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We have the familiar Kuratowski-Mrówka theorem in topology, where
compactness is characterised by a closure and a projection-map (X is com-
pact iff p : X×Y → Y is a closed mapping, for any space Y , i.e. p(A) = p(A),
∀A ⊆ X × Y ). Using this as our starting point, we generalise compactness
to a categorical setting. We then generalise even further to ”asymmetric”
compactness. Then we discuss a functional approach to compactness, where
we do not explicitly mention closure operators. All this provides economical
proofs as well as applications in different areas of mathematics.
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Ons ken die bekende Kuratowski-Mrówka stelling in topologie, waar kom-
paktheid deur afsluiting en ’n projeksie gekarakteriseer word (X is kompak
as en slegs as p : X × Y → Y ’n geslote afbeelding is, vir enige ruimte Y ,
m.a.w p(A) = p(A), ∀A ⊆ X × Y ). Deur bogenoemde as ons beginpunt te
gebruik, veralgemeen ons kompaktheid tot ’n kategoriële idee. Ons veralgem-
men dan selfs verder tot ”nie-simmetriese kompaktheid”. Dan bespreek ons
’n funksionele benadering tot kompaktheid waar ons nie eksplisiet die idee
van afsluiting noem nie. Deur al hierdie werk te bespreek kry ons ekonomiese
bewyse asook heelwat toepassings in verskillende gebiede in wiskunde.
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Introduction

In the field of category theory numerous other mathematical fields can be
generalized. Our focus is on the generalization of topolgical properties. We
want to discuss compactness in a category. We know the notion from topol-
ogy - ”every open cover has a finite subcover”. This could also be equiv-
alently characterised by means of closure - A topological space is compact
iff the projection p : X × Y → Y is a closed mapping, for any space Y ,
the Kuratowski-Mrówka characterisation. This developed with Kuratowski
proving in [15] that such projections are closed mappings for compact metric
spaces, while Mrówka showed (cf. [17]) that compact topological spaces are
characterised in this way. Originally, this characterisation was considered
for Hausdorff spaces. We, however, are going to consider the case where no
restrictions are put on the topological space (see for example [14]).

This characterisation opens the way for a categorical notion of compactness,
and we are especially interested since we are going to work with categorical
closure operators and (since category theorists are more interested in defini-
tions and characterisations given in terms of morphisms rather than objects
themselves) we are going to consider projection-morphisms. This leads to
a strong generalisation of compactness and perfectness-ideas from topology,
with the proofs of many topological theorems becoming much more econom-
ical and, in some instances, quite trivial. And we are working in a category
after all, which means we can also apply all this theory to other branches of
mathematics - so, in a certain sense, one general categorical proof/result in
this context could lead to numerous results in different categories, yielding
many useful applications.

A categorical study of compactness has been developed over the years, with
Manes discussing Compact Hausdorff objects in 1974 by using a category of
”sets with structure” (cf. [16]), while in 1987 Herrlich, Salicrup and Strecker
discussed categorical compactness in [13] by considering a pair of factoriza-
tion systems (without using closure operators)

In [3] (1990) Castellini generalised the work of Herrlich, Salicrup and Strecker
by using the notion of closure operators equivalent to the notion we will be
considering.
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As mentioned before, many applications in different branches of mathematics
are possible - in 1994 Dikranjan and Uspensjki (cf. [9]) established a result in
the category of topological groups (proven in a non-categorical way), which is
actually a result of the categorical Tychonoff-theorem. If you work in the cat-
egory of locales (the dual of the category of frames) the Kuratowski-Mrówka
characterisation of compact objects still holds - it was shown in [18] (Pultr
an Tozzi) and [20], with and without choice respectively. And compact mor-
phisms in the category of locales have been characterised in [20] and [21] by
Vermeulen.

In 1996 all of this development was brought together in [5] with Clementino,
Giuli and Tholen discussing categorical compactness via closure operators
(in a category equipped with a proper factorization system), and providing
some beautiful generalised topological results, like Tychonoff’s and Frolik’s
Theorem. This article lead to Holgate’s article on ”Asymmetric compact-
ness” in 2008 (cf. [14]), where two different closure operators are used to
obtain a generalised notion of categorical compactness. This also uses exam-
ples from topology as motivation, and shows that topological properties such
as Countably Compact and Lindelöf are captured by this notion. Compact
Morphisms (generalised proper/perfect maps) are also discussed by working
in the Comma Category, and the conclusion is made that, since the class
of Countably Compact maps is larger than the class of Quasi-perfect maps,
Countably Compact maps is probably the ”better behaved” class to study.

In 2004 Clementino, Giuli and Tholen provided a more functional approach
in [6] by assuming they have a class of morphisms F in their category, satis-
fying certain axioms. We think of this class as being the closed (i.e. closure
preserving) morphisms (or closed maps if you think of the topological anal-
ogy). This class is then used to define categorical compactness in an even
more generalised way without mentioning closure operators (This approach
was first outlined by Tholen in [19](in 1999). A rather counter-intuitive ex-
ample of such a F is given - open maps in a topological space, and generalised
versions of Tychonoff’s and Frolik’s theorems are again provided, amongst
others. Exponentiability is also discussed.

In Chapter 1 we discuss the Kuratowski-Mrówka characterisation for a topo-
logical space - X is compact iff p : X × Y → Y is a closed mapping, for any
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space Y . The usual closure in topology will be referred to as the Kuratowski-
closure or ”k-closure”, however, we do still use the ”A”-notation to denote
the k-closure of A. Different closures will be defined (the σ-closure and
the θ-closure (cf. [10])), and similar characterisations are obtained (to the
Kuratowski-Mrówka characterisation), which are also proven in [5]. It is then
noted that we are actually only interested in the inlcusion p(A) ⊇ p(A), since
the projection-mapping is continuous. We then discuss examples where two
different closures are used, in a similar inclusion, to obtain certain character-
isations (this being the motivation for discussing asymmetric compactness in
a category, mentioned in the second paragraph above). Characterisations for
Countably Compact as well as Lindelöf, which are discussed in [14], will be
discussed.

In Chapter 2 we investigate the categorical approach. Firstly (E ,M) factor-
ization systems are discussed, as they were introduced by Freyd and Kelly
in 1972 (cf. [11]). E and M are two classes of morphisms which form a
factorization system for a category C if they satisfy certain properties, and
each morphism f : X → Y in C can be factorized f = m ◦ e, with e ∈ E and
m ∈ M. And we mention that we are interested in factorization systems
where E is a class of epimorphisms and M is a class of monomorphisms,
which is called a ”proper factorization system”. All the M-morphisms with
codomain X are called the subobjects of X, generalised inclusion-maps. We
also define an order on subobjects, and we discuss the image/pre-image ad-
junction.
We then define closure operators as they were introduced by Dikranjan and
Giuli in 1986 (cf. [8]). We mention what is meant by a ”C-closed subobject”,
where C refers to a closure operator C. We then proceed to define closure-
preserving morphisms, and we show properties of closure operators as well
as closure-preserving morphisms, following the strategies of [5] very closely.
We then discuss categorical compactness by using the Kuratowski-Mrówka
characterisation (we follow the approach of [5]), and mention three topolog-
ical theorems which we generalise to our categorical context - we only state
them, since we want to prove them in the asymmetric case

Our attention then shifts onto the asymmetric case where we use different
closure operators to define asymmetric compactness, as motivated by our
topological examples. We show how all the properties and results of the
”symmetric” case pass to the asymmetric case. We follow the strategies of
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[14] very closely in proving those three generalised topological theorems -
”Closed Subspace of a Compact Space is Compact”, ”Compact Subspace of
a Hausdorff space is closed”, and ”Image of a Compact space is Compact”
We also consider compact morphisms (generalised proper/perfect maps) by
working in the Comma Category, and discuss countably compact maps in
topology.

In Chapter 3 we consider a functional approach to compactness, following [6]
very closely. In the first section we assume we have a class F of morphisms
(which we think of as being the closed morphisms) with certain properties.
We define F -dense morphisms, F -proper morphisms, and F -separated mor-
phisms.

We then define F -Hausdorff and F -Compactness, and generalise this ap-
proach to capture the notion of Asymmetric Compactness - we assume we
have three classes of morphisms satisfying certain properties (using the clo-
sure operator approach of [14] as a guideline).

We end off by proving those three theorems, already proven in Chapter 2, in
this new context.

Notations and conventions

Firstly, we mention that our topological work mostly follows notations and
definitions from [10]. However, when we consider a compact topological
space, we do not require for it to be Hausdorff. In [10], compactness is de-
fined for Haudorff topological spaces, while compactness without Hausdorff
is called ”quasi compact”.

Throughout this thesis, the complement of a subset, say A ⊆ X is denoted
by X −A (X ”minus” A). Also, we denote the class of neighbourhoods of a
point x by Ux. We usually use the letters U and V to denote such neighbour-
hoods, and we use the letter N to denote the neighbourhood of a tuple, say
(x, y). We use ” ⊆ ” and ” ⊇ ” to denote inclusions. When a set is properly
contained in another, it will be made clear.

We denote the usual closure of A by A, and (this will again be mentioned)
we call this closure the ”Kuratowski-closure”. We also use the notation A◦,
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which denotes the interior of A.

Categorical terminology follows [1], although it should be mentioned that
we use the term ”factorization system” while in [1] ”factorization structure”
is used. Also, we denote the category of sets and functions by SET and the
category of topological spaces and continuous functions by T OP . When we
refer to a unique morphism we will denote it by ”!”, for example if we say
that d is unique, we write ∃!d. By Mor(C) we denote the class of morphisms
of the category C.

Chapter 2 follows the proof-strategies of [5] and [14], with one difference
being that we use the notation of C1C2-compact when we are working with
asymmetric compactness, while in [14] αβ-compact is used. We also men-
tion that we are going to use the notion of δX - the diagonal morphism of
an object X (see [5]). This is of course the same idea as the diagonal ∆X

= {(x, x)|x ∈ X} where X is a set. Chapter 3 follows the notations and
terminology of [6] very closely.
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Chapter 1

Compactness in topology

We discuss the Kuratowski-Mrówka characterisation of compactness in topol-
ogy ([17] and [15]). We then use different closures to obtain similar charac-
terisations. Eventually we discuss examples where two different closures are
used to obtain certain characterisations.

1.1 The Kuratowski-Mrówka theorem

1.1.1 The Kuratowski-closure and closed mappings

We define what we mean by a ”closed” mapping, and then show this property
is equivalent to being ”closure-preserving”, in the Kuratowski-case (in fact,
whenever the closure is idempotent).

Definition 1.1.1 : Let X and Y be topological spaces, and f : X → Y a
continuous function. Then f is called a closed mapping if and only if:
A closed in X ⇒ f(A) closed in Y , ∀A ⊆ X.

Next we discuss a characterisation of closed mappings in terms of the Kuratowski-
closure.

Lemma 1.1.1 : For topological spaces X and Y , we have: f : X → Y is a
closed mapping if and ony if f(A) = f(A), ∀A ⊆ X.

Proof:

⇒: Let A ⊆ X. Assume f is a closed mapping. Let y ∈ f(A).
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Then y = f(x), for some x ∈ A, meaning ∀U ∈ Ux, U ∩ A 6= ∅.

Now, let V be any neighbourhood of y. Then, by using the continuity of
f , we conclude that f−1(V ) is a neighbourhood of x, hence f−1(V )∩A 6= ∅.
So, ∃ x′ ∈ f−1(V ) ∩ A. We have f(x′) ∈ V ∩ f(A), which means y ∈ f(A).

For the other inclusion, we use the fact that f is a closed mapping to conclude
that f(A) is closed in Y . And, since f(A) ⊆ f(A), we have f(A) ⊆ f(A).

⇐: Let A ⊆ X be closed, then f(A) = f(A) = f(A), giving us the de-
sired result. �

1.1.2 The theorem

We proceed to state and prove the famous Kuratowski-Mrówka theorem for
topological spaces. This was done in more restricted settings by Kuratowski
and Mrówka in 1931 and 1959 respectively (cf. [15] and [17]).

Let X and Y be topological spaces, and p : X × Y → Y the projection
mapping. The Kuratowski-Mrówka theorem says the following:

Proposition 1.1.1 : X is compact ⇔ p is a closed mapping, for all Y .

Proof:

⇒: Assume X is compact. And let A ⊆ X × Y be any subset. Let y0 ∈ Y
but y0 /∈ p(A). Then ∀x ∈ X, (x, y0) /∈ A, meaning ∀x ∈ X, ∃Nx ∈ U (x,y0),
with Nx ∩ A = ∅.

Now, ∀x ∈ X, ∃ open Ax, Bx such that Ax × Bx ⊆ Nx, where Ax ∈ Ux
and Bx ∈ Uy0 . And, clearly, (Ax ×Bx) ∩ A = ∅, ∀x ∈ X.

The sets Ax cover X, i.e.

X =
⋃
x∈X

Ax.
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Now, we have assumed X is compact, so ∃Ax1 , . . . , Axt such that

X =
t⋃

j=1

Axj
.

For j = 1, . . . , t consider the corresponding Axj
×Bxj

. The claim is that

(
t⋂

j=1

Bxj
) ∩ p(A) = ∅.

Assume

(
t⋂

j=1

Bxj
) ∩ p(A) 6= ∅.

We conclude the following:

∃y ∈ (
t⋂

j=1

Bxj
) ∩ p(A),

meaning
y ∈ Bxj

, j = 1, . . . , t ; y ∈ p(A).

So, ∃ x′ ∈ X with (x′, y) ∈ A. Now, since

X =
t⋃

j=1

Axj
,

x′ has to lie in some Axi
where i ∈ {1, . . . , t}, and since y ∈ Bxj

for j =
1, . . . , t, it means (x′, y) ∈ (Axi

× Bxi
) ∩ A, i.e. (Axi

× Bxi
) ∩ A 6= ∅, which

is a contradiction, since (Ax ×Bx) ∩ A = ∅, ∀x ∈ X. Hence

(
t⋂

j=1

Bxj
) ∩ p(A) = ∅.

And hence we have y0 /∈ p(A) (clearly y0 is in the intersection of those sets
Bxj

, and that intersection will be open since it is a finite intersection)

And we have p(A) ⊆ p(A), meaning p(A) = p(A) (The inclusion p(A) ⊆ p(A)
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follows from the continuity of the projection map p), and p is a closed map-
ping.

⇐: Assume p is a closed mapping. Let τX denote the topology on X. Let
{Fi}i∈I be a family of closed sets in X with the finite intersection property.
Let Y := X∪{y0}, where y0 /∈ X. Let the basic neighbourhoods of y0 be sets
of the form y0∪{Fi1 ∩ . . .∩Fik}∪F , where F ⊆ X, and k some natural num-
ber. Note that {Fi1 ∩ . . . ∩ Fik} will never be empty since we have assumed
thet {Fi}i∈I has the finite intersection property. For any other element of Y
we let elements of P(X) (the power-set of X) be their neighbourhoods.

Now, let A := {(x, x) : x ∈ X} = ∆X .

Since A is closed in X × Y , by assumption p(A) will be closed in Y .

Now, p(∆X) = X ⊆ p(A) ⇒ X ⊆ p(A), since p(A) is closed. And y0 ∈ X
since it is not possible for any neighbourood of y0 to have empty intersection
with X. In fact, X = Y . So, ∃x0 ∈ X, with (x0, y0) ∈ A. Let U be any
neighbourhood of x0. Then (U×({y0}∪Fi))∩∆X 6= ∅, ∀i ∈ I, i.e. U∩Fi 6= ∅,
∀i ∈ I but then x0 ∈ Fi = Fi, ∀i ∈ I. That means

x0 ∈
⋂
i∈I

Fi.

Hence ⋂
i∈I

Fi 6= ∅,

and X is compact. �

1.2 Sequential compactness

1.2.1 The Sequential-closure

We are now going to take a look at a different closure operator. Let X be a
topological space, and A ⊆ X. We define the sequential closure of A, Aσ, as
follows:

x ∈ Aσ ⇔ ∃ a sequence (xn) ⊆ A, with (xn) → x.

16



First we are going to look at certain properties of the sequential closure.

Clearly, ∀A ⊆ X, we have A ⊆ Aσ (For any x ∈ A just consider the constant
sequence (x, x, x, . . .). We are going to look at three more properties:

Proposition 1.2.1 : Let X and Y be topological spaces. Then the following
hold, for any A,B ⊆ X:

(1) A ⊆ B ⇒ Aσ ⊆ Bσ

(2) If a mapping f : X → Y is continuous, then f(Aσ) ⊆ (f(A))σ

(3) (A ∪B)σ = Aσ ∪Bσ

Proof of (1): Assume A ⊆ B, and let x ∈ Aσ. Thus there is a sequence
(xn) ⊆ A, with (xn)→ x. But (xn) also lies in B, since A ⊆ B, so x ∈ Bσ.

Proof of (2): Let f : X → Y be continuous. Let y ∈ f(Aσ), which menas
y = f(x), for some x ∈ Aσ.

So, there is a sequence (xn) in A converging to x. And since f is contin-
uous, we know (f(xn)) → f(x) = y. And clearly (f(xn)) ⊆ f(A), yielding
y ∈ (f(A))σ.

Proof of (3): Let x ∈ Aσ ∪ Bσ. So, there is a sequence in A converging
to x or there is a sequence in B converging to x. Hence there is a sequence
in A ∪B converging to x, yielding x ∈ (A ∪B)σ.

Now, let x ∈ (A ∪B)σ, meaning ∃ (xn) ⊆ A ∪B, with (xn)→ x.

This means there must at least exist some subsequence of (xn) in A or in B.
And we know this subsequence will also converge to x. So there will be a
sequence in A converging to x, or a sequence in B converging to x.
And we conclude that x ∈ Aσ ∪Bσ. �

1.2.2 The theorem

A topological space X is called sequentially compact if every sequence in
X has a convergent subsequence. Now we can prove a simlar result to the
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Kuratowski-Mrowka theorem. This result is also mentioned in [5] although
a fully written out proof is not given. We proceed to give a possible proof.

Let X and Y be topological spaces and p : X × Y → Y the projection
mapping.

Proposition 1.2.2 : X is sequentially compact ⇔ (p(A))σ ⊆ p(Aσ), for all
A ⊆ X × Y .

Proof:

⇒: Assume X is sequentially compact.

Let y ∈ (p(A))σ, i.e. ∃(yn) ⊆ p(A), with (yn)→ y.

Take any sequence (xn) ⊆ X with ((xn, yn)) ⊆ A. Now, X is sequentially
compact, meaning (xn) has some convergent subsequence (xnk

). Let x ∈ X
denote the limit of (xnk

), i.e. (xnk
)→ x.

Now, for each xnk
consider the corresponding ynk

, and then consider the
sequence ((xnk

, ynk
)). We know (yn)→ y. Any subsequence of (yn) will also

converge to y. So, in fact, ((xnk
, ynk

))→ (x, y). And, since ((xnk
, ynk

)) ⊆ A,
we have that y ∈ p(Aσ), hence (p(A))σ ⊆ p(Aσ).

⇐: Let X be any topological space. Let Y := { 1
n

: n ∈ N} ∪ {0}. Let
the topology on Y be τY := B ∪ {∅},
where B := {Bn : n ∈ N}, and Bn := { 1

k
: k ≥ n}.

Let (xn) be any sequence in X, and let A := {(xn, 1
n
) :n ∈ N} ⊆ X × Y .

We know ( 1
n
) → 0, so 0 ∈ (p(A))σ. Now, 0 ∈ p(Aσ), so ∃x ∈ X such

that (x, 0) is the limit of some sequence in A. All of the non-zero elements
of Y are of the form 1

n
. So, the Y -components of this sequence (for which

(x, 0) is the limit) will be of the form 1
nk

, where nk is a natural number. We

know ( 1
nk

)→ 0. That means (nk) must have an increasing subsequence.

Moreover, the X-components of the elements of A are actually indexed by
the Y -components, which means that the sequence in A converging to (x, 0)
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will look like this: ((xnki
, 1
nk1

)), where (xnk1
) is a subsequence of (xnk

) (and

clearly also of xn). And since (xn) ⊆ X was arbitrary, X is sequentially
compact. �

1.3 H-closedness

1.3.1 The Theta-closure

The θ-closure will be the third closure-operator we’ll be discussing. For a
topological space X, and A ⊆ X, define Aθ in the following way:

x ∈ Aθ ⇔ ∀U ∈ Ux, U ∩ A 6= ∅.

Similar to what we did in the case of the sequential closure, we are going
to look at a few properties of the theta-closure.

Again, it is clear that A ⊆ Aθ, ∀A ⊆ X, since A ⊆ Aθ.

Proposition 1.3.1 : Let X be a topological space. Then the following hold,
for any A,B ⊆ X:

(1) A ⊆ B ⇒ Aθ ⊆ Bθ

(2) If a mapping f : X → Y is continuous, then f(Aθ) ⊆ (f(A))θ

(3) (A ∪B)θ = Aθ ∪Bθ

Proof of (1): Assume A ⊆ B and let x ∈ Aθ. This means for all neigh-
bourhoods U of x, we have U ∩ A 6= ∅. But since A ⊆ B, we have x ∈ Bθ

(because U ∩ A ⊆ U ∩B, ∀ U ∈ Ux).

Proof of (2): Let f : X → Y be continuous.
Assume y ∈ f(Aθ), i.e. y = f(x), for some x ∈ Aθ. Hence ∀U ∈ Ux, and we
have U ∩ A 6= ∅.

Now, let V be any neighbourhood of y. By using the continuity of f , we
conclude that f−1(V ) is a neighbourhood of x, i.e. f−1(V ) ∩ A 6= ∅. Hence
f−1(V )∩A 6= ∅, since f−1(V ) ⊆ f−1(V ). Hence ∃ some x′ ∈ f−1(V )∩A 6= ∅,
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so f(x′) ∈ V ∩ f(A), meaning V ∩ f(A) 6= ∅, and we have y ∈ (f(A))θ.

Proof of (3): Let x ∈ Aθ∪Bθ, i.e. ∀U ∈ Ux, U∩A 6= ∅ or ∀U ∈ Ux, U∩B 6= ∅.
Hence ∀U ∈ Ux, (U ∩ (A)) ∪ (U ∩ (B)) 6= ∅, i.e. U ∩ (A ∪ B) 6= ∅,∀U ∈ Ux,
which is equivalent to x ∈ (A ∪B)θ.

Assume now x ∈ (A ∪ B)θ, i.e. ∀U ∈ Ux, U ∩ (A ∪ B) 6= ∅, meaning
∀U ∈ Ux, (U ∩ A) ∪ (U ∩B) 6= ∅.

Now, assume ∃ neighbourhoods U1 and U2 of x, such that U1 ∩ A = ∅,
and U2 ∩B 6= ∅, and also U1 ∩B = ∅, while U2 ∩ A 6= ∅.

Consider U1 ∩ U2, which will also be a neighbourhood of x.
Then, (U1 ∩ U2) ∩ (A ∪ B) = ∅, meaning U1 ∩ U2 ∩ (A ∪ B) = ∅, which is a
contradiction.

So we conclude that ∀U ∈ Ux, U ∩ A 6= ∅ or ∀U ∈ Ux, U ∩ B 6= ∅, and
hence we have x ∈ Aθ ∪Bθ. �

1.3.2 The theorem

The property ”H-closed” was originally defined for Hausdorff-spaces, and in
the following way: A Hausdorff space X is called H-closed if X is a closed
subspace of every Hausdorff space in which it is contained - closed in the
Kuratowski-sense. We consider an alternative (equivalent) characterisation
of H-closed (proof of the equivalence can be found in [10]), and we do not
require the space to be Hausdorff.
A topological space X is H-closed if and only if the following holds:

X =
⋃
i∈I

Wi ⇒ ∃Wi1 , . . . ,Wit , X =
t⋃
i=1

Wij .

With the Wi’s open subsets of X.
H-closed could also be called ”Theta-compact”.

The following proposition is also discussed in [5] but it is given with two
other equivalent properties and is proven accordingly. We proceed to prove
it directly.
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Let X be a topological space and p the projection-map as before (again,
for any space Y ).

Proposition 1.3.2 X is H-closed ⇔ (p(A))θ ⊆ p(Aθ) for any A ⊆ X × Y .

Proof:

⇒: Assume X is H-closed. Let A ⊆ X × Y be any subset, and let y0 ∈ Y
but y0 /∈ p(Aθ), i.e. ∀x ∈ X, (x, y0) /∈ Aθ, meaning ∀x ∈ X, ∃Nx ∈ U (x,y0)

with Nx ∩ A = ∅. Now, ∀x ∈ X, ∃ open Ax ∈ Ux and ∃ open Bx ∈ Uy0 ,
with Ax × Bx ⊆ Nx. Hence Ax ×Bx ⊆ Nx, i.e. Ax × Bx ⊆ Nx, since
Ax ×Bx = Ax×Bx. And, clealy, ∀x ∈ X, (Ax×Bx)∩A = ∅. Now, the sets
Ax form a cover of X, i.e.

X =
⋃
x∈X

Ax.

Hence there are sets Ax1 , . . . , Axt , with

X =
t⋃

j=1

Axj
.

For j = 1, . . . , t consider Axj
×Bxj

. The claim is

(
t⋂

j=1

Bxj
) ∩ p(A) = ∅.

Now, since
t⋂

j=1

Bxj
⊆

t⋂
j=1

Bxj
,

it suffices to show

(
t⋂

j=1

Bxj
) ∩ p(A) = ∅.

Assume

(
t⋂

j=1

Bxj
) ∩ p(A) 6= ∅.
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Hence there exists y ∈ Y , with y ∈ Bxj
, for j = 1, . . . , t, and y ∈ p(A), so

∃x′ ∈ X, with (x′, y) ∈ A. Since

X =
t⋃

j=1

Axj
,

we know x′ has to lie in some Axi
, where i ∈ {1, . . . , t}. And, using the

fact that y ∈ Bxj
for j = 1, . . . , t, we can conclude that (x′, y) ∈ Axi

× Bxi
,

meaning (Axi
×Bxi

)∩A 6= ∅. This is a contradiction, since (Ax×Bx)∩A = ∅,
∀x ∈ X. Hence

(
t⋂

j=1

Bxj
) ∩ p(A) = ∅.

Hence

(
t⋂

j=1

Bxj
) ∩ p(A) = ∅.

The intersection of these sets Bxj
will be open, since it is a finite intersec-

tion. And y0 is contained in the intersection, hencey0 /∈ (p(A))θ. Hence
(p(A))θ ⊆ p(Aθ)

⇐: Assume p(Aθ) ⊆ (p(A))θ,∀A ⊆ X × Y . Let X be any topological
space. Assume X is not H-closed. So

X =
⋃
1∈I

Wi,

(some open cover) but for each Wi1 , . . . ,Wit (finite collection),

X 6=
t⋃

j=1

Wij .

Thus,
t⋂

j=1

(X −Wij ) 6= ∅.

Define Y in the following way: Y := X ∪ {y0}, where y0 /∈ X. Let the
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topology on Y be generated by the discrete topology on X, and the basic
open neighbourhoods of y0 be sets of the form
{y0}∪((X−Wi1)∩. . .∩(X−Wit)), where the intersection on the right is never
empty. Let A := ∆X = {(x, x) : x ∈ X} ⊆ X × Y . Now, take any arbitrary

neighbourhood of y0, and consider {y0} ∪ ((X −Wi1) ∩ . . . ∩ (X −Wit)) ∩
p(A). Clearly this intesection can never be empty, since

((X −Wi1) ∩ . . . ∩ (X −Wit)) lies in X, and p(A) = X. So, y0 ∈ (p(A))θ.
Which means y0 ∈ p(Aθ), using our assumption. That means ∃x0 ∈ X, with
(x0, y0) ∈ Aθ, hence ∀N ∈ U (x0,y0), N ∩A 6= ∅. Let U be any neighbourhood
of x0, then

(U × ({y0} ∪ (X −Wi))) ∩ A 6= ∅,∀i ∈ I.
Hence

U ∩ (X −Wi)) 6= ∅, ∀i ∈ I.

Since the topology on Y is discrete (apart from the neighbourhoods of y0),
we have that

(X −Wi) = (X −Wi), ∀i ∈ I.

So, ∀U ∈ Ux0 ,∀i ∈ I, we have

U ∩ (X −Wi) 6= ∅.

Assume ∃U ′ ∈ Ux0 with U ′ ∩ (X − Wi) = ∅, hence U ′ ⊆ Wi. So, U ′ ⊆
Wi, yielding U ′ ∩ (X −Wi) = ∅, a contradiction. So, ∀U ∈ Ux0 , we have

U ∩ (X − Wi) 6= ∅,∀i ∈ I, i.e. x0 ∈ (X −Wi),∀i ∈ I (in X). So,∀i ∈
I, x0 /∈ X − X −Wi = (Wi)

◦. Hence x0 /∈ (Wi)
◦ = Wi,∀i ∈ I, meaning

x0 ∈ X −Wi,∀i ∈ I. Hence

x0 ∈
⋂
i∈I

(X −Wi) = X −
⋃
i∈I

Wi.

But we have assumed that
X =

⋃
i∈I

Wi,

i.e.
X −

⋃
i∈I

Wi = ∅.

23



So we have found a contradiction, and hence X is H-closed. �

1.4 Asymmetric compactness in topology

We have now seen three different forms of compactness and characterisations
of them, using three different closure operators.

Eventually, when we get to the categorical approach, we want to generalise
further to where we use two different closure operators to characterise a cer-
tain compactness.

We will now look at two examples which motivate our interest into studying
such a categorical generalisation.

1.4.1 kσ-compactness

We now use both the Kuratowski-closure and the Sequential closure to obtain
a characterisation similar to the three which were discussed in the three sec-
tions above. We have seen that we are working with a ”closure-preserving”-
expression, i.e. an equality like the following must hold: p(A) = p(A), for
example. In fact the inclusion ⊆ already holds because of the continuity of
the projection-mapping p, and hence we are actually interested in the inclu-
sion ⊇.

Keeping this in mind, we investigate the case where we have an inclusion
of the following form:

p(A) ⊇ (p(A))σ.

We mention that the following proposition is proven in [14], and we pro-
vide a similar proof.

Let X and Y again be topological spaces, and p : X × Y → Y be the
projection map.

Proposition 1.4.1 : Every sequence in X has a cluster point
⇔ (p(A))σ ⊆ p(A), ∀A ⊆ X × Y .
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Proof:

⇒: Let A ⊆ X × Y be any subset. Assume every sequence in X has a
cluster point, and let y ∈ (p(A))σ.

Let (yn) be the sequence in p(A), converging to y. Consider the sequence
(xn) ⊆ X, with ((xn, yn)) ⊆ A. Note that (xn) does exist since (yn) ⊆ p(A).

Let x be the cluster point of (xn). Let N be any neighbourhood of the
tuple (x, y). We know there will exist U ∈ Ux and V ∈ Uy, with U ×V ⊆ N .

Now, for V , there will exist some m ∈ N such that yk ∈ V , ∀k ≥ m.
And we know ∀n ∈ N, ∃l ≥ n, such that xl ∈ U . So, in particular, if we
consider n = m, we conclude that there has to exist some k′ ≥ m, with
(xk′ , yk′) ∈ U×V . And, since (xk′ , yk′) ∈ A, we know (U×V )∩A 6= ∅, hence
N ∩ A 6= ∅. And we have y ∈ p(A).

⇐: Let X be any topological space. Define Y as we did in Proposition
1.2.2:

Y := { 1
n

: n ∈ N} ∪ {0}, with the topology on Y again being B ∪ {∅}.

Let (xn) be any sequence in X and, as before, let A be the set
{(xn, 1

n
) : n ∈ N}.

We know 0 ∈ (p(A))σ, hence 0 ∈ p(A). So there exists some x ∈ X, with
(x, 0) ∈ A.

Let U be any neighbourhood of x, and let m ∈ N. Choose Bm as the
neighbourhood of 0, and consider U ×Bm, which will be a neighbourhood of
(x, 0). We know (U × Bm) ∩ A 6= ∅. And we know the elements of A are of
the form (xn,

1
n
).

Now, by using the definition of Bm and the fact that (U × Bm) ∩ A 6= ∅,
we know there has to exist some k ∈ N, with k ≥ m, and xk ∈ U . Hence x
is the cluster point of (xn). �

This above proposition is equivalent to the property ”countably compact”,
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i.e, any countable open cover has a finite subcover. In our context, we
also call it ”kσ-compact”, referring to the Kuratowski(k)-closure and the
sequential(σ)-closure.

1.4.2 kγ-compactness

For our next example we define a new closure, the ”γ-closure”. In order to
do that we need to recall what is meant by a ”Gδ-set”.

Definition 1.4.1 Let X be a topological space, and G ⊆ X. G is called a
Gδ-set if G =

⋂
{Oi|i ∈ N}, where all the O1’s are open sets in X, i.e. G is

a countable intersection of open sets in X.

Let X again be a topological space, and M ⊆ X. We define γ(M) as follows:

x ∈ γ(M) ⇔ G ∩M 6= ∅, ∀ Gδ-sets containing x.

We also mention what it means for a topological space to be Lindelöf: every
countable Fopen cover has a finite subcover. We are going to use an alterna-
tive characterisation of Lindelöf in the following proposition, namely that a
space X is Lindelöf if and only if the intersection of any family of closed sets
in X will be non-empty, if this family has the countable intersection prop-
erty. By the countable intersection property we mean that any countable
intersection of sets from this family is non-empty.

One can also find a very similar proof of the following proposition in [14].

Proposition 1.4.2 γ(p(M)) ⊆ p(M), ∀M ⊆ X × Y (with projection p :
X × Y → Y ), for any space Y ⇔ X is Lindelöf.

Proof:

⇒: Let F be any family of closed sets in X with the countable intersec-
tion property.

Define Y as follows:

Y := X ∪ {∞}, and let the subbase for its topology be:
S := P(X)∪{F ∪ {∞}|F ∈ F}.
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Clearly ∆X = {(x, x)|x ∈ X} ⊆ X × Y .

Now, γ(X) = γ(p(∆X)) ⊆ p(∆X), by assumption.

We use the fact that F has the countable intersection property to conclude
that ∞ ∈ γ(X) - any countable intersection of open neighbourhoods (which
won’t be empty) of ∞ will meet X.

That means ∃x′ ∈ X such that (x′,∞) ∈ ∆X .

Let U ∈ Ux′ . Then, we have (∀F ∈ F), U × (F ∪ {∞}) ∩ ∆X 6= ∅, i.e.
U ∩ F 6= ∅. Hence x′ ∈ F , ∀F ∈ F , and X is Lindelöf.

⇐: Let X be Lindelöf and M ⊆ X×Y , with Y any space. Assume y /∈ p(M),
then ∀x ∈ X, (x, y) /∈ M . That means, ∀x ∈ X, ∃Nx ∈ U (x,y), with Nx ∩M
= ∅.

So, ∀x ∈ X, ∃ open Ux ∈ Ux and open Vx ∈ Uy with Ux × Vx ∩ M =
∅.

{Ux|x ∈ X} is an open cover for X, and will thus have a countable sub-
cover {Uxi

|i ∈ N}. Define V :=
⋂
{Vxi
|i ∈ N}.

Now, clearly V is a Gδ-set containing y. Assume V ∩ p(M) 6= ∅. That
means ∃y0 ∈ Y such that y0 ∈ V and y0 ∈ p(M). The latter yields an
x0 ∈ X such that (x0, y0) ∈M .

And, since the Uxi
’s form a cover for X and y0 ∈ Vxi

,∀i ∈ N, we con-
clude that ∃j ∈ N such that (x0, y0) ∈ Uxj

× Vxj
, which is a contradiction,

since Ux × Vx ∩M = ∅, ∀x ∈ X.

Hence V ∩ p(M) = ∅, and y /∈ γ(p(M)). �
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Chapter 2

Categorical compactness

This chapter considers the question: ”What is a compact object in a cate-
gory?” We have seen the characterisation - by means of closure - of different
compactness notions in topology.

We define what we mean by a closure operator in a category, and then proceed
to define categorical compactness by using our topological knowledge.

2.1 Factorization systems

The modern notion of factorization systems was introduced by Freyd and
Kelly in 1972 (cf. [11]). A good revision could also be found in [2]. In this
section we mention definitions, properties and results following work done in
[11], [2], [5] and [6].

We also mention that throughout the rest of the thesis we assume our cate-
gory has finite products and pullbacks.

2.1.1 Prefactorization and factorization systems

Consider the following square:
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A

u

��

e // B

v

��
C m

// D

where v ◦ e = m ◦ u.

Definition 2.1.1 : We say e is orthogonal to m (or e⊥m) if, for any
square v ◦ e = m ◦ u ∃ !d : B → C, with d ◦ e = u and m ◦ d = v.

As an example, consider the category SET. Let e be surjective and m injec-
tive.

Now, since e is surjective, we know that any b ∈ B will be of the form
e(a), for some a ∈ A. We want do define d. Note that such a d will be
unique (due to the fact that e is an epimorphism).

For any b ∈ B, let d(b) := u(a), where e(a) = b. So, by definition the
square commutes. We have to check if d is indeed well-defined.

Let e(a1) = e(a2) = b ∈ B, then v(e(a1)) = v(e(a2))⇔m(u(a1)) = m(u(a2)).
But m is injective which means that u(a1) = u(a2), and d is well-defined.

Consider a category C. Let F be a class of morphisms in C. Then we
define the following:

F↑ := {g ∈ Mor(C) | g⊥f ,∀f ∈ F} and F↓ := {g ∈ Mor(C) | f⊥g
,∀f ∈ F}

Definition 2.1.2 Let E and M be two classes of morphisms in C. We say
the pair (E ,M) is a prefactorization system for C if E↓ = M and M↑

= E.

The orthogonality-example we have seen previously is an axample of a pref-
actorization system, with E = {f ∈ Mor(SET) | f surjective }, and M =
{f ∈Mor(SET) | f injective }.
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Because of our context, we will especially be interested in prefactorization
systems where (as in the SET-example) E is a class of epimorphisms andM
a class of monomorphisms. This is called proper.

Prefactorization systems have certain properties:

(F1) E∩M = Iso(C).

(F2) Both E and M are closed under composition.

(F3) M is left-cancellable (i.e. if m ◦ n ∈ M, we have that n ∈ M). And
dually E is right cancellable.

(F4) M is stable under pullback.

We’ll take a look at a proof for (F2) (Further proofs can be found in [1]):

Assume m1 : K → D and m2 : C → K are in M. We want to show
the composition m1 ◦ m2 is again contained in M. Now let e be any mor-
phism contained in E , and let the following square be commutative:

A
e //

u

��

B

v

��
C m1◦m2

// D

Create a new commutative square out of the one above:

A
e //

m2u

��

B

v

��
K m1

// D
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Since e ∈ E , ∃!d1 : B → K, with d1 ◦ e = m2 ◦ u and m1 ◦ d1 = v. Consider
now a third commutative square:

A
e //

u

��

B

d1

��
C m2

// K

Again, we find a diagonal: ∃!d : B → C, with d ◦ e = u and m2 ◦ d =
d1. Putting everything together now yields the following:

A
e //

u

��

B

v

��

d

��~~~~~~~~~~~~~~~~

C m1◦m2

// D

with both the upper and lower triangles commute.

We want to show that d is also the unique diagonal for the square above. Let
d′ : B → C also be a diagonal. That means that m2 ◦ d′ is a diagonal for the
square v ◦ e = m1 ◦m2 ◦ u, so m2 ◦ d′ = d1, since d1 is unique. We thus have
that d′ is a diagonal for the square d1 ◦ e = m2 ◦ u, meaning that d′ = d.

The proof for E is dual.

For our purposes we are also interested in situations where E is stable under
pullback, which is called a stable prefactorization system. Later on this will
become crucial when we want to prove certain propositions.

Next we discuss factorization systems.

Definition 2.1.3 : A prefactorization system (E ,M) is called a factoriza-
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tion system for C if each morphism f in C can be factorized: f = m ◦ e,
with e ∈ E and m ∈M.

If we again visit the example in SET, we’ll see that each function on a set can
be factorized in this way. Let X and Y be sets and f : X → Y a function.
Then f can be factorized through its image:

X
f //

e ""EEEEEEEE Y

f(X)

m

<<zzzzzzzz

With e (the restriction of 1 to its image) clearly a surjective map, and m
being the inclusion-map, clearly injective.

In the category of topological spaces and continuous maps, having E and
M the surjective and injective maps is not enough. To ensure the unique
diagonal is continuous, we need M to be embeddings (initial injective func-
tions).

2.1.2 Subobjects

C will denote an arbitrary category from here on in.

Let (E ,M) be our factorization system for C. Let X ∈ Obj(C).

We define the subobjects of X as follows:

Definition 2.1.4 Sub(X) := {m ∈M | Cod(m) = X }.

These M-morphisms could be seen as ”inclusion-maps” (cf. [7]). So, when
we talk about

M
m // X ,

we can think of it as similar to M ⊆ X in SET. We’ll frequently denote
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the domain of subobject m by M .

Now we are going to define an order relation on subobjects.
Let m and n be subobjects of X. Then

m ≤ n ⇔ ∃l : M → N such that

M
m //

l   BBBBBBBB X

N

n

>>}}}}}}}}

commutes.

This order is transitive and reflexive. And, since m ≤ n and n ≤ m ⇒
m ∼= n (by m ∼= n we mean there is an isomorphism h : M → N with m ◦ h
= m) we’ll consider ∼= as ”equal” and view the subobjects of an object in a
category as a partially ordered class.

This might be a good time to briefly mention that (E ,M)-factorizations
unique (up to isomorphism, of course). Let f : X → Y be a morphism in C,
with f = m◦e = m′◦e′ two factorizations of f , with e, e′ ∈ E and m,m′ ∈M.
Then, by using orthogonality, we get m = m′. And, since we are working
with a proper factorization system, we have e = e′.

2.1.3 Image and pre-image

We want to generalise the notion of image and pre-image. We have as start-
ing point our idea of what this means when we work with sets.

Consider C (E ,M) as before. Let X and Y be objects of C, and f : X → Y
a morphism. For m ∈ Sub(X), we define f(m) (the image of m under f) by
considering the following commuting diagram:
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M
m //

e ""FFFFFFFF X
f // Y

f(M)
f(m)

<<yyyyyyyy

where f(m) ◦ e is the (E ,M)-factorization of f ◦m. This is very intuitive as
we can clearly see its analogy to the set-theoretic idea.

Let n ∈ Sub(Y ). We define f−1(n) (the pre-image of n under f) by con-
sidering the following pullback square:

f−1(N)
f−1(n) //

g

��

X

f

��
N n

// Y

Since M is stable under pullback, f−1(m) will also be in M, and hence
a subobject of X. If we use the order defined earlier, we find a close rela-
tionship between f and f−1.

First we mention waht a Galois connection is: let A and B be partially
ordered sets, with f : A → B and g : B → A order-preserving functions.
Then f and g form a Galois connection with f being the left adjoint of g if
f(x) ≤ y ⇔ x ≤ g(y), ∀ x ∈ A and ∀ y ∈ B.

Proposition 2.1.1 : Let f : X → Y in C, then f : Sub(X) → Sub(Y )
and f−1 : Sub(Y )→ Sub(X) form a Galois connection, with f being the left
adjoint of f−1.

Proof: We want to prove (a) both f and f−1 are order-preserving and (b)
f(m) ≤ n ⇔ m ≤ f−1(n), ∀ m ∈ Sub(X) and ∀ n ∈ Sub(Y ).

34



Proof of (a): Let m1 : M1 → X and m2 : M2 → X be subobjects of X,
with m1 ≤ m2. So, ∃l : M1 →M2 such that m1 = m2 ◦ l.

Now, let f : X → Y be a morphism. If we factorize f ◦ m1 and f ◦ m2

to obtain f(m1) and f(m2) respectively, we get the following commuting
square:

M1
e1 //

e2◦l

��

f(M1)

f(m1)

��
f(M2)

f(m2)
// Y

with e1 and e2 being the morphisms in E also obtained when we found f(m1)
and f(m2) respectively.

Now, e1 ∈ E and f(m2) ∈ M ⇒ ∃!d : f(M1) → f(M2), such that f(m2) ◦ d
= f(m1) and d ◦ e1 = e2 ◦ l. So we have f(m1) ≤ f(m2).

Let n1 : N1 → Y and n2 : N2 → Y be subobjects of Y , with n1 ≤ n2.
Again, we know ∃k : N1 → N2, with n2 ◦ k = n1. If we consider the pullback
diagrams of f−1(n1) and f−1(n2) respectively, we find the following situation:

f−1(N1)
f−1(n1)

++VVVVVVVVVVVVVVVVVVVVVVVVVVV

k◦g1

��3
3333333333333333333333

f−1(N2)
f−1(n2)

//

g2

��

X

f

��
N2 n2

// Y
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with g1 : f−1(N1)→ N1 being part of the pullback-diagram of f−1(n1).

The outer square clearly commutes. So ∃!h : f−1(N1) → f−1(N2), with
f−1(n2) ◦ h = f−1(n1) and k ◦ g1 = g2 ◦ h.

So, we have f−1(n1) ≤ f−1(n2).

Proof of (b) :

⇒ : Let m ∈ Sub(X), n ∈ Sub(Y ) and f : X → Y a morphism. As-
sume f(m) ≤ n, which yields the following diagram:

M
m //

e ""FFFFFFFF X
f // Y

f(M)

f(m)
<<yyyyyyyy

h

��
N

n

EE����������������

We can now consider the following diagram, where we use the definition
of f−1(n):

M
m

**VVVVVVVVVVVVVVVVVVVVVVVVVV

h◦e

��/
/////////////////////

f−1(N)
f−1(n)

//

g

��

X

f

��
N n

// Y

The outer square clearly commutes, meaning that we find a morphism k :
M → f−1(N) such that g ◦ k = h ◦ e and f−1(n) ◦ k = m ⇒ m ≤ f−1(n).
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⇐ : Assume now that m ≤ f−1(n).

If we use the morphism we find from this inequality (l : M → f−1(N)),
and the definition of f−1(n), we find the following commuting square:

M
e //

g◦l

��

f(M)

f(m)

��
N n

// Y

and due to the orthogonality of e and n we find a unique morphism d :
f(M)→ N such that g ◦ l = d ◦ e and n ◦ d = f(m).

Hence we have f(m) ≤ n. �

The following properties also hold, for f : X → Y and g : Y → X in
C:

(a) For m ∈ Sub(X), and n ∈ Sub(M), we have m ◦ n = m(n).

(b) For m ∈ Sub(X), (g ◦ f)(m) = g(f(m)),

(c) g ∈M ⇒ g−1(g(m)) = m, ∀m ∈ Sub(Y )

(d) f ∈ E ⇒ f(f−1(m)) = m, ∀m ∈ Sub(Y ).

For (a), we use properties (F2) and (F3) of factorization systems. To prove
(b), we use the fact that (E ,M)-factorizations are essentially unique. For (c)
and (d) we use (a) above, and the fact that (E ,M) is stable (any pullback
of a morphism in E is again in E).
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2.2 Categorical closure operators

The first notion of categorical closure operators (as we use it) was formally
introduced in [8], while [7] and [4] are good sources for studying closure op-
erators. [3] also discussed the subject and contains useful examples. We use
definitions and strategies similar to [7] and [5].

In Chapter 1 we looked at three different closures in topology. We now
have the knowledge to start defining what we mean by a ”closure operator”
in a category.

Definition 2.2.1 : A closure operator C of C is given by a family of
maps:
C = (cX)X∈Obj(C), where cX : Sub(X)→ SubX, such that the following prop-
erties hold for every X ∈ Obj(C) :

(C1) m ≤ cX(m), ∀m ∈ Sub(X) (Extension)

(C2) m1 ≤ m2 in Sub(X) ⇒ cX(m1) ≤ cX(m2) (Monotonicity)

(C3) f(cX(m)) ≤ cY (f(m)), ∀f : X → Y and ∀m ∈ Sub(X) (Continu-
ity)

Because of (C1), we have the following commutative diagram:

M
m //

jm ##HHHHHHHHH X

CX(M)
cX(m)

;;wwwwwwwww

The morphism jm is also in M by (F3).

Proposition 2.2.1 : (C2) and (C3) are jointly equivalent to (C4) (This is
proven in [7]) :

(C4) (f(m) ≤ n ⇒ f(cX(m)) ≤ cY (n)), ∀f : X → Y , ∀m ∈ Sub(X) and
∀n ∈ Sub(Y ).
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Proof :

⇒ : Assume f(m) ≤ n. Then (C2) gives cY (f(m)) ≤ cY (n). And by using
(C3) we have that f(cX(m)) ≤ cY (n).

⇐ : Let f be 1X : X → X, and let m1 and m2 be subobjects of X, with m1

≤ m2.

So f(m1) = 1X(m1) ≤ m2.
By using (C4) we conclude that 1X(cX(m1)) ≤ cX(m2), and we have (C2).

If we consider n = f(m), we have, by (C4):
f(m) ≤ f(m) ⇒ f(cX(m)) ≤ cY (f(m)), which is (C3). �

Due to the adjunction between f and f−1, we obtain an equivalent formula-
tion of (C3):

(C3′) cX(f−1(n)) ≤ f−1(cY (n)), ∀n ∈ Sub(Y ).

Next we mention a few definitions (similar to [5]) linked to closure opera-
tors. We keep the intuitive analogy from topology in the back of our mind
- the analogy using the Kuratowski-closure being the more familiar one of
course.

Definition 2.2.2 : A subobject m of X is called C-closed if m ∼= cX(m).

The diagram of the above situation will be as we have seen:

M
m //

jm ##HHHHHHHHH X

CX(M)
cX(m)

;;wwwwwwwww

with jm being an isomorphism.

In topology a subspace M ⊆ X is closed when M = M - it’s clearly in-
tuitive how a C-closed subobject is defined.

Definition 2.2.3 : A subobject m of X is called C-dense if cX(m) ∼= 1X .
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We again consider the triangle above. The subobject m being C-dense means
that cX(m) is an isomorphism. In topology a subspace M ⊆ X is dense in
X when M = X. Again, the analogy can be seen.

Definition 2.2.4 : A closure operator C is called idempotent if cX(cX(m))
∼= cX(m), ∀ m ∈ SubX, ∀X ∈ Obj(C) i.e. the C-closure of m is C-dense.

This definition is quite clearly what it means for a closure to be idempo-
tent in topology. The Kuratowski-closure is of course idempotent, while the
sequential closure is not necessarily.

Definition 2.2.5 : A closure operator C is called weakly hereditary if
ccX(M)(jm) ∼= 1cX(M), ∀X ∈ Obj(C) i.e. m is C-dense in its C-closure.

The Kuratowski-closure is an example of a closure operator which is weakly
hereditary. Clearly, a subspace M ⊆ X is dense in M .

The term ”weakly hereditary” implies that this is a weaker form of ”heredi-
tary”. This is indeed the case.

Consider the following commuting square:

M
m //

j

  BBBBBBBB X

N

n

>>}}}}}}}}

where m,n are subobjects of X and X ∈ Obj(C).
A closure operator C is called hereditary if cN(j) ∼= n−1(cX(m)).

Again, the Kuratowski-closure is hereditary. Let M ⊆ N be subspaces of
X. For a moment, let’s denote the Kuratowski-closure by k. Then, kN(M)
= kX(M)∩N . This is an alternative way of considering the above definition
in topology.

The following does hold:
Hereditary ⇒ Weakly hereditary.
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From now on (because of the partial order we obtain amongst subobjects)
we’ll write m = n instead of m ∼= n.

Lemma 2.2.1 : Let f : X → Y be a morphism in C, and n ∈ Sub(Y ), then
if n is C-closed, so is f−1(n).

Proof: Assume that n is C-closed. By (C3′) we have cX(f−1(n))≤ f−1(cY (n)).
But f−1(n) = f−1(cY (n)), which means that cX(f−1(n)) ≤ f−1(n), hence
cX(f−1(n)) = f−1(n) and f−1(n) is C-closed. �

We have discussed this Lemma to show how we generalise the topological
property of continuous functions, where the pre-image maps closed sets onto
closed sets.

It will also be important in applications later on, where we will work with
pullbacks of closed subobjects.

2.3 Closure-preserving morphisms

Let X and Y be objects of C, with closure operator C. And let f : X → Y
be a morphism.

Definition 2.3.1 f is called C-preserving if and only if
f(cX(m)) = cY (f(m)), ∀m ∈ Sub(X).

A morphism f being C-preserving is equivalent to saying that f maps C-
closed subobjects to C-closed subobjects if C is idempotent but not in gen-
eral.

Closure-preserving morphisms have certain properties, which are discussed
in [5]:

(CP1) Every isomorphism in C is C-preserving.

(CP2) Let f and g be C-preserving, then f ◦ g is also C-preserving.

(CP3) If g ◦ f are C-preserving, then f is C-preserving if g ∈ M, and g
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will be C-preserving if f ∈ E , with E being stable under pullback along M-
morphisms.

(CP4) If C is weakly hereditary, then every C-closed subobject is C-preserving.

(CP5) If C is idempotent and if every C-closed subobject is also C-preserving,
then C is weakly hereditary.

(CP6) Every C-preserving morphism in M is a C-closed subobject.

(CP7) If C is hereditary and E is stable under pullback alongM-morphisms,
then every pullback af a C-preserving map along an M-morphism is C-
preserving.

From now on we’ll replace the term C-preserving by C-closed, (which must
not be confused with morphisms mapping closed subobjects onto closed sub-
objects). The term C-closed is commonly used when referring to C-preserving
in the literature.

We also mention that we’ll denote a closure operator by C for the rest of
this chapter.

2.4 Compactness

As mentioned before, the categorical study of compactness has been devel-
oped in [3], [13] and [16]. Everything is brought together in [5], where fun-
damental properties of compact objects are discussed, amongst other work.
We discuss categorical compactness similarly to [5].

Using the Kuratowski-Mrówka characterisation of compactness discussed in
Chapter 1, we now generalise the situation.

Definition 2.4.1 : An object X of C is called C-compact if the product
projection pY : X × Y → Y is C-closed, ∀ Y ∈ Obj(C).

We will also be using the defintion of a C-Hausdorff object in C. We use the
characterisation in topology to obtain:
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Definition 2.4.2 : X ∈ Obj(C) is called C-Hausdorff if and only if the
diagonal morphism δX : X → X ×X is C-closed.

Some theorems about topological compactness can now be discussed. We are
going to state the theorems but delay the proofs for now since we will soon
be discussing categorical asymmetric compactness where the results still hold
and proofs will be given in that context. Proofs can be found in [5].

Proposition 2.4.1 :
(1) For a morphism f : X → Y in E, with E stable under pullback, if X is
C-compact, so is Y .

(2) If X in C is C-compact and m : M → X is C-closed, with C weakly
hereditary, then M is C-compact.

(3) If X is C-compact and Y is C-Hausdorff, then every morphism f : X →
Y is C-closed.

2.5 Asymmetric compactness

This section follows the same route as [14] where the Kuratowski-Mrówka
characterisation is mentioned and then the situation is generalised to asym-
metric compactness, and eventually compact morphisms (generalised proper/perfect
maps) are discussed.

2.5.1 The generalisation from the symmetric case

We have seen the example in Chapter 1 where countable compactness is char-
acterised by using both the Kuratowski- and σ-closure. This motivates our
approach to try and generalise this to a categorical setting. The following
definitions can be found in [14].

Let C1 and C2 be closure operators for our category C, with (E ,M) a proper
stable factorization system, which will be the type of factorization system we
consider from now on.
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Definition 2.5.1 : A morphism f : X → Y in C is called C1C2-closed if
and only if f(c1(m)) ≥ c2(f(m)), ∀m ∈ Sub(X).

Note that the subscript (indicating the codomain of the subobject) is om-
mitted. We to this for the sake of simplicity, and since we’ll always make it
clear in which context we are working.

This definition comes from the fact that a C-closed morphism f : X → Y
satisfies the equality f(c(m)) = c(f(m)), ∀m ∈ Sub(X) and since f is
C-continuous, we are actually only interested in the inequality f(c(m)) ≥
c(f(m)) (note the analogy from our topological examples).

C1C2-closed morphisms map C1-closed subobjects to C2-closed subobject
and, if C1 is idempotent, the converse is also true.

When we write C1 ≤ C2, for closure operators C1 and C2, we mean c1(m) ≤
c2(m), ∀m ∈M. We just extend the subobject ordering pointwise to closure
operators.

And we write C1-closed for C1C1-closed (when C1 = C2), which just then
reduces to our symmetric case.

Our next observation is that all C1-closed and C2-closed morphisms, respec-
tively, are also C1C2-closed if C1 ≥ C2.

The following results follow from the definition of a C1C2-closed morphism
and seem trivial and not even worth proving. However, they become impor-
tant in applications later on. They are mentioned in [14] but not proven.
We’ll briefly prove them.

Proposition 2.5.1 : Let C1, C2 and C3 be closure operators on C with C1

≥ C2, and let f : X → Y be a morphism in C, then:

(1) f is C3C1-closed ⇒ f is C3C2-closed.

(2) f is C2C3-closed ⇒ f is C1C3-closed.

Proof of (1): Let f be as above, and let m ∈ Sub(X). Then:
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f(c3(m)) ≥ c1(f(m)) ≥ c2(f(m)).

Proof of (2): Again, consider f and m. We have f(c1(m)) ≥ f(c2(m)) ≥
c3(f(m)). �

Note that, from the above proposition it follows that if f is C2C1-closed,
it will also be both C1-closed and C2-closed. We are , however unlikely to
consider such f . All the examples we consider (in topology) are those where
C1 ≥ C2.

In fact, since we are always interested in how a certain class of morphisms be-
haves w.r.t. the isomorphisms in a category, we look at the following (which
is mentioned in [14] without proof):

Proposition 2.5.2 All the isomorphisms in C are C1C2-closed if and only
if C1 ≥ C2.

Proof:

⇒: We use the fact that the identity-morphisms are isomorphisms.

⇐: All isomorphisms are C2-closed. �

We are also going to look at proofs for the following results (which are taken
directly from [14]):

Proposition 2.5.3 : Let C1, C2 and C3 be closure operators on C, f : X →
Y and g : Y → Z morphisms in C, then:

(1) f C1C2-closed and g C2C3-closed ⇒ g ◦ f C1C3-closed.

(2) g ◦ f C1C2-closed and g ∈M ⇒ f C1C2-closed.

(3) g ◦ f C1C2-closed and f ∈ E ⇒ g C1C2-closed.

Proof of (1): Let m ∈ Sub(X), and assume f is C1C2-closed and g C2C3-
closed. Then:

(g ◦f)(c1(m)) = g(f(c1(m))) ≥ g(c2(f(m))) ≥ c3(g(f(m))) = c3((g ◦f)(m)).
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Proof of (2): Let m ∈ Sub(X) and assume g ◦ f is C1C2-closed and g ∈ M.
Then:

f(c1(m)) = g−1(g(f(c1(m))))≥ g−1(c2(g(f(m))))≥ c2(g−1(g(f(m)))) = c2(f(m)).

Proof of (3): Let m ∈ Sub(Y ) and assume g ◦ f is C1C2-closed and f ∈ E .
Then:

g(c1(m)) = g(f(f−1(c1(m)))) ≥ g(f(c1(f
−1(m)))) ≥ c2(g(f(f−1(m)))) =

c2(g(m)). �

We also have the following result about closed subobjects and closed mor-
phisms in M, also proven in [14]:

Proposition 2.5.4 : Let m : M → X be in M.Then:

(1) m a C1C2-closed morphism ⇒ m a C2-closed subobject.

(2) Let C2 be weakly hereditary and C1 ≥ C2. Then m a C2-closed sub-
object ⇒ m a C1C2-closed morphism.

(3) If C1 is idempotent, then:
(m a C1-closed subobject⇒ m a C1-closed morphism, ∀m ∈M)⇔ C1 weakly
hereditary.

Proof of (1): Let m be a C1C2-closed morphism.

Now, m = m(1M) = m(c1(1M)).

Then, by using the C1C2-closedness of m, we have m(c1(1M)) ≥ c2(m(1M))
= c2(m).

And hence c2(m) = m.

Proof of (2): Let n ∈ Sub(M).

Now, m(n) = m ◦ n ≤ m. So c2(m ◦ n) ≤ c2(m), by the fact that C2 is
monotone.
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By assuming that m is a C2-closed subobject, we have c2(m) = m, and
hence we have the morphism j in the following triangle:

•
c2(m◦n)

!!CCCCCCCC

j
��

N n
//

g
=={{{{{{{{
M m

// X

The morphism g is C2-dense because C2 is weakly hereditary, and j ≤ c2(n).

And hence we have:

m(c1(n)) ≥ m(c2(n)) ≥ m(j) = c2(m ◦ n) = c2(m(n)).

And m is a C1C2-closed morphism.

Proof of (3) ⇒: Assume C1 is idempotent, thus c1(n) = c1(c1(n)), ∀n ∈M.

So c1(n) is a C1-closed morphism.

Consider the following commuting triangle resulting from considering the
C1-closure of n:

N
n //

jm ""EEEEEEEE •

c1(N)
c1(n)

<<zzzzzzzzz

Then:

c1(n) ◦ c1(j) = c1(n)(c1(j)) ≥ c1(c1(n)(j)) = c1(c1(n) ◦ j) = c1(n).

And hence c1(j) is an isomorphism by the fact that c1(n) is a monomor-
phism, and C1 is weakly hereditary.
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⇐: Apply (2) above, with C1 = C2. �

Now we discuss asymmetric compactness (cf. [14]).

Definition 2.5.2 : X ∈ Obj(C) is called C1C2-compact if and only if the
projection pY : X × Y → Y is C1C2-closed, ∀Y ∈ Obj(C).

Similarly to closed morphisms, we will write C1-compact when we talk about
C1C1-compact. If we apply the results of Proposition 2.5.1 to projection-
mappings, we have the following (cf. [14]):

Proposition 2.5.5 : Let C1, C2 and C3 be closure operators on C, with C1

≥ C2, then:

(1) X is C3C1-compact ⇒ X is C3C2-compact.

(2) X is C2C3-compact ⇒ X is C1C3-compact.

The above results become quite useful in applications.

Due to Proposition 2.5.3(1) we have (cf. [14]):

Proposition 2.5.6 For closure operators C1, C2 and C3 on C, we have:
X C1C2-compact and Y C2C3-compact ⇒ X × Y C1C3-compact.

Now we return to those theorems stated in the previous section, regarding
”symmetric” compactness. We generalise them to our asymmetric context.
We also keep in mind our analogy from the category of topological spaces
and continuous functions. All of the following propositions use the same
proof-strategies as [14], which in turn are similar to those found in [5]. We
have filled in a number of details.

2.5.2 Image of Compact is Compact

Firstly, we are going to discuss a property of compactness which we know well
from topology: The continuous image of a compact space is compact. We es-
pecially remember the case in topology where we work with the Kuratowksi-
closure (”familiar” compactness). Now we discuss it in the generalised form,
yielding even more results for free, as such.
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Proposition 2.5.7 : Let X be C1C2-compact, then:
f : X → Y is in E ⇒ Y is C1C2-compact.

Proof: Let Z ∈ Obj(C), and consider the following square:

X × Z f×1Z //

p1

��

Y × Z

q1

��
X

f
// Y

with f ∈ E , and p1, q1 projections. Now, let A ∈ Obj(C), with u : A→ Y ×Z
and v : A→ X morphisms such that q1 ◦ u = f ◦ v. And let q2 : Y ×Z → Z
be the second projection.

Define d : A→ X × Z as follows: d = 〈v, q2 ◦ u〉.

It is easy to see that f × 1Z ◦ d = u and p1 ◦ d = v. And, by using the
product-property, we have that d is unique. So, the square above is a pull-
back. So, since (E ,M) is stable, we have f × 1Z ∈ E . Next, consider the
following commutative triangle:

X × Z f×1Z //

p2
##GGGGGGGGG Y × Z

q2
{{wwwwwwwww

Z

Since X is C1C2-compact, the projection p2 is C1C2-closed. We then use
the fact that the triangle commutes and f ∈ E to conclude (from Propo-
sition 2.5.3(3)) that the projection q2 is C1C2-closed and hence Y is C1C2-
compact. �

2.5.3 Closed subspace of Compact Space is Compact

Our next compactness-property to be discussed is: Closed subspaces of com-
pact spaces are compact. We again recall this result using our topological
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knowledge. And, as with the previous theorem, we think of the example
where the Kuratowski-closure is used.

Proposition 2.5.8 : Let X be C1C2-compact, and C1 weakly hereditary.
Then:
m : M → X a C1-closed subobject ⇒ M is C1C2-compact.

Proof: Let Y ∈ Obj(C) and consider the following square:

M × Y m×1Y //

p1

��

X × Y

q1

��
M m

// X

where m is C1-closed and X C1C2-compact, with C1 weakly hereditary.

We’ll again prove that the diagram is a pullback. As before, let B ∈ Obj(C),
with u : B → X × Y and v : B → M morphisms such that q1 ◦ u = m ◦ v,
and let q2 : X × Y → Y be the second projection.

Define d : B →M × Y as follows: d := 〈v, q2 ◦ u〉

Using the projections q1 and q2, it’s easy to see that m×1Y ◦d = u and p1 ◦d
= v. And d will be unique due to the product-property.

Now, m × 1Y will thus be C1-closed. And since C1 is weakly hereditary,
we use Proposition 2.5.4(2) to conclude that m × 1Y is a C1-closed mor-
phism. In the following commuting triangle the projection q2 is C1C2-closed
due to the C1C2-compactness of X:

M × Y m×1Y //

p2
##HHHHHHHHH X × Y

q2

{{wwwwwwwww

Y

By Proposition 2.5.3(1) we have that q2 ◦ (m × 1Y ) = p2 is C1C2-closed.
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And hence M is C1C2-compact. �

2.5.4 Compact subspace of Hausdorff space is closed

In topology we have that compact subspaces of Hausdorff spaces are closed
(again, the word ”closed” here refers to ”closed” in the Kuratowski-closure
sense). We generalise this to our categorical asymmetric context as our third
familiar result.

Proposition 2.5.9 Let X be C1C2-compact and Y C1-Hausdorff. Then any
m : X → Y in M is a C2-closed subobject.

Proof: Let m : X → Y be in M. Again consider a square:

X
〈1X ,m〉 //

m

��

X × Y

m×1Y

��
Y

δY
// Y × Y

This square is a pullback as well: let B ∈ Obj(C) and u : B → X × Y
and v : B → Y such that (m × 1Y ) ◦ u = δY ◦ v, and let q1 and q2 be the
projections from X × Y to X and Y respectively.

Define d : B → X as follows: d := q1 ◦ v. Again, by using the projec-
tions q1 and q2, one can easily show that 〈1X ,m〉 ◦ d = u and m ◦ d = v.
And,as before, the product-property ensures the uniqueness of d.

The diagonal morphism δY is a C1-closed subobject, so 〈1X ,m〉 is also a
C1-closed subobject. Consider the commuting triangle:

X
〈1X ,m〉 //

m
  @@@@@@@@ X × Y

p2
{{wwwwwwwww

Y

The projection p2 is C1C2-closed by the C1C2-compactness of X.
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m = p2◦〈1X ,m〉 = p2(〈1X ,m〉) = p2(c1(〈1X ,m〉)) ≥ c2(p2(〈1X ,m〉)) = c2(m).

And hence m is C2-closed. �

2.5.5 More Topological Examples

For a moment we turn our attention back to topology.

We have seen examples in Chapter 1. Now we mention a few more (cf.
[14]), and we see how our categorical knowledge becomes useful.

We are now working in the category of topological spaces and continuous
functions, with our (E ,M)-factorization system being (Surjective, Embed-
ding).

Let X be a topological space and m : M → X an embedding. We view
M as a subset of X. Note we use notation similar to our categorical context.

By k(M) (as in the last example in Chapter 1) we mean the (Kuratowski)-
closure in the usual sense, while σ(M), θ(M) and γ(M) are as mentioned
before.

We also define z(M) := {x ∈ X|C ∩ M 6= ∅ for each co-zero set C con-
taining x}. C is called a co-zero set if C = X − f−1(0), for some continuous
function f : X → R.

We have the following ordering: σ ≤ k ≤ θ ≤ z, and γ ≤ k but σ and
γ can’t be compared.

• We have seen that kσ-compact is countably compact. Note that we can
say kσ-compact ⇒ θσ-compact ⇒ zσ-compact, by Proposition 2.5.5.

• We have also seen that θ-compact is H-closed. By Proposition 2.5.5, we
have θ-compact ⇒ θk-compact. And, in fact, the converse is also true (cf.
[14]).

Proofs for the following can be found in [14].
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• z-compact = zθ-compact = zk-compact = Functionally compact.

• Also, zσ-compact ⇒ Pseudocompact. It is not known whether or not
the converse is true.

We have discussed those three familiar compactness-theorems which we know
from topology. The usual notion of compactness in topology is normally what
we would think of when seeing those results.

In fact, we get a lot more, for example we can now conclude that the image
of Lindelöf is Lindelöf, or that a θ-closed subspace of an H-closed topological
space is also H-closed.

2.6 Compact Morphisms

2.6.1 Working in the Comma Category

Since morphisms in a category can be viewed as generalised objects, we are
interested in investigating how a ”compact morphism” will look. We again
use the same strategy as [5] and [14], and look at an example which is also
discussed therein. Let X be a fixed object in our category C, and consider
C/X, the comma category over X.

Our factorization system (E ,M) transfers to C/X - consider the following
diagram:

A
h //

f   @@@@@@@ B

g
~~}}}}}}}

X

We have (A, f) and (B, g) objects in C/X, and h the morphism between
them. The factorization of h in C/X will then be the (E ,M)-factorization
of h in C, which will again be over X.

The product of (A, f) and (B, g) in C/X is given by the following pullback
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square in C:

A×X B
p1 //

p2

��

A

f

��
B g

// X

with p1 and p2 the projections. The object f : A → X in C/X will be
C1C2-compact if p2 is C1C2-closed for any object g : B → X in C/X, i.e. any
pullback of f in C is C1C2-closed. We call such f stably C1C2-closed.

Proposition 2.6.1 : f : A→ X (considered as an object in C/X) is C1C2-
compact iff f is stably C1C2-closed in C.

We can now view a compact object in C from a different perspective. We use
the fact that C ∼= C/1, with 1 being the terminal object in C.

Proposition 2.6.2 An object X of C is C1C2-compact iff !X : X → 1 is
C1C2-compact in C/1 iff !X : X → 1 is stably C1C2-closed in C.

We now conclude that C1C2-compact morphisms are closed and have compact
fibres (like proper/perfect maps in the symmetric topological case).

Proposition 2.6.3 If f : A→ X is C1C2-compact in C/X, then f is C1C2-
closed in C and any fibre of f is C1C2-compact.

Proof: Assume f is C1C2-compact in C/X. So, f is stably C1C2-closed in
C and since f is the pullback of itself along the identity-morphism 1X , f is
C1C2-closed.

Consider the following pullback-square:

F
q //

!F

��

A

f

��
1 p

// X
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F is a fibre of f (we think of p : 1 → X as a ”point” of X, since the
terminal object in SET is the singleton).

We use the composability of pullback-diagrams to conclude that, since f
is stably closed, !F is not only C1C2-closed but in fact stably C1C2-closed.
And by Proposition 2.6.2. we have that F is C1C2-compact. �

2.6.2 A Topological example

We are going to discuss kσ-maps in topology (cf. [14]). By Proposition 2.6.3
kσ-maps are kσ-closed with kσ-compact fibres (i.e. countably compact fi-
bres).

Conversely, any continuous function f : A → X which is kσ-closed with
countably compact fibres is kσ-compact in T OP/X. Let g : B → X be
continuous and consider the following pullback:

A×X B
p2 //

p1

��

B

g

��
A

f
// X

Where A×X B = {(a, b) ∈ A×B | f(a) = g(b)}. We have to show that the
projection p2 is kσ-closed. Let M ⊆ A×X B ba a nonempty subset. Assume
b ∈ σ(p(M)), so there is a sequence (bn) in p(M) with (bn → b). There is
also a sequence (an) in A such that (an, bn) ∈M .

For n ∈ N let An := {am | m ≥ n}. Then, by using the kσ-closedness
of f , we have that σ(f(An)) ⊆ f(An).

Now, f(An) = {f(am) | m ≥ n} = {g(bm) | m ≥ n}. And, since g is
continuous, g((bn))→ g(b). So, g(b) ∈ σ(f(An)) ⊆ f(An), ∀n ∈ N.

55



f−1(g(b)) is countably compact, by assumption. So, since An ∩ f−1(g(b))
6= ∅ ∀n ∈ N, we have that

⋂
n∈N(An ∩ f−1(g(b))) 6= ∅.

Let a ∈
⋂
n∈NAn with f(a) = g(b). So, (a, b) ∈ A×X B.

Let U ⊆ A, V ⊆ B be open with a ∈ U and b ∈ V . Now, ∃n′ ∈ N
such that bm ∈ V , ∀m ≥ n′, and U ∩ An′ 6= ∅. So, we have m ≥ n′ with
(am, bm) ∈ (U × V ) ∩M , and b ∈ p2(M).

Note that the class of quasi-perfect maps (maps which are closed and have
countably compact fibres (cf. [12])) is contained in the class of kσ-compact
maps, yielding the conclusion the these maps might be the better class to
study.
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Chapter 3

Categorical Compactness
without explicitly referring to
closure

This chapter (especially the symmetric case) closely follows the work done
in [6], which was preceeded by [19], where the ideas were already mentioned.

We have now seen how the notion of a compact object in a category can
be characterised by a closure operator (or two, in the asymmetric case).
The theory of closure operators became essential in our quest to study closed
morphisms and compactness, where the latter makes good use of the former.

In this chapter we are going to travel a slightly different route: we are going
to start off by assuming we have a class of morphisms F with certain prop-
erties. We think of these as being closed morphisms but we do not explicitly
state what they are, so this is indeed a generalisation of our previous work.
We also still hold our topological knowledge in the back of our mind as an
analogy.

We will discuss this briefly for the symmetric (usual) compactness, and then
move to the asymmetric case where we will show how this new approach
generalises what we have done thus far. The following definitions and results
can be found in [6].
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3.1 The symmetric case

3.1.1 The distinguished class F
We again consider our category C, with (E ,M) our proper stable factoriza-
tion system (in [6] the stable-condition is not assumed). We then assume we
have a class of morphisms, F , with the following properties:

(F1) All the isomorphisms are contained in F , and F is closed under com-
position;

(F2) F ∩M is stable under pullback;

(F3) For g ◦ f in F , we have that if f ∈ E then g in F .

If we think of the morphisms in F as being the C-closed morphisms, for
some closure operator C in C, we see how (F1)-(F3) coincides with what we
have done previously:

• All the isomorphisms are C-closed

• The composition of C-closed morphisms is again C-closed.

• A C-closed morphism inM is also a C-closed subobject (also vice versa if
C is weakly hereditary, which holds in the topological case). C-closed sub-
objects are stable under pullback.

• If g ◦ f is C-closed and f ∈ E , then g is C-closed.

We’ll often call a morphism in F ”F -closed”.

We now discuss a few definitions of concepts we have seen previously.

Definition 3.1.1 A morphism f : A→ B in C is called F-dense if for any
factorization
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A
f //

h ��@@@@@@@ B

C

n

??~~~~~~~

,

with an F-closed subobject n, we necessarily have that n is an isomorphism.

3.1.2 Proper Maps, Compact Objects and Separation

In topology the pullback of a closed morphism need not be closed (cf. [6]).
We are thus interested in those closed morphisms which are stable under
pullback.

Definition 3.1.2 We call a morphism f F-proper if in any pullback-diagram,

X ′
f ′ //

g

��

Y ′

h

��
X

f
// Y

We have that f ′ is in F .

In this case we say f belongs stably to F but we’ll mostly use the term F -
proper. We’ll denote the class of F -proper morphisms by F∗. If we choose g
and h in the above pullback-diagram to be identity-morphisms, we conclude
F∗ ⊆ F .

We’ll now discuss some important properties of the class F∗ ([6]).

Proposition 3.1.1 For the class of F-proper morphisms, the following hold:

(1) F∗ contains F∩M, and is closed under composition.

(2) F∗ is the largest pullback-stable subclass of F .

(3) If g ◦ f is in F∗, with g monic, then f is in F∗.
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(4) If g ◦ f is in F∗, with f ∈ E∗ then g is in F∗ (E∗ is all morphism
which are stably in E - note that in our case E = E∗, since (E ,M) is stable).

Proof of (1): F∩M is stable under pullback, and a pullback of g ◦ f can be
obtained from adjacent pullbacks of f and g.

Proof of (2): We also use the composability of adjacent pullback-diagrams.

Proof of (3): We use the fact that for any any pullback-stable class M
we have that if n ◦m ∈M, with n monic, then m ∈M.

Proof of (4):Consider the following diagram:

A
f ′ //

h

��

B

k

��

g′ // C

l

��
X

f
// Y g

// Z

Where the square on the right is an arbitrary pullback of g, and the one
on the left is the pullback of f along k. The outer rectangle will be a pull-
back of g ◦ f .

Since g ◦ f ∈ F∗, we conclude that g′ ◦ f ′ ∈ F , while f ∈ E∗ means f ′

will be in E . And by property (F3) we conclude that g′ ∈ F . So g is proper,
i.e. contained in F∗. �

We now turn our attention to compact objects. The following definition
is related to Proposition 2.6.2.

Definition 3.1.3 An object X of C is called F-compact if the unique mor-
phism !X : X → 1 to the terminal object is F-proper.

Now, pullbacks of !X look like this:
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X × Y p2 //

p1

��

Y

!Y

��
X

!X
// 1

We see that to say !X is F -proper means exactly that p2 is in F , or ”F -
closed”. Again this coincides nicely with our previous work in Chapter 2
where we worked with closure operators.

We have seen the categorical generalisation of a Hausdorff space. We make
use of the diagonal morphism. We now discuss our approach to define a
Hausdorff object without referring to closure operators.

Let f : X → Y be a morphism in C. We then consider the following
morphism: δf : X → X ×Y X, with X ×Y X belonging to the following
pullback-diagram:

X ×Y X
f2 //

f1

��

X

f

��
X

f
// Y

Now, we use the identity-morphism on X to obtain the following:
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X

1X

��0
000000000000000000000

1X

++VVVVVVVVVVVVVVVVVVVVVVVVVVV

X ×Y X
f2 //

f1

��

X

f

��
X

f
// Y

We use the product-property to conclude that δf is an equaliser for f1 and
f2 (cf. [6]). And, since E is a class of epimorphisms, we have that δf ∈M.

In this separation-section, we want to consider those morphisms f with
δf ∈ F∗. But, since δf ∈ M, and we have F ∩M stable under pullback, it
suffices to require that δf ∈ F .

Definition 3.1.4 We call a morphism f F-separated if δf ∈ F .

We look at an example from topology (cf. [6]):

Let X be a topological space. Then X ×Y X = {(x1, x2)|f(x1) = f(x2)},
with f : X → Y .
Now, to say ∆X = {(x, x)|x ∈ X} is closed in X×Y X, means (X×Y X)−∆X

is open.
This means ∀x1, x2 ∈ X, with x1 6= x2 and f(x1) = f(x2), ∃ open neighbour-
hoods U1 ∈ Ux1 and U2 ∈ Ux2 , with U1 × U2 ⊆ (X ×Y X)−∆X .

So U1 ∩ U2 6= ∅.

Hence, in topology, a morphism f : X → Y is F -separated if and only if
each pair of distinct points in any fibre (the pre-image of a point) of f could
be separated by disjoint open neighbourhoods.

Next we take a look at what we mean by an F -separated object.

Definition 3.1.5 An object X of C is called F-separated or F-Hausdorff
if the unique morphism !X : X → 1 to the terminal object is F-separated.
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The above definition simply means that 〈1X , 1X〉 = δX : X → X ×X must
be in F , i.e. (using our topological analogy) ”the diagonal is closed”.

3.1.3 An example

As already stated, we think of the class F as being the closed morphisms.
And we have definitions like F-closed. We are going to look at an example
from topology which is rather counter-intuitive (to show that there are ex-
amples where closures/closure-preserving maps are not used):

Consider the category of topological spaces and continuous functions, T OP ,
with the (E ,M)-factorization system being (Epimorphisms, Embeddings).

Take the class F to be all the open maps, i.e. maps mapping open sub-
sets onto open subsets (this is mentioned in [6] - we are going to verify that
axioms F1-F3 are satisfied).

Every homeomorphism is an open map. And the composition of open is
again open (Let f : X → Y and g : Y → Z be open maps. Let O be any
open set in X. Then, clearly, g(f(O)) will be open in Z ). We have thus
shown that property (F1) holds.

Consider an open embedding. The pre-image of this will also be an open
embedding, i.e. F ∩M is stable under pullback and hence (F2) is satisfied.

Let g ◦ f be an open map, with f : X → Y and g : Y → Z and f a
surjective continuous function. Let U be any open set in Y . Then f−1(U)
will be open in X. Then g(U) = g(f(f−1(U))) will be open in Z, and (F3)
holds.

We are ready to look at how we’ll deal with asymmetric compactness.
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3.2 The Asymmetric Case

3.2.1 Introductory

Firstly, assuming we only have the one class of morphisms F might not suf-
fice. Say we think of F as being the C1C2-closed morphisms. This is not
necessarily closed under composition, i.e. the first part of (F1) fails. We
proceed to use our knowledge from [5] and [14] to obtain the generalisation
of the asymmetric case.

We make use of the following:

Lemma 3.2.1 Assume f : B → C, f1 : A → B and f2 : C → D are
C1C2-closed, C1-closed and C2-closed respectively, then f2 ◦ f ◦ f1 is also
C1C2-closed.

Proof: Let m : M → A be in M.
Then f2◦f◦f1(c1(m)) = f2(f(f1(c1(m)))) = f2(f(c1(f1(m))))≥ f2(c2(f(f1(m))))
= c2(f2(f(f1(m)))), yielding the desired result. �

By F2 ◦ F ◦ F1 we denote the class of morphisms of the form f2 ◦ f ◦ f1,
where f ∈ F , f1 ∈ F1 and f2 ∈ F2.

3.2.2 The distinguished classes

Assume F , F1 and F2 are classes of morphisms in C with the following prop-
erties:

(A1) F1 and F2 satisfy (F1)-(F3) (on p55), F contains all the isomorphisms,
and F2 ◦ F ◦ F1 ⊆ F ;

(A2) F ∩ M is stable under pullback;

(A3) For g ◦ f in F and f ∈ E , we have g ∈ F .

We think of F as being the C1C2-closed morphisms, with F1 and F2 be-
ing the C1-closed and C2-closed morphisms respectively - Lemma 3.2.1 leads
us to require the third part of (A1).
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Keeping this closure operator approach in mind, note that if F = F1 =
F2, we are reduced to our symmetric case.

We can prove the following (generalisation of Proposition 2.5.1.):

Proposition 3.2.1 F1 ⊂ F and F2 ⊂ F .

Proof: The isomorphisms in C are contained in all three the above classes
of morphisms, hence the identity-morphisms are as well.

So, assume f1 : X → Y is in F1. Pick f2 ∈ F2 and f ∈ F to be 1Y .

Then, clearly, f1 ∈ F . Similarly, any f2 ∈ F2 is in F . �

Note that we have only used the fact that the isomorphisms in C are con-
tained in F , F1 and F2. In the asymmetric closure-operator analogy, saying
that the isomorphisms are contained in F (the C1C2-closed morphisms) is
equivalent to saying C1 ≥ C2, as we have seen before.

And if C1 ≥ C2, then morphisms which are C1-closed and C2-closed, re-
spectively, will also be C1C2-closed (Proposition 2.5.1.).

We mention that the definition of an F -proper morphism and that of an
F -compact object are both carried over to our ”new” class F .

Also, we offer the following lemma, where we discuss an important property
also being inherited by the proper morphisms in F , F1 and F2 respectively.

Lemma 3.2.2 : For our classes, F , F1 and F2, the following holds:
F2
∗ ◦ F∗ ◦ F1

∗ ⊆ F∗

Proof: Consider the following diagram:

A
f1 // B

f // C
f2 // D

With f , f1 and f2 contained in F∗, F1
∗ and F2

∗ respectively.

Now consider adjacent pullback-diagrams:
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E
f ′1 //

s

��

F
f ′ //

t

��

G
f ′2 //

u

��

H

v

��
A

f1
// B

f
// C

f2
// D

The entire diagram will thus also be a pullback, and since pullbacks are
essentially unique, we conclude that any pullback of f2 ◦ f ◦ f1 must essen-
tially be made up of adjacent pullbacks, as above.

And since f ∈F∗, f1 ∈F1
∗ and f2 ∈F2

∗, we have that f ′ ∈F , f ′1 ∈F1

and f ′2 ∈F2.

By using the last part of property (A1), we conclude that f ′2 ◦ f ′ ◦ f ′1 ∈ F ,
which completes our proof. �

We will now again look at those three compactness-theorems which we proved
in Chapter 2. We are going to prove them again, using our new approach.

3.2.3 Image of Compact is Compact

We briefly recall what Proposition 2.5.7 says:

Assume f : X → Y is in E and X is C1C2-compact, then Y is C1C2-compact.

We translate this to our new language:

Proposition 3.2.2 Let f : X → Y be in E. If X is F-compact, so is Y .

Proof: Consider the following commuting diagram:

X
f //

!X ��???????? Y

!Y����������

1
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!X is in F∗, since X is F -compact. But f ∈ E = E∗, and hence !Y ∈ F∗ (by
Proposition 3.1.1.(4)), i.e. Y is F -compact. �

3.2.4 Closed subspaces of Compact spaces are Com-
pact

Recall Proposition 2.5.8.: Let X be C1C2-compact, and C1 be weakly hered-
itary, then if m : M → X is a C1-closed subobject, M is C1C2-compact.

We mention that if C1 is weakly hereditary, all C1-closed subobjects are
also C1-closed morphisms (the converse is always true). So, in the following
Proposition, when we assume m ∈ F1 ∩M, we actually only consider the
case where m is an F -closed morphism. We do not have the notion of an
”F -closed subobject”.

Proposition 3.2.3 Let X be F-compact. If m : M → X is in F1∩M, then
M is F-compact.

Proof: Consider the following commuting diagram:

M
m //

!M   @@@@@@@@ X

!X����������

1

Since m is in F1∩ M, we have that m ∈ F1
∗. By assumption, !X ∈ F∗.

We then have the following:

!M = 11 ◦ !X ◦ m ∈ F∗, where the identity-morphism 11 is clearly in F2
∗.�

3.2.5 Compact subspace of Hausdorff is Closed

Recall Proposition 2.5.9 : Let X be C1C2-compact, and Y C1-Hausdorff.
Then any m : X → Y in M is a C2-closed subobject.

We are going to now prove this for any morphism, and not just for a subobject
- we’ll have a few remarks after the proof,
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Proposition 3.2.4 : Let X be F-compact and Y F1-Hausdorff. If f : X →
Y is in M then f ∈F .

Proof: Consider the following commuting triangle:

X
〈1X ,f〉 //

f   @@@@@@@@ X × Y

p2
{{wwwwwwwww

Y

The projection p2 is F -closed, sinceX is F -compact. Since Y is F1-Hausdorff,
we know the diagonal δY : Y → Y ×Y is F1 -closed. Thus f−1(δY ) = 〈1X , f〉
is F1 -closed.

So, we have f = 1Y ◦ p2 ◦ 〈1X , f〉 ∈ F . �

Note we haven’t assumed that f is in M (i.e. a subobject of Y ) and, as
mentioned before, we do not have the notion of a ”closed subobject”. And
we do not prove that f ∈ F2, since this is quite generalised. But if we ap-
ply this Proposition to our asymmetric closure operator counterpart, while
assuming f ∈ M, Proposition 2.5.9. is obtained as a consequence since if f
is a C1C2-closed morphism in M, it is also a C2-closed subobject.

We have now seen how the categorical theory of compactness has devel-
oped by starting with the intuitive topolgical ideas. Category theory gives
us the possibility of generalising the topological work, and opens the way to
apply the categorical theory to other fields of mathematics. And, for exam-
ple - as we have mentioned in Chapter 2 - the class of kσ-maps looks like an
interesting and useful class of morphisms to study.
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no. 1, 3–14.

[19] Walter Tholen, A categorical guide to separation, compactness and per-
fectness, Homology Homotopy Appl. 1 (1999), 147–161 (electronic).

[20] J. J. C. Vermeulen, Proper maps of locales, J. Pure Appl. Algebra 92
(1994), no. 1, 79–107.

[21] , A note on stably closed maps of locales, J. Pure Appl. Algebra
157 (2001), no. 2-3, 335–339.

70


