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Abstract

Numerical Laplace Transformation Methods for
Integrating Linear Parabolic Partial Differential

Equations
E. NGOUNDA

Applied Mathematics, Department of Mathematical Sciences
University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Thesis: MSc (Mathematical Sciences)
January 2009

In recent years the Laplace inversion method has emerged as a viable alter-
native method for the numerical solution of PDEs. Effective methods for the
numerical inversion are based on the approximation of the Bromwich integral.

In this thesis, a numerical study is undertaken to compare the efficiency of
the Laplace inversion method with more conventional time integrator methods.
Particularly, we consider the method-of-lines based on MATLAB’s ODE15s
and the Crank-Nicolson method.

Our studies include an introductory chapter on the Laplace inversion method.
Then we proceed with spectral methods for the space discretization where we
introduce the interpolation polynomial and the concept of a differentiation
matrix to approximate derivatives of a function. Next, formulas of the numer-
ical differentiation formulas (NDFs) implemented in ODE15s, as well as the
well-known second order Crank-Nicolson method, are derived. In the Laplace
method, to compute the Bromwich integral, we use the trapezoidal rule over
a hyperbolic contour. Enhancement to the computational efficiency of these
methods include the LU as well as the Hessenberg decompositions.

In order to compare the three methods, we consider two criteria: The
number of linear system solves per unit of accuracy and the CPU time per
unit of accuracy. The numerical results demonstrate that the new method,
i.e., the Laplace inversion method, is accurate to an exponential order of con-
vergence compared to the linear convergence rate of the ODE15s and the
Crank-Nicolson methods. This exponential convergence leads to high accu-
racy with only a few linear system solves. Similarly, in terms of computational
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cost, the Laplace inversion method is more efficient than ODE15s and the
Crank-Nicolson method as the results show.

Finally, we apply with satisfactory results the inversion method to the axial
dispersion model and the heat equation in two dimensions.



Uittreksel

Numeriese Laplace Transformasiemetodes vir die
Integrasie van Lineêre Paraboliese Parsiële

Differensiaalvergelykings
(“Numerical Laplace Transformation Methods for Integrating Linear Parabolic

Partial Differential Equations”)

E. NGOUNDA
Toegepaste Wiskunde, Departement Wiskundige Wetenskappe

Universiteit van Stellenbosch
Privaatsak X1, 7602 Matieland, Suid Afrika

Tesis: MSc (Wiskundige Wetenskappe)
Januarie 2009

In die afgelope paar jaar het die Laplace omkeringsmetode na vore ge-
tree as ’n lewensvatbare alternatiewe metode vir die numeriese oplossing van
PDVs. Effektiewe metodes vir die numeriese omkering word gebasseer op die
benadering van die Bromwich integraal.

In hierdie tesis word ’n numeriese studie onderneem om die effektiwiteit
van die Laplace omkeringsmetode te vergelyk met meer konvensionele tyd-
integrasie metodes. Ons ondersoek spesifiek die metode-van-lyne, gebasseer
op MATLAB se ODE15s en die Crank-Nicolson metode.

Ons studies sluit in ’n inleidende hoofstuk oor die Laplace omkeringsme-
tode. Dan gaan ons voort met spektraalmetodes vir die ruimtelike diskreti-
sasie, waar ons die interpolasie polinoom invoer sowel as die konsep van ’n
differensiasie-matriks waarmee afgeleides van ’n funksie benader kan word.
Daarna word formules vir die numeriese differensiasie formules (NDFs) inge-
bou in ODE15s herlei, sowel as die welbekende tweede orde Crank-Nicolson
metode. Om die Bromwich integraal te benader in die Laplace metode, ge-
bruik ons die trapesiumreël oor ’n hiperboliese kontoer. Die berekeningskoste
van al hierdie metodes word verbeter met die LU sowel as die Hessenberg
ontbindings.

Ten einde die drie metodes te vergelyk beskou ons twee kriteria: Die aan-
tal lineêre stelsels wat moet opgelos word per eenheid van akkuraatheid, en
die sentrale prosesseringstyd per eenheid van akkuraatheid. Die numeriese
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resultate demonstreer dat die nuwe metode, d.i. die Laplace omkeringsme-
tode, akkuraat is tot ’n eksponensiële orde van konvergensie in vergelyking tot
die lineêre konvergensie van ODE15s en die Crank-Nicolson metodes. Die
eksponensiële konvergensie lei na hoë akkuraatheid met slegs ’n klein aantal
oplossings van die lineêre stelsel. Netso, in terme van berekeningskoste is die
Laplace omkeringsmetode meer effektief as ODE15s en die Crank-Nicolson
metode.

Laastens pas ons die omkeringsmetode toe op die aksiale dispersiemodel
sowel as die hittevergelyking in twee dimensies, met bevredigende resultate.
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Chapter 1

Introduction

Parabolic equations are second-order partial differential equations that de-
scribe a variety of problems in science and engineering, including heat diffusion
and stock option pricing. These problems, also known as evolution problems,
describe physical or mathematical systems with a time variable. They behave
essentially like heat diffusing through a medium like a metal plate. In this
thesis, we consider as model equation the one dimensional heat equation

∂u

∂t
= κ

∂2u

∂x2
, (1.0.1)

where κ is a constant. The solutions give the temperature u at distance x and
time t. For such problems the boundary conditions are usually known as well
as the initial temperature. The efficient computation of this PDE is the main
topic of this thesis.

Our approach to solving (1.0.1) follows two steps: first the PDE is dis-
cretized with respect to space, thereby generating a system of ordinary differ-
ential equations in time t. Second, the resultant system of ODEs is solved by
applying a suitable time integrating method.

To semi-discretize the PDE, we consider spectral methods. Given a set
of points, the idea behind spectral methods is as follows. Interpolate the
unknown solution, then differentiate the interpolant polynomial at the mesh
points. This discretization process can be converted into matrix form as we
show in the next chapter. As a result, the approximation is reduced to the
solution of a matrix equation. Note, however, since we are concerned with
parabolic PDEs, the resulting differentiation matrix has its eigenvalues all real
and negative [1].

For the numerical solution of the semi-discrete PDE, we shall consider in
this thesis two integrating methods:

• the well-known method-of-lines, based on MATLAB’s built-in codeODE15s
and the Crank-Nicolson method, and

• the Laplace inversion method.

1



CHAPTER 1. INTRODUCTION 2

The latter method is relatively new in this context; see [2], [3], [4]. The
objective of this thesis is therefore to compare this method with the more
classical method-of-lines.

1.1 Laplace transform
The Laplace transformation method plays a significant role in application ar-
eas such as physics and engineering, with a growing interest in areas such
as computational finance. It is a powerful tool for the solution of ordinary
differential equations as well as partial differential equations.

The Laplace transform of a function u(t) defined on [0,∞) is given by

U(z) =

∫ ∞

0

e−ztu(t)dt, Re z > σ0. (1.1.1)

We assume that u(t) is a function of exponential order as t → +∞, i.e.,
there exist a σ0 such that e−σ0t|u(t)| ≤ +∞. In addition, if u(t) is absolutely
integrable for t > 0, then the Laplace integral (1.1.1) converges for all Re z >
σ0. It then defines a single valued analytic function for Re z > σ0. Here, σ0 is
the so-called convergence abscissa of U(s). We have defined u(t) = 0 for t < 0.
A review of the properties of the Laplace transform as well as it applications
can be found in [5; 6; 7].

The main difficulty in using the Laplace transform is finding the inverse.
Unless it is given in a table, the Bromwich integral has to be evaluated, namely

u(t) =
1

2πi

∫ σ+i∞

σ−i∞
eztU(z)dz, σ > σ0, t > 0. (1.1.2)

This formula is valid if all singularities of U(z) are all located to the left of the
vertical line x = σ, i.e., Re z < σ. When all complex integration techniques
fail to evaluate (1.1.2) analytically, one has to rely on numerical methods.

For the numerical evaluation of (1.1.2), we consider the parameterisation
z = σ + iy, −∞ < y < ∞. The integral (1.1.2) can then be rewritten as

u(t) =
eσt

2πi

∫ ∞

−∞
eiytU(σ + iy)dy. (1.1.3)

Unfortunately, in most cases, this problem is difficult to solve numerically for
many reasons: firstly, the integrand is highly oscillatory on the infinite line,
i.e., as y → ±∞. Secondly, the transform U(σ + iy) may decay slowly as
y → ±∞ [8].

There are many methods for the numerical inversion of the Laplace trans-
form. Davis and Martin [9], Duffy [8], and Narayanan [10] review some meth-
ods developed in the last three decades. These algorithms have been classified
by Abate and Valko [11] according to the basic method used as: (1) Fourier
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series expansion, (2) Laguerre function expansion, (3) combination of Gaver
functionals and (4) deformation of the Bromwich contour. We shall only con-
sider methods in class (4).

To get around the oscillatory nature of the integrand of (1.1.3), Talbot
[2] developed a method based on the trapezoidal rule. He suggested the de-
formation of the contour of integration so that it starts and ends in the left
half-plane where the integrand converges rapidly as Re z → −∞.

This deformation of the contour is possible by Cauchy’s integral theorem
[7, p. 141]. Cauchy’s theorem is applicable provided that all singularities of
the transform U(z) are all contained in the interior of the new contour and
that |U(z)| → 0 as |z| → ∞ in the half-plane Re z < σ0 [12]. Such contours
are used in [2; 3; 4], all of which are of the form

z = z(`), −∞ < ` < ∞,

with the property that Re z → −∞ as ` → ±∞. On these contours, the
integral (1.1.2) therefore becomes

u (t) =
1

2πi

∫ ∞

−∞
ez(`)tU (z(`)) z′(`)d`. (1.1.4)

The efficiency of the Talbot approach depends on the choice of the contour,
as well as the number of function evaluations in the trapezoidal rule. As a
contour of integration we shall use a hyperbolic contour (see Section 3.2).

1.2 Trapezoidal rule
Under certain conditions, the trapezoidal rule is a natural candidate to approx-
imate the integral (1.1.4) [12]. We recall a few well known formulas related to
the trapezoidal rule. Consider the definite integral

I(f) =

∫ b

a

f(x)dx,

where we assume f(x) is integrable on the interval [a, b]. The integral I(f)
can be approximated by the trapezoidal rule TM(f) defined by

TM(f) =
h

2

(
(f(a) + f(b)) + 2

M−1∑
j=1

f(xj)

)
. (1.2.1)

Here M is the number of subintervals in the partitioning of [a, b], and h =
(b − a)/M , the uniform width. The trapezoidal rule is well known to have a
convergence rate of O(h−2). However, for smooth periodic functions integrated
over one period, the convergence rate is faster than the usual O(h−2); an
exponential convergence rate is routinely achieved [12].
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The Euler-Maclaurin summation formula, stated below, provides a method
for estimating the convergence rate of the trapezoidal rule for a smooth func-
tion f(x).

Theorem 1.2.1 Let m ≥ 0, M ≥ 1, and define h = (b − a)/M , xj = jh
for j = 0, 1, ..., M. Further assume that f(x) is 2m + 2 times continuously
differentiable on [a, b] for some m ≥ 0. Then, the error in the trapezoidal rule
is given by

I(f)− TM(f) = −
m∑

k=1

b2k

(2k)!
h2k

[
f (2k−1)(b)− f (2k−1)(a)

]

+
h2m+2

(2m + 2)!

∫ b

a

B̄2m+2

(
x− a

h

)
f (2m+2)(ξ)dξ.

(1.2.2)

The bk are the Bernoulli numbers, and B̄2m+2(x) is the periodic extension of
the Bernoulli polynomials B2m+2(x).

Proof: see [13, p. 285].
From Theorem 1.2.1, one can see that the trapezoidal rule has an accuracy

of O(h−2) when f
′
(b)− f

′
(a) 6= 0. But, when f

′
(b)− f

′
(a) = 0, a higher order

accuracy can be achieved. This happens, in particular, when the function is
periodic with period b− a. In such cases, an exponential convergence rate can
be achieved as stated in the following theorem.

Theorem 1.2.2 Let f : R → R, be analytic and 2π-periodic. Then there
exists a strip D = R × i(−c, c) ⊂ C with c > 0 such that f can be extended
to a bounded analytic and 2π-periodic function f : D → C. The error for the
trapezoidal rule can be estimated by

|I(f)− TM(f)| ≤ 4π
K

ecM − 1

where K denotes a bound for the analytic function f(x) on D.

Proof: see [14, p. 211].
In the case of the improper integral (1.1.4) posed on the real line, a more

convenient theorem proved by Martensen [15] guarantees an exponential con-
vergence rate as we discuss in Section 3.2.

1.3 Problem statement
In the literature, the Laplace transform and the method-of-lines based on
MATLAB’s ODE15s and the Crank-Nicolson method are satisfactorily used
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to solve PDEs [16; 8; 11]. However, a direct comparison of these three methods
lacks.

The purpose of this thesis is therefore to compare the efficiency of the
Crank-Nicolson method, MATLAB’s ODE solver ODE15s and the Laplace
inversion method. In assessing the efficiency of these methods, we shall look
at the performance of all three methods in terms of (a) accuracy as a func-
tion of number of linear systems solved, and (b) accuracy as a function of
computational time.

1.4 Model problem
As model problem, we consider the standard heat equation with constant co-
efficients. This equation models the flow of heat in a bar of length π, say. In
nondimensional form this is given by

∂v

∂t
=

∂2v

∂x2
, 0 < x < π. (1.4.1)

As boundary conditions we take

v(0, t) = 0, v(π, t) = 1, t > 0, (1.4.2)

and initial condition
v(x, 0) = 0. (1.4.3)

The exact solution can be expanded as a Fourier sine series [17, p. 91]

v(x, t) =
x

π
+

2

π

∞∑
n=1

(−1)n

n
sin(nx)e−n2t, (1.4.4)

but for small t this series is slowly convergent. A more efficient solution for
small t is an infinite series involving the complementary error function [17,
p. 91]

v(x, t) =
∞∑

n=0

[
erfc

(π − x + 2πn

2
√

t

)
− erfc

(π + x + 2πn

2
√

t

)]
. (1.4.5)

For a numerical solution of (1.4.1)–(1.4.3), we introduce a substitution

u(x, t) = v(x, t)− x/π, (1.4.6)

and work with the new variable u. The problem is then rewritten as

∂u

∂t
=

∂2u

∂x2
, 0 < x < π. (1.4.7)
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The boundary conditions are now

u(0, t) = 0, u(π, t) = 0, t > 0, (1.4.8)

and the initial condition is
u(x, 0) =

−x

π
. (1.4.9)

In Figure 1.1 we show the solutions at various times t. The solution approaches
the steady state u = 0 or v = x/π quickly.
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Figure 1.1: Solution of problem (1.4.1)–(1.4.3) computed by (1.4.4)–(1.4.5)

1.5 Thesis layout
The outline of this thesis is as follows.

In Chapter 2, we introduce polynomial interpolation, spectral differentia-
tion, and the concept of a differentiation matrix. We also mention the MAT-
LAB package DMSUITE, which is used to construct differentiation matrices.

Next, in Chapter 3, we introduce the time integration methods. In Section
3.1, we discuss the method-of-lines based on MATLAB’s ODE15s, where we
discuss the concept of stiffness as well as the mathematical background of the
solver. Then we also introduce the well-known Crank-Nicolson method. This
is followed by the Laplace inversion method in Section 3.2.
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In Chapter 4, we perform numerical experiments with all these methods
and discuss the convergence rates as well as the computational cost. The
numerical results are presented by means of tables and figures.

In Chapter 5 we apply the Laplace inversion method to solve the axial
dispersion model encountered in process engineering (Section 5.1), and the
solution of a two dimension parabolic PDE (Section 5.2).

Finally, Chapter 6 summarizes our conclusions concerning the four meth-
ods. Subsequently, some issues for future research are proposed.



Chapter 2

Space discretization: Spectral
Methods

In recent years, spectral methods have emerged as a viable alternative to finite
elements and finite difference methods for the numerical solution of partial
differential equations. This is mainly because of the higher accuracy it offers
compared to the well-established finites differences and finite element methods.
In areas such as turbulence flow modeling, numerical weather prediction, and
seismic exploration, they have become popular for their accuracy and efficiency
for numerical calculations [18, p. 127]. A survey of spectral methods in those
areas is given in [18, Chapter 8] and [19, Section 15]. In this chapter, we
present a spectral method based on Chebyshev polynomial interpolation [20]
for solving the model problem given in Section 1.4.

Spectral methods use global representations of high degree over the entire
domain. By contrast, methods such as finite elements or finite differences
divide the domain into subintervals and use local polynomials of low degree.

For smooth solutions the results using spectral methods is of a degree of
accuracy that local approximation methods cannot match. For such solutions
spectral methods can often achieve an exponential convergence rate O(e−cN),
in contrast to the algebraic convergence rate O(N−2) or O(N−4) for finite
differences or finite elements. Here N is the number of unknowns due to the
discretization.

Nevertheless, in practice using spectral methods for boundary value prob-
lems may be troublesome. The presence of boundaries often introduces sta-
bility conditions that are both highly restrictive and often difficult to analyse.
Thus, for a first order PDE one can get restrictive stability conditions of the
form ∆t ≤ O(N−2) for spectral methods where we would get O(N−1) for finite
differences or finite elements. The disparity increases for a second order PDE
from O(N−4) to O(N−2) [1].

Moreover, matrices in spectral methods are neither sparse nor symmetric,
in contrast to the situation in finite differences or finite elements where the
sparsity structure of the matrices simplifies the computation. However, the

8
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point is that N is usually much smaller for spectral methods than for finite
differences and finite elements. Therefore, a restriction of O(N−4

1 ) can be more
efficient compared to O(N−2

2 ) if N2 À N1.
The implementation of spectral methods can be divided into three cate-

gories, namely the Galerkin, tau and the collocation (or pseudospectral) meth-
ods. The first two use the expansion coefficients of the global approximation
and the latter can be viewed as a method of finding numerical approximations
to derivatives at collocations points. In a manner similar to finite differences
or finite elements methods the equation to be solved is satisfied in space at the
collocations points. A comparison of these three methods is given in [18]. For
its simplicity we restrict our discussion of spectral methods to the collocation
method.

This chapter is organized as follows. In the first section, we shall briefly
introduce polynomial interpolation, followed by the derivation of the differen-
tiation matrices based on the spectral collocation method.

2.1 Polynomial interpolation
The spectral process involves seeking the solution to a differential equation
by polynomial interpolation. In order to review the formulas of polynomial
interpolation, we consider interpolating an arbitrary function f(x) at N + 1
distinct nodes {xk}N

k=0 in [−1, 1].

Definition 2.1.1 Given a set {xj}N
j=0 of grid points, an interpolating approx-

imation to a function f(x) is a polynomial fN(x) of degree N , determined
by the requirement that the interpolant agrees with f(x) at the set {xj}N

j=0 of
interpolation points, i.e.,

fN(xi) = f(xi), i = 0, 1, ..., N.

We define Lk(x) as the Lagrange polynomial of degree N ,

Lk(x) =
N∏

j=0
j 6=k

x− xj

xk − xj

, k = 0, 1, ..., N.

Note that Lk(x) satisfies Lj(xk) = δjk, where δjk is the Kronecker delta-symbol.
The interpolation polynomial, fN(x) is then given by

fN(x) =
N∑

k=0

f(xk)Lk(x). (2.1.1)

From approximation theory we are aware of the fact that the set of points
{xk}N

k=0 should not be chosen arbitrarily. For instance, polynomial interpola-
tion on equally spaced points often fails because of divergence near the end-
points. This behaviour is known as the Runge phenomenon [21, p. 83].
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In contrast, polynomial interpolation on unevenly spaced points which con-
centrate the nodes points toward the end of the domain is more efficient [21,
p. 85]. This is the feature of grid points associated with the roots of the Jacobi
polynomials; they have a nonuniform distribution in the interval [−1, 1] with
a node density per unit length of [1]

µ ≈ N√
1− x2

as N →∞.

Examples of such points are:

• Chebyshev zeros: xj = cos
(

2j+1
2(N+1)

π
)
, j = 0, ..., N .

• Chebyshev extrema: xj = cos
(

jπ
N

)
, j = 0, ..., N .

• Legendre zeros: xj = jth zero of PN+1(x), j = 0, ..., N .

Here PN+1 is the Legendre polynomial of degree N +1. The Chebyshev points
are the zeros and extrema of the Chebyshev polynomials TN+1 and TN respec-
tively. The Chebyshev extreme points are often described as the projection
onto the interval [−1, 1] of the roots of unity along the unit circle |z| = 1 in
the complex plane [20, p. 43].

For Chebyshev points fast algorithms such as the Fast Fourier Transform
(FFT) exist for the implementation of the differentiation process at a cost
of O(N log N). Legendre grids have some advantages because of its connec-
tion with Gauss quadrature but for the present thesis we shall only use the
Chebyshev extreme points for its simplicity.

Finally, note that the canonical interval of the Chebyshev points is [−1, 1].
Any problem posed on an arbitrary interval [a, b] can be converted to [−1, 1]
by the linear transformation x ←→ (1/2)((b− a)x + (b + a)).

2.2 Differentiation matrices
In this section we shall use the Chebyshev grid introduced in the previous
section to construct differentiation matrices. Then we shall use these matrices
to derive an approximate matrix form of the model equation (1.4.7)–(1.4.9).

Associated with the interpolant polynomial fN(x) is the concept of col-
location derivative. This is the derivative of fN(x) at the collocation points
{xk}N

k=0. Thus the order m collocation derivative of (2.1.1) is

dmfN(x)

dxm
=

N∑

k=0

f(xk)
dmLk(x)

dxm
. (2.2.1)

Evaluation at the nodes yields

dmfN(xj)

dxm
=

N∑

k=0

f(xk)
dmLk(xj)

dxm
, j = 0, ..., N. (2.2.2)



CHAPTER 2. SPACE DISCRETIZATION: SPECTRAL METHODS 11

Since differentiation is a linear process, (2.2.2) can be represented by the matrix
formula

f
(m)
N = D

(m)
N fN , (2.2.3)

where

fN =




fN(x0)
...

fN(xN)


 , f

(m)
N =




f
(m)
N (x0)

...
f

(m)
N (xN)


 ,

and D
(m)
N is the (N +1)×(N +1) differentiation matrix of order m with entries

(D
(m)
N )j,k = L

(m)
k (xj), j, k = 0, ..., N. (2.2.4)

The computation of these differentiation matrices for an arbitrary order m
has been considered in [22; 20; 23]. Following the approach of [24], Weideman
and Reddy [23] developed a MATLAB algorithm that computes the Chebyshev
grid points as well as the differentiation matrix of an arbitrary order m. This
algorithm is implemented in the DMSUITE package [23]. The suite contains
a function chebdif that computes the extreme points of the Chebyshev poly-
nomial TN(x) and the differentiation matrix D

(m)
N . The code takes as input

the size of the differentiation matrix N and the highest derivative order m and
produces matrices D

(`)
N of order ` = 1, 2, ..., m. The next Theorem gives the

formulas for the computation of the entries of D
(1)
N .

Theorem 2.2.1 For any N ≥ 1, let i, j = 0, 1, ...N . Then the entries of D
(1)
N

are given by

(D
(1)
N )00 =

2N2 + 1

6
, (D

(1)
N )NN =

2N2 + 1

6
, (2.2.5)

(D
(1)
N )jj =

−xj

2(1− x2
j)

, j = 1, ..., N − 1, (2.2.6)

(D
(1)
N )ij =

ci

cj

(−1)i+j

(xi − xj)
, i 6= j, i, j = 0, ..., N, (2.2.7)

where
ci =

{
2, i = 0 or N
1, otherwise.

Proof: see Exercises 6.1 and 6.2 in [20, p. 58-59].
Higher order derivatives are evaluated by recurrences [24; 23], at a cost of

O(N2) operations. This turns out to be cost effective compared to O(N3) if
higher derivatives D

(m)
N are obtained by taking powers of the first derivative

D
(1)
N [23].
The code is called from the command
»[x,DM] = chebdif(N,M);
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The inputs N and M are respectively the size of the matrix and the highest
derivative needed. The output is the column vector

x =




x0
...

xN


 (2.2.8)

with x0 = 1 and xN = −1. The trifold array DM contains the (N +1)× (N +1)

matrices D
(m)
N , where 1 ≤ m ≤ M .

As an example, we consider the differentiation of the function f(x) = ex.
For N = 4, the function chebdif computes the derivatives f (1)(x), f (2)(x), and
f (3)(x), which are all equal to ex, at the Chebyshev points xj for j = 0, ..., 4
as follows.

N = 4; M = 3; [x,DM] = chebdif(N,M);

x =
1.000000000000000
0.707106781186547

0
-0.707106781186547
-1.000000000000000

y = exp(x);

DM(:,:,1)*y
2.707988519849198
2.032992745232904
0.995682088901412
0.496928746797088
0.360490286407965

DM(:,:,2)*y
2.601215133535465
2.022972021706034
0.998573422540361
0.499701905915452
0.446985876626792

DM(:,:,3)*y
2.128168793535845
1.820322155977870
1.077114628454342
0.333907100930835
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0.026060463372817

The error in the spectral method is shown in Figure 2.1. The figure shows
a graph of f(x) alongside a plot of the error in f (1)(x), f (2)(x) and f (3)(x)
respectively. With N = 15, we have about 13, 11 and 10 digits of accuracy for
the computation of f (1)(x), f (2)(x) and f (3)(x) respectively.

−1 −0.5 0 0.5 1
0

1

2

3
N=15

f(
x)

x
−1 −0.5 0 0.5 1
0

1
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4
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f(1

) (x
)|

x
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|f N(2
) (x
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f(2

) (x
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2

4

6
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−11

|f N(3
) (x

)−
f(3

) (x
)|

x

Figure 2.1: Chebyshev approximation to derivatives of f(x) = ex.

Having defined the concept of differentiation matrix, we shall use it to
approximate and solve PDEs. We consider the model problem (1.4.7)–(1.4.9)

∂u

∂t
=

∂2u

∂x2
, 0 < x < π, (2.2.9)

with boundary conditions

u(0, t) = 0, u(π, t) = 0, t > 0, (2.2.10)
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and the initial condition
u(x, 0) = −x/π. (2.2.11)

To convert the interval [0, π] to [−1, 1], we apply the linear transformation

x ←→ π

2
(x + 1) .

The equations (2.2.9)–(2.2.11) become

∂u

∂t
=

4

π2

∂2u

∂x2
, −1 < x < 1, (2.2.12)

with boundary conditions

u(−1, t) = 0, u(1, t) = 0, t > 0, (2.2.13)

and initial condition
u(x, 0) = −1

2
(x + 1) . (2.2.14)

We need to approximate the second partial derivative by the second order
differentiation matrix D

(2)
N . Assume uN(x, t) is the interpolation polynomial in

x of the unknown solution u(x, t). Then, from subsection 2.2, equation (2.2.12)
can be approximated in matrix form as

∂uN

∂t
=

4

π2
D

(2)
N uN j = 0, ..., N, (2.2.15)

where

uN =




uN(x0, t)
...

uN(xN , t)


 .

From the boundary conditions (2.2.13) we have uN(x0, t) = uN(xN , t) = 0.
This means that the first and last rows of the D

(2)
N have no effect since they

are not required and the first and last columns are multiplied by zero. This
amounts to suppressing the first and last column as well as the first and last
rows of D

(2)
N . As a result of this, the (N − 1)× (N − 1) differentiation matrix

D
(2)
N in (2.2.15) is obtained by removing the first and last rows and columns

respectively.
Since MATLAB does not have a zero index, the first row and column of

D
(2)
N start with index j = k = 1, and consequently the last row and column

are indexed j = k = N + 1. Therefore removing the first and last rows and
columns in MATLAB notation is achieved by

D
(2)
N (2 : N, 2 : N, 2). (2.2.16)

The problem (1.4.7)−(1.4.9) is therefore approximated by the linear system
of ODEs

ut =
4

π2
D

(2)
N u, u0 = −1

2
(x + x1) , (2.2.17)
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and

x =




x1
...

xN−1


 , x1 =




1
...
1


 . (2.2.18)

The approximation to u(t) is represented by the (N−1)×1 vector u = u(t).
The column vector u0 is the representation of the initial condition (2.2.14).

It is known that the analytical solution to the semi-discrete equation (2.2.17)
is

u(t) = exp(αD
(2)
N t)u0, α =

4

π2
,

which requires the computation of the matrix exponential. However, comput-
ing the matrix exponential of a large matrix can be a computational challenge,
and therefore this formula for solving the problem is not used much in practice
[25].

In the next chapter, we solve the system (2.2.17) using two time-integrating
techniques, namely the method-of-lines in Section 3.1 and the Laplace trans-
form in Section 3.2.



Chapter 3

Time integration

In this chapter, numerical methods used to solve the model problem (2.2.17)
are discussed. We consider three time integrating methods, namely two ver-
sions of the method-of-lines (based on MATLAB’s ODE15s and the Crank-
Nicolson method) and the Laplace inversion method based on the trapezoidal
rule.

3.1 The Method-of-lines
The method-of-lines is a well-known method for the numerical solution of time
dependent PDEs. The process is divided into the following two steps. Firstly,
discretize the PDE with respect to space, thereby generating a system of ODEs
in time, such as (2.2.17) in the previous section. Secondly, solve the system
by some discrete method in time [26], such as Runge-Kutta or linear multistep
methods, or a software package that has been developed for ODEs.

The method is quite powerful and is widely used in conjunction with a wide
range of high quality ODE integrators. As an example of such methods we
consider, in this section, the MATLAB ODE solver ODE15s and the Crank-
Nicolson method.

3.1.1 MATLAB ODE15s

MATLAB ODE solvers are a collection of codes for solving initial value prob-
lems. The solvers implement a variety of methods and are distinguished from
each other by their ability to solve stiff problems as well as their available or-
der. The solvers for stiff problems are ODE23s, ODE15s, whereas ODE23,
ODE45 and ODE113 are used for non-stiff problems. We will consider the
stiff solver ODE15s for the solution of the semi-discrete equation (2.2.17).

Stiffness is a property of an ODE that leads to instability when an explicit
method is used, unless considerably small time steps are taken [16]. Implicit

16
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methods, in particular the backward differentiation methods, perform better
than explicit ones [16; 27].

Consider a linear system of ODEs

ut = Du + b, (3.1.1)

where D is a square matrix of order (N − 1). The Jacobian J of the system is
given by the matrix D itself.

The eigenvalues of the Jacobian matrix characterize the stability of the
system. In general, the system (3.1.1) is called stiff if the eigenvalues of J
differ greatly in magnitude [28; 27]. The following definition occurs in the
literature [28; 16].

Definition 3.1.1 Assume that all eigenvalues λ1, ..., λN of the Jacobian ma-
trix J are all real and negative and ordered as

λN ≤ λN−1 ≤ ... ≤ λ2 ≤ λ1 < 0. (3.1.2)

Then the system (3.1.1) is said to be stiff if the stiffness ratio s, defined by

s =
|λN |
|λ1| ,

is such that
s À 1, i.e., |λN | À |λ1|.

Taking the semi-discrete model equation (2.2.17), note that its Jacobian is
the differentiation matrix D

(2)
N itself. From [29; 1], we know that all eigenvalues

of D
(2)
N are distinct and lie on the negative real axis. This means that we can

apply Definition 3.1.1 to measure its stiffness ratio.
The stiffness ratio s1 of D

(2)
N , computed numerically, is shown in Table 3.1

for different values of N . Large values of the ratio s1 indicate that the equation
(2.2.17) is stiff. These numerical values agree well, in order of magnitude, with
the theoretical estimate of the ratio s2 obtained in [1]. In that paper, the au-
thors derived the theoretical formulas to estimate the two extreme eigenvalues
as

λ1 ≈ −π2/22 and λN ≈ −
√

11

4725
N4.

Effective methods for solving stiff problems have large stability regions
[16]. The particular shape of the stability region required will depend on the
problem to be solved. But, what is important is for the stability region to
include a large part of the left complex plane, thus including the spectrum of
the Jacobian matrix D

(2)
N . Our discussion on stability will be restricted to the

following definition:
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N s1 s2

10 1.36× 102 1.95× 102

20 2.45× 103 3.13× 103

40 4.46× 104 5.01× 104

60 2.33× 105 2.53× 105

80 7.48× 105 8.01× 105

Table 3.1: Stiffness ratio of (2.2.17) for N ×N matrix D
(2)
N , s1 is the ratio obtained

numerically whereas s2 is the theoretical estimate derived [1].

Definition 3.1.2 A linear multistep method is A-stable if the stability region
includes the entire left half-plane Reλ < 0. It is A(α)-stable if the stability
region contains the infinite sector |argλ− π| < α for some α in [0, π/2].

A class of A(α)-stable method is known as backward differentiation formulas.
Most of the software packages in use for stiff problems are based on these
formulas.

3.1.1.1 Backward differentiation formulas

We start this subsection with the definition of the backward difference operator

∇un = un − un−1, (3.1.3)

and the (j)th-order backward difference operator

∇jun =

j∑

k=0

(−1)k

(
j

k

)
un−k.

The backward differentiation formula of order k, BDFk, approximate the
solution u(t) of (3.1.1) by polynomial interpolation. The interpolation poly-
nomial pk(t) of degree k satisfies the solution u(t) at step tn+1 = tn + h,
with a constant step size h, using the previously computed solution values
un−k,...,un−1, un. The formula is defined by

k∑
j=1

1

j
∇jun+1 = h

(
Dun+1 + b

)
. (3.1.4)

At each time step a linear system involving the coefficient matrix D has to
be solved [28, p. 70]. This can be done efficiently with a LU decomposition,
which is computed prior to the time stepping. Details are given in the next
subsection. The local discretization error introduced at each step is given by
the term [16]

1

k + 1
hk+1un+1

(k+1), (3.1.5)
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Note that in (3.1.5) the subscript (k + 1) is a derivative w.r.t. t, whereas the
superscript indicates a time level, i.e.,

dkun

dtk
= un

(k). (3.1.6)

The relationship of the difference operator ∇ with respect to derivatives is
given by

un+1
(k+1) ≈

∇k+1un+1

hk+1
. (3.1.7)

From (3.1.7), the approximation (3.1.5) can be rewritten as

1

k + 1
∇k+1un+1. (3.1.8)

In practice, the implementation of the BDF formula (3.1.4) is based on a
quasi-constant step-size, which means that the step-size h is held constant to
the extent possible [16; 28, p. 64]. When it appears necessary to change the
step size to a new step-size hnew, previous values computed at a spacing of h
are interpolated to obtain values at hnew. As a result, ODE15s continuously
controls the accuracy of the solution at each time step and adaptively changes
the time step to maintain a consistent level of accuracy. Larger time steps are
used for slowly varying regions and smaller time steps are taken for rapidly
varying regions.

In addition to adaptive step size, the BDFs codes have formulas of varying
order. In particular, BDFs are A-stable up to and including order 2 and A(α)-
stable, for some α ∈ (0, π/2), up to order 6 [28, p. 68]. As the order increases,
the stability region decreases with the angle α. As a consequence, the stability
of the formula (3.1.4) worsens [28, p. 68]. In the next section, we describe a new
family of formulas based on BDFs called Numerical Differentiation Formulas
[16] that present some advantages over the BDFs.

3.1.1.2 Numerical differentiation formulas

Numerical differentiation formulas (NDFs) [16] were developed in an attempt
to improve the stability of higher order BDFs but at reasonable computational
cost. The NDF formula is given by the equation

k∑
j=1

1

j
∇jun+1 = h

(
Dun+1 + b

)
+ κγk

(
un+1 − u0

)
, (3.1.9)

where u0 = u0, κ is a scalar parameter and γk is given by

γk =
k∑

j=1

1

j
.
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For κ = 0, this formula reduces to the backward difference formula (3.1.4).
To derive the local error at each step, Shampine [16] considered the identity

un+1 − u0 = ∇k+1un+1,

and from the local discretization error (3.1.8) deduced
(

κγk +
1

k + 1

)
∇k+1un+1. (3.1.10)

From (3.1.10) we deduce
(

κγk +
1

k + 1

)
hk+1u

(n+1)
(k+1) . (3.1.11)

In the light of (3.1.11) and from (3.1.5), the leading error term of both BDFs
and NDFs are of O(hk+1). Thus NDFs have a smaller error constant than the
BDFs if the inequality

∣∣∣∣κγk +
1

k + 1

∣∣∣∣ <
1

k + 1
, i.e.,

−2

k + 1
< κ < 0,

holds. In [16; 30] the choice of the parameter κ is determined by two criteria,
stability and efficiency. Klopfenstein [30] computed numerically κ values for
orders 1 to 6 but only values for orders 1 and 2 could preserve both the accu-
racy and stability. Using a different approach to Klopfenstein, Shampine and
Reichelt [16] computed successfully the best estimate of κ for orders 3 up to
5. These values can improve the efficiency of the NDFs by approximately 26%
for the orders 1, 2, 3 and 12% for the fourth order [16].

The ODE15s solver is based on the NDFs of order 1 to 5 [16]. The order
5 NDF is used as default method in the code. As an option, it uses the BDFs.
For stiff problems, the solver uses sufficiently small step-sizes in stiff regions
and automatically increases the step-size in non-stiff regions. When the error
becomes larger than a specified tolerance, the step-size is a failure. The process
is repeated until a new step-size with error estimate less than the given error
tolerance is obtained [16]. Although the code accurately approximates the
solution, the repeated process and the choice of small step for stability comes
at a computational cost [28, p. 66]. Despite this drawback the ODE15s solver
exhibits efficient results and is cost effective on stiff problems compared to
non-stiff solvers such as ODE45.

MATLAB’sODE15s is relatively easy to implement, and systems of ODEs
can be solved in few lines of code. The minimum input includes a function
handle for the time derivative, a time range, and an initial value. Option-
ally, the user can specify the desired relative and absolute errors through the
command abstol and reltol respectively.

In the next section we discuss the second method-of-lines used in this thesis,
namely the Crank-Nicolson method.
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3.1.2 The Crank-Nicolson Method

An alternative method-of-lines is the well known Crank-Nicolson method. Let
h = t

M
, be a given step-size, where M is the number of steps, and t the final

time. Then the Crank-Nicolson approximation of the equation (3.1.1) is
(

I − h

2
D

(2)
N

)
un+1 =

(
I +

h

2
D

(2)
N

)
un + hb. (3.1.12)

This scheme is implicit, unconditionally stable, and is of second order of
accuracy.

Let A =
(
I − h

2
D

(2)
N

)
and B =

(
I + h

2
D

(2)
N

)
, then equation (3.1.12) be-

comes
Aun+1 = Bun + hb. (3.1.13)

Thus, each step of (3.1.13) requires the solution of a system of linear equations
involving the matrix A.

When using spectral methods the matrices A and B are dense, and the
solution of the equation (3.1.13) is obtained at the cost of O(N3) operations
at each step n. This can become inefficient as N increases.

To reduce the computational cost, we consider a transformation of A to
some triangular system which is easier to solve. Such systems can be solved
by forward or backward substitution [31, p. 88–89]. This process is referred
to as LU factorization. Since A does not depend on the step index n, one can
compute an LU factorization of this matrix once, beforehand, and apply it in
all steps (3.1.13) to obtain un+1.

The decomposition of A to an LU form yields

A = LU, (3.1.14)

where U is an upper triangular matrix and L is a lower triangular matrix ob-
tained by Gaussian elimination [31, p. 94]. Improved stability of the Gaussian
elimination method can be achieved by introducing row interchanges during
the elimination process. This strategy, known as partial pivoting, corresponds
to the multiplication on the left of A in (3.1.14) by a permutation matrix P
[31, p. 109–121]. The LU form with partial pivoting becomes

A = PLU. (3.1.15)

The solution of the recurrence relation (3.1.13) is then obtained by solving the
triangular systems [31, p. 94]

Lyn = P T (Bun) + hP T b, (3.1.16)

and
Uun+1 = yn, (3.1.17)
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in sequence (note that we have used P−1 = P T ). Step (3.1.16) involves for-
ward substitution, and (3.1.17) a back substitution, both of which cost O(N2)
operations. This is in contrast to the original O(N3) as in (3.1.13) where a
full system is solved at each step.

The performance of the LU factorization as applied to the Crank-Nicolson
method is shown in Figure 3.1. In this figure, we have plotted the CPU time
for various matrices of different sizes N when solving the equation (3.1.13)
with and without the LU factorization (3.1.15). From Figure 3.1, we observe
an increase of the computational time (dotted curve) as the full matrices A and
B in (3.1.13) become large. However, the application of the LU decomposition
substantially reduces the CPU time (circled curve).
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Figure 3.1: CPU time (in seconds) of one step of the Crank-Nicolson (3.1.12) with
and without the LU factorization.
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3.2 The Laplace inversion method
In this section we consider the Laplace inversion formula as an alternative to
the methods of Section 3.1.

Recall from Chapter 1 that given a Laplace transform U(z), the reconstruc-
tion of the original function u(t) can be expressed by the Bromwich integral

u(t) =
1

2πi

∫ σ+i∞

σ−i∞
eztU(z)dz, t > 0, (3.2.1)

with σ > σ0 and σ0 the convergence abscissa of U(z).
For numerical evaluation of u(t) and from the Cauchy’s integral formula,

the Bromwich line is deformed to an equivalent contour Γ that starts and ends
in the left half-plane. On the new contour Γ, we have

u(t) =
1

2πi

∫

Γ

eztU(z)dz, t > 0. (3.2.2)

In the next section, we discuss a family of hyperbolic type as contours of
integration.

3.2.1 The hyperbolic contour

Different contours such as the parabola, hyperbola and a cotangent contour
have been proposed in [32; 3; 33]. Optimal parameters for these contours have
been derived in [4; 34]. For a pure parabolic problem, these three contours
have a fast convergence rate of order roughly O(10−M), where M is the number
of sample points in the quadrature rule. We shall only consider the hyperbola
as the integration contour.

Following [32; 3], we define the family of hyperbolic contours by

z = µ (1 + sin (i`− α)) , ` ∈ R, (3.2.3)

where the real parameters µ > 0 and 0 < α < π/2 determine the geometry of
the contour. The positive parameter µ controls the width of the contour while
α determines the geometric shape, i.e., the asymptotic angle.

The mapping z transforms the horizontal straight line ` ∈ R into the left
branch of the hyperbola

(
µ− x

sin (α)

)2

−
(

y

cos(α)

)2

= µ2, x = Re z and y = Re z.

The asymptotes of this hyperbola make angles ± (π/2− α) with the real axis.
A typical contour is illustrated in Figure 3.2 below.

On the contour (3.2.3) the inversion formula (3.2.2) becomes

u(t) =
1

2πi

∫ ∞

−∞
ez(`)tU (z(`)) z′(`)d`, (3.2.4)
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Figure 3.2: Hyperbolic contour (3.2.3).

where
z′(`) = µi cos (i`− α) .

In Subsection 3.2.5, we determine formulas for the optimal parameters µ and
α.

3.2.2 Approximation by the trapezoidal rule

In Section 1.2, we saw that the trapezoidal rule converges exponentially on an
interval [a, b] for a smooth (b − a)-periodic function. In this subsection, we
shall see that the trapezoidal rule is also suitable for improper integrals over
(−∞, ∞) where an exponential convergence rate can be achieved.

Let us consider
I(f) =

∫ ∞

−∞
f(x)dx;

in this case, the formula (1.2.1) becomes

T (f) = h

∞∑
j=−∞

f (xj) , xj = jh. (3.2.5)

For practical purposes, the infinite sum is truncated to a finite sum. The
application of this formula is efficient only when the function f(x) decays
sufficiently fast. For an analytic function f(x) defined on (−∞, ∞), a theorem
similar to Theorem 1.2.1 in Chapter 1, which gives an exponential convergence
estimate of the trapezoidal rule, is stated as follows
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Theorem 3.2.1 Let f : R −→ R be an analytic function. Then there exists a
strip R× (−d, d) in the complex plane with d > 0 such that f can be extended
to a complex analytic function f : R× (−d, d) −→ C. Furthermore, the error
for the trapezoidal rule is given by

Ed = Re
{∫ ∞+iσ

−∞+iσ

(
1− i cot

πz

h

)
f(z)dz

}
,

where 0 < σ < d. Moreover, it is bounded by

|Ed| ≤ 2

exp
(

2πd
h

)− 1

∫ ∞+iσ

−∞+iσ

|f(z)|dz.

Proof: see [15].
From this theorem we see that for an analytic function defined on (−∞, ∞),

the error is of exponential order. For further discussion of the convergence of
the trapezoidal rule, we refer to [15].

Define `k = kh, for h > 0, then the trapezoidal rule applied to (3.2.4) gives

u(t) ≈ h

2πi

∞∑

k=−∞
ez(`k)tU (z(`k)) z′(`k). (3.2.6)

Because of the exponential factor ez(`k)t, the terms in the sum decrease expo-
nentially as k →∞. In this case one commits an exponentially small error by
truncating at a finite integer k = M .

We redefine the quadrature points as

`k =

(
k +

1

2

)
h, (3.2.7)

which we consider in the rest of this thesis for simplicity. With the quadrature
points (3.2.7), the trapezoidal rule becomes the midpoint rule, an equally ac-
curate method. In the next subsections we apply the inversion method based
on the midpoint rule to solve a scalar problem as well as the matrix problem
(2.2.17).

3.2.3 Scalar problem

We consider the scalar analogue of (2.2.17)

du

dt
= λu, λ < 0. (3.2.8)

A straightforward application of the Laplace transform (1.1.1) to (3.2.8) gives

U(z) =
u(0)

z − λ
, (3.2.9)
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and the inversion formula (3.2.4) on the contour (3.2.3) yields

u(t) =
1

2πi

∫ ∞

−∞

ez(`)tu(0)

z(`)− λ
z′(`)d`. (3.2.10)

The approximation to (3.2.10) becomes

u(t) ≈ h

2πi

(
u(0)

∞∑

k=−∞
ez(`k)t (z(`k)− λ)−1 z′(`k)

)
. (3.2.11)

For practical purposes, the infinite sum (3.2.11) has to be truncated, say to
2M points. And if symmetry is used, the above equation is equivalent to

uM(t) =
h

π
Im

(
u(0)

M−1∑

k=0

ezkt (zk − λ)−1 z′k

)
. (3.2.12)

where zk = z(`k) and z′k = z′(`k).
In the next section we shall show that the scalar λ represents an eigenvalue

of the differentiation matrix D which is equal to the singularities of the Laplace
transform.

3.2.4 Matrix problem

We now turn to the matrix problem (2.2.17)

ut =
4

π2
D

(2)
N u, u0 = u(0) =

1

2
(x + x1) . (3.2.13)

We recall that D
(2)
N is the (N − 1) × (N − 1) second order Chebyshev differ-

entiation matrix with boundary conditions incorporated, u(t) an (N − 1)× 1

vector, and u0 the initial condition. For simplicity we set D = 4
π2 D

(2)
N .

The solution of (3.2.13) is approximated on the hyperbolic contour (3.2.3).
A direct application of the Laplace transform (1.1.1) to (3.2.13) gives

(zI −D)U (z) = u0, (3.2.14)

where I is the (N − 1)× (N − 1) identity matrix. This formula is the matrix
form of equation (3.2.9) and the scalar λ in (3.2.9) is the eigenvalue of the dif-
ferentiation matrix D. To see this, suppose the matrix D has real and negative
eigenvalues, λ1, ..., λn corresponding to the linearly independent eigenvectors,
v1, ..., vn. If we expand the initial solution as a linear combination of eigen-
vectors, then

u0 = c1v1 + ... + cnvn.

The integrand (zI −D)−1u0 can now be expanded as follows

(zI −D)−1 u0 = c1 (zI −D)−1 v1 + ... + cn (zI −D)−1 vn.
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Since the λj (j = 1, ..., n) are the eigenvalues of D, this leads to

(zI −D)−1 u0 =
c1

z − λ1

v1 + ... +
cn

z − λn

vn.

The application of the inversion method leads to

u(t) =
c1

2πi

∫ ∞

−∞

ez(`)t

z(`)− λ1

d` + ... +
cn

2πi

∫ ∞

−∞

ez(`)t

z(`)− λn

d`,

and the right-hand side is therefore equivalent to applying the inversion method
to the scalar problem (3.2.10). But in this subsection we keep our attention
to solving the problem with the matrix form (3.2.14).

To this end note from (3.2.14) that the solution of (3.2.13) may be written
in the form

u(t) =
1

2πi

∫ ∞

−∞
ez(`)t

(
(zI −D)−1 u0

)
z′(`)d`. (3.2.15)

As in [3; 4], (3.2.15) is approximated by the midpoint rule, on the set of
points (3.2.7). The solution, after truncation and application of the symmetry,
is of the form

uM(t) =
h

π
Im

(
M−1∑

k=0

ezkt
(
(zkI −D)−1 u0

)
z′k

)
. (3.2.16)

Because the differentiation matrix D is full, the solution of the linear sys-
tems

(zkI −D)U (zk) = u0, k = 0, 1, ..., M, (3.2.17)

represents the bulk of the computation in (3.2.16). For instance, a computa-
tional cost of O (N3) operations is required at each node zk. Therefore, we are
not going to use (3.2.17) directly, except for the comparison in Figure 3.3.

Speeding up the solution of the linear systems (3.2.17) requires the fac-
torization of the coefficient matrices to a sparse form that is easier to solve.
Because of the form of (3.2.17) the LU factorization cannot be used. As an
alternative, we consider the Hessenberg reduction of D (see Appendix A). The
decomposition yields

D = QHQT , (3.2.18)

where H = (hij) is an upper Hessenberg matrix, i.e., hij = 0, i > j + 1, and
Q an orthogonal matrix. Then for each zk, k = 0, 1, ...,M − 1, the equation
(3.2.17) becomes

(zkI −QHQT )U (zk) = u0.

From this we have
Q(zkQ

T −HQT )U (zk) = u0,

which yields
(zkI −H)V (zk) = QT u0 (3.2.19)
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where V (zk) = QT U (zk), so that

U (zk) = QV (zk). (3.2.20)

The solution U (zk) for each zk, is obtained by the computation of an almost
triangular system (3.2.19) and combining the result in (3.2.20) at only O(N2)
operations [31]. During this process, the Hessenberg reduction (3.2.18) is only
computed once, beforehand. First, we compute

Q, H, and V0 = QT u0.

Second, for each k, the system

(zkI −H) V (zk) = V0,

is solved easily, since the (zkI −H) is an upper-Hessenberg matrix. Finally,
the column vector

U (zk) = QV (zk) (3.2.21)

of the Laplace transform is computed and stored. Then (3.2.16) is computed
as

uM(t) =
h

π
Im

(
M−1∑

k=0

ezktU (zk)z
′
k

)
,

to obtain the solution.
In Figure 3.3, we have plotted the CPU time versus N , the order of the dif-

ferentiation matrix D in (3.2.17). That is, the CPU time with and without the
Hessenberg decomposition. As N increases, we observe that the computational
time of (3.2.17) increases drastically (dashed curve). However, the application
of the Hessenberg decomposition (3.2.18) and (3.2.19)–(3.2.20) subsequently
reduces the CPU time (circled curve).

3.2.5 Derivation of optimal contour parameters

We present theoretical formulas for the optimal parameters, α and µ, of the
contour (3.2.3). We follow the approach of [4], where the scalar problem (3.2.8)
was analysed. Optimal parameters are defined as the values that maximize the
convergence rate of the midpoint/trapezoidal rule on the contour.

We shall distinguish two cases for the determination of the optimal contour
parameters: parameters on a single contour t and on an interval [t0, t1].

It is well-known that the total error estimate EM of the midpoint rule on
the real line is given by

EM = Ed + Et. (3.2.22)

Here we have used Ed to represents the error introduced by the discrete approx-
imation (3.2.6) of the continuous problem (3.2.4), and Et that of the truncation
error introduced in (3.2.16).
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Figure 3.3: CPU time of the inversion formula (3.2.17) with and without the
Hessenberg decomposition.

3.2.5.1 Inversion Laplace transform at a single time t

The optimal convergence rate of the hyperbolic family of contours (3.2.3) has
been derived in [4]. The following were obtained:

Ed+ = O(e−2π(π/2−α)/h), Ed− = O(eµt−2πα/h), h → 0, (3.2.23)

where
Ed = Ed+ + Ed−,

represents the discretization error. The truncation error was

Et = O(eµt(1−sin(α) cosh(hM))), M →∞. (3.2.24)

The authors in [4] used an asymptotic approach to obtain these estimates.
This requires that

Ed+ = Ed− = Et, (3.2.25)

so that

−2π (π/2− α) /h = µt− 2πα/h = µt (1− sin(α) cosh(hM)) . (3.2.26)

We solve these equations for h, µ and α in (π/4, π/2). From the first equation
in (3.2.26), we deduce that

µt = π
4α− π

h
, (3.2.27)
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and from the last equation, it follows that

cosh(hM) =
2α

(4α− π) sin(α)
. (3.2.28)

Taking the inverse in (3.2.28) yields

A(α) = hM = cosh−1

(
2α

(4α− π) sin(α)

)
. (3.2.29)

From (3.2.27) and (3.2.29), we now obtain

µ =
4πα− π2

A(α)

M

t
, and h =

A(α)

M
. (3.2.30)

The corresponding convergence estimate can now be derived from h and µ in
(3.2.30) as

EM = O(e−B(α)M), where B(α) =
π2 − 2πα

A(α)
, M →∞. (3.2.31)

To derive the optimal contours parameters, note that as B(α) increases, EM

decreases exponentially. Thus EM attains its optimum value at the maximum
of B(α) over the interval

(
π
4
, π

2

)
. A numerical computation of B(α) shows that

the maximum is attained at

α× = 1.1721. (3.2.32)

With α× at hand, we can now compute µ× and h× from (3.2.30). This yields

h× =
1.0818

M
, and µ× = 4.4921

M

t
. (3.2.33)

The optimal contour is then

z = 4.4921
M

t

(
1 + sin(i`− 1.1721)

)
, ` ∈ R, (3.2.34)

with the convergence rate

EM = O(e−2.315M) = O(10.2−M), M →∞. (3.2.35)

In Figure 3.4, we show the convergence rate of the Laplace inversion method
at different times t. There, we have plotted the error

EM = ||uM(t)− u(t)||∞,

versus the number of function evaluations M (linear systems solved). Here
uM(t) is the numerical solution (3.2.16) and u(t) is the exact solution (1.4.4)–
(1.4.5). The rapid convergence of the actual error (dash-dot curve) is in good
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agreement with the theoretical convergence (3.2.35) (dashed curve) obtained
in [4].

The most important aspect of the Laplace inversion method is that it con-
stantly achieves a high order of accuracy. As shown in Figure 3.4, it attains
exponential accuracy to machine precision for only few linear system solves
(M ≤ 13). For M ≥ 14 we observe an increase of the error in Figure 3.4, this
is due to the ill-conditioning of the Laplace inversion. We shall discuss this in
Subsection 3.2.6.

The drawback in using the Laplace inversion method is that since the
optimal contour (3.2.34) depends on the time t, the evaluation of u(t) in
(3.2.16) is carried out on a different contour for each t [4; 34]. For instance,
suppose we want to evaluate u(tj) for t1, ..., t`. To compute u(tj) for each tj,
a new set of transforms U (zk), k = 0, ..., M − 1 in (3.2.17) is sampled on a
different contour. This means M × ` linear system are solved in total. For
a matrix problem such as (3.2.16), this can be inefficient. As an example, in
Figure 3.4, 3M systems were actually solved in total.

To overcome this drawback, the authors in [32] noted that the same eval-
uations of U (zk), for k = 0, ..., M − 1, can be used to approximate u(t) at
different times t. The transforms U (zk) in (3.2.17) can be computed once for
the set of nodes {zk, k = 0, 1, ..., M − 1}. These evaluation of U (zk) are then
used to reconstruct the solution u(t) for any t in [t0, t1]. In addition, an ex-
ponential convergence rate, though with reduced decay rate compared to the
case of a single contour, can be maintained on small intervals [32; 3; 4]. We
discuss this topic in the next subsection.

3.2.5.2 Inversion Laplace transform on a interval [t0, Λt0]

Assume that the solution is sought for t on the interval [t0, t1], with t1 = Λt0.
An efficient implementation of the inversion method requires the use of the
same contour (3.2.3) over the whole interval. Therefore, since the contour
(3.2.3) depends on the parameter µ, this parameter should be held constant
over the specified interval.

Various methods for finding such a contour exist [32; 3; 4]. In this thesis,
we argue as follows: first note that only the equations (3.2.23) and (3.2.24)
are time dependent. On one hand, the error Et decreases when t increases and
thus it attains its highest values at t1. To see this, note that

1− sin(α) cosh(hM) ≤ 0, for a fixed h 6= 0 and M →∞,

and α is in (π/4, π/2) which implies that the inequality 1/
√

2 < sin(α) < 1
holds. Multiplication of both side of the inequality by cosh(hM) yields

cosh(hM)√
2

< sin(α) cosh(hM) < cosh(hM),
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Figure 3.4: Convergence curve obtained when solving the semi-discrete problem
(2.2.17) with the inversion formula (3.2.12) for different values of t. The dash-
dot curve shows the error of the approximation (3.2.16), and the dashed line the
theoretical error (3.2.35). The error norm is the infinite norm ||uM (t)− u(t)||∞.
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but cosh(hM)/
√

2 > 1 for sufficiently large M , so that

1− sin(α) cosh(hM) < 0 for a fixed h 6= 0 and M →∞.

On the other hand, the discretization error Ed− increases with t. This
means the minimum of Ed− is at t0.

To obtain high precision over the interval [t0, t1], Weideman and Trefethen
[4] considered the modification of the asymptotic equivalence (3.2.26) to

−2π (π/2− α) /h = µt1 − 2πα/h = µt0 (1− sin(α) cosh(hM)) . (3.2.36)

We solve these equations for µ and h. From the first equation we have

µh =
4απ − π2

t1
. (3.2.37)

The last equation in (3.2.36) together with with (3.2.37) yields

cosh(hM) =
(π − 2α) Λ− π + 4α

(4α− π) sin α
,

where Λ = t1/t0. From this it follows that

A(α) = hM = cosh−1

(
(π − 2α) Λ− π + 4α

(4α− π) sin α

)
. (3.2.38)

Therefore we obtain
h =

A(α)

M
(3.2.39)

and
µ =

4απ − π2

ht1
=

4απ − π2

A(α)

M

t1
. (3.2.40)

The contour parameters (3.2.40) and (3.2.39) are fixed and time indepen-
dent. As a result, the corresponding contour (3.2.3) is also fixed over the
interval [t0, t1]. Since the contour is fixed, we can now compute the set of
transforms U (zk) for k = 0, 1, ..., M − 1 in (3.2.17). Then use the same set of
computed values of U (zk) to evaluate u(t) from the the midpoint rule (3.2.16)
at different values of time tj.

To sum up, the algorithm can be divided into two independent steps: First,
the evaluation of U (z) at the required nodes. Second, the evaluation of u(t)
in (3.2.16) at the required finite set of values t in [t0, t1] [4; 32; 3].

More importantly, a relative exponential convergence rate is observed on
the interval [t0, Λt0] [3]. But when Λ is large this exponential convergence rate
is weak compared to the convergence rate obtained in the case of the single
contour. To see this, note from the optimal parameters derived above, that
the convergence rate as M →∞ is

EM = O(e−B(α)M), (3.2.41)
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with
B(α) =

π2 − 2πα

cosh−1
(

(π−2α)Λ+4α−π
(4α−π) sin(α)

) . (3.2.42)

The maximum of B(α) can be computed numerically for different values of
Λ. Some values of Λ are displayed in Table 3.2 as well as the corresponding
optimal contour parameters and the decay rate B(α). Note the decay of B(α)
(last column) as opposed to the value of Λ (first column). The convergence
decreases as the interval increases.

Λ α A(α) µt1/M B(α)

1 1.1721 1.0818 4.4921 2.3157
2 1.1431 1.5280 2.9417 1.7587
3 1.1181 1.8889 2.2134 1.5059
4 1.0969 2.1945 1.7838 1.3569
5 1.0791 2.4578 1.5013 1.2570
10 1.0236 3.3744 0.8871 1.0888
40 0.9464 5.2661 0.3842 0.7449
50 0.9381 5.5582 0.3452 0.7152

Table 3.2: Optimal parameters of the contour (3.2.3) for different Λ.

In Figure 3.5 we test the optimal parameters (3.2.38)–(3.2.40). The error
is plotted in the maximum error norm

EM = ||u(t1)− uM(t1)||∞ (3.2.43)

for various Λ and t0 = 1/Λ. Here u(t) is the exact solution (1.4.4) or (1.4.5)
and uM(t) the numerical solution (3.2.16). The values of EM where all similar
at t = t0 and all values of t in between. The continuous curves represent the
theoretical error as observed from the last column of Table 3.2. The dashed
curves represent the actual convergence rate.

The good agreement between the theoretical and the numerical estimate
can be observed from Figure 3.5, as both curves converge exponentially. As an
example, let Λ = 10 and suppose we wish to attain an absolute error of, say,
10−10 over the interval [0.1, 1] when solving the model problem (1.4.1)–(1.4.3).
From (3.2.41) this will require solving the equation

Ce−B(α)M ≈ 10−10, (3.2.44)

where B (α) is given by (3.2.42) and C is an undetermined constant. Taking
C = 1, and Λ = 10, results in

e−1.0888M ≈ 10−10 ⇒ M ≈ 21,

which agrees with the middle set of curves in Figure 3.5.
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Figure 3.5: Actual error (dashed curve) and theoretical error (continuous curve)
for Λ = 2, 10 and 50. We observe a good agreement between the numerical and
theoretical results. Here t0 = 1/Λ and the interval is [1/Λ, 1].

M Λ = 2 Λ = 4 Λ = 8

2 2.10e-03 8.00e-02 4.77e-02
3 1.90e-03 1.90e-03 7.70e-03
4 2.84e-04 1.50e-03 3.20e-03
5 1.51e-05 3.95e-04 2.10e-03
6 6.52e-06 6.42e-05 7.35e-04
7 1.84e-06 4.28e-06 1.63e-04
8 3.21e-07 1.94e-06 1.41e-05
9 3.78e-08 1.87e-06 1.67e-05
10 1.84e-09 5.92e-07 9.61e-06
11 5.03e-10 1.46e-07 3.57e-06
12 1.97e-10 2.71e-08 1.02e-06
13 4.51e-11 2.85e-09 2.26e-07
14 8.23e-12 7.76e-10 3.46e-08
15 1.25e-12 5.03e-10 5.87e-09

Table 3.3: Convergence rate of the method (3.2.12) on an interval [1/Λ, 1] for a
few values of Λ. The first column indicates the number of points M in the trapezoid
rule.

3.2.6 Ill-conditioning of the Laplace inversion

For values of M > 13, the convergence curves in Figure 3.4 start to increase.
The exponential convergence is no longer valid. One might attribute this
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apparent contradictory behavior to either the spatial resolution or the ill-
conditioning of the Laplace transform. However, since we have chosen the
order N of the matrices D sufficiently large, the first claim is quickly dis-
carded. In the floating-point evaluation of the transform U (zk) at each node
zk, k = 0, 1, ..., N , a roundoff error is introduced and accumulates in the sum-
mation (3.2.16).

In practice, the system (3.2.17) is solved with a relative error ρ due to the
floating-point in the computed value of U (zk). Thus in (3.2.17) the computa-
tion taking place is that of

Uk = U (zk)(x1 + ρk), k = 0, 1, ..., M − 1,

where

ρk =




ρk1
...

ρkN


 , and x1 =




1
...
1


 .

The entries of the ρk are such that |ρkj| ≤ ε for j = 1, ..., N , and ε is the ma-
chine precision. As a result, the inverse u(t) is affected by the same rounding
error ρk as

u×(t) =
h

π
Im

{
M−1∑

k=0

ezktU (zk)
T
(
x1 + ρk

)
z′k

}
,

that is

u×(t) = uM(t) +
h

π
Im

{
M−1∑

k=0

ezkt
(
U (zk)

T ρk

)
z′k

}
. (3.2.45)

As M increases the error term increases significantly because of the exponential
term ezkt and eventually becomes larger than the first term. We conclude that
when M is small (≤ 13 as in this case), the convergence of the Laplace inversion
dominates the conditioning error. However, for large M , the conditioning error
increases and eventually dominates the other error. Because of this, we take
values of M ≤ 13 for the computation of (3.2.16).

In this chapter we have discussed three time integration methods for the
numerical solution of the parabolic PDEs. In the next chapter we shall compare
these methods numerically.



Chapter 4

Numerical comparison

In this chapter, we will be concerned with the evaluation of the performance
of the following three methods: the Laplace inversion method, MATLAB’s
ODE15s, and the Crank-Nicolson method.

To this end, we will consider two criteria: the accuracy per linear sys-
tem solve and the computational time based on a 1500 MHz laptop. Other
implementations and other machines may give different results.

We consider the model problem (1.4.7)–(1.4.9) that we have been us-
ing throughout this thesis with the corresponding exact solutions (1.4.4) and
(1.4.5).

4.1 Criterion I: Accuracy per linear systems
solve

When solving parabolic PDEs, a common feature of the Laplace transforms
and the methods-of-lines is that the major part of the computation involves
solving linear systems as in (3.1.9), (3.1.16)–(3.1.17) and (3.2.17). The ac-
curacy of the methods is dependent on the number of linear systems solved.
Thus, we consider the number of linear systems solved for each method as a
measure of comparison. The most accurate method is then the method which
attains higher accuracy with the smallest number of linear systems solved.

We shall report the error in the L∞ norm, defined as

EM = ||u(t)− uM(t)||∞, (4.1.1)

where u(t) is the vector of exact solution values at the sample points xj, and
uM(t) the numerical solution, which involves the solution of M linear systems
at time t. We have chosen the N ×N Chebyshev matrices D sufficiently large
(N = 50) to fully resolve the solution.

As from the discussion in the last part of Section 3.2, the comparison will
be considered on two different cases: comparison at a single value of t as well
as on an interval [t0, t1].

37
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4.1.0.1 Comparison at a single value of t

In Figure 4.1, we have plotted the error versus the number of linear systems
solves M at t = 1. Here “ILT” denotes the convergence rate of the Laplace
inversion method; “CN” the convergence rate obtained by the Crank-Nicolson
method; “ODE15s”, the convergence rate of ODE15s and “Theor conv.” de-
notes the theoretical convergence rate (3.2.35). The values in brackets next to
the “ODE15s” data points represent the tolerance parameters (Retol, Abstol);
see Section 3.1.1.
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Figure 4.1: Comparison of the error of the inverse Laplace transform method (ILT),
ODE15s (ODE15s) and Crank-Nicolson method (CN). M is the number of linear
system solves used to compute the solution of the model problem (3.2.13) at t = 1.

A key feature to look for in Figure 4.1 is the relative positioning of the
different curves. For a given accuracy, curves that are further to the left takes
fewer linear systems to solve or fewer steps to achieve that accuracy. We
observe that the Laplace transform method performs better than the other
methods. It attains high accuracy with only a few function evaluations (i.e.,
linear system solves). This is in contrast to ODE15s and the Crank-Nicolson
methods, for which a substantial number of steps is needed to attain the same
level of accuracy.

Note that the convergence curve of the Crank-Nicolson method exhibits
two types of behavior separated by a kink at about M = 600. This can be
attributed to the non-smoothness of the initial condition (2.2.17)[35]. The
straight line curve in the loglog plot for M > 600 indicates a power function
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relationship between the error and the step size as predicted by the order of
the method. To see this, note that the linear relation is

log EM = m log ∆t + log C,

where ∆t = 1/M (since t = 1) and for some constant C. This yields

log EM = log C −m log M.

Define b = log EM , c = log C and e = log M , then

b = c−me. (4.1.2)

We compute c and m by the least squares method. In matrix notation (4.1.2)
becomes

b = Ax,

where

b =




b1

b2
...
b`


 , and A =




1 −e1

1 −e2
...

...
1 −e`


 , x =

[
c
m

]
.

To determine the value of m, we consider the data points of Figure 4.1.
Using MATLAB, we find m = 2.006, which confirms that the Crank-Nicolson
method is of order 2. We apply the same method to obtain the order of
convergence of ODE15s and found m = 4.985 which confirms the default
order 5 of ODE15s.

4.1.0.2 Comparison on an interval [t0, t1]

Next, we consider the inverse Laplace transform method on an interval [t0, t1],
where t1 = Λt0 and Λ > 1. As discussed in the previous section, the com-
putational effort of the inverse Laplace transform method comes from solving
the linear system (3.2.17) for each zk, k = 0, 1, ..., M . But because U (zk) in
(3.2.17) is independent of t, it can be evaluated once at a fixed set of quadra-
ture points zk. The same evaluations of U (zk) can then be used to approximate
u(t) at different t. This preserves the exponential convergence rate, but with
a reduced decay constant, see Figure 3.5.

Suppose we wish to compute the solution at ` time levels τj in [t0, t1], such
that,

t0 ≤ τ1 < τ2... < τ` ≤ t1. (4.1.3)

We propose the following two methods for the Laplace inversion method.
Method 1: Use a new contour optimal for each τj, j = 1, ..., `. The ad-

vantage of this method is that we have high accuracy as described by the
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convergence rate (3.2.35). The disadvantage is that, because the optimal con-
tour (3.2.34) depends on t, this will require using ` different contours and
therefore `M separate linear system solves (3.2.17).

Method 2: Use a single contour for all τj, j = 1, ..., `. The disadvantage
is that we have lower accuracy as given by (3.2.41) with values in Table 3.2,
but only M linear system solves.

Our aim is to decide which method is advantageous in terms of the number
of linear systems solved. In other words, for which values of ` does Method 1
gives higher accuracy than Method 2.

Let us consider Method 1. Suppose we want to attain an accuracy ε on the
interval [t0, t1] for a minimum number of linear system solves M . Then, from
the optimal convergence rate (3.2.35), we require for each τj, j = 1, ..., `, that

C1e
−2.32M1 ≈ ε, (4.1.4)

where M1 is the number of function evaluations. We assume the constant C1

is approximately the same for all τj. Thus the total number of linear system
solves for Method 1 is

`M1 ≈ `

2.32
log (C1/ε).

As for Method 2, to attain an accuracy ε over the interval [t0, t1], we require

C2e
−B(α)M2 ≈ ε,

where B(α) is given in (3.2.42) and C2 a constant. The number of linear
system solves is therefore

M2 ≈ 1

B(α)
log (C2/ε). (4.1.5)

Method 1 has the same amount of work as Method 2 if (4.1.4) is equal to
(4.1.5), i.e.,

`

2.32
log (C1/ε) ≈ 1

B(α)
log (C2/ε).

C1 and C2 are difficult to estimate, so we shall assume C1 ≈ C2. Then

` ≈ 2.32

B(α)
, (4.1.6)

and when ` is larger than the number on the right Method 2 is more efficient,
otherwise Method 1.

For example, to solve the problem on the interval [1, 50] to an accuracy
ε = 10−14, we deduce from Table 3.2 that

` >
2.32

0.7152
=⇒ ` > 4. (4.1.7)
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If the solution is required at 4 or more time levels in [0.02, 1], Method 2 is
better than Method 1.

We illustrate this property in Table 4.1 and in Figure 4.2, where we have
plotted the error on different intervals [t0, Λt0].

We have used the error norm

EM = max
t∈{τ1,...,τ`}

||u(t)− uM(t)||∞. (4.1.8)

The numerical results in Table 4.1 were obtained on the interval [t0, Λt0] for
Λ = 50 and t0 = 1/Λ, i.e., the time interval is [0.02, 1]. We compute solutions
at

[0.02, 0.04, 0.08, 0.3, 0.7, 0.8, 0.9, 1] ,

i.e., ` = 8.
The value M of Method 1 should be multiplied by 8 to obtain the total

number of linear systems solves to compute the solution in the specified in-
terval. Thus, for example, in the first row the total number of linear system
solves is 4× 8 for Method 1.

We observe from these results that Method 2 gives better accuracy than
Method 1. Method 1 is better than ODE15s, which is better than the Crank-
Nicolson method. Method 1 becomes increasingly less efficient compared to
Method 2 as ` increases.

The above observations are confirmed in Figure 4.2 where we have plotted
the error for different values of Λ. We can observe that despite the deterioration
of the convergence rate of Method 2 as Λ increases, it remains superior to
ODE15s and CN over the interval [t0, Λt0].

M` Method 1 M Method 2 M ODE15s M CN
24 9.17e-05 6 8.70e-03 141 8.77e-05 320 1.52e-02
40 1.05e-05 8 2.77e-04 199 8.57e-06 462 2.77e-04
48 1.14e-06 12 6.73e-05 340 1.95e-07 490 1.06e-04
56 1.21e-07 14 2.02e-05 462 8.74e-07 570 4.96e-06
64 1.24e-08 16 1.85e-06 878 2.04e-08 650 1.46e-07
72 1.19e-09 18 7.05e-07 1232 3.55e-09 762 8.27e-08
80 1.12e-10 26 1.35e-09 1952 3.11e-10 877 6.24e-08
88 1.19e-11 32 1.05e-10 2779 5.14e-11 2780 6.21e-09
96 1.26e-12 38 2.34e-12 3978 8.00e-12 5000 1.92e-09

Table 4.1: Comparison of the error defined by (4.1.8) of Method 1, Method 2,
ODE15s and the Crank-Nicolson method on the interval [t0/Λ, 1] for Λ = 50. M is
the number of functions evaluations (linear system solves) executed by each method.
Here ` = 8.
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Figure 4.2: Comparison of the error (4.1.8) of the Method 1; Method 2; ODE15s
and the Crank-Nicolson method. M is the number of linear system solves to compute
the solution of the model problem (3.2.13). The results were computed for Λ = 2
(a), Λ = 3 (b), Λ = 5 (c) and Λ = 50 (e), on the interval [1/Λ, 1] and ` = 8.

It is apparent both from Subsection 3.2.5.2 and Figure 4.2 that the uniform
convergence estimate deteriorates exponentially in Λ. We are interested in
knowing if for larger Λ, the convergence rate of Method 2 will eventually
be surpassed by the rate of convergence of ODE15s. To this end, we first
compute the optimal parameters for large Λ given in Table 4.2. In Figure 4.3,
we plot on a logarithm scale the convergence rate of Method 2 and ODE15s
for Λ = 1015 on the interval [1/Λ, 1].

The result shows reasonably equivalent accuracy for small M . But as M
increases the Laplace method regain its superiority. In Figure 4.4 we did the
same for Λ = 1020 and conclude that even for huge values of Λ, the Laplace
inversion method has higher accuracy than ODE15s.
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Λ α A(α) µt1/M B(α)

1015 0.806 38.48 0.007 0.125
1020 0.801 50.3 0.004 0.096

Table 4.2: Optimal parameters for Λ = 1015 and 1020.
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Figure 4.3: Convergence error of ODE15s and Method 2 for Λ = 1015.

4.2 Criterion II: Accuracy per CPU time
Examining the accuracy per linear system solve is insufficient for a complete
comparison of the numerical methods. This criterion does not reflect the im-
proved performance caused by the LU and Hessenberg factorizations of Section
3.1 and subsection 3.2.5.2. To this end, we will also consider the cost in com-
putational time, CPU time per accuracy, which is measured by MATLAB’s
command CPU time.

Even though the computational cost of each method is significantly affected
by the way the algorithm is implemented, note that the main computational
cost of the Laplace method comes from the Hessenberg decomposition (3.2.18)

D = QHQT ,

and the evaluation (3.2.19)–(3.2.20), namely

(zkI −H)V = QT u0,
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Figure 4.4: Convergence error of ODE15s and Method 2 for Λ = 1020.

where V = QT U , and
U = QV .

Similarly, the main computational effort for ODE15s comes from the n-step
evaluation in (3.1.9)

k∑
j=1

1

j
∇jun+1 = h

(
Dun+1 + b

)
+ κγk

(
un+1 − u0

)
,

and the solution of a linear system involving the matrix D at each step [28,
p. 70]. For the Crank-Nicolson method the major computational cost comes
from the evaluation of the sequence (3.1.16)–(3.1.17)

Ly = P T (Bun) + hP T b,

Uun+1 = y.

However, for a fair comparison, we consider the CPU time of the entire
algorithm in each case. In Figure 4.5, we show the run time results for the
four methods as a function of the accuracy. In this figure, we have plotted
the CPU time against the absolute error befined by (4.1.8). Note, however,
that the CPU time of the Method 1 displayed in that figure is for a single
value of t. Therefore, to obtain the total computational time for all 8 time
levels, the values of the CPU time in Figure 4.5 should be multiplied by 8.
As a consequence of this, the curve of Method 1 will be located above that
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of Method 2. The CPU time of ODE15s and Crank-Nicolson have been
computed directely over the entire interval of integration, i.e., [1/Λ, 1] for
Λ = 50.

According to the figure, both Laplace Method 1 and 2 give better results
compared to ODE15s and the Crank-Nicolson method. Again Method 2 is
superior to Method 1 if ` increases.

We concluded the last paragraph of Section 4.1 by noting the superiority
of Method 2 even for huge values of Λ over the intervals [1/Λ, 1]. Here we
do a similar test but for the CPU time over the same intervals. Although, in
Figure 4.6, we observe a slight increase of the CPU time of the Method 2 as
Λ increases, it remains superior to ODE15s.
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Figure 4.5: CPU time vs error of Method 1 (ILT1), Method 2 (ILT2) ODE15s
and Crank Nicolson, on the interval interval [0.02, 1], ` = 8. Here the values of the
CPU time of Method 1 should be multiplied by 8.
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Chapter 5

Applications

5.1 Axial dispersion model
In this chapter we will consider the application of the Laplace transform to
solve the axial dispersion model (ADM). The dispersion equation is used to
describe the process of fluid flow through tubes/pipes in many chemical engi-
neering applications. The flow is normally in the laminar flow regime, when
the diameter is very small or when the fluid is highly viscous.

Typically the ADM is characterized by parameters such as the Peclet num-
ber, Pe, to describe the variation from the plug flow reactor. The plug flow
reactor (PFR) is an ideal model used to describe properties of continuous flow-
ing fluid in pipe. It assumes no mixing in the axial direction (i.e., direction
of the flow), complete mixing in the radial direction and a uniform velocity
profile across the radius. The absence of longitudinal mixing is the special
characteristic of this reactor. This assumption is at the opposite extreme of
the complete mixing assumption of the ideal continuous tank reactor (CSTR).

In practice, most systems do not conform to either of these two ideal reac-
tors, as deviations due to dispersion occur. The magnitude of the dispersion
is determined by the Peclet number Pe, which describes the deviation from
the CSTR or the PFR. As Pe increases from 0 to ∞ the reactor changes from
CSTR to PFR.

The solution of the model requires an appropriate set of boundary con-
ditions, describing the flux entering and leaving the reactor. Two type of
boundary conditions exist, the open and closed [36]. The closed boundaries
are the most used, as they assure continuity of the fluxes across the boundary
where the stream enters and leaves the system only once. And it reduces to
both the CSTR when Pe = 0 and to the PFR when Pe →∞. This is not the
case for the open boundary condition.

47
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5.1.1 Axial dispersion model

The axial dispersion model has its origins in chemical engineering to model the
simultaneous convection and diffusion in a stream flowing through a vessel. In
non-dimensional form, the model can be written as a one dimensional equation

∂c

∂t
− 1

Pe

∂2c

∂x2
+

∂c

∂x
= 0, 0 ≤ x ≤ 1 and t > 0, (5.1.1)

where c is the solute concentration (or sometimes the temperature) at the
position x within the vessel, t is the time, and Pe the Peclet number.

The closed boundary conditions, also known as Danckwerts boundary con-
ditions [37], have the form:

At x = 0, c(0, t)− 1

Pe

cx(0, t) = c0(t). (5.1.2)

At x = 1, cx(1, t) = 0. (5.1.3)

Here c0(t) is the dimensionless inlet concentration, which can be a function of
time. The equation (5.1.1) shows that the flux into the system comprises both
the convective and dissipative flux, and (5.1.2)–(5.1.3) express the fact that
the system is closed at the right exit, but is fed at the left exit.

The initial condition is
c(x, 0) = f(x), (5.1.4)

for some function f(x). An analytical solution of (5.1.1)–(5.1.3) can be ob-
tained using the Fourier method.

5.1.2 Analytical solution

The equations (5.1.1)–(5.1.4) is solved with Fourier’s method, i.e., the method
of separation of variables. The detailed description of this method can be
found in [38, p. 92].

We are interested in the particular case where the input signal takes the
form of a Dirac impulse δ(t), describing a stimulus response experiment when
a tracer is injected in a pure liquid at the origin x = 0. The boundary and
initial conditions become c0(t) = δ(t) and f(x) = 0. At the end point x = 1,
the exit system response derived from (5.1.1) is

c(x, t) = 2exPe/2

∞∑
n=1

Pn(x)Qn(t)

Pe(P 2
e + 4Pe + 4wn)

, (5.1.5)

where

Pn(x) = wn cos(wnx) +
Pe

2
sin(wnx), (5.1.6)

Qn(t) = e−(w2
n+

P2
e
4

)t/Pe , (5.1.7)
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and the wn are the positive roots of the equation

tan(wn) =
4wnPe

4w2
n − P 2

e

. (5.1.8)

The roots wn of equation (5.1.8) correspond to the abscissa of the intersection
points of the curves

tan(w) and
4wPe

4w2 − P 2
e

. (5.1.9)

These two curves are drawn in Figure 4.1. We notice that each of the positive
roots is simple and lie in an interval of the form [kπ, (k + 1)π] for k = 0, 1, ....
We disregard the solution w0 = 0. From (5.1.8) we deduce

cos wn =
4w2

n − P 2
e

4wnPe

sin wn. (5.1.10)

Relation (5.1.5) at x = 1, in view of (5.1.10), can be simplified to

c(1, t) = e
Pe
2

∞∑
n=1

2wn sin wn[P 2
e + 4w2

n] exp{− (P 2
e +4w2

n)t
4Pe

}
Pe[P 2

e + 4Pe + 4w2
n]

. (5.1.11)

Figure 5.1: Axial distribution of the roots of the equation (5.1.8)
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Figure 5.2: Exact solution (5.1.11)

Unfortunately, the series (5.1.11) is slowly convergent for small t and for large
value of Peclet number Pe [39]. We will only consider large values of t in the
numerical experiments reported here.

Since the PDE (5.1.1) is defined on the interval [0, 1], we consider the linear
transformation

x ←→ 1

2
(x + 1) ,

to convert to the interval [−1, 1] for numerical computation. Thus (5.1.1)–
(5.1.3) becomes

∂c

∂t
− 4

Pe

∂c

∂x2
+ 2

∂c

∂x
= 0, −1 ≤ x ≤ 1, (5.1.12)

with
x = −1, c(−1, t)− 2

Pe

cx(−1, t) = c0(t), (5.1.13)

x = 1, cx(1, t) = 0, (5.1.14)

and
c(x, 0) = 0, t = 0. (5.1.15)
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5.1.3 Laplace inversion method

From the theory of Laplace transforms presented in Chapter 1 and Section 3.2,
the equation (5.1.12) can be rewritten as a second-order ODE

zC(x, z)− 4

Pe

∂2C(x, z)

∂x2
+ 2

∂C(x, z)

∂x
= 0, (5.1.16)

where C(x, z) is the Laplace transform of c(x, t). Analogously, the boundary
conditions (5.1.13)–(5.1.14) become

x = −1, C(x, z)− 2

Pe

Cx(x, z) = 1, (5.1.17)

x = 1, Cx(1, t) = 0, (5.1.18)

and
C(x, z) = 0, z = 0. (5.1.19)

To solve (5.1.16)-(5.1.19) we consider the spectral discretization method of
Chapter 2. Then we integrate the subsequent system of ODE with the Laplace
transform of Section 3.2. We shall compute the first and second differentiation
matrices to approximate the derivatives.

Unlike in Chapter 1 where we used the MATLAB code chebdif, owing
to the nature of the boundary conditions, we consider here the code cheb2bc
[23]. The code cheb2bc computes the sets {xj}N

j=0 of N Chebyshev extreme
points and the differentiation matrices of the first and second order, D

(1)
N and

D
(2)
N , respectively. The code also return two N × 2 matrices φ and ψ which

contains the boundary conditions at x = ±1.
The code is called from the command
»[x,D1,D2,phip,phim] = cheb2bc(N,bc);
The input N is the order of the derivative and bc an array containing the

boundary conditions given by

bc = [0 1 0; 1 − 2/Pe 1] .

The first three numbers in the array define the boundary condition (5.1.18),
whereas the second three numbers define the boundary condition (5.1.17).

The output D1 and D2 contain the first and second differentiation matrices
respectively. The matrices phip and phim incorporate the boundary condi-
tions.

Using cheb2bc, the equations (5.1.16)–(5.1.19) in matrix form yields

zC(z)− 4

Pe

D
(2)
N C(z) + 2D

(1)
N C(z) +

4

π
φ + 2ψ = 0, (5.1.20)

where

C(z) =




C(x1, z)
...

C(xN , z)


 .
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The solution C(z) can be found by solving the equation

(zkI −D) C(z) = c0, (5.1.21)

for each node zk = z(`k), k = 0, 1...,M − 1 of the hyperbolic contour (3.2.3).
Here

D =
4

π
D

(2)
N − 2D

(1)
N , c0 = −2

(
2

π
φ + ψ

)
. (5.1.22)

Note that the eigenvalues of D are real and negative as was confirmed by
numerical experiment. Therefore the theory of Chapter 3 is applicable. Using
the inversion formula (3.2.16) and the midpoint nodes (3.2.7) the approximate
solution may be written in the form

cM(t) =
h

π
Im

(
M−1∑

k=0

ezkt
(
(zkI −D)−1 c0

)
z′k

)
. (5.1.23)

In Figure 5.3 we display the solution at the outflow boundary x = 1. In Figure
5.4, we have plotted, as a function of M , the quantity

EM = max
1≤t≤4

|c(t)− cM(t)|. (5.1.24)

at the outflow boundary x = 1. Here c(t) is the exact solution (5.1.11) and
cM(t) the numerical solution computed by (5.1.23). The maximum was com-
puted at 500 equally spaced values of t in [1, 4].

The solid curve in Figure 5.4 represents the error in (5.1.24), whereas the
dashed curve represents the theoretical convergence rate obtained in (3.2.35).
The good agreement between the theoretical error prediction and the numerical
error can be observed in that figure. Figure 5.5 shows the solution in two
dimensions.
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Figure 5.3: Solution at the exit point, i.e., x = 1 of equation (5.1.16) with Laplace
inversion method. Here Pe = 20.
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Figure 5.5: Solution of equation (5.1.16) in 2-D with Laplace transform method.
Here Pe = 20.
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5.2 Heat equation in two dimensions
As a second example of the application of the Laplace inversion method we
consider the heat equation in two dimensions

ut = γ∆u (5.2.1)

defined on the square [−1, 1]× [−1, 1], where ∆ is the two dimensional Lapla-
cian

∆ =
∂2

∂x2
+

∂2

∂y2
. (5.2.2)

As a model problem we consider initial and boundary conditions

u(−1, y, t) = 0,

u(1, y, t) = 0,

u(x,−1, t) = 0,

u(x, 1, t) = 0,

u(x, y, 0) = ex
(
1− x2

) (
1− y2

)
.

and γ = 0.02, which is the same problem solved in [40].
The solution function u(x, y, t) of this differential equation describes the

temperature, for example in a thin metal plate with zero temperature at the
edges. We approximate the solution u(x, y, t) at discrete time points t and
discrete positions (xi, yi), 0 ≤ i, j ≤ n + 1. We semi-discretize the differential
equation by the spectral collocation method.

To approximate the second derivative operator, we set up a grid based on
Chebyshev points independently on both directions x and y, called a tensor
product grid. On this grid, ∆ is approximated by the tensor product, also
known as Kronecker products. Let L be the discrete approximation of ∆.

Definition 5.2.1 Let A ∈ Rm×n and B ∈ Rp×q. Then the Kronecker product,
also called tensor product, of A and B is the matrix defined by

A⊗B =




a11B . . . a1nB
... . . . ...

am1 . . . amnB


 ∈ Rmp×nq. (5.2.3)

The i, j block entry is aijB [41, Chapter 13]. In MATLAB the Kronecker
product of A and B is computed by the command kron(A,B).

Definition 5.2.2 Let A ∈ Rn×n and B ∈ Rm×m. The Kronecker sum, also
called the tensor sum, of A and B, denoted A ⊕ B, is the mn × mn matrix
(Im ⊗ A) + (B ⊗ In) [41, Chapter 13].
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As an example, let

A =

(
a11 a12

a21 a22

)
and B =

(
b11 b12

b12 b22

)
.

Then the Kronecker product is the block matrix

A⊗B =

(
a11B a12B
a21B a22B

)
=




a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b12 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b12 a22b22


 .

From (5.2.2) we note that to approximate the Laplacian, we must differen-
tiate in both directions x and y independently at the Chebyshev nodes.

The discrete approximation LN of the Laplacian becomes the Kronecker
sum of the second order differentiation matrix D, with boundary conditions
incorporated, and IN the identity matrix order N i.e.,

LN = D ⊕ IN = IN ⊗D + IN ⊗D. (5.2.4)

Let us consider the case N = 6. Since (5.2.1) has Dirichlet boundary
conditions, we compute the differentiation matrix D with the code chebdif.
The calling command is »[x,D] = chebdif(N,2), where N is the order of the
matrix . To impose the boundary conditions, we set D = D(2 : 5, 2 : 5, 2), like
we did in Chapter 2

D =



−14 6 −2
4 −6 4
−2 6 −14


 .

The second derivative with respect to x is then given by

I6 ⊗D =




−14 6 −2
4 −6 4
−2 6 −14

−14 6 −2
4 −6 4
−2 6 −14

−14 6 −2
4 −6 4
−2 6 −14




.
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The second derivative with respect to y is computed by

D ⊗ I6 =




−14 6 −2
−14 6 −2

−14 6 −2
4 −6 4

4 −6 4
4 −6 4

−2 6 −14
−2 6 −14

−2 6 −14




.

The approximation L6 of the Laplacian is then

L6 = I6 ⊗D + D ⊗ I6.

In matrix form (5.2.1) is
ut = γLNu (5.2.5)

We solve this equation by the inversion method of Section 3.2. The Laplace
transform applied to (5.2.5) yields

(zI − γLN) U (z) = u0,

where I is the N2 ×N2 identity matrix.
On the contour (3.2.3), the inversion formula gives

u(t) =
h

2πi

∫ ∞

−∞
ez(`)tz′(`)

(
(zI − γLN)−1 u0

)
d`. (5.2.6)

On the discrete points zk = z(`k), with `k defined in (3.2.7) for k = 0, 1, ..., M−
1, the application of the trapezoidal/midpoint rule yields

u(t) =
h

π
Im

(
M−1∑

k=0

ez(`k)tz′(`k)
(
(zI − γLN)−1 u0

)
)

. (5.2.7)

In Figures 5.6-5.10, we show the solutions in two dimensions at different
times. Each figure was computed with a computational time less than 45
seconds on a 2 GB 2003 Pentium machine.
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Figure 5.6: Solution of the 2D problem at t = 0
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Figure 5.7: Solution of the 2D problem at t = 2
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Figure 5.8: Solution of the 2D problem at t = 5
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Figure 5.9: Solution of the 2D problem at t = 15
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Figure 5.10: Solution of the 2D problem at t = 20



Chapter 6

Conclusion

Different methods exist for the time integration of semi-discrete linear parabolic
PDEs. Our focus here was on the pure parabolic PDEs, with eigenvalues on the
negative real axis. We have investigated three methods, namely the Laplace
inversion method and the method-of-lines based on MATLAB ODE15s and
the Crank-Nicolson method. The Laplace inversion method is relatively new,
while the method-of-lines is classic. The purpose of this investigation was
therefore to compare the new method with the classic methods.

Two criteria of comparison were considered: the accuracy per linear system
solve, and the accuracy per CPU time. As model problem for these experiment
we considered the standard heat equation.

Chapter 2 contains a discussion of the spectral methods used to semi-
discretize the model problem. Spectral methods employ global interpolation
polynomials that are differentiated to approximate derivatives. From this we
derived the differentiation matrices. The semi-discretization of Chapter 2 leads
to a system of ODEs which is integrated by the time integration methods
discussed in Chapter 3.

In Chapter 3, we have analysed the different time integration methods. The
first method was MATLAB’s ODE15s algorithm, which is based on a family
of the implicit linear multistep formulas, the numerical differentiation formulas
(NDFs). The NDFs present some advantages on stability and accuracy com-
pared to more conventional BDFs methods. The second method discussed was
the Crank-Nicolson method, known to be an unconditionally stable method.
A technique to enhance the computational cost was introduced, namely the
LU decomposition with row pivoting.

The third method used was the Laplace inversion formula, which is rel-
atively new in this context. We followed the idea of Talbot, in which the
Bromwich integral is approximated by the trapezoidal/midpoint rules on a
deformed contour. On such a contour the trapezoidal rule converges exponen-
tially. In this thesis, we choose the hyperbolic contour as an alternative to
Talbot’s original contour.

The convergence rate of the trapezoidal rule on the hyperbolic contour
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depends critically on the contour’s parameters. In [4] Weideman and Trefethen
determined the contour’s parameters for optimum accuracy. Theoretical error
analysis were performed to estimate the optimal values of the parameters that
define the contour. This was done by noting that the error associated with this
method are the discretization error (when approximating the integral by the
midpoint sum) and the truncation error (due to the truncation of the infinite
midpoint sum). The investigation of the Laplace inversion method included
the cases where the problem is solved at a single value of t as well as on an
interval [t0, t1].

Chapter 4 is about the numerical comparison of the three methods used
in this thesis. Two criteria for comparison were considered. The accuracy per
linear system solved and the accuracy per CPU time. As a measure of the
error, we use the maximum error norm.

For the first criterion, the accuracy per linear system solved, we consider
first the case where the solution is computed at a single value of t. The
numerical results show the Laplace method to be more accurate compared to
MATLAB’s ODE15s and the Crank-Nicolson method. The Laplace method
exhibits an exponential convergence rate while the other two methods have
only a linear convergence. Then the solution is sought over an interval [t0, t1].
We defined Method 1 and Method 2. The first uses a different contour for
each τj ∈ [t0, t1]. The second uses a single contour for all τj ∈ [t0, t1]. Despite
a decreasing convergence rate as Λ increases, Method 2 presented the best
result in terms of accuracy per linear system solved for various values of t over
a certain interval.

To use the second criteria, the accuracy per CPU time, we consider the
CPU time of each algorithm enhanced by the decomposition techniques of
Chapter 3. Again as in the previous criterion, the Method 2 was superior.

In Chapter 5, we consider the application of the Laplace method to solve
the axial dispersion model in Section 5.1 and the two dimensional heat equation
in Section 5.2. The results obtained confirm the exponential accuracy of the
Laplace inversion method.

6.1 Topics for further work
In this thesis we restricted our comparison of the Laplace inversion method and
method-of-lines only to MATLAB’sODE15s and the Crank-Nicolson method.
A direction for further work is to consider more advanced time integrators
used in the method-of-lines. In that direction consideration of methods such
implicit Runge-Kutta methods (Radau 5) and the modified extended backward
differentiation formula (MEBDF) proposed in [42] can provide more insight
into which of the Laplace transform and the method-of-lines is more efficient.
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Appendix A

Matrix Decomposition

Unlike finite differences or finite element methods where the approximation
of boundary value problems lead to sparse matrices, spectral methods give a
matrix representation of the derivative that is neither sparse nor symmetric.
It can be computationally expensive to work with such matrices.

Matrix decomposition aims to transform a given problem into a canonical
form that can be solved more readily. The matrix computational problem
Ax = b for A ∈ Rn×n, x and b ∈ Rn is not always easy to solve in an
optimal way. Its computational simplicity often depends on the structure of
the matrix A; full unstructured matrices have a computational cost of O(n3).
These matrices are decomposed into low-order simple form such as sparse,
diagonal or triangular matrices that require only O(n2) operations.

Definition A.0.1 Let A ∈ Rn×n. A is said to be
1. symmetric if it is equal to it transpose, that is if A = AT ,
2. orthogonal if its inverse equals to its transpose, that is A−1 = AT , so that
AAT=AT A = I where I is the identity matrix.

Definition A.0.2 A permutation matrix P is any square matrix resulting
from the rearranging the rows of the identity matrix of the same order. Per-
mutation matrices are orthogonal.

A.0.1 LU decomposition with partial pivoting

The equation Ax = b has a unique solution x = A−1b if the matrix A is
non-singular. This suggests the computation of the inverse A−1 of A as a
means of finding x, however the computation of the inverse of a matrix is
not recommended. One strategy is to transform A to some triangular system
which is easier to solve by forward or backward substitution. This process is
referred to as LU decomposition with partial pivoting.

Theorem A.0.3 Let A ∈ Rn×n a non-singular matrix i.e det(A(1 : k, 1 :
k)) 6= 0 for k = 1 : n − 1. Then there exist a permutation matrix P , a
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unit-lower triangular matrix L and an upper-trinagular marix U such that

A = PLU.

For a proof of this theorem we refer to [43, p. 121].
To solve the system

Ax = b,

it is reduced to
Ux = y,

where U is upper triangular and y is the vector solution of a lower triangular
system

Ly = P T b.

Here the factorization of A as LU has no real importance other than being
computationally convenient for obtaining a solution to the original problem
[31, p. 92-102].

A.0.2 Hessenberg Decomposition

We present another approach for the reduction a matrix A ∈ Rn×n to solve
effectively the linear system Ax = b. A matrix is A = (aij) is called an upper
Hessenberg matrix if aij = 0 whenever i > j + 1. Thus an upper Hessenberg
matrix has the form




a11 a12 a13 . . . a1(n−1) a1n

a21 a22 a23 . . . a2(n−1) a2n

0 a32 a33 . . . a3(n−1) a3n

0 0 a43 . . . a4(n−1) a4n
...

... . . . ...
...

0 0 0 . . . an(n−1) ann




.

The Hessenberg decomposition of A ∈ Rn×n is computed as

A = QHQT ,

where Q is an orthogonal matrix and QT Q = QQT = I, with I the identity
matrix and H an upper Hessenberg matrix. The following theorem is proved
in [31, p. 362]:

Theorem A.0.4 Let A ∈ Rn×n, then there exist an orthogonal matrix Q ∈
Rn×n, such that

QT AQ = H,

where H is a Hessenberg matrix.
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Consider the system
Ax = b (A.0.1)

using the decomposition A = QHQT , the system is reduced to

Hy = c, for y = QT x, and c = QT b (A.0.2)

thus
x = Qy. (A.0.3)

The solution x is obtained by combining the results in (A.0.3) of an almost
triangular system in (A.0.2) (since H is an almost triangular matrix). This
is done at only O(N2), compared to O(N3) in (A.0.1) where a full matrix is
solved.

Consider the system, which we encounter in this thesis (see (3.2.13))

(zI − A) x = b for a given z. (A.0.4)

We argue that A.0.4 is easier to solve with the Hesenberg decomposition than
with the LU. To see this, note that the LU decomposition of A gives

(zI − LU) x = b.

Because of the form of the factor on the left, the LU decomposition has no
effect to improve the decomposition of (A.0.4). In contrast, the Hessenberg
decomposition solves this problem more readily, as follows

(
zI −QHQT

)
x = b

and since I = QQT , this results in the equation

(zI −H) y = QT b, (A.0.5)

where y = QT x.
First we solve the almost triangular system (A.0.5) to obtain y and then

combine the result as
x = Qy,

to obtain x.
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