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Synopsis 

With the harvesting of fish and other aquatic organisms from natural 

waters having reached its upper limit, aquaculture is vital in providing for 

the ever increasing demand for fishery products (Boyd, 1999). Not 

surprisingly, aquaculture has seen considerable growth over the last 

decade or more.  

With the rising importance of aquaculture, there is an increased emphasis 

on cost and reducing of waste for environmental reasons. Therefore, 

attempts to automate or increase efficiency of feeding are constantly 

being explored.  

On an aquaculture unit approximately 60% of all costs are for feed; 

therefore high quality feeding management is essential for all fish farmers.  

The rainbow trout farm at Jonkershoek Aquaculture Research farm near 

Stellenbosch currently have a feeding management system which makes 

use of traditional hand feeding. Handfeeding is not considered optimal, as 

the feed intake or pellet loss is not closely monitored resulting in higher 

operating costs. 

Automation of aquaculture systems will allow the industry to produce 

closer to markets, improve environmental control, reduce catastrophic 

losses, minimize environmental regulation by reducing effluents, reduce 

production costs and improve product quality. The history of automated 

control in aquaculture has been brief; most of the systems have been 

custom-designed, personal computer systems.  

A very popular approach for an automated feeding system is to monitor 

waste pellets beneath the feeding zone of the fish, with a feedback loop 

that can switch off the feeder if this waste exceeds a predetermined 

threshold. Other approaches use hydroacoustics to monitor waste pellets 

or demand feeders have also been implemented. These approaches 
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however are not considered optimal as automatic feeders do not 

necessarily ensure optimal feed intake. Social dominance using demand 

feeders does not allow even feeding distribution among all sizes of fish.  

In this project it was investigated whether an automated feeding system 

can be developed based on fish feeding behaviour. After facing problems 

with poor visibility at the Jonkershoek Aquaculture farm near 

Stellenbosch, video data were acquired from the Two Oceans Aquarium in 

Cape Town. Since it was a feasibility study, the focus was rather to 

investigate whether a predictive model could be generated for fish feeding 

behaviour in a more ideal environment which can form a foundation for 

further research.  

The well-established multivariate methods of principal components 

analysis (PCA) and linear discriminant analysis (LDA) were used to extract 

informative features from the image data. These features were labelled 

with the corresponding behaviour they captured, namely the prefeeding, 

feeding and postfeeding behaviour of fish. By use of LDA, the three 

classes of behaviour could be identified with an accuracy of approximately 

96%. Marginally better results were obtained with nonlinear models, such 

as classification trees and a nearest neighbour approach, using the LDA 

and PCA scores as inputs. 

It was found during this study, that at the Jonkershoek aquaculture farm, 

external environmental factors would play a significant role in acquiring 

quality image data. These factors included turbidity induced by rain and 

considerable changes in lighting conditions.  

The challenge of acquiring quality image data under these typically 

changing environmental conditions would have to be surmounted for the 

successful implementation of the proposed method. 
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Opsomming 

Dit kan aanvaar word dat daar ‘n groeiende tekort is aan visbronne regoor 

die wêreld. Die rede daarvoor is dat daar nie meer enige grense aan 

moderne visvangtegnieke nie. Dus moet ons die behoefte vir visboerdery 

erken. 

As gevolg van die groeiende visboerdery bedryf word daar al hoe meer 

klem gesit op koste besparing asook omgewingsbelange.  

Visvoedsel bedra ongeveer 60% van die totale bedryfskoste, dus moet 

voeding baie effektief bestuur word.   

Die reënboogforelplaas by Jonkershoek Akwakultuur Navorsingseenheid 

naby Stellenbosch gebruik huidig tradisionele handvoerders. Hierdie 

metode word nie as optimaal aanvaar nie, omdat viskosinname nie 

effektief gemoniteer word nie, wat dus lei tot hoër bedryfskostes.     

Outomatisering van akwakultuurvoedingsisteme kan die industrie in staat 

stel om meer doeltreffend te produseer, omgewingskontrole te verbeter, 

katastofiese verliese te verminder, omgewingsbesoedeling te verminder 

deur minder afvalprodukte vry te stel en ook produkkwaliteit verbeter. Die 

outomatisasie van voedingsisteme is egter nog min en glad nie goed 

ontwikkel nie en meeste sisteme is doelgemaakte programme. 

‘n Bewese benadering is om gebruik te maak van sensors wat die korrels 

wat nie geëet word nie onder die voedingsone op te tel en dan met 

terugvoerbeheer die outomatiese voerder af te skakel as dit ‘n sekere 

punt bereik. Ander benaderings is om gebruik te maak van akoestiese 

seine en selfvoerders, waar die visse self kos op aanvraag kan inneem. 

Hierdie metodes word nie gesien as optimaal nie, omdat dit nie 

noodwendig die optimale inname van viskos verseker nie, en met 

selfvoerders is daar altyd die probleem van sosiale dominansie, waar 

sekere visse gevoer word ten koste van die ander.        
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Met hierdie projek is ‘n alternatiewe benadering gevolg deur die 

haalbaarheid te ondersoek van ‘n outomatiese voedingsisteem gebaseer 

op waarneembare visvoedingsgedrag. As gevolg van troebel water by die 

Jonkershoek dam by Stellenbosch kon video-opnames van visgedrag by 

die plaas ongelukkig nie gebruik word vir ontleding nie. In die plek 

daarvan is video-opnames van visgedrag in die Twee Oseane Akwarium in 

Kaapstad ontleed. 

Met behulp van hoofkomponentontleding en lineêre diskriminantanalise 

kon daar onderskeid getref word tussen die gedrag van die visse voor, 

gedurende en na voeding. Hierdie drie klasse van gedrag kon ongeveer 

96% akkuraat onderskei word met behulp van lineêre diskriminantanalise. 

Marginaal beter resultate kon behaal word deur nie-lineêre modelle te 

gebruik, soos klassifikasiebome en naaste bure modelle, met die 

hoofkomponent and lineêre diskriminanttellings as insette, 

Die data suggereer dus dat die benadering waar voeding gebaseer sou 

wees op die waarneembare gedrag van die visse haalbaar sou kon wees, 

mits goeie beeldmateriaal van die visse bekom sou kon word. Eksterne 

omgewingsfaktore sal waarskynlik ‘n noemenswaardige rol speel in die 

uitvoerbaarheid van die voorgestelde metode by die Jonkershoek 

Akwakultuur plaas. Eksterne faktore sluit in troebelheid van water 

veroorsaak deur reën, of roofdiere of enige ander stimulante wat bydra tot 

veranderings in gedragspatrone.  

Dit word voorgestel dat verdere navorsing gedoen moet word om patrone 

te vind in visvoedingsgedrag deur gebruik te maak van beeldmateriaal 

verkry deur byvoorbeeld sonar, om sodoende die invloed van troebelheid 

op die kwaliteit van die beeldmateriaal te beperk. 
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1 Introduction 

Chapter 1 

Introduction 

1.1 Background on Aquaculture 

Aquaculture is the aquatic counterpart of agriculture and its origins extend 

back some 4000 years (Beveridge, 2004). The earliest cages were first 

used by fisherman as a convenient holding facility for fish until ready for 

sale, and were essentially modified fish traps or baskets. These traditional 

types of holding facilities were used in many parts of the world for 

generations. True cage culture, in which fish or other organisms were held 

for long periods of time until they increased in weight, was until recently 

thought to be a comparatively modern development. According to Li 

(1994), however, cage culture was established in China during Han 

Dynasty 2200 – 2100 years ago. Modern cage culture began in the 1950s 

with the advent of synthetic materials for cage construction. In the United 

States, universities did not begin conducting research on cage rearing of 

fish until the 1960’s (Beveridge, 2004). 

Until recently agriculture and aquaculture has not developed since food in 

lakes and seas had always been abundant. World demand for fish, both as 

a source of food for human consumption and for reduction to fishmeal, 

has grown at a steady pace since the end of World War II. Previously 

demands were met by the expansion of capture fisheries, and indications 

are that capture fisheries will be the most important means of providing 

fish as a food source over the next 25 years (Beveridge, 2004). Fisheries 
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and aquaculture aim to maximise the yield of useful organisms from the 

aquatic environment.  

Aquaculture or fish farming is achieved through manipulation of a fish’s 

life cycle and control of the environmental variables that influence it. In 

South Africa aquaculture production has increased with more that 30% 

per year from 3000 ton (value R51 million) in 1997 to 4030 ton (R146 

million) in 2000 (van Zyl, 2006). Aquaculture has been the forerunner in 

agriculture production for the past three decades, with an average growth 

of 8.6% per year (van Zyl, 2006). 

It is known that approximately 60% of all cost in fish farming is for fish 

feed (Foster et al., 1995). Rainbow trout is a carnivorous species that 

requires high protein feeding and well oxygenated water. Most fish feed is 

manufactured from fish meal which is a commercial product made from 

both whole fish and the bones and offal from processed fish.  

Depending on the quality of the diet and temperature it would take 

approximately 12 – 14 months for the fish to reach a marketable size. 

According to Tacon (1999), the higher the quality of fish meal, the more 

expensive the feeding pellets are; however it is more economical for the 

fish to reach a marketable size as soon as possible (Huet, 1975, Shakya, 

2007). 

The optimal conversion in fish farming or cage aquaculture can be 

achieved by applying high-quality feeding management. Feed 

management is having control of how much feed is to be given in order to 

achieve the optimal growth rate without overfeeding. Excess feeding leads 

to waste feed, which results in excess costs and poor water quality, which 

in turn could lead to stress of the fish. Many factors influence the appetite 

of fish, such as environmental conditions (including water temperature, 

oxygen concentration and water quality) and physiological factors (such as 

age/size, stress level and endogenous rhythms); therefore it is difficult to 
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determine the exact quantity of feed that must be fed (Beveridge, 2004). 

Automated feeding systems are therefore designed with the aim to ensure 

an optimal conversion is achieved, which will be more economical for fish 

farming. 

Several inventions and improvements have recently been developed in 

creating automated feeding systems. These emerging systems are known 

as “adaptive”, “smart” or “intelligent” and develop an increased 

understanding of fish physiology, nutrition and behaviour. These systems 

are governed by process control, which is essentially using sensors and 

computer technology, which is better known as process control. A popular 

approach is to monitor waste pellets beneath the feeding zone with a 

feedback loop that can switch off the feeder if this waste exceeds a 

predetermined threshold (Myrseth, 2000). It is known that fish display 

behavioural characteristics that underlie an optimal rate of feed intake 

throughout their life cycle (Blyth et al., 1999). However, it is not certain 

whether one can base a feeding system on these characteristics.  

The objective of this project is to determine if an automated feeding 

system can be developed through image analysis of fish feeding behaviour 

using a submerged surveillance camera. The proposed method is to obtain 

video images of fish feeding behaviour and subsequently applying data 

analysis. The data analysis will entail image processing, followed by 

pattern recognition and machine learning methods. Currently there is no 

published literature using this approach.  
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Figure 1-1: Cage unit of the Jonkershoek Aquaculture Research 

Farm  

The literature reviewed in this paper is needed to obtain a comprehensive 

background and understanding of automated feeding systems in 

aquaculture using methods as explained above. This project was to be 

conducted at Jonkershoek Aquacultural Research Farm (near 

Stellenbosch) however due to various difficulties (explained in chapter 3) 

the experimental part of this project was conducted at the Two Oceans 

Aquarium in Cape Town, South Africa. 
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Figure 1-2: Circular pond unit of the Jonkershoek Aquaculture 

Research Farm  

1.2 Fisheries in Crisis 

As an introduction to cage aquaculture we need to acknowledge the need 

for fish farming. This, however, is a debatable subject as some 

organizations believe that fish farming has more downsides than being a 

solution to over-fishing. 

According to the World Wide Fund (2007) most marine fish are 

carnivorous, therefore if these carnivorous fish are being farmed, the 

aquaculture industry is using a large proportion of the fish caught in the 

world’s oceans each year. Currently, one-third of the world’s fish catch is 

used to produce fishmeal and fish oil. In 2004, the aquaculture industry 
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used 87% of the world’s fish oil and 53% of the world’s fishmeal, with 

salmon farming alone using over half the global production of fish oil. 

Many of the fish stocks used as feed - mostly anchovies, pilchards, 

mackerel, herring, and whiting - are already fished at, or over, their safe 

biological limit. So instead of relieving pressure on the marine 

environment, aquaculture is actually contributing to the overfishing crisis 

that plagues the world's fisheries (WWF, 2007). 

It is now generally acknowledged that our fisheries around the world are 

in crisis (Greenpeace, 2007). The essential cause of the crisis is that the 

oceans’ resources are considered infinite and deep. Rough and distant 

waters are no longer a barrier to modern fishing fleets, thus leaving no 

natural, safe haven for fish to escape to and replenish (Ogilvie, 2006). 

Food from the oceans consists mainly of fish and shellfish. Over 90 million 

tonnes are caught annually, of which approximately 75% is eaten by 

people (half of which is preserved, usually in salt water and smoking, and 

the other half is chilled, frozen or sold fresh) and the remaining 25% is 

made into fish meal and oil used as pet and animal feed or fertilizer 

(Ogilvie, 2006; NOAA, 1998) . 

In the distant past fish, as a resource, was used at a sustainable rate and 

people caught only as much as they needed. Since the 1970’s, with the 

improvements in modern fishing technology, an increased number of 

people fishing and an increase in global population have caused the 

consumption rate to escalate exponentially.  Modern fishing fleets make 

use of modern technology which includes airplanes, larger nets, radios 

and video sonar to locate schools of fish.  With improved technology and 

the introduction to purse sein nets, long-line fishing, drift nets and factory 

trawlers, whole schools of fish are able to be caught with minimal effort 

(Ogilvie, 2006).  Technologically advanced fishing fleets not only catch 

greater numbers of commercial species of fish, but they also catch millions 
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of tonnes of unwanted marine life each year, as well as destroying coral 

and other sea-bed resources. This term is known as by-catch which can be 

defined as any catch of species (fish, sharks, dolphins, seals, turtles, sea 

birds, etc.) during fishery operations other than target species (Alverson 

et al., 1994). 

By-catch has two components, the non-target species catch that is 

retained and the non-target species that is discarded. By definition, by-

catch is predetermined, while the decision to retain or discard may occur 

during the catching process, at some time later during the vessel trip, or 

in the harbours. Unwanted or undersized animals collected from a catch 

are discarded – thrown back into the sea, probably dying (Ogilvie, 2006, 

Alverson et al., 1994). 

In the National Oceanic and Atmospheric Administration State of the Coast 

Report (1998) it is estimated that approximately 27 million metric tons 

(30 million tons) of by-catch are discarded each year throughout the 

world’s commercial fisheries, compared to a total of about 77 million 

metric tons (85 million tons) of valuable catch. Countless birds and other 

animals suffer and may die from injuries caused by swallowing or 

becoming entangled in discarded fish hooks, monofilament line and lead 

weights. Even the most considerate and careful fishers must share the 

blame, because every sport and recreational fisher’s line will eventually 

become tangled in a tree branch and the line easily snaps during casting 

or gets snagged on the rocks (Ogilvie, 2006). Shrimpers, for example, 

catch 114 000 tons of shrimp per year but discard four times that in 

weight in mackerel, crabs and many more (Heilprin, 2005). In New 

Zealand, albatross population has decline 63% between the period 1973 

and 1997. This decline is mainly ascribed to the fact that albatrosses are 

caught in the nets of fishing trawlers (WWF, 2007) each year.  
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Figure 1-3: Shrimp trawl catch. 95% of the catch in this photo that 

was not shrimp died on deck and was shoved overboard. 

(Norse, 2007) 

Commercial fishing has improved vastly over the years. All improvements 

made in commercial fishing equipment are aimed at catching more fish, 

with little regard for ecological consequences. This has begun to change 

since biologists started tallying the loss of seabed ecosystems (crushed by 

repeated towing) and the vast unintended toll of sea turtles and unwanted 

fish swept into the gaping bags. Fishermen, too, begin to recognize that in 

capturing fish of all sizes they were undermining the health of the 

resource. Tightening laws have begun to shift and shape designs and 

practices that control the by-catch and ecological effect. Improvements in 

design may reduce ecological damage but will never prevent it entirely 
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(Ogilvie, 2006). The figure below gives an indication of fully exploited 

fisheries in 2002: 

 

Figure 1-4: State of World Marine Fish Stocks (FAO, 2004) 

 

Figure 1-5: Global trends in the state of world marine stocks since 

1974 (FAO, 2004) 
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Fish farming was developed to help alleviate the depletion of wild marine 

life from over-fishing and was also seen as a commercialising opportunity. 

While aquaculture may be an option for the rearing of some species of 

fish, there could possibly be inherent problems. The fish are believed to be 

unhealthy, because of the antibiotics, drugs and other chemicals used in 

fish farming. Releasing these antibiotics and chemicals into dams or ponds 

creates a perception that fish farms pollute. Some of the farmed fish are 

very expensive, the fish can escape due to damage to the net pens and 

fish farms can also spread diseases which can run out of control in densely 

packed fish farms. The idea behind aquaculture is that by keeping fish 

enclosed, production cycles can be manipulated and conditions optimized. 

This is done primarily by excluding predators and enhancing feed supply, 

but increasingly new biotechnological methods are being used. These 

methods include transgenic (transfer of genes from one fish to another), 

enhancements to improve growth, hormone therapy and vaccination to 

prevent diseases (Adelezi, 1998).  

At present more than 220 species of fish are farmed, ranging from filter 

feeder to herbivores to carnivores (FAO, 1999). Aquaculture can alleviate 

pressure on wild fishery stocks either by increasing the production of 

popular fish (such as salmon), thus reducing prices, or by farming fish 

(such as tilapia) as alternatives to ocean fish. New technologies (such as 

hybridization), have been used in a number of species to make fish more 

profitable. This is done by increasing growth rate, improving flesh quality, 

increasing disease resistance and improving environmental tolerance. 

Techniques also allow sex to be controlled, and spawning to be induced. 

Aquaculture has also provided alternative employment in fisheries-

dependent regions (FAO, 1999). In conclusion, fish farming may have its 

disadvantages, but it is the responsibility of fish farmers to manage their 

farms ethically and responsibly, ensuring that the advantages of fish 

farming outweigh the downsides, to provide a food source and 

employment and to be economically viable to their country.  
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Figure 1-6: “Fishing down marine food webs” (Pauly et al., 1998) 

“Fishing down marine food webs” (Pauly et al.,1998), illustrated by the 

blue arrow in the graph above, is the process whereby large, slow-growing 

predatory fish (with ‘trophic levels’ from 3.5 to 4.5) are overfished and 

gradually replaced in fishery landings, by smaller, fast growing fish and 

invertebrates (with trophic levels from 2.0 to 3.5). This process can be 

demonstrated through the decline of the mean trophic level of fishery 

landings, over time, and in different parts of the world. 

1.3 The Development of Automated Feeding 

Systems 

The factors giving rise to aquaculture production have been reviewed and 

the next step is to address the technological aspects of this project. The 

objective of the project is to find a way to develop an automated feeding 

system using a control system based on image analysis of fish feeding 

behaviour. In other words a machine will “learn” to distinguish between 

feeding behaviour and non-feeding behaviour. The control system 

therefore receives input (video image) which is encrypted (by a machine) 

to give you a desired output, illustrated as follows: 
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Figure 1-7: Illustration of a feedback control scheme (Franklin et 

al., 2002) 

Process control is a statistical and engineering discipline that deals with 

architectures, mechanisms and algorithms for controlling the output of a 

specific process. In most modern processes large volumes of data are 

collected, which can be used in various ways to deal with the dynamic 

response of a system. Process data are also increasingly used in 

exploratory analysis aimed at the identification of relationships and 

abnormalities in multivariate systems, for process optimization and 

troubleshooting (Aldrich, 2001). Machine learning is concerned with the 

design and development of algorithms and techniques that allow 

computers to “learn” (Bishop, 2006). The major focus of machine learning 

research is to extract information from data automatically, by 

computational and statistical methods. Hence, machine learning is closely 

related to data mining, and statistics and theoretical computer science. 

Machine learning has a wide spectrum of applications including natural 

language processing, syntactic pattern recognition, search engines, 

medical diagnosis, bioinformatics and chem-informatics, detecting credit 

card fraud, stock market analysis, classifying DNA sequences, speech and 

handwriting recognition, object recognition in computer vision, game 

playing and robot locomotion (Alpayadin, 2004). 

Some machine learning systems attempt to eliminate the need for human 

intuition in the analysis of the data, while other systems adopt a 

collaborative approach between human and machine. Human intuition 
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cannot be entirely eliminated since the designer of the system must 

specify how the data is to be represented and what mechanisms will be 

used to search for a characterization of the data (Alpayadin, 2004). 

Machine learning can be viewed as an attempt to automate parts of the 

scientific method. 

A machine learning algorithm addressed in this project is one of 

supervised learning in which the algorithm generates a function that maps 

inputs to desired outputs. One standard formulation of the supervised 

learning task is the classification problem: the learner is required to learn 

(approximate) the behaviour of a function which maps a vector into one of 

several classes by looking at several input-output examples of the 

function (Bishop, 2006).  

A real appreciation for the data comes almost exclusively from exploratory 

graphical analyses of the data, which serves as a window into the essence 

of the system.  

Pattern recognition is a sub-topic of machine learning. Pattern recognition 

aims to classify data (patterns) based on either a preceding knowledge or 

on statistical information extracted from the patterns. The patterns to be 

classified are usually groups of measurements or observations, defining 

points in an appropriate multidimensional space (Bishop, 2006). A 

complete pattern recognition system consists of a sensor that gathers the 

observations to be classified or described, a feature extraction mechanism 

(in our case scores) that computes numeric or symbolic information from 

the observations, and a classification or description scheme that does the 

actual job of classifying or describing observations, relying on the 

extracted features. 

The classification or description scheme is usually based on the availability 

of a set of patterns that have already been classified or described which 

usually uses one of the following approaches: statistical (or decision 

theoretic), syntactic (or structural). Statistical pattern recognition is based 
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on statistical characterisations of patterns, assuming that the patterns are 

generated by a probabilistic system. Syntactical (or structural) pattern 

recognition is based on the structural interrelationship features. A wide 

range of algorithms can be applied for pattern recognition, from very 

simple Bayesian classifiers to much more powerful neural networks. 

However, this section will be discussed in more detail in the methodology 

chapter, chapter 4. 
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2 Literature Review of Automated feeding in Cage Aquaculture 

Chapter 2 

Literature Review of Automated 

feeding in Cage Aquaculture  

2.1 History 

There are many common tasks any fish farmer would find difficult to do, 

such as counting, sorting, measuring and weighing of fish without having 

to individually handle and stress the fish. These are critical needs in fish 

farming, as this is essential information for financing, insurance, stock-

management and feeding activities. Past ongoing research has developed 

numerous fish feed monitoring, counting and measurement techniques 

without having to handle or stress the fish. For example, in the 1950’s an 

electrical device was installed for counting salmon and kelts was 

developed, this operation was successful for periods of over twelve 

months (Juell et al., 1991; Bjordal et al., 1993). 

In the 1970’s developments in acoustic equipment and signal processing 

played an important role in advances in biological oceanography, as well 

as monitoring of a demand feeder. During the 1980’s acoustic telemetric 

systems using 100 – 150 kHz transmitters were used to record data on 

fish such as position depth, temperature and heart rate. X-raying fish fed 

with spiked iron powder and rainbow trout feed spiked with radio-isotopes 

were used in nutritional studies. Microencapsulated fluorescent tracers in 

feed can directly monitor feed ingestion. During the 1990’s hydro-acoustic 
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techniques for monitoring uneaten feed dropping through the bottom of 

the sea cages were developed. Signal processing was found useful for 

counting and measuring fish without actually handling the fish. (Juell et 

al., 1991; Bjordal et al., 1993) 

2.2 Current Status of Feeding Systems in 

Aquaculture 

2.2.1 An Introduction to Feedback Control Feeding Systems 

The conventional practice of hand-feeding is based on the use of feed 

tables, and the experienced eye of the feeder adjusting the feed quantity 

to suit the needs of the fish. Hand feeding is based on surface feeding 

behaviour or “feeding-frenzy”. As cages and holding units have become 

larger and deeper, accurate visual observations of the fish have become 

more difficult. Two simple methods of improving information feedback of 

feed consumption are the airlift pump and the underwater video camera. 

Feed may be delivered by means of a feeder (for e.g. a feeding hopper), 

until a significant number of pellets are observed being drawn up through 

the pump by operators after which the feeder is turned off. More 

advanced systems may have pellet counters to provide an automatic 

feeder cut-off, and a facility for recycling the uneaten pellets (Juell, 1991; 

Blyth 1992; Bjordal et al., 1993; Myrseth, 2000; Beveridge, 2004). 

Alternatively, some farms now make regular use of submersible video 

cameras to observe the stock during feeding (Phillips et al., 1985; Kadri et 

al., 1991; Blyth, 1992; Thorpe and Huntingford, 1992).  Again, this is 

usually to help the judgment of the person controlling the feeder. Further 

development in image analysis software could lead to “video footage” or 

“machine vision” being incorporated into automated systems, which is the 

aim of this project.  
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Figure 2-1: An example of a traditional Hand-Feeder (Gulf of 

Mexico offshore aquaculture consortium, 2003) 

2.2.2 Adaptive Automated Feeding Systems 

For a feedback system to be used in an automatic feeder, a controlling 

variable which can be analysed is needed to produce a feed control 

program. All systems rely on some method or another to detect uneaten 

feed, using a camera, a Doppler or an infrared detection system or a 

system that pumps water up from the floor of the cage. In a simple 

system, a farmer would simply use this information to stop feeding the 

fish, whereas in more sophisticated integrated interactive feedback 

feeding system, observations of uneaten feed are interpreted by software 

which will then control when the next meal will occur and the level at 

which the fish will be fed (Bulcock et al., 2001). 

A different approach developed by several manufacturers uses hydro-

acoustic sensors. These are usually suspended below a fish cage, facing 
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the surface, to provide a sonar image of the cage contents (Juell et al., 

1993). AKVA market a hydro-acoustic sensor which is claimed to 

distinguish pellets from other items in the cage (Blyth et al., 1993). The 

Peneye is marketed by Feeding Systems A.S., where in this case the 

hydro-acoustic sensor is optimised to measure the fish position and 

density within the cage (Bjordal, 1993). If feed is supplied when the fish 

are hungry, they will rise to the surface, descending when their appetite is 

diminished. The location of the fish therefore relates to changes in 

appetite, although it may be indicative of other events such as predator 

attack, changes in water quality and disease.  The appearance of fish 

below the bottom net of a cage indicates over-feeding, which is attracting 

wild fish. Once again, analysis of the signals by software can provide the 

basis for controlling feeders, and could potentially be linked to alarm 

systems which are in turn will become anti-predator devices. 

An early implementation by Simrad® estimated biomass and calculated 

the spread and distribution of fish size. Rapid changes in calculated 

biomass could be interpreted by software as indicative of a problem such 

as a hole in the net allowing fish to escape. The cost-benefit of these 

systems is strongly correlated to cage size, with the investment cost being 

easiest to justify on farms using larger cages. 

2.2.3 Robots and Centralised Feeders 

Inland based systems, particularly those with a large number of tanks 

(>30), Arvo-tec of Finland has developed a robotic system. The system 

consists of 1 to 4 feeder units, which move between tanks by means of an 

overhead track. A computer control system allows unattended operation, 

with the robot feeders guided by magnets in the track backed up with 

optical sensors. Each tank is fed according to the individual directions of 

its program.  As the robot progresses, temperature and dissolved oxygen 

levels in the supply and discharge water can be measured and the values 

incorporated into the underlying feed model so that any required changes 
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can be made to the feed supply. For example, if the oxygen level of the 

discharge water decreases to unsustainable levels, the system will begin 

to terminated feeding whilst sounding the alarm. The robot feeders are 

automatically refilled and this system offers a more cost-effective 

approach to placing a sophisticated feeder on each tank, more suitable for 

smaller feeding amounts and is more accurate that most centralised 

pneumatic systems (Euro Fish magazine, April 2001). 

Centralised air-powered feed systems have been available for quite a few 

years. Feed is stored in central silos, from here the feed empties into a 

dosing unit from where it is transferred to an injector unit, main transport 

pipe and, via air from a blower, to its destination tank, pond or cage by a 

distribution valve and individual feed pipes. This method reduces labour 

required for feeding, but has a high capital cost.  This method is also not 

suitable for widely spread or offshore sites (Euro Fish Magazine, April 

2001). 

 
Figure 2-2: An example of a Robofeeder (Gulf of Mexico offshore 

aquaculture consortium, 2003) 
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2.3 Current status of Automated Feeding 

Systems 

As it can be seen from the following articles, only certain areas in 

aquaculture engineering have been studied intensively.  Research done in 

utilising improved feeding strategies has appeared to fall into three 

categories, what most researchers have found to be the best way to try 

and optimise the feeding conversion rate of caged aquaculture. These 

three categories are as follows: (1) Some researchers have discovered 

that by studying the wasted pellets below the feeding zone will indicate if 

the fish are satiated or not (2) Other researchers use hydroacoustic 

monitoring to study either the fish behaviour before, during and after 

feeding or to also detect feed pellets using hydroacoustics, and lastly, (3) 

feedback control systems have been developed in order to automate the 

feeding process. The next section explains these categories in more detail. 

2.4 Detection of Uneaten Pellets below the 

Feeding Zone  

2.4.1 Detection and Counting of Uneaten Feed Pellets in a Sea 

Cage Using Image Analysis (Foster et al., 1995) 

The purpose of this study was to detect and count feed pellets in a sea 

cage using underwater video cameras. Using a light-compensating camera 

positioned straight down in the water column, extruded pellets appear 

white. Manual counting of feed pellets from video replay is arduous so 

algorithms were developed for detection and counting of the feed pellets. 

The algorithms were implemented on a computer based image processing 

system using actual feeding situations. The focus of their study fell on the 

counting of uneaten feed pellets.  Knowledge of pellet loss is essential for 

assuring proper dosage delivery when the pellets contain flesh 

pigmentation agents, vaccines, vitamins or antibiotics. Therefore a 
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feedback system was required to provide data on how much feed is not 

being eaten. 

The objective of this study was to determine the validation of a manual 

video camera based pellet detection and counting system, and to develop 

an automatic version of this manual system using image analysis 

algorithms. The automatic pellet counting algorithm was developed using 

recorded image sequences. The sequences consisted of detecting the feed 

pellets and correctly tracking feed pellets from one image to the next. 

 

Figure 2-3: Experimental Set-up and Pellet Counting Process 

(Foster et. al., 1995) 

The first test run was to count the feed pellets in the fish cage with no fish 

in the water in order to determine the accuracy of the counting algorithm. 

A computer error of approximately 10% occurred. These errors occurred 

during object detection, which was caused when feed pellets fell too close 

to the front of the camera. The camera blocked the light reaching the 

pellet, and therefore the pellet was not detected. Object division was 

another major cause of counting errors. Object classification was not very 

accurate; in very murky water this task will become even more difficult. 



Chapter 2: Literature Review of Automated feeding in Cage Aquaculture 24

The algorithms which were developed in this project represented the first 

stage in development of commercial automatic pellet counting systems. 

2.4.2 Control of Feed Dispensation in Sea Cages using Underwater 

Video Monitoring: Effects on Growth and Feed Conversion 

(Ang et al., 1997) 

These researchers realized that uneaten feed is a detriment to farming, 

because it accumulates underneath in a cage where it is subject to 

microbial spoilage and attracts wild fish.  The objective of this study was 

to develop a feed control system using underwater video cameras. The 

fish were fed in two experimental trials. The trials were conducted on 

Atlantic salmon (Salmo salar L.). Fish fed by mechanical feeders were 

monitored using an underwater video camera placed below the feeding 

zone. Data were collected as feeding response, growth and feeding 

conversion rate which was incorporated into a video sample and a 

standard statistical method was used to analyse the data. Environmental 

conditions were also taken into consideration. Fish in camera-monitored 

cages achieved significantly better feeding conversions and lower 

mortality rates due to more efficient feeding by visually observing their 

behaviour and feeding fish accordingly. During periods of poor water 

clarity, fish apparently had difficulty detecting pellets and therefore ate 

more poorly. In camera-monitored cages, feed dispensation rate varied 

depending on lighting conditions and broadcast method. Subsurface 

feeding activities and pellet loss constituted a better indicator of satiety in 

Atlantic salmon than did submerged feeding activities. 

2.4.3 Detection of feeding rhythms in sea caged Atlantic salmon 

using new feeder technology (Blyth et al., 1993) 

They found that fish display preferential feeding patterns that relate to 

both endogenous and exogenous factors. This new technology feeder is 

called the Aquasmart Adaptive Feeding System, designed to automatically 
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feed fish by regulating feed input based on the levels of feed waste 

detected beneath a feeding zone.  The system used this information to 

establish the feeding behaviour of the fish.  The system fed a cage of 

Atlantic salmon, Salmo salar (2 – 3 kg) daily to satiation for four months 

during winter.  This system is very similar to the systems mentioned 

above, except that a sensor is used to detect the pellets below the feeding 

zone. Large savings can be made by fish farmers by using these feeding 

control systems. 

2.5 Hydroacoustic Monitoring of Feed Pellets 

during Feeding 

2.5.1 Hydroacoustic monitoring and feeding control in cage 

rearing of Atlantic salmon (Salmo salar L.) (Bjordal et 

al.,1993) 

An echo-sounder, linked to an upward-facing transducer mounted under 

the cage, provides echo signals from the caged fish. The signals are 

processed by a PC-based echo integrator which monitors the change in 

echo intensity at different depths in the cage. Before feeding the highest 

fish densities are found at medium depths. When feeding starts, fish 

density and thus echo intensity close to the surface increase significantly 

and stay at a high level as long as the appetite remains high. When the 

echo intensity in the upper layer of the cage decreases to a certain preset 

threshold, the feeders are automatically shut off. The downward migration 

of the fish is shown by a reduction in echo intensity and is thus used as an 

indicator of satiation. 

Besides the direct feeding control application, the amount of feed is 

logged, and the software allows different feeding strategies, for example, 

with respect to the number of daily feedings, feeding intensity, total daily 

feed limits, and the level of automation to be implemented. This system 

was designed to monitor and control twelve cages and feeder units. Other 
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useful applications as continuous monitoring of the fish with possible 

alarm functions, observation of dead salmon and wild fish, as well as 

possible biomass estimation can be implemented using this method. This 

information is very useful in learning about fish feeding behaviour. 

2.5.2 Demand Feeding in Salmon Farming by Hydroacoustic Feed 

Detection (Juell et al., 1993) 

A new method for demand-feeding of salmon in sea cages where 

automatic feeders are controlled by a feed detector was investigated. 

Hydroacoustic detection of feed pellets at 2.5 m depth was used as an 

indicator of reduced appetite. Feeding was terminated when echo energy 

from feed pellets sinking through a 360º acoustic beam exceeded a preset 

threshold. In an 83-day full-scale test, the feed intake and growth of 

salmon whose feeding was controlled by this method (detector group) was 

compared with those of fish fed in accordance with growth rate estimates 

(control group). The specific growth rates (% wet weight/day) were 1.01 

and 0.71 in the detector and control groups respectively. This difference in 

growth was mainly explained by a considerably higher feed intake in the 

detector group. The results indicate that demand feeding by hydroacoustic 

feed detection automatically adjusts the feed ration to fish appetite, so 

that feed waste is avoided and the growth potential of the fish is utilized.  

In other words, as soon as feed pellets were wasted the feeder switched 

off. Thus the group of fish that was in detector group, showed a 

significantly better feeding conversion ratio. 

2.5.3 Observing behaviour and growth using the Simrad FCM 160 

fish cage monitoring system (Dunn & Dalland, 1993) 

Instrumentation that uses underwater acoustics to monitor the behaviour 

and growth of salmon and trout in open water fish farms was successfully 

developed. The vertical distribution and behaviour of the fish in cages 

were monitored which could provide an indication of the well-being of the 
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fish. Estimates of biomass, average size, size distribution and growth 

trends for the fish in each cage can be provided from this instrumentation. 

This information is very valuable to any fish farmer as mentioned before. 

2.5.4 Acoustic characteristics of two feeding modes used by 

brown trout (Salmo trutta), rainbow trout (Oncorhynchus 

mykiss) and turbot (Scopthalmus maximus) (Lagardere et 

al., 2004) 

Under conditions of intensive culture, the acoustic signals produced by fish 

during feeding depend on their feeding mode. Exclusive suction, used by 

turbot, is characterized by a maximum acoustic energy in the frequency 

rage 7 – 9 kHz and a sound duration of about one minute depending of 

time duration of pellet distribution. Suction feeding in conjunction with 

forward swimming, as employed by brown trout and rainbow trout, had a 

maximum acoustic energy in the frequency range 4 – 6 kHz and feeding 

sounds were measurable only for short periods (less than 1s) in between 

tow pellet distributions by hand. The brevity of these feeding sounds 

requires adapting the turbot acoustic-detection systems to actively 

feeding fish for developing automated feed distribution systems feasible in 

trout aquaculture. 

2.6 Feedback Control Systems used in Cage 

Aquaculture 

2.6.1 Automatic Feeding Control System for Fish (Kimura et al., 

1993) 

Marine farming systems such as those used in Japan, use radio equipment 

to provide telemetric control of sound emission and bait feeding. One of 

the biggest technical problems in these marine farming systems is not 

being able to transmit high-quality signals from fish finders within the 

signal transmission bandwidth allowed by the radio wave laws of the 
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country. Therefore sizes of schools of fish are overestimated because of 

significant reduction in the signals received. The amounts of feeding are 

determined according to the measured sizes of schools of fish; so that 

over-estimation of the school sizes causes excessive feeding. Excessive 

feeding not only makes the system less economical, but also creates the 

serious ecological problem of marine pollution owing to residual baits. A 

method was therefore developed to enable signals to be transmitted from 

a fish finder without being affected by the legal limit signal transmission 

bandwidth of the country. In a country where these methods are used, 

this method may be very useful in estimating school sizes off-shore. 

 

Figure 2-4: AQ1 system (www.AQ1systems.com) 

2.6.2 An Automated Rearing Chamber System for Studies of 

Shellfish Feeding (Smith et al., 1998) 

Producing large volumes of high quality microalgae to feed shellfish and 

other organisms is a limiting factor in the development of the aquaculture 

industry. Feeding regimes yielding the highest conversion efficiencies of 

algal feed to molluscan growth are required to maximize the return on 

algal culture investments. In the past, twelve specialized, manually 
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controlled molluscan rearing chambers have been used to study nutritional 

requirements and growth of oysters, clams, and scallops. A computer-

controlled, solenoid-valve system was added to automate seawater flow, 

volume of microalgal feed delivered, and feeding duration independently 

for each chamber. Each chamber represents a model for a programmed 

nursery system. These systems can benefit shellfish production 

enormously, as shellfish has become a very limited feed resource. 

2.6.3 Automation of Feeding Management in Cage Culture 

(Myrseth, 2000) 

An experiment involving three automated systems, the Aquasmart, 

Ecofeeder and Lift Up, was conducted in order to investigate how these 

systems compare in the improvement of control of feeding and help to 

improved feeding efficiency.  The three systems tested gave feed 

conversion rates of 0.94 for Lift Up, 0.93 for Ecofeeder and 1.05 for 

Aquasmart. Thus, all these systems provide good control and any system 

could be implemented to assist in feed control. 

2.6.4 Denitrification in aquaculture systems: Example of fuzzy 

logic control (Lee et al., 2000) 

Nitrification in commercial aquaculture systems has been accomplished 

using many different technologies (e.g. trickling filters, fluidized beds and 

rotating biological contractors), but commercial aquaculture systems have 

been slow to adopt denitrification. Denitrification (conversion of nitrate, 

NO3 to nitrogen gas, N2) is essential to the development of commercial, 

closed, recirculating aquaculture systems in order to create an 

environment, as it would have occurred naturally. The problems 

associated with manually operated denitrification systems have been 

incomplete denitrification. These problems could be overcome by the 

development of a computer automated denitrifying bioreactor specifically 

designed for aquaculture. A fuzzy logic-based expert system replaced the 
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classical process control system for operation of the bioreactor, which is 

continuingly optimizing denitrification rates. The fuzzy logic rule base was 

composed of more than 40 fuzzy rules, and took the slow response of the 

system into account.  The fuzzy logic control system decides which 

process to follow taking into account a certain number of variables. This is 

a good idea in simplifying control of certain processes. This is not 

necessarily relevant to feeding utilisation, however this is an alternative 

approach which could be considered for future reference. 

2.6.5 An automated feeding system for intensive hatcheries 

(Papandroulakis et al., 2002) 

It is imperative to continuously meet metabolic demands via continuous 

online feed supply for successful aquaculture. This is especially important 

for small larvae, which have a relatively high metabolism, with a long 

photophase and require continuous feeding. Such requirements cannot be 

easily met using classic manual feeding methods due to logistic problems. 

A computerized system was consequently developed for feed management 

in intensive hatcheries. The daily plankton requirements of larvae, 

organized in feeding tables together with a distribution patter, was used 

for the development of the required hardware and software to control 

feeding. The system computes the feed required (plankton organisms) 

and activates a peristaltic pump and solenoid valves for distribution to 

tanks. The system offers the option of feeding according to tables or 

manually, depending on the concentration of plankton in the rearing 

tanks. 

2.6.6 Design and Analysis of an automated feed buoy for 

submerged Cages (Fullerton et al., 2004) 

A research prototype was developed to supply a submerged net pen at an 

exposed site south of the Isles of Shoals. The Isles of Shoals is a group of 

nine small islands situated approximately 16 km off the east coast of the 



Chapter 2: Literature Review of Automated feeding in Cage Aquaculture 31

USA. The system, designed for a quarter ton feed capacity, consists of a 

surface feed buoy, rubber tether moorings attached to a submerged grid, 

a feed transfer hose, feed dispensing machinery, and telemetry/control 

components. The buoy is taut-moored above the cage by flexible 

members in order to allow for tidal range and large storm waves. The 

feeding mechanism uses a small, electric powered pump to actively force 

feed slurry down to the cage. A wind generator and solar panels provide 

power to the various pumps on a user-set schedule and also monitors the 

operation of the electric power system. This is not necessarily relevant to 

feeding utilisation; however this approach to automation can be a very 

good idea for future reference. 

2.6.7 Development of an Intelligent Feeding Controller for Indoor 

Intensive Culturing of Eel (Chang et al., 2005) 

This development was conducted by observing the gathering behaviour of 

eels using an infrared photoelectric sensor with a digital signal output. 

Timer-controlled automatic feeders with a rotating plate and scrubber 

were used widely in this form of culturing which was designed to run at 

preset times for a preset duration with no other control. 

An intelligent feedback control system was developed in this project. The 

feeder equipped with such a sensor and governing control strategy is able 

to stop feeding according to the gathering behaviour of the eels. The 

control strategy is based on six user-adjustable parameters with default 

values. If the sensor fails to detect the gathering behaviour for three 

consecutive trials, the feeder will stop feeding until the next wake-up, 

thus reducing the risk of polluting the water. In the case of eels, their 

gathering behaviour is the key component to their satiation point. The 

control of this feeding controller is very important, and if this project is 

feasible, this method should be taken into consideration. 
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2.7 Fish Behaviour as a basis for an Automated 

Feeding System 

The most common instruments used to monitor fish behaviour are with 

the use of tagging, X-radiography or video recording. 

In nature, competition between individuals for limited resources (feed, 

feeding sites, and hiding places etc.) often results in the development of 

dominance hierarchies. This is a common feature in fish and leads to 

disparity in feed intakes, growth rates and survival. Aggression is known 

to increase in dominant fish, especially when feeding, while stress and fin 

damage increase in subordinate fish (Smith et al., 1993). 

Feeding patterns in any fish vary due to a number of factors, for example 

in a cold fresh water fish like rainbow trout, it is known that the fish feed 

very poorly during the summer seasons as the water temperature is too 

warm at the surface, and during winter months when the water is cold 

(usually below 14°C) the fish eat well as this is an optimal temperature to 

feed (De Wet, 2007). Feed intake varies depending on how stressed fish 

are due to poor water quality or predator behaviour. However, fish feed 

poorly when the water clarity is poor as the fish cannot detect their feed 

(Smith et al., 1993).  These events are supported by the following articles 

discussed: 

2.7.1 Daily and Seasonal Patterns in the Feeding Behaviour of 

Atlantic salmon in a Sea Cage (Smith et al., 1993) 

Smith et al. (1993) researched the variation in behavioural indications of 

appetite in Atlantic salmon in a sea cage. The variation in appetite was 

related to environmental variables and fish swimming activity during the 

seasons from autumn to spring.  They discovered a marked seasonal 

variation in feeding behaviour which indicated a reduction in appetite from 

autumn to winter and a rapid increase in appetite from late winter 
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onwards. Seasonal variation in behavioural indications of appetite was 

more closely related to how long a day was and the change in how long a 

day was than to other environmental variables including water 

temperature. A feeding regime based on the assumption that the water 

temperature is the most important environmental determinant of the 

appetite of salmon in sea cages could lead to feed wastage in autumn and 

early winter and under-feeding in late winter and early spring. The 

responsiveness of salmon to feed varied significantly throughout the day, 

but the overall pattern of appetite was different at different times of year. 

They also discovered that no marked morning and evening peaks of 

appetite occurred and prefeeding swimming speed was not closely related 

to appetite which is in contrast to some other studies. 

2.7.2 Diurnal and Seasonal variation in the Feeding Patterns of 

Atlantic salmon in a Sea Cages (Blyth et al., 1999) 

Atlantic salmon in sea cages had been known to exhibit feeding patterns 

that vary both diurnally and seasonally. Previous studies had been 

conducted on this section; however, no data reporting on the feed rate of 

a complete annual cycle had been recorded. From this project it was 

discovered that a major feeding peak regularly occurred soon after dawn, 

and feeding rates remained high for approximately one hour. Over the 

remainder of the day, the fish fed at a lower but steady rate. Relative feed 

intake varied over the trial, being initially high in summer followed by a 

sharp decline in autumn, and then further declining until fish reached 

harvest size at the beginning of the following summer. However, they 

recommend further investigation of the relationship between variation in 

annual feeding patterns and environmental factors should be carried out. 



Chapter 2: Literature Review of Automated feeding in Cage Aquaculture 34

2.7.3 Patterns of feed intake in four species of fish under 

commercial farming conditions: Implications for feeding 

management (Talbot et al., 1999) 

Meal durations and feed ingestion rates were measured in sea caged 

Atlantic salmon, rainbow trout, yellowtail and Red Sea bream; which were 

fed dry extruded feed in discrete meals. At a specific population level, 

satiation times in yellowtail, salmon and trout were typically about 15 – 25 

min, but in red sea bream time to satiation was longer; about 60 – 90 

min. In all these species, feed ingestion rates declined progressively 

during the course of the meal as fish became satiated. The water 

temperature had little effect on ingestion rates, possibly because the fish 

were fed 1 to 3 meals per day, but may have standardized hunger levels 

at the start of meals. Yellowtail ingested feed at approximately 3.5 kg 

feed per ton fish per minute at temperatures of 18°C and 28°C, whereas 

red sea bream ingested feed at rates of 0.6 and 1.4 kg feed per ton fish 

per minute at 26.5°C and 18°C respectively. In rainbow trout no waste 

feed was collected during the first quarter of any meal, so initial feed 

ingestion rates were restricted by the feed delivery rates to 0.5 – 09.kg 

feed per ton fish per minute. The fish were eating approximately two to 

four pellets per minute at the start of the meals. 

2.7.4 Studying visual cues in fish behaviour: A review of 

ethological techniques (Rowland, 1999) 

A variety of approaches are available to fish ethologists to study the role 

of visual cues in fish behaviour. Examples of these varieties is using live 

fish, mirror images, dummies (i.e. models), or video playback as stimuli to 

investigate fish behaviour. These examples represent a diversity of 

functional categories of behaviour exhibited by fish, including aggression, 

courtship, schooling behaviour, parent-offspring, predator-prey and 

cleaner-host interactions. These specific techniques have been used by 

fish biologists to control or manipulate body shape, size, posture, 
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morphological structure, colour and making patterns or movement of fish.  

Vision is the dominant sense of many fish; much of what is known about 

visual communication in fishes comes from observing freely interacting 

subjects. The fish interact lively, or to a mirror image, dummies or video 

playback while being observed by the researcher. A specific characteristic 

that is of importance to this project is the movement or feeding behaviour 

of fish. This study suggested that the least intrusive way to study 

movement cues is to record the behaviour of freely interacting fish and to 

test for correlation among the behaviour each performs. This is a type of 

statistical approach to investigate how a display of a couring guppy elicits 

response from its partner.  

2.8 Summary 

Currently aquaculture farms are feeding fish by means of traditional hand 

feeders and automated feeding systems using hydroacoustics and sensory 

feedback systems. These approaches however are not considered optimal 

as automatic feeders do not necessarily ensure optimal feed intake. Social 

dominance using demand feeders does not allow even feeding distribution 

among all sizes of fish. 

An alternative approach to developing an automated feeding system will 

be investigated in this project. The aim of the project is to investigate 

whether an automated feeding system can be developed based on 

characteristic feeding behaviour of fish, whereas most other automated 

feeding systems operate on other variables, like detecting uneaten feed 

pellets as reviewed in the literature. 

Video footage of fish feeding behaviour before, during and after feeding 

will be analysed using a computer software program Matlab®. From the 

image analysis done on the video footage, it is anticipated that 

characteristic feeding patterns before, during and after feeding should 

indicate the level of appetite of the fish. For example, famished fish could 
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swim more aggressively and closer to the surface just before feeding, 

while a more satiated fish swims more calmly and closer to the floor of the 

cage.  If this can be proven viable, an automated feeding system could be 

developed using the models obtained from the video data. 

The aim of this project will be to explore the feasibility of developing an 

automated feeding system by studying the feeding behaviour of rainbow 

trout in the Jonkershoek Aquaculture research dams in Stellenbosch. This 

will in turn is anticipated to optimise the feeding management system of 

the farm, thereby reducing fish food waste as well as preventing 

underfeeding of the trout. Automated feeding systems based on 

characteristic feeding behaviour of fish would be more profitable to an 

aquaculture farm as it could possibly replace hand feeders and could 

possibly feed the fish more accurately based on their behaviour. Many 

factors will influence the feeding behaviour of the fish and all 

environmental factors will be taken into account. Since there are only 

females species present in the cages, no mating behaviour will influence 

the feeding behaviour of the trout. Male rainbow trout are essentially 

smaller and are only needed for breeding purposes.  

From the literature review a lot is learnt about fish behaviour and on what 

basis other automated systems work. Problems encountered in other 

researcher’s projects bring awareness to problems which could be 

encountered in this project. Since aquaculture is growing so fast and has 

such a large role in agriculture production it is important to learn as much 

as possible about aquaculture.  Since 60% of all expenses on an 

aquaculture farm are due to feeding, any contributions made to improving 

a feeding management system will make an aquaculture farm more 

economically feasible 
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3 Experimental Setup 

Chapter 3 

Experimental Setup  

3.1 Introduction 

The experimental set-up can be divided into two sections, namely the 

experimental set-up at an aquaculture dam and the experimental set up 

at an aquarium. Initially data were to be obtained from Jonkershoek 

Research Aquaculture farm, where a light-compensating camera in a 

water-proof casing was lowered into the cage and video footage was 

acquired. However, due to the difficulties explained in section 3.3, an 

alternative experimental set-up was sought. 

Different options for the experimental set-up were considered. The first 

option considered was to acquire video data from the Katze Dam in 

Lesotho, this however did not realise as the suitable equipment (i.e. 

appropriate video camera) could not be attained. Another option would 

also be to observe fish in a home aquarium (i.e. goldfish in a fish tank), 

however it was anticipated that this experimental set up would not truly 

replicate the conditions of the aquaculture farm.  

Therefore it was decided to acquire video footage from the Two Oceans 

Aquarium at the V&A Waterfront in Cape Town, South Africa, as the 

conditions were more similar to the aquaculture farm (i.e. where 

traditional hand feeding methods are used and feeding patterns are 

already established). 
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Clearance was arranged with the senior aquarist, David Vaughn. Video 

footage was taken of fish behaviour before, during and after feeding. The 

fish in the aquarium are fed once a day and the sharks are fed once a 

week, whereas on an aquaculture farm, fish are often fed more than once 

a day so as to obtain a maximum feed intake and hence growth rate. The 

fish in the aquarium are fed sardines and squid and on fish farms they are 

fed a balanced diet of balanced feed pellets.  In this project, it not 

assumed that all fish have the same feeding behaviour characteristics. As 

it will be explained below, the focus of the investigation was on the 

movement of the fish and not on their morphological characteristics; 

therefore having different species of fish was not a concern. 

3.2 Experimental Set-up at Aquaculture Farm 

The video data acquired in this project is in the form of video or *.avi 

format files. Data were acquired from the Rainbow Trout farm at the 

Jonkershoek cold-water aquaculture research unit (Stellenbosch, South 

Africa) using a light compensating surveillance camera, as indicated in Fig. 

3.1. A waterproof casing was constructed in order for the analogue 

camera to be lowered into the water, which is then connected to a 

portable battery and an analogue-to-digital converter (Pinnacle Studio 500 

USB®), as shown in Fig. 3.2. The analogue converter is then connected to 

an external USB port, which in turn is connected to a portable computer 

where the data are captured to a hard drive. Real, live video footage of 

the submerged cage is displayed on the portable computer’s monitor. The 

camera can be submerged up to 20 m deep; however the visibility is 

highly dependent on water clarity. The portable battery must be charged 

before the camera is connected (as explained above) and then the camera 

is lowered into the cage. Once all is connected, recording starts and the 

video footage is captured to the computer’s hard drive.  
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• The video surveillance system 
uses Black and White CCD camera 
with 41 IR LED's. 

• Operates on a 12 volt DC battery. 
• Camera works in total darkness. 
• Use for bait monitoring, predator 
hunting, wildlife observation. 

 

Figure 3-1: Ultrec Video Surveillance Camera  

 

Figure 3-2: Portable 12V Battery and Analogue to Digital Converter 

(Frame Grabber) 
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Figure 3-3: Video footage from Jonkershoek Aquaculture Farm  
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Figure 3-4: Video footage from Jonkershoek Aquaculture Farm  
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Figure 3-5: Video footage from Jonkershoek Aquaculture Farm  

The surveillance camera captures approximately 30 frames per second. 

The frames shown in figures 3.3 to 3.5 are frames captured in intervals of 

approximately 10 seconds. As it can be seen from the frames, the visibility 

is very poor, and almost no changes can be detected from the frames. 

3.3 Experimental Set-up at Aquarium 

The video data from the Two Oceans Aquarium were captured using a 

three charge coupled device (3CCD) Panasonic® PV-GS150 digital video 

camera. The camcorder was set up on a tripod in an indoor aquarium, 

where no external environmental factors (such as changes in light) could 

influence the video data. Each data set consisted of approximately 2x104 

image frames making up a video clip of approximately 15 to 20 minutes.  
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Each image frame contained the pixels of the image in a 480 x 720 

matrix. Each of these frames was converted to matrix, the entries of 

which represented the intensities of the pixels, i.e. colour information was 

discarded, was the focus of the investigation was on the movement of the 

fish and not on their morphological characteristics. Matlab® was 

subsequently used for further analysis of the data. Typical prefeeding, 

feeding and postfeeding behaviour are illustrated in Figs 3.7 – 3.9 

respectively. (The species of fish in the fish tank are cob, yellow tail, 

stumpnose and steenbras). 

The reason for not using the same camera was firstly because the digital 

video camera was easier to use inside the aquarium, and the data could 

be transferred to a computer with ease. The surveillance camera consists 

of heavy and lengthy cables, as well as portable batteries which is 

required for the camera to function, which is difficult to manage inside the 

aquarium.  

 

Figure 3-6: Panasonic Digital Camcorder 
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Figure 3-7: Prefeeding Behaviour 

 

Figure 3-8: Feeding Behaviour 
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Figure 3-9: Postfeeding Behaviour 

3.4 Practical Issues  

3.4.1 Water Turbidity 

The Jonkershoek Aquaculture research farm has murky water throughout 

the year. At the majority of aquaculture farms, the water becomes clearer 

during winter, but as Jonkershoek has high rainfall during the winter 

season the dams remain murky due to runoff from the surrounding hills. 

Video footage acquired from the Jonkershoek Aquaculture farm had 

almost zero visibility and therefore the video data could not be used.  

A Secchi disc reading is a measurement of water transparency. A disc is 

mounted on a pole, and lowered into the water. The depth at which the 

pattern on the disc is no longer visible is taken as a measure of the 

transparency. Therefore, the higher the Secchi disc reading, the clearer 

the water. 
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The table below shows the results of Secchi readings measured at 

agriculture research dams in the Stellenbosch vicinity from 2004 – 2007. 

As it can be seen from the table, the Secchi readings vary considerably 

which will make it difficult to use the proposed video footage as a basis for 

fish feeding behaviour, and an alternative method should be sought to 

overcome turbidity issues. 

Table 1: Secchi Disc Readings in cm ARC Research Dams (Direct 

Visibility Readings from Nietvoorbij dam). 

 WRC research dams 

 

NV 

2004 

NV 

2005 

NV 

2006 

NV 

2007 

Jan   84     

Jan   88 175 180 

Feb 173 90     

Feb 165 70 170 200 

Mar 156 85     

Mar 168 60 200 200 

Apr 200 56     

Apr 94 53 110 125 

May 124 50     

May 194 55 27 110 

Jun 215 70     

Jun 314 83 30 85 

Jun 286   105   

Jul 152 200   88 

Jul 124   70   

Aug 105     43 

Aug 126 110 95 65 

Sept 114 105 130 105 

Oct 113 170 110 95 

Nov 83       

Nov 111 80 165   

Dec 150       

Dec 90   190   

Dec 110 120     
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The only visibility data available for Jonkershoek Aquaculture dam is the 

following: 

Jonkershoek: 

18.10.06         40 cm 

28.3.07           42 cm 

27.06.07         200 cm and more 

The readings given above do not provide enough information to form an 

opinion; however one can see the variability in turbidity readings at these 

times. Jonkershoek does not have a lot of phytoplankton, so the high 

turbidity of the dam is mostly influenced by sediment inflow and stirrup. 

3.4.2 Video Recording Equipment 

In order to obtain the desired images from the video data, provision 

should be made for the poor light under the water using a light 

compensating camera (infrared, LED’s). An important aspect to bear in 

mind when recording video images is to maintain a desirable distance 

from the fish (to capture the cage as a whole); moreover it may occur 

that one fish will block the entire view of the camera.  

Due to the turbidity of the water, the visibility length is approximately 30 

cm. The camera was dropped directly into a cage; therefore there was no 

distance between the camera and the fish, where in some cases one fish 

could block the entire view of the camera. It would be more ideal to drop 

the camera a distance away from the cage in order to perceive a better 

image, but since the visibility length is only approximately 30 cm, it was 

not feasible in this instance. 

3.4.3 Processor Memory 

Another constraint to this project is the volume of the data sets. The 

computational algorithms required to describe the fish feeding behaviour 
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rely on Matlab® software. The minimum specification of the computer 

memory required was 512 MB RAM, which was thought to be sufficient to 

perform the computation of the algorithms. However, this amount of 

memory proved to be insufficient to compute a significantly large enough 

data set. The hardware was constrained, and therefore Matlab® was only 

able to process approximately only 100 image frames from a complete 

data set, constituting approximately 20 000 image frames. Therefore an 

alternative software tool had to be incorporated to process the algorithms 

to overcome memory limitations. The software tool Gist® was 

recommended (the operation of Gist® is explained chapter 4). It is 

recommended that in the future processors with at least 2 GB RAM (or the 

maximum quantity of RAM obtainable) should be considered for the 

computation of these large multivariate data sets. 

3.4.4 Feasibility of the Project 

An automated feeding system (able to classify feeding state automatically 

using live images of aquaculture cages) would be able to replace hand 

feeding and possibly other automated feeders such as demand feeders 

which are not as effective. Live images of aquaculture aid in the 

monitoring of aquaculture for diseases, predators and water quality. At 

Jonkershoek aquaculture farm it would be very difficult to implement a 

feeding system based on an underwater camera system, seeing as the 

visibility length is only 30 cm. Cage aquaculture is growing at a 

considerable rate and therefore any research contributing to the 

improvement of automated feeding systems is an asset. However, it is 

important to note that in the case of automated feeding systems, based 

on visual observation and analysis, the water quality of the aquarium or 

aquaculture farm ought to comply with the requirements as mentioned in 

the previous section.  

It is recommended that for aquaculture farms having poor visibility, an 

adaptive automated feeding system (such as the AQ1 adaptive feeding 
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system, as described in chapter 2) are used. The adaptive feeding system 

for cultured species includes: (a) providing (i) a sensor able to detect feed 

particles passing through a sample area, and (ii) a control unit, including 

computer data storage age media in communication with the sensor, and 

(b) detecting and discriminating feed particles that pass through the 

sample area; wherein the control unit is able to process information 

obtained from the sensor and regulate subsequent feed output based on 

algorithm parameters (said algorithm parameters determine the 

instantaneous feed rate of the cultured species to adjust and match the 

preferred feed values meted to the cultured species at any given time). 
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4 Image Processing and Data Analysis 

Chapter 4 

Image Processing and Data 

Analysis 

The primary objective of this project was to generate a predictive model 

for fish feeding behaviour. Very little work has been done on developing 

an automated feeding system based on this method. However, these 

feeding behaviour patterns are in all probability strongly associated with 

the controlled environment in which they exist. In most cases, fish will are 

conditioned to their surroundings, therefore in a controlled environment 

such as an aquaculture farm or in an aquarium, fish become conditioned 

to know when and how they will be fed.  Therefore in this experiment, it 

was not possible to observe fish feeding behaviour where there is an 

abundance of fish feed or how fish will behave when they are fully 

satiated. 

The aim of this chapter is to describe the techniques used to analyse the 

data in this project. In the methodology it is firstly explained how to 

acquire the data and how it is pre-processed or prepared for data analysis, 

then the analysis is explained followed by the classification. The analytical 

techniques used in this project were principal component and linear 

discriminant analysis.  

In this chapter principal component analysis is first reviewed. At a later 

stage, in order to optimise the classifier, kernel principal component 

analysis is discussed. The main differences between standard PCA and 
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kernel PCA is that standard PCA is an orthogonal linear transformation and 

KPCA is a non-linear transformation. This will be discussed in more detail 

in section 4.4 and section 4.5. 

4.1 Introduction 

The analytical procedure consisted of four steps, namely data acquisition, 

image processing, feature extraction and classification of the condition of 

the fish based on the features extracted. The four steps are discussed in 

more detail below. 

 

Figure 4-1: Methodology 
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4.2 Data Acquisition 

Four 16 to 20 minute video clips were analyzed, each containing 

approximately 20 000 image frames. Each image frame consisted of a 

matrix of 480 x 720 pixels. Each of the video clips documented a 

prefeeding, feeding and postfeeding stage. The prefeeding stage was 

recorded for approximately 7-9 minutes. The feeding stage lasted 

approximately 2 minutes, while the postfeeding stage was also recorded 

for approximately 7-9 minutes. 

4.3 Image Processing 

A series of 1500 image frames with a resolution of 480 x 720 pixels was 

extracted for each of the three stages of feeding behaviour of the fish. 

Instead of analyzing the frames themselves, the differences between 

successive frames were considered, i.e. these differenced frames 

contained the change in pixel intensities over time (0.033 seconds).  

Moreover, as indicated in Figure 4-2, the image frames were not 

processes in their entirety. Instead, a 240 x 200 zone was selected in 

each image to get rid of unwanted stationary scenery or image features 

not informative as far as the feeding behaviour of the fish was concerned. 

The rows in each of these zones were subsequently concatenated to yield 

a 1 x 48 000 row vector for each image. The aggregated data matrix X 

therefore had the dimensions 4500 x 48 000 for all three classes. It is this 

matrix that was decomposed by principal component analysis, as 

described in more detail in the next section. 

Since these experiments were conducted in an indoor aquarium, typical 

image processing challenges such as changes in the brightness and 

contrast of image data were not a factor.  Thus, these factors were not 

compensated for during image processing and may need to be considered 

under different experimental circumstances. 
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4.4 Feature Extraction with Principal Component 

Analysis 

The data matrix X ∈ ℜ
4500x48000 was decomposed by means of principal 

component analysis (PCA). PCA relies on an eigenvector decomposition of 

the covariance or correlation matrix of the process variables, i.e. for the 

data matrix X with n rows and m columns, C, the covariance matrix of X 

is defined as 

        Equation 4-1 

Note that C is positive definite, and thus can be diagonalized with non-

negative eigenvalues: 

        Equation 4-2 
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240x200 
zone 

4500 x 48000 data 

matrix used as input to 

PCA  

1 

2 

4500 Matrix of intensity values 

derived from an image 

480x720 
image 

 

Figure 4-2: Construction of data matrix from digitized video 

images  

4.4.1 Feature Extraction 

Feature extraction has long been an important topic in pattern recognition 

and has been studied by many authors. Linear feature extraction can be 

viewed as finding a set of vectors which effectively represent the 

information content of an observation while reducing the dimensionality. 

In pattern recognition, it is desirable to extract features which are focused 

on discriminating between classes. Although a reduction in dimensionality 

is desirable, the error increase due to the reduction in dimensionality must 

be constrained to be adequately small. Finding the minimum number of 

feature vectors which represent observations with reduced dimensionality 

Principal 

component 

features of 

data matrix 
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without sacrificing the discriminating the accuracy of the classifier is an 

important problem in field of pattern analysis. 

In the case of this project, the features extracted are the scores computed 

by applying PCA. The scores is the representation of X in the principal 

component space. As mentioned in the previous section the scores 

correspond with the eigenvectors. The first eigenvector captures the most 

variability and the subsequent eigenvector the second most variability and 

so on. The first few scores is a good representation of approximately 50% 

– 80% of the variability in the data which should be adequately classified. 

4.4.2 Principal Component Analysis 

4.4.2.1 Background 

Principal component analysis transforms a set of variables into a 

substantially smaller set of uncorrelated variables containing most of the 

information of the original set of variables. A small set of uncorrelated 

variables is easier to understand and work with than a large set of 

correlated variables (Aldrich, 2001). 

 

Figure 4-3: Geometric representation of principal component 

analysis (1) Data points in the observation space, (2) Plane 

defined by principal components. 

(1) (2) 
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Principal component analysis is a technique used to reduce 

multidimensional data sets to lower dimensions for analysis. The 

applications of PCA include exploratory data analysis data and generating 

predictive models. PCA can also be used to visualize multivariate data 

sets, so that outlying or atypical observations can be detected. PCA is 

mathematically defined as an orthogonal linear transformation that 

transforms the data to a new coordinate system such that the greatest 

variance by any projection of the data comes to lie on the first coordinate 

(called the first principal component), the second greatest variance on the 

second coordinate, and so on. An advantage of PCA is that once you have 

found these patterns in the data, and you compress the data, i.e. by 

reducing the number of dimensions, without much loss of information 

(Bishop, 2006).  

There are two commonly used definitions of PCA that give rise to the 

same algorithm. PCA can be defined as the orthogonal projection of the 

data onto a lower dimensional linear space, known as the principal 

subspace, such that the variances of the projected data are maximized 

(Bishop, 2006). Equivalently, it can be defined as the linear projection 

that minimizes the average projection cost, defined as the mean squared 

distance between the data points and their projections (Bishop, 2006).  

In the next section we will first review the mathematical perspective of the 

standard PCA algorithm. 

4.4.2.2 Mathematical Perspective 

Consider a set of data, with m variables and n observations, represented 

by the matrix . 

Before we begin PCA, we need to centre the data so that it varies around 

zero. This is done by calculating the mean values of each of the variables 
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and then subtracting these values from each measurement of a variable.  

.  

PCA relies on an eigenvector decomposition of the covariance or 

correlation matrix of the process variables. In this work we will use the 

convention that rows of a data matrix X correspond to samples while 

columns correspond to variables.  

For a given data matrix X with m rows and n columns the covariance 

matrix of X is defined as 

         Equation 

4-1

 

, Note that C is positive definite, and thus 

can be diagonalised with non-negative eigenvalues: 

        

 Equation 
4-2

 

For eigenvalue λ≥0 and eigenvectors , as  

     Equation 4-3 

It can be shown that a line a space can be represented by a vector p of 

unit length, which means that per definition pTp = ∑i=1
mpi

2 = 1. It is thus 

algebraically possible to define the principal components to be the linear 

combination  
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        Equation 4-4 

of the original variables that maximizes the variability which is usually 

affected by means of Lagrange multipliers (not dealt with here). 

This is the same as saying that principal component analysis decomposes 

the data matrix X as the sum of the outer product of vectors ti and pi plus 

a residual matrix E: 

     Equation 4-5 

Here k must be less than or equal to the smaller dimension of X, i.e. k ≤ 

{m,n}. The ti vectors are known as scores and contain information on how 

the samples relate to each other. The pi vectors are eigenvectors of the 

covariance matrix, i.e. λi is the eigenvalue associated with the eigenvector 

pi. In PCA the pi are known as loadings and contain information on how 

variables relate to each other. The ti form an orthogonal set (ti
Ttj = 0 for i 

≠ j), while the pi are orthonormal (pi
Tpj = 0 for i ≠ j, pi

Tpj = 1 for i = j).  

Note that because the score vector ti is the linear combination of the 

original data defined by pi., the ti, pi pairs are arranged in descending 

order according to the associated λi. The λi is a measure of the amount of 

variance described by the ti, pi pair. In this context, we can think of 

variance as information. Because the ti, pi pairs are in descending order of 

λi, the first pair captures the largest amount of information of any pair in 

the decomposition. In fact, it can be shown that the first ti, pi pair 

captures the greatest amount of variation in the data that it is possible to 

capture with a linear factor. Each subsequent pair captures the greatest 

possible amount of variance remaining at the step (Wise and Gallagher, 

1996). 
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To summarize, the j’th column of principal component scores is the linear 

combination tj=Xpj, which has the greatest sample variance for all pj 

satisfying pj
Tpj = 1 and pj

Tpi = 0 (i < j). The principal component 

coefficients pj
T are given by the elements of the eigenvector 

corresponding to the j’th largest eigenvalue λj (the variance of tj) of C, 

(the sample covariance matrix of the original data matrix X). The loading 

of the k’th original variable xk on the j’th principal component pj is defined 

by pjk(λj)
1/2, where pj

T = (pj1, pj2, .., pjm). The score of the i’th individual 

or sample point on the j’th principal component is defined as tij = pj
Txi = 

pj1xi1 + pj2xi2 + …+ pjmxim (j = 1, 2, … m). 

4.5 Linear Discriminant Analysis 

In order to view the data projected on a different plane we can apply 

linear discriminant analysis. Linear discriminant analysis or LDA is a 

popular linear method for dimensionality reduction and it achieves this by 

minimizing class scatter, a measure of the variance within each class, and 

maximizing the class distances so as to improve class separation. In the 

supervised learning context it is possible to make use of the class 

information, contained in target vector t, to obtain an optimal mapping 

into a lower dimensional space to simplify the classification task and to 

gain insight into class separability. PCA was used to embed the image 

data and then LDA was used to extract discriminating features from the 

embedded data. This was followed by classification of the features. The 

third party software used to perform LDA was an updated version of Gist® 

which was updated by Jemwa (2007). The Matlab® interface program can 

be found in the Appendix A. 
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Figure 4-4: Illustration of difference between LDA and PCA  

 

Figure 4-5: Illustration of differences between PCA and LDA  

4.6 Classification 

The features extracted from the image data are used as predictors for 

classification models designed to identify the feeding behaviour of the fish. 

There are a large number of models that can be used for this purpose, but 

in this thesis only two methods were considered, namely a classification 

tree and a nearest neighbour method. Both are nonlinear approaches. The 
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classification tree was used to classify the behaviour of the fish based on 

features extracted with PCA, while the nearest neighbour method was 

used to classify the features extracted from applying LDA. The purpose of 

this investigation was not necessarily to find the optimal classification 

model, but to assess the feasibility of the features to classify fishing 

behaviour. A brief description of each classifier follows below. 

4.6.1 Classification Tree 

There are a variety of straightforward, but widely used, models that work 

by partitioning the input space into cubical regions, whose edges are 

aligned with the axes, and then conveying a straightforward model (for 

example, a constant) to each region. They can be observed as a model 

combination method in which only one model is responsible for making 

predictions at any given point in input space. The process of selecting a 

specific model, given a new input x, can be described by a sequential 

decision making process corresponding to the traversal of a binary tree 

i.e. one that splits into two branches at each node (Bishop, 2006). 

The inductive classification model is a form of empirical learning through 

which general conclusions are inferred from specific examples. In 

particular, the training algorithms form generalized rules linking features, 

or independent variables, of a set of exemplars to the predefined classes 

or dependent variable of each of the exemplars. This decision tree is 

correspondent to a set of IF-THEN rules, which can be interpreted by the 

data analyst, or can be incorporated into an expert system shell to provide 

as a knowledge-based decision support system (Aldrich, 2001).  
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Figure 4-6: Illustration of a two-dimensional input space that has 

been partitioned into five regions using axis-aligned 

boundaries, next to it a binary tree corresponding to the 

partitioning of input space shown (Bishop, 2006). 

The process starts with a training set consisting of pre-classified records. 

Having pre-classified records means that the target field or dependent 

variable has a known class or label. The goal is to build a tree that 

distinguishes among the classes. For simplicity, assume that there are 

only two target classes and that each split is binary partitioning. The 

splitting criterion easily generalizes to multiple classes, and any multi-way 

partitioning can be achieved through repeated binary splits. To choose the 

best splitter at a node, the algorithm considers each input field in turn. In 

essence, each field is sorted. Then, every possible split is tried and 

considered, and the best split is the one which produces the largest 

increase in homogeneity of the classification label within each partition. 

This is repeated for all fields, and the winner is chosen as the best splitter 

for that node. The process is continued at the next node and, in this 

manner, a full tree is generated. 

Pruning is the process of removing leaves and branches to improve the 

performance of the decision tree when it moves from the training data 

(where the classification is known) to real-world applications (where the 
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classification is unknown and it is what you are trying to predict). The 

tree-building algorithm makes the best split at the root node where there 

are the largest number of records and, hence, a lot of information. Each 

subsequent split has a smaller and less representative population with 

which to work. Towards the end, peculiarity of training records at a 

particular node display patterns that are peculiar only to those records. 

These patterns can become meaningless and sometimes harmful for 

prediction if you try to extend rules based on them to larger populations. 

Pruning methods solve this problem, they let the tree grow to maximum 

size, and then remove smaller branches that fail to generalize.  

Since the tree is grown from the training data set, when it has reached full 

structure it usually suffers from over-fitting (i.e. it is "explaining" random 

elements of the training data that are not likely to be features of the 

larger population of data). This results in poor performance on real life 

data. Therefore, it has to be pruned using the validation data set. There 

are numerous methods to validate the performance of the classifier; the 

methods used in this project are explained in the next section. 

4.6.2 Classification Performance Evaluation 

Unbiased evaluation of classification methods is important. The goal of 

classification tree analysis, simply stated, is to obtain the most accurate 

prediction possible, the strategies used to select the right-sized tree is as 

follows: 

4.6.2.1 Cross-validation 

Cross-validation, sometimes called rotation estimation (Ron, 1995), is the 

statistical practice of partitioning a sample of data into subsets such that 

the analysis is initially performed on a single subset, while the other 

subset(s) are retained for subsequent use in confirming and validating the 

initial analysis. The initial subsets of data are called the training set; the 

other subset(s) are called validation or testing sets. 
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The theory of cross-validation was inaugurated by Seymour Geisser. It is 

important in guarding against testing hypotheses suggested by the data, 

especially where further samples are hazardous, costly or impossible to 

collect. 

Validation techniques are motivated by two fundamental problems in 

pattern recognition: model selection and performance estimation.The 

method applied to cross-validating in this project is called the leave one 

out cross-validation approach. As the name suggests, leave-one-out 

cross-validation (LOOCV) involves using a single observation from the 

original sample as the validation data, and the remaining observations as 

the training data. This is repeated such that each observation in the 

sample is used once as the validation data. This can be illustrated as 

follows: 

 

Figure 4-7: An illustration of leave one out cross validation with 5 

folds 
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The true error is estimated as the average error rate on the test examples 

        Equation 4-6 

4.6.2.2 Random sub-sampling 

Each split randomly selects a fixed number of examples without 

replacement, for each data split we retrain the classifier from scratch with 

the training examples and estimate E with the test samples. 

 

Figure 4-8: An illustration of random sub-sampling 

The true error is estimated as in equation 4-8. 

4.6.3 K nearest neighbour classification 

The k-nearest neighbour (KNN) is amongst the simplest of all machine 

learning algorithms. The classifier will be used as an alternative model 

to assess the ability of the features to discriminate between various 

feeding behaviours of the fish.  
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Figure 4-9: The KNN classification. The test sample (green circle) 

should be classified either to the first class of blue squares or to 

the second class of red triangles. If k = 3 it is classified to the 

second class because there are 2 triangles and only 1 square 

inside the inner circle. If k = 5 it is classified to first class (3 

squares vs. 2 triangles inside the outer circle) (Dasarathy, 

1991). 

A new sample is classified by calculating the distance to the nearest 

training case; the sign of that point then determines the classification 

of the sample. The k-NN classifier extends this idea by taking the k 

nearest points and assigning the sign of the majority. It is common to 

select k small and odd to break ties (typically 1, 3 or 5). Larger k 

values help reduce the effects of noisy points within the training data 

set, and the choice of k is often performed through cross-validation 

(Robotics Research Group, 2007). This is illustrated in Figure 4-9: 

4.7 Software Tool 

Gist® is a convenient software tool which is available for free on the 

internet. It is convenient, because the programming code is already 

written to carry out PCA or kernel based PCA. Gist® is a software tool for 

support vector machine classification and for kernel principal component 
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analysis, but only the standard features were used. An important 

consideration in the use of Gist® was the fact that it could deal with 

relatively large sets that would otherwise have caused problems in 

Matlab®, owing to memory limitations. 

This program has the option of selecting “standard” PCA. Firstly, ‘gist-

kpca.exe’ is run in Matlab in order to train the PCA model (feeding 

behaviour), and secondly, ‘gist-project.exe’ is used to project the data. 

Thus, projecting the scores of the trained PCA model (feeding behaviour) 

and projecting the test data onto the PCA model (pre and postfeeding 

behaviour). More detail on the software is provided in the Appendix. 
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5 Results and Discussion 

Chapter 5 

Results and Discussion 

5.1 Preliminary Analysis of Fish Feeding 

Behaviour 

As a first basic approach to see if significant differences exist in the three 

classes observed, the following method was followed as illustrated below: 

 

Figure 5-1: First Basic Approach to Detect Differences in Three 

Classes 

The image frames are read into Matlab® where the each subsequent 

(i+1) image frame is subtracted from the previous frame (i) and the 

differences between these image are then displayed in figures 5.2-5.4. As 

shown in figure 5.1 the changes across the midpoint column of each frame 

is detected using this method. This method is a very simple way to detect 

if significant differences exist in these classes, this is not a very efficient 

method and therefore improved techniques had to be applied. From this 

straightforward first technique applied the changes detected in the 

different classes were significantly different for post-feeding behaviour 
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than for pre-feeding and feeding behaviour. This indicates that 

predicaments may arise when classifying pre-feeding from feeding 

behaviour and post-feeding behaviour would seemingly be more 

effortlessly classified from the other two classes. At this early stage of 

data analysing it would seem better two rather have two classes than 

three classes of feeding behaviour due to the complexity of categorizing 

prefeeding from feeding behaviour.   
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Figure 5-2: Prefeeding Behaviour 
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Figure 5-3: Feeding Behaviour 
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Figure 5-4: Post-feeding Behaviour 
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5.2 Principal Component Analysis 

Video data of fish feeding were processed in Matlab® as a series of 

240x250 matrices representing the pixels of the greyscale image derived 

from a 420x720 truecolour image. The reference data consisted of 

integrating 1500 image frames from each class, i.e. 4500 in total. 

To compress the data, we can then choose to transform the data only 

using say 200 variables, which is equal to 92% of the total variance. In 

Figure 5-5 the bars represent the variance and the line represents the 

cumulative variance. As shown in the scree plot (Figure 5-5) the total 

variance of the first ten scores is equal to approximately 40%. If the 

original data are reproduced, the images would have lost some of the 

information. However, in this project it is not necessary for us to 

reproduce the data, but only to see how well the data can be classified. 

 

Figure 5-5: Scree plot for eigenvalues derived from performing 

PCA on movie 1 
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One of the difficulties inherent in multivariate statistics is the problem of 

visualising the data that has many variables. To visualise the principal 

components we can plot the relationship between the first two principal 

components, as well as the first three components, retaining most of the 

variability in the data. 

The feeding class is indicated by the blue markers, prefeeding class by red 

markers and postfeeding by green markers. As explained in chapter 4.4, 

the feeding behaviour is trained to generate the PCA model. Prefeeding 

and postfeeding behaviour scores are then subsequently projected onto 

the PCA model. It can be seen in the first two and three principle 

component dimensions (Figure 5-6 and Figure 5-6) that there is 

overlapping between the features of prefeeding, feeding and postfeeding 

behaviour. However, feeding and non-feeding behaviour could be 

classified with an overall accuracy of 99% using the classification tree 

model. 

 

Figure 5-6: First two principal component scores (Movie0001.avi) 
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Figure 5-7: First three principal component scores 

(Movie0001.avi) 

5.3 Linear Discriminant Analysis 

We can also view the data on a different plane using linear discriminant 

analysis as explained in chapter 4.5 which is illustrated in the figure 5.9 

below. LDA was performed also using the third party software as in the 

case of PCA, however, this software program was written by Jemwa 

(2007), which is an updated version of Gist®. The program is run using 

Matlab as in the case with PCA. Firstly a LDA model is trained used all 

three classes, of 1000 frames each, in order to train the model to 

discriminate between the three classes, this is illustrated in figure 5.8. The 

motivation for using only 1000 frames from each class was due to 

limitations from process performance of the computer. Secondly a second 

set of independent image frames are then projected onto the model so as 

to test the performance of the model, which is shown in figure 5.9.  
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It can clearly be seen in figure 5.8 that significant separation occurs 

between all three groups. However, the true performance of this 

projection can be substantiated using the test data as shown in figure 5.9. 

 

Figure 5-8: Component Scores using LDA (Trained Features) 
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Figure 5-9: Linear Discriminant Analysis Movie0001 (Projected 

Test Features) 

In figure 5.9, class 1 represents pre-feeding behaviour, class 2 represents 

feeding behaviour and class 3 represents post-feeding behaviour. In figure 

5.9 it can clearly be seen that the test features are more scattered than 

with the trained features shown in figure 5.8. In comparison with the PCA 

figure 5.6, it can be established that the LDA shows better class 

separation than with PCA. The objective of PCA is to perform 

dimensionality reduction while preserving as much of the randomness 

(variance) in the high dimensionality space as possible. And the objective 

of LDA is to perform dimensionality reduction while preserving as much of 

the class discriminatory information as possible.  
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Figure 5-10: Component scores plots using PCA for all four movies 

(a) movie00011 (b) movie0002 (c) movie0004 (d) 

movie0005 

The discriminatory quality of the LDA features was tested using a k 

nearest neighbour classifier. Quantitatively the three classes were 

classified with an overall accuracy of 96%. The results for PCA and LDA for 

all the video data that were analysed are shown in figure 5.10 and 5.11. 

Once again, it can clearly be seen that the features pre-feeding and post-

feeding do not allow sharp discrimination in the two-dimensional plot, as 

the overlap between the groups are significant. Quantitatively the three 

classes were classified using a classification tree with an overall accuracy 

of 99%, 98%, 96% and 98% respectively.  

This however will be discussed in more detail later on in this chapter.  Any 

separation can thus be more clearly seen in a large three-dimensional 

plot. All other two dimensional and three dimensional plots of the data can 

be found in the Appendix B. 
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Figure 5-11: Component scores plots using LDA for all four movies 

(a) movie00011 (b) movie0002 (c) movie0004 (d) 

movie0005 

5.4 Classification 

It can clearly be seen in the first two principal component dimension 

(figure 5.11 (b), (c) and (d)) there is overlapping between the features, 

prefeeding, feeding and postfeeding behaviour. However, the three 

classes were classified with an overall accuracy of 96%, 89%, 95% and 

94% respectively. The figures containing the plot of the KNN model is 

shown in the Appendix C. The within-class separation can be more clearly 

visualised using LDA.   

The data that represent the relationships or processes to be modelled are 

typically divided into representative training and test data sets. Some 



Chapter 5: Results and Discussion 

 

77 

prefer to divide the data into a training set and two data test sets. The 

first set is used repeatedly during training, i.e. for cross-validation of the 

performance of the model, while the second set of test data are only used 

once the model has been developed, to assess the accuracy of the model. 

In this classification, as a first approach, a training set containing 50% of 

randomized features extracted from all 3 classes was used to train the 

classification tree; the other 50% was used as the test data set. An 

illustration of the decision tree is shown below for movie0001, the 

classification trees for the movie002, movie0004 and movie0005 can be 

found in the Appendix D. 

2

2 2 2

1 2 2 1 2

1

1 2

   x2 < 0.102961

   x3 < -0.11824    x1 < -0.160791

   x3 < -0.134138    x2 < 0.045812    x4 < 0.0234099

   x5 < 0.042519    x4 < 0.0491955    x3 < -0.236377

   x3 < -0.191183

   x1 < -0.442665

 

Figure 5-12: Classification Tree Movie0001.avi 

The classifier distinguishes between two classes, feeding (features from 

PCA model) and not feeding (features projected onto the PCA model). A 

data set is made up of 1500 features from each class which is 

randomized.  
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The training set error rate can be highly misleading and is usually an 

overoptimistic estimate of performance. Inaccuracies are due to the over-

fitting of a learning system to the data. When multiple random test and 

train experiments are performed, a new classifier is learned from each 

training sample. The estimated error rate is the average of the error rates 

for the classifiers derived for the independently and randomly generated 

test partitions. 
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Figure 5-13: Boxplot of the performance of different movies. Each 

movie was randomly sampled ten times. 

Each movie was randomly tested and trained 10 times; the extracted 

features from movie0001 were classified the most accurately with a 

classification error of 0.39%. The extracted features from Movie0004 were 

classified the least accurate with a classification error of 3.6%. 
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Figure 5-14: Cross-Validation of the performance of different 

movies. Each movie was validation 5-Fold 

A 5-fold cross-validation was performed on each classification of the 

movies. The features from Movie0001 was classified the most accurately 

with a classification error of approximately 0.20% and the features 

extracted from movie0004 were classified least accurately which 

corresponds well with the validation of the random sub-sampling method. 

These are two of the simplest techniques for “honestly” estimating error 

rates, and both validation tests shows similarity which is an indication of a 

good classifier. 

Classification of Video Data for all 4 Videos: 

Better representations of the data are to combine all four video’s data and 

to see how well they classify using both methods namely random sub-

sampling and cross-validation. 
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Figure 5-15: Boxplot for Random Sub-samples and Cross 

Validation of all four videos 

The video data is firstly be normalised in order to combine the video data 

from four different videos. The features for all four videos combined were 

classified with an overall accuracy 2% and 1% respectively. 

5.5 Concluding Remarks 

The two and three dimension principal component plots for all four videos 

showed some overlapping between the features extracted from 

prefeeding, feeding and postfeeding behaviour. The features in movie0001 

allow for most reliable discrimination between feeding and non-feeding 

conditions. Quantitatively, the two groups could be classified with an 
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overall accuracy of 99%. movie0002, movie0004 and movie0005 could be 

classified with overall accuracies of 98%, 96%and 98% respectively. The 

differences in the overall classification accuracies of the different movies 

are probably not statistically significant.  

The features extracted using LDA showed better separation between the 

three classes namely, prefeeding, feeding and postfeeding behaviour. The 

performance of the LDA model was tested using the k nearest neighbour 

classifier. Quantitatively, the features extracted from movie001 were 

classified with an overall accuracy of 96%. Movie0002, movie0004 and 

movie0005 could be classified with overall accuracies of 89%, 95% and 

94% respectively. 

In comparison with the PCA figure 5.6, it can be established that the LDA 

shows better class separation than with PCA. The objective of PCA is to 

perform dimensionality reduction while preserving as much of the 

randomness (variance) in the high dimensionality space as possible. And 

the objective of LDA is to perform dimensionality reduction while 

preserving as much of the class discriminatory information as possible.  

It was demonstrated that, in principle, classification of feeding behaviour 

in the aquarium via PCA and LDA was feasible for “ideal” conditions for 

example in an aquarium. From the video data from Jonkershoek 

Aquaculture farm (shown in chapter 3) it can clearly be seen that the 

video footage was unable to be used to for analysis. It is recommended 

that in the case of an aquaculture farm other methods be utilised to 

observe feeding behaviour and other methods be investigated to 

overcome visibility problems in order to analyse the video data. 
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6 Conclusions 

Chapter 6 

Conclusions 

In this thesis, the feasibility of observing fish behaviour as a basis for 

optimized automated feeding is considered. Although useful digital images 

from fish under actual aquacultural conditions at the Jonkershoek farm in 

Stellenbosch could not be used, the feeding behaviour of fish in the Two 

Oceans Aquarium in Cape Town was analysed instead. Video images of 

the fish before, during and after feeding were used as the basis for 

analysis. The analytical methodology was based on a viewpoint of 

“detection of change” in the data.  

The well-established multivariate methods of principal components 

analysis (PCA) and linear discriminant analysis (LDA) were used to extract 

informative features from the image data. These features were labelled 

with the corresponding behaviour they captured, namely the prefeeding, 

feeding and postfeeding behaviour of fish. 

The extracted features were used to train classification models to 

distinguish between the abovementioned classes of behaviour. More 

specifically, classification tree models were developed using PCA features, 

and K nearest neighbours models were trained using LDA features. The 

performance of these models was evaluated on the basis of how 

accurately they could assign the correct class of behaviour to an 

independent set of test features.  
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By using either PCA or LDA features, the behaviour of the fish could be 

classified very reliably.  Since this could be achieved with very little 

preprocessing of the data, it suggests that the observed behaviour of fish 

could form the basis of a cost-effective automated feeding system.   

It was found during this study, that at the Jonkershoek aquaculture farm, 

external environmental factors would play a significant role in acquiring 

quality image data. These factors included turbidity induced by rain and 

considerable changes in lighting conditions.  

The challenge of acquiring quality image data under these typically 

changing environmental conditions would have to be surmounted for the 

successful implementation of the proposed method. 
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8 Appendix 

Appendix 

A. Initialising Gist 

Gist Version 2.31 is available from Gorden Jemwa (2007) 

Gist® Code using Matlab Interface 

>> system('gist-kpca --help') 

Usage: gist-kpca [-train <filename> (required)] 

 [-zeromeanrow] 

 [-varone] 

 [-nonormalize] 

 [-constant <value> (default=10)] 

 [-coefficient <value> (default=1)] 

 [-power <value> (default=1)] 

 [-radial] 

 [-widthfactor <value> (default = 1)] 

 [-width <value> (default = use widthfactor 1)] 

 [-adddiag <value> (default=0)] 

 [-matrix] 

 [-nocenter] 

 [-numeigens <value> (default = all)] 

 [-eigenthresh <value> (default = 0.000001)] 

 [-eigenvalues <file>] 

 [-rdb] 
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 [-kernelout] 

 [-notime] 

 [-precision <value>] 

 [-verbose 1|2|3|4|5 (default=2)] 

Secondly to test the data using Gist Project: 

>> system('gist-project --help') 

Usage: gist-project [-train <filename> (required unless test set is a kernel 
matrix)] 

 [-learned <filename> (required)] 

 [-test <filename> (required)] 

 [-selftrain <filename>] 

 [-selftest <filename>] 

 [-rdb] 

 [-kernelout] 

 [-notime] 

 [-precision <value> (default = 6)] 

 [-verbose 1|2|3|4|5 (default=2)] 
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B.Gist Manuals 

Gist-kpca - Manual 

Description: Compute kernel-based eigenvectors for a set of training examples. 

Usage: gist-kpca [options] -train <filename> 

Input: -train <filename> - a tab-delimited, labeled file of training examples. The first column 
contains labels, and the remaining columns containing real-valued features.  

Output: A tab-delimited matrix in which each column corresponds to an eigenvector. 
Eigenvectors are normalized so that the dot product of the eigenvector with itself equals the 
reciprocal of the corresponding eigenvalue. In the output, the eigenvectors are sorted by 
increasing magnitude. 

Options:  

• -zeromean - Subtract from each element in the input data the mean of the 
elements in that row, giving the row a mean of zero.  

• -varone - Divide each element in the input data by the standard deviation 
of the elements in that row, giving the row a variance of one.  

By default, the base kernel function is a dot product. In this case, the kernel-pca will give the 
same results as a 'standard' principal component analysis. If desired, this kernel can be 
modified using the following options. The operations occur in the order listed below. 

• -nocenter - PCA requires a centered matrix, in which the sum of each 
column is zero. This centering operation can be performed in kernel space, 
and is done by default. The -nocenter option disables this operation. This 
option is only useful in conjunction with the -kernelout operation, to 
produce an intermediate matrix. 

• -adddiag <value> - Add the given value to the diagonal of the kernel 
matrix. 

• -nonormalize - Do not normalize the kernel matrix. By default, the matrix 
is normalized by dividing K(x,y) by sqrt(K(x,x) * K(y,y)). 

• -constant <value> - Add a given constant to the kernel. The default 
constant is 10. 

• -coefficient <value> - Multiply the kernel by a given coefficient. The 
default coefficient is 1. 

• -power <value> - Raise the kernel to a given power. The default power is 
1. 

• -radial - Convert the kernel to a radial basis function. If K is the base 
kernel, this option creates a kernel of the form exp[(-D(x,y)2)/(2 w2)], 
where w is the width of the kernel (see below) and D(x,y) is the distance 
between x and y, defined as D(x,y) = sqrt[K(x,x)2 - 2 K(x,y) + K(y,y)2]. 

• -widthfactor <value> - The width w of the radial basis kernel is set using a 
heuristic: it is the median of the distance from each training point to the 
nearest training point. This option specifies a multiplicative factor to be 
applied to that width. The default is a width factor of 1. 
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• -width <value> - Directly set the width w of the radial basis kernel. If set, 
this option overrides the -widthfactor option. 

If the supplied kernel functions are insufficient, the user can supply as input a precalculated 
kernel matrix using the following option 

• -matrix - By default, the base kernel function is a dot product. This option 
allows that function to be replaced by an arbitrary function supplied by the 
user (for many commonly used kernels, see the options listed above). If 
supplied, the software reads kernel values, rather than raw feature data, 
from the file specified by -train. The matrix must be an n+1 by n+1 tab-
delimited matrix, where n is the number of training examples. The first 
row and column contain data labels. The matrix entry for row x, column y, 
contains the kernel value K(x,y). 

The remaining options (except for -rdb) affect the output of the software. 

• -numeigens <value> - Include in the output at most the specified number 
of eigenvectors (subject to the next constraint). By default, all are 
included.  

• -eigenthresh <value> - Include in the output only eigenvectors whose 
corresponding eigenvalues are greater than the specified value. Default 
value is zero (all eigenvectors).  

• -eigenvalues <file> - Create a file with the given name and store the 
eigenvalues there as a space-separated array of numbers.  

• -rdb - Allow the program to read and create RDB formatted files, which 
contain an additional format line after the first line of text.  

• -kernelout - Compute and print the kernel matrix to stdout. Do not 
compute the eigenvectors.  

• -notime - Do not include timing information in the output header.  
• -precision <value> - Number of digits after the decimal place in the output 

file. The default is 6.  
• -verbose 1|2|3|4|5 - Set the verbosity level of the output to stderr. The 

default level is 2.  

Gist-project - Manual 

Description: Project a given set of data onto a given set of eigenvectors.  

Usage: gist-project [options] -train <filename> -learned <filename> -test <filename> 

Input: -train <filename> - an tab-delimited file of training data. The first column contains 
labels, and the remaining columns containing real-valued features.  

• -learned <filename> - a tab-delimited file of eigenvectors, as produced by 
kernel-pca. Each column corresponds to an eigenvector.  

• -test <filename> - a tab-delimited file of test data to be projected onto 
the training data's eigenvectors.  

Output: A tab-delimited matrix in which the given data has been projected onto the given set 
of eigenvectors. 
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Options:  

• -selftrain <filename> - Read from the given file a series of n values of the 
form K(x,x), where K is the base kernel function and x is an element in the 
training set. This option is only necessary if the base kernel function is 
supplied from a file and the kernel is normalized or radial basis. The input 
file should be in tab-delimited format, with data labels in the first column 
and values in the second column.  

• -selftest <filename> - Similar to '-selftrain', but for the test set.  
• -rdb - Allow the program to read and create RDB formatted files, which 

contain an additional format line after the first line of text.  
• -kernelout - Compute and print the kernel matrix to stdout. Do not 

compute the classifications.  
• -notime - Do not include timing information in the output header.  
• -precision <value> - Number of digits after the decimal place in the output 

file. The default is 6.  
• -verbose 1|2|3|4|5 - Set the verbosity level of the output to stderr. The 

default level is 2.  
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C. Matlab Code 

1. Get_framedata.m 

% user-defined variables 

 

fname = 'train.dat'; % change to correspond to all_classe 

below 

fname_labels = 'train.lab'; % change to correspond to 

all_classes below 

all_classe = [2];%#ok %% which class to include in matrix 

fname. 1|2|3 (class 1: pre-feeding, class 2: feeding, class 3: 

post-feeding) 

 

 

num_segments = 20; 

num_frames= 50; % avoid num_frames > 100 

 

% to avoid appending onto existing files. Otherwise rename 

fname and 

% fname_labels (the variables and NOT variable_names) 

warning('off') %#ok 

delete(sprintf(fname)); 

delete(sprintf(fname_labels)); 

warning('on') %#ok 

  

 

start_frame = [1 9501 15001]; 

class_id = []; 

 

select_rows=[1 240]; 

select_cols=[251 450]; 

 

 

%Open an handle to the AVI file 

% first clear existing files 

 

 if exist('avi_hdl','var') 

        dxAviCloseMex(avi_hdl); 

 end 

 

 if exist('grsclfrms','var') 

        clear grsclfrms 

 end 

     

[avi_hdl, avi_inf] = dxAviOpen('MOVIE0004.avi'); 

p=avi_inf.Width; 

q=avi_inf.Height; 

%last_counter = 1; 
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total_segments = 0; 

 

for class= all_classe %#for classes 1 to 3, 

     

    for segment=1:num_segments, 

        start_frame_ind = start_frame(class)+(segment-

1)*num_frames; 

        grsclfrms=zeros(q,p,num_frames); 

 

        for frame_num = 

start_frame_ind:start_frame_ind+num_frames-1; 

            %Reads frame_num from the AVI 

            pixmap = dxAviReadMex(avi_hdl, frame_num); 

            grsclfrms(:,:,frame_num-start_frame_ind+1) =... 

            

rgb2gray(reshape(pixmap/255,[avi_inf.Height,avi_inf.Width,3]))

; 

        end 

        total_segments = total_segments+1; 

        current_counter = (total_segments - 1)*num_frames + 1; 

         

 

        % create a new matrix 

        

grsclfrms=grsclfrms(select_rows(1):select_rows(2),select_cols(

1):select_cols(2),:); 

        

grsclfrms=reshape(grsclfrms,numel(grsclfrms(:,:,1)),num_frames

)'; 

 

 % dlmwrite('test.dat', grsclfrms,'delimiter','\t','-append'); 

        

grsclfrms=[(current_counter:current_counter+(num_frames-1))' 

grsclfrms]; %#ok 

        %last_counter = (total_segments - 1)*num_frames + 1; 

        % write matrix to fname (text document in directory) 

         

        

   %    dlmwrite(fname, num2str('label'),'delimiter', '\t','-

append'); 

   %     

dlmwrite(fname,1:size(grsclfrms,2),'delimiter','\t','-

append'); 

 

 

%Prepare formatting string (labels in text document) 

if (((class==1 || length(all_classe)==1)) && 

segment==1), 

            %% 

 

            str = 'label\t'; 



Chapter 8: Appendix 

 

97

            n=size(grsclfrms,2); 

            for i=1:n-2, 

                str = [str,'X%d\t'];%#ok 

            end 

 

            str = [str,'X%d\n'];%#ok 

 

            % Write using fprintf 

            % tic 

            fid = fopen(fname,'wt'); 

            fprintf(fid,str,(1:n-1)); 

            fclose(fid); 

        end 

         

 

 

        dlmwrite(fname, grsclfrms,'delimiter','\t','-append'); 

        

dlmwrite(fname_labels,class*ones(size(grsclfrms,1),1),'-

append','delimiter',' '); 

         

    end % for segment 

end % for class 

   

 %Cleanup 

dxAviCloseMex(avi_hdl); clear avi_hdl 

 

 

 

2. Write Frame Labels (Supervised Learning/Target Vector) 

function enc_labels = ind2mat(labels,assigned_class,max_class) 

 

% simple 1-of-N class encoding 

 

 

if nargin<3, 

    max_class = []; 

end 

     

 

if nargin<2, 

    assigned_class = 0; 

end 

 

classes = unique(labels); 

 

 

if ~isempty(max_class), 

    classes = min(1,min(classes)):max_class; 

end 
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enc_labels = 

assigned_class*ones(length(labels),length(classes)); 

 

for i=1:length(classes), 

   ind = ( labels == classes(i) ); 

    enc_labels(ind,i) = 1;  

end 

     

 

3. Gist_train_KPCA.m 

function 

dist_kpca_train(fname,pca_model_name,numeigens,eigenval,eigent

hresh, verbose) 

% GIST_KPCA_TRAIN(fname,pca_model_name,numeigens,eigthresh, 

verbose) 

% 

% train PCA model using gist v2.3 

%INPUTS 

%        fname - (required) filename containing data (obtained 

from diff_using_directXread2.m) 

%        pca_model_name - name of file to save trained model 

[default: fname_numeigens.pca-model] 

%        numeigens - number of eigenvectors and eigenvalues to 

be retained [less than min(numrows,numcols)] 

%        eigthresh - default eigenvalue threshold 

%        verbose - level of info from gist [1(minimal), 

2(default), 3, 4, 5(maximal)]    

%verbose, save) 

 

%define the program arguments 

 

if nargin<1, 

    system('gist-kpca --help') 

    return 

end 

if nargin<2, 

    pca_model_name = sprintf('%s.pca-model',fname); 

end 

 

if nargin<3, 

    numeigens = 0; % default = 0 (all) 

end 

 

if nargin<4 

    eigenval = sprintf('%s.eigval-dat',fname); 

end 

 

if nargin<5, 
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    eigenthresh = 0.000001; % default eigenvalue threshold 

end 

 

if nargin<6, 

    verbose = 5; % 1|[2]|3|4|5 

end 

 

 

call_func = sprintf('gist-kpca -train %s -verbose %d -

numeigens %d -eigenvalues %s -eigenthresh %4.10f > %s',... 

                    

fname,verbose,numeigens,eigenval,eigenthresh,pca_model_name); 

system(sprintf('%s',call_func)); 

 

4. Gist_test_KPCA.m 

function 

gist_kpca_test(train_fname,modelfile,test_fname,scores_fname,v

erbose) 

%GIST_KPCA_TEST(train_fname,modelfile,test_fname,scores_fname,

verbose) 

% 

%project test data onto PCA model using gist v2.3 

%INPUTS 

%        train_fname    - (required) filename containing 

training data 

%        modelfile      - (required) filename containing 

(kernel-)PCA 

%                              model 

%        test_fname     - name of file containing test data to 

be 

%                             projected. If empty, train_fname 

is used 

%        scores_fname   - name of file to save principal 

componets or scores     

%        verbose        - level of info from gist [1(minimal), 

2(default), 3, 4, 5(maximal)]    

 

%define some program arguments 

 

if nargin < 2, 

    system('gist-project --help') 

    return 

end 

if nargin < 3, 

    fprintf(1,'Test data not specified. Training data to be 

used\n'); 

    test_fname = train_fname; 

end 
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if nargin <4, 

    scores_fname = sprintf('scores-%s',test_fname); 

end 

 

if nargin <5, 

    verbose = 2; 

end 

     

call_func = sprintf('gist-project -train %s -learned %s -

verbose %d -test %s > %s',... 

                    

train_fname,modelfile,verbose,test_fname,scores_fname); 

system(sprintf('%s',call_func)); 

 

 

5. Gist_gda_train.m (no manual available) 

function a=gist_gda_train(fname,classes_file,varargin) 

%function gist_kpca_train(fname,varargin) 

% GIST_GDA_TRAIN(fname,varargin) 

% 

% train gda model using gist v2.31 

%INPUTS 

%        train_filename - (required) filename containing data 

%  varargin: paired inputs of the form ('str',str_input) 

%            where 'str'  

%        model_file - name of file to save trained model 

[default: 

%                         fname_numeigens.pca-model]  

%        classes -  (required) filename containing data 

%                                   categories in matrix form. 

%        rowmeans -  (required) filename to save training row 

%                             means.Useful for efficient 

matrix centering 

%                             when projecting test data 

%        verbose - level of info from gist [1(minimal), 

2(default), 3, 4, 5(maximal)]    

%verbose, save) 

%define some program arguments 

if nargin<2, 

    system('gist-gda --help') 

    return 

end 

  

% remove extensions from training file name 

sep = '.'; 

%new_sep = '-'; 

ind_sep = find(sep==fname); 

if ~isempty(ind_sep), 

    fname2 = sprintf('%s',fname(1:ind_sep-1)); 
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end 

  

% set defaults 

a.train_fname=sprintf('%s',fname); 

a.classes = sprintf('%s',classes_file); 

a.model=sprintf('%s.gda-model',fname2); 

%a.model_eigs_fname = sprintf('%s.gda-model-eigs',fname2); 

a.rowmeans = sprintf('%s.gda_row-means',fname); 

%a.feats = 0; 

a.verbose = 2; 

a.trained = 0; 

  

if ~isempty(varargin), 

    for i=1:length(varargin), 

        if strcmpi(varargin{i},'model_file'), 

            a.model_fname=sprintf('%s',varargin{i+1}); 

        end 

        if strcmpi(varargin{i},'rowmeans'), 

            a.rowmeans=varargin{i+1}; 

        end 

        if strcmpi(varargin{i},'verbose'), 

            a.verbose=varargin{i+1}; 

        end 

             

    end 

     

end 

  

%a.model_fname=sprintf('%s-%d_ret-

eigvals',a.model_fname,a.num_eigs); 

%a.model_eigs_fname = sprintf('%s-%d_ret-

eigvals',a.model_eigs_fname,a.num_eigs); 

     

  

call_func = sprintf('gist-gda -train %s -class %s -rowmeans %s 

-nonormalize -verbose %d > %s',... 

                    

a.train_fname,a.classes,a.rowmeans,a.verbose,a.model); 

system(sprintf('%s',call_func)); 

a.trained=1; 

 

6. Gist_gda_test.m 

function a=gist_gda_train(fname,classes_file,varargin) 

%function gist_kpca_train(fname,varargin) 

% GIST_GDA_TRAIN(fname,varargin) 

% 

% train gda model using gist v2.31 

%INPUTS 

%        train_filename - (required) filename containing data 
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%  varargin: paired inputs of the form ('str',str_input) 

%            where 'str'  

%        model_file - name of file to save trained model 

[default: 

%                         fname_numeigens.pca-model]  

%        classes -  (required) filename containing data 

%                                   categories in matrix form. 

%        rowmeans -  (required) filename to save training row 

%                             means.Useful for efficient 

matrix centering 

%                             when projecting test data 

%        verbose - level of info from gist [1(minimal), 

2(default), 3, 4, 5(maximal)]    

%verbose, save) 

%define some program arguments 

if nargin<2, 

    system('gist-gda --help') 

    return 

end 

  

% remove extensions from training file name 

sep = '.'; 

%new_sep = '-'; 

ind_sep = find(sep==fname); 

if ~isempty(ind_sep), 

    fname2 = sprintf('%s',fname(1:ind_sep-1)); 

end 

  

% set defaults 

a.train_fname=sprintf('%s',fname); 

a.classes = sprintf('%s',classes_file); 

a.model=sprintf('%s.gda-model',fname2); 

%a.model_eigs_fname = sprintf('%s.gda-model-eigs',fname2); 

a.rowmeans = sprintf('%s.gda_row-means',fname); 

%a.feats = 0; 

a.verbose = 2; 

a.trained = 0; 

  

if ~isempty(varargin), 

    for i=1:length(varargin), 

        if strcmpi(varargin{i},'model_file'), 

            a.model_fname=sprintf('%s',varargin{i+1}); 

        end 

        if strcmpi(varargin{i},'rowmeans'), 

            a.rowmeans=varargin{i+1}; 

        end 

        if strcmpi(varargin{i},'verbose'), 

            a.verbose=varargin{i+1}; 

        end 

             

    end 
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end 

  

%a.model_fname=sprintf('%s-%d_ret-

eigvals',a.model_fname,a.num_eigs); 

%a.model_eigs_fname = sprintf('%s-%d_ret-

eigvals',a.model_eigs_fname,a.num_eigs); 

     

  

call_func = sprintf('gist-gda -train %s -class %s -rowmeans %s 

-nonormalize -verbose %d > %s',... 

                    

a.train_fname,a.classes,a.rowmeans,a.verbose,a.model); 

system(sprintf('%s',call_func)); 

a.trained=1; 
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D. Results from Other Video Data for PCA 

Movie0002.avi 
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Movie0004.avi 

 

 

 

 



Chapter 8: Appendix 

 

106

Movie0005.avi 
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E. Results from Other Video Data for LDA 

Movie0002.avi 
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Movie0004.avi 
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Movie0005.avi 
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F. Classification Tree Data 

Classification Tree Movie 0002 

2

1 2 2 2

2

2 1 2 2 1

2

2

2

2 1

1 1 2

1 2

   x2 < 1.05301

   x2 < 1.03391    x4 < 0.045399

   x3 < -0.708217    x7 < 0.402766    x7 < 0.0920091

   x10 < -0.169952    x5 < -0.25791

   x1 < -0.291982   x6 < -0.541772    x1 < -2.23962

   x1 < -2.45338

   x9 < -0.131542

   x5 < 0.18937

   x7 < 0.356572

   x5 < 0.147918   x2 < 1.42805

   x2 < 1.12172   x2 < 1.77191

   x1 < 0.126429
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Classification Tree Movie 0004 

2 2 2

1 2 2 1 2

2 2 1 2

2 1 1 2 2

2 2 1 1 2

2 2 1 1 2 1 2 1 1 2

1 2 2 1 2 1 2 1 1 2 1 2 1

1 2 1 1 2

1 2

   x1 < 0.469499

   x2 < -0.559731    x5 < 0.356671

   x5 < 0.119694    x5 < 0.208078    x1 < 1.20579    x9 < 0.212026

   x7 < 0.305194    x8 < 0.173144    x6 < -0.209847    x9 < -0.0253565   x4 < -0.387925

   x8 < 0.109351    x7 < 0.432151    x8 < 0.109051    x5 < 0.0749149    x9 < -0.0747869

   x9 < 0.112221    x3 < -0.274401    x1 < 0.761167    x3 < -0.254202    x2 < -0.154783    x2 < 0.43865

   x4 < -0.424083    x5 < 0.331831   x3 < 0.139657    x9 < 0.141344    x3 < -0.577306    x8 < 0.149785    x10 < 0.166396

   x1 < -0.288916    x4 < 0.160269   x2 < -0.363398    x7 < 0.123096    x4 < -0.368683   x6 < -0.0393481   x2 < 0.0310461    x8 < 0.130548   x4 < -0.119201

   x2 < 0.180337    x1 < 0.991546    x6 < -0.208149   x4 < -0.0516914   x9 < 0.142453    x8 < 0.129629   x4 < -0.26695   x7 < 0.170053

   x3 < -0.0622414   x9 < 0.0309344    x1 < 0.811222

   x8 < 0.117367

 

Classification Tree Movie 0005 

2

1 1 2 2

1 2

1 2 2 1 2

1 2 1 1 2 1

1 1 2 2 1 2 2 1 1 2 1 2

1 2 1 2 1 1 2

1

1 2

   x4 < -0.038938

   x10 < 0.267346    x1 < -0.14694

   x1 < -5.16029    x1 < -0.888443    x3 < -0.545929

   x1 < -3.24461    x6 < -0.325261

   x3 < -0.0998891    x8 < -0.183781    x4 < 0.039626    x3 < 0.273214

   x9 < -0.244573    x6 < -0.601531    x7 < 0.014356    x2 < -0.105491    x2 < -1.41094   x1 < -4.9093

   x2 < -0.241169   x1 < -1.80527    x10 < 0.0918638   x5 < 0.452833    x7 < -0.229295    x9 < -0.0974592    x3 < -0.315279

   x3 < 0.58048   x3 < 0.0996724    x3 < 0.197982    x1 < -4.32604   x1 < -2.86027    x1 < -0.496572    x5 < 0.466371   x3 < 0.398087

   x9 < -0.229845    x1 < -2.78897    x3 < -0.468428   x3 < 0.315673

   x4 < 0.0471605

   x4 < 0.0467319
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