n+i+1s2
k−n+is3

i

+
k∑

n=0

Mk,n
1,2 s1

n+is2
k−n+i+1s3

i, (4.3.15)

Ng,i
2 =

k−1∑
n=0

Mk,n
2,1 s1

n+i+1s2
k−n+is3

i

+
k∑

n=0

Mk,n
2,2 s1

n+i+1s2
k−n+is3

i, (4.3.16)

and

Ng,i
3 =

k∑
n=0

Mk,n
3,1 s1

n+i+1s2
k−n+i+1s3

i−1. (4.3.17)

The substitution k = g− 3i− 1 is made to simplify notation and the coe�cients M1,1 through M3,1

are calculated as follows

Mk,n
1,1 = −Mk,n

2,1 = Ck−1
n (−1)k−n−1k, (4.3.18)

Mk,n
1,2 = Mk,n

2,2 = Ckn(−1)k−n(i+ 1), (4.3.19)

Mk,n
3,1 = Ckn(−1)k−n(i). (4.3.20)

The entries to the polynomial coe�cient matrices can be calculated from the powers of s1, s2 and

s3 and the coe�cients in (4.3.15) to (4.3.20).

If g + 1 is a multiple of three and i = τ , then Fg+1,i takes on the ((g + 1) mod 3) = 0 form of

(3.4.15) where the coe�cient functions are simply

Ng,i
1 = τs1

τ−s2
τs3

τ , (4.3.21)

Ng,i
2 = τs1

τs2
τ−s3

τ , (4.3.22)

Ng,i
3 = τs1

τs2
τs3

τ− (4.3.23)

with the corresponding coe�cient matrix representations being given in Table 4.2.

The ((g+ 1) mod 3) = 1, i = τ case is now considered. The coe�cient functions of (4.3.14) take
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Table 4.2: Matrix representations of gradient coe�cient functions for the case ((g + 1) mod 3) = 0 and
i = τ .

Coe�cient Matrix
Function Representation

Ng,i
1 [τ − 1, τ, τ, τ ]

Ng,i
2 [τ, τ − 1, τ, τ ]

Ng,i
3 [τ, τ, τ − 1, τ ]

the form

Ng,i
1 = (τ + 1)(s1s2s3)τ − τs1

τ−s2
τ+
s3
τ , (4.3.24)

Ng,i
2 = τs1

τ+
s2
τ−s3

τ − (τ + 1)(s1s2s3)τ , (4.3.25)

Ng,i
3 = τs1

τ+
s2
τs3

τ− − τs1
τs2

τ+
s3
τ− . (4.3.26)

In this case, each of the coe�cient functions consist of two terms and thus the corresponding matrix

representations will have two rows. These matrix representations are given in Table 4.3.

Table 4.3: Matrix representations of gradient coe�cient functions for the case ((g + 1) mod 3) = 1 and
i = τ .

Coe�cient Matrix
Function Representation

Ng,i
1

[
τ, τ, τ, τ + 1

τ − 1, τ + 1, τ, −τ

]

Ng,i
2

[
τ + 1, τ − 1, τ, τ
τ, τ, τ, −(τ + 1)

]

Ng,i
3

[
τ + 1, τ, τ − 1, τ
τ, τ + 1, τ − 1, −τ

]

The �nal case is that of ((g + 1) mod 3) = 2 and i = τ . The coe�cient functions are then

de�ned as

Ng,i
1 = (τ + 1)s1

τs2
τ+
s3
τ , (4.3.27)

Ng,i
2 = (τ + 1)s1

τ+
s2
τs3

τ , (4.3.28)

Ng,i
3 = τs1

τ+
s2
τ+
s3
τ− , (4.3.29)

with matrix representations given in Table 4.4.
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Table 4.4: Matrix representations of gradient coe�cient functions for the case ((g + 1) mod 3) = 2 and
i = τ .

Coe�cient Matrix
Function Representation

Ng,i
1

[
τ, τ + 1, τ, τ + 1

]
Ng,i

2

[
τ + 1, τ, τ, τ + 1

]
Ng,i

3

[
τ + 1, τ + 1, τ − 1, τ

]
4.3.2.2 Rotational Functions

The expression for the �rst function of the ith triplet of the set of rotational face functions of order

r ≥ 2 is

~R
(f)
r,i = Fr,(i−1)∇s3

= N r,i
1 ∇s1 +N r,i

2 ∇s2 +N r,i
3 ∇s3

for i = 1, . . . , σ; r ≥ 2

(4.3.30)

where σ is de�ned by

σ = int

(
r − 1

3

)
, (4.3.31)

and Fr,(i−1), dependent on r and i, is given by (3.4.14) for i < σ+ 1. When i = σ+ 1, the rotational
face function takes the form of the last triplet as given in (3.4.20) which can also be written in the

form

~R
(f)
r,i = N r,i

1 ∇s1 +N r,i
2 ∇s2 +N r,i

3 ∇s3, r ≥ 2 (4.3.32)

Similar to the gradient functions as discussed in �4.3.2.1, there are three possible variations of

the coe�cient functions N r,i
1 , N r,i

2 and N r,i
3 . The �rst of these is the general triplet as given in

(4.3.30) and also in the case of i = σ + 1 and (r mod 3) = 0 in (3.4.20). The coe�cient functions

can then be expressed as

N r,i
1 = 0, (4.3.33)

N r,i
2 = 0, (4.3.34)

N r,i
3 =

k∑
n=0

Mk,n
3 s1

n+is2
k−n+is3

i−1, (4.3.35)

where k = r − 3i+ 1 and the coe�cient, Mk,n
3 , of the nth term of N r,i

3 has the form

Mk,n
3 = Ckn(−1)k−n. (4.3.36)
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Thus the matrix representation of N r,i
3 consists of k + 1 rows of the form

[n+ i, k − n+ i, i− 1, Mk,n
3 ]. (4.3.37)

In case of i = σ + 1 and (r mod 3) = 1, the coe�cient functions for the �rst function of the

triplet are calculated using (3.4.20) as follows

N r,i
1 = s1

σs2
σ+
s3
σ − s1

σs2
σs3

σ+
, (4.3.38)

N r,i
2 = s1

σs2
σs3

σ+ − s1
σ+
s2
σs3

σ, (4.3.39)

N r,i
3 = s1

σ+
s2
σs3

σ − s1
σs2

σ+
s3
σ. (4.3.40)

Each of these functions consists of exactly two terms and thus has a two-row matrix representation.

The representations of these functions are given in Table 4.5.

Table 4.5: Matrix representations of rotational coe�cient functions for the case (r mod 3) = 1 and i = σ+1.

Coe�cient Matrix
Function Representation

N r,i
1

[
σ, σ + 1, σ, 1
σ, σ, σ + 1, −1

]

N r,i
2

[
σ, σ, σ + 1, 1

σ + 1, σ, σ, −1

]

N r,i
3

[
σ + 1, σ, σ, 1
σ, σ + 1, σ, −1

]

The last case to consider for the rotational face basis functions is, i = σ+ 1 and (r mod 3) = 2.
The coe�cient functions in this case consist of single terms and are given by

N r,i
1 = s1

σs2
σ+
s3
σ+
, (4.3.41)

N r,i
2 = s1

σ+
s2
σs3

σ+
, (4.3.42)

N r,i
3 = −2s1

σ+
s2
σ+
s3
σ, (4.3.43)

with single-row matrix representations as shown in Table 4.6.

4.3.2.3 Slone Correction to Rotational Face Functions

With the Webb [65] basis functions now completed, the manipulation of the Slone [58] correction is

now discussed. Only one of the representations of the basis functions discussed in �4.3.2.2 is a�ected,
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Table 4.6: Matrix representations of rotational coe�cient functions for the case (r mod 3) = 2 and i = σ+1.

Coe�cient Matrix
Function Representation

N r,i
1

[
σ, σ + 1, σ + 1, 1

]
N r,i

2

[
σ + 1, σ, σ + 1, 1

]
N r,i

3

[
σ + 1, σ + 1, σ, −2

]
namely the representation of the general triplet, i < σ + 1, and the (r mod 3) = 0, i = σ + 1 case,

given by (4.3.30), (4.3.35) and (4.3.36). Considering that the ith triplet of the degree r basis function

is now given by

~R
(f)
r,i = F(r−1),(i−1)(s2∇s3 − s3∇s2)

= N r,i
1 ∇s1 +N r,i

2 ∇s2 +N r,i
3 ∇s3

for i = 1, . . . , σ + 1,

(4.3.44)

and the coe�cient functions calculated as

N r,i
1 = 0, (4.3.45)

N r,i
2 =

k∑
n=0

Mk,n
2 s1

n+is2
k−n+is3

i, (4.3.46)

N r,i
3 =

k∑
n=0

Mk,n
3 s1

n+is2
k−n+1+is3

i−1. (4.3.47)

where k = r − 3i. The coe�cient of each term of the two coe�cient functions are related and can

be expressed as

Mk,n
3 = −Mk,n

2 = Ckn(−1)k−n. (4.3.48)

4.4 Conclusion

A means of representing multivariate polynomials electronically has been presented. The Webb basis

functions as well as the Slone adjustment were manipulated to be represented in this form allowing

for their automatic generation to arbitrary order. Furthermore, a computer algebra system to be

used to manipulate polynomials, including the basis functions, was presented and discussed. Using

this CAS, the universal mass and sti�ness matrices for a set of basis functions can be calculated

and used in computing the �nite element solution of the waveguide eigenvalue problem. Although

the basis functions were manipulated symbolically, it is possible to extend the CAS to allow for the

automatic generation of the basis functions from forms such as those given in �3.4.



Chapter 5

Adaptivity in the Finite Element Method

5.1 Introduction

Since the inception of the �nite element method, there has always been the need for more accurate

and, perhaps equally importantly, more e�cient solutions. This chapter investigates the concepts of

re�nement and adaptivity as applied to the �nite element method. A brief discussion on the source

of errors and the convergence behaviour of the solution in the �nite element method is followed

by an overview of the adaptive process and its components. These components include an error

estimation scheme and a re�nement method, with each of these being considered in turn. The

methods introduced here are applied to generate the results for waveguide cuto� problems that are

presented in the following chapter.

5.2 Background and Theory

5.2.1 Error and Convergence Analysis

In order to investigate the convergence of a �nite element solution, it is wise to mention some of the

sources of error in its computation. These can be divided into three main categories [50], namely

� Discretisation Error,

� Numerical Error,

� Interpolation Error.

The �rst of these relates to the physical and geometric representation of the problem domain

and include errors such as those incurred when representing a curved boundary with a number of

straight-line segments. The second group results from inaccuracies in numeric computations such

as numeric integration schemes, errors in numeric solution methods including eigenvalue solvers

and lastly truncation and round-o� errors as a result of �nite precision arithmetic and number

39
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representation used in computers. The �nal category is the one usually considered when discussing

the accuracy and convergence of the �nite element method as it relates to the error in interpolation

of an unknown function using a prede�ned set of basis functions.

5.2.1.1 Interpolation Error

Let (Hm(Ω))n be the n-dimensional Hilbert space of order m, such that for any ~x ∈ (Hm(Ω))n, ~x as
well as its derivatives up to orderm are square integrable [50]. Taking ~x as the unknown true solution

to the �nite element problem that is approximated by ~xhp in the �nite element approximation space,

the interpolation error in the �nite element solution can be de�ned as [50, 41]

~ehp = ~x− ~xhp, (5.2.1)

with

‖~ehp‖2 = ‖~x− ~xhp‖2, (5.2.2)

the norm of the error in the L2 norm de�ned as

‖~ehp‖2 =

√ˆ
Ω
|~ehp|2dΩ. (5.2.3)

De�ne h < 1 as the maximum diameter of the elements in the �nite element mesh, and let

k = min(m, p), (5.2.4)

with m the order of the Hilbert space in which the solution resides and p the polynomial order of

the �nite element approximation. C is used to represent a constant that is independent of the the

other variables used in an expression and may di�er from one expression to another.

For a regular (conformal) mesh that is at least quasi-uniform, the following inequality holds

[50, 9]

‖~ehp‖2 ≤ C
hk

pm
, with k = min(m, p) (5.2.5)

If a mesh is selectively re�ned, then h is no longer the best choice for convergence analysis since the

mesh density may di�er greatly from one area of the mesh to another. For this reason, the number

of degrees of freedom Nd is used instead. If the polynomial order p remains constant, (5.2.5) can

be rewritten as

‖~ehp‖2 ≤ CNd
− k

n , (5.2.6)

where n is the dimensionality of the problem with n = 2 in the two dimensional case.

When nonconvex domains such as a waveguide with reentrant corners are considered, the pos-

sibility exists that the solution and its derivatives are no longer su�ciently smooth in all regions of
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the domain. A solution of insu�cient smoothness is characterised by

m = α, with 0 ≤ α < 1 (5.2.7)

and under these circumstances (5.2.5) and (5.2.6) are no longer dependent on the polynomial order

of the �nite element approximation and the convergence is determined by α [50, 35].

An equilibrated mesh is one where the sizes of the elements in a mesh are adapted to the nature of

the solution in their vicinity. Thus in a region where the solution or its derivatives are insu�ciently

smooth the elements are smaller. This is an attempt to ensure that the contribution of each element

to the total error is similar. When an equilibrated mesh is employed it is possible to obtain the

following expression for convergence of the error

‖~ehp‖2 ≤ CNd
− p

n . (5.2.8)

This has the same convergence behaviour with respect to p as the case where the solution was

su�ciently smooth and is independent of α, although some e�ort is required for the construction

of the equilibriated mesh. This is the reasoning behind the h-version of the �nite element method

[50].

If the polynomial degree of each element is allowed to increase uniformly in an attempt to

compensate for variations in the solution the p-version of the �nite element method is obtained. The

increase in the number of degrees of freedom in this case has the following e�ect on the convergence

of the interpolation error

‖~ehp‖2 ≤ CNd
−β, (5.2.9)

with β a constant that is dependent on both the mesh quality and α (the regularity of the solution

as de�ned in (5.2.7)). If quasi-uniform meshes and smooth solutions are considered, then the p-

version performs at least as well as the h-version in terms of convergence. For a problem with

reentrant corners β = m and when comparing (5.2.6) with (5.2.9), it is clear that the p-version has

a convergence rate of n times that of the h-version with n = 2 in the two dimensional case [50].

In general, both the h and the p versions of the �nite element method still exhibit algebraic

convergence in the number of degrees of freedom in the case of solutions of insu�cient regularity.

It can be shown that for a combination of the h and p-re�nements, the hp-method, it is possible to

achieve exponential convergence for most solutions [18, 50]. The convergence of the error can then

be expressed as

‖~ehp‖2 ≤ C exp(−Nd). (5.2.10)

5.2.1.2 Numerical Error

The use of �nite precision binary �oating point arithmetic in the representation of real values results

in a bounded round-o� errors. In general, fl(y), the �oating point representation of a value y ∈ R
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can be expressed as follows [25]

fl(y) = y(1 + ε), with |ε| ≤ 2−t. (5.2.11)

Here t represents the number of bits in the mantissa of the binary �oating point representation. Thus

the error in representing a real number is bounded by the machine precision (ε) and it is the e�ect

of this imprecision on the results of mathematical operations that needs to be taken into account,

especially when considering matrix or vector operations which may consist of many multiplications

and additions.

Consider a matrix eigenvalue problem of the form

[A][X] = [X][K], (5.2.12)

where [X] is the matrix of right eigenvectors and [K] is a diagonal matrix with the corresponding

eigenvalues. Since [K] and [X] are of interest in this case, the e�ect of perturbations in the matrix

[A] on their values is investigated.

For many eigenvalue routines, the eigenvalues obtained for a matrix [A] are in fact the exact

eigenvalues of a matrix [Â] = [A] + [E] where [E] is a perturbation matrix [25]. Moreover, from the

Bauer-Fike theorem [25], the eigenvalues of [Â] (µ) and [A] (λ) are related as follows

min
λ∈λ([A])

|λ− µ| ≤ κ([X])‖[E]‖, (5.2.13)

where κ ([X]) is the condition number of the right eigenvector matrix de�ned as

κ([X]) = ‖[X]‖‖[X]−1‖ (5.2.14)

and ‖E‖ represents the magnitude of the matrix perturbation. Summarising the result of (5.2.13),

for a �oating point implementation with n decimal digits of accuracy and if κ ([X]) ≈ 10d, then the

resulting eigenvalue can only be expected to have n−d decimal digits of accuracy for perturbations
to the order of machine precision [24, 25].

Assuming matrix perturbations bounded by machine precision, the numerical error resulting

from the solution of the eigenvalue system will depend only on the condition number of the right

eigenvector matrix κ([X]). Furthermore, the conditioning of [X] is related to κ([A]) as follows

κ([A]) ≤ Cκ([X]), with C ≥ 1. (5.2.15)

When considering the eigenvalue problem of (2.3.13) and setting

[A] = [T]−1[S], (5.2.16)



CHAPTER 5. ADAPTIVITY IN THE FINITE ELEMENT METHOD 43

it is clear that the conditioning of the right eigenvector matrix is dependent on the conditioning of

the �nite element system matrices. Furthermore, it has been shown that the conditioning of the

system matrices is at least O(p2) [2, 61] and has an h−2 relationship to the size of the elements [50].

Thus it is expected that the contribution of numerical errors to the total error in the solution will

increase with increasing polynomial order and decreasing mesh size. In the case of iterative solvers

as used by many sparse matrix routines, the accuracy of the solution is not necessarily a�ected

by the conditioning of the matrices. On the other hand, the time required for convergence to the

solution is increasing in the condition number and thus, as the condition number increases, so does

the time required to solve the matrix problem [50, 62].

As discussed in �5.2.1, an additional source of numeric error in the �nite element method is the

use of numeric integration schemes such as quadrature rules. These rules approximate the integral

of a function of a particular domain as the weighted sum of the function values evaluated at a �nite

set of points [51] with a number of possible sets of points and weights available [22, 14].

The number of points at which the function must be evaluated is increasing in the degree of the

function with the number of quadrature points for various polynomial orders given in Table 5.1 [22].

In the case of the �nite element method, the functions that need to be evaluated are the products of

Table 5.1: Number of quadrature points (Nq) for numeric integration over a triangle for various polynomial
orders (k).

k Nq

2 3
4 6
10 25
14 42
20 79

two polynomials of at most degree p, and thus in the worst case, the quadrature rule needs to be of

order k = 2p for accurate results. For the high order basis functions implemented here, the number

of points required grows rapidly. Using the computer algebra system as discussed in Chapter 4 and

the closed form expression for the integration over a reference triangle (A.0.4), the integrals can be

computed without the need for quadrature rules.

5.2.2 The Automatic Adaptive Process

In �5.2.1 it was indicated that often, the uniform re�nement of a �nite element representation in

either h or p is not always optimal with respect to the number of degrees of freedom. For this

reason, a self adaptive procedure is developed that will automatically re�ne the solution in the

required areas to obtain optimal performance. In Figure 5.1 a block diagram is shown indicating

the main steps in the �nite element process including adaptivity. A short description of each step
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Figure 5.1: Block diagram representation of the adaptive �nite element process.

follows

1. Initialise:

The initial mesh for the problem is generated and a set of basis functions are selected with

the universal matrices as described in �3.6 being loaded or computed if required. Using these,

the [S] and [T] matrices for the system are calculated.

2. Solve:

The system of equations such as the one in (2.3.13) is solved. In this case it has the form of

an eigenvalue problem with a number of existing numerical methods for obtaining a solution

[25].

3. Estimate error:

The error in the �nite element solution is estimated. This step is discussed further in �5.3.

4. Test for su�cient accuracy:

The error estimate obtained in the previous step is compared to a prede�ned threshold. If

the error is less than the required tolerance, then the process can be stopped since the FE

solution is considered close enough to the true solution.
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5. Re�ne:

The FE solution space can now be re�ned, either uniformly or selectively using information

obtained during the error estimation stage. Re�nement is discussed in more detail in �5.4.

For the standard �nite element method without adaptivity, steps 3, 4, and 5 are absent from

the process, and the solution obtained in 2 is taken as the �nal solution. The adaptive steps will be

discussed further in subsequent sections.

5.3 Error Estimators and Indicators

Since the true solution for a problem being solved using the �nite element method is not gen-

erally known, it follows that the error in the solution cannot be computed exactly either. Thus

various error estimation techniques are employed to approximate the error in the �nite element

solution. In addition to providing a measure of solution con�dence, these estimates can be used to

drive automatic adaptive processes in an attempt to obtain the most e�cient solution in terms of

computational cost.

Error estimators can be divided into two categories. These are a priori estimators, which

attempt to obtain an estimation of the error before the �nite element solution has been obtained,

and a posteriori estimators that use the computed �nite element solution to calculate an estimate

for the error in the solution. A priori estimates indicate the convergence, stability and asymptotic

behaviour of the error and take the form of the equations in �5.2.1.1 [3, 60]. These equations contain

constants which are often di�cult to calculate and thus do not give an accurate indication of the

error and are unsuitable to drive a selective re�nement process [50].

Since a posteriori estimates are obtained from the solution itself they can provide information

pertaining to the accuracy of the solution over the entire computational domain as well as local in-

formation relating to the distribution of the error in the �nite element mesh. The global information

can be used to decide when an adaptive process can be stopped, with the local information useful

in deciding exactly where re�nement will be most advantageous making a posteriori estimates ideal

for use in an automatically adaptive scheme.

In literature on error analysis and adaptivity, the term error indicator is often used in conjunction

with the concept of error estimation. An error indicator is used to provide a comparative measure

within the solution of a given problem but does not necessarily provide information as to how

accurate the particular solution is. The comparison could be between elements of a given mesh or

between two di�erent discretisations resulting from an adaptive process [50].

When considering a posteriori estimators and indicators, numerous possible implementations

have been developed. These can be grouped into a number of categories that include residual-based

estimators [50, 13, 3] and recovery-based or post-processing estimators [21, 3, 20]. The latter are

often computationally cheaper as the residual-based estimators solve a local boundary value problem
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in order to obtain an estimate of the error [3].

5.3.1 Flux Continuity Indicator

The error indicator presented here measures the normal discontinuity in the �ux across a boundary

and is a post-processing indicator. It is known that in a charge-free region, such as a hollow

waveguide, the �ux must be continuous and thus at a boundary between two domains [59]

n̂ · (ε2 ~E2 − ε1 ~E1) = ρs, (5.3.1)

with ρs = 0 the surface charge density and n̂ the normal to the boundary pointing from domain 1

to domain 2.

Now, de�ne the normal jump in �ux across the inner edge Γe 6∈ ΓD shared by elements i and j

as

∆DΓe = |n̂Γe · (εj ~Ej − εi ~Ei)|, (5.3.2)

with n̂Γe the normal to the edge, εi ~Ei and εj ~Ej the �ux in elements i and j respectively and the

jump possibly dependent on the position along the edge. Furthermore, since tangential continuity

in the electric �eld is enforced by the �nite element formulation, it follows that the jump in �ux can

be written as

∆DΓe = ‖εj ~Ej − εi ~Ei‖2, (5.3.3)

where ‖·‖2 is the standard vector norm in this case.

An error indicator for this edge can now be de�ned by the following

(ηΓe)2 = lΓe

ˆ
Γe

(∆DΓe)2dΓe, (5.3.4)

with lΓe the length of the edge. A global error indicator ηG is calculated as

(ηG)2 =
Nie∑
e=1

(ηΓe)2. (5.3.5)

The summation is over all the Nie inner edges in the mesh. Error indicators based on this concept

have been used to drive both h-re�nement [20] and p-re�nement [4] in adaptive implementations.

Furthermore, the indicator showed comparable performance to the residual based indicators pre-

sented in [50] for the problems considered in [20].

Elements are marked for re�nement if at least one of their edges has an indicator that meets the

following criterion

ηΓe ≥ δηmax, with 0 ≤ δ ≤ 1, (5.3.6)

with ηmax the maximum error indicator for all edges and δ a constant parameter that controls how
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many elements will be re�ned. If δ = 0 then all elements will be chosen and the re�nement will

be uniform. For higher values of δ, less elements will be selected. It should be noted that since

each inner edge is shared by two elements, re�nement will take place over at least pairs of elements

instead of single elements which has been shown to be favourable in [4].

5.3.2 Uniform Re�nement Indicator

Although the error indicator presented in the previous section can be used to drive an adaptive

process using either h or p-re�nement, it does not give a clear indication as to which of the re�nement

options is the best choice for a given element. Thus this indicator is not ideal for an hp-adaptive

scheme without additional information being provided.

In [18] Demkowicz et al. present an error estimate intended for use in a fully automatic hp-

adaptive process. This method involves re�ning the current (coarse) solution uniformly in both h

and p and resolving the problem to obtain a reference solution. The error relative to this reference

solution can then be computed for the coarse mesh. The calculation of a uniformly re�ned mesh

to allow for error computation may seem extreme and wasteful in terms of computational cost. In

defence of the method, the following factors should be taken into consideration [18]. Firstly, if an

iterative multigrid solver is used to compute the reference solution the cost involved can be greatly

reduced with a solution of su�cient accuracy being obtained after just a small number of iterations

[44]. Secondly, the re�ned solution is not simply discarded. If the error between the coarse and the

reference solution is su�ciently small then the latter is considered the �nal solution[18, 23].

The choice of reference solution can further be justi�ed by the fact that before a decision can be

made regarding the relative merit of a particular adaptive path, information is required regarding all

other re�nement paths [49]. The contributions of each of the re�nement paths can be extracted from

the re�ned solution since it is a combination of them. In practice, this is achieved by projecting the

re�ned solution onto the �nite element subspaces representing the various re�nement alternatives.

5.4 Re�nement

5.4.1 h-Re�nement

Having selected an element to be h-re�ned, the question still remains as to how the element should

be split. Factors that should be considered when splitting the element is the nature of the angles of

the resultant triangle as well as whether or not the conformity of the mesh needs to be enforced once

the element has been split. It has been shown [7, 54] that angles approaching 0 and π adversely a�ect
the accuracy of the �nite element solution and should be avoided. The �nite element formulation

used here assumes that the mesh is conforming and thus neighbouring edges share a common edge

allowing the tangential continuity of the basis functions to be easily enforced. If the splitting of an
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element results in hanging nodes, as seen in Figure 5.2, then additional steps may be required to

ensure that the mesh is conformal [50, 40].

Figure 5.2: Figure illustrating a non-conformal mesh with a hanging node n.

One option for subdivision is to simply insert a new node at the centre of the element and join

this node to the three existing nodes of the element with three new edges. This subdivision results

in the element being split into three child elements with an example being shown in Figure 5.3(a).

As can be seen from the �gure, the resultant mesh is conformal as it has no hanging nodes, however

successive re�nements could result in oblique elements with angles approaching π and 0 with an

example shown in Figure 5.3(b).

(a) Initial subdivision. (b) Successive subdivisions.

Figure 5.3: Element division by inserting a new node at the centroid and the e�ect of successive subdivisions.
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In order to de�ne an alternative method of dividing an element, de�ne the peak of a triangle

as the newest vertex and its base the edge opposite the peak. The newest vertex bisection method

bisects an element by placing a new vertex at the midpoint of the base of the element and joining this

vertex to the peak [40, 33]. This new vertex then becomes the peaks of the two resultant triangles

and is illustrated in Figure 5.4. Initially the peak is selected as the vertex opposite the longest

Figure 5.4: Figure illustrating the newest vertex (peak) bisection of a triangle showing the peaks (◦) of the
resultant triangles. The peak of the original triangle is indicated by �.

edge. This form of subdivision can result in a nonconformal mesh and in [40] Mitchell presents a

bounded recursive algorithm for newest vertex bisection that ensures a conformal mesh during the

subdivision process. The subdivision algorithm is given as Algorithm 1. An element is de�ned as

Algorithm 1: divide_element(e)

if e is not compatibly divisible then
divide_element(neighbour at base of e)

divide e and neighbour at base of e as a pair

compatibly divisible if either its base is part of the domain boundary or its base is also the base of

its neighbour. In the �rst case, the element can simply be divided since adding an extra node on

a boundary edge does not make the mesh non-conformal otherwise the element and its neighbour

are divided as a pair as shown in Figure 5.5 If the element is not compatibly divisible, then its

neighbour does not share a base with it and the neighbour is then divided (recursively) in the same

way �nally resulting in the element being compatibly divisible with its new neighbour. The e�ect

of dividing an element that is not compatibly divisible on the mesh is shown in Figure 5.6.
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Figure 5.5: Dividing a compatibly divisible element and its neighbour as a pair. Also shown are the peaks
of the original triangles (�) and the peaks of the four resultant triangles ◦.

(a) Original Mesh. (b) Re�ned Mesh.

Figure 5.6: Illustration of the recursive re�nement algorithm when re�ning element e with neighbour n.
Also shown are the peaks in the original mesh (�), the peaks in the resultant mesh (◦) and the splitting of
the elements in pairs (dashed lines), (dotted lines), (solid lines).

It has been shown that there are only four similarity classes of triangles resulting from this

subdivision method. Thus as long as the angles in the original element are bounded away from 0
and π, the angles in the resultant triangles will also be [40].

5.4.2 p-Re�nement

As was discussed in �5.2.1.1 polynomial order re�nement is often more advantageous than mesh

re�nement, especially when the true solution to the problem is su�ciently smooth. In its simplest

form, p-re�nement involves simply adding the basis functions of a higher order to the element to be
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re�ned and taking their contribution to the FE matrices into account. In the case of the element

forming part of a �nite element mesh, it may be necessary to also add some additional basis functions

to the neighbours of the element so as to ensure tangential continuity between the elements.

In the case of the Webb basis functions as used here, the face-based functions do not contribute

to the tangential components of the �elds at the element boundary and thus it is su�cient to add

the basis functions of the required order for the shared edge. This is illustrated in Figure 5.7 where

the element marked e has been re�ned to a polynomial order p with the remaining elements in the

mesh of degree q. The elements marked h are hybrid elements since they have at least one edge

that is of a di�erent degree to the interior of the element. The edges of order p are indicated by

solid lines while the edges of order q are dashed lines. Elements o are regular elements of degree q.

Figure 5.7: Propagation of an increased element order to the neighbours of an element.

With the basis functions spaces being separated into gradient and rotational subspaces, the

question remains as to whether a mixed or complete order representation would provide a more

e�cient solution. It has been shown that the relative performance of these representations is problem

dependent [65, 66, 15] and ideally one would have the p adaptive process automatically select the

correct order of the subspaces in di�erent parts of the mesh, thus a solution containing both mixed

and complete order elements is possible.

In [66] and [12] two implementations for p-re�nement were suggested that attempt to provide

some functionality in terms of selecting between mixed and complete order representations at an

elemental level, although the formulations remain mostly intuitive. A simple heuristic argument

follows in an attempt to obtain a means to decide between complete and mixed order representations.



CHAPTER 5. ADAPTIVITY IN THE FINITE ELEMENT METHOD 52

One case where the complete order modelling outperforms the mixed order of the �eld is in the

case of singularities where the electric �eld exhibits quasistatic properties [32] and thus

~E ≈ ∇Φ, with Φ a scalar, (5.4.1)

from which it should be clear that the gradient subspace makes the most signi�cant contributions

in this case. The �nite element method attempts to approximate a �eld as a sum of a number of

known basis functions as in (2.3.8). Furthermore, these functions can be divided into gradient and

rotational functions as discussed in �3.4 and thus (2.3.8) can be rewritten as

~Eeh =
ng∑
i=1

αegi
~Gei +

nr∑
i=1

α
(f)
ri
~R

(f)
i +

3∑
i=1

α
(e)
wi
~W

(e)
i . (5.4.2)

Here ng and nr are the number of gradient functions and number of rotational face functions on

the element respectively. ~Gei ,
~R

(f)
i , and ~W

(e)
i are the gradient edge and face, rotational face, and

Whitney (rotational) edge functions for the element with corresponding coe�cients αegi, α
(f)
ri , and

α
(e)
wi . From (5.4.1) and the de�nitions of the rotational and gradient subspaces in �3.4 it follows that

if the elemental electric �eld ~Eeh is of the form given in (5.4.1) then

α
(f)
ri ≈ 0, ∀i, (5.4.3)

meaning that the contributions of the rotational basis functions are negligible. The Whitney basis

functions consist of rotational and a gradient part which is constant and therefore their coe�cients

are non-zero [66]. Thus, by considering the relative values of the coe�cients of the gradient and

rotational functions a decision can be made on the quasistatic nature of the �elds and a mixed or

complete order element re�nement performed accordingly.

For mixed and complete representations of degree one, there are no separate rotational and

gradient functions to use for coe�cient comparison and another method must be employed to make

the decision for re�nement. In [12] a model-based criterion comparing the norm of the curl of the

electric �eld (related to the magnetic �eld) in the element to the norm of the elemental �eld itself

is used as given by

βi =
1

|µrεr|ko2 ·
‖∇ × ~Eeh‖2
‖ ~Eeh‖2

, (5.4.4)

with the norm ‖·‖2 the L2 norm over the element. Here a threshold for βi still remains to be chosen

and is problem dependent [12]. For this reason, the decision making is simpli�ed somewhat by

enforcing the initial re�nement sequence of (0, 1) → (1, 1) → (1, 2), after which the coe�cients of

the rotational and basis functions can be used to make a decision. The criteria for re�nement mode
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selection is given by

re�nement mode =

complete if
αRMS

g

αRMS
r

> αRMS
w

αRMS
g

,

mixed if
αRMS

g

αRMS
r

≤ αRMS
w

αRMS
g

,
(5.4.5)

where αRMS
g , αRMS

r , and αRMS
w are the root mean squared values of the gradient, rotational and

Whitney coe�cients for a particular element as in (5.4.2).

5.4.3 hp-Re�nement

In the case of hp-adaptivity, the question of re�nement path becomes signi�cantly more complex

as the number of possible paths is increased. Even with only two possibilities for each element, the

selection of either h or p re�nement is a non-trivial one. In [8] the optimality of an hp �nite element

mesh in one dimension is investigated. It is found that the mesh should have smaller elements in

regions surrounding singularities and higher order approximations further away where the solution

is su�ciently smooth. This is in agreement with the idea of equidistribution of the error in an

equilibrated mesh as discussed in [49] and [50, �2.5.3].

Oden and Patra presented a three step algorithm in [43] which aims to generate an optimal

hp-mesh for elliptical problems and results indicate that exponential convergence was achieved for

the problems considered. This method makes use of both a priori and a posteriori error estimates

to drive the adaptive process and requires that the problem be resolved on an intermediate h-re�ned

mesh as well as a p-re�nement of the intermediate mesh with error estimates calculated between

each step.

When considering the application of hp-adaptivity to the �nite element method in electromagnet-

ics, much of the recent work can be attributed to Demkowicz et al. in papers such as [19, 45, 23, 17].

Some other publications, such as [34] and [27] discuss the hp-adaptive method, but provide no re-

sults indicating fully automatic adaptivity, with only uniform h-re�nement results being shown in

the latter case.

A relatively recent paper by Schober and Kasper [52] compares a number of hp-adaptive strate-

gies using an explicit residual-based estimator to solve two dimensional electromagnetic wave prop-

agation problems. Two of the strategies are the top 5 percent h-re�ne (T5) and the keypoint-based

(KP) strategies. Both of these perform better than the other strategies considered, both in terms

of number of degrees of freedom required and computational time to reach a prescribed level of

solution accuracy, with the KP strategy outperforming the T5 one.

In the T5 strategy, the top �ve percent of the elements selected to be re�ned are h-re�ned, while

the rest of the elements with the largest error indicators are re�ned in p. The KP strategy uses

additional information pertaining to the physical structure of the �nite element mesh to decide on a

re�nement path for a given element. In the strategy, keypoints are identi�ed in the mesh and include
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reentrant corners. If an element to be re�ned contains one of these keypoints, then the element is

h-re�ned otherwise it is p-re�ned. This strategy has the advantage that it is simple to implement,

and the keypoints could be identi�ed automatically. The resultant mesh also has a higher mesh

density around singularities which has been found to be optimal in terms of the error in the �nite

element solution [8, 50].

Return now to the method presented by Demkowicz et al. originally in [18] and later extended to

the solution of Maxwell's equations in [17] with its application to the computation of waveguide port

parameters discussed in [23]. As already discussed brie�y in �5.3.2, the method involves computing a

second solution which is obtained by uniformly re�ning in both h and p the original coarse solution

and using this �ne solution as the reference solution with which to drive a selective re�nement

process. In short, for each element, the decrease rate of the elemental error is computed for a

number of possible re�nement paths. From these the re�nement that results in the largest decrease

in the elemental error per degree of freedom is selected as the re�nement path for an element. The

steps of the process are discussed in more detail in [18], [17], and [23].

In order to compute the decrease rates in the errors for the di�erent re�nement paths, it is

required that the �ne solution be projected onto various elemental subspaces. As an example,

consider an element of order (g, r) in the coarse mesh as shown in Figure 5.8(a) and the re�nement

of this element to two elements of order (g+ 1, r+ 1) as in Figure 5.8(b). To compute the expected

error decrease rate for a re�nement in p from order (g, r) to order (g, r + 1), the �ne solution is

projected onto the basis functions for order (g, r + 1) de�ned in the original element. The basis

functions onto which the solution must be projected will be termed the target basis functions. Also,

since the face basis functions have a zero tangential component, and the tangential components

of the edge basis functions are equal for adjacent elements, the projection problem is a local one

[67, 47].

(a) Coarse Element (b) Fine Elements

Figure 5.8: Original element in the coarse mesh as well as the resultant elements in the �ne mesh obtained
by uniform re�nement.
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The projection of the �ne solution, ~Eo onto a particular set of basis functions is equivalent to

�nding the coe�cients, cj of each of the nt target basis functions ~Nj such that [67]

nt∑
j=1

cj ~Nj = ~Eo. (5.4.6)

In [67], a systematic process is given to obtain expressions for the coe�cients cj in (5.4.6) by

separately considering the tangential edge components followed by the rotational face functions

and �nally the gradient face functions. An alternative in [47] simply considers the edge and face

functions separately with no distinction being made between the rotational and gradient functions.

Both [67] and [47] describe a projective procedure which uses the target basis functions as testing

functions and thus solving (5.4.6) is reduced to solving a number of matrix equations of the form

[N]{c} = {b} − {p}, (5.4.7)

with {c} a column vector of the coe�cients cj , the entries of [N] given by

Nij = 〈 ~Ni, ~Nj〉, (5.4.8)

and the elements of {b} by
bi = 〈 ~Ni, ~Eo〉. (5.4.9)

Here 〈·, ·〉 represents an inner product along an edge when determining the coe�cients of the edge

based basis functions and a two-dimensional inner product over the face of the element for the

remaining coe�cients. The edge and face are associated with the target element. For the de�nition

of the inner products see [67] or [47]. The vector {p} represents the contributions of the basis

functions for which the coe�cients have already been determined and {p} = 0 in most cases. The

[N] matrices obtained are universal (not dependent on the shape of a given element), and thus can

be precomputed and need only be inverted once for a given set of target basis functions. This should

improve the performance of the projective procedure substantially [67, 47].

In (5.4.9) it is shown that the inner product between the target basis functions and the �ne

solution ~Eo needs to be computed. This can be done using a numeric quadrature rule [22], but

recalling that ~Eo is itself the weighted sum of ns source basis functions ~N s
j with corresponding

coe�cients sj , it is possible to rewrite the vector {b} in (5.4.7) as a matrix expression

{b} = [B]{s}, (5.4.10)

with {s} a column matrix of the coe�cients of the source basis functions, sj . The entries of the

matrix [B] can be computed as

Bij = 〈 ~Ni, ~N
s
j 〉, (5.4.11)
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with 〈·, ·〉 the same inner product as in (5.4.8). The matrix [B] is also universal for a given source

and target topology and set of basis functions.

The expressions for the elements of the matrices [N] and [B] in (5.4.8) and (5.4.11) respectively

have similar forms to the entries of the �nite element system matrices and can also be computed

using the computer algebra system discussed in �4.2. However, for the source projection matrix [B],
the computation of the entries is non-trivial for cases where the topologies of the �ne solution mesh

and the target mesh are not the same as is the case when computing the error decrease rates for

both complete order and mixed order p-re�nements.

As an illustration, consider the case depicted in Figure 5.8 with Figure 5.8(a) and (b) representing

the target and source meshes respectively. The inner products that need to be computed involve

integration over the single target element, taking the inner product over the face of the element as

an example, and is written as [67]

〈a, b〉 = 2
ˆ

Ω
(ab)dΩ, (5.4.12)

with dΩ = ds1ds2 where s1 and s2 are the simplex coordinates in the target element. Since the

basis functions for an element are local to that element and are de�ned as zero in adjacent elements,

the integral over the target element can be written as the sum of two integrals over sub-triangles

corresponding to the source elements. In each of these integrals, the integrand is only dependent

on the target basis functions and the source basis functions associated with the source element over

which the integral is de�ned. After a coordinate transformation to the simplex coordinates of each

of the source elements, it is possible to use the closed form expression for simplex integration over

a reference triangle as implemented by the CAS to evaluate each of the integrals and the entries for

the matrix [B] can be computed.

An alternative to the projective solution of the target basis function coe�cients is to match the

�eld in the target element to the source �eld at a prede�ned set of points [67]. As a �rst step the

tangential components of the basis functions are matched along the edges of the target element and

since these are independent of the face based basis functions, the problem is a local one. The �eld

can then be matched at points in the interior of the element using the edge coe�cients already

computed.

The matching process can be described by the following matrix expression

[M]{c} = [D]{s} − {p}, (5.4.13)

where each row of the matrices [M] and [D] correspond to a di�erent matching point and the

columns are associated with a speci�c target or source basis function in the case of [M] and [D]
respectively. The column vectors {c}, {s} and {p} have the same meaning as in the projective case

with [c] the unknown vector for which must be solved. For nt basis functions, at least nt linearly

independent equations are required to obtain a solution for [c]. If more points are chosen than the
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number of basis functions then (5.4.13) represents an overdetermined system of equations and [c]
can be solved by the method of least squares. If the points are chosen over a reference element, then

the matrices [M] and [D] need only be computed once for a given source and target topology and

maximum basis function order. The columns in either matrix associated with basis functions not

present in a particular order of approximation can be excluded, or simply assigned a zero coe�cient

in the case of the matrix [B].
As is the case for the projective implementation, the complexity of the point matching process is

higher for the case where the structures of the source and target meshes are not the same. For cases

where at least one of the neighbours of an element in the coarse mesh is not compatibly divisible as

discussed in �5.4.1, there may be up to four elements in the �ne mesh corresponding with the single

element in the coarse mesh with a di�erent [B] required for each possible con�guration, signi�cantly

increasing the time required to implement such a system.

The computation of the �ne solution in the Demkowicz method can be very computationally

costly, especially for higher polynomial orders due to the increased condition number of the �nite

element system matrices as discussed in �5.2.1.2. As a result of this increased computational cost

in conjunction with the sheer simplicity of the keypoint strategy as discussed in [52] the keypoint

strategy is chosen as the hp-adaptive re�nement method to implement.

5.5 Conclusion

An introduction to the adaptive �nite element method has been given with the related topics such as

error estimation and re�nement strategies also discussed. Additionally the theoretical convergence

of the method and its dependence on the mesh density and polynomial order of the basis functions

have been discussed. The di�erent strategies and their e�ect on the e�ciency of the solution in

terms of number of degrees of freedom can now be investigated by applying them to certain simple

waveguide problems as presented in the next chapter.



Chapter 6

Results for Waveguide Eigenanalysis

6.1 Introduction

One of the most common structures in microwave engineering is the waveguide. It is used in

applications where high power and low loss are essential, but does have the disadvantages of being

bulky, heavy, mechanically in�exible and expensive [48]. The simplest of these is the rectangular

waveguide for which the analytical results for the cuto� wavenumber as well as the cuto� �eld

distributions are easily computed. This greatly simpli�es the design of such structures as the

dimensions for the guide can simply be chosen for the desired frequency modes. A second type of

waveguide is the ridged waveguide. When compared to the rectangular guide, it has the advantage

that the separation between the dominant and higher order modes is increased. Furthermore, the

impedance of the guide falls between that of a rectangular guide and stripline, another common

guiding structure [26].

In this chapter, the higher order �nite element formulation discussed in the preceding chapters

is employed in solving the problem of the cuto� modes of these waveguide structures. For each

of the structures, the problem is solved and the e�ect of uniform re�nement in either the mesh

density or the polynomial order is investigated. In addition, the issue of mixed or complete order

representations is addressed. These uniform results are then used as a reference for the comparison

of various automatic adaptive procedures. And lastly, a discussion on the e�ects of numeric precision

with speci�c reference to the solution of the eigensystem is presented.

6.2 Background

Consider a waveguide orientated along the z-axis as in �2.3.1 which is in�nitely long and has an

arbitrary but uniform cross section in any plane parallel to the xy-plane. The propagating TE waves

in the guide are characterised by a zero electric �eld component (Ez) and magnetic �eld component

58
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of the form

Hz(x, y, z) = hz(x, y)e−jkzz, (6.2.1)

both in the z-direction [48]. Here kz =
√
k2 − kc2 is the propagation constant in the z-direction

with k = ω
√
µε and kc the wavenumber in the homogeneous medium and the cuto� wavenumber

respectively.

The x and y dependence of Hz, given by hz(x, y), can be found by solving the two dimensional

wave equation (
∂2

∂x2
+

∂2

∂y2
+ kc

2

)
hz = 0, (6.2.2)

subject to the boundary conditions of the speci�c guide geometry. The components of the transverse

electric �eld, ~Et = Exx̂+ Eyŷ, are then given by

Ex =
−jωµ
kc

2

∂Hz

∂y
, (6.2.3)

Ey =
jωµ

kc
2

∂Hz

∂x
. (6.2.4)

At cuto�, kz = 0 and thus, the expressions for the �eld components reduce to

Ex = ex(x, y)e−jkzz = ex(x, y), (6.2.5)

Ey = ey(x, y)e−jkzz = ex(x, y). (6.2.6)

6.2.1 Rectangular Waveguides

The geometry of the guide cross section of a rectangular waveguide is shown in Figure 6.1. For this

speci�c geometry, the solution of (6.2.2) is given by [48]

hz(x, y) = Amn cos
(mπx

a

)
cos
(nπy

b

)
, n,m ∈ N0, (6.2.7)

with Amn an arbitrary constant which without loss of generality can be set to unity. The transverse

electric �eld components of the TEmn mode at cuto� are then given by

Ex =
jωµπ

kc
2

(n
b

)
cos
(mπx

a

)
sin
(nπy

b

)
, (6.2.8)

Ey =
−jωµπ
kc

2

(m
a

)
sin
(mπx

a

)
cos
(nπy

b

)
. (6.2.9)

Furthermore, the square of the cuto� wavenumber for the mode is given by

(kmnc )2 =
(mπ
a

)2
+
(nπ
b

)2
, (6.2.10)
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Figure 6.1: Dimensions and orientation of a hollow rectangular waveguide.

with a cuto� frequency of

fmnc =
kmnc

2π
√
µε
. (6.2.11)

For the purpose of this thesis, a waveguide of dimensions a = 1m, b = 0.5m is used. The electric

�eld distributions in the xy-plane for the �rst four cuto� modes computed analytically are shown

in Figure 6.2 with the cuto� frequency in each case also given. In Table 6.1 the normalised cuto�

wavenumbers for the �rst four modes of the guide are given. Note that the TE01 and TE20 modes

are degenerate as a result of the guide dimensions.

Table 6.1: Normalised cuto� wavenumber for a 1 m × 0.5 m rectangular waveguide.

Mode TE10 TE01 TE20 TE11

kc
2/π2 [m−2] 1 2 2 4
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Figure 6.2: Plots of the �rst four analytical TE modes of a hollow rectangular waveguide with dimension
1 m × 0.5 m.
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6.2.2 Ridged Waveguides

A schematic of a double-ridged waveguide cross-section is given in Figure 6.3. Although there

is no analytical solution for the �eld distributions in the guide, it is possible to obtain numeric

approximations to the cuto� wave number by using techniques such as the transverse resonance

method [26].

Figure 6.3: Schematic showing the cross-section and dimensions of a double-ridged waveguide.

Hoefer and Burton [28] have developed closed form expressions for the approximation of the cut-

o� frequency for these guides accurate to 1% subject to the following restrictions of the dimensions

a, b, s, and d

0.01 ≤ d

b
≤ 1, (6.2.12)

0 <
b

a
≤ 1, (6.2.13)

0 ≤ s

a
≤ 0.45, (6.2.14)

with the error increasing to 2% in the case where s = 0.5a. The cuto� wavenumber of the dominant

mode of the guide is then given by

kc
2 =

π2

(a− s)2

[
1 + L+

(
2.45 + 0.2

s

a

) sb

d(a− s)

]−1

, (6.2.15)

with

L =
4b

π(a− s)

[
1 + 0.2

√
b

a− s

]
ln
(

csc
(
πd

2b

))
. (6.2.16)
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The expression for kc
2 in (6.2.15) can also be used to determine the cuto� wavenumber for a hollow

single-ridged waveguide with dimensions as shown in Figure 6.4 [28]. When s = 0, the ridge becomes

Figure 6.4: Schematic showing the cross-section and dimensions of a single-ridged waveguide.

in�nitesimally thin and the con�guration is termed a �n line. In this case, the cuto� wavenumber is

identical to that of a stripline with the same total length [28] with the schematics of the equivalent

structures shown in Figure 6.5. The cuto� wavenumbers for ridged guides of two con�gurations are

(a) Fin line (b) Strip line

Figure 6.5: Fin line and strip line waveguide structures with dimensions for equal cuto� wavenumber.

given in Table 6.2.

Table 6.2: Normalised cuto� wavenumber for ridged waveguides of two di�erent con�gurations and dimen-
sions.

a [m] b [m] s [m] d [m] kc [m−1]
single-ridged 1 1 0.3333 0.5 2.2618

�n line 2 1 0 0.5 1.4218
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Since there is no analytical expression for the �eld components in the guide, the TE10 cuto�

modes are computed on a re�ned mesh with a very high-order (mixed eighth order) basis functions

representation. This solution is used as a reference for the computation of the �eld errors in the

solution and is shown in Figure 6.6 for one of the guide geometries.

0.0000 0.3333 0.6667 1.0000

0.00

0.25

0.50

(a) Quiver Plot

0.0000 0.3333 0.6667 1.0000

0.00

0.25

0.50

(b) Magnitude Contour Plot

Figure 6.6: Reference �eld solution for a single ridged waveguide with a = 1 m, b = 1 m, s = 1/3 m, and
d = 0.5 m shown as both a quiver and a contour plot.

6.2.3 Explanation of Results

In order to analyse the performance of the higher order basis functions and the various re�nement

strategies, two error metrics are considered. These are the relative error of the square of the cuto�

wavenumber, kc
2, and the norm of the relative error in the transverse electric �eld. The e�ciency

of each of these is measured with respect to the number of degrees of freedom in the �nite element

formulation.

The number of degrees of freedom, N is given by the total number of basis functions in the �nite

element solution and is determined by the number of element and the number of free edges as well

as the basis function order associated with each of these. Furthermore, since the system matrices

discussed in �2.3.1 and �3.6 are calculated from the interactions between these basis functions,

the �nite element matrices are O(N2) in size and as such N also gives some indication of storage

requirements even if sparse storage schemes are used.

Let the relative error in the square of the cuto� wavenumber, kc
2, be de�ned as

e(k) =
|kc2 − k̃c

2|
|kc2|

, (6.2.17)
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where kc
2 is the analytical value computed using (6.2.10) and k̃c

2
is the calculated eigenvalue of the

system of equations as given by (2.3.13) corresponding to the mode in question.

Let ~E = Exx̂+ Eyŷ and ~Eh = Ehx x̂+ Ehy ŷ be the normalised analytical and computed solution

respectively, with ~Eh the weighted sum of the basis functions in the �nite element formulation and

the components of ~E being given by (6.2.8) and (6.2.9). The relative error between the analytical

and computed �eld solutions, e(E), is de�ned by a regular grid ofM points over the problem domain

with the error calculated at each point and then summed as follows

e(E) =

M∑
i=1

√
(Exi − Ehxi

)2 + (Eyi − Ehyi
)2

M∑
i=1

√
(Exi)2 + (Eyi)2

, (6.2.18)

with the subscript i representing the evaluation of the �eld component at the ith grid point.

The log10 of each of the error metrics is plotted as a function of the log10 of the number of

degrees of freedom. Consider a straight line on one of these graphs given by the equation

log10 y = a log10N + b, (6.2.19)

where y represents one of the error metrics. It follows that

y = BNa, (6.2.20)

with B a constant dependant on b and the convergence rate of y with respect to N being given by

a or speci�ed as O(Na).
For exponential convergence rates, as given by (5.2.10) and which can be written as

y = B(10)−aN , (6.2.21)

with a and B di�erent constants to the linear case. From (6.2.21) it follows that

log10 y = log10(B · (10)−aN )

= log10B − aN

= b− a · (10)log10N .

(6.2.22)

This relationship is represented graphically in Figure 6.7 for b = 1 and various values of a.

The log10 y values of −1 and −2 represent relative errors of 10% and 1% respectively. A 2%

error corresponds to a log10 y value of approximately −1.7.
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Figure 6.7: Graph of the exponential relationship between log10 y and log10N as given in (6.2.22) for b = 1
and various values of a.

6.3 Results for a Hollow Rectangular Waveguide

In this section, the results for a hollow rectangular waveguide with dimensions a = 1m, b = 0.5m are

discussed. The initial mesh with eighteen triangular elements is shown in Figure 6.8. The analytical

solution for the problem is as discussed in �6.2.1.

6.3.1 Uniform h-Re�nement

If the mesh shown in Figure 6.8 is re�ned by applying the re�nement technique as discussed in �5.4.1

uniformly to each of the elements (or pairs of elements) in the mesh, then the meshes as shown in

Figure 6.9 are obtained. It is noted that after the �rst uniform re�nement, the meshes alternate

between two similar mesh structures. Furthermore, after two steps of re�nement, each of the sides

of the original elements have been halved resulting in a division into four elements. For the regular

mesh presented here, the angles in the resultant meshes are no smaller than the smallest angle in

the original mesh, θmin, with the largest angle being no larger than π − 2θmin.
Meshes including the ones shown in Figure 6.8 and Figure 6.9 are used to solve for the wavenum-

ber and �eld distribution of the TE10 cuto� mode in the rectangular waveguide. The results for

increasing mixed as well as complete order basis functions are presented for the relative error in the
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Figure 6.8: Initial 18 element mesh for the analysis of a hollow rectangular waveguide.

square of the cuto� wavenumber in Figure 6.10.

When considering the results for the cuto� wavenumber error as shown in Figure 6.10, the

convergence order of the curves correspond well with that predicted in �5.2.1 with the exception

of the mixed order curves for p = 1, p = 5 and p = 6 in Figure 6.10(a). Before discussing the

p = 1 curve, it should be noted that for a value of O(102), it is possible to represent it with roughly

14 decimal digits of accuracy which places a lower bound on the attainable error in the cuto�

eigenmodes. Since some of the data points for p = 5 and p = 6 are expected to fall below this bound

the respective curves are adversely a�ected.

Some of the curves present a zig-zag behaviour which is most pronounced in the case of the mixed

order basis functions. This is due to the fact that after a single mesh re�nement, the maximum

edge length in the mesh has not been halved and thus the inverse square relationship between the

edge length and the number of degrees of freedom does not hold. In addition, the di�erent mesh

structure does have an e�ect on the accuracy of the solution as shown by Jin in [32, �4.74]. When

considering the data points of the similar meshes independently, the convergence behaviour is much

closer to the expected value. For the mixed (0, 1) case, the values are −0.97 and −0.92 instead of

the calculated value of −0.59.
The �rst four curves from Figure 6.10(a) and (b) are plotted together in Figure 6.11 to allow

for comparison. It can be seen that that the mixed order basis functions are more e�cient with
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Figure 6.9: Meshes resulting from repeated uniform h-re�nement steps applied to the original 18 element
mesh of Figure 6.8.

respect to the number of degrees of freedom for the error in the cuto� wavenumber. When the �eld

error is considered as in Figure 6.12, the situation is reversed with the comparative results shown

in Figure 6.13. This has already been demonstrated in [15] and will be further discussed in �6.3.2.

For the �eld error with respect to the number of degrees of freedom, both the mixed and complete

order basis functions exhibit close to the theoretical convergence rate of p/2 for all the values of p

shown. Once again the zig-zag behaviour is present but since the errors are comparatively larger

than in the case of the cuto� wavenumber, the e�ect of numeric precision is not observed. From

the results shown here, it is clear that in the case of the rectangular waveguide, the solution is

su�ciently smooth for the error convergence to be dominated by the polynomial order and not the
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Figure 6.10: The e�ect of uniform mesh re�nement on the log of relative error in cuto� wavenumber vs
log of the degrees of freedom for the TE10 mode of a hollow rectangular waveguide.

regularity of the solution as discussed in �5.2.1.1. It is thus expected that an h-re�nement technique

is not the best option, but that p-re�nement should instead be used and will be discussed in the

following section.
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Figure 6.11: Comparison of the convergence of the relative cuto� error for mixed and complete order basis
functions used to calculate the TE10 mode of a hollow rectangular waveguide.
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Figure 6.12: The e�ect of uniform mesh re�nement on the log of relative �eld error vs log of the degrees
of freedom for the TE10 mode of a hollow rectangular waveguide.
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Figure 6.13: Comparison of the convergence of the relative �eld error for mixed and complete order basis
functions used to calculate the TE10 mode of a hollow rectangular waveguide.
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6.3.2 Uniform p-Re�nement

For a given mesh density, from �5.2.1 it is expected that the convergence of the error in the �nite

element solution is exponential in the polynomial order. The results for the error in the cuto�

wavenumber of the TE10 mode of the rectangular waveguide are shown in Figure 6.14 for the

original mesh as shown in Figure 6.8 as well as the mesh after 3 steps of uniform h-re�nement

as shown in Figure 6.9(c). Results for up to mixed 13th order basis functions are shown for the

coarsest mesh, with the mixed order basis functions outperforming the complete order functions by

about an order of magnitude for a given number of degrees of freedom in both cases. The e�ect

of numeric precision on the lower bound of the error is once again observed. However, the lower

bound on relative �eld error is of the order 10−11 as a result of the increased number of �oating

point operations required in its computation [24].

When the relative �eld error is considered as in Figure 6.15, the exponential behaviour is once

again evident. Similarly to the case for h-re�nement, the mixed order basis functions no longer

perform better than the complete order functions.

To provide an explanation for the decreased performance of the mixed order basis functions with

respect to the complete order basis functions, consider the plot of the TE10 mode �eld distribution

for the rectangular waveguide computed using mixed �rst order basis functions and shown in Fig-

ure 6.16. When comparing this to the analytical solution shown in Figure 6.2, it can be seen that

in the elements that have a vertical edge on the PEC boundary the computed �eld distribution

shows a greater variation from the the analytical distribution. The mixed �rst order basis function
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Figure 6.14: The e�ect of uniform p-re�nement on the log of the relative error in the cuto� wavenumber
versus the log of the number of degrees of freedom for the TE10 mode of a rectangular waveguide.
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Figure 6.15: The e�ect of uniform p-re�nement on the log of the relative �eld error versus the log of the
number of degrees of freedom for the TE10 mode of a rectangular waveguide.

associated with a given edge is characterised by a constant tangential and linear normal component

along the given edge [16] and since the tangential component of the electric �eld must be zero on a

PEC boundary, the edges on the boundary e�ectively remove the basis functions associated with the

these edges. In addition to this, the other basis functions are a�ected by the continuity conditions

between the adjacent elements and as the analytical solution has no x-component, the contributions

of the basis functions associated with edges orientated parallel to the x-axis must also be zero. As

a result, the elements with a vertical boundary edge and a second horizontal edge have only one

basis function with which to interpolate the �eld in the element and thus the �eld has the form of

that basis function.

When the basis functions are set to complete �rst order, the �eld distribution as shown in

Figure 6.17 is obtained. This representation does not exhibit the same behaviour in the elements

discussed, due to the fact that the complete �rst order elements have an additional basis function

per edge. Thus, even when the basis functions of two of the edges are forced to zero by a zero

tangential continuity, there are still two basis functions with which the �eld can be approximated.

This e�ect is not as pronounced when �ner meshes are used, as the triangles in which only single

basis function representations are available are smaller.

A similar argument can be constructed for the TE01 mode. In this case however, the analytical

�eld solution is directed in the x-direction and thus has a zero y-component. Thus it is expected that

elements with horizontal boundary edges and a vertical edge will exhibit the behaviour discussed.

This is illustrated in Figure 6.18.
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Figure 6.16: TE10 mode of a rectangular waveguide computed using mixed �rst order elements.
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Figure 6.17: TE10 mode of a rectangular waveguide computed using complete �rst order elements.
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Figure 6.18: TE01 mode of a rectangular waveguide computed using �rst order elements.
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6.3.3 Adaptive h-Re�nement

The �ux continuity indicator in �5.3.1 is used to drive an h-adaptive re�nement of the FE solution

to the rectangular waveguide eigenvalue problem. A value of δ = 0.5 is chosen for (5.3.6). The

convergence curves of the error in the cuto� wavenumber and relative �eld error are shown in

Figure 6.19 and Figure 6.20 respectively. The results are calculated for di�erent uniform polynomial

orders of both mixed and complete basis function sets.
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Figure 6.19: The performance of adaptive h-re�nement in terms of the relative error in the cuto� wavenum-
ber vs the number of degrees of freedom for the TE10 mode of a rectangular waveguide for both mixed and
complete order polynomial �nite elements. The adaptive curves for a given order are indicated by ◦ with
the uniform curves shown as �.

When considering the error in the wavenumber, and more speci�cally the case where complete

order elements are used, it is seen that the performance of the adaptive re�nement procedure is

lower than that of the uniform re�nement although it is not signi�cantly worse and both achieve

1% error rates for all polynomial orders. In the case of the relative �eld error, this is not the case,

with the adaptive procedure even outperforming the uniform re�nement slightly in the p = 2 case.

The meshes obtained when solving for the TE10 mode of the rectangular waveguide using mixed

�rst order elements in the adaptive procedure using the mesh shown in Figure 6.8 are shown in

Figure 6.21. As was discussed in the previous section, and shown in Figure 6.16, the elements with

edges along the vertical PEC boundary have the worst approximation to the analytical �eld and

it is these elements that are re�ned more. If complete �rst order elements are used, the meshes

as shown in Figure 6.22 are obtained. In this case the �ux continuity indicator used favours the

elements with the largest magnitude electric �eld since the �ux is proportional to the �eld.
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Figure 6.20: The performance of adaptive h-re�nement in terms of the relative �eld error vs the number
of degrees of freedom for the TE10 mode of a rectangular waveguide for both mixed and complete order
polynomial �nite elements. The adaptive curves for a given order are indicated by ◦ with the uniform curves
shown as �.

In order to further investigate the h-adaptive procedure, a second waveguide cuto� mode is

investigated, namely the TE11 cuto� mode. The analytical �eld distribution for this mode is given

in Figure 6.2(d) and as can be seen, the distribution is slightly more complex than the TE10 mode

as it has both an x and y dependence. When considering the convergence behaviour of the two error

metrics, a similar result to that of the TE10 mode is obtained for the uniform re�nement. For the

error in the wavenumber, the mixed order elements perform better while for the relative �eld error

the complete order elements once again outperform them with the �rst order complete elements

o�ering double the convergence rate of their mixed order counterparts in some cases.

Some of the meshes and their corresponding �eld distributions obtained by the adaptive process

using mixed �rst order elements are shown in Figure 6.25. The adaptive procedure results in a

series of meshes signi�cantly di�erent from those for the TE10 mode which is expected due to the

di�erent �eld distribution. In the case where complete order elements are used, elements where the

�eld has a greater magnitude are once again favoured for re�nement.
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Figure 6.21: The evolution of the mesh in the h-adaptive solution of the TE10 mode of a rectangular
waveguide using mixed �rst order elements.
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Figure 6.22: The evolution of the mesh in the h-adaptive solution of the TE10 mode of a rectangular
waveguide using complete �rst order elements.
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Figure 6.23: The performance of adaptive h-re�nement in terms of the relative error in the cuto� wavenum-
ber vs the number of degrees of freedom for the TE11 mode of a rectangular waveguide for both mixed and
complete order polynomial �nite elements. The adaptive curves for a given order are indicated by ◦ with
the uniform curves shown as �.
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Figure 6.24: The performance of adaptive h-re�nement in terms of the relative �eld error vs the number
of degrees of freedom for the TE11 mode of a rectangular waveguide for both mixed and complete order
polynomial �nite elements. The adaptive curves for a given order are indicated by ◦ with the uniform curves
shown as �.
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Figure 6.25: The evolution of the mesh in the h-adaptive solution of the TE11 mode of a rectangular
waveguide using mixed �rst order elements.
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Figure 6.26: The evolution of the mesh in the h-adaptive solution of the TE11 mode of a rectangular
waveguide using complete �rst order elements.
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6.3.4 Adaptive p-Re�nement

An adaptive p-re�nement scheme is implemented which employs the edge-based �ux continuity

indicator discussed in �5.3.1. A value of δ = 0.5 is chosen for (5.3.6). Using this indicator, the

performances of three re�nement strategies are investigated. These are

1. Mixed order re�nement:

The elements to be re�ned are re�ned to the next highest mixed order set of basis functions.

2. Complete order re�nement:

The elements to be re�ned are re�ned to the next highest complete order set of basis functions.

3. Automatic order re�nement:

The choice of whether the element must be upgraded to a mixed or complete order element is

made based on the method as discussed in �5.4.2.

The error performance for the adaptive strategies using the 18 element mesh as shown in Figure 6.8

are shown in Figure 6.27. No single strategy o�ers a signi�cant performance advantage with respect

to the other strategies or the uniform re�nements as discussed in �6.3.2.
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Figure 6.27: The performance of adaptive p-re�nement strategies in terms of the relative cuto� wavenumber
error as well as the relative �eld error for the TE10 mode of a rectangular waveguide.

The meshes corresponding with the �rst four steps of the automatic order re�nement p-adaptive

process are shown in Figure 6.28. Note that the elements with vertical PEC edges and a horizontal

edge are �rst to be re�ned. The re�nement results in a roughly uniform order distribution which is

expected since there are no prominent singularities where it may be necessary to focus the re�nement.
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Figure 6.28: Elemental order distribution for the �rst 4 steps of the adaptive p-re�nement using automatic
order selection of a hollow rectangular waveguide.

6.3.5 Adaptive hp-Re�nement

In the case of the hollow rectangular waveguide, there are no keypoints to be identi�ed and thus

the keypoint re�nement strategy as discussed in �5.4.3 is equivalent to adaptive p-re�nement with

results discussed in the previous section. Since the p-re�nement of the rectangular guide performs

signi�cantly better than h-re�nement in all cases, this is advantageous.
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6.4 Results for a Hollow Single-Ridged Waveguide

The results for a single-ridged hollow waveguide with dimensions a = 1 m, b = 1 m, s = 1/3 m, and

d = 0.5 m, are discussed. The initial mesh for the problem is shown in Figure 6.29.
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Figure 6.29: Initial mesh for solving the ridged waveguide problem with a = 1 m, b = 1 m, s = 1/3 m and
d = 0.5 m.

6.4.1 Uniform h-Re�nement

The mesh in Figure 6.29 is re�ned uniformly to obtain the meshes in Figure 6.30. Also shown in the

�gures are the �eld distributions for the dominant mode obtained in each case. As the mesh gets

more dense, the solution of the dominant mode approaches that of the reference solution as shown

in Figure 6.6.

The convergence results for the error in the cuto� wavenumber are shown in Figure 6.31 for both

mixed and complete order elements. Here it can be seen that the log10 relative error in the square

of the cuto� wavenumber converges to a value near −1.6 when using the cuto� wavenumber value

in Table 6.2 as a reference. The reason is that the value calculated using the �nite element method

converges to a value of approximately 2.23 which is within the 1% bounds speci�ed for the cuto�

wavenumber in [28]. Furthermore, the complete order elements are at this value almost immediately

for the initial mesh.

When considering the performance of the mixed �rst order elements, the rate of convergence is

lower than the expected rate of -1. An initial response would be to attribute this to the fact that
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Figure 6.30: Meshes and �eld distribution of the dominant mode of a single-ridged waveguide resulting in
applying uniform h-re�nement to the initial mesh in Figure 6.29.

for this problem, the use of complete order elements is required to obtain the desired convergence

since the assumption that the curl of the �eld is of similar magnitude to that of the �eld itself no

longer holds. However, this is not con�rmed by the results for the relative error in the �eld as

shown in Figure 6.32, where the curves for all polynomial orders of both mixed and complete order

representations have a similar rate of convergence indicating that the regularity of the solution is

dominating the convergence of the error.

The error in the cuto� wavenumber is dominated by the inaccuracy of the approximation by

the closed form expression of Hoefer [28] as given in (6.2.15). Therefore, the error in the cuto�

wavenumber for the single ridged guide will no longer be considered in this section. Only the
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Figure 6.31: Relative error in cuto� wavenumber for the single-ridged waveguide shown in Figure 6.29.
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Figure 6.32: Relative �eld error for the single-ridged waveguide shown in Figure 6.29.
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relative �eld error will be used as a performance metric.

6.4.2 Uniform p-Re�nement

In the previous section, it was found that for the ridged waveguide, the irregularity of the solution

adversely a�ects the rate of convergence of the error in the solution when uniform h-re�nement

is used. In the theoretical discussion on the convergence in �5.2.1.1, it is noted that for guides

with reentrant corners, uniform p-re�nement should result in a convergence rate of twice that of

h-re�nement. In Figure 6.33 convergence rates for the uniform p-re�nement for both mixed and

complete order of three di�erent meshes are shown. These meshes are the unre�ned mesh as given

in Figure 6.29 as well as two more obtained by 3 and 4 steps of h-re�nement respectively.
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Figure 6.33: Performance of uniform p-re�nement for mixed (�) and complete (◦) order elements in relative
�eld error for a single-ridged waveguide for various mesh densities.

When comparing these convergence rates to those of uniform h-re�nement in Figure 6.32, it is

found that they do exhibit a factor 2 improvement in the rate of convergence. Further, it can be

seen that in the �eld error metric, increasing the order of the representation to a complete one from

a mixed one o�ers no change in the relative error. This once again illustrates that the curl of the

�eld is of secondary importance for this particular problem.
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6.4.3 Adaptive h-Re�nement

When the adaptive h-re�nement procedure as discussed in �5.4.1 and �6.3.3 is applied to the single-

ridged waveguide considered here, the performance of the relative �eld error in terms of the number

of degrees of freedom is shown in Figure 6.34 for both mixed and complete order elements. The

adaptivity results in a much improved e�ciency with up to a factor 3 reduction in the required

number of degrees of freedom in some cases. The nature of the curves suggest that for further re-

�nement, a greater reduction is possible. Once again the complete order representations outperform

the mixed order ones.
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Figure 6.34: Relative �eld error using adaptive h-re�nement (◦)for the single-ridged waveguide shown in
Figure 6.29. Shown for reference purposes are the uniform results (�).

The sequences of automatically generated meshes for mixed and complete order representations

are shown in Figure 6.35 and Figure 6.36 respectively. Both representations focus the re�nement

around the reentrant corners, although in the case of the mixed order basis functions, there is some

re�nement required to counteract the e�ect of the PEC edges in regions away from the singularity

and thus the re�nement is not as e�ective.
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Figure 6.35: Meshes and �eld distribution of the dominant mode of a single-ridged waveguide resulting in
applying adaptive h-re�nement to the initial mesh in Figure 6.29 using mixed �rst order elements.
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Figure 6.36: Meshes and �eld distribution of the dominant mode of a single-ridged waveguide resulting in
applying adaptive h-re�nement to the initial mesh in Figure 6.29 using complete �rst order elements.
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6.4.4 Adaptive p-Re�nement

The performance of the mixed order (m), complete order (c) and automatic order selection (a)

adaptive p-re�nement strategies using the �ux continuity indicator of �5.3.1 is now considered. A

value of δ = 0.5 is chosen for (5.3.6). In Figure 6.37, the convergence of the respective relative �eld

errors with respect to the number of degrees of freedom is shown for four di�erent meshes. The
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(d) Mesh after 3 h-re�nement steps

Figure 6.37: Comparative performance of various adaptive p-re�nement strategies for di�erent mesh den-
sities. The initial uniform re�nement curve is provided as a reference.

meshes, which are shown in Figure 6.30, are obtained by uniformly re�ning the mesh in Figure 6.29

in h before applying the p-adaptive process. The uniform re�nement curves from �6.4.2 are provided
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as a reference, with the mixed order curve for the initial mesh shown in subsequent plots for the

same reason.

When considering these results, the complete order adaptations as well as the automatic order

selection perform the best, with the complete order slightly better and all the adaptive methods

performing no worse than the uniform mixed order case. As the mesh density is increased, the

performance of the adaptive methods relative to the uniform curves improves, with up to a factor

three decrease in the number of degrees of freedom required for a given error observed for the �nest

mesh a shown in Figure 6.37(d).

In the results of Figure 6.37(c) and (d) the error is found to increase once a relative �eld error

of approximately 1% is reached. This behaviour can be attributed to the fact that the adaptive

solution surpasses the accuracy of the reference solution. However, since the error metric calculates

absolute error and the reference solution is assumed to be the correct one, the di�erence is seen as

an increase in the relative �eld error. This will be discussed further in �6.4.5.

To illustrate the solutions generated by the p-adaptive process, meshes including colour-coded

element orders are shown in Figure 6.38. The meshes shown are for two steps of uniform h-re�nement

as in Figure 6.37(c) and for the automatic order selection adaptivity (a). Here it can be seen that

the elements surrounding the reentrant corners are favoured for re�nement.
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Figure 6.38: Elemental order distribution for automatic order selection adaptive p-re�nement.
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6.4.5 Adaptive hp-Re�nement

The keypoint (KP) strategy as described in [52] and discussed in �5.4.3 is applied to the cuto�

eigenmode problem for the hollow single-ridged waveguide. The initial mesh and the keypoints used

in the algorithm are shown in Figure 6.39. Note that initially all but two of the elements contain

0 1
x-axis [m]

0.0

0.5

y-
a
xi

s 
[m

]

Figure 6.39: Initial mesh for the single-ridged waveguide indicating the nodes to be used as keypoints (◦).

the keypoint nodes. In addition, these two elements are the neighbours on the base of an element

that does contain a keypoint node and thus the �rst re�nement step is expected to be a uniform

re�nement in h.

The relative �eld error results for the KP strategy are shown in Figure 6.40. The results shown

are made up of the complete order (c) and automatic order selection (a) p-re�nement strategies

as discussed in �5.4.2 for both a mixed and a complete �rst order initial mesh. The results for

complete order automatic p-adaptivity on mesh uniformly re�ned three times in h (�6.4.4) are given

for comparison. Since results in �6.4.4 indicate that the mixed order adaptive p-re�nement (m) does

not o�er a performance advantage over the other p-adaptive options, the mixed order case is not

considered here. The automatic order selection may however select mixed order representations for

certain elements.

When considering the results shown in Figure 6.40 it is found that the p-adaptive procedure

provided as a reference performs slightly better than the hp-adaptive procedure when the initial

mesh contains only mixed �rst order elements. For an initial mesh consisting of complete �rst order

elements, the KP implementation is able to outperform the reference initially but ultimately o�ers
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Figure 6.40: Relative �eld error vs number of degrees of freedom for various keypoint hp-re�nement
strategies.

the same performance as the other KP cases. There is no signi�cant di�erence between the complete

(c) and automatic (a) order selection in either case.

The KP implementation also exhibits the turning point at a relative �eld error value of approx-

imately 1%. In �6.4.4 this is attributed to the accuracy limitations of the reference solution used to

compute the error curves. To further investigate this, the error with respect to the reference solution

as well as the relative di�erence between consecutive re�nement stages are shown in Figure 6.41.

In the �gure it can be seen that at the point where the error with respect to the reference solution

starts increasing, the di�erence between the solutions continues to decrease, further strengthening

the hypothesis.

In �6.4.1, it was seen that the error in the square of the cuto� wavenumber e(k) converged to

a value corresponding to roughly 2% error. This result is now revisited with reference to the hp-

adaptive procedures discussed here. In Figure 6.42, the computed cuto� value for each step of the

adaptive process is plotted as a function of the number of degrees of freedom for two variants of the

KP implementation as well as the adaptive p-re�nement used for comparison thus far. Here it can

be seen that all the implementations converge to the same �nal value in roughly the same number

of degrees of freedom, although the KP implementations require more re�nement steps. The �nal

value corresponds to a value within 1.5% of the reference value as given in Table 6.2.

Sample meshes for a KP hp-adaptive implementation are shown in Figure 6.43. Note that the

�rst re�nement step results in a uniform re�nement in h as expected and that subsequent steps
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Figure 6.41: Relative �eld error vs number of degrees of freedom for for complete order KP strategy showing
the error with respect to the reference solution and the relative di�erence between the current solution and
the solution from the previous re�nement step.

further re�ne around the reentrant corners and increase the basis function order.

A quick investigation of the meshes shown in Figure 6.43 shows that the elements around the

reentrant corner are repeatedly marked for re�nement resulting in an ever decreasing element size

in their vicinity. As their sizes decrease, so do their contributions to the global error. One possible

shortcoming of the KP re�nement strategy coupled with the �ux continuity indicator is that the

elements containing keypoints may be over re�ned in h and since p-re�nement generally o�ers better

performance, as discussed in �5.2.1.1, this may not be optimal. For this reason, the KP strategy

is modi�ed to allow for the speci�cation of a minimum element area for which h-re�nement will

be selected at a keypoint. If the element is too small, it will be p-re�ned instead. The choice of

minimum area is somewhat arbitrary, with a third of the original element area used to obtain the

following results.

The modi�ed minimum area keypoint strategy using complete order polynomial adaptation is

applied to the single-ridged waveguide problem. The relative �eld error results shown in Figure 6.44

indicate that the modi�ed keypoint strategy starting with a mesh of elements of mixed �rst order

o�ers somewhat better performance than both the original KP and the adaptive p-re�nement with

complete order upgrading (c) preceded by three steps of uniform h-re�nement.



CHAPTER 6. RESULTS FOR WAVEGUIDE EIGENANALYSIS 97

1.0 1.5 2.0 2.5 3.0 3.5 4.0
log10 N

5.2

5.4

5.6

5.8

6.0

6.2

6.4

cu
to

ff
 s

q
u

a
re

d

KP (c) mixed
KP (a) mixed
Adaptive p (c)
k_c = 2.2908 [1/m]
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Figure 6.43: Elemental order distribution for adaptive hp-re�nement using the keypoint strategy using
automatic order selection and an initial mesh consisting of complete �rst order elements.
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Figure 6.44: Relative �eld error vs number of degrees of freedom for a keypoint hp-re�nement strategy
including a minimum area condition.
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6.5 The E�ects of Numeric Precision

In �5.2.1.2 the e�ects of matrix conditioning and the �nite precision of binary �oating point arith-

metic on the accuracy of the solution to the eigenvalue problem as solved here is discussed. Although

the iterative methods used here do not show the e�ects of matrix conditioning, the accuracy limits

of double precision �oating point computations are clearly observed in the case of the rectangular

waveguide cuto� wavenumber as well as the norm �eld error. Similar results have been shown for

single precision calculation of the cuto� wavenumbers in [27] and similar results to the ones shown

here for double precision shown in [1].

In Figure 6.45 the relationship between the condition number of the right eigenvector matrix as

discussed in �5.2.1.2 and the polynomial basis function order up to complete sixth order is shown.

The p axis is calculated as p = (g + r)/2 and thus the half values of p represent mixed order basis

functions. It can be clearly seen that the condition number of [X] is increasing in the polynomial

order. It is found that the re�nement of the mesh does not have a signi�cant impact on the condition

number.
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Figure 6.45: The log10 of the condition number of the right eigenvector matrix, log10(κ([X])), versus the
polynomial order of the basis functions for the rectangular mesh shown in Figure 6.8.

To investigate the e�ect of the conditioning of the matrices on the accuracy of the solution, the

�nite element eigenvalue problem given in (2.3.13) is solved using a direct method instead of the

iterative method employed for sparse matrices. A comparison of the error performance for the cuto�

wavenumber is given in Figure 6.46. For low orders the two sets of results are indistinguishable.

For implementations of higher than complete third order, the results di�er for errors in the iterative
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Figure 6.46: The e�ect of using a direct eigensolver on the error in cuto� wavenumber for complete order
basis functions up to �fth order. The direct solution curves (�) are shown with the iterative results (◦) to
allow for comparison. A horizontal line corresponding to log10(e(k)) = −11 is also shown.

solution lower than approximately 10−11. Bearing in mind, that the bound for numeric accuracy

was found to be of the order 10−14 for the iterative solution, the threshold of 10−11 corresponds to

a decrease in accuracy of O(103) and agrees with the condition number of the matrices for p = 4
and p = 5 as shown in Figure 6.45. In Figure 6.47, the results for both mixed and complete fourth

and �fth order are shown. Here it is once again apparent that the conditioning of the �nite element

matrices and thus the eigenvector matrix adversely a�ect the numerical certainty of the solution

with the results agreeing well with the estimated bounds.

Results for similar eigenmode problems such as those in [27] exhibit a decrease in performance

as the polynomial order is increased near the bounds of numeric precision. This decrease may be

attributed to the conditioning of the �nite element matrices, but without repeating the experiments

this remains speculation.
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Figure 6.47: Comparison of direct solver accuracy for mixed and complete basis functions of orders 4 and
5 for the rectangular waveguide cuto� problem.
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6.6 Conclusion

The results as presented here for the rectangular guide serve as a validation of the �nite element

implementation as the computed values correspond with the analytical ones to within numeric

precision. Furthermore, it is shown that there is no real advantage in using an adaptive procedure

in this case as these procedures result in close to uniform re�nement in most cases.

When comparing the performance of the mixed and complete order representation, it is found

that the relative performances di�er depending on both the problem structure as well as the quantity

being measured. If the �eld distribution in the guide is the quantity of interest, then complete order

element are suggested, although ideally some form of goal-oriented estimation should be employed

to determine the optimal route. If this is not possible, it is still suggested that for general problems,

the complete �rst order elements are used as a starting point.

In the case of the ridged guide, the performance of the method is signi�cantly impeded by the

singularity in the solution, especially if a very coarse mesh is used. If the mesh is re�ned somewhat,

then it is possible to achieve a better overall performance, especially if an adaptive procedure is

then used. For these adaptive procedures, there is much room for improvement, including the

optimisation of thresholds for re�nement as well as stopping criteria for the adaptive process.

The keypoint hp-adaptive procedure implemented shows some promise. Although it may not be

as adept in selecting the optimal re�nement path for a given element, as promised by the Demkowicz

method [17, 23], its ease of implementation counts as a big advantage. Some adjustments to the

method are possible and it was seen that a restriction on the minimum area for h-re�nement resulted

in a noteworthy increase in performance. Both the p and hp-adaptive implementations as applied

to the single-ridged waveguide illustrate the need for a su�ciently accurate reference solution to

measure the performance of such methods. Failing that, an alternative performance metric such as

the convergence history of an easily computable parameter should be used. The disadvantage here is

that these parameters, including the cuto� wavenumber, are often less sensitive to variations in the

�eld being calculated and may thus give a skewed comparison of di�erent results. The change in a

parameter over subsequent re�nement steps could be monitored to provide a goal-oriented stopping

criteria for the method.

An analysis of the e�ect of matrix conditioning on the accuracy of direct eigensolvers has been

presented and results obtained correspond well with expectations. The analysis process is somewhat

more thorough than that which is usually found in the literature, with an example given where

the error behaviour identi�ed is simply attributed to �nite numeric precision. This information is

valuable as it stresses, for example, the importance of the choice of solver for a particular application.

In addition a better understanding of the limits on the error performance of the method can be

obtained.



Chapter 7

General Conclusions and

Recommendations

A �nite element formulation that is fully adaptive in both the mesh density, h, and the polyno-

mial order of the basis functions, p, has been presented and successfully implemented with the

implementation applied to the cuto� eigenmode analysis of two classes of waveguide problems.

The adaptive process relies heavily on higher order hierarchical vector basis functions, with

both the theoretical aspects as well as some details of implementations having been discussed.

Although a speci�c set of basis functions was considered, the tools such as the computer algebra

system presented here should be easily applicable to a wide variety of polynomial basis functions, a

number of which were mentioned, and allow for the automatic generation of the basis functions to

an arbitrary order.

An overview of a number of factors in�uencing the automatic adaptive process was given with

error estimations as well as the choice of re�nement path discussed. Lastly, an adaptive procedure

that is easy to implement was used in conjunction with a simple error indicator to obtain results for

rectangular as well as ridged waveguides, with the results of the former showing excellent correspon-

dence to the analytically computed results. Furthermore, the results shown are for basis functions

several orders higher than previously published.

As with any project with in�nite possibilities and �nite resources, there are a number of aspects

that could be re�ned or investigated further. One of the most obvious of these is the extension of the

implementation to more general �nite element problems including sources to allow for the analysis

of, for example, scattering problems. Even in the source free regime, the formulation including the

axial �eld component in a waveguide can be considered. Ultimately, the techniques would be useful

when applied to three dimensional problems and although the basis functions were originally de�ned

in three dimensions, operations such as element subdivision become non-trivial.

The question of the relative performance of the basis function set implemented with respect to

other available basis functions sets remains to be answered. The general basis function framework

104
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could be used to perform such a comparison. One aspect regarding the basis functions that de�nitely

requires further attention, is the issue of the resultant matrix conditioning which, as discussed, can

have an e�ect on both solution accuracy as well as computation time required. Published results

indicate that basis functions sets such as those in [1] and [31] have better conditioning properties than

the Webb set investigated here. Furthermore, steps such as the use of a tree-cotree decomposition

[35] and the condensing out of the facial degrees of freedom [1] may improve the conditioning of the

matrices and thus result in lower computational costs or better accuracy bounds.

A number of other possibilities for investigation include the use of alternative error indicators

and their e�ect on the adaptive process, and the adjustment of various re�nement parameters

and decision processes and how the performance of the adaptive method is in�uenced by such

adjustments. On the topic of performance, a reliable error metric must be chosen that provides a

good indication of the actual performance of the method. This includes the choice of norms in which

the error is to be measured as well as the cost metric used, with actual computational time perhaps

being a better indication of cost, especially in the case of ill-conditioned sparse system matrices

solved using iterative methods.
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Appendix A

Properties of Simplex Coordinates

The simplex coordinates, (s1, s2, s3), as used in this thesis are a set of area coordinates associated

with the area of a triangle. Some of the properties of the simplex coordinates are given here without

proof and for a more complete discussion the reader is referred to [57, �4].

Normalisation

The simplex coordinates are normalised and thus

s1 + s2 + s3 = 1, (A.0.1)

from which follows that

∇s3 = −∇s1 −∇s2. (A.0.2)

Integration

The integration of the product of simplex coordinates over a triangle has the expression [57, 16]

ˆ
Ω
s1
p1s2

p2s3
p3dΩ = 2A

p1!p2!p3!
(2 + p1 + p2 + p3)!

, (A.0.3)

with A the area of the triangle. If the triangle is a reference triangle with vertices at coordinates

(0,1), (1,0), and (0,0) it has an area of 0.5 and (A.0.3) reduces to

ˆ
Ω′
s1
p1s2

p2s3
p3dΩ′ =

p1!p2!p3!
(2 + p1 + p2 + p3)!

. (A.0.4)
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Notes on the bibliography

The bibliography contains, in addition to the usual information, the page numbers on which the

references have been cited in this document.
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