

Simulation-Based Online Scheduling of a Make-to-

Order Job Shop

David Krige

Student Number: 14056186

Thesis presented in partial fulfilment of the requirements

for the degree of Master of Science of Industrial

Engineering

 At

 Stellenbosch University

Study Leader: Mr. J. Bekker

December 2008

I

DECLARATION

By submitting this thesis electronically, I declare that the entirety of the work contained therein is

my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly

otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining

any qualification.

Date: 2 October 2008

Copyright © 2008 Stellenbosch University

All rights reserved.

`

II

ABSTRACT

Scheduling is a core activity in the manufacturing business. It assists with efficient and

effective utilization of capital-intensive resources and increased throughput, thus increasing

profitability. The focus in this thesis is on scheduling of manufacturing orders in a make-to-

order job-shop enterprise. It is widely accepted that manufacturing of large volumes and

production with as few as possible product variants is the most cost-effective business

approach, but the need for low volume, once-off engineering parts will always exist.

Many approaches to scheduling exist, including translation of a scheduling problem to a

Travelling Salesman analogue, while Discrete-event computer simulation is well established

as a means to assist with scheduling. Simulation is appealing in the manufacturing

environment, as it can realistically imitate dynamic, stochastic processes while being

descriptive in forecasting the future. In this thesis, the development and testing of a

simulation-based scheduler is described. The scheduler was developed for, and in

collaboration with a South African make-to-order job-shop enterprise. A supporting

information system was also developed and it is required that the enterprise changes some

of its business processes if this scheduler is implemented.

The scheduler considers the status of the enterprise each time a new order is received, and

the current schedule is reviewed and may be revised at such a point in time, making it a

real-time scheduler. Several classic scheduling dispatching rules and –measures were

incorporated in the scheduler. These include First-in First-out, Earliest Due Date, Longest

Processing Time, Shortest Processing Time, Smallest Slack and Critical Ratio (dispatching

rules), while the performance measures are Makespan, Earliness, Lateness, Average Flow

Time and Machine Usage.

The proposed scheduler has been verified and validated using test data and designed

confidence building tests, and its performance was also compared to an actual, historical

schedule. The functioning of the scheduler is finally demonstrated using a stochastic test

environment. The scheduler has generally performed satisfactorily and should be

implemented as the final phase of this project.

`

III

OPSOMMING

Skedulering is een van die kardinale aspekte in ‘n vervaardigingsonderneming. Dit kan

verseker dat kapitaal-intensiewe bates effektief gebruik word om die deurset van die

onderneming te verhoog en sodoende die winsmarge te vergroot. Hierdie tesis fokus op die

skedulering in ‘n vervaardigingsonderneming wat klein hoeveelhede onderdele volgens

bestellings vervaardig. Dit is `n welbekende feit dat die vervaardiging van groot

hoeveelhede onderdele, en van klein verskeidenheid, die mees koste-effektiewe

benadering is, maar die behoefte aan klein hoeveelhede spesiaal-ontwerpte onderdele sal

altyd bestaan.

Daar bestaan reeds `n groot verskeidenheid skeduleringstegnieke, wat die omskakeling van

die skeduleringsprobleem na die bekende “Travelling Salesman” probleem insluit. Diskreet-

gebeurtenis rekenaarsimulasie is `n bekende tegniek wat skedulering ondersteun. Simulasie

is `n aantreklike tegniek in die vervaardigingsektor aangesien dit dinamiese en stogastiese

prosesse realisties kan naboots en oor die vermoë beskik om aanvaarbare vooruitskattings

te doen. Die ontwikkeling en toetsing van ‘n skeduleerder wat gebaseer is op simulasie

word beskryf in hierdie tesis. Die skeduleerder was ontwikkel vir `n Suid Afrikaanse

onderneming wat `n vervaardig-volgens-bestelling werkswinkel bedryf. `n Inligtingstelsel is

ook ontwikkel om die skeduleerder te ondersteun. Daar word verwag dat die besigheid van

sy besigheidsprosesse verander indien die skeduleringstelsel geïmplementeer sou word.

Elke keer wanneer `n nuwe bestelling ontvang word, ondersoek die skeduleerder die

huidige status van die besigheid, asook die huidige skedule en kan op daardie oomblik in

tyd `n nuwe skedule ontwikkel, wat dit `n intydse-skeduleerder maak. Klassieke

skeduleringsreëls soos kortste vervaardigingstyd, langste vervaardigingstyd, vroegste

sperdatum, eerste-in eerste-uit, kleinste surplus en kritiese verhouding is ingesluit in die

skeduleerder, terwyl modeluitsette soos vervaardiginstydperk, vroegheid, laatheid,

gemiddelde vloeityd en masjienbenutting dien as prestasiemaatstawwe.

Die voorgestelde skeduleerder is geverifiëer en gevalideer deur middel van geskepte data

en toetse wat ontwikkel is om vertroue in die skeduleerder op te bou. Die skeduleerder is

ook getoets met werklike geskiedkundige data om die skeduleerder se uitkomste te

vergelyk met `n werklike skedule. Die funksionaliteit van die skeduleerder is finaal

gedemonstreer in `n stogastiese toetsomgewing. Oor die algemeen het die skeduleerder

goed presteer en moet geïmplementeer word as die finale fase van hierdie studie.

`

IV

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to the following people and organisations

whose contributions made this work possible:

 Mr. J. Bekker for his boundless guidance, support, devotion and patience.

 Dr. F.K. Krige for his financial support throughout my studies.

 Department of Industrial Engineering of the University of Stellenbosch for the

bursary that made my post-graduate studies possible.

 Daliff Engineering for their willingness to participate and assist in this study.

`

V

TERMS OF REFERENCE

The work in this thesis originated from a need in the Department of Industrial Engineering

at Stellenbosch University to establish a simulation-based scheduler for research purposes.

A particular requirement was that the scheduling be done online, which implied an

application environment in which the status changes frequently. It was thus stated that,

because manufacturing is a cornerstone of industrial engineering, it is preferred that the

application be done in a manufacturing environment, and in particular in a manufacturing

job shop.

The specific assignment was to develop a platform for an online scheduling mechanism for a

manufacturing process using discrete event simulation in combination with an information

system. The mechanism must continuously monitor the current status of the manufacturing

job shop. Using the information about the current status, the scheduling mechanism must

suggest a schedule that could be followed to achieve the organizational objectives best,

using typical scheduling rules and -performance criteria. Figure 1 illustrates the assignment

in detail.

Figure 1 Outline of assignment

An information system that manages information about the current enterprise status and

orders had to be developed to provide input for the scheduling mechanism. This

information should be used by a simulation model of a job shop that adapts itself to the

current shop floor status. Having assumed that status, it must develop different schedules

by implementing established scheduling rules while simulating the processing of waiting

On Online Scheduling Mechanism

 M

a
n

u
fa

ct
u

ri
n

g
 p

ro
ce

ss

Make-to-Order

 Fast changing

 Small order sizes

 Once-off production

Means: Simulation Model

 Discrete event simulation

 Stochastic
 Adaptable

 Established scheduling rules

 Develops schedules

 Records performances

Output: Excel Worksheet and Gantt-style Chart

 Myopic

 Established performance criteria

Input: Enterprise Information System

 Enterprise status

 Order information

`

VI

orders. The simulation model must imitate the flow of orders through the stochastic

processes of the enterprise when compiling these schedules. The simulation model must

evaluate the performance of each scheduling rule and write the schedules and their

performances to an Excel worksheet. The schedule with the best myopic performance,

measured by established performance criteria, must be determined and a resulting Gantt-

style chart should be developed for the schedule, as well as a detailed task list containing

expected starting and finishing times per part of an order.

`

VII

CONTENTS

Declaration .. I

Abstract.. II

Opsomming .. III

Acknowledgements ... IV

Terms of Reference .. V

Contents ... VII

List of Figures .. IX

List of Tables ... XIII

Notation and Abbrevations ...XIV

1. Introduction ... 1

2. Problem Statement ... 3

3. Literature Review ... 8

4. Technical Description of the Participating Enterprise: Daliff Engineering 40

5. Architecture of the Proposed Scheduling Mechanism .. 44

6. Information System Design and Implementation ... 48

7. Description of the Simulation Model .. 62

8. Validation and Verification of the Scheduling Mechanism Functionality 80

9. Evaluation of the Scheduling Mechanism with Real-World Data 100

10. The Scheduling Mechanism in a Stochastic Environment 112

11. Conclusion .. 135

12. Further Developments on the Scheduling Mechanism Identified 139

13. References ... 142

`

VIII

Appendix I. Data Dictionary ... 147

Appendix II. Information System ASP Code ..150

Appendix III. Explanation of Subroutines in VBA Code ... 179

Appendix IV. Simulation Model Code ... 187

`

IX

LIST OF FIGURES

Figure 1 Outline of assignment ... V

Figure 2 Thesis Road Map ... 2

Figure 3 Graphical illustration of frequent planning ... 5

Figure 4 Generic FMS (Banks [5]) .. 10

Figure 5 Type of shop according to production environment .. 12

Figure 6 Simple Job-shop problem with 4 jobs (Sadeh [12]) .. 14

Figure 7 P class belongs to NP class ... 16

Figure 8 Illustration of NP-hard .. 17

Figure 9 Illustration of NP-complete .. 17

Figure 10 Job-shop problem presented as travelling salesman problem .. 19

Figure 11 Branch-and-Bound example .. 20

Figure 12 Simulation in perspective... 34

Figure 13 Schematic for the on-line planning/control process using real-time simulation (Banks [5])

.. 36

Figure 14 General framework and functional elements of an on-line simulation model (Drake and

Smith [56]) .. 38

Figure 15 Order processing at Daliff Engineering .. 41

Figure 16 Top level architecture of the scheduler .. 45

Figure 17 Simulation model architecture ... 47

Figure 18 ERD of the information system .. 49

Figure 19 Relation Data Structure of the Information System ... 51

Figure 20 Relational Data Structure containing associative entities .. 51

Figure 21 DFD for quote generation process ... 53

`

X

Figure 22 DFD for add new customer process ... 53

Figure 23 DFD for quote status change process ... 54

Figure 24 DFD for report process .. 54

Figure 25 DFD for add material process .. 55

Figure 26 Child diagram for the quote generation process .. 56

Figure 27 Homepage screenshot ..57

Figure 28 Add material screenshot ...57

Figure 29 Generate quote screenshot ... 58

Figure 30 Assign part information screenshot ... 59

Figure 31 Adding operations to an order screenshot ... 59

Figure 32 Add new customer screenshot ... 60

Figure 33 Update quote to an order screenshot ... 60

Figure 34 Order structure .. 63

Figure 35 Entity structure .. 64

Figure 36 Diagram of entity creation and attribute assignment component of the simulation model

.. 69

Figure 37 Diagram of machine station and queuing component of the simulation model................ 70

Figure 38 Diagram of the part assembly section of the simulation model .. 71

Figure 39 Diagram of the statistic recording section of the simulation model 72

Figure 40 Model logic structure ... 72

Figure 41 Example of a schedule that is developed in the output file ... 76

Figure 42 Typical average flow time comparison bar chart... 77

Figure 43 Typical average total lateness comparison bar chart .. 77

`

XI

Figure 44 Typical average total makespan comparison bar chart .. 78

Figure 45 Typical average total earliness comparison bar chart... 78

Figure 46 Typical usage comparison bar chart .. 78

Figure 47 Scenario 1A: Resulting Schedules ... 84

Figure 48 Scenario 1B: Resulting Schedules ... 86

Figure 49 Scenario 2A: Resulting Schedules .. 89

Figure 50 Scenario 2B: Resulting Schedules ... 91

Figure 51 Scenario 3A: Resulting Schedules ... 94

Figure 52 Scenario 3B: Resulting schedules ... 98

Figure 53 The Evaluation Methodology .. 101

Figure 54 Actual schedule followed ... 106

Figure 55 Proposed schedule for the FIFO rule .. 106

Figure 56 Proposed schedule for the SPT rule .. 107

Figure 57 Proposed schedule for the LPT rule .. 108

Figure 58 Proposed schedule for the EDD rule .. 108

Figure 59 Proposed schedule for the SS rule ... 109

Figure 60 Proposed schedule for the CR rule ... 109

Figure 61 Proposed schedule for the Mixed rules ... 110

Figure 62 Uniform distribution ... 114

Figure 63 Triangular distribution .. 115

Figure 64 Processing times input ... 116

Figure 65 Random number generation by means of the inverse transform 117

Figure 66 Time-line of order arrival ... 120

`

XII

Figure 67 Different schedule performances of Order set 1.. 121

Figure 68 Proposed FIFO schedule for order set 1 ... 122

Figure 69 Different schedule performances of Order set 2 .. 124

Figure 70 Proposed CR schedule for order set 2..125

Figure 71 Different schedule performances of Order set 3 .. 127

Figure 72 Proposed SPT schedule for order set 3 ... 128

Figure 73 Different schedule performances of Order set 4 .. 130

Figure 74 Proposed CR schedule for order set 4 ... 130

Figure 75 Different schedule performances of Order set 5 .. 132

Figure 76 Proposed CR schedule for order set 5 .. 133

`

XIII

LIST OF TABLES

Table 1 Milling Machines ... 42

Table 2 Turning machines ... 42

Table 3 Fields of the Input Record ... 63

Table 4 Description of Entity Attributes .. 65

Table 5 Structure of recorded entity information ...75

Table 6 Structure of recorded part information ... 76

Table 7 Order Composition for Validation ... 81

Table 8 Processing times for Scenario 3A .. 92

Table 9 Comparison of schedules .. 104

Table 10 Order set 1 .. 120

Table 11 Order set 1 after 12.5 hours ... 122

Table 12 Order set 2 ... 123

Table 13 Order set 3 .. 126

Table 14 Order set 4 .. 129

Table 15 Order set 5 ... 131

`

XIV

NOTATION AND ABBREVATIONS

The notation and abbreviations that are used throughout this thesis are stated in this

chapter. The notation scheme used is shown first.

The subscripts used are as follows, the object they refer to is stated next to them:

 refers to a job or part

 refers to an operation

 refers to a machine

The following notations are associated with job :

 Operation () – operation of job/part

 Processing time () – processing time of operation of job/part on machine

 Part due date () – the promised date that delivery of job/part would be made to

the customer

 Operation due date () – the due date of operation of job/part

 Release date () – the date on which job/part joins the system

The abbreviations used and their meanings are as follows:

FIFO – First in first out, the operations are processed in the order they enter the system

SPT – Shortest processing time, the operation that has the shortest processing time is

processed first

LPT – Longest processing time, the operation that has the longest processing time is

processed first

EDD – Earliest due date, the operation with the earliest due date is processed first

EST – Earliest start time, the operation with the earliest start time is processed first

SS – Smallest slack, the operation with the smallest time difference between finishing

its predicted processing time and its due date is processed first

CR – Critical ratio, the operation that has the biggest remaining processing hours to

hours to due date ratio is processed first

TSP – Travelling Salesman Problem

JSP – Job-Shop Scheduling Problem

Introduction 1

University of Stellenbosch | Department of Industrial Engineering

1

1. INTRODUCTION

The road map of this thesis is illustrated in Figure 2 and consists of five phases. In each

phase certain topics are discussed, which form the chapters of this thesis. The road map is

included at the start of each chapter with the applicable topic emphasized on the diagram,

thus providing context to the reader.

In the first phase, the research problem is stated, which in essence is to develop a scheduler

that could assist a make-to-order job-shop with real-time scheduling. A literature survey on

manufacturing shops and their scheduling is also included to better understand scheduling

in make-to-order job-shops.

The second phase comprises the conceptual design, which includes a description of the

participating local enterprise and the design of the proposed architecture for the scheduling

mechanism. The architecture is the backbone of the scheduling mechanism developed in

this thesis.

Phase three contains the detail design of the scheduling mechanism that was developed

according to the proposed architecture. This phase includes the design and implementation

of the enterprise information system that serves as input for the simulation-based

scheduler. The information system enables the user to enter order information, and saves

the information in a database from which the simulation model is run. The design and

implementation of the simulation model that initiate the scheduling are also included in this

phase. The simulation model automatically configures itself according to the production

and shop floor status through the use of Visual Basic for Applications code.

The next phase conducts the testing of the scheduling mechanism through validation and

verification. The confidence building tests that were designed to test the scheduler are

included and described in this phase.

The final phase of this thesis comprises a conclusion, stating the evaluation process of the

scheduling mechanism and its results. Historic data was used to compare the resulting

schedules to the actual historic schedule. The functionality of the scheduling mechanism in

a stochastic environment is also discussed. A conclusion is drawn from the results of the

evaluation process and future work that can be done to enhance the current scheduling

mechanism is stated.

Introduction 1

University of Stellenbosch | Department of Industrial Engineering

2

Figure 2 Thesis Road Map

Evaluation of Scheduling Mechanism
with Real-World Data

Literature Review on Manufacturing
Shops and Scheduling

Problem Statement: Manufacturing
Shop Scheduling

Proposed Architecture for the
Scheduling Mechanism

Participating Enterprise: Daliff
Engineering

Information System Design and
Implementation

Simulation Model Design and
Implementation

Validation and Verification of
Developed Scheduling Mechanism

Evaluation of the Scheduling
Mechanism in a Stochastic Environment

Future Work

In
tr

o
d

u
ct

io
n

C

o
n

ce
p

tu
al

D

es
ig

n

D
et

ai
l D

es
ig

n

T
es

ti
n

g

C
o

n
cl

u
si

o
n

Problem Statement 2

University of Stellenbosch | Department of Industrial Engineering

3

2. PROBLEM STATEMENT

This study originated, as most research studies do, from a problem. Finding the solution to

the problem or optimizing existing solutions is the drive force behind any research. This

chapter states the problem behind this study and the context of the chapter is shown

below.

Scheduling of manufacturing shops has been a highly researched area as it contains aspects

that still needs to be resolved or optimized and plays an important role to the success of a

manufacturing shop. Several different types of manufacturing shops exist and therefore

also sub research sections. Before any research into manufacturing shop scheduling can be

commenced, the particular environment of the manufacturing shop that will participate in

this study needs to be stated, to be able to scope the research effort.

Evaluation of Scheduling Mechanism with
Real-World Data

Literature Review on Manufacturing Shops
and Scheduling

Problem Statement: Manufacturing
Shop Scheduling

Proposed Architecture for the Scheduling
Mechanism

Participating Enterprise: Daliff
Engineering

Information System Design and
Implementation

Simulation Model Design and
Implementation

Validation and Verification of Developed
Scheduling Mechanism

Evaluation of the Scheduling Mechanism
in a Stochastic Environment

Future Work

In
tr

o
d

u
ct

io
n

C

o
n

ce
p

tu
al

D
es

ig
n

D

et
ai

l D
es

ig
n

T

es
ti

n
g

C

o
n

cl
u

si
o

n

Problem Statement 2

University of Stellenbosch | Department of Industrial Engineering

4

Daliff Engineering is a manufacturing shop that produces custom designed parts according

to customer orders. Orders arrive at a high frequency and mostly require the production of

small quantities of parts. Parts are usually once-off designs that are seldom reproduced in

the future. The processing times are fairly predictable since CNC machines are used in

production.

It is an unpredictable production environment as the future of order arrivals is unknown,

while the chances of system disturbances are also high as machines fail and employees get

sick. Determining a schedule in such a dynamic environment is challenging as it has to

happen regularly and is very time consuming each time. The efficient scheduling of a

manufacturing shop is of cardinal importance to the success of the shop, not only in terms

of market gains, but also in service record and image. Scheduling therefore needs to be

taken very seriously if a manufacturing shop wants to become a benchmark in their

specialization field.

Daliff Engineering understands the importance of scheduling and was therefore willing to

participate in this study that strives to develop the best scheduling mechanism for their

manufacturing shop. Whilst doing this, the study also aims to add a functional methodology

to the research area of manufacturing shop scheduling.

The scheduling mechanism should be able to sufficiently predict the future to generate a

schedule that is practical, efficient and easily followed. Simulation is suggested as

prediction model. The scheduling mechanism should use the enterprise information system

as an input for its scheduling component. The information system should be of such nature

that the current system state is correctly presented to enable the scheduling mechanism to

imitate the manufacturing shop sufficiently.

As a result of the dynamic nature of the manufacturing shop under investigation, the

scheduling function should have a frequent planning capability. This characteristic is seen as

the most important element to achieve the best schedule for the manufacturing shop with

its high order arrival rate, therefore it will be discussed in detail.

2.1 FREQUENT PLANNING CAPABILITY

Frequent planning can be described using Figure 3, which illustrates frequent planning on a

single machine only. A red star represents an instance where a new order arrives in the

Problem Statement 2

University of Stellenbosch | Department of Industrial Engineering

5

system, a circle represents an operation and a yellow star an instance where a snap shot of

the current state is needed as input for the scheduling function. The operations are colour-

coded to enable the reader to distinguish which operations are related to which part, and

also where the new operations of a new order are scheduled. This will become clear as the

figure is described further.

Figure 3 Graphical illustration of frequent planning

When a new order arrives in the system, a schedule must be compiled that incorporates the

manufacturing of the operations related to the new order whilst also scheduling the

operations of orders that were already in the system. Some of the operations of the orders

that were already in the system, could by the time the new order arrives in the system

already be processed. These completed operations of the orders already in the system must

be excluded from the new schedule. It is also possible that processing on some of the orders

already in the system is currently under way as the new order joins the system. It is

important to schedule these operations to be processed first in the new schedule, as they

are already being processed and pre-emption is not allowed, i.e. an operation already

started can not be stopped and rescheduled for production at another time. These

situations imply that a snap shot of the current system is needed as an input when

scheduling is commenced.

For the purpose of explanation, the current state of the system is assumed to be empty

when the first order arrives, represented by the first red star in time. The first order has

three different parts, with their operations each distinguished by different colours, for

example, the part that is represented by blue has four operations.

Problem Statement 2

University of Stellenbosch | Department of Industrial Engineering

6

When the new schedule has been generated, it is implemented and production follows the

sequence of operations suggested by the schedule as time elapse. At any given point in

time, another new order can arrive in the system, resulting in the need to determine a new

schedule. This is illustrated by the second red star, which indicates the instance of a new

order arriving in the system at a certain point in time. The second yellow star represents the

instance of the current system state used as input for the new schedule. At the particular

point in time when the new order arrived in the system, the first four operations of the

previous schedule have been completed. These four operations must thus not be included in

the next schedule, for example one of the four operations that were finished is a yellow

operation and there is only one yellow operation in the second schedule instead of two as in

the previous schedule. The operations of the part required by the new order is included in

the second schedule, its operations are represented by the dark green circles. It can be seen

that the new operations have not just been added at the end of the existing schedule, but a

whole new schedule has been generated.

This process must be repeated every time a new order arrives in the system. The frequency

of the arrivals of new orders determines the frequency of schedule changes, hence the need

for frequent planning capabilities in the scheduling mechanism for this study.

Computing a schedule by hand is often time-consuming and hard work. Repeating the

process of schedule generation in a job-shop that has a high order arrival rate can become

an impractical task, especially if it must be done by hand. In this study simulation is

suggested as a means to generate schedules. Simulation-based scheduling is briefly

discussed in the following section, a detail discussion will follow in the literature review.

2.2 SIMULATION-BASED SCHEDULING IN THIS STUDY

Simulation can be used as a modelling tool that can sufficiently imitate the real world. A

simulation model can thus be used to imitate the processes of the job-shop system under

study, the flow of parts through the system and subsequently generate a schedule. Previous

work using simulation as scheduling mechanism is stated and discussed in the literature

section.

The simulation model should configure itself in terms of ordering of the orders currently in

the system, this will be dictated by the currently selected dispatch rule. The model should

then be further configured when a simulation run is started to reflect the current state of

Problem Statement 2

University of Stellenbosch | Department of Industrial Engineering

7

the system. The model can then be run to predict the flow of orders through the system.

The act of scheduling is executed when an operation on a part is assigned to a machine and

possibly queued at the machine. For each scheduling rule investigated, the queue

disciplines are set according to the rule.

Instead of calculating a pro-active schedule by hand a reactive schedule is developed by

using simulation. The reactive schedule will be evaluated and promises to be more efficient,

as simulation imitates the flow of a system very close to the real world.

2.3 CHAPTER SUMMARY

This chapter states the problem that is addressed in this study. It is stated that a scheduling

mechanism should be developed to schedule a job-shop. The characteristics that the

mechanism should have are stated, with the frequent planning capability discussed in more

detail as it is seen as the most important element that the scheduling mechanism should

have.

Simulation is suggested as a means to build a scheduling mechanism with the

characteristics that were stated. A brief overview of simulation based scheduling is included

in this chapter, while a detail discussion is included in the literature review.

In the following chapters, this problem will be addressed, a scheduling mechanism

developed and implemented, and finally it will be tested.

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

8

3. LITERATURE REVIEW

Real-time simulation-based scheduling and control of a manufacturing shop have, over the

years, grown into a very popular research area. Many researchers are studying this area and

several different methodologies, frameworks and implementations have been developed

and derived. The literature review in this chapter examines the work of several researchers

on this topic. The context of this chapter is part of the introduction phase of this thesis, see

below.

This chapter starts by describing the different types of manufacturing shops in which

scheduling is of cardinal importance, the first being flexible manufacturing systems.

Evaluation of Scheduling Mechanism with
Real-World Data

Literature Review on Manufacturing
Shops and Scheduling

Problem Statement: Manufacturing
Shop Scheduling

Proposed Architecture for the Scheduling
Mechanism

Participating Enterprise: Daliff
Engineering

Information System Design and
Implementation

Simulation Model Design and
Implementation

Validation and Verification of Developed
Scheduling Mechanism

Evaluation of the Scheduling Mechanism
in a Stochastic Environment

Future Work

In
tr

o
d

u
ct

io
n

C

o
n

ce
p

tu
al

D
es

ig
n

D

et
ai

l D
es

ig
n

T

es
ti

n
g

C

o
n

cl
u

si
o

n

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

9

3.1 FLEXIBLE MANUFACTURING SYSTEM (FMS)

Originally, automated manufacturing processes were rigid, fixed and designed for a specific

product. However, as manufacturing processes and production demand changed over time,

flexibility of manufacturing processes became a requirement. The demand for greater

product variety, high quality, affordable prices and fast turnover pushed manufacturers to

develop processes that could cope with the fast changing demand. As a result flexible

manufacturing systems (FMSs) were developed (Womack et al.[1], Groover [2]).

Shnits et al. [3] defines a FMS as a manufacturing system that is comprised of automated

hardware such as CNC machines, mini-load storage systems, and automated guided

vehicles or complex conveyors for material handling.

Typical characteristics of a FMS as stated by Shnits and Sinreich [4] are as follows:

 The FMS is capable of manufacturing a large, but finite, variety of part types.

 Each part type needs to go through several operations in a predetermined order,

based on technological constraints.

 Each of these operations can be performed by several machines subject to the

availability of the appropriate tooling.

 The processing time of an operation may differ from machine to machine.

 Production orders of the different part types arrive randomly or according to some

production requirement list.

 Handling and transferring of parts in the FMS are done in single units (on single

unit-load pallets).

 Each work order in the FMS occupies a single resource at any given point in time

(for example a machine, a material handling device, an input/output buffer or a

central storage buffer location).

 Each machining centre can operate on only one work order at a time.

 There is no pre-emption.

 Tooling change times and load/unload time are included in part type processing

time.

 Processing time for each part type operation on each machining centre is known

and fixed.

 Work order due dates are known and fixed.

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

10

 Machines can break down at random.

 Transportation time between the central buffer and the machining centres is

constant for all part types. Material handling devices are available whenever

required.

Davis in Banks [5] described a generic FMS by using a schematic diagram shown in Figure 4.

Jobs enter the system at the entry mechanism, and the job entities receive a part type from

the entry mechanism. This mechanism specifies a probabilistic distribution for inter arrival

times between job entities.

Figure 4 Generic FMS (Banks [5])

Once the job entity is in the FMS, it will follow a certain sequence through the stations. The

sequence depends on the given part type of the job. The entity will typically be placed in a

queue when arriving at a station and when a machine and operator become available, a

setup operation will occur. Setup time is usually predefined and included in the operation

time. When setup is finished, the operator is freed and the operation continues.

The machine is unloaded and freed when the operation is finished. The entity will join the

output queue of the workstation, where it waits to be moved to the next workstation. The

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

11

exit mechanism will free the entity from the system once the processing of the entity is

finished.

The flexibility of a FMS is mainly due to versatile machines that enable alternative and

flexible routing in the system (Byrne and Chutima [6]). Alternative routing implies that work

can be distributed evenly on the different machines, offering better system robustness and

utilization. The production of a wide variety of products is also possible due to alternative

routing and versatile machines. It is obvious that the correct scheduling of the

manufacturing processes is essential to achieve high system efficiency and productivity.

FMSs are in general more sensitive to system disturbances than conventional

manufacturing systems because of tighter synchronization, system integration, and

interdependencies among automated components. Hence, they require an immediate

response to changes in system states (Kim [7]). Real-time scheduling is required and it is

known to be a tremendous task, especially as a result of the dynamic environment of a FMS

(Tung et al. [8]).

A manufacturing shop that relates to a FMS, but does not have that much of a flexible

environment, is the job-shop which is subsequently discussed.

3.2 JOB-SHOPS

Job-shops are almost similar to a FMS. The biggest difference between a job-shop and a

FMS is the alternative routing capabilities of a FMS. In a job-shop the machines are not as

versatile as these in a FMS and the routing options of a job-shop are thus limited.

Hopp and Spearman [9] further define a job-shop as “Small lots are produced with high

variety of routings through the plant. Flow through the plant is jumbled, setups are common,

and the environment has more of an atmosphere of project work than pacing”. In general, job-

shops specialize in a certain field which requires special skills.

Pinedo [10] clarifies the difference between a job-shop and a flow- and open shop

respectively. A job-shop has fixed routes for jobs which differ from job to job, where in a

flow shop the routes of jobs are fixed and the same for each job. In a flow shop the

machines are set up in series and the jobs flow in the same direction through the series. The

flow of jobs in a job-shop follows the route that is assigned to it. Open shops have machines

that can do all the operations. The routes are thus not fixed and are not defined according

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

12

to the job. The flow of jobs is thus dynamic and adjusted to suit a schedule. Open shops and

FMSs are basically the same.

Figure 5 shows which type of shop is applicable in different production environments. The

flow shop is best suited when mass production of common parts is needed. When a great

variety of customized parts, but only a few of each, must be manufactured a job-shop is

applicable. A FMS is appropriate to produce a significant number of parts with a certain

degree of variety.

Figure 5 Type of shop according to production environment

The size of orders and type of parts of an order determines the type of job-shop. One such

type of job-shop is the make-to-order job-shop in which orders drive the production, where

part routing and processing times are determined by the orders. The order sizes are

typically small and the parts are custom manufactured and are seldom manufactured again.

Having a perspective on the type of manufacturing shops and their relation to the

production environment, the scheduling of a job-shop is subsequently discussed.

3.3 JOB-SHOP SCHEDULING PROBLEM

The manufacturing shop under study is a make-to-order job-shop, and scheduling of the

shop must be done, as required by the problem statement. The investigation of job-shop

scheduling is therefore included in this study.

Perregaard and Clausen [11] define the job-shop scheduling problem (JSP) as follows.

Where n jobs are to be processed on m distinct machines, each job is composed of a set of

operations of different time length. These operations are to be processed in an order

Mass production

Customization

Flow shop

FMS/Open
shop

Job-shop

Variation

P
ro

d
u

ct
io

n
 V

o
lu

m
e

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

13

defined in the process plan of the part. Each machine is only able to process one operation

at a time and once an operation is started, it cannot be interrupted, i.e. pre-emption is not

allowed.

Leung [13] gives a more mathematical description of the job-shop scheduling problem:

 A set of jobs has to be processed on a set of different
machines .

 Each job consists of a sequence of operations that

must be scheduled in this order.

 An operation can only be processed on a specific machine among the
available ones.

 Pre-emption is not allowed and machines can only handle one operation
at a time.

 Operation has a fixed processing time .

 The objective is to find an operating sequence for each machine to
minimize the makespan , where denotes the

completion time of the last operation of job ()

Sadeh [12] states that in manufacturing, jobs typically have release dates and due dates.

The release date specifies a date before which the job cannot start and a due date that a job

should ideally be completed. In a make-to-order environment due dates correspond to

delivery dates.

According to Sadeh [12], job-shop scheduling is a Constraint Satisfaction Problem (CSP) or

Constraint Optimization Problem (COP). The constraints that must be satisfied are these of

precedence, capacity, release dates and due dates. The precedence constraints ensure that

the job follows the process route that was assigned to it. The capacity constraints exist to

prevent allocation of multiple operations to the same resource at the same time. The

release date and due date constraints determine the possible time frame in which an

operation can be executed. The release date stipulates the date before which a job can not

start due to practical reasons, where the due date is the date by which a job should be

finished. It is possible that the due date constraint is not met, but some sort of penalty will

then occur.

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

14

Sadeh [12] uses the schematic in Figure 6 to explain the job-shop scheduling problem. In

this problem, there are four jobs on five machines. Each node in the figure represents an

operation and is labelled with the name of the operation (Oi,j), where j is the j-th part and i is

the i-th operation, the k-th resource required is indicated by Rk and the duration of the

operation is simply shown by a number n. The arrows represent the precedence constraints

and the broken lines the capacity constraints. This example assumes that each resource can

only do one operation at a time, hence the capacity constraint. If there is more than one

operation competing for a resource, all but one have to wait, as they cannot be processed at

the same time.

Figure 6 Simple Job-shop problem with 4 jobs (Sadeh [12])

The constraints can be described by referring to Figure 6. Operation O1,3 has to be

performed before operations O2,3 and O3,3, hence the precedence constraint. Operations

O1,1, O1,2 and O2,3 all have to be performed on resource R1, hence the capacity constraint.

Sadeh [12] further states that when some solutions are preferred rather than another, the

job-shop problem becomes a COP with an objective function to optimize. Several

scheduling performance criteria exist; the specific selection being determined by

management structures. A thorough investigation into performance criteria will be

discussed later in this study.

The complexity of the job-shop scheduling problem is determined by using the classic

travelling salesman problem shown in Figure 10. First the complexity classification of a

scheduling problem needs to be discussed.

O1,1 2 R1 O2,1 6 R2 O4,1 2 R3 O5,1 2 R4

O3,1 3 R5

O1,2 7 R1

O1,3 1 R3

O2,2 5 R2

O3,3 3 R2 O2,3 2 R1

O1,4 3 R4 O2,4 3 R2

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

15

When a new scheduling problem is developed, an algorithm is required that is more

efficient than the normal enumerative search. It is often possible that even with a lot of

effort, no efficient algorithm could be found, in which case the theory of complexity can be

applied to state that no efficient algorithm could possibly exist.

The definition of the complexity theory is quite technical, and its complete explanation is

beyond the scope of this study. A brief description will now be given, starting by describing

time complexity.

A measure to quantify the complexity of an algorithm is to refer to the time it takes to

execute the algorithm. The running time of an algorithm is measured as a function of the

size of its input (, an algorithm with a larger input size will take longer to solve. In

complexity theory the running time of an algorithm is stated in terms of the growth rate of

the algorithm. The growth rate is denoted by the notation .

Suppose an algorithm has a running time , where is the running

time of the algorithm and is its growth rate. The algorithm will be a polynomial-

time algorithm, if is a polynomial function of , and if is an exponential function

of , the algorithm is an exponential-time algorithm. For example, if ,

then the algorithm is a polynomial-time algorithm, on the other hand, if ,

the algorithm is an exponential-time algorithm. By hand of the example Leung [13] gives, it

can be shown that it is undesirable to have an exponential-time algorithm as the growth of

an exponential function is much faster than a polynomial function. According to his

example, consider an algorithm with running time . Computers currently

execute one trillion instructions per day, thus if , the algorithm will take more than

30 billion years to run on a current computer (Leung [13]).

The complexity of problems can be classified according to certain complexity classes, the

main two classes being P and NP. P is the class of problems that can be solved in time

proportional to a polynomial of the input size, i.e. problems with a time complexity of

, where is a polynomial function. With any problem belonging to P, it is

known that it can be solved quickly. Linear programming and determining if a number has a

prime are examples of commonly known problems that also belong to P. NP Is the class of

all problems that can be solved using a non-deterministic algorithm in time proportional to

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

16

a polynomial of the input size. A non-deterministic algorithm works on the concept of

guessing a solution and then verifying it.

The difference between problems in the P class and problems in the NP class can be

described as follows. Problems in the P class can be solved in polynomial time using a

deterministic algorithm, whereas proposed solutions, derived from a non-deterministic

algorithm, to problems in the NP class can be verified in polynomial time using

deterministic algorithms.

P class, together with other complexity classes, belong to the NP complexity class, see

Figure 7 as illustration. The NP class is one of the most fundamental complexity classes

which contains decision problems for which solutions can be checked and verified quickly

and problems for which it is not known if a solution can be found in polynomial time.

Figure 7 P class belongs to NP class

The next complexity classes of importance are the complexity classes NP-complete and

NP-hard, and can be defined as follows.

NP-hard is the class of problems for which any problem in class NP can be reduced to the

specific problem in polynomial time.

NP-complete is the class of problems for which any problem in class NP can be reduced to

the specific problem, which is also in the class NP, in polynomial time.

By referring to Figure 8 and Figure 9 a further explanation of these two classes can be given.

The arrow represents the process of reducing a problem X (represented by the diamond),

whose class it belongs to is known, to the problem P1 that is being classified (represented

by the star) in polynomial time. Figure 8 illustrates the NP-hard class, where X, that is

known to be from NP, could be reduced to P1 in polynomial time.

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

17

Figure 8 Illustration of NP-hard

Figure 9 illustrates the NP-complete class, where P1 is known to be from NP and there

exists a problem X from NP that is reducible to P1 in polynomial time.

Figure 9 Illustration of NP-complete

Mathematically, it can be explained as follows. Let X and P1 be two decision problems. We

say that X reduces to P1 in polynomial time, denoted by X poly P1, if there exists an

algorithm that in polynomial time transforms an instance of X, denoted by IX into an

instance of P1, denoted by IP1 such that the answer of IX is yes if and only if the answer to IP1

is yes. Then the classes can be defined as:

A decision problem P1 is NP-hard if X NP, X poly P1.

A decision problem P1 is NP-complete if P1 NP and X NP, X poly P1.

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

18

Leung states that the theory of NP-hardness only applies to decision problems, and seeing

that scheduling problems are optimization problems, it seems that the NP-hardness theory

is not applicable. By adding an additional parameter to any optimization problem and

asking if there is a feasible solution such that the cost solution is smaller, or bigger, than the

additional parameter, the optimization problem can be converted to a decision problem.

This will further be explained looking at the symmetric Travelling Salesman Problem (TSP).

The TSP is an optimization problem that searches for a solution that minimizes the cost of

the total travel of a salesman that needs to visit cities exactly once and return to the

starting city. The diagram on the left of Figure 10 illustrates the problem, the salesman

having the task to visit each city indicated by the symbols A, B, C, D. There is a cost to

travel between every city, the cost is the same for travelling form A to B as it is travelling

form B to A making this a symmetric TSP. The costs for travelling for example from A to B

are not necessarily equal to the cost of travelling from A to C, making the total travelling

costs differ for different routes. The size of the solution space is for , thus

making the size of the solution space for the problem in the figure three, meaning that

there are three alternative routing possibilities. One would think that there are actually six

routing options, they are as follows:

1. A to C ; C to B; B to D ; D to A

2. A to D ; D to B; B to C ; C to A

3. A to C ; C to D; D to B ; B to A

4. A to B ; B to D; D to C ; C to A

5. A to B ; B to C; C to D ; D to A

6. A to D ; D to C; C to B ; B to A

It is correct to believe that there are six routes, but they can be minimized to only three

routes. Routes 1 and 2, 3 and 4, and 5 and 6 are respectively the same routes, but only

completed in the other direction. As stated earlier, the cost for travelling from A to B is the

same for travelling from B to A. The travelling costs for the routes that are actually the

same, only in the other direction, are thus the same, leaving only three different possible

routes to choose from.

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

19

The TSP can easily be converted to a decision problem by adding a parameter and stating

that there must be decided if there is a solution that gives a smaller cost than the

parameter. Looking at the TSP from a running time perspective, the size of the solution

space can be described as which is an exponential-time algorithm

with input , making the TSP NP-complete.

As stated earlier in the discussion on complexity theory, by transforming a NP-complete

problem to the problem that needs to be classified, the problem can be classified as NP-

complete. Figure 10 represents the transformation of a NP-complete problem, hence the

TSP, to the JSP.

Figure 10 Job-shop problem presented as travelling salesman problem

If the job-shop has one machine, , the JSP can be reduced to a TSP where the

machine is the salesman and the operations are the cities (Leung [13]). There are no

travelling costs involved as the resource is allocated to the different operations. Other costs

do exist though, which implies that the order in which the operations are processed will

influence the objective function. Each operation for example has a certain processing time

and due date, it is possible to have different schedules in which some operations are past

their due dates. In this situation the objective will be to find an order of operations that has

the minimum late jobs.

As it was previously shown that the TSP is NP-complete, it is evident that the JSP can also

be classified as a NP-complete problem.

The complexity if the JSP is of such nature that current systems that have been developed

can only solve problems with less than 200 operations (Perregaard and Clausen [11]).

Another example of the complexity is that the classical job-shop problem, created by Fisher

and Thompson [14], with 10 jobs and 10 machines took more than 25 years to solve

A

B

C

D

O1,1

O2,1

R

1

O1,2

O2,2

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

20

(Schutten [15]). Hopp and Spearman [9] indicated that for the classical 10-job 10-machine

problem there are almost 4 x 1065 possible schedules, which is more than the atoms that

there are in the earth, according to them. The JSP is the most difficult problem in the area

of scheduling according to Pezzella et al.[16]. As the JSP has attracted a considerable

amount of research, many techniques have been developed to solve the problem at hand.

The branch-and-bound method and variations of it seem to be the most popular.

Branch-and-bound (see Figure 11 for an example) works on the concept of constructing a

search that explores the space of feasible solutions. A search tree is dynamically

constructed containing different branches, each containing nodes that represent partial

schedules, to explore all possible variations of a schedule. A partial schedule is a schedule

that contains jobs from the set of schedulable jobs, but not all of them, i.e. a schedule with

only two jobs scheduled after one another, leaving the rest of the five jobs unscheduled.

More and more jobs are included in the partial schedules as nodes are added on the next

levels of the tree, until all the jobs are included in the schedules making them complete

schedules. The number of jobs in a partial schedule is equal to the level number the node is

in, for example a node in level two of the tree has two operations in its partial schedule.

Figure 11 Branch-and-Bound example

The objective of the branch-and-bound method is to find an optimal schedule as fast and

effortless as possible. This is achieved by eliminating a branch as soon as possible, i.e.

eliminating at the highest possible level of the tree, by means of lower and upper bounds.

An upper and lower bound are calculated for each node by a certain algorithm. In the case

B

Level 0

Level 1

Level 2

Level 3

LB = 8 LB = 7

UB = 10 UB = 9 UB = 6

LB = 5

UB = 8

LB = 6 LB = 5

UB = 8 UB = 7

LB = 3

LB = 3

A

LB = 3

UB = 4

LB = 5

UB = 6

UB = 3 UB = 4

LB = 4

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

21

of a minimization problem, the lower bound represents the best possible value for the

objective function and the upper bound the worst possible outcome. In the case of a

minimization problem, a branch is eliminated when its lower bound (the best result

achievable) is higher than the upper bound (the worst result achievable) of another branch.

In other words, a schedule is eliminated if another schedule exists that in the worst case

delivers a better result (see node A in Figure 11) than the schedule would if it could achieve

its best result (see node B in Figure 11).

The example in Figure 11 illustrates how branches are eliminated at the highest possible

level of the tree. The two branches that are eliminated at level one each have a lower bound

value of 7 and 8 respectively, which are both higher than the upper bound of 6 of another

node. The rest of the branches are eliminated in similar fashion.

At each node, a set of jobs that can be scheduled (the jobs that satisfy their constraints, for

example their release date has been reached) is selected and from this set, a branch is

created for each job in the set. The branches form new nodes, containing partial schedules

in which the particular job of the branch is scheduled first. For each of these newly added

nodes, more branches are created for the jobs not included in that node’s partial schedule.

This continues until the set of jobs that can be scheduled is empty.

Having described the fundamentals of types of manufacturing shops and job-shop

scheduling, the focus now moves to planning, scheduling and control of manufacturing

processes.

3.4 PLANNING, SCHEDULING AND CONTROL OF MANUFACTURING PROCESSES

WITH JUMBLED PART ROUTINGS

A clear distinction between scheduling, planning and control of a manufacturing process

exists and each has its own objectives. Together they form a functional shop floor

controller. Planning is responsible for providing production routes for individual parts to

meet production requirements. Scheduling uses this list to identify the best schedule to

perform the desired tasks, according to some performance criteria. The performance

criteria constantly change with changes in system state and production requirements,

making the scheduling function dynamic. Execution of the scheduled tasks is the

responsibility of the controller. Before planning, scheduling and control of manufacturing

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

22

processes are discussed, the distinction among the three elements is shown by describing

each individually.

3.4.1 Planning of manufacturing processes with jumbled part

routings

As the part routings of all parts are not the same in a job-shop manufacturing plant,

each part must have a unique production plan. The planning function will define a

list of individual part processing routes; this list usually contains processing times, a

sequence of operations, routing options, part quantities, and part due dates.

3.4.2 Scheduling of manufacturing processes

Baker [17] defined scheduling as the “allocation of resources over time to perform a

collection of tasks”. Pezzella et al. [16] states that scheduling is one of the most

critical concerns in the planning and managing of manufacturing processes.

Scheduling plays an important role in the overall operational control of many

manufacturing systems by efficiently allocating various resources to competing

activities. Scheduling in manufacturing systems is easily performed if there are no

system disturbances and few production changes, because operations are

computer controlled and setup and processing times are deterministic. In this case,

offline scheduling would be sufficient.

Offline scheduling, as described by Leung [13], is done in a situation where all the

production information is known when scheduling is commenced. All the

information regarding the system that needs to be scheduled, like the number of

jobs, their release- and due dates, their production plans, etc. is known. Techniques

can thus be used to determine the best schedule that minimizes an objective

function as the decision maker knows what the future holds.

Two situations in offline scheduling exist, namely deterministic and stochastic

processing environments. When the exact processing times are known a priori it is a

deterministic environment, which cause no difficulty in minimizing the objective

function. When the processing times are not known in advance, but it is known to

be drawn from one or more probability distributions, it is a stochastic environment.

In the stochastic environment, the decision maker needs to find an optimized

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

23

schedule using information from probability distributions. The objective function

can thus only be minimized in a stochastic sense, making it an expectation rather

than a certainty.

A more complicated situation as described above exists when no production

information is known a priori when the decision maker has to determine an

optimized schedule. In this situation online scheduling is required. In an online

scheduling model an objective function must be minimized with no information

about what the future has in store. No information on the number of jobs that

needs to be processed, their release dates, and not even a probability distribution of

their processing times exists beforehand. All that the decision maker can do is to

determine the best action to take every time a new job is released, which will result

in a higher objective function value that could be obtained in the offline case.

Leung summarizes the differences clearly: “Offline deterministic scheduling deals

with the perfect information. Stochastic scheduling deals with some information that

may be perfect and other information that is only distributional. Online deterministic

scheduling deals with the least amount of information.” Other than offline and online

scheduling, there is dynamic scheduling that can be done in an offline or online

scheduling model.

Most manufacturing processes require dynamic scheduling as order arrivals and

machine breakdowns occur dynamically. Dynamic scheduling is defined by Church

and Uzsoy [18] as “scheduling that aims to update an existing schedule by reacting to

the occurrence of unpredictable events”.

Artigues et al. [19] state that there are two types of dynamic scheduling:

incremental and regenerative. Incremental scheduling leaves the currently

scheduled operations as it is and adds the schedule for the new operations to the

existing schedule. With the existing operations taking precedence priority, the lead-

time of the new operations may be very long. Regenerative scheduling generates a

new schedule for all the operations, new and existing. Operations that have already

started are not included in regenerative scheduling.

It can be argued that regenerative dynamic scheduling and online scheduling has a

close relation. In online scheduling the arrival of an order would cause the

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

24

development of a new schedule. If an arrival of an order can be seen as an

unpredicted event in dynamic scheduling and a new schedule has to be developed,

it can be seen as regenerative dynamic scheduling. In each type of scheduling, the

same action will be taken, stating their relation.

3.4.3 Control of manufacturing processes

Control of a manufacturing process is done by a system controller, which is

responsible for converting production requirements into specific instructions for the

individual pieces of equipment and interacting with the equipment to implement

the instructions (Wysk and Smith [20]). The system controller not only sends

instructions to the equipment, but also controls the scheduler. When new

scheduling decisions must be developed the controller commands the scheduler to

calculate a new schedule. The controller and scheduler are inevitably integrated.

The scheduling and control of manufacturing processes has attracted a considerable

amount of research, delivering many different scheduling and control methods. A cursory

overview of a few methods will be discussed next, literature references could be used if

further insight into a method is needed.

Yamamoto and Nof [21] suggest a scheduling/rescheduling method for real-time control

which generates an initial schedule at the beginning of a work period, and schedule

revisions are made when significant operational changes occur. Church and Uzsoy [18]

analyse scheduling/rescheduling methods that treat the dynamic scheduling problem as a

series of static problems that are solved on a rolling-horizon basis. Yih and Thesen [22]

formulate the real-time scheduling problem as semi-Markov decision models.

There are several methods using artificial intelligence (AI) techniques for real-time

scheduling and control. Maley et al. [23] conceptualize a closed-loop control structure for

scheduling and control of a computer-integrated manufacturing system. Sarin and Salgame

[24] developed an interactive, real-time, knowledge-based approach for dynamic

scheduling. Maimon [25] proposes a three-level control system (scheduler level,

communication level, and process sequence level), while Shaw [26] views scheduling as a

process with two levels of decision making, assigning jobs to appropriate cells and

scheduling jobs within each cell.

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

25

Inductive learning has been used, based on status data accumulated in a system knowledge

base (Shaw et al. [27], Piramuthu et al. [28]). Neural networks were used as classifiers to

create the knowledge base for the learning system (Sun and Yih [29], Soon and Desouza

[30], Min et al. [31]). A genetic algorithm is incorporated in the learning mechanism using

simulation for system training and evaluation (Jahangirian and Conroy [32]).

Simulation can be used for decision making and controlling in real-time scheduling.

Applications include emulating real-time control systems, adaptive scheduling and

planning, real-time displays of system status, performance forecasting, as well as actual

implementation into a shop floor controller (Smith et al. [33], Jones et al. [34]). Real time

scheduling is based on the real time simulation of the system, running in parallel with the

actual operation of the system. It consists of making decisions in real time each time a

conflict appears (Julia and Valette [35]). Dynamic use of the scheduling period and

dispatching rules based on shop floor status analysis is suggested (Kim and Kim [36], Jeong

and Kim [37]). Classifiers based on a knowledge base and neural networks are used to

analyse shop floor status (Cho and Wysk [38]), while Ishii and Talavage [39] developed a

special methodology to determine the future scheduling period.

Several researchers combined different techniques forming complex schemes. Wu and

Wysk [40] developed a multi-pass scheduling algorithm that uses a combination of

simulation and a learning system. The system learns from its historical performance and

makes its scheduling decisions based on simulation of alternative combinations of

scheduling rules.

Kim et al. [41] uses a combination of inductive learning and neural networks. Inductive

learning solves the multi-criteria scheduling problem, while neural networks are used to

classify training examples created by simulation runs. The system defines dispatching rules

that are most appropriate for a given set of decision criteria in effect for the planning period

and which are capable of handling alternative routings. A learning algorithm based on a

combination of simulation and an intelligent agent is suggested by Aydin and Oztemel [42].

The study uses a single performance evaluation criterion (average tardiness) and does not

support alternative routings.

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

26

Reisin-Fournier [43] proposes a look-ahead procedure that not only dynamically selects

dispatching rules based on shop floor conditions at decision points, but also learns during

the process.

There are studies that use a fuzzy method as a ranking mechanism for the system shop floor

conditions or for the scheduling criteria. Kazzerooni et al. [44] propose a hierarchical

process simulation driven by a fuzzy method. Fanti et al. [45] incorporate a fuzzy method

and a genetic algorithm for solving a multi-criteria scheduling problem.

All of these scheduling and control methods make decisions based on a chosen

performance criteria and dispatching rules. The following section investigates different

performance criteria and dispatching rules and how they can be implemented.

3.5 PERFORMANCE CRITERIA AND DISPATCHING RULES

Different techniques have been developed to choose the performance criteria and

scheduling rules to be implemented in a system. The decisions are made at various decision

points based on the current system state. The general approach is to determine the

performance criteria, choose a scheduling rule or a set of scheduling rules and estimate the

performance of the chosen rule/rules in terms of the chosen performance criteria.

Techniques differ in the sense of when and how the scheduling decisions are made, and

how their performance are estimated. This section reviews some of these techniques, but

performance criteria and dispatching rules are discussed first.

3.5.1 Performance Criteria Measures for Scheduling

The performance criteria describe the objectives of the system, and could be customer- or

system- oriented. Customer-oriented performance criteria would ensure customer

satisfaction and a good level of service. A typical objective is to minimize late deliveries.

System-oriented performance criteria address system performance, such as minimizing

work in progress and flow time. A change in external conditions (such as a change in market

demands, organization objectives, the priority of orders, etc.) affects the system objectives

as expressed by the scheduling criteria. A change of internal conditions (such as delays on

the shop floor or machine breakdowns) affects part routing, dispatching rules, delivery

dates and other control decisions.

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

27

Several different performance criteria exist and there are numerous ways that the criteria

are implemented and used. Shnits et al. [3] compiled a list of the most used performance

criteria throughout the literature. They are ranked in order of popularity, as follows:

 Minimum mean (or weighted or maximum) flow time, where flow time is equal to

the total time that an order is in the system.

 Minimum mean (or weighted) tardiness, where tardiness is the quality or habit of

not adhering to a correct or usual or expected time.

 Minimum mean (or maximum) lateness, where lateness is the time by which the

completion date of an order exceeds its due date.

 Maximum machine utilization, where machine utilization is the measure of machine

hours recorded during production vs. the hours available or scheduled for a given

period.

 Minimum average (or maximum or weighted) work in progress, where work in

progress is work that has not been completed but has already incurred a capital

investment from the company.

 Minimum makespan, sum of machine idle time; minimize the weighted sum of

machine idle time; maximize the average utilization of machines over maximum

completion time or maximize the average number of jobs processed per unit time.

 Minimum number of tardy jobs, where tardy jobs are jobs that are delayed.

 Maximum throughput, where throughput is the total amount of work done in a

given period.

 Minimum average waiting time, where waiting time is the total time in system

minus the total operation time of a part.

Buyurgan and Mendoza [46] add two criteria to the list, as follows:

 Mean due date deviation (DDD), where the due date deviation is equal to

completion date minus due date.

 Utilization balance (UB), which is equal to the difference in utilization rates among

machining centres.

Wu and Wysk [40] stated that a few equivalences in performance measures could be

employed to reduce the number of distinct performance measures. This leads to a single

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

28

multi-criterion function that includes a greater number of performance measures than what

was originally provided. Examples from Wu and Wysk [40] are:

1. Minimize makespan is equivalent to:

 minimize the sum of machine idle time

 minimize the weighted sum of machine idle time

 maximize the average utilization of machines over maximum completion

time or maximize the average number of jobs processed per unit time

2. Minimize the sum of completion times is equivalent to:

 Minimize the sum of waiting times

 Minimize the sum of flow times

 Minimize the sum of lateness

3. Minimize average (or total) lateness will also minimize average (or total) tardiness;

however the reverse is not necessarily true.

Wu and Wysk [40] suggest a list of the following primary measures:

1. Maximum completion time (makespan)

2. Mean flow time

3. Maximum flow time

4. Number of tardy jobs

5. Mean tardiness

6. Maximum lateness

This section gave a brief overview of the most popular performance criteria measures used

as found in the literature. Next dispatching, or also called scheduling, rules are discussed.

3.5.2 Dispatching Rules

When a machine becomes free, it has to be decided which of the waiting jobs (if there are

any in the queue waiting for the machine) is to be processed on the machine. For making

this decision, a scheduling rule is used to assign a priority value to each of the waiting jobs.

The job having the highest priority, which is defined by either the smallest or the largest

numerical value, is selected for processing next. Different scheduling rules from different

sources are listed below.

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

29

Shnits et al. [3] defined the following dispatching rules:

 FCFS/FIFO - first come first serve/ first in first out

 EDD - earliest due date

 SS - smallest slack (smallest difference between the due date and the current

possible completion time)

 CR - critical ratio (ratio of the remaining process time and the time to due date)

 SRPT - slack/remaining process time (minimal ratio)

 WINQ - work with the least number of jobs in the queue (on the destination

machine)

 COVERT - measure based on the minimal difference between the expected waiting

time and the slack.

Montazeri and van Wassenhove [47] defined the following dispatching rules:

 SPT - shortest processing time

 LPT - longest processing time

 SIO - shortest imminent operation time

 LIO - longest imminent operation time

 SRPT - shortest remaining processing time

 LRPT - longest remaining processing time

 SDT - smallest ratio obtained by dividing the processing time of the imminent

operation by the total processing time for the part (SIO/TP)

 SMT - smallest value obtained by multiplying the processing time of the imminent

operation by the total processing time for the part (SIO*TP)

 LDT - largest ratio obtained by dividing the processing time of the imminent

operation by the total processing time for the part (LIO/TP)

 LMT - largest value obtained by multiplying the processing time of the imminent

operation by the total processing time for the part (LIO*TP)

 FRO - fewest number of remaining operations

 MRO - largest number of remaining operations

 SLACK/RO - job with the smallest ratio of slack time to the number of remaining

operations (slack-per-operation)

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

30

 SSLACK/RO - Select the job with the smallest ratio of static slack time to the

number of remaining operations

 SLACK/TP - Select the job with the smallest ratio of the job slack time to the total

processing time

 SLACK/RP - Select the job with the smallest ratio of the job slack time to the

remaining processing time

 SCR - smallest critical ratio, where critical ratio equals (Due date minus Current

date) divided by Average remaining operation time.

Vinod and Sridharan [48] not only used existing rules, but defined five new rules. The

existing rules are:

 EMDD - Earliest Modified Due Date

 SIMSET - Similar setup

 JCR - Job with similar setup and Critical Ratio

Select a job identical to the job that just finishes processing on the machine. When

there is no identical job, select a job with the smallest critical ratio.

Their new dispatching rules are:

 SSPT - Shortest (Setup time + Processing time).

The job with the smallest value of the sum of setup time and processing time is

selected.

 JSPT - Job with similar setup and Shortest Processing Time.

Select a job identical to the job that just finishes processing on the machine. When

there is no identical job, select the job with the smallest processing time for the

imminent operation.

 JEDD - Job with similar setup and Earliest Due Date.

Select a job identical to the job that just finishes processing on the machine. When

there is no identical job, select the job with the earliest due date.

 JEMDD - Job with similar setup and Earliest Modified Due Date.

Select a job identical to the job that just finishes processing on the machine. When

there is no identical job, select the job with the earliest modified due date with

setup time.

 JSSPT - Job with similar setup and Shortest (Setup time + Processing time).

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

31

Select a job identical to the job that just finishes processing on the machine. When

there is no identical job, select the job with the smallest value of the sum of setup

time and processing time for imminent operation.

The most general dispatching, or scheduling, rules from the literature were presented in this

section. The implementation techniques and their performance, together with the

implementation techniques of the performance criteria measures previously discussed

follows in the next section.

3.5.3 Implementation Techniques of the Performance Criteria and Dispatching

Rules

There exist several methods to implement and use performance criteria. Shnits et al. [3]

reviewed the literature and listed some of these methods. The first method which is found

in many studies, defines a single fixed objective criterion that drives the system. This

objective criterion serves as performance evaluation and does not change with changing

conditions.

The second method is a selectable performance criteria method. This method allows the

user to define an objective criterion that is in use for the next scheduling period and to

change this criterion between different control periods. Such an approach requires

frequent user intervention to evaluate system conditions and to change the objective

criterion if necessary. If this method is implemented with a long scheduling period it would

not be able to respond to system changes in a timely manner, whereas a short scheduling

period is used, there will be an unreasonable load put on the user. This will happen because

the user needs to analyse data and make decisions in frequent intervals in a short time

period.

The third method is called the multi-criteria method. It is a combination of different

performance criteria to which the system is constrained. Examples of this are primary and

secondary objectives. The primary objective could for example be maximizing the number

of jobs completed and secondary minimizing the number of late jobs.

The fourth method uses a set of objective criteria to derive a scheduling policy. The

objectives are compiled by the decision maker and the scheduling policy must satisfy them.

The decision maker may change the objectives as system conditions change, which may

make this approach unpractical due to the load placed on the user.

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

32

A variation of the multi-criteria method assigns weights and rankings to system objectives

according to their importance. This is to prioritize the system objectives and to set up a

measure for scheduling accordingly to meet these weighted objectives. The drawback of

this method is that the weights given to the objectives in most cases are determined once

for a given scheduling period. Thus the system cannot respond dynamically to changing

conditions.

To weight the objective criteria in a dynamic mode, a fuzzy method was developed based

on changing shop floor conditions. A drawback of this method is that the scheduling rules

for a certain objective criteria are predetermined by experience. This does not leave any

room for evaluating their effectiveness for a given shop floor status.

The techniques of implementing dispatching rules and the performance of these rules under

certain circumstances are discussed next.

The performance of scheduling rules depends on the configuration of the production

system it is implemented on. It is also influenced by the chosen performance criteria. In the

literature it is commonly found that researchers contradict each other, which is the result of

testing rules on different systems with different configurations and operational policies. It is

not always clear what the configuration of the system is, thus it is difficult to generalize

results. This section will mention the findings of some researchers most relevant to the

current study.

Conway [49] tested 16 priority rules (e.g. SIO, LIO, FIFOFRO) on a shop with nine machines.

His comparison criteria were measures of WIP, inventory and job lateness. He concluded

that the SIO rule dominates all other rules when WIP is the performance criteria, and that

SIO also performs well with respect to average job lateness. Hershauer and Ebert [50]

stated that the SIO priority rule minimizes mean flow time and that all due date type rules

outperform SIO with respect to the cost per order.

Blackstone et al. [51] established that SIO is the best priority rule for a due date

performance criteria in the following three scenarios:

 the shop has no control over due dates

 the shop has control over due dates and due dates are tight

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

33

 the shop has control over due dates, due dates are loose and there is a great

congestion in the shop (machine utilization approaches 95%)

Conway [49], Hershauer and Ebert [50] have found that SLACK/RO consistently

outperforms other due date based rules. McCartney and Hinds [52] on the other hand,

found that when due dates are tight; the SIO rule gives better results than SLACK/RO.

For average tardiness performance criteria, McCartney and Hinds [52] tested three priority

rules (FIFO, SIO, and SLACK/RO). They found SLACK/RO to perform better than the two

other rules when due-dates are loose. Dar-EI and Wysk [53] also concluded that the SIO

priority rule performs best for average tardiness. Their ranking for the root mean square

(RMS) tardiness performance is WINQ (work in next queue), FIFO, SLACK/RO and SIO.

Montazeri and van Wassenhove [47] found that for average machine utilization SDT

(SIO/TP) performs best. It produces a rather high value for variance of machine utilization,

which can cause a bottleneck. They found that LPT based rules maximize machine

utilization. They also found that the SDT rule delivers the lowest makespan, therefore

performs best for a high production rate performance criteria.

Having perspective of the different aspects of scheduling a manufacturing shop, an

investigation into the type of scheduling technique that will be used in this study

subsequently follows, starting with a description of discrete event simulation as scheduling

will be done using simulation.

3.6 DESCRIPTION OF DISCRETE EVENT SIMULATION

A perspective of discrete event simulation (DES) is illustrated in Figure 12. The top down

structure was developed from the work of Davis in Banks [5]. The rest of this section will

follow the top down structure to define discrete event simulation.

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

34

Figure 12 Simulation in perspective

Modelling is defined as the representation of an object in a form other than the object itself

(Bekker [54]). Modelling can be used as an aid to the process of thought, communication,

training, experimenting, etc. There are several forms of modelling that exists, e.g. physical,

mathematical, ecological. A physical model will for example be a scale model of a vehicle,

while the trajectory of a rocket can be described by a mathematical model.

Simulation, along with the likes of linear programming and queuing theory is classified as a

mathematical modelling technique. Banks [5] defines simulation as follows: “It is the

imitation of the operation of a real-world process or system over time. Simulation involves

the generation of an artificial history of the system and the observation of that artificial

history to draw inferences concerning the operating characteristics of the real system that is

represented.” Simulation can be used to test the behaviour of a process or system under

certain conditions without interrupting the real process or system. Simulation is often used

to answer what-if questions (Bekker [54]).

Figure 12 also represents the three traditional simulation dimensions, and the classification

of DES can be stated from it. DES is dynamic since it is time dependent, stochastic as

variation is inevitable and discrete with regards to time increments. In DES a change of state

in a system is an event, which can occur at any instance of time.

Fixed Increment Fixed Increment Next Event

Continuous Discrete Continuous

Modelling

Mathematical:
Economic model;
Rocket trajectory

Other forms of
models.

Other Mathematical
modelling techniques

Simulation

Dynamic Static

Stochastic Deterministic Stochastic

Time
Dependency

Characteristics
of Variables

State Variables

Simulation Time
Increment

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

35

DES can thus be described as the imitation of the operation of a real-world process or

system in which the system state changes at discrete, and possibly random, points in time.

This characteristic enables the use of simulation as an online scheduling tool, which is

discussed next.

3.7 USING SIMULATION AS SCHEDULING TOOL

During operation of a make-to-order manufacturing process, the system state changes

frequently. A new order, new product or a new variant of a product could be introduced.

These manufacturing changes and disturbances like machine breakdowns could force the

rescheduling of the future. The impact of these changes and disturbances must be

assessed, and if necessary, a new control policy must be developed and proved correct

before changes are incorporated into the real system (Drake and Smith [55]).

Simulation is suggested as it provides for a model that corresponds to operation of the real

world system under defined conditions, and it makes it possible to evaluate new control

policies without implementing them into the real system.

Davis in Banks [5] states that the projected performance of a manufacturing process is

usually over-estimated, because a statistical estimate of the steady-state performance of a

manufacturing process has been used, and if the system is operated in a flexible manner, a

steady-state will never exist. Davis describes on-line planning and control using real-time

simulation (see Figure 13). He starts off by stating that on-line planning and control begins

with the assumption that a simulation model for the real world exists and withstood the

validation process. It is stated that the real-time simulation is necessarily data driven,

because it is affected by the same inputs as the real system.

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

36

Figure 13 Schematic for the on-line planning/control process using real-time simulation (Banks [5])

From Figure 13 it can be seen that there exist three types of input components. There is the

exogenous input component which the system has no control over. The second component

is the endogenous control input which depends on the selected control policy. The last

component is the current system state.

Davis states that the validation process must continue under the on-line planning and

control scenario, even whilst the model has been validated. It is necessary because the

system continually changes and the model must reflect these changes. Davis included an

auto validation process that compares the output projected by the model against the

measured output of the system.

Figure 13 suggests N instances of the system model. Each of these instances considers an

alternative control law for possible implementation and the system is simulated with the

alternative control law. These simulations have to execute faster than real time to

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

37

characterize the future response of the system. The result from each instance is passed on

to an on-line output analysis process. If an alternative control policy provides better

performance over the currently implemented policy, it replaces the current policy and is

implemented immediately.

Kim [7] developed a scheduling mechanism, containing a simulation mechanism and a real-

time control system, based on the scheduling/rescheduling approach. The simulation

mechanism evaluates various dispatching rules and selects the best one for a given

performance criterion. The rules that were selected are the input to the control system. The

real-time control system periodically monitors the shop floor and checks the system

performance value. A new simulation is performed when the performance of the system

significantly differs from the predicted behaviour, or when there is a major disturbance in

the system. If a machine breaks down and has to be repaired, a new simulation is run to

determine a new schedule without the machine until it is fixed, when a new simulation will

be run.

Drake and Smith [56] identified five basic concepts for simulation systems in on-line

planning, scheduling and control:

1. The system should be multifaceted, meaning that the system can be approached from

different points of view by different users.

2. The logically distinct activities of on-line simulation-based planning, scheduling and

control should be separated by the system. Activities includes modelling physical

structure, modelling control logic, simulation input, experimentation, output analysis,

and task dispatching.

3. The system should incorporate not only good human interfaces, but also explicit

software interfaces to the activities of model development, simulation input,

experimentation, output analysis, and task dispatching.

4. The system should allow model modification with minimal effort.

5. The system should be flexible yet easy to use for modellers and end-users.

The framework that Drake and Smith [56] developed after identifying the concepts for

simulation systems in on-line planning, scheduling and control is illustrated in Figure 14.

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

38

Figure 14 General framework and functional elements of an on-line simulation model (Drake and Smith
[56])

The user interface of the framework is divided into two environments, namely modelling

and simulator. The modelling environment is for the simulation analysts who define the

simulation construct and logic. The physical structure and task dispatching of the simulator

is defined in the model frame, whilst the control logic is defined in the rules frame. The

simulator environment is for the end-user and includes the activities that define the

process. The entity, experiment and output analysis frames are the three main frames of

the simulator environment. Their respective functions are simulation input (e.g. order

information), experimentation and execution (e.g. choosing scheduling rule), and

manipulating and presentation of data (e.g. creating a schedule). The interactive monitor

acts as a real-time interface to the simulator.

These two environments act as inputs for the simulation model which has five functional

elements, namely physical structure, task dispatching, control logic, simulation input, and

simulation output. Figure 14 shows the interaction of each of these functions with the

respective frames of the interface environments.

This section discussed how simulation can be used as a scheduling tool, it also presented

simulation-based scheduling frameworks that were used in other research projects.

Modeller End-user

Simulator
Environment

Experiment Frame

Entity Frame

Output Analysis
Frame

Interactive Monitor

Modelling
Environment

Model Frame

Rules Frame

Simulation Model

Physical Structure

Task Dispatching

Control Logic

Simulation Input

Simulation Output

Literature Review 3

University of Stellenbosch | Department of Industrial Engineering

39

3.8 SUMMARY OF THE LITERATURE REVIEW CHAPTER

In this chapter a discussion of some of the literature on manufacturing scheduling was

presented. The different components that reside under the topic and work of several

researchers were stated.

The main areas of discussion included flexible manufacturing systems; job-shops; make-to-

order job-shops; the job-shop scheduling problem; planning, scheduling and control of

manufacturing processes; performance criteria and dispatching rules; the performance of

certain scheduling rules; discrete event simulation; and simulation as scheduling tool.

Previous work on using simulation as a scheduling tool, planning, scheduling and control

systems developed, and different performance criteria’s and scheduling rules used were

illustrated and discussed.

This chapter strives to give the reader a good understanding of the topic at hand so that the

rest of this thesis can be placed in context. The next chapter starts the conceptual design

phase of this study, stating the manufacturing shop and manufacturing process of the

enterprise under study.

Technical Description of the Participating
Enterprise: Daliff Engineering

4

University of Stellenbosch | Department of Industrial Engineering

40

4. TECHNICAL DESCRIPTION OF THE PARTICIPATING ENTERPRISE: DALIFF

ENGINEERING

An overview of the local enterprise discussed in the problem statement is included in this

chapter. The enterprise was previously introduced in the problem statement by giving a

general background of the enterprise and its operations. An in-depth investigation about

the configuration, characteristics, order-handling and production processes is discussed to

develop a scheduling mechanism. This chapter, as shown below, is the start of the

conceptual design phase of the study.

Daliff Engineering is a make-to-order job-shop and is situated in Airport Industria, Cape

Town. Daliff specialises in the manufacturing of aerospace parts, but also manufacture

Evaluation of Scheduling Mechanism with
Real-World Data

Literature Review on Manufacturing Shops
and Scheduling

Problem Statement: Manufacturing Shop
Scheduling

Proposed Architecture for the Scheduling
Mechanism

Participating Enterprise: Daliff
Engineering

Information System Design and
Implementation

Simulation Model Design and
Implementation

Validation and Verification of Developed
Scheduling Mechanism

Evaluation of the Scheduling Mechanism
in a Stochastic Environment

Future Work

In
tr

o
d

uc
ti

o
n

C

o
n

ce
p

tu
al

D

es
ig

n

D
et

ai
l D

es
ig

n

T
es

ti
n

g

C
o

n
cl

u
si

o
n

Technical Description of the Participating
Enterprise: Daliff Engineering

4

University of Stellenbosch | Department of Industrial Engineering

41

precision parts. Order sizes are usually small and each part unique. A detail description of

the order processing at Daliff starts the description of the enterprise.

4.1 ORDER PROCESSING AT DALIFF ENGINEERING

The order handling process at Daliff Engineering can be described as follows. A customer

requests a quote for a specific part, and one or more drawings of the part accompany the

request. The manufacturing engineer determines what materials are needed and what

operations must be performed to manufacture the part. The engineer also predicts the

number of manufacturing hours and a quote is compiled and sent to the customer.

When the customer accepts the quote, an order is generated. The sheet that the

manufacturing engineer used to generate a quote becomes the job sheet for

manufacturing. All these are currently done on paper. Machines are set according to

specifications and the part is manufactured.

A time sheet for every machine is kept as manufacturing continues. At the end of each

working day, manufacturing hours are recorded into a database. Daliff uses the database

only as an accounting tool. The processing of orders is illustrated in Figure 15.

Figure 15 Order processing at Daliff Engineering

Determine
Operations

and Material
needed

Customer
Enquiry

Manufacturing
Planning Sheet

Generate
Quote

Quote

Generate
Order

Customer
Accepts

Job Sheet

Manufacture
Part(s)

Generate
Time Sheet

Deliver
Part(s)

Update
Database

Send Invoice

Technical Description of the Participating
Enterprise: Daliff Engineering

4

University of Stellenbosch | Department of Industrial Engineering

42

Daliff currently uses a responsive scheduling approach. There is no fixed schedule compiled

which the operators follow, currently orders are sent to their particular machines and the

operator attends to it as soon as possible. The machine configuration of Daliff is

subsequently discussed.

4.2 MACHINE CONFIGURATION AT DALIFF ENGINEERING

The machine configuration at Daliff can be divided into two sections: the CNC Milling and

Turning and the General Work Shop. Most of the work is done in the CNC section and this

study will only focus on this section of the plant. The configuration of the CNC section is

shown in Table 1 and Table 2.

Table 1 Milling Machines

Type Reference Quantity

General Old V40

New V40

2

4

Small V30

Mini Mill

1

1

Big V80 1

5-Axis DMU 1

Table 2 Turning machines

Type Reference Quantity

Small AP 20 1

Medium T7 1

Big Megaturn 1

The new V40 machines perform tasks quicker and can handle more complex procedures

than the old V40 machines. The small milling machines type contains two different

machines, but because they can process similar tasks they are seen as one station that has a

capacity of two. The same qualifies to the old V40 station with a two machine capacity and

the new V40 station with a four machine capacity. The general milling machines thus have a

capacity of six machines and Daliff has a total of thirteen machining resources.

The machine types classify the size of the parts that each machine can handle. It is possible

for a small job to be milled on the V80, although it is actually meant to mill large parts.

Technical Description of the Participating
Enterprise: Daliff Engineering

4

University of Stellenbosch | Department of Industrial Engineering

43

The machining processes include a quality control station as well. When a setup for a part is

finished, the machining operation is performed on the first unit of the part set. The unit is

then sent to the quality control station for inspection. After the inspection is completed,

and the quality is acceptable, the rest of the units of the part set can be processed.

The setting of an operation can only be done by personnel called setters, whilst the

processing can be done by any of the qualified machine operators. There are only a few

setters and they can thus be seen as limited resources that processes compete for.

Transfer times between stations are insignificantly small and are ignored. Daliff and its

suppliers have a sound relationship, and material supply will not usually cause an order to be

delayed. It can be assumed that there is never a material shortage.

4.3 CHAPTER SUMMARY

In this chapter Daliff Engineering was discussed to illustrate what their manufacturing shop

configuration is like. Knowing this, a scheduling mechanism that is appropriate to them can

be developed.

In the next chapter the second part of the conceptual design phase of this study is

discussed, namely the architecture that was developed for the scheduling mechanism.

Architecture of the Proposed Scheduling
Mechanism

5

University of Stellenbosch | Department of Industrial Engineering

44

5. ARCHITECTURE OF THE PROPOSED SCHEDULING MECHANISM

In this chapter the architecture that was developed for the proposed scheduling mechanism

is described. It forms part of the conceptual design phase of this study, as illustrated by the

thesis road map below. The top level architecture of the complete system and the low level

architecture of the simulation model will be discussed.

5.1 TOP LEVEL ARCHITECTURE OF THE SYSTEM

The top level architecture of the scheduler displayed in Figure 16 describes the functionality

of the scheduler. It can be broken down into four parts: input, simulation model, results

analysis and output.

Literature Review on Manufacturing Shops
and Scheduling

Problem Statement: Manufacturing Shop
Scheduling

Proposed Architecture for the
Scheduling Mechanism

Participating Enterprise: Daliff
Engineering

Information System Design and
Implementation

Simulation Model Design and
Implementation

Validation and Verification of Developed
Scheduling Mechanism

Evaluation of the Scheduling Mechanism
in a Stochastic Environment

Future Work

In
tr

o
d

uc
ti

o
n

C

o
n

ce
p

tu
al

D

es
ig

n

D
et

ai
l D

es
ig

n

T
es

ti
n

g

C
o

n
cl

u
si

o
n

Evaluation of Scheduling Mechanism with
Real-World Data

Architecture of the Proposed Scheduling
Mechanism

5

University of Stellenbosch | Department of Industrial Engineering

45

The input of the scheduler has two components, the enterprise information system and the

shop floor. The information system provides information on the orders, while the shop floor

component indicates the current state of the shop floor. These inputs drive the second

component of the architecture, the simulation model.

The simulation model is configured according to the information system inputs. When the

configuration is completed, the simulation model estimates the performance of the

scheduling rules under the current shop floor status and latest order configuration.

The estimated performance of each schedule is recorded for analysis. The scenarios are

compared to determine which scheduling rule must be implemented based on the

performance criteria of the scenarios selected by the user. If the user would like to decrease

the makespan of the orders, the scheduling rule that results in the shortest processing time

of the current list of orders will be chosen as the best. The scheduler produces an updated

schedule, and the schedule can be implemented as the user chooses.

Figure 16 Top level architecture of the scheduler

Architecture of the Proposed Scheduling
Mechanism

5

University of Stellenbosch | Department of Industrial Engineering

46

5.2 LOW LEVEL ARCHITECTURE OF THE SIMULATION MODEL

The simulation model architecture is presented in Figure 17. The enterprise database feeds

the simulation model with information about the system status and arriving orders. The

database is concurrently updated from the real-world shop floor as production continues.

The simulation model executes a query that filters the information in the information

system into the format that suits the model, see Table 3. From the result of this query the

simulation model is run.

Table 3 Query result
Job
No

Approved
Date

Prom
Date

Ops
No

Mach
ID

Mach
name

Setup
timeA

Setup
timeB

Setup
timeC

Insp
time

Proc
TimeA

Proc
TimeB

Proc
TimeC

Status
Id

1 2008/06/01 2008/08/02 1 1 V80 2 3 0 1 2 3 4 1

1 2008/06/01 2008/08/02 2 8 V40_New 2 3 0 1 20 30 0 0

1 2008/06/01 2008/08/02 3 2 V40_Old 2 3 0 1 1 2 0 0

2 2008/06/01 2008/07/25 4 1 V80 2 3 0 1 1 3 0 1

2 2008/06/01 2008/07/25 5 4 T7 2 3 0 1 7 8 13 0

2 2008/06/01 2008/07/25 6 3 Megaturn 2 3 0 1 1 7 8 0

3 2008/06/01 2008/08/01 7 1 V80 2 3 0 1 3 8 9 1

3 2008/06/01 2008/08/01 8 8 V40_New 2 3 0 1 10 12 13 0

3 2008/06/01 2008/08/01 9 3 Megaturn 2 3 0 1 2 4 0 0

3 2008/06/01 2008/08/01 10 4 T7 2 3 0 1 1 3 4 0

3 2008/06/01 2008/08/01 11 5 5Axil 2 3 0 1 4 7 0 0

4 2008/06/01 2008/06/30 12 2 V40_Old 2 3 0 1 1 4 5 1

4 2008/06/01 2008/06/30 13 1 V80 2 3 0 1 5 17 0 0

The simulation run is repeated for several independent replications, which allows one to

estimate average values over all the replications. A schedule is compiled that may be

implemented on the shop floor.

Architecture of the Proposed Scheduling
Mechanism

5

University of Stellenbosch | Department of Industrial Engineering

47

Figure 17 Simulation model architecture

5.3 CHAPTER SUMMARY

In this chapter the architecture that was developed for the proposed scheduling mechanism

is described. The high-level architecture was first described to state the concept of the

scheduler, followed by a brief overview of the simulation model’s architecture.

The design and implementation of the elements of the proposed architecture will now be

discussed in subsequent sections, starting with the information system design and

implementation.

Information System Design and Implementation 6

University of Stellenbosch | Department of Industrial Engineering

48

6. INFORMATION SYSTEM DESIGN AND IMPLEMENTATION

The first part of the detail design phase of this study contains the development and

implementation of an information system, see the thesis road map included on this page.

The information system has been developed for several reasons, but most importantly to

act as an input platform for the simulation model. It is a web-based information system

developed in MS FrontPage using ASP coding for dynamic operations, while the data

structure was implemented in MS Access. In this chapter the design and the

implementation of the information system is discussed.

The information system enables the production planner to electronically generate a quote,

which is also automatically stored in the database. When the customer accepts the quote,

the production planner changes the quote to an order using the information system. The

Literature Review on Manufacturing Shops
and Scheduling

Problem Statement: Manufacturing Shop
Scheduling

Proposed Architecture for the Scheduling
Mechanism

Participating Enterprise: Daliff
Engineering

Information System Design and
Implementation

Simulation Model Design and
Implementation

Validation and Verification of Developed
Scheduling Mechanism

Evaluation of the Scheduling Mechanism
in a Stochastic Environment

Future Work

In
tr

o
d

uc
ti

o
n

C

o
n

ce
p

tu
al

D

es
ig

n

D
e

ta
il

D
e

si
g

n

T
es

ti
n

g

C
o

n
cl

u
si

o
n

Evaluation of Scheduling Mechanism with
Real-World Data

Information System Design and Implementation 6

University of Stellenbosch | Department of Industrial Engineering

49

information system will then implement this change in quote status and configure the order

information to become input to the simulation model.

The information system also enables the user to add new customers and materials. It also

has the capability to give the user summary reports of the current quotes, orders and

operations, and completed orders.

A detailed description of the information system can be divided into two sections: 1) the

data and the information system configuration and 2) processes. Both will be subsequently

discussed, starting with the data configuration using entity relationship diagrams.

6.1 INFORMATION SYSTEM ENTITY RELATIONSHIP DIAGRAM AND DATA

STRUCTURE

An entity relationship diagram (ERD) shows the relationships among entities. Entities

represent any object or event that data has been collected about and a relationship

describes the association among these entities. The ERD of the information system

developed for this study is shown in Figure 18, followed by a description.

Figure 18 ERD of the information system

Information System Design and Implementation 6

University of Stellenbosch | Department of Industrial Engineering

50

The enterprise has several Customers. One customer can place many Orders, but one order

can only have one customer, therefore the one-to-many relationship between customers

and orders. The optionalities confirm that customers can exist without having an order, but

an order needs a customer to exist. The only other one-to-many relationship is between

Status and Ops. An operation can only have one status, where many operations can have

the same status. An operation will always have a status, where it is possible that a status

could not be assigned to any operation yet.

Orders can consist of many Parts, whilst Parts can belong to many Orders. Each order

consists of at least one part and a part must be assigned to an order. Parts consist of many

Materials where a material can be assigned to many parts. There exist materials that have

not yet been assigned to a part, but a part must be made of materials. Each part can have

many Operations and an operation can be repeated on many Parts, both need to be

assigned to one another to exist. A Machine can manage many operations and it is possible

that an operation can be processed on different machines. It is possible that a machine has

no operations assigned to it, but an operation needs a machine to be processed.

6.2 RELATIONAL DATA STRUCTURE FOR THE INFORMATION SYSTEM

The entities are represented as tables in the database. These tables are also referred to as

relations. The relational data structure further describes these relations by defining the

contents of each – these are known as attributes. This structure is illustrated in Figure 19.

Note that a specific instance of an entity, i.e. a set of attribute values, is a record in the

entity.

Information System Design and Implementation 6

University of Stellenbosch | Department of Industrial Engineering

51

Figure 19 Relation Data Structure of the Information System

The Primary key of the entity record is underlined with a solid line. A primary key is defined

as an attribute that uniquely identifies a record. The attributes with the ‘FK’ abbreviation

are known as foreign keys. A foreign key is any attribute that is a nonkey in one relation but

a primary key in another, and they establish the entity relationships.

The following relations of the relational data structure, displayed in Figure 20, are also

referred to as associative entities. An associative entity, sometimes called a junction or

intersection entity, allows for implementation of many-to-many relationships. The

combination of foreign keys forms the primary key of each intersection entity.

Figure 20 Relational Data Structure containing associative entities

Orders_Parts(Job_No_FK, Part_ID_FK)

Parts_Materials(Part_ID_FK, Mat_ID_FK, Mat_Qty)

Parts_Ops(Part_ID_FK, Ops_No_FK)

Ops_Machines(Ops_No_FK, Mach_ID_FK, Enforce)

Customers(Cust_ID, Cust_Name)

Orders(Job_No, Order_No, Cust_ID_FK, RecDate, ApprovedDate,

PromDate, OrderStatus)

Parts(Part_ID, Part_Name, Qty, Drawing_No, NumOps)

Materials(Mat_ID, Mat_Name, Stock_Level)

Ops(Ops_No, Ops_Name, Setup_Time, Insp_Time, Prod_Time,

Start_DateTime, End_DateTime, CSetup_Time, CInsp_Time,

CProd_Time, Status_ID_FK)

Machines(Mach_ID, Mach_Name)

Status(Status_ID, OpsStatus)

Information System Design and Implementation 6

University of Stellenbosch | Department of Industrial Engineering

52

6.3 DATA DICTIONARY

The data dictionary contains data about the data elements (attributes) in an entity. The

data about the data is known as metadata and describe the data type, allowable range and

default value, among others. The data dictionary for this design is included in Appendix I.

6.4 INFORMATION SYSTEM CONFIGURATION AND PROCESSES

The configuration of the information system is described by data flow diagrams of the

processes of the information system. The implementation of this configuration is shown by

several screenshots of the information system interface.

6.4.1 DATA FLOW DIAGRAMS OF THE MAIN PROCESSES OF THE

INFORMATION SYSTEM

A data flow diagram (DFD) is a graphical representation of data flow. The information

system that was developed has seven main processes. The DFD for each process is

subsequently illustrated and described separately.

Figure 21 shows the DFD for the quote generation process. When a customer requests a

quote, the request gets added to the order master record. A quote is generated using data

records from the customer, material and machine master records. The quote is sent to the

customer and the quote also gets updated in the order master record.

Information System Design and Implementation 6

University of Stellenbosch | Department of Industrial Engineering

53

Figure 21 DFD for quote generation process

Figure 22 shows the DFD for the process of adding a new customer. The customer

information is used to generate a customer record that is saved in the customer master

record.

Figure 22 DFD for add new customer process

The customer places an order by accepting the quote. The status of the applicable record in

the order master data store gets changed from a quote to an order by the user. An order is

then generated by using information that was stored with the quote, and the order is sent

to the production planner. The DFD describing the status change process is shown in Figure

23. The user chooses the particular quote that he/she wants to change into an order. The

particular order is selected from the orders master data store. Its status gets changed from

a quote to an order and the change is stored in the orders master data store.

New
Customer
Information

3
Add

Customer
Record

Customers D1

Customer
Record

Customer

1
Add

Customer
Request

Orders D2

Customer
Request

Request for
Quote

2
Generate

Quote

Quote

Quote

Materials D3

Machines D4

Customers D1
Customer Record

Material
Record

Machine Record

Customer

Customer

Planner

Customer ID

Information System Design and Implementation 6

University of Stellenbosch | Department of Industrial Engineering

54

Figure 23 DFD for quote status change process

The user can request a report on the existing orders, quotes or operations in the system.

The DFD, see Figure 24, illustrates the process of report generation. When the user sends a

request for a report, the relevant data is collected from the orders master data store. A

report is then generated and presented to the user.

Figure 24 DFD for report process

Figure 25 shows the DFD for the process of adding a new material type. The new material

information is used to generate a material record that is stored in the material master data

store.

6
Collect

Information

Orders D2
IS User

7
Generate

Report

Orders/Quotes/
Operations Information

Request for
Orders/Quotes/
Ops Report

Orders/Quotes/
Ops Report

IS User

Orders/Quotes/
Ops Information

4
Find

Particular
Quote Info

Orders D2
Engineer

5
Change

Quote Status
to Order

Quote Information

Quote number

Quote
Information

Order
Information

Information System Design and Implementation 6

University of Stellenbosch | Department of Industrial Engineering

55

Figure 25 DFD for add material process

A child diagram is an exploded version of a process. The process that is exploded is called a

parent process, and the inputs and outputs for the child diagram must be the same as those

of the parent process. The only process that is significant enough to explode is Process 2,

the generation of a quote. The child diagram of this process is shown in Figure 26.

The information of the customer that requested the quote must first be found from the

customer master data store. This information is added to the quote information. The

particular material that will be needed to produce the order is selected from the material

master data store. The material information is added to the quote information. The

operations that need to be performed are created and stored in the quote information and

in the operation master data store. The machine on which each operation must be

performed is selected from the machine master data store. This selection information is

added to the quote information. The machining time of each operation on the respective

machines is calculated and also saved to the quote information. The quote information is

then sent as an output of the quote generation process. The quote record is now completed

and also acts as an output.

8
Add Material

Record
Materials D3

IS User

New Material
Information Material Record

Information System Design and Implementation 6

University of Stellenbosch | Department of Industrial Engineering

56

Figure 26 Child diagram for the quote generation process

6.4.2 INFORMATION SYSTEM INTERFACE

The interface of the information system is best described using screenshots. In the

following few pages, screenshots of the main processes are shown. The homepage with the

user options is shown in Figure 27.

Orders D2

2.1
Read

Customer
Record

Customer
Record

Materials D3

Machines D4

Customers D1

Customer
Record

Quote
Information

2.2
Choose

Materials
Needed

Material
Record

Quote with
Material Info

2.3
Create

Operations
Needed

Operation
Records

Operations D5

Material ID

Orders D2

2.4
Assign

Machine

Machine
Record

Quote with
Ops Info

2.5
Estimate

Machining
Times

Quote with
Machine Info

Machine ID

Operation No

Quote

Information System Design and Implementation 6

University of Stellenbosch | Department of Industrial Engineering

57

Figure 27 Homepage screenshot

The page used to add material is shown in Figure 28. It contains input fields for the material

name and quantity.

Figure 28 Add material screenshot

Information System Design and Implementation 6

University of Stellenbosch | Department of Industrial Engineering

58

The page used to generate a quote is shown in Figure 29. The name of the customer that

requested the order is selected with the drop-down box, whilst the order number is written

to the appropriate input box and the number of parts the order consist of is selected with

the second drop-down box.

Figure 29 Generate quote screenshot

The page that follows the “Generate quote” page is the “Assign part information” page,

shown in Figure 30. The name of the part, the quantity, its drawing number, the number of

operations that needs to be executed to produce the part and what type of material is

needed must be chosen and act as inputs.

Information System Design and Implementation 6

University of Stellenbosch | Department of Industrial Engineering

59

Figure 30 Assign part information screenshot

The next page in the quote generation process is the “Add operations” page, shown in

Figure 31. The number of operations related to the order has already been determined, the

information of each operation now needs to be added. The operation name, processing

time and setup time must be entered into the text boxes. The machine on which the

operation must be performed is chosen from the drop-down box.

Figure 31 Adding operations to an order screenshot

Information System Design and Implementation 6

University of Stellenbosch | Department of Industrial Engineering

60

The page used to add a new customer is shown in Figure 32, the account number and

customer name need to be entered into the input boxes.

Figure 32 Add new customer screenshot

For changing a quote to an order, the user visits the page shown in Figure 33. The particular

quote is selected from the drop-down box and the accepted date and promised date are

entered; the user can enter the date either manually or by the use of a pop-up calendar.

Figure 33 Update quote to an order screenshot

Information System Design and Implementation 6

University of Stellenbosch | Department of Industrial Engineering

61

The pages displayed when reports of the current quotes, orders, etc. are requested,

contains simply a table that lists the particular records. This concludes the description of the

information system interface and also the chapter on the information system, a brief

overview of the chapter follows.

6.5 BRIEF OVERVIEW OF THE INFORMATION SYSTEM DESIGN AND

IMPLEMENTATION

In this chapter the design and implementation of the information system that was

developed to support the simulation scheduling model was described. The chapter started

by stating what the function of the information system is, followed by a description of the

relationships among entities through the use of an entity relationship diagram and

relational data structure. The configuration was described through data flow diagrams,

while the interface was shown using screenshots of the information system. The ASP code

of the web based information system is included in Appendix II.

As previously stated, the information system acts as an input for the simulation model,

which will be described in the next chapter.

Description of the Simulation Model 7

University of Stellenbosch | Department of Industrial Engineering

62

7. DESCRIPTION OF THE SIMULATION MODEL

A simulation model has been developed as the next stage in the detail design phase of this

study, shown on the thesis road map on this page, and to represent the process of

manufacturing at Daliff Engineering. The process an order follows from order placement to

delivery needs to be simulated as close as possible to the actual process of the real-world

system. A schedule needs to be generated while the process is simulated. In this chapter the

design and implementation of the simulation model is described.

As introduction to the detail description of the simulation model, the high-level concept of

the simulation model will be explained in the next section.

Literature Review on Manufacturing Shops
and Scheduling

Problem Statement: Manufacturing Shop
Scheduling

Proposed Architecture for the Scheduling
Mechanism

Participating Enterprise: Daliff
Engineering

Information System Design and
Implementation

Simulation Model Design and
Implementation

Validation and Verification of Developed
Scheduling Mechanism

Evaluation of the Scheduling Mechanism
in a Stochastic Environment

Future Work

In
tr

o
d

uc
ti

o
n

C

o
n

ce
p

tu
al

D
es

ig
n

D

et
ai

l

D
es

ig
n

T

es
ti

n
g

C

o
n

cl
u

si
o

n

Evaluation of Scheduling Mechanism with
Real-World Data

Description of the Simulation Model 7

University of Stellenbosch | Department of Industrial Engineering

63

7.1 HIGH-LEVEL CONCEPT OF THE SIMULATION MODEL

The information system populates the enterprise database, which serves as the input for

the simulation model. The simulation model searches the data for orders that need to be

processed, and creates a table with the information of these orders.

An order can have one or more than one part that must be manufactured, while the

quantity of each part that must be manufactured can also differ. Each part has to go

through several different operations during manufacturing. These operations are

performed on specific machines, depending on the type of operation. The operations of a

part follow a certain sequence and no two operations can be processed at the same time.

Figure 34 shows a typical order structure. The order has two different types of parts,

requiring two units of Part 1 that must be manufactured, and one unit of Part 2. Part 1

requires four operations and Part 2 only three.

Figure 34 Order structure

The input for the simulation model is thus a table with a list of operations. Each operation is

a record and has an order number and part ID. The other fields of the records are shown in

Table 4.

Table 4 Fields of the Input Record

 Name: Description:

1 Job_No Order number

2 Status Order status (Quote/Order/Finished)

3 ApprovedDate Order accepted date

4 PromDate Promised date of delivery (Due Date)

5 Part_ID Part

6 Qty Quantity of parts

7 Ops_No Operation ID

8 Ops_Name Operation Name

9 Mach_ID Machine ID on which operation is performed

10 Mach_name Machine Name

Order

Part 1

Part 2

Ops 1 Ops 2 Ops 3 Ops 4

Ops 1 Ops 2 Ops 3

Part 1

Part 1

Description of the Simulation Model 7

University of Stellenbosch | Department of Industrial Engineering

64

 Name: Description:

11 Setup_time Time to complete setup

12 Insp_time Time to inspect part

13 Prod_Time Time of processing operation

14 Status_ID Status of Ops (Inactive/Active/Busy/Complete)

15 CSetup_time Completed setup time

16 CInsp_time Completed inspection time

17 CProd_time Completed production time

18 Start_DateTime Date and time Operation started

19 End_DateTime Date and time Operation ended

The data of the first thirteen fields are generated by the information system and are static,

except for the status field. The next six fields are dynamic fields, which are generated and

updated by the simulation model and the shop floor database.

Before the scheduling mechanism activates the simulation model, the user must choose the

scheduling rule which the simulation model must enforce. The rules in this study are the

FIFO, LPT, SPT, EDD, SS, and CR rules, these rules were discussed in the literature study

section, see page 28.

When scheduling is commenced, the simulation model generates entities that represent the

operations in the resulting query table. An array is also constructed, called EntityRecord

array, and all the information is also saved to this array. The array enables the simulation

model to access entity (operations) information when entity attribute values are not

available, this will be discussed later in this chapter.

The data in the fields of the table are assigned to the simulation entity as attributes. These

attributes determine the flow sequence and processing time of the entity. It is important to

understand that an entity is the representation of an operation on all the physical units of an

ordered part. Figure 35 illustrates the entity structure. Pre-emption is not allowed, meaning

that when an operation starts on a certain part, it must be completed before it is discharged

from a machine.

Figure 35 Entity structure

Physical Qty Entity

Order
for Part 1 Ops 1

Part 1

Part 1

Ops 1

Entity

Ops 2

Ops 2

Entity

Ops 3

Ops 3

Entity

Ops 4

Ops 4

Description of the Simulation Model 7

University of Stellenbosch | Department of Industrial Engineering

65

An operation must be completed on the complete set of physical parts before the next

operation on this set of parts can start. The processing time of an entity at a machine is

equal to the time it takes to complete the operation on the total number to be

manufactured of the part, i.e. if ten of the same part have to undergo an operation, the

processing time of the entity will be equal to ten times the processing time of the operation

on one part. The processing time includes the setup time.

The attributes each entity has is stated in Table 5, the appropriate record field that is

assigned to the attribute is included in the column next to the attribute column. The

attributes that computed values are assigned to during simulation model execution, are

indicated with (Simulation model) in the record field.

Table 5 Description of Entity Attributes

Attribute Name: Record Field:

attrPartsize (Simulation model)

attrEnt_Name Ops_No

attrStartTime Start_DateTime (Simulation model)

attrSlack (Simulation model)

attrLocation (Simulation model)

attrCInsp_Time Cinsp_Time (Simulation model)

attrTotMakespan (Simulation model)

attrPart_ID Part_ID

attrTime Prod_Time

attrCProd_Process (Simulation model)

attrProgress Status_ID (Simulation model)

attrEnt_Successor (Simulation model)

attrCSetup_Time CSetup_Time (Simulation model)

attrCInsp_Process (Simulation model)

attrProd_Start (Simulation model)

attrCompletionTime End_DateTime (Simulation model)

attrCR (Simulation model)

attrTotTime (Simulation model)

attrDD PromDate (Simulation model)

attrSetup Setup_Time

attrCProd_Time (Simulation model)

attrSetup_Start (Simulation model)

attrInspection Insp_Time

attrInsp_Start (Simulation model)

attrCSetup_Process (Simulation model)

EntityStationAttribute Mach_ID

Description of the Simulation Model 7

University of Stellenbosch | Department of Industrial Engineering

66

An entity achieves an Active status when the operation before it in the sequence is

completed or if it is the first operation of the sequence. The entities with an Active status

can be processed. The entities which predecessors have not been completed, have Inactive

statuses. The reason for this is to enforce that the operations follow in the appropriate

sequence. The fifth operation on a part for example can thus not start until the fourth

operation ended and changed the status of the fifth operation to Active. The simulation

model updates the status of the entities as the situation changes.

 If an operation on a part is being processed when the simulation is started, a Busy status is

assigned to the entity that represents the operation and is sent directly to the particular

machine. The other entities are sent to the appropriate queues. The entities are queued

according to the certain dispatching/scheduling rule chosen by the user at the beginning of

a scheduling event.

The chosen scheduling rule discussed previously applies to these entities and not the parts

itself. Each of the rules has a certain entity attribute that determines the rank of an entity.

The EDD rule ranks entities according to the attrDD attribute of the entities. The attrDD

attribute is calculated by the simulation model using the due date of the part the operation

belongs to. The attribute is set to the due date of the part minus the processing hours of the

remaining operations after the particular operation, i.e. where is

the number of operations job has.

The SS rule ranks entities according to the attrSlack attribute, which is calculated by

subtracting the remaining processing time of the particular operation from the hours till its

due date. The CR rule uses the attrCR attribute, which is calculated by dividing the

remaining processing time of the part by the hours to the due date of the part.

The LPT and SPT rank entities according to the attrTotTime attribute of the entities, be it

the longest for LPT or the shortest for SPT. The FIFO rule has no attribute for ranking

entities, the entities are ranked according to the order in which they join the queues.

To ensure that active entities are not ranked behind inactive entities in the queues, dummy

values for the attributes (which determines the queue rankings) are given to inactive

entities. For example, if shortest processing time is the dispatch rule, an unpractical big

value is given to the processing time attributes of the inactive entities, while the respective

Description of the Simulation Model 7

University of Stellenbosch | Department of Industrial Engineering

67

actual processing time attributes are assigned to active entities. This ensures that the

inactive entities are ranked behind the active ones, because the queues rank entities

according to shortest processing times first. If the inactive entities were allowed to be

ranked before active entities, the queue will be stationary until the inactive entity that is

ranked first becomes active. This will imply that the resource will be idle whilst jobs that can

be processed are waiting in the queue.

As stated previously it is possible to machine small parts on a machine that is meant to

machine big parts. In other words, some parts that are assigned to a specific machine can

also be processed on another machine, making alternative routing a possibility. This feature

will not be included in the scheduler, because it is assumed that the cost of machining a

small part with a big machine will be too high. However, the manufacturing engineer will be

able to assign small parts to large machines if necessary. This could typically be the case

when workload balancing is skewed towards the smaller machines.

When all the entities are placed either in queues or on machines, the simulation starts. It

processes the entities that are on the machines and when applicable, takes an entity from

the queue and start processing it. Entities can only be taken from the queue and put on a

machine if the machine is idle, the entity has an Active status and is ranked first in the

queue. When processing of an entity starts, the status of the entity gets changed from

Active to Busy. The start time of the operation is saved in the entity start time attribute.

Each time an entity is completed its status is changed from Busy to Complete, its successor’s

status changes to Active. The end time of the operation is saved in the entity end time

attribute. The queue in which the successor is, is reordered according to the

dispatching/scheduling rule. This is needed as the status change of the successor (to Active),

implies that the successor operation can now also be processed, thus it must receive a

higher ranking.

The simulation model runs until all the entities are processed. The appropriate attribute

values are recorded into a temporary table. The values are divided by the number of

replications used in the simulation, which ensures that average values of the attributes for

all the replications are stored. The next replication starts, which again uses the table

constructed by the query to configure the system for the next replication run. After all the

replications have been run, the average values of the replications from the temporary table

Description of the Simulation Model 7

University of Stellenbosch | Department of Industrial Engineering

68

are used to construct a schedule. The proposed schedule resulting from the simulation run

is presented in Gantt chart format in MS-Excel. The performance of the schedule is also

recorded and can be compared to other schedules constructed under other

dispatching/scheduling rules.

The simulation model must be implemented according to the high level concept that was

described in this section. The implementation is described in the next section.

7.2 THE SIMULATION MODEL IMPLEMENTATION

The simulation model is implemented in the simulation software Arena (Rockwell Software

[57]). The simulation software is chosen because it is available for education and research,

while support was readily available. It also accommodates the discrete, stochastic nature of

the system under study, and allows for customization through Visual Basic for Applications

(VBA) on the Microsoft-platform.

The simulation model was implemented as two components, namely the Arena Model and

the VBA code. The Arena model represents the configuration of the enterprise, while the

VBA code is the customization of the configuration according to the current state and

orders that need to be processed. In the next few sections a detail description of each will be

given. These two components act together to compile an output file, which will also be

discussed in this chapter.

7.3 ARENA COMPONENT OF THE SIMULATION MODEL IMPLEMENTATION

The number of resources, the flow of orders and the seizing of operators are some of the

configurations that are implemented by the Arena model.

The entity flow is briefly explained here, followed by a detail discussion in the subsequent

sections. Entities are created and attributes get assigned according to the enterprise

database. A picture is then assigned to the entity before it is held in a Hold module until all

the entities have been created. The entities are then sent to their particular machines,

where they either join the queue or if their status is busy, put on the machine. The entities

are dispatched from the queue as the dispatching criteria are met. The entities are

processed and when finished sent to the part assembly station, where entities are batched

according to the part they belong to. As processing of the entities finishes, their successors’

Description of the Simulation Model 7

University of Stellenbosch | Department of Industrial Engineering

69

states change and the successors can now compete for machine time. When all the entities

(which represent operations of a part) are processed, the part is completed and the entity

disposed.

7.4 PHYSICAL CONFIGURATION OF THE SIMULATION MODEL

The model can be divided into the following sections: the entity creation and attribute

assignment, the machine station and queuing, the part assembly and the statistic recording

sections. These are now discussed.

7.4.1 Entity creation and attribute assignment

In this section of the simulation model, see Figure 36, entities are created using the Create

module. The VBA code modifies the creation module where entities will be created for all

the operations from the query table. The procedure the code follows will be explained in the

section about the VBA code. Attributes are assigned to each entity by an Assign module.

The Attribute values are set to zero as a VBA block will assign them the appropriate values.

Figure 36 Diagram of entity creation and attribute assignment component of the simulation model

For animation, the entity pictures are assigned according to their appropriate part set. Each

part is assigned with a certain shape. All the entities of the part have the same shape for its

entity picture. Their colour represents their status: red for Inactive, yellow for Active and

Description of the Simulation Model 7

University of Stellenbosch | Department of Industrial Engineering

70

Busy and green for Complete. The first of two Decide module combinations determine the

picture shape and the second its colour.

7.4.2 Machine station and queuing

There is a machine station for every resource of the enterprise in the model, which can be

divided into two components, namely queuing and processing, see Figure 37. In the queuing

part, the scheduling rules chosen by the user are implemented and entities are queued

accordingly, whilst the processing part processes the entities on the machines.

Figure 37 Diagram of machine station and queuing component of the simulation model

When an entity arrives at this section the status of the entity is firstly checked. If its status is

Busy, it is directly sent to the processing part of the section. It calls VBA code that assigns

the appropriate processing times to the entity attributes. If it is Inactive or Active it will go to

the queuing part of the section. As previously discussed, dummy values are assigned to the

attribute (that determines the entity rank in the queue) of the inactive entities and actual

values to those of the active entities. The queuing part queues the entities and holds the

entities until the machine becomes free and their entity status are Active. The queue

discipline is set by the VBA code at the beginning of the simulation run according to user

specification. As the entity is released from the queue it calls VBA code that changes the

entity status form Active to Busy and records the start time of the processing.

In the processing part of the machine station and queuing section the setup, inspection and

manufacturing processes are conducted. The start and processing times of each are

recorded as entity attributes. The usage of each machine is also recorded in a variable array.

The setup start time attribute is recorded through an Assign module after which the setup

process seizes the particular machine and delays the entity for the setup duration. The

actual setup time is recorded by the next Assign module. This Assign module also records

Description of the Simulation Model 7

University of Stellenbosch | Department of Industrial Engineering

71

the usage of the machine and indicates that the setup process is completed by assigning a

True value to the appropriate attribute. It also records the start time of the inspection

process. The entity is kept in a Hold module until inspection can be done. The inspection

resource is seized, delayed for the inspection process time and released. The actual

inspection time is recorded by the next Assign module, which also records the start time of

the production process and sets the appropriate attribute to True. The entity is delayed for

the production time and the machine is released afterwards. The final Assign module

records the actual production time, machine usage and sets the attrCprod_Process attribute

to True.

The entity then calls VBA code that changes the status of the entity to Complete and the

status of its successor t0 Active. The picture of the successor is changed and the queue that

contains the successor is rearranged by the VBA code. The makespan of the entity is also

recorded. If the work has been done on the entity before the simulation started, it is added

to the simulation time. The actual processing times are also recorded into the temporary

simulation table. The entity is then sent to the part assembly section.

7.4.3 Part assembly

The part assembly section consists of a Batch module, see Figure 38. The entities are

batched according to their part ID. The last entity of a part, that resembles the last

operation on the part, has an attribute attrPartsize that determines the number of entities

that the particular part consists of. The batched entity adopts the attributes of the last

entity of the part.

Figure 38 Diagram of the part assembly section of the simulation model

7.4.4 Statistic recording

The entity calls VBA code through a VBA block module, see Figure 39. The code determines

if the part is early or late and quantifies the outcome. The part statistics like completion

time, lateness and earliness are written to the Excel results file. The total makespan is

recorded for further statistics. The part, that resembles a few entities, is now disposed.

Description of the Simulation Model 7

University of Stellenbosch | Department of Industrial Engineering

72

Figure 39 Diagram of the statistic recording section of the simulation model

Next the customization of the simulation model according to the current system state as

implemented in Visual Basic for Applications is described.

7.5 VBA CODE COMPONENT OF THE SIMULATION MODEL IMPLEMENTATION

The VBA code customizes the simulation model according to the current system state when

the simulation is started. The code can be activated through the simulation model run logic

and VBA blocks in the Arena model. The functions of the procedures that are called by the

model run logic are discussed in this section. The custom codes called by the model run

logic and VBA blocks are discussed in Appendix III. All the VBA code that the simulation

uses is included in Appendix IV.

It is required to discuss how the procedures are called and what information is available

when doing so, before the procedures itself can be discussed. The description of how the

model run logic functions follows, the structure of the model run logic is shown in Figure 40.

Figure 40 Model logic structure

RunBegin

 Arena checks and initializes the model

RunBeginSimulation

RunBeginReplication

 Arena runs replication

RunEndReplication

RunEndSimulation

Arena terminates the simulation run

RunEnd

Description of the Simulation Model 7

University of Stellenbosch | Department of Industrial Engineering

73

Module data is the information that was defined in the Arena model and is available when

the simulation is not running. Thus, the module operands values are available when the

simulation is not running. Simulation run data is only available when the simulation run has

started. When the simulation run is started, Arena checks and initializes the model,

translating the information provided in the modules in the Arena model into the format

required to perform the simulation run. During the run, the values of variables, attributes,

resource states, etc., can be examined and changed through Arena’s run controller and VBA

code.

The simulation model logic statements, referred to as events from here on, is subsequently

discussed.

7.5.1 Model logic Events procedures

RunBegin

A form is displayed that prompts the user to choose a certain scheduling rule. After the

selection, the startModel subroutine is called.

RunBeginSimulation

The Excel results workbook is opened and cleared due to this event.

RunBeginReplication

The determineCR subroutine is called to determine the critical ratios of all the entities. The

TotalEntCount Arena variable is assigned by the AssignTotalEntCount subroutine. The event

then runs through the records of the simulation query record set. For each record the

appropriate values are assigned to the entity records array through the AssignEntArray

subroutine. The successors are also assigned by calling the AssignEntSuccessor subroutine.

RunEndReplication

The state of the system as the replication ends, is recorded by calling the

UpdateSnapShotAtEndRep subroutine. This is included when the replication length is not

set to the length to complete all the operations, which in theory will not happen often as a

simulation is run to schedule all the operations.

Description of the Simulation Model 7

University of Stellenbosch | Department of Industrial Engineering

74

RunEndSimulation

The simulation query recordset is updated by calling the UpdateSimTableFromTempTable

subroutine. The simulation run output statistics are written to the Excel worksheet.

The start and end time attributes of each entity is written to the Excel file. Eight loops, each

representing a machine, scan through the temporary simulation table to find entities that

were processed on the machine currently under consideration. The part ID the entity

belongs to, the entity name, the entity start time, the entity end time and the machine ID

are written to the Excel worksheet.

Before the start and end times are written, their values are checked. If any of the values are

less than zero, it means that the process started, or started and ended before the start of

the simulation run. In the case that the start and end time are less than zero, both values are

set to zero. When only the start time is less than zero, its value is set to zero and the end

time is set to the value of the EntityRecord array value. If in this case the end time in the

EntityRecord has no value, processing of the entity has not finished. The end time must be

set to the end time of the replication run, so that the schedule will display the entities that

are still being processed at the replication end.

The chart in the Excel results worksheet (see Figure 41 on page 76) that represents the

schedule is also modified by this event. The colours of the bars are changed so that all the

operations of a part have the same colour and no one part has the same colour as another.

This enables the user to clearly see when a new operation or the next operation on the same

part starts. The operation name is also written in the applicable bar. These modifications

were implemented using VBA code that adjusts a previously constructed chart that was

constructed according to certain source data.

RunEnd

The entities that were created for the simulation model is deleted by calling the

CleanEntities subroutine. The event further closes all the applications that were opened by

the simulation model.

Description of the Simulation Model 7

University of Stellenbosch | Department of Industrial Engineering

75

In this section, the customization of the simulation model was discussed briefly. References

were made to appendices included in this thesis for further explanation of the

customization codes. Next, the output created by the simulation model is discussed.

7.6 SIMULATION OUTPUT FILES

The output files created by the simulation model are used for analysis. Arena generates its

own statistics output file, but it is not sufficient to set up a schedule. The data in the file is

used in the customized output file that is generated by the simulation model. The model

output file is an Excel workbook, which has a worksheet for each type of scheduling rule and

a worksheet for result comparison. The attribute values for each entity are written to the

appropriate worksheet as the entities are processed by the simulation model. The structure

of the entity attributes can be seen in Table 6. Each entity, that represents an operation, has

a Part ID, Ops No, Start time, End time and a Machine ID which are written to the Excel file.

Table 6 Structure of recorded entity information

Part_ID Ops_ID Start Time End Time Machine
1 1 0 6.5 8

2 2 0 2.5 7

3 3 0 3.75 8

4 4 0 19.5 2

5 5 0 14.25 3

5 6 14.25 17.75 3

6 7 0 58.5 1

7 8 0 15.75 8

7 9 19.25 27 8

8 10 0 5 7

9 11 3.75 4.5 8

9 12 9.5 15 8

10 13 4.5 6 8

10 14 13 14 8

10 15 20 21 8

11 16 6 13 8

12 17 6.5 8 8

12 18 14 20 8

12 19 28.5 30.5 5

The duration of the operations is calculated by the Excel file and a bar chart is constructed

from this data. The VBA code adjusts the chart as described in section 7.5.1 under the

RunEndSimulation event. This bar chart represents the schedule and an example of it is

shown in Figure 41.

Description of the Simulation Model 7

University of Stellenbosch | Department of Industrial Engineering

76

Figure 41 Example of a schedule that is developed in the output file

The information about each part is also written to the worksheet as parts (represented by

batched entities) are disposed from the model. The structure is shown in Table 7. The part

ID and its particular Due date, End time, Hours late and Hours early are written to the

worksheet. This information is written when processing of all the entities of a part is

complete. The entities are batched en sent through a VBA block module.

Table 7 Structure of recorded part information

Part_ID DueDate End Time Hours Late Hours Early
1 5 6.5 1.5

2 15.5 2.5 13

3 10 86.25 78.25

4 139.5 19.5 120

5 139.5 17 122.5

6 58.5 58.5 0

7 58.5 75.5 17

8 13.5 17.25 3.75

9 13.5 108 94.5

10 13.5 99.75 86.25

11 13.5 82.5 69

12 13.5 97.25 83.75

The output statistics of Arena are also written in the Excel worksheet representing the

relevant scheduling rule. The makespan, total earliness, total lateness and average flow

time of the schedule and the average usage of each machine are recorded.

O_1O_5O_10 O_18

O_3 O_4O_17 O_19

O_8 O_9O_11 O_12 O_13

O_7O_14 O_15O_20

O_16

O_2O_6

0 20 40 60 80 100 120

1
2

3
4

5
6

7
8

Time

M
a
c
h

in
e

CR

Description of the Simulation Model 7

University of Stellenbosch | Department of Industrial Engineering

77

The comparison worksheet contains the output statistics of the schedule under each

scheduling rule. Bar charts are compiled to compare the different statistics with each other.

It is then possible to visually compare scheduling rule performances per measuring criteria.

Figure 42 to Figure 46 illustrate the comparison bar charts of the performance measures,

the y-axis state which performance criterion is applicable, the x-axis is a measure in hours or

percentage and each bar has a name which shows the scheduling rule it represents.

Figure 42 Typical average flow time comparison bar chart

Figure 43 Typical average total lateness comparison bar chart

CR

EDD

FIFO

LPT

SPT

SS

0 20 40 60 80 100 120

A
ve

F
lo

w
T

im
e

SS

SPT

LPT

FIFO

EDD

CR

CR

EDD

FIFO

LPT

SPT

SS

0 100 200 300 400 500 600 700 800

A
ve

T
o

tL
a

te
n

es
s

SS

SPT

LPT

FIFO

EDD

CR

Description of the Simulation Model 7

University of Stellenbosch | Department of Industrial Engineering

78

Figure 44 Typical average total makespan comparison bar chart

Figure 45 Typical average total earliness comparison bar chart

Figure 46 Typical usage comparison bar chart

CR

EDD

FIFO

LPT

SPT

SS

0 50 100 150 200 250 300 350 400

A
ve

T
o

tM
ak

es
p

an

SS

SPT

LPT

FIFO

EDD

CR

CR

EDD

FIFO

LPT

SPT

SS

0 100 200 300 400 500 600

A
ve

T
o

tE
ar

lin
es

s

SS

SPT

LPT

FIFO

EDD

CR

CR

EDD

FIFO

LPT

SPT

SS

0% 10% 20% 30% 40% 50% 60%

U
sa

g
e

SS

SPT

LPT

FIFO

EDD

CR

Description of the Simulation Model 7

University of Stellenbosch | Department of Industrial Engineering

79

Depending on the preference of the user, the appropriate schedule is chosen. Take for

example the figures above, the SPT rule tends to have the best combined result. Compared

to the performance of the other rules it has a short makespan, the total late hours is the

least, the total early hours is relatively large and its usage is relatively high .

7.7 CHAPTER OVERVIEW

This chapter described the simulation model that was developed in the study. The

description started with an overview of the concept of the simulation model, which was

described by referring to the composition of orders, simulation input and entity description.

The configuration of the simulation model was then described by explaining what the

functions of the two components of the simulation model are. The two components are the

Arena model and the Visual Basic for Application code. Both were described on a technical

level. The output file that is created by the simulation model is also described in this

chapter.

The next step is to verify and validate the simulation model supporting the scheduler, and

the scheduler itself. The next chapter describes the validation and verification process that

was followed.

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

80

8. VALIDATION AND VERIFICATION OF THE SCHEDULING MECHANISM

FUNCTIONALITY

To be able to justify the results of this study, the components of the scheduler that

determine the proposed schedule need to be verified and validated. In this chapter the

verification and validation process is discussed, which is cardinal to the testing phase of this

study as shown in the thesis road map on this page. The aim of this chapter is not to prove

that the scheduler functions perfectly as it is not feasible to investigate the scheduler’s

response in every possible system configuration. This chapter aims to build confidence in

the function of the scheduler and to create credibility so that it can be implemented.

Literature Review on Manufacturing Shops
and Scheduling

Problem Statement: Manufacturing Shop
Scheduling

Proposed Architecture for the Scheduling
Mechanism

Participating Enterprise: Daliff
Engineering

Information System Design and
Implementation

Simulation Model Design and
Implementation

Validation and Verification of
Developed Scheduling Mechanism

Evaluation of the Scheduling Mechanism
in a Stochastic Environment

Future Work

In
tr

o
d

uc
ti

o
n

C

o
n

ce
p

tu
al

D
es

ig
n

D

et
ai

l D
es

ig
n

T

es
ti

n
g

C

o
n

cl
u

si
o

n

Evaluation of Scheduling Mechanism with
Real-World Data

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

81

Verification can be defined as asking the question: ”Was the model built right?”, i.e. does

the model function as intended? Whereas validation is asking the question: “Was the right

model built?”, i.e. is the model an adequate representation of the real-world system?

Verification focuses on the correctness of the model and includes actions such as inspecting

logic, correcting syntax errors, and correcting run-time errors. Throughout the development

of the model, verification was done as syntax and run-time errors were fixed as they

appeared. The logic of the model was examined by simulating several scenarios and

evaluating the result of each of them. Validating the model can also be seen as testing the

model under extreme conditions, to see if the model still operates correctly.

Different scenarios were developed to test the operation of the model under normal and

extreme conditions. The scenarios that were simulated have some similar attributes,

namely:

 Four Orders consisting of one part each:

 Total of 20 operations:

 The same release dates for all the orders:

The composition of the orders is shown in Table 8, the orders are listed each with its part

and the operations of each part. The colour that represents a part in the schedule is also

included. To be able to display which operation is which on the graph an adjusted version of

the operation notation was used in the schedules. Instead of using , O_n was used to

represent operation n, Table 8 shows how the new format relates to the old format.

Table 8 Order Composition for Validation

Order Part Colour Operations

1 1
O1,1 ; O2,1 ; O3,1 ; O4,1

O_1; O_2; O_3; O_4

2 2
O1,2 ; O2,2 ; O3,2 ; O4,2 ; O5,2

O_5; O_6; O_7; O_8; O_9

3 3
O1,3 ; O2,3 ; O3,3 ; O4,3 ; O5,3 ; O6,3 ; O7,3

O_10; O_11; O_12; O_13; O_14; O_15; O_16

4 4
O1,4 ; O2,4 ; O3,4 ; O4,4

O_17; O_18; O_19; O_20

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

82

The difference in the scenarios is in terms of processing times, due dates, and number of

machines. These differences and the discussion of the resulting schedule of each scenario

follows:

Scenario 1A:

 One machine:

 Same processing times:

1 2 3 4 5 6 7 Total

1 11 11 11 11 44

2 11 11 11 11 11 55

3 11 11 11 11 11 11 11 77

4 11 11 11 11 44

 Different due dates:

Scenario 1A illustrates that the functionality of the simulation model of enforcing the FIFO,

EDD, SS, and CR scheduling rules are correct. Figure 47 shows the resulting schedules for

Scenario 1A under the different scheduling rules.

The proposed schedule of the FIFO rule correctly schedules the operations one after

another as the operations become active. Looking at the colour schemes of the operation,

one can see that the operations follow the sequence of the parts. The first operation of each

part is processed, in order from Part 1 to Part 4, the second operation of each part then

follows (also in order from Part 1 to Part 4), the schedule continues to be generated in this

manner. The three operations (O_14: = 11, O_15: = 11, and O_16: = 11) that

Part 3 has extra are added at the end of the schedule as they only become active after the

last operation of Part 4 became active.

The proposed schedules of the LPT and SPT rules are not discussed, as they are the same as

the schedule of the FIFO rule, because the processing times of all the operations are the

same and the rules have no effect.

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

83

The schedule developed under the EDD rule shows that the processing of parts is finished in

the following order: Part 4, Part 2, Part 3, and Part 1. This is the same order in which the due

dates follow on each other from the nearest date to the furthest. As the model started,

operations O_1: = 11, O_5: = 11, O_10: = 11 and O_17: = 11 were all

active. O_17: = 11 was processed first as its due date is the earliest, after its processing

was finished O_18: = 11 also became active with the other active operations. O_5:

 = 11 was started next as its due date was earlier than O_18: = 11, although the

due date of the part O_18: = 11 belonged to was earlier than the part O_5: = 11

belonged to. This is a result of the due dates of the operations that are not the same as the

due date of the part they belong to (see Section 7.1, page 67). The rest of the operations are

scheduled similarly.

The proposed schedule of the SS rule shows that the processing of parts is finished in the

same order as the EDD rule. The difference though, is that the parts are finished as a whole

before an operation on the following part starts. This happens because the slack is the same

for all the operations of a particular part (see Section 7.1, page 67). In this scenario Part 4 has

the smallest slack as the difference in due dates is bigger than the difference in total

processing time of the parts, i.e. the hours that d4 is before d3 is greater than the hours p3 is

longer as p4, making the slack of Part 4 smaller than the slack of Part 3. Processing of O_17:

 = 11, the first operation of Part 4, starts first followed by O_18: = 11, the second

operation of Part 4. All the first operations of all the parts are also active, but because O_18:

 = 11 is an operation of Part 4, which has the smallest slack, it is processed before the

other operations that were active before them.

Finally, the schedule developed under the CR rule shows that the rule is correctly

implemented. The schedule starts with O_10: = 11, the first operation of Part 3 which

has the longest total processing time (). As operations of Part 3 are finished, the

remaining processing time and consequently the critical ratio of Part 3 decreases, until the

first three operations are finished, making the critical ratio of Part 3 smaller than the ratio of

Part 2. Processing on the first operation of Part 2 is then started.

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

84

Figure 47 Scenario 1A: Resulting Schedules

O
_
1

O
_
2

O
_
3

O
_
4

O
_
5

O
_
6

O
_
7

O
_
8

O
_
9

O
_
1
0

O
_
1
1

O
_
1
2

O
_
1
3

O
_
1
4

O
_
1
5

O
_
1
6

O
_
1
7

O
_
1
8

O
_
1
9

O
_
2
0

0 50 100 150 200

Time

FIFO

O
_
1

O
_
2

O
_
3

O
_
4

O
_
5

O
_
6

O
_
7

O
_
8

O
_
9

O
_
1
0

O
_
1
1

O
_
1
2

O
_
1
3

O
_
1
4

O
_
1
5

O
_
1
6

O
_
1
7

O
_
1
8

O
_
1
9

O
_
2
0

0 50 100 150 200

Time

LPT

O
_
1

O
_
2

O
_
3

O
_
4

O
_
5

O
_
6

O
_
7

O
_
8

O
_
9

O
_
1
0

O
_
1
1

O
_
1
2

O
_
1
3

O
_
1
4

O
_
1
5

O
_
1
6

O
_
1
7

O
_
1
8

O
_
1
9

O
_
2
0

0 50 100 150 200

Time

SPT

O
_
1

O
_
2

O
_
3

O
_
4

O
_
5

O
_
6

O
_
7

O
_
8

O
_
9

O
_
1
0

O
_
1
1

O
_
1
2

O
_
1
3

O
_
1
4

O
_
1
5

O
_
1
6

O
_
1
7

O
_
1
8

O
_
1
9

O
_
2
0

0 50 100 150 200

Time

EDD

O
_
1

O
_
2

O
_
3

O
_
4

O
_
5

O
_
6

O
_
7

O
_
8

O
_
9

O
_
1
0

O
_
1
1

O
_
1
2

O
_
1
3

O
_
1
4

O
_
1
5

O
_
1
6

O
_
1
7

O
_
1
8

O
_
1
9

O
_
2
0

0 50 100 150 200

Time

SS

O
_
1

O
_
2

O
_
3

O
_
4

O
_
5

O
_
6

O
_
7

O
_
8

O
_
9

O
_
1
0

O
_
1
1

O
_
1
2

O
_
1
3

O
_
1
4

O
_
1
5

O
_
1
6

O
_
1
7

O
_
1
8

O
_
1
9

O
_
2
0

0 50 100 150 200

Time

CR

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

85

Scenario 1B:

 Two machines:

 Same processing times:

1 2 3 4 5 6 7 Total

1 11

11

11

11

44

2 11

11

11

11

11

55

3 11

11

11

11

11

11

11

77

4 11

11

11

11

44

 Different due dates:

Scenario 1B is similar to Scenario 1A, the difference is that Scenario 1B has two

machines. The proposed schedules are shown in Figure 48, they confirm that the

scheduling mechanism correctly enforces the scheduling rules. The proposed schedules

from the FIFO, LPT and SPT rules are the same again, this is correct as the processing

times of the operations are the same. Note that the makespan is now half of that of

Scenario 1A. The rest of the schedules differ because the due dates are not the same.

Figure 48 Scenario 1B: Resulting Schedules (Continued on next page)

O_2 O_4O_6 O_7 O_8O_10 O_11 O_15 O_16O_19

O_1 O_3O_5 O_9O_12 O_13 O_14O_17 O_18 O_20

0 20 40 60 80 100 120

1
2

Time

M
a
c
h

in
e

FIFO

O_2 O_4O_6 O_7 O_8O_10 O_11 O_15 O_16O_19

O_1 O_3O_5 O_9O_12 O_13 O_14O_17 O_18 O_20

0 20 40 60 80 100 120

1
2

Time

M
a
c
h

in
e

LPT

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

86

Figure 48 Scenario 1B: Resulting Schedules

Scenario 2A:

 One machine:

 Different processing times

1 2 3 4 5 6 7 Total

1 11 5 11 6 33

2 11 5 11 6 11 44

3 11 5 11 6 11 7 11 62

4 11 5 11 6 33

O_2 O_4O_6 O_7 O_8O_10 O_11 O_15 O_16O_19

O_1 O_3O_5 O_9O_12 O_13 O_14O_17 O_18 O_20

0 20 40 60 80 100 120
1

2
Time

M
a
c
h

in
e

SPT

O_2 O_4O_6 O_7 O_8O_10 O_11 O_15 O_16O_19

O_1 O_3O_5 O_9O_12 O_13 O_14O_17 O_18 O_20

0 20 40 60 80 100 120

1
2

Time

M
a
c
h

in
e

EDD

O_2 O_4O_6 O_7 O_8O_10 O_11 O_15 O_16O_19

O_1 O_3O_5 O_9O_12 O_13 O_14O_17 O_18 O_20

0 20 40 60 80 100 120

1
2

Time

M
a

c
h

in
e

SS

O_2 O_4O_6 O_7 O_8O_10 O_11 O_15 O_16O_19

O_1 O_3O_5 O_9O_12 O_13 O_14O_17 O_18 O_20

0 20 40 60 80 100 120

1
2

Time

M
a
c
h

in
e

CR

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

87

 Different due dates:

Scenario 2A confirms that all the scheduling rules are correctly implemented, see Figure 49.

This scenario is similar to Scenario 1A as it has the same due dates and only one machine,

while the difference is in the processing times. This implies that the functionality of the

rules concerned with the processing times (LPT and SPT) now also gets tested, not like in

the first two scenarios. The order in which the parts finish under the FIFO and EDD rules is

the same as the order it finished in the first two scenarios, as the arrival times of the parts

and their due dates are the same.

The LPT rule had an impact from the start, after O_1: = 11 finished, O_2: = 5 also

became active with the first operations of the other parts (O_5: = 11, O_10: = 11,

and O_17: = 11), but seeing that these operations had longer processing times than

O_2: = 5, they were processed first. When O_2: = 5 finished, O_3: = 11 also

became active with the second set of operations of the other parts (O_6: = 5, O_11:

 = 5, and O_18: = 5), but seeing that O_3: = 11 had a longer processing time

than the other active operations, it was processed first. The rest of the schedule was

conducted in similar fashion.

The SPT rule processed O_2: = 5 directly after O_1: = 11, before the first

operations of the other operations (O_5: = 11, O_10: = 11, and O_17: = 11),

as its processing time was shorter than those of the other active operations. O_5: = 11

was processed next as its processing time was the same as the other active operations,

including the newly added O_3: = 11, but entered the queue before all of them. The

SPT rule affected the rest of schedule in similar fashion.

The order in which the parts are finished in the EDD and SS schedules, is the same as for

these schedules in Scenario 1A and their discussion thus are very similar. The order in which

the operations are processed in the EDD schedule differs from Scenario 1A, because the

difference in processing times means that the operations do not have the same due dates.

O_18: = 5 (Part 4) for example has an earlier due date than O_5: = 5 (Part 2), in

contrast with Scenario 1A where it was the other way round. The reason for this is that

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

88

although the processing times of both parts are shorter, the processing time of Part 2

decreased more relative to its processing time in Scenario 1A because it has making the

margin the due date is later bigger than the margin of Part 4.

The SS schedule is the same as in Scenario 1A, this can be justified with the fact that the

processing times do not differ enough to change the slacks in such a way that the schedule

differs. The CR rule has different attribute values than in Scenario 1A because of the

difference in processing times, resulting in a different schedule than in Scenario 1A.

Figure 49 Scenario 2A: Resulting Schedules (Continued on next page)

O
_
1

O
_
2

O
_
3

O
_
4

O
_
5

O
_
6

O
_
7

O
_
8

O
_
9

O
_
1
0

O
_
1
1

O
_
1
2

O
_
1
3

O
_
1
4

O
_
1
5

O
_
1
6

O
_
1
7

O
_
1
8

O
_
1
9

O
_
2
0

0 20 40 60 80 100 120 140 160 180

Time

FIFO

O
_
1

O
_
2

O
_
3

O
_
4

O
_
5

O
_
6

O
_
7

O
_
8

O
_
9

O
_
1
0

O
_
1
1

O
_
1
2

O
_
1
3

O
_
1
4

O
_
1
5

O
_
1
6

O
_
1
7

O
_
1
8

O
_
1
9

O
_
2
0

0 20 40 60 80 100 120 140 160 180

Time

LPT

O
_
1

O
_
2

O
_
3

O
_
4

O
_
5

O
_
6

O
_
7

O
_
8

O
_
9

O
_
1
0

O
_
1
1

O
_
1
2

O
_
1
3

O
_
1
4

O
_
1
5

O
_
1
6

O
_
1
7

O
_
1
8

O
_
1
9

O
_
2
0

0 20 40 60 80 100 120 140 160 180

Time

SPT

O
_
1

O
_
2

O
_
3

O
_
4

O
_
5

O
_
6

O
_
7

O
_
8

O
_
9

O
_
1
0

O
_
1
1

O
_
1
2

O
_
1
3

O
_
1
4

O
_
1
5

O
_
1
6

O
_
1
7

O
_
1
8

O
_
1
9

O
_
2
0

0 20 40 60 80 100 120 140 160 180

Time

EDD

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

89

Figure 49 Scenario 2A: Resulting Schedules

Scenario 2B:

 Two machines:

 Different processing times

1 2 3 4 5 6 7 Total

1 11

5

11

6

33

2 11

5

11

6

11

44

3 11

5

11

6

11

7

11

62

4 11

5

11

6

33

 Different due dates:

The difference between the configurations of Scenario 2B and Scenario 2A is that Scenario

2B has two machines instead of one as in Scenario 2A. The proposed schedules for the

different scheduling rules are shown in Figure 50.

Looking at the FIFO schedule, it is evident that the scheduling rule is correctly implemented

as the operations are scheduled in the same order as they became active. The LPT schedule

O
_
1

O
_
2

O
_
3

O
_
4

O
_
5

O
_
6

O
_
7

O
_
8

O
_
9

O
_
1
0

O
_
1
1

O
_
1
2

O
_
1
3

O
_
1
4

O
_
1
5

O
_
1
6

O
_
1
7

O
_
1
8

O
_
1
9

O
_
2
0

0 20 40 60 80 100 120 140 160 180

Time

SS

O
_
1

O
_
2

O
_
3

O
_
4

O
_
5

O
_
6

O
_
7

O
_
8

O
_
9

O
_
1
0

O
_
1
1

O
_
1
2

O
_
1
3

O
_
1
4

O
_
1
5

O
_
1
6

O
_
1
7

O
_
1
8

O
_
1
9

O
_
2
0

0 20 40 60 80 100 120 140 160 180

Time

CR

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

90

process O_9: = 11, O_13: = 6 and O_14: = 11 before O_18: = 5 as their

processing times are longer than O_18: = 5, whereas O_18: = 5 is processed

before these operations and even O_3: = 11 and O_12: = 11 in the SPT schedule

because of its shorter processing time.

The EDD and SS schedules process the operations correctly according to their operations,

resulting in finishing the orders in the same order as their due dates. The CR schedule starts

processing of Part 3 first seeing that it has the longest processing time, making its critical

ratio the biggest. As its operations are finished its critical ratio shrinks, because the part’s

remaining processing time shrinks. This allows the processing of operations of other parts

to start seeing that their critical ratio got bigger, because their remaining processing time

remained the same as processing was not done, whilst the hours to their due date got

shorter, making the ratio bigger.

Figure 50 Scenario 2B: Resulting Schedules (Continued on next page)

O
_
2

O
_
4

O
_
6

O
_
7

O
_
8

O
_
1
0

O
_
1
1

O
_
1
5

O
_
1
6

O
_
1
9

O
_
1

O
_
3

O
_
5

O
_
9

O
_
1
2

O
_
1
3

O
_
1
4

O
_
1
7

O
_
1
8

O
_
2
0

0 20 40 60 80 100 120

1
2

Time

M
a
c
h

in
e

FIFO

O
_
2

O
_
4

O
_
6

O
_
7

O
_
8

O
_
1
0

O
_
1
1

O
_
1
5

O
_
1
6

O
_
1
9

O
_
1

O
_
3

O
_
5

O
_
9

O
_
1
2

O
_
1
3

O
_
1
4

O
_
1
7

O
_
1
8

O
_
2
0

0 20 40 60 80 100 120

1
2

Time

M
a
c
h

in
e

LPT

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

91

Figure 50 Scenario 2B: Resulting Schedules

O
_
2

O
_
4

O
_
6

O
_
7

O
_
8

O
_
1
0

O
_
1
1

O
_
1
5

O
_
1
6

O
_
1
9

O
_
1

O
_
3

O
_
5

O
_
9

O
_
1
2

O
_
1
3

O
_
1
4

O
_
1
7

O
_
1
8

O
_
2
0

0 20 40 60 80 100 120

1
2

Time

M
a
c
h

in
e

SPT

O
_
2

O
_
4

O
_
6

O
_
7

O
_
8

O
_
1
0

O
_
1
1

O
_
1
5

O
_
1
6

O
_
1
9

O
_
1

O
_
3

O
_
5

O
_
9

O
_
1
2

O
_
1
3

O
_
1
4

O
_
1
7

O
_
1
8

O
_
2
0

0 20 40 60 80 100 120

1
2

Time

M
a
c
h

in
e

EDD

O
_
2

O
_
4

O
_
6

O
_
7

O
_
8

O
_
1
0

O
_
1
1

O
_
1
5

O
_
1
6

O
_
1
9

O
_
1

O
_
3

O
_
5

O
_
9

O
_
1
2

O
_
1
3

O
_
1
4

O
_
1
7

O
_
1
8

O
_
2
0

0 20 40 60 80 100 120

1
2

Time

M
a
c
h

in
e

SS

O
_
2

O
_
4

O
_
6

O
_
7

O
_
8

O
_
1
0

O
_
1
1

O
_
1
5

O
_
1
6

O
_
1
9

O
_
1

O
_
3

O
_
5

O
_
9

O
_
1
2

O
_
1
3

O
_
1
4

O
_
1
7

O
_
1
8

O
_
2
0

0 20 40 60 80 100 120

1
2

Time

M
a
c
h

in
e

CR

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

92

Scenario 3A:

 Different machines:

 Different processing times:

Table 9 Processing times for Scenario 3A

1 2 3 4 5 6 7 Total

1 34

5

11

6

56

2 14

5

11

6

11

47

3 11

5

11

6

11

7

11

62

4 11

5

11

6

33

 Different due dates:

In Scenario 3A operations are performed on two machines, the due date of Part 4 is set very

tight and the first operation of Part 1 has a very long processing time relative to the other

operations. This scenario tested the response of the simulation model under fairly normal

conditions.

Not one of the proposed schedules shown in Figure 51 is the same as another, the order in

which operations are finished is also different for every schedule. The FIFO rule correctly

processes the operations in the same order as they become active, O_1: = 34 with its

long processing time therefore delays the other operations to adhere to the precedence

constraints. O_17: = 11 starts on Machine 2 at t0 because the first operations of the

other parts must be processed on Machine 1 after O_1: = 34. The LPT schedule starts

the same as the FIFO rule until O_3: = 11 is finished, when O_4: = 6 is processed

instead of O_6: = 5 as in the FIFO schedule. This indicates that the scheduling rule is

correctly implemented.

The SPT schedule clearly shows that the SPT rule delays the processing of O_1: = 34

because of its long processing time relative to the other operations. This enables other

operations to start earlier as their precedence constraints are met, while the other

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

93

operations on Part 1 (O_2: = 5, O_3: = 11, and O_4: = 6) are delayed to

meet its precedence constraint.

The schedules of the due date based scheduling rules (EDD, SS and CR) all finish processing

Part 4 first, which is correct as its due date is very tight. The CR schedule differs from the

EDD and SS schedule as it processes O_1: = 34 earlier, which states that the CR rule is

implemented correctly. The critical ratio of Part 1 got larger as time elapsed, until it was

bigger than another part, resulting in the processing of O_1: = 34. The effect of

processing O_1: = 34 and other operations earlier because of their bigger critical ratio

can be seen on the schedule as the makespan is shorter.

Figure 51 Scenario 3A: Resulting Schedules (Continued on next page)

O
_
1

O
_
5

O
_
7

O
_
8

O
_
9

O
_
1
0

O
_
1
3

O
_
1
4

O
_
1
5

O
_
1
8

O
_
2
0

O
_
2

O
_
3

O
_
4

O
_
6

O
_
1
1

O
_
1
2

O
_
1
6

O
_
1
7

O
_
1
9

0 20 40 60 80 100 120 140

1
2

Time

M
a
c
h

in
e

FIFO

O
_
1

O
_
5

O
_
7

O
_
8

O
_
9

O
_
1
0

O
_
1
3

O
_
1
4

O
_
1
5

O
_
1
8

O
_
2
0

O
_
2

O
_
3

O
_
4

O
_
6

O
_
1
1

O
_
1
2

O
_
1
6

O
_
1
7

O
_
1
9

0 20 40 60 80 100 120 140

1
2

Time

M
a
c
h

in
e

LPT

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

94

Figure 51 Scenario 3A: Resulting Schedules

O
_
1

O
_
5

O
_
7

O
_
8

O
_
9

O
_
1
0

O
_
1
3

O
_
1
4

O
_
1
5

O
_
1
8

O
_
2
0

O
_
2

O
_
3

O
_
4

O
_
6

O
_
1
1

O
_
1
2

O
_
1
6

O
_
1
7

O
_
1
9

0 20 40 60 80 100 120 140

1
2

Time

M
a
c
h

in
e

SPT

O
_
1

O
_
5

O
_
7

O
_
8

O
_
9

O
_
1
0

O
_
1
3

O
_
1
4

O
_
1
5

O
_
1
8

O
_
2
0

O
_
2

O
_
3

O
_
4

O
_
6

O
_
1
1

O
_
1
2

O
_
1
6

O
_
1
7

O
_
1
9

0 20 40 60 80 100 120 140

1
2

Time

M
a
c
h

in
e

EDD

O
_
1

O
_
5

O
_
7

O
_
8

O
_
9

O
_
1
0

O
_
1
3

O
_
1
4

O
_
1
5

O
_
1
8

O
_
2
0

O
_
2

O
_
3

O
_
4

O
_
6

O
_
1
1

O
_
1
2

O
_
1
6

O
_
1
7

O
_
1
9

0 20 40 60 80 100 120 140

1
2

Time

M
a
c
h

in
e

SS

O
_
1

O
_
5

O
_
7

O
_
8

O
_
9

O
_
1
0

O
_
1
3

O
_
1
4

O
_
1
5

O
_
1
8

O
_
2
0

O
_
2

O
_
3

O
_
4

O
_
6

O
_
1
1

O
_
1
2

O
_
1
6

O
_
1
7

O
_
1
9

0 20 40 60 80 100 120 140

1
2

Time

M
a
c
h

in
e

CR

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

95

Scenario 3B:

 Different machines: (No operations on machines six and seven)

 Different processing times:

1 2 3 4 5 6 7 Total

1 34

5

11

6

56

2 14

5

11

6

11

47

3 11

5

11

6

11

7

11

62

4 11

5

11

6

33

 Different due dates:

The configuration of Scenario 3B is very similar to the configuration of Scenario 3A, except

that the operations were performed on several different machines. Each operation was

assigned to a specific machine, machines six and seven have no operations assigned to

them. This scenario tested the response of the simulation model under extreme conditions.

The proposed schedules of the FIFO and LPT rules are very similar, the order in which parts

are finished are the same. The schedule is quite stretched out because of the precedence

constraints and the long processing time of O_1: = 34, resulting in operations waiting

for other operations to finish.

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

96

Figure 52 Scenario 3B: Resulting schedules (continued on next page)

O_1 O_5 O_10 O_18

O_3 O_4O_17 O_19

O_8 O_9O_11 O_12 O_13

O_7 O_14 O_15O_20

O_16

O_2 O_6

0 20 40 60 80 100 120

1
2

3
4

5
6

7
8

Time

M
a
c
h

in
e

FIFO

O_1 O_5 O_10 O_18

O_3 O_4O_17 O_19

O_8 O_9O_11 O_12 O_13

O_7 O_14 O_15O_20

O_16

O_2 O_6

0 20 40 60 80 100 120

1
2

3
4

5
6

7
8

Time

M
a
c
h

in
e

LPT

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

97

Figure 52 Scenario 3B: Resulting schedules (continued on next page)

O_1O_5O_10 O_18

O_3 O_4O_17 O_19

O_8 O_9O_11 O_12 O_13

O_7O_14 O_15O_20

O_16

O_2O_6

0 20 40 60 80 100 120

1
2

3
4

5
6

7
8

Time

M
a
c
h

in
e

SPT

O_1O_5 O_10O_18

O_3 O_4O_17 O_19

O_8 O_9 O_11 O_12 O_13

O_7 O_14 O_15O_20

O_16

O_2O_6

0 20 40 60 80 100 120

1
2

3
4

5
6

7
8

Time

M
a
c
h

in
e

EDD

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

98

Figure 52 Scenario 3B: Resulting schedules

The SPT rule schedule is significantly shorter as several operations start before O_1: =

34, implying that their successors do not have to wait for O_1: = 34 to finish before

their predecessors can be processed and they can become active.

The schedules of EDD, SS and CR are also shorter than those of FIFO and LPT, as the due

dates of the parts are so that the same happens as with SPT regarding O_1: = 34. All

three schedules finish processing of Part 4 first as its due date is first and very tight. The

order in which processing of the parts in EDD and SS finishes, is the same (Part 4, Part 2,

Part 1, and Part 3). Part 3 is processed second in the CR schedule because its ratio of

O_1O_5 O_10O_18

O_3 O_4O_17 O_19

O_8 O_9 O_11 O_12 O_13

O_7 O_14 O_15O_20

O_16

O_2O_6

0 20 40 60 80 100 120

1
2

3
4

5
6

7
8

Time

M
a
c
h

in
e

SS

O_1O_5O_10 O_18

O_3 O_4O_17 O_19

O_8 O_9O_11 O_12 O_13

O_7O_14 O_15O_20

O_16

O_2O_6

0 20 40 60 80 100 120

1
2

3
4

5
6

7
8

Time

M
a
c
h

in
e

CR

Validation and Verification of the Scheduling

Mechanism Functionality
8

University of Stellenbosch | Department of Industrial Engineering

99

remaining processing time to hours to due date is bigger than those of Part 2 and Part 1 at

certain points in time, where scheduling decisions were made.

In this chapter the functionality of the scheduling mechanism was verified using test data.

The validation of the scheduling mechanism on the specific manufacturing shop is done in

the next chapter by evaluating the scheduler with real-world data.

Evaluation of the Scheduling Mechanism with Real-
World Data

9

University of Stellenbosch | Department of Industrial Engineering

100

9. EVALUATION OF THE SCHEDULING MECHANISM WITH REAL-WORLD DATA

In the previous chapter the testing phase (see roadmap) was completed, the next phase is

drawing a conclusion, as shown on the roadmap below. The first step of drawing a

conclusion is to test the performance of the scheduling system in a real-world scenario to

determine the effectiveness of the scheduling mechanism. The schedule that is developed

by the scheduling mechanism for the real-world scenario must be compared to the actual

schedule that was used in the real-world system. The process that was followed to

implement the scheduling mechanism with historic real-world data and evaluate its

performance is discussed in this chapter.

Evaluation of Scheduling Mechanism
with Real-World Data

Literature Review on Manufacturing Shops
and Scheduling

Problem Statement: Manufacturing Shop
Scheduling

Proposed Architecture for the Scheduling
Mechanism

Participating Enterprise: Daliff
Engineering

Information System Design and
Implementation

Simulation Model Design and
Implementation

Validation and Verification of Developed
Scheduling Mechanism

Future Work

In
tr

o
d

uc
ti

o
n

C

o
n

ce
p

tu
al

D
es

ig
n

D

et
ai

l D
es

ig
n

T

es
ti

n
g

C

o
n

cl
u

si
o

n
 Evaluation of the Scheduling Mechanism

in a Stochastic Environment

Evaluation of the Scheduling Mechanism with Real-
World Data

9

University of Stellenbosch | Department of Industrial Engineering

101

9.1 EVALUATION PROCESS DESIGN AND IMPLEMENTATION

The evaluation methodology, shown in Figure 53, that was developed can be described as

follows. Real-world data of the arriving orders during a set time frame had to be captured to

use as input for the scheduling mechanism. This data had to contain order information like

production plans, release dates, due dates and processing times to enable the scheduling

mechanism to generate a schedule. Further data, such as operation start- and end times

were needed to construct the actual schedule that was followed to be able to compare it to

the schedule of the scheduling mechanism.

Figure 53 The Evaluation Methodology

Since the database Daliff currently uses is purely for costing purposes, the data in its current

form was not sufficient, thus the operational data had to be generated from time sheets.

The time sheet currently in use has five columns where the type of procedure can be

represented; they are setup, inspection, production, rework and other. The sheet has

nineteen rows that together represent all the hours of the day in increments of 30 minutes.

Each machine has its own time sheet and a new sheet is started at the beginning of each

day.

Evaluation of the Scheduling Mechanism with Real-
World Data

9

University of Stellenbosch | Department of Industrial Engineering

102

The current method of keeping record of the processing done on machines can be

described as follows: when a job starts on a machine, the job and operation number are

added to the time sheet at the appropriate time of day that represents the start time of the

operation. A tick is made in the column that represents the type of operation that was

completed to record the operation hours on the machine, i.e. to determine the setup time

of an operation, the number of ticks that are categorized under the operation in the setup

column is counted and multiplied with 30 minutes. The start time and duration of the setup,

inspection and production processes of each operation can thus be read from the time

sheet.

The operations that were already occupying a machine before the time frame, but

continued doing so at the start of the time frame, could not be scheduled along with the

other operations. These operations must start at the beginning of the schedule. Thus a busy

status had to be given to these operations to enforce these operations to start at the

beginning of the schedule. With this, they were also excluded from the scheduling process.

As this data is historic, it has characteristics that the data the scheduler was designed for, do

not have. One example of this is, when the scheduler is activated on a certain date, it will

have access to order information that will actually only be available after the date the

scheduler is activated. The data could thus not be used as it would during normal operation

of the scheduler. Alteration in the normal use of the scheduler was needed to test the

performance of the scheduler against the performance of the current system. The adjusted

use of the scheduler is described subsequently.

Usually the use of the scheduler has no time constraints as it works from the current state of

the system. Using historic data, the use of the scheduler needs some time constraints. The

start date and time window of the scheduler need to be adjusted according to the historic

data. The first start date is set to the beginning of the time period chosen for the evaluation.

The length of the simulation time window is set to the time from the start of the scheduling

to the time the next order arrives in the system. Therefore the scheduler generates a

schedule for the time period between order arrivals. The start time of the next scheduling

run is set to the time of arrival of the new order. The time window is again set to the time till

the next order arrives. In the historic data new order arrivals only occurred at the beginning

of a day, thus the scheduler run window is set to a day and on each new day a run is started.

Evaluation of the Scheduling Mechanism with Real-
World Data

9

University of Stellenbosch | Department of Industrial Engineering

103

The historic data were saved in a temporary table in the database, but some data

constraints had to apply as well during the evaluation. Only data of the orders that arrived

in the scheduling period had to be included for the scheduling. The appropriate data are

manually added to the simulation query table before each run. The scheduler will then

develop a schedule for this data. After each scheduling run in the evaluation period the

resulting schedule is written to the temporary Excel file. The table with the historic data is

also updated so that the system state at the end of the scheduling run can be recorded. This

is needed so that the simulated system state can be reflected at the start of the next

scheduling run.

At the end of the evaluation period the schedules are merged to generate the schedule the

scheduler would have implemented. The schedules can then be compared with each other.

9.2 EVALUATION PROCESS RESULTS

This section shows the proposed schedule for each rule that the scheduling mechanism

generated and compares it to the actual schedule that was used in the time frame. A

schedule that has been developed by a mixture of the scheduling rules is also included in

this section, the schedule was built by choosing the best performing scheduling rule for

every simulation period, i.e. implementing the schedule on a particular day that gave the

best results in terms of the hours parts are produced before their due dates. A summary of

the comparison between the proposed schedules and the actual schedule is shown in Table

10. The comparison is made in terms of the end times of the parts, and not the individual

operations of the parts, because the delivery of parts is the outcome of any manufacturing

process.

Evaluation of the Scheduling Mechanism with Real-
World Data

9

University of Stellenbosch | Department of Industrial Engineering

104

Table 10 Comparison of schedules

Scheduling
rule

Total hours
earlier

Hours per
part earlier

Number of
parts

earlier

Number of
parts later

Percentage
of hours
earlier

FIFO 173.167 2.935 28 31 17%

LPT -102.083 -1.73 28 31 -10%

SPT 256.167 4.342 36 23 24%

EDD 202.667 3.435 30 29 19%

SS 245.667 4.164 36 23 23%

CR 3.167 0.054 27 32 0%

Mixed 189.667 3.215 28 31 18%

 * The evaluation period consisted of 1105 machine hours

Table 10 has five columns that each represents a comparison criterion; the first column

shows the total hours gained, and in the case of LPT hours lost, per scheduling rule in terms

of parts being finished earlier than parts in the actual schedule. The second column shows

the average hours gained or lost per part. The third column shows the total number of parts

that were finished earlier than the parts in the actual schedule, whilst the fourth shows the

number of parts that were finished later. The last column shows the cumulative percentage

of the hours that parts are delivered earlier in comparison to the total machine hours of the

time period.

From the table it can be seen that the proposed schedule developed under the SPT rule has

the best result and would have, if implemented in stead of the actual schedule, produced

the parts 4.342 hours earlier on average. The proposed schedule of the LPT rule has the

worst result, seeing that on average parts are delivered later than with the actual schedule.

The scheduler is built to be used as it was in the mixed schedule, the results are thus a little

bit concerning because using the scheduler as intended did not yield the best result. This

shows the uncertainty involved with online scheduling. For example, if one knew what kind

of production would arrive in the system at a later stage in time, one could adhere to only

one specific scheduling rule and know that eventually it will yield better results. Resolving

this concern will later be discussed in this thesis in the chapter about further developments

that can be made to the scheduling mechanism.

Evaluation of the Scheduling Mechanism with Real-
World Data

9

University of Stellenbosch | Department of Industrial Engineering

105

What this table does not show, is that the makespan of all of these schedules are exactly the

same. The reason for this is that there is an order that is only released on the last day of the

time frame, which could not be rescheduled any earlier than its release date. The actual

schedule and schedules that were generated by the different scheduling rules are shown

and discussed on the next few pages.

It is important to note that in these schedules there are processing periods that overlap as

some of the machines have a capacity of more than one. This enables the scheduler to

schedule more than one operation on a machine at the same time, making the periods as

they appear in the schedules not completely correct, for example machines two, seven and

eight have a capacity of two, two and four respectively and the rest of the machines a

capacity of only one. The accompanying Excel sheet with each operation start and end time

is used to see how operations were scheduled on these machines (see section 7.6 on p.75).

The actual schedule that the production of the parts in the real-world followed is displayed

in Figure 54. The other schedules are compared to this schedule and a short discussion of

the comparison is included. The following comparisons refer to how the operations related

to machines three, four, five and six are scheduled seeing that the other machines have

capacities of more than one and machine one having only one operation. Looking at the

operations of machine seven in the FIFO schedule in Figure 55, an example of the

overlapping scheduling periods discussed previously can be given. The schedule shows that

there are three operations scheduled one after another from time zero to ten hours, what

actually happened is that there were four operations scheduled on machine seven in that

time period. The fourth operation started on time zero and ended just before ten hours, the

three operations displayed in the schedule were thus scheduled concurrently with the

fourth operation seeing that the machine has a capacity of two. This concludes the

explanation of the reason why the comparison of the schedules only refers to four

machines.

A general observation that could be made from all the proposed schedules compared to the

actual schedule, is that they are much less fragmented, i.e. having less stop start production

on the machines. This is an indication that the time it took for decisions to be made

regarding job allocation is eliminated in the proposed schedules.

Evaluation of the Scheduling Mechanism with Real-
World Data

9

University of Stellenbosch | Department of Industrial Engineering

106

Figure 54 Actual schedule followed

The schedule that was developed with the FIFO rule is shown in Figure 55. From the figure it

can be seen that the makespan of the production on machine two is shorter in the proposed

FIFO schedule. The first operation on machine four (represented by the pink rectangle and

indicated with an arrow) is scheduled right after its predecessor operation was finished on

machine seven, not like in the actual schedule where it is delayed and resultantly delaying

the part.

Figure 55 Proposed schedule for the FIFO rule

Figure 56 displays the schedule that was generated by using the SPT rule. The scheduled

operations on machine five are a good indication that the SPT rule was implemented

0 10 20 30 40 50 60 70 80

1

2

3

4

5

6

7

8

Time (hours)

M
a
c
h
in

e
Actual Schedule

0 10 20 30 40 50 60 70 80

1

2

3

4

5

6

7

8

Time (hours)

M
a
c
h
in

e

FIFO

Evaluation of the Scheduling Mechanism with Real-
World Data

9

University of Stellenbosch | Department of Industrial Engineering

107

correctly. The operations with the shortest processing time were scheduled first whilst the

precedence constraints were still met.

Figure 56 Proposed schedule for the SPT rule

Looking at machine five in Figure 57, which represents the proposed schedule developed

under the LPT rule, it is evident that the LPT rule is correctly implemented as the operations

are scheduled according to the longest processing times first. The operation that is

represented by the white rectangle (indicated by an arrow) on machine two is delayed as its

processing time is shorter than the processing times of other operations on the particular

machine. This delays the further operation of the part on machine eight, which results in the

longer makespan of production on machine eight.

The longer makespan on machine eight which has the highest capacity and at the same

time the most operations to process, results in the schedule having the worst performance

of all the schedules.

0 10 20 30 40 50 60 70 80

1

2

3

4

5

6

7

8

Time (hours)

M
a
c
h
in

e

SPT

Evaluation of the Scheduling Mechanism with Real-
World Data

9

University of Stellenbosch | Department of Industrial Engineering

108

Figure 57 Proposed schedule for the LPT rule

Figure 58 displays the proposed schedule developed using the EDD rule. The makespan of

production on machine two is also quite short, but similar to the LPT rule is the makespan of

machine eight long, indicating fair results.

Figure 58 Proposed schedule for the EDD rule

The SS schedule (Figure 59) proposed by the scheduling mechanism is the second best

schedule. Referring to machines four, six, seven and eight the schedule looks quite similar

to the EDD. The hours saved with the SS schedule is evident when looking at machine

three, where processing of the second part that is processed on machine three (shown by

the marked rectangles) ends much earlier than the EDD schedule.

0 10 20 30 40 50 60 70 80

1

2

3

4

5

6

7

8

Time (hours)

M
a
c
h
in

e

LPT

0 10 20 30 40 50 60 70 80

1

2

3

4

5

6

7

8

Time (Hours

M
a
c
h
in

e

EDD

Evaluation of the Scheduling Mechanism with Real-
World Data

9

University of Stellenbosch | Department of Industrial Engineering

109

Figure 59 Proposed schedule for the SS rule

The proposed schedule developed from using only the CR rule is shown in Figure 60. The

figure shows that the rule resulted in processing the operations with the longer remaining

processing time first. Seeing that the due dates of the orders are quite close to one another,

the critical ratios of the longer processing time operations are bigger and these operations

are thus processed first.

Figure 60 Proposed schedule for the CR rule

0 10 20 30 40 50 60 70 80

1

2

3

4

5

6

7

8

Time (hours)

M
a
c
h
in

e

SS

0 10 20 30 40 50 60 70 80

1

2

3

4

5

6

7

8

Time (hours)

M
a
c
h
in

e

CR

Evaluation of the Scheduling Mechanism with Real-
World Data

9

University of Stellenbosch | Department of Industrial Engineering

110

There is no significant evidence that explains why the CR schedule does not have better

results than the actual schedule, the reason could be hidden in the overlapping scheduling

periods of machines two, seven and eight.

The schedule that was developed by using the scheduling mechanism according to

implementation guidelines stated previously in this thesis is shown in Figure 61. Although

the makespan for production on machine eight is much shorter than some of the other

schedules, its performance is not better than any of those individual scheduling rules. This is

because the operations are finished in a different order, resulting in parts being finished on

different times than in other schedules. Consequently, different numbers of hours are

gained or lost with regards to part earliness and lateness.

Figure 61 Proposed schedule for the Mixed rules

9.3 CHAPTER OVERVIEW

This chapter describes the process that was followed to test the performance of the

scheduler with real-world data compared to the current scheduling mechanism. The

comparison of the proposed schedules developed by the scheduler and the actual schedules

were stated by referring to the total hours gained or lost with regards to part delivery dates.

The process of schedule generation was repeated for every scheduling rule, i.e. running

through the evaluation time period only using one scheduling rule. It was also completed

using a mixture of scheduling rules, choosing the rule with the best result for the particular

day, as the scheduling mechanism is supposed to be used for on-line scheduling.

0 10 20 30 40 50 60 70 80

1

2

3

4

5

6

7

8

Time (hours)

M
a
c
h
in

e

Mixed

Evaluation of the Scheduling Mechanism with Real-
World Data

9

University of Stellenbosch | Department of Industrial Engineering

111

The results indicate that using only the SPT rule will result in the best performance,

regarding early parts, for the particular historic data. The results thus indicate that using the

scheduler as intended is less desirable, if this is true it can only be clarified by implementing

the scheduling mechanism for a longer period of time.

In this chapter the performance of the scheduling mechanism was tested in a deterministic

environment, where in the real-world it should be able to operate similarly in a stochastic

environment, because the job shop is a stochastic environment. This will be addressed in

the next chapter.

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

112

10. THE SCHEDULING MECHANISM IN A STOCHASTIC ENVIRONME NT

The evaluation and validation of the scheduling mechanism were discussed in previous

sections of this thesis (see road map). From the evidence presented it can be concluded that

the scheduling mechanism correctly generates schedules, and that it implements the best

performing scheduling rule for the short-term period for which order information is known.

In this chapter the functionality of the scheduling mechanism in a stochastic environment is

described, as indicated in the road map.

In the previous chapters the scheduler was evaluated in a deterministic environment in

order to compare the performance of the scheduling mechanism to the current scheduling

method Daliff uses. It was shown that the scheduling mechanism improves the scheduling

of the enterprise, when compared to existing data of a specific historical time window.

Evaluation of Scheduling Mechanism with
Real-World Data

Evaluation of the Scheduling
Mechanism in a Stochastic Environment

Literature Review on Manufacturing Shops
and Scheduling

Problem Statement: Manufacturing Shop
Scheduling

Proposed Architecture for the Scheduling
Mechanism

Participating Enterprise: Daliff
Engineering

Information System Design and
Implementation

Simulation Model Design and
Implementation

Validation and Verification of Developed
Scheduling Mechanism

Future Work

In
tr

o
d

uc
ti

o
n

C

o
n

ce
p

tu
al

D
es

ig
n

D

et
ai

l D
es

ig
n

T

es
ti

n
g

C

o
n

cl
u

si
o

n

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

113

When the scheduling mechanism is implemented for use in the real-world, it should also

operate well in a stochastic environment, because the job shop is a stochastic environment.

In this section it is explained how the scheduling mechanism adapts to a stochastic

environment, and a demonstration of the functionality of the mechanism in such an

environment is given. It is now explained why the job shop is of stochastic nature.

10.1 STOCHASTIC PROCESSING TIMES

During the production planning phase of orders, the production planner must predict a

setup and a process time for each operation which determines the processing time of the

operation. Setup and process times may vary because of different operators and changing

circumstances on the shop floor, which makes it difficult for the planner to specify exact

times for each operation. Instead, the planner may assign estimated values to the setup and

process time of an operation, resulting in simple time distributions.

The scheduling mechanism exploits these distributions by drawing random observations for

the setup and process time of an operation. In the implementation of the scheduling

mechanism, the setup and process time of an operation are drawn from one of possible two

distributions, these are the uniform distribution and triangular distribution. Each

distribution will now be discussed, after which the implementation of the distributions in

the scheduling mechanism is explained. Finally, a demonstration example will be presented

to conclude this chapter.

10.2 THE CONTINUOUS UNIFORM DISTRIBUTION

The continuous uniform distribution (hereafter referred to as the uniform distribution),

shown in Figure 62, implies that the probability of choosing any value between the two

distribution parameters is equal. The distribution is denoted by , where and are

the lower and upper bound respectively. The probability density function , the

cumulative distribution function , the inverse cumulative distribution function

and the expected value of the uniform distribution are as follows:

 (1)

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

114

 (2)

 (3)

 (4)

The graphical representation of the probability density function is as follows:

Figure 62 Uniform distribution

10.3 THE TRIANGULAR DISTRIBUTION

The triangular distribution, shown in Figure 63, is used where the distribution of a random

variable can be approximated via three parameters, these are the minimum and maximum

values (and) , as well as the most likely value (mode) denoted by . The probability

density function , the cumulative distribution function , the inverse cumulative

distribution function and the expected value of the triangular distribution are

as follows:

 (5)

 (6)

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

115

 (7)

 (8)

The graphical representation of the probability density function is as follows:

Figure 63 Triangular distribution

10.4 IMPLEMENTATION OF THE DISTRIBUTION

When a quote is changed into a new order, the production planner decides what operations

will be necessary to manufacture the part(s) on the order, and on which machines the

operations will be executed. Also, the planner is able to estimate the duration of each

operation (setup and process time), and the information system allows for specifying either

an uniform distribution or a triangular distribution. The input of the user in the information

system determines which distribution is applicable to each operation. A snapshot of the

input choices the user has, is shown in Figure 64.

Next to each operation there are six input fields, three each for the process time and setup

time (see ovals in Figure 64). In both cases of the times, if the user only enters values into

the first two of the three input fields, the distribution is uniform with parameters and . If

the user enters values into each of the three fields the distribution is triangular. In Figure 64

the process time for Ops 1 has an uniform distribution with and and the setup

time of Ops 1 has a triangular distribution with , and .

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

116

Figure 64 Processing times input

The simulation model schedules the operations according to their respective expected

setup and process times. Take for example the times of Ops 1 indicated above, the expected

value of the process time is and the expected value of the setup

time is 2.67. When operations are processed in the simulation

model of the scheduling mechanism, it uses a random value that is drawn from the time

distribution of the specific operation. Running a large number of replications each with a

new random value for the processing times will provide a good estimation of how the real-

world can be expected to perform. The simulation model uses the inverse transform

method to generate random values from the distribution implemented, which will now be

discussed.

The mechanism of the Inverse transform method is shown in Figure 65. Generating

observations from a distribution using this method is accomplished by using the cumulative

distribution function of a distribution, and the assumption is that the inverse , namely

 exists and can be determined. A pseudorandom number is then generated from

 which is entered in the inverse function, to return .

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

117

Figure 65 Random number generation by means of the inverse transform

A random value for each operation is calculated at the beginning of each simulation

replication and saved in the simulation run table for further use. This is done by code in VBA

that is called when a replication is started. The pseudo code for the inverse transform of the

uniform distribution is as follows:

u = Rnd()

r = a + u*(b-a)

A pseudorandom number between 0 and 1 is generated by the simulation model, and this

number is then inserted into the inverse cumulative function of the uniform distribution to

return a random value drawn from the distribution. Referring to the process time of Ops 1

mentioned in the examples above, it has a uniform distribution . Thus if a random

number = 0.45 is inserted into the inverse cumulative function of the distribution, the

resulting random value drawn from the distribution is .

The pseudo code for generating observations from the triangular distribution using the

inverse transform, is as follows:

u = Rnd()

If u <= (c-a)/(b-a) then

r = a + sqr[u*(b-a)(c-a)] (Line 1)

else

r = b - sqr[(1-u)(b-a)(b-c)].................. (Line 2)

end if

A pseudorandom number between 0 and 1 is generated by the simulation model. If its value

is less than or equal to the ratio of the area between and to the whole area, the random

value is inserted into the inverse function (Line 1 above), else it is inserted into the inverse

X

1

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

118

function (Line 2 above). Referring to the setup time of Ops 1 shown in Figure 64, it has a

triangular function with parameters , and . Thus if a random number =

0.76 is generated by the simulation model, it is greater than and the

random value drawn from the distribution is

.

With the knowledge of the different distributions and how they are implemented by the

simulation model, an example of a schedule built by the scheduling mechanism using

stochastic times, is subsequently discussed.

10.5 FUNCTIONALITY OF THE SCHEDULING MECHANISM IN A STOCHASTIC

ENVIRONMENT

In the real world the scheduler will be activated when a new order or a set of new orders

need to be scheduled. The input for the scheduling mechanism is the current shop-floor

state and the information about the new information. The scheduler will activate the

simulation model that runs a few replications, each using random values drawn from the

appropriate time distributions, with the aim to predict the performance of the specific

scheduling rule under investigation. The performance of a scheduling rule in this stochastic

environment is estimated by averaging the performance over all the simulation replications

used to run the scheduling rule in the current system state. This process is repeated for each

scheduling rule and the performance of each is compared to select a specific scheduling rule

that must be followed for the current system state and the new set of orders.

The scheduling mechanism uses the simulation model to compile a schedule from the

expected times of the processing distributions following the chosen scheduling rule, this

schedule is used to control the real world shop-floor. The new schedule is followed on the

shop-floor until a new order or a set of new orders arrives in the system, at which point this

process is repeated.

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

119

10.6 DEMONSTRATION OF THE FUNCTIONALITY OF THE SCHEDULING

MECHANISM IN A STOCHASTIC ENVIRONMENT

To demonstrate the functioning of the scheduling mechanism, a simulation model of the

shop floor will be used as if it is the real world system. The simulation model, i.e. the "real

world", operates under a certain scheduling rule and processes current scheduled orders.

The current state of the shop-floor at the point in time when a new order arrives is recorded

by the information system, i.e. the status of the simulation model is read. This information

is then used as input together with the information of the new order set for the scheduling

mechanism.

The following steps will be followed to demonstrate the functionality of the scheduling

mechanism in a stochastic environment:

Step 1. Enter the information about the set of new orders into the information system.

Step 2. Run the simulation model, using the database as input, for 25 replications for each

of the five scheduling rules, using stochastic processing times. The simulation model

will develop schedules for each scheduling rule based on the simulated results.

Step 3. Evaluate the performance of each schedule, and choose the scheduling rule that

generated the best schedule.

Step 4. Build a new schedule using the expected processing times of the candidate orders,

according to the chosen scheduling rule.

Step 5. "Execute" the real world: Run the simulation model applying the chosen scheduling

rule for an arbitrary length of time to imitate the flow of jobs under the chosen

scheduling rule. The arbitrary length is determined by the arrival of a new set of

orders.

Step 6. Record the current imitated state of the system (from the simulation model) into

the information system – for example which of the existing orders are completed,

which are processed and which of the orders still need to be processed.

Step 7. If there are any new orders, go to step 1, else stop.

These steps were followed to demonstrate the functionality of the scheduling mechanism in

a stochastic environment, and the reader will now be guided through the process.

The scheduling mechanism was used to develop a schedule for a total of 20 orders that

arrived in the system over a time period of ten days. The orders did not arrive at the same

time, but at "random" times, i.e. the arrivals were chosen by the author. The orders

consisted of 49 operations that needed to be scheduled and processed. The processing

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

120

times of each operation are stochastic and have certain distributions associated with them.

The time-line of the order arrivals is shown in Figure 66, the arrows representing the events

of arrivals.

Figure 66 Time-line of order arrival

Figure 66 is repeated several times in the remainder of this section to indicate at what point

in time a new set of orders arrived in the system. The arrow represents the time of this

event, as shown below for :

At time zero four orders consisting of 13 operations are in the system, these orders are

shown in Table 11. The scheduling mechanism is used to compile different schedules for

each scheduling rule so that their performance could be compared to choose the best

schedule to follow.

Table 11 Order set 1
Job
No

Approved
Date

Prom
Date

Ops
No

Mach
ID

Mach
name

Setup
timeA

Setup
timeB

Setup
timeC

Insp
time

Proc
TimeA

Proc
TimeB

Proc
TimeC

Status
Id

1 2008/06/01 2008/08/02 1 1 V80 2 3 0 1 2 3 4 1

1 2008/06/01 2008/08/02 2 8 V40_New 2 3 0 1 20 30 0 0

1 2008/06/01 2008/08/02 3 2 V40_Old 2 3 0 1 1 2 0 0

2 2008/06/01 2008/07/25 4 1 V80 2 3 0 1 1 3 0 1

2 2008/06/01 2008/07/25 5 4 T7 2 3 0 1 7 8 13 0

2 2008/06/01 2008/07/25 6 3 Megaturn 2 3 0 1 1 7 8 0

3 2008/06/01 2008/08/01 7 1 V80 2 3 0 1 3 8 9 1

3 2008/06/01 2008/08/01 8 8 V40_New 2 3 0 1 10 12 13 0

3 2008/06/01 2008/08/01 9 3 Megaturn 2 3 0 1 2 4 0 0

3 2008/06/01 2008/08/01 10 4 T7 2 3 0 1 1 3 4 0

3 2008/06/01 2008/08/01 11 5 5Axil 2 3 0 1 4 7 0 0

4 2008/06/01 2008/06/30 12 2 V40_Old 2 3 0 1 1 4 5 1

4 2008/06/01 2008/06/30 13 1 V80 2 3 0 1 5 17 0 0

The performance of each schedule developed for the orders in Order set 1 is shown in Figure

67.

0 36.5 61.5 79.5 12.5

0 36.5 61.5 79.5 12.5

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

121

Figure 67 Different schedule performances of Order set 1

The total earliness performance criterion indicates the SPT and FIFO rule will deliver parts

the earliest, with SPT outperforming FIFO with two hours. The total makespan and average

flow time of SPT and FIFO are almost equal, and shorter than the other rules. Not one of the

scheduling rules finished an operation after its due date, and therefore the total lateness

performance criterion is omitted. Considering these performance criteria, the best

performing rules are FIFO and SPT, and they performed very similar. The FIFO was chosen

as it has the shorter makespan, and the proposed schedule for the shop under the FIFO rule

is shown in Figure 68.

CR
EDD

FIFO
LPT

SPT
SS

1650 1660 1670 1680 1690 1700 1710
Time (hours)

S
c
h

e
d

u
li
n

g
 r

u
le

Ave Total Earliness

SS

SPT

LPT

FIFO

EDD

CR

CR
EDD

FIFO
LPT

SPT
SS

0 10 20 30 40 50 60 70 80

Time (hours)

S
c
h

e
d

u
li
n

g
 r

u
le

Ave Total Makespan

SS

SPT

LPT

FIFO

EDD

CR

CR
EDD

FIFO
LPT

SPT
SS

0 10 20 30 40 50 60

Time (hours)

S
c
h

e
d

u
li
n

g
 r

u
le

Ave Flow time

SS

SPT

LPT

FIFO

EDD

CR

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

122

Figure 68 Proposed FIFO schedule for Order set 1

The flow of jobs through the system under the FIFO rule was imitated by a simulation run.

The simulation was only run for 12.5 hours as the next set of orders arrived in the system at

that time (see Figure 66). The state of the system, i.e. what operations are finished, active

and the remaining processing time of the busy operations, is recorded at this point in time.

The dotted line in Figure 68 indicates what the system state is at hours. Operation

Four (O_4) and Two (O_2) are still busy being processed and Operation One (O_1) and

Twelve (O_12) are finished. Table 12 shows an illustration of what the database looks like at

the current point in time.

Table 12 Order set 1 after 12.5 hours
Job
No

Ops
No

Mach
ID

Mach
name

Completed
Setup

Completed
Insp

Completed
Proc

Status
Id

Start
Time

End
Time

1 1 1 V80 2.5 2 3 3 0 7.5

1 2 8 V40_New 2.5 1 1.5 2 7.5 0

1 3 2 V40_Old 0 0 0 0 0 0

2 4 1 V80 2.5 2 0.5 2 7.5 0

2 5 4 T7 0 0 0 0 0 0

2 6 3 Megaturn 0 0 0 0 0 0

3 7 1 V80 0 0 0 1 0 0

3 8 8 V40_New 0 0 0 0 0 0

3 9 3 Megaturn 0 0 0 0 0 0

3 10 4 T7 0 0 0 0 0 0

3 11 5 5Axil 0 0 0 0 0 0

4 12 2 V40_Old 2.5 1 3.3 3 0 6.8

4 13 1 V80 0 0 0 1 0 0

It follows from Table 12 that Operation 1 has started at time zero continuing until time 7.5,

the value of its Status Id is 3 which means that it is completed. The successor operation of

O_1 O_4 O_7 O_13

O_3O_12

O_6 O_9

O_5 O_10

O_11

O_2 O_8

0 10 20 30 40 50 60 70

1
2

3
4

5
6

7
8

Time

M
a

c
h

in
e

FIFO

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

123

job 1, operation 2, is started at time 7.5. Operation 2 is not completed at time 12.5, thus it

has a busy status, denoted by 2 in the Status Id field, the completed time is recorded as 2.5

hours setup, 1 hour inspection and 1.5 hours completed process time. The remaining

process time is thus 23.5 hours as the expected process time is 25 hours (the expected time

of the uniform distribution is). Operation 12 has started on

time zero and ended at time 6.8, leaving its successor operation (operation 13) with an

active status. Processing of operation 13 has not started as it has been scheduled after other

operations, see Figure 68. In the remainder of this section a snapshot of the database at

each point in time when new orders arrive could be included, but is omitted as it is seen as

duplication. The system is at the following point in time:

After the schedule was followed for 12.5 hours, three orders consisting of nine operations

joined the system, shown in Table 13. At this point in time a total of 20 operations, of which

two (O_4 and O_2) are busy being processed, are in the system and of these, 18 need to be

scheduled. The orders that are busy cannot be stopped due to the pre-emption rule, thus

will be forced to start the new schedule that is going to be developed. The scheduling

mechanism is activated to compile the different schedules for each scheduling rule for the

new order set containing 18 operations.

Table 13 Order set 2
Job
No

Approved
Date

Prom
Date

Ops
No

Mach
ID

Mach
name

Setup
timeA

Setup
timeB

Setup
timeC

Insp
time

Proc
TimeA

Proc
TimeB

Proc
TimeC

Status
Id

5 2008/06/02 2008/07/30 14 6 Ap20 2 3 0 1 5 8 9 1

5 2008/06/02 2008/07/30 15 7 DMU 2 3 0 1 5 7 15 0

5 2008/06/02 2008/07/30 16 6 Ap20 2 3 0 1 3 20 22 0

6 2008/06/02 2008/06/24 17 6 Ap20 2 3 0 1 8 12 13 1

6 2008/06/02 2008/06/24 18 3 Megaturn 2 3 0 1 2 9 0 0

6 2008/06/02 2008/06/24 19 4 T7 2 3 0 1 3 6 9 0

6 2008/06/02 2008/06/24 20 5 5Axil 2 3 0 1 7 9 0 0

7 2008/06/02 2008/06/30 21 2 V40_Old 2 3 0 1 1 9 11 1

7 2008/06/02 2008/06/30 22 1 V80 2 3 0 1 5 8 0 0

The performance of each schedule developed for the combination of remaining orders in

Order set 1 and the new orders in Order set 2 is shown in Figure 69.

0 36.5 61.5 79.5 12.5

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

124

Figure 69 Different schedule performances of Order set 2

The total earliness performance criterion indicates that there is small difference between

the rules in terms of the degree that operations are finished before their due dates, the

difference between the best and worst performance is only eight hours. The total makespan

of CR is the shortest, while the average flow times delivered by the scheduling rules are

almost equal. Considering these performance criteria, the CR was chosen as the scheduling

rule that will perform the best, and its proposed schedule is shown in Figure 70. Note that

the time axis shows a relative time, i.e. is in real time.

CR
EDD

FIFO
LPT

SPT
SS

2604 2606 2608 2610 2612 2614 2616 2618 2620
Time (hours)

S
c

h
e

d
u

li
n

g
 r

u
le

Ave Total Earliness

SS

SPT

LPT

FIFO

EDD

CR

CR
EDD

FIFO
LPT
SPT

SS

0 10 20 30 40 50 60 70 80

Time (hours)

S
c
h

e
d

u
li
n

g
 r

u
le

Ave Total Makespan

SS

SPT

LPT

FIFO

EDD

CR

CR
EDD
FIFO

LPT
SPT
SS

0 10 20 30 40 50

Time (hours)

S
c
h

e
d

u
li
n

g
 r

u
le

Ave Flow time

SS

SPT

LPT

FIFO

EDD

CR

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

125

Figure 70 Proposed CR schedule for order set 2

From Figure 70 it follows that the operations that were busy when the new orders arrived

(O_4 and O_2) start at time zero as they could not be stopped and processed later; they are

processed for their total time less the time they have already been processed according to

the previous schedule. Take for example Operation Four (O_4): when the new orders

arrived in the system causing the rescheduling, Operation Four was processed for about 5.5

hours. In the new schedule it is processed for an hour, which causes its total processing time

over the two schedules to equal 6.5 hours. This is equal to its total time indicated by the

user.

The flow of jobs through the system under the CR rule was imitated by a simulation run.

The simulation was run for 24 hours (up to 36.5 hours in absolute time, see Figure 66), when

the next set of orders arrived in the system. The current state of the system, i.e. what

operations are finished, active and the remaining processing time of the busy operations,

were recorded. The dotted line in Figure 70 indicates the system state after 24 hours since

the last reschedule occurred, five operations (O_3, O_8, O_13, O_14 and O_18) are currently

being processed and another eight still need to be processed.

O_4
O_7 O_13 O_22

O_3O_21

O_6 O_9O_18

O_5 O_10O_19

O_11O_20

O_14 O_16O_17

O_15

O_2
O_8

0 10 20 30 40 50 60 70

1
2

3
4

5
6

7
8

Time

M
a
c
h

in
e

CR

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

126

After the schedule was followed for 24 hours since the last reschedule (see time line above),

two orders consisting of four operations join the system, shown in Table 14. At this point in

time a total of 17 operations, of which five are already busy being processed, are in the

system that need to be scheduled. The orders that are busy cannot be stopped, due to the

pre-emption rule, thus will be forced to start the new schedule that is going to be

developed. The scheduling mechanism is activated to compile the different schedules for

each scheduling rule for the new order set containing 12 operations.

Table 14 Order set 3
Job
No

Approved
Date

Prom
Date

Ops
No

Mach
ID

Mach
name

Setup
timeA

Setup
timeB

Setup
timeC

Insp
time

Proc
TimeA

Proc
TimeB

Proc
TimeC

Status
Id

8 2008/06/05 2008/07/15 23 4 T7 2 3 0 1 1 3 14 1

8 2008/06/05 2008/07/15 24 3 Megaturn 2 3 0 1 8 9 12 0

8 2008/06/05 2008/07/15 25 7 DMU 2 3 0 1 3 8 9 0

9 2008/06/05 2008/06/13 26 2 V40_Old 2 3 0 1 1 17 19 1

The performance of each schedule developed for the combination of remaining orders from

the previous order sets and the orders in Order set 3 is shown in Figure 71.

0 36.5 61.5 79.5 12.5

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

127

Figure 71 Different schedule performances of Order set 3

The SPT scheduling rule is chosen as it yields the best performance for each of the different

criteria, it has the best total time of operations delivered before their due dates, the

shortest makespan and the shortest average flow time. The proposed schedule from the

SPT rule (see Figure 72), is implemented from this point in time until a new order causes a

rescheduling. Note that the time axis shows a relative time, i.e. is in real

time.

CR
EDD

FIFO
LPT

SPT
SS

2862 2863 2864 2865 2866 2867 2868 2869
Time (hours)

S
c

h
e

d
u

li
n

g
 r

u
le

Ave Total Earliness

SS

SPT

LPT

FIFO

EDD

CR

CR
EDD

FIFO
LPT

SPT
SS

0 10 20 30 40 50

Time (hours)

S
c
h

e
d

u
li
n

g
 r

u
le

Ave Total Makespan

SS

SPT

LPT

FIFO

EDD

CR

CR
EDD
FIFO
LPT

SPT
SS

0 5 10 15 20 25

Time (hours)

S
c
h

e
d

u
li
n

g
 r

u
le

Ave Flow time

SS

SPT

LPT

FIFO

EDD

CR

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

128

Figure 72 Proposed SPT schedule for order set 3

The flow of jobs through the system under the SPT rule was imitated by a simulation run.

The simulation was only run for 25 hours, when the next set of orders arrived in the system.

The current state of the system, i.e. what operations are finished, active and the remaining

processing time of the busy operations, were recorded. The dotted line in Figure 72

indicates the system state after 25 hours since the last reschedule occurred, four operations

(O_10, O_16, O_20 and O_24) are currently being processed and two more need to be

processed.

After the schedule was followed for 25 hours since the last reschedule (see time line above),

six orders consisting of 14 operations join the system, shown in Table 15. At this point in

time a total of 20 operations, of which four are already busy being processed, are in the

system that need to be scheduled. The orders that are busy cannot be stopped, due to the

pre-emption rule, thus will be forced to start the new schedule that is going to be

developed, as in previous cases. The scheduling mechanism is activated to compile the

different schedules for each scheduling rule for the new order set containing 16 operations.

O_13 O_22

O_3 O_26

O_6 O_9O_18 O_24

O_10O_19O_23

O_11O_20

O_14 O_16

O_15 O_25

O_8

0 5 10 15 20 25 30 35 40 45

1
2

3
4

5
6

7
8

Time

M
a

c
h

in
e

SPT

0 36.5 61.5 79.5 12.5

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

129

Table 15 Order set 4
Job
No

Approved
Date

Prom
Date

Ops
No

Mach
ID

Mach
name

Setup
timeA

Setup
timeB

Setup
timeC

Insp
time

Proc
TimeA

Proc
TimeB

Proc
TimeC

Status
Id

10 2008/06/08 2008/07/30 27 4 T7 2 3 0 1 1 9 20 1

11 2008/06/08 2008/08/30 28 5 5Axil 2 3 0 1 8 9 0 1

11 2008/06/08 2008/08/30 29 7 DMU 2 3 0 1 3 8 14 0

11 2008/06/08 2008/08/30 30 8 V40_New 2 3 0 1 1 7 0 0

12 2008/06/08 2008/08/12 31 3 Megaturn 2 3 0 1 3 4 13 1

12 2008/06/08 2008/08/12 32 4 T7 2 3 0 1 1 12 13 0

13 2008/06/08 2008/06/12 33 1 V80 2 3 0 1 2 3 4 1

13 2008/06/08 2008/06/12 34 8 V40_New 2 3 0 1 20 30 0 0

14 2008/06/08 2008/06/15 35 2 V40_Old 2 3 0 1 1 5 0 1

14 2008/06/08 2008/06/15 36 1 V80 2 3 0 1 1 3 14 0

14 2008/06/08 2008/06/15 37 6 Ap20 2 3 0 1 7 8 0 0

15 2008/06/08 2008/06/25 38 3 Megaturn 2 3 0 1 1 7 12 1

15 2008/06/08 2008/06/25 39 1 V80 2 3 0 1 3 8 0 0

15 2008/06/08 2008/06/25 40 8 V40_New 2 3 0 1 10 12 19 0

The performance of each schedule developed for the combination of remaining orders from

the previous order sets and the orders in Order set 4 is shown in Figure 73.

Figure 73 Different schedule performances of Order set 4 (continued on next page)

CR
EDD

FIFO
LPT
SPT

SS

4774 4776 4778 4780 4782 4784
Time (hours)

S
c

h
e

d
u

li
n

g
 r

u
le

Ave Total Earliness

SS

SPT

LPT

FIFO

EDD

CR

CR
EDD

FIFO
LPT

SPT
SS

0 10 20 30 40 50 60

Time (hours)

S
c

h
e

d
u

li
n

g
 r

u
le

Ave Total Makespan

SS

SPT

LPT

FIFO

EDD

CR

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

130

Figure 73 Different schedule performances of Order set 4

According to Figure 73, the different schedules do not differ much in terms of earliness and

average flow time, the difference between the minimum and maximum values for the

earliness criterion is only five hours and the difference between the minimum and

maximum values for the flow time criterion is less than an hour. The makespan

performance is thus used to determine which scheduling rule has the best performance,

resulting in implementing the CR schedule as it has the smallest makespan. The proposed

schedule developed with the CR rule is shown in Figure 74. Note that the time axis shows a

relative time, i.e. is in real time.

Figure 74 Proposed CR schedule for order set 4

CR
EDD
FIFO
LPT
SPT
SS

0 5 10 15 20

Time (hours)

S
c
h

e
d

u
li
n

g
 r

u
le

Ave Flow time

SS

SPT

LPT

FIFO

EDD

CR

O_33 O_36 O_39

O_35

O_24 O_31O_38

O_10 O_27 O_32

O_11O_20 O_28

O_16 O_37

O_25 O_29

O_30O_34 O_40

0 10 20 30 40 50

1
2

3
4

5
6

7
8

Time

M
a
c
h

in
e

CR

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

131

The flow of jobs through the system under the CR rule was imitated by a simulation run.

The simulation was only run for 18 hours, when the next set of orders arrived in the system.

The current state of the system, i.e. what operations are finished, active and the remaining

processing time of the busy operations, were recorded. The dotted line in Figure 74

indicates the system state after 18 hours since the last reschedule occurred, three

operations (O_28, O_31 and O_34) are currently being processed and six more needs to be

processed.

After the schedule was followed for 18 hours since the last reschedule, five orders consisting

of nine operations join the system, shown in Table 16. At this point in time a total of 18

operations, from which three are already busy being processed, are in the system that

needs to be scheduled. The orders that are busy cannot be stopped, due to the pre-emption

rule, thus will be forced to start the new schedule that is going to be developed. The

scheduling mechanism is activated to compile the different schedules for each scheduling

rule for the new order set containing 15 operations.

Table 16 Order set 5
Job
No

Approved
Date

Prom
Date

Ops
No

Mach
ID

Mach
name

Setup
timeA

Setup
timeB

Setup
timeC

Insp
time

Proc
TimeA

Proc
TimeB

Proc
TimeC

Status
Id

16 2008/06/10 2008/07/25 41 3 Megaturn 2 3 0 1 1 4 8 1

17 2008/06/10 2008/07/01 42 1 V80 2 3 0 1 3 8 14 1

17 2008/06/10 2008/07/01 43 8 V40_New 2 3 0 1 8 12 13 0

18 2008/06/10 2008/07/18 44 3 Megaturn 2 3 0 1 2 6 0 1

19 2008/06/10 2008/08/04 45 3 Megaturn 2 3 0 1 2 9 12 1

19 2008/06/10 2008/08/04 46 4 T7 2 3 0 1 3 6 0 0

20 2008/06/10 2008/07/27 47 5 5Axil 2 3 0 1 7 12 0 1

20 2008/06/10 2008/07/27 48 2 V40_Old 2 3 0 1 1 7 11 0

20 2008/06/10 2008/07/27 49 1 V80 2 3 0 1 5 16 0 0

The performance of each schedule developed for the combination of remaining orders from

the previous order sets and the orders in Order set 5 is shown in Figure 75.

0 36.5 61.5 79.5 12.5

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

132

Figure 75 Different schedule performances of Order set 5

The difference between the flow time performances of the schedules is very small and

therefore not considered when comparing the schedules. Although LPT and CR have worse

earliness performances than the other schedules, their better performing makespans make

them the better schedules to follow as makespan is considered more important. The

difference between the makespan performances of the two schedules is very small, their

earliness performance is therefore used to determine which schedule is the best. CR has a

better earliness performance and is therefore considered to be the best current scheduling

rule, and the consequent schedule developed with the CR rule is shown in Figure 76. Note

that the time axis shows a relative time, i.e. is in real time.

CR
EDD

FIFO
LPT

SPT
SS

6380 6385 6390 6395 6400 6405 6410
Time (hours)

S
c

h
e

d
u

li
n

g
 r

u
le

Ave Total Earliness

SS

SPT

LPT

FIFO

EDD

CR

CR
EDD

FIFO
LPT

SPT
SS

0 10 20 30 40 50 60

Time (hours)

S
c
h

e
d

u
li
n

g
 r

u
le

Ave Total Makespan

SS

SPT

LPT

FIFO

EDD

CR

CR

EDD

FIFO

LPT

SPT

SS

0 2 4 6 8 10 12 14 16
Time (hours)

S
c
h

e
d

u
li
n

g
 r

u
le

Ave Flow time

SS

SPT

LPT

FIFO

EDD

CR

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

133

Figure 76 Proposed CR schedule for order set 5

The flow of operations through the system under the CR rule was imitated by a simulation

run. The simulation was run until all the operations were finished as no new orders entered

the system.

This concludes the demonstration example of how the scheduling mechanism functions in a

stochastic environment. Next this chapter is concluded with a discussion on how the online

capability of the scheduling mechanism is revealed.

10.7 CHAPTER CONCLUSION

The online scheduling capability of the scheduling mechanism is confirmed by this

demonstration example. In the fast changing environment where the distant future was

unknown, a schedule was developed according to what was known, this schedule was

followed until what was known was changed by the arrival of a new order. A new schedule

was then easily developed using the new what was known information. Every time a new

schedule was developed it was believed to be the best schedule for what was known, and it

is followed until more is known. This phenomenon is called myopic scheduling, also known

as short-sighted scheduling.

O_39 O_42 O_49

O_48

O_31 O_41O_44O_45

O_32 O_46

O_11O_28 O_47

O_37

O_29

O_30O_34 O_40 O_43

0 5 10 15 20 25 30 35 40 45

1
2

3
4

5
6

7
8

Time

M
a

c
h

in
e

CR

The Scheduling Mechanism in a Stochastic
Environment

10

University of Stellenbosch | Department of Industrial Engineering

134

In the demonstration, a "best scheduling rule" was selected via reasoning at each

reschedule epoch. Future work on this problem should consider a normalized, and possibly

weighted function that considers all performance criteria which can lead to automatically

ranking and selection of the best rule. Suggested methods are Simple Additive Weighting

(see Ma et al. [58]) and TOPSIS (see Hwang and Yoon [59] and Jahanshahloo et al. [60]).

A conclusion of the work done for the purpose of this thesis is stated in the next chapter.

Suggested Further Developments of the
Scheduling Mechanism

11

University of Stellenbosch | Department of Industrial Engineering

135

11. CONCLUSION

Drawing a conclusion is the final phase of the thesis road map as shown below. The results

obtained in this study have already been stated and a conclusion can now be made, which is

stated in this chapter.

Solving the problem of online scheduling of a manufacturing shop that has a high arrival

rate of orders, where orders consist of small quantities of complex parts, which are unique

to the order, was stated as the aim of this research. Using simulation as scheduling device

was suggested as the tool of choice.

Literature Review on Manufacturing Shops
and Scheduling

Problem Statement: Manufacturing Shop
Scheduling

Proposed Architecture for the Scheduling
Mechanism

Participating Enterprise: Daliff
Engineering

Information System Design and
Implementation

Simulation Model Design and
Implementation

Validation and Verification of Developed
Scheduling Mechanism

Evaluation of the Scheduling Mechanism
in a Stochastic Environment

Future Work

In
tr

o
d

uc
ti

o
n

C

o
n

ce
p

tu
al

D
es

ig
n

D

et
ai

l D
es

ig
n

T

es
ti

n
g

C

o
n

cl
u

si
o

n

Evaluation of Scheduling Mechanism with
Real-World Data

Suggested Further Developments of the
Scheduling Mechanism

11

University of Stellenbosch | Department of Industrial Engineering

136

After a survey of the scheduling literature, and specifically scheduling in job-shops, an

architecture was developed for the proposed scheduling mechanism. It required the use of

an information system, a simulation model and a real-world shop-floor.

The implementation of the architecture for a local enterprise was discussed thereafter,

describing the information system and simulation model design and implementation. The

resulting schedules that were obtained from the proposed scheduling mechanism for the

enterprise were stated and discussed.

These resulting schedules indicate that the scheduling mechanism developed according to

the proposed architecture for the enterprise is indeed applicable to use as a scheduler, as

the schedules delivered predict better performance of the manufacturing shop. It was also

shown how the scheduler functions in a stochastic environment.

11.1 SUGGESTIONS TO DALIFF ENGINEERING REGARDING THE

IMPLEMENTATION OF THE SCHEDULING MECHANISM

Before implementing the current scheduling mechanism, Daliff Engineering should run a

trial period, during which the scheduling mechanism is run parallel to the current production

process, while keeping the information system up to date as business changes. It will entail

extra work as a person has to collect system state information from the shop floor manually

and enter it into the information system. It is also suggested that the person that will be

responsible for the total implementation of the scheduling mechanism and eventual user of

it, is responsible for the trial period and the work associated. Conducting the trial period will

allow the person to get grips with the scheduler and gain valuable experience regarding the

scheduler and its functions.

The first stage of the implementation process will be to implement the information system.

The ideal is to get the information system fully automated, by using programmable logic

controllers and a computer network. Detail on this will be left for the implementation

process. When the information system is fully incorporated into the enterprise’s daily

activities and is concurrently updated with the shop-floor status, the scheduling model can

be implemented. First the scheduler must not be allowed to control the shop floor

according to the schedules it generates, rather implement the schedules through following

schedule sheets manually. This enables the person responsible for the implementation to

Suggested Further Developments of the
Scheduling Mechanism

11

University of Stellenbosch | Department of Industrial Engineering

137

verify the schedules before implementation. When the schedules developed by the

scheduling mechanism are deemed acceptable, control can be given to the scheduling

mechanism.

During the trial and implementation periods, the person responsible is advised to always

look for possible improvements by modifications as it will satisfy the concept of Quality at

the Source, eliminating time consuming problems at full implementation.

11.2 COMPLIANCE WITH ACADEMIC REQUIREMENTS

The academic requirements were stated at the beginning of this thesis in the Terms of

Reference section. The work reported in this thesis confirms that the requirements were

met. The figure on the next page is a summary of the work completed in compliance with

the academic requirements.

The academic requirements stated in the Terms of Reference section are repeated in the

figure, but are faded. It acts as a skeleton framework to represent the work that is

completed. A list of the characteristics of the components developed to comply with the

requirement is included along with a visual representation of the component. The interfaces

between the components are shown by the arrows.

In previous sections, the functionality of the scheduling mechanism is proven to be

satisfactorily and it achieves desirable results. The scheduling mechanism can now be used

in the Department of Industrial Engineering at the Stellenbosch University as platform for

further studies regarding simulation-based online scheduling. Some recommendations are

made in the next section.

Suggested Further Developments of the
Scheduling Mechanism

11

University of Stellenbosch | Department of Industrial Engineering

138

Online Scheduling Mechanism

M
an

u
fa

ct
u

ri
ng

 p
ro

ce
ss

Make-to-Order
 Fast changing

 Small order sizes

 Once-off production

Means: Simulation Model

 Discrete event simulation
 Stochastic

 Adaptable

 Established scheduling rules

 Develop schedules
 Record performances

Output: Excel Worksheet and Gantt-style Chart
 Myopic

 Established performance criteria

Input: Information System
 Enterprise status

 Order information

Simulation Model Developed
 Rockwell Arena

 VBA code

 Adapts to current system state

 Implements stochastic processing times
 Implements scheduling rules

 Develops schedules

 Measures performance

Interface

established

with VBA

code

Interface

established

with VBA

code

Architecture developed

Industry Partner

 Make-to-order

Output developed

 MS Excel
 Measures according to performance criteria

 Delivers schedule

Information System developed

 Frontpage and MS Access
 ASP code

Suggested Further Developments of the
Scheduling Mechanism

12

University of Stellenbosch | Department of Industrial Engineering

139

12. SUGGESTED FURTHER DEVELOPMENTS OF THE SCHEDULING MECHANISM

The options of further modifications and alterations of the scheduling mechanism

developed in this study are endless. This chapter states some of these options as identified

by the student (see road map below).

Enhancing the online capabilities of the mechanism by incorporating real time control can

be a challenging, but worthwhile exercise. Real time control, in this context, entails the

control of the manufacturing shop processes by the scheduling mechanism. The

mechanism would thus implement the schedule that was developed by itself, whilst being a

controller the response to system disturbances will be much quicker as the scheduler is

directly connected to the shop. Arena RT is the suggested tool as the scheduler already uses

Arena for its scheduling component.

Literature Review on Manufacturing Shops
and Scheduling

Problem Statement: Manufacturing Shop
Scheduling

Proposed Architecture for the Scheduling
Mechanism

Participating Enterprise: Daliff
Engineering

Information System Design and
Implementation

Simulation Model Design and
Implementation

Validation and Verification of Developed
Scheduling Mechanism

Evaluation of the Scheduling Mechanism
in a Stochastic Environment

Future Work

In
tr

o
d

uc
ti

o
n

C

o
n

ce
p

tu
al

D
es

ig
n

D

et
ai

l D
es

ig
n

T

es
ti

n
g

C

o
n

cl
u

si
o

n

Evaluation of Scheduling Mechanism with
Real-World Data

Suggested Further Developments of the
Scheduling Mechanism

12

University of Stellenbosch | Department of Industrial Engineering

140

Enhancing the scheduler by adding learning capabilities would answer the concern

presented in the evaluation sections. With learning capabilities the scheduler will in a sense

get to know the shop floor and production environment. If records are kept of the schedule

rules that were implemented and those that were not, it could be used to evaluate the

functionality of the scheduler on the specific shop floor. Take for example the situation that

was noticed during the evaluation process. It was noticed that using only the SPT rule in

that particular time frame instead of the scheduling rule that performed best for each

simulation period, a better result could have been achieved. If it were the case that after

examining the records that were kept, as explained above, over a long period of time, it

became evident that the SPT rule in fact would have resulted in better results. A conclusion

could be made with strong certainty that the shop floor must rather be run on a SPT rule

basis, and the need for online scheduling could consequently disappear. Whether this will

happen or not is open to speculation and would only become evident after the scheduler is

implemented and used for a long period.

Incorporating learning capabilities for the probability distributions of the processing times

can be included, to make the scheduling mechanism evolve as time elapses.

Alternative machine routing capabilities will enhance the scheduling capabilities of the

mechanism. Giving the scheduler a set of machines on which an operation can be

performed will enable it to shorten schedules, but at the same time make the scheduling

problem more complex.

More scheduling rules can be made available for the user to choose from, or better yet,

automate the process of running the simulation model for all the scheduling rules, including

the newly added ones. The comparison of the performance of the different scheduling rules

can then also be automated. The scheduler will eventually be fully automated and the need

for any human intervention will be unnecessary.

Instead of evaluating the performance of each schedule separately and visually, an

objective function could be developed in which each performance criterion has a certain

weight assigned to it. Each schedule will thus only have one performance criterion value

that enables an easy mathematical comparison of schedules.

Suggested Further Developments of the
Scheduling Mechanism

12

University of Stellenbosch | Department of Industrial Engineering

141

A test environment could also be developed to test and ‘play’ with the scheduling

mechanism. A typical environment can be built using programmable logic controllers (PLC)

that represents resources. The interface of the scheduling mechanism with the real-world

manufacturing shop and its response to system disturbances can be demonstrated and

tested to some extreme.

References 13

University of Stellenbosch | Department of Industrial Engineering

142

13. REFERENCES

[1] Womack JP, Jones DT, Roos D. The Machine that Changed the World. New York:

Rawson Associates; 1990. pp. 11-15.

[2] Groover MP. Automation, Production Systems and Computer-Integrated

Manufacturing, Englewood Cliffs, NJ: Prentice Hall, Inc.; 1987. pp. 1-9.

[3] Shnits B, Rubinovitz J, Sinreich D. Multi-criteria dynamic scheduling methodology

for controlling a flexible manufacturing system. International Journal of Production

Research 2004; 42(17):3457-3472.

[4] Shnits B, Sinreich D. Controlling flexible manufacturing systems based on a

dynamic selection of the appropriate operational criteria and scheduling policy.

International Journal of Flexible Manufacturing Systems 2006; 18:1–27

[5] Banks J. Handbook of Simulation. John Wiley and Sons, Inc; 1998. pp. 465-515.

[6] Byrne MD, Chutima P. Real-time Operational Control of a FMS with Full Routing

Flexibility. International Journal of Production Economics 1997; 51(1- 2):109-113.

[7] Kim MH. Simulation-based real-time scheduling in a flexible manufacturing system.

Journal of Manufacturing Systems 1994; 13(2):85-93.

[8] Tung L-F, Lin L, Nagi R. Multiple-objective scheduling for the hierarchical control of

flexible manufacturing systems. International Journal of Flexible Manufacturing

Systems 1999; 11(4):379-409.

[9] Hopp WJ, Spearman ML. Factory Physics: Foundations of Manufacturing

Management. Second edition. New York: Irwin McGraw-Hill; 2001.

[10] Pinedo M. Scheduling Theory, Algorithms, and Systems. Prentice Hall international

series in industrial and systems engineering; 1995.

[11] Perregaard M, Clausen J. Parallel branch-and-bound methods for the job-shop

scheduling problem. Annals of Operations Research 1998; 83:137–160.

[12] Sadeh N. Look-Ahead Techniques for Micro-Opportunistic Job-shop Scheduling

[Doctoral Thesis]. Carnegie Mello University; Pennsylvania; 1991.

[13] Leung J Y-T. Handbook of Scheduling: Algorithms, Models, and Performance

Analysis. Chapman & Hall/CRC. 2004.

[14] Fisher H, Thompson GL. Probabilistic learning combinations of local job-shop

scheduling rules. Industrial Scheduling. Prentice-Hall, Englewood Cliffs. 1963; pp.

225–241.

References 13

University of Stellenbosch | Department of Industrial Engineering

143

[15] Schutten JMJ. Practical job-shop scheduling. Annals of Operations Research 1998;

83:161–177.

[16] Pezzella F, Morganti G, Ciaschetti G. A genetic algorithm for the Flexible Job-shop

Scheduling Problem. Computers & Operations Research 2008; 35:3203 – 3212.

[17] Baker KR. Introduction to sequencing and scheduling, Wiley & Sons: New York;

1974.

[18] Church LK, Uzsoy R. Analysis of periodic and event-driven rescheduling policies in

dynamic shops. International Journal of Computer-Integrated Manufacturing 1992;

5:153–163.

[19] Artigues C, Michelon P, Reusser S. Insertion techniques for static and dynamic

resource-constrained project scheduling. European Journal of Operational Research

2003; 149(2): 249–267.

[20] Wysk RA, Smith JS. A Formal Characterization of Shop Floor Control. Computers in

Industrial Engineering 1995; 28(3):631-644.

[21] Yamamoto Y, Nof SY. Scheduling/Rescheduling in the Manufacturing Operating

System Environment. International Journal of Production Research 1985; 23(4):705-

722.

[22] Yih Y, Thesen A. Semi-Markov Decision Models for Real-time. International Journal

of Production Research 1991; 29(11):2331-2346.

[23] Maley JG, Ruiz-Meir S , Solberg JJ. Dynamic Control in Automated Manufacturing:

A Knowledge-Integrated Approach. International Journal of Production Research

1988; 26(11):1739-1748.

[24] Sarin SC, Salgame RR. Development of a Knowledge-Based System for Dynamic

Scheduling. International Journal of Production Research 1990. 28(8):1499-1512.

[25] Maimon OZ. Real-time Operational Control of Flexible Manufacturing Systems.

Journal of Manufacturing Systems 1987; 6(2):125-136.

[26] Shaw MJ. Dynamic scheduling in Cellular Manufacturing Systems: A Framework for

Networked Decision Making. Journal of Manufacturing Systems 1988; 7(2):83-94.

[27] Shaw MJ, Park S, Raman N. Intellegent scheduling with machine learning

capabilities: the induction of scheduling knowledge. IIE Transactions 1992; 24:156-

168.

References 13

University of Stellenbosch | Department of Industrial Engineering

144

[28] Piramuthu S, Raman N, Shaw MJ. Learning-based scheduling in a flexible

manufacturing flow line. IEEE Transactions on Engineering Management 1994;

41:172–182.

[29] Sun Y-L, Yih Y. An intelligent controller for manufacturing cells. International

Journal of Production Research 1996; 34:2353–2373.

[30] Soon TH, Desouza R. Intelligent simulation-based scheduling of workcells: an

approach. Integrated Manufacturing Systems 1997; 8:6–23.

[31] Min HS, Yih Y, Kim C-O. A competitive neural network approach to multiobjective

FMS scheduling. International Journal of Production Research 1998; 36:1749–1765.

[32] Jahangirian M, Conroy GV. Intelligent dynamic scheduling system: the application

of genetic algorithms. Integrated Manufacturing Systems 2000; 11:247–257.

[33] Smith JS, Wysk RA, Sturrock DT, Ramaswamy SE, Smit GD, Joshi SB. Discrete

Event Simulation for Shop Floor Control. In: Tew JD, Manivannan MS, Sadowski DA

and Seila AF, editors. Simulation: Proceedings of the 1994 Winter Simulation

Conference. Florida: Lake Buena Vista; 1994. pp. 962-969.

[34] Jones A, Rabelo L, Yuehwern Y. A Hybrid Approach for Real-Time Sequencing and

Scheduling. International Journal of Computer Integrated Manufacturing 1995;

8(2):145-154.

[35] Julia S, Valette R. Real time scheduling of batch systems. Simulation Practice and

Theory 2000; 8:307-319.

[36] Kim MH, Kim YD. Simulation-based real-time scheduling in a flexible

manufacturing system. Journal of Manufacturing Systems 1994; 13:85–93.

[37] Jeong KC, Kim YD. A real-time scheduling mechanism for a flexible manufacturing

system: using simulation and dispatching rules. International Journal of Production

Research 1998; 36:2609–2626.

[38] Cho H, Wysk RA. A robust adaptive scheduler for an intelligent workstation

controller. International Journal of Production Research 1993; 31:771–789.

[39] Ishii N, Talavage JJ. A transient-based real-time scheduling algorithm in FMS.

International Journal of Production Research 1991; 29:2501–2520.

[40] Wu S-Y D, Wysk RA. An application of discrete-event simulation to on-line control

and scheduling in flexible manufacturing. International Journal of Production

Research 1989; 27:1603–1623.

References 13

University of Stellenbosch | Department of Industrial Engineering

145

[41] Kim C-O, Min H-S, Yih Y. Integration of inductive learning and neural networks for

multi-objective FMS scheduling. International Journal of Production Research 1998;

36:2497–2509.

[42] Aydin ME, Oztemel E. Dynamic job-shop scheduling using reinforcement learning

agents. Robotics and Autonomous Systems 2000; 33:169–178.

[43] Reisin-Fournier F. Scheduling with learning capabilities. DSc thesis. Technion. Israel

Institute of Technology; 1998.

[44] Kazerooni A, Chan FTS, Abhary K. A fuzzy integrated decision-making support

system for scheduling of FMS using simulation. Computer Integrated

Manufacturing Systems 1997; 10:27–34.

[45] Fanti MP, Maione B, Naso D, Turchiano B. Genetic multi-criteria approach to

flexible line scheduling. International Journal of Approximate Reasoning 1998; 19:5–

21.

[46] Buyurgan N, Mendoza A. Perfromance-based dynamic scheduling model for flexible

manufacturing systems. International Journal of Production Research 2006;

44(7):1273-1295.

[47] Montazeri M, van Wassenhove LN. Analysis of scheduling rules for an FMS.

International Journal of Production Research 1990; 28(4):785-802.

[48] Vinod V, Sridharan R. Simulation-based metamodels for scheduling a dynamic job-

shop with sequence-dependent setup times. International Journal of Production

Research 2007; 1-23.

[49] Conway RW. Priority dispatching and work-in-progress inventory in a job-shop.

Journal of Industrial Engineering 1965; 16(2):123-130.

[50] Hershauer JC, Ebert J. Search and simulation selection of a job-shop scheduling

rule. Management Science 1975; 21(7):833-843.

[51] Blackstone JH Jr, Phillips DT, Hoog GL. A state-of-the-art survey of dispatching

rules for manufacturing job-shop operations. International Journal of Produclion

Research 1982; 20(1):27-45.

[52] Mccartney J, Hinds BK. Interactive scheduling procedures for flexible Manufacturing

Systems. Proceedings of 22nd International Machine Tool Design and Research

Conference. Manchester; September 1981. pp. 47-54.

[53] Dar-EI EM, Wysk RA. Job-shop scheduling: A systematic approach. Journal of

Manufacturing Systems 1982; 1(1):77-88.

References 13

University of Stellenbosch | Department of Industrial Engineering

146

[54] Bekker J. Simulation. Unpublished course notes for the module Simulation 873.

Stellenbosch: University of Stellenbosch; 2007.

[55] Slota A, Malopolski W. Integration of simulation software Arena with FMS control

system. International Journal of Simulation Modeling 2007; 6(3):165-172.

[56] Drake GR, Smith JS. Simulation system for real-time planning, scheduling, and

control. Proceedings of the 28th Winter Simulation Conference 1996; pp.1083 –

1090.

[57] Rockwell Software. www.arenasimulation.com; 2008

[58] Ma J, Fan ZP, Huang LH. A subjective and objective integrated approach to

determine attribute weights. European Journal of Operational Research 1999;

112(2):397-404.

[59] Hwang CL, Yoon K. Multiple attribute decision making: Methods and applications.

Tech. Rep., Lecture Notes in Economics and Mathematical Systems 1981.

[60] Jahanshahloo GR, Lofti FH, Izadikhah M. An algorithmic method to extend TOPSIS

for decision-making problems with interval data. Applied mathematics and

computation 2006; 175(2):1375-1384.

http://www.arenasimulation.com/

Appendix I: Data Dictionary I

University of Stellenbosch | Department of Industrial Engineering

147

APPENDIX I. DATA DICTIONARY

The data dictionary acts as a document that can be used to assure that the elements of the

data are correctly understood. It helps` to keep the data consistent as developers can use

the data dictionary when adjusting the information system, which will support clean data.

Table Name Type Size

Customers

Cust_Id Text 255

 Cust_Name Text 255

Machine Mach_ID Long Integer 4

 Mach_name Text 255

Materials Mat_Id Long Integer 4

 Mat_Name Text 255

 Stock_Level Long Integer 4

Ops Ops_No Long Integer 4

 Ops_Name Text 50

 Setup_time Double 8

 Insp_time Double 8

 Prod_Time Double 8

 Start_DateTime Date/Time 8

 End_DateTime Date/Time 8

 CSetup_time Double 8

Appendix I: Data Dictionary I

University of Stellenbosch | Department of Industrial Engineering

148

Table Name Type Size

 CInsp_time Double 8

 CProd_time Double 8

 Status_ID_FK Long Integer 4

Ops_Machine Ops_No Long Integer 4

 Mach_ID_FK Long Integer 4

Enforce Yes/No 1

Order_Parts Job_No_FK Long Integer 4

 Part_ID_FK Long Integer 4

Orders Job_No Long Integer 4

 Order_No Text 50

 Cust_ID Text 50

 RecDate Date/Time 8

 ApprovedDate Date/Time 8

 PromDate Date/Time 8

 OrderStatus Text 50

Parts Part_ID Long Integer 4

 Part_Name Text 50

 Qty Long Integer 4

 Drawing_No Text 50

 NumOps Long Integer 4

Parts_Materials Part_ID_FK Long Integer 4

Appendix I: Data Dictionary I

University of Stellenbosch | Department of Industrial Engineering

149

Table Name Type Size

 Mat_Id_FK Long Integer 4

 Mat_Qty Text 255

Parts_Ops Part_ID Long Integer 4

 Ops_No Long Integer 4

Status Status_Id Long Integer 4

 OpsStatus Text 50

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

150

APPENDIX II. INFORMATION SYSTEM ASP CODE

This appendix contains the code that determines the functionality of the information

system. The code was implemented using the MS FrontPage software programme. The

information system is web-based, meaning that the information system can be updated

from several different stations and not just from one computer station.

Normal html (Hypertext Markup Language) code, which is generally used as programming

language to create documents for the World Wide Web, was developed to design the static

homepage. Static means that the page does not change unless deliberately edited.

As it is a web page that configures and updates an information system, dynamic pages are

needed. ASP (Active Server Pages) code is used for the dynamic functions like displaying

current information system data or updating the information system. The ASP code in the

next few pages of code is distinguished by the characters “<%” and “%>”, all the code

between these two directives are ASP code and implements a dynamic function.

Add new Customer

<html>

<!--#include file=ADOVBS.INC -->

<head>

<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">

<script language="JavaScript">

<!--

function FP_preloadImgs() {//v1.0

var d=document,a=arguments; if(!d.FP_imgs) d.FP_imgs=new Array();

for(var i=0; i<a.length; i++) { d.FP_imgs[i]=new Image; d.FP_imgs[i].src=a[i]; }

}

function FP_swapImg() {//v1.0

var doc=document,args=arguments,elm,n; doc.$imgSwaps=new Array(); for(n=2;

n<args.length;

n+=2) { elm=FP_getObjectByID(args[n]); if(elm) {

doc.$imgSwaps[doc.$imgSwaps.length]=elm;

elm.$src=elm.src; elm.src=args[n+1]; } }

}

function FP_getObjectByID(id,o) {//v1.0

var c,el,els,f,m,n; if(!o)o=document; if(o.getElementById) el=o.getElementById(id);

else if(o.layers) c=o.layers; else if(o.all) el=o.all[id]; if(el) return el;

if(o.id==id || o.name==id) return o; if(o.childNodes) c=o.childNodes; if(c)

for(n=0; n<c.length; n++) { el=FP_getObjectByID(id,c[n]); if(el) return el; }

f=o.forms; if(f) for(n=0; n<f.length; n++) { els=f[n].elements;

for(m=0; m<els.length; m++){ el=FP_getObjectByID(id,els[n]); if(el) return el; } }

return null;

}

// -->

</script>

</head>

<%

set conn = server.CreateObject("ADODB.Connection")

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

151

Conn.open "provider=Microsoft.Jet.OLEDB.4.0; Data

Source=C:\Users\David\Documents\2007\tesis

\daliff\daliff.mdb"

%>

<body onload="FP_preloadImgs(/*url*/'button2E.jpg', /*url*/'button2F.jpg')">

<p align="center"><img

border="0"

src="index_r5_c2.jpg" width="669" height="109"></p>

<p align="center"> </p>

<p align="center">Customers added</p>

<%

Cust_ID = request.form("txtAcct_No")

Cust_Name = request.form("txtCust_Name")

Set RS = Server.CreateObject("ADODB.Recordset")

RS.Open "Customers", Conn, adOpenKeySet, adLockOptimistic, adCmdTable

RS.AddNew

RS.Fields("Cust_ID") = Cust_ID

RS.Fields("Cust_Name") = Cust_Name

RS.Update

Response.write "Customer account created as follows:" & "
"

Response.write Cust_ID & " " & Cust_Name & "
"

RS.close

Conn.close

SET RS = NOTHING

SET conn = NOTHING

%>

</p>

<p align="center"> </p>

<p align="center">

Genarate Quote 1

<html>

<!-- #include file=connexion.inc -->

<!-- #include file=openrecordset.inc -->

<!-- #include file=makedropbox.inc -->

<head>

<meta http-equiv="Content-Language" content="en-za">

<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">

<title>Daliff</title>

<script language="JavaScript">

<!--

function FP_swapImg() {//v1.0

var doc=document,args=arguments,elm,n; doc.$imgSwaps=new Array(); for(n=2;

n<args.length;

n+=2) { elm=FP_getObjectByID(args[n]); if(elm) {

doc.$imgSwaps[doc.$imgSwaps.length]=elm;

elm.$src=elm.src; elm.src=args[n+1]; } }

}

function FP_preloadImgs() {//v1.0

var d=document,a=arguments; if(!d.FP_imgs) d.FP_imgs=new Array();

for(var i=0; i<a.length; i++) { d.FP_imgs[i]=new Image; d.FP_imgs[i].src=a[i]; }

}

function FP_getObjectByID(id,o) {//v1.0

var c,el,els,f,m,n; if(!o)o=document; if(o.getElementById) el=o.getElementById(id);

else if(o.layers) c=o.layers; else if(o.all) el=o.all[id]; if(el) return el;

if(o.id==id || o.name==id) return o; if(o.childNodes) c=o.childNodes; if(c)

for(n=0; n<c.length; n++) { el=FP_getObjectByID(id,c[n]); if(el) return el; }

f=o.forms; if(f) for(n=0; n<f.length; n++) { els=f[n].elements;

for(m=0; m<els.length; m++){ el=FP_getObjectByID(id,els[n]); if(el) return el; } }

return null;

}

// -->

</script>

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

152

</head>

<body onload="FP_preloadImgs(/*url*/'button6.jpg',/*url*/'button5.jpg')">

<%

call Connect(Conn, "C:\Users\David\Documents\2007\tesis\daliff\daliff.mdb")

call Openrecordset(Conn, RS_Customers, "Customers")

session("PartNum") = 1

session("Counter") = 1

session("MatAdded") = 0

session("Job_No")= ""

%>

<p align="center"><img

border="0"

src="index_r5_c2.jpg" width="669" height="109"></p>

<p align="center"> </p>

<p align="center">Generate Quote</p>

<p align="center"> </p>

<form method="POST" name="FrontPage_Form1" action="BOM.asp" style="text-align:

center"

onsubmit="return FrontPage_Form1_Validator(this)" language="JavaScript">

<p>Customer Name:

<%call makecombo(RS_Customers, "cmbACCT", "Cust_ID", "Cust_Name", "")%></p>

<p>Order Number:

<!--webbot bot="Validation" s-data-type="String" b-value-required="TRUE" i-minimum-

length="1"

i-maximum-length="30" -->

<input type="text" name="Ord_No" size="20"

maxlength="30">

 </p>

<p>Number of parts:

<select size="1" name="txtNumParts">

<option selected>1</option>

<option>2</option>

<option>3</option>

<option>4</option>

<option>5</option>

<option>6</option>

<option>7</option>

<option>8</option>

<option>9</option>

<option>10</option>

</select> &n

bsp;

;

 </p>

<input type="hidden" name="hdnPartName" value = "Toetsertjie">

<p align="center"> </p>

<p align="center"><input type="submit" value="Proceed"

name="btnOrder">

<input type="reset" value="Reset" name="B2"></p>

</form>

<p align="center">

<img border="0" id="img1" src="button4.jpg" height="32" width="187" alt="Back to

Daliff Home" fpstyle="

fp-btn: Braided Row 1; fp-font-size: 14; fp-proportional: 0; fp-orig: 0" fp-

title="Back to

Daliff Home" onmouseover="FP_swapImg(1,0,/*id*/'img1',/*url*/'button5.jpg')"

onmouseout="FP_swapImg(0,0,/*id*/'img1',/*url*/'button4.jpg')"

onmousedown="FP_swapImg(1,0,/

id/'img1',/*url*/'button6.jpg')" onmouseup="FP_swapImg(0,0,/*id*/'img1',/

url/'button5.jpg')"></p>

<%

RS_Customers.close

Conn.close

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

153

SET RS_Customers = Nothing

SET Conn = Nothing

%>

</body>

</html>

Generat Quote 2

<html>

<!-- #include file=openrecordset.inc -->

<head>

<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">

<title>New Page 1</title>

</head>

<body>

<p align="center"><img

border="0"

src="index_r5_c2.jpg" width="669" height="109"></p>

<p align="center"> </p>

<p align="center">Assign Part Information</p>

<form method="POST" action="Add%20material.asp" style="float: right; width:123px; "

name="frmAddNewMat">

<input type="submit" value="Add New Material to materials list" name="B4"></p>

</form>

</p>

<%

'Create connection object:

'---

SET Conn = Server.CreateObject("ADODB.Connection")

Conn.Open "Provider=Microsoft.Jet.OLEDB.4.0; Data

Source=C:\Users\David\Documents\2007\tesis

\daliff\daliff.mdb"

call Openrecordset(Conn, RS_Customers, "Customers")

call Openrecordset(Conn, RS_Orders, "Orders")

call Openrecordset(Conn, Parts, "Parts")

call Openrecordset(Conn, Order_Parts, "Order_Parts")

call Openrecordset(Conn, Parts_Materials, "Parts_Materials")

'Set reference to a table named Materials:

'---

SET MyGoodie = Conn.Execute("Materials", ,adCmdTable)

'Initialize array, 2 rows, init. 1 col. The first row will keep the Mat_ID,

'and the second the Mat_Name.

ReDim MaterialsIDList(2,1)

MaterialsIDList(1,1) = -1

ID_Index = 1 'For easy reference, e.g. MaterialsIDList(ID_Index, Name_Index)

Name_Index = 2

TempVar = "" 'String var to return multiple selection identifiers.

PartNum = session("PartNum")

Counter = session("Counter")

Dim d_today

d_today=Date

'Add order to database if first time entering page

'---

If (Counter = 1) and (session("Matadded") <> 1) then

OddNumber = 1

session("oddnumber") = 1

'Get Acct no and name

'---

Rs_customers.MoveFirst

if request.form("cmbACCT") <> "" Then

do while not Rs_customers.eof

if rs_customers.fields("cust_id")=request.form("cmbACCT") then

ACCT_No = rs_customers.fields("cust_id")

ACCT_Name = rs_customers.fields("Cust_Name")

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

154

exit do

end if

rs_customers.movenext

loop

end if

Ord_No = request.Form("Ord_No")

NumParts = request.Form("txtNumParts")

'Update Orders

'---

RS_Orders.AddNew

RS_Orders.Fields("Order_no") = Ord_No

RS_Orders.Fields("Cust_ID") = Acct_No

RS_Orders.Fields("RecDate") = d_today

RS_Orders.Fields("OrderStatus") = "Quote"

RS_Orders.Update

'Get Job_No - the last record of the recordset

'---

RS_Orders.MoveFirst

DO WHILE NOT RS_Orders.EOF

Job_No = RS_Orders.Fields("Job_No")

RS_Orders.MOVENEXT

LOOP

else

'Order allready added to database, add information

'---

OddNumber = session("OddNumber")

NumParts = session("NumParts")

Job_No = session("Job_No")

ACCT_No = session("ACCT_No")

ACCT_Name = session("ACCT_Name")

Ord_No = session("Ord_No")

'Add Material and qty's to Parts_Material, Parts and Order_Parts tables

'---

if (Counter = OddNumber) and (session("MatAdded") <> 1) then

Part_name = request.form("hdnPart_Name")

NumOps = request.form("hdnOps_Qty")

Part_Qty = request.form("hdnPart_Qty")

Part_drawing = request.form("hdnPart_drawing")

'Update Parts

'---

Parts.AddNew

Parts.Fields("Part_Name") = Part_Name

Parts.Fields("Qty") = clng(Part_Qty)

Parts.Fields("Drawing_No") = Part_Drawing

Parts.Fields("NumOps") = clng(NumOps)

Parts.Update

'Get Part_ID

'---

Parts.MoveFirst

DO WHILE NOT Parts.EOF

Part_ID = Parts.Fields("Part_ID")

Parts.MOVENEXT

LOOP

'Update Order_Parts

'---

Order_Parts.AddNew

Order_Parts.Fields("Job_No") = clng(Job_No)

Order_Parts.Fields("Part_ID") = clng(Part_ID)

Order_Parts.Update

for i = 1 to request.form("txtMat_ID").count

Material_qty = request.form("txtMat_Qty")(i)

Material_ID = request.form("txtMat_ID")(i)

'Update Parts_Materials

'---

Parts_Materials.AddNew

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

155

Parts_Materials.Fields("Part_ID") = clng(Part_ID)

Parts_Materials.Fields("Mat_ID") = clng(Material_ID)

Parts_Materials.Fields("Mat_Qty") = clng(Material_Qty)

Parts_Materials.Update

next

else

session("MatAdded") = 0

end if

end if

session("Job_No") = Job_No

session("ACCT_No") = ACCT_No

session("ACCT_Name") = ACCT_Name

session("Ord_No") = Ord_No

session("NumParts")= NumParts

If Counter <= Numparts*2 then

%>

<form method="POST" action="BOM.asp" style="width:1117px; " name="FrontPage_Form2"

onsubmit="return FrontPage_Form2_Validator(this)" language="JavaScript">

<%

'Enter Part info section

'---

if Counter = OddNumber then

session("OddNumber") = OddNumber + 2

Response.write "Name of Part" & " "

response.write PartNum & ":" %>

<!--webbot bot="Validation" s-display-name="Part Name" s-data-type="String" b-

valuerequired="

TRUE" i-minimum-length="1" i-maximum-length="30" -->

<input type="text" name="txtPart_Name" size="20" maxlength="30"> (Enter part

name here)</p>

<p> Quantity:

 <!--webbot bot="Validation" s-data-type="Integer" s-number-separators="x" s-

validationconstraint="

Greater than or equal to" s-validation-value="1" --><input type="text"

name="txtPart_Qty" size="20" value="1"> (Enter

Quantity here)</p>

<p> Drawing: <!--

webbot bot="Validation" s-display-name="Drawing Name" s-data-type="String" b-

valuerequired="

TRUE" i-minimum-length="1" i-maximum-length="30" --><input type="text"

name="txtPart_Drawing" size="20" maxlength="30">

(Enter Drawing No here)</p>

<p>Number of Ops: <select size="1" name="txtOps_Qty">

<option selected>1</option>

<option>2</option>

<option>3</option>

<option>4</option>

<option>5</option>

<option>6</option>

<option>7</option>

<option>8</option>

<option>9</option>

<option>10</option>

<option>11</option>

<option>12</option>

</select></p>

<p>

 <!--webbot bot="Validation" b-value-required="TRUE" --><select

name="slctListMaterials" size="8" multiple style="float: left">

<option selected value="-1">Select one or more items</option>

<%

MyGoodie.MoveFirst

'This is the way to get a silly single " as a string. We want to

'simplify strings:

Quote = """"

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

156

'Start to fill the list box with entries

'(we assumed there are rec's in the table):

'---

Do While NOT(MyGoodie.EOF)

'Mechanically write the HTML code as responses; note how Quote is used:

'---

Response.Write "<option value=" & Quote & MyGoodie.Fields("Mat_ID") & Quote

Response.Write ">" & MyGoodie.Fields("Mat_Name") & "</option>"

MyGoodie.MoveNext

Loop

%>

</select>

<input type="submit" value="Choose Material" name="B1" style="float: left">

<%

else

'Display part info section and select qty of materials

'---

If Request.Form("slctListMaterials") <> "" then

Part_Name = Request.Form("txtPart_Name")

Part_Qty = Request.Form("txtPart_Qty")

%>

<div align="right">

<%Response.write "Added material for part: "%>

<input type="hidden" name="hdnPart_Name" value = "<%=Part_Name%>">

<input type="hidden" name="hdnPart_Qty" value = "<%=Part_Qty%>">

<input type="hidden" name="hdnPart_Drawing" value = "<%

=Request.Form("txtPart_Drawing")%>">

<input type="hidden" name="hdnOps_Qty" value = "<%=Request.Form("txtOps_Qty")%>">

<table border="2" cellspacing="2" width="50%" bordercolordark="#333333"

bordercolorlight="#666666">

<td><u>Material ID:</u></td>

<td><u>Material Name:</u></td>

<td><u>Qty per part:</u></td>

<%

'The multi-selection box returns a string with the values of all selected

'identifiers. These are separated by spaces & commas, e.g. "1, 2, 7, 9"

'We are extracting each significant number from the string and ignore

'the commas & spaces.

'Get the string:

TempVar = Trim(Request.Form("slctListMaterials")) '"Trim" takes away spaces on

left & right of str

'Make sure something is selected, the first entry in the box is meaningless,

'and I have assigned its identifier the value "-1".

If TempVar <> CStr(-1) Then

i = 0

Do While (Len(TempVar) > 0)

'Find the first space in the string:

SpacePos = Instr(TempVar, " ")

'If there is a space, then remove everything 2 places

'(space + comma) to its left:

If SpacePos > 0 then

Current = Left(TempVar, SpacePos - 2)

'"Chop off" the removed digit(s), and the comma & space:

TempVar = Right(TempVar, Len(TempVar) - SpacePos)

Else

'We are at the last meaningful entry in the string, but it has no

'commas or spaces:

Current = trim(TempVar)

TempVar = "" 'Make it empty to terminate outer Loop

End if

'If the user (also) selected the first entry, i.e. the artifitial

'entry, don't store it etc:

If Current <> "-1" Then

i = i + 1

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

157

ReDim Preserve MaterialsIDList(2,i)

MaterialsIDList(ID_Index, i) = Current

End If

'This is inefficient, but safe. If we are sure that the StudentNo

'will always be sorted from small to large, then we can remove this.

MyGoodie.MoveFirst

Do While NOT(MyGoodie.EOF)

If Current = cstr(MyGoodie.Fields("Mat_ID")) Then

MaterialsIDList(Name_Index, i) = MyGoodie.Fields("Mat_Name")

%>

<tr>

<td width="10%">

<input type="text" name="txtMat_ID" size="12" value="<%

=MyGoodie.Fields("Mat_ID")%>" style="color: #000000; border: 1px solid #FFFFFF;

background-color:

#FFFFFF">

</td>

<td width="50%">

<input type="text" name="txtMat_Name" size="30" value="<%

=MyGoodie.Fields("Mat_Name")%>" style="color: #000000; border: 1px solid #FFFFFF;

backgroundcolor:

#FFFFFF">

</td>

<td width="10%">

 <!--webbot bot="Validation" s-display-name="Material

Quantity" s-data-type="Integer" s-number-separators="x" s-validation-

constraint="Greater than or

equal to" s-validation-value="1" --><input type="text" name="txtMat_Qty" size="12"

style="color:

#000000" value="1">

</td>

<%

Exit Do

End If

MyGoodie.MoveNext

Loop

Loop

Response.Write "</div> </table>"

Response.Write "
"

session("PartNum") = PartNum + 1

Else

Response.Write "Nuttin selected.
"

End If

MyGoodie.Close

Set MyGoodie = NOTHING

%>

</tr>

</table>

</div>

<p align="right">

<input type="submit" value="Add Materials" name="B2">

<input type="reset" value="Reset" name="B3">

</p>

</p>

<%

end if%>

</form>

<%

end if

Session("Counter") = Counter + 1

else

%>

<form method="POST" action="AddOps.asp" style="float: left; width:500px; "

name="frmAddOPs">

Part information saved!<p>

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

158

<input type="submit" value="Add Ops" name="B5"></p>

<p> </p>

</p>

</form>

<%end if

RS_Customers.close

RS_Orders.close

Parts.close

Order_Parts.close

Parts_Materials.close

Conn.close

SET RS_Customers = Nothing

SET RS_Orders = Nothing

SET Parts = Nothing

SET Order_Parts = Nothing

SET Parts_Materials = Nothing

SET Conn = Nothing

%>

</p>

<p align="center"> </p>

</body>

</html>

Generate Quote 3

<html>

<!-- #include file=connexion.inc -->

<!-- #include file=openrecordset.inc -->

<!-- #include file=makedropbox.inc -->

<head>

<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">

</head>

<body style="text-align: center">

<%

call Connect(Conn, "C:\Users\David\Documents\2007\tesis\daliff\daliff.mdb")

SET RS_Parts = Conn.Execute("Parts")

SET RS_Order_Parts = Conn.Execute("Order_Parts")

SET RS_Machine = Conn.Execute("Machine")

ACCT_No = session("ACCT_No")

ACCT_Name = session("ACCT_Name")

Ord_No = session("Ord_No")

NumParts = session("NumParts")

Job_No = session("Job_No")

session("ACCT_No") = ACCT_No

session("ACCT_Name") = ACCT_Name

session("Ord_No") = Ord_No

session("NumParts") = NumParts

%>

<p align="center"><img

border="0"

src="index_r5_c2.jpg" width="669" height="109"></p>

<p align="center"> </p>

<p align="center">Add Ops</p>

<form method="POST" action="OpsAdded.asp" onsubmit="return

FrontPage_Form1_Validator(this)"

language="JavaScript" name="FrontPage_Form1">

<table border="5" width=0% height=0% bordercolor="#808080" >

<tr>

<td height=10% width=100%>

<p align="left"> <u>Account Number:</u>

<input type="text" name="txtAcctNo" size="20" value="<%=ACCT_No%>" style="color:

#000000;

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

159

border: 1px solid #FFFFFF; background-color: #FFFFFF"> </p>

<p align="left"> <u>Account

Name:</u>

<input type="text" name="txtAcctName" size="20" value="<%=ACCT_Name%>"

style="color: #000000;

border: 1px solid #FFFFFF; background-color: #FFFFFF"> </p>

<p align="left"> <u>Order

Number:</u>

<input type="text" name="txtOrdNo" size="20" value="<%=Ord_No%>" style="color:

#000000;

border: 1px solid #FFFFFF; background-color: #FFFFFF"> </p>

<p align="left"> <u>Number of

parts:</u>

<input type="text" name="txtPartQty" size="20" value="<%=NumParts%>" style="color:

#000000;

border: 1px solid #FFFFFF; background-color: #FFFFFF">

<p>

</td>

</tr>

<% RS_Order_Parts.movefirst

ctr=0

Do while NOT RS_Order_Parts.eof

if RS_Order_Parts.fields("Job_No") = Job_No then

%><tr><td>

<table border="0" width=0% height=0% bordercolor="#808080">

<tr>

<td><%

Part_ID = RS_Order_Parts.fields("Part_ID")

RS_Parts.movefirst

Do while NOT RS_Parts.eof

if RS_Parts.fields("Part_ID") = Part_ID then

NumOps = RS_Parts.fields("NumOps")

Part_Qty = RS_Parts.fields("Qty")

Part_Name = RS_Parts.fields("Part_Name")

'Make Table for inputs

'---

%>

</td>

<td><input name="txtPart_Name" size="20" value="<%

=Part_Name%>" style="color: #000000; border: 1px solid #FFFFFF; background-color:

#FFFFFF; fontweight:

700"></td>

<td>QTY of Parts: <input name="txtPart_Qty"

size="8" value="<%=Part_Qty%>" style="color: #000000; border: 1px solid #FFFFFF;

backgroundcolor:

#FFFFFF; font-weight:700"></td>

<td>

<input type="hidden" name="hdnNumOps" value = "<%=NumOps%>">

<input type="hidden" name="hdnPart_ID" value = "<%=Part_ID%>">

</td>

<td></td>

<tr>

<td> </td>

<td></td>

<td></td>

<td></td>

<td></td>

<td></td>

</tr>

<tr>

<td></td>

<td><u>Ops Description </td>

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

160

<td><u>Enforce Machine </td>

<td><u>Processing Time </td>

<td><u>Setup Time </td>

<td>

<%

'Insert number of Ops

'---

For j = 1 to NumOps

%><tr><td><%

Ctr = ctr+1

response.write " Ops " & j & ": "

%>

</td>

<td>

 <!--webbot bot="Validation" s-display-name="Ops Description"

s-data-type="String" b-value-required="TRUE" i-minimum-length="1" i-maximum-

length="30" --><input

type="text" name="txtOps_Name" size="29" style="color: #000000" maxlength="30">

</td>

<td>

<%call makecombo(RS_Machine, "cmbMach", "Mach_ID", "Mach_Name",

"")%>

<input type="checkbox" name="chkEnforce<%=ctr%>" value="ON">(check

to enforce)</td>

<td>

 <!--webbot bot="Validation" s-display-name="Ops Time" s-datatype="

Number" s-number-separators="x." b-value-required="TRUE" i-minimum-length="1" s-

validationconstraint="

Greater than" s-validation-value="0" --><input type="text" name="txtOps_Time"

size="20">

</td>

<td>

 <!--webbot bot="Validation" s-display-name="Ops Time" s-datatype="

Number" s-number-separators="x." b-value-required="TRUE" i-minimum-length="1" s-

validationconstraint="

Greater than" s-validation-value="0" --><input type="text" name="txtSet_Time"

size="20">

</td>

<%

next

end if

RS_Parts.movenext

loop

%></tr></table><%

end if

RS_Order_Parts.Movenext

loop

%>

</table>

<p><input type="submit" value="Add Ops"

name="B1">

 <input type="reset" value="Reset" name="B2"></p>

</form>

<%

RS_Parts.close

RS_Order_Parts.close

RS_Machine.close

Conn.close

SET RS_Parts = Nothing

SET RS_Order_Parts = Nothing

SET RS_Machine = Nothing

SET Conn = Nothing

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

161

%>

</body>

</html>

Generate Quote 4

<html>

<!--#include file=ADOVBS.INC -->

<!-- #include file=connexion.inc -->

<!-- #include file=openrecordset.inc -->

<head>

<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">

<script language="JavaScript">

<!--

function FP_swapImg() {//v1.0

var doc=document,args=arguments,elm,n; doc.$imgSwaps=new Array(); for(n=2;

n<args.length;

n+=2) { elm=FP_getObjectByID(args[n]); if(elm) {

doc.$imgSwaps[doc.$imgSwaps.length]=elm;

elm.$src=elm.src; elm.src=args[n+1]; } }

}

function FP_preloadImgs() {//v1.0

var d=document,a=arguments; if(!d.FP_imgs) d.FP_imgs=new Array();

for(var i=0; i<a.length; i++) { d.FP_imgs[i]=new Image; d.FP_imgs[i].src=a[i]; }

}

function FP_getObjectByID(id,o) {//v1.0

var c,el,els,f,m,n; if(!o)o=document; if(o.getElementById) el=o.getElementById(id);

else if(o.layers) c=o.layers; else if(o.all) el=o.all[id]; if(el) return el;

if(o.id==id || o.name==id) return o; if(o.childNodes) c=o.childNodes; if(c)

for(n=0; n<c.length; n++) { el=FP_getObjectByID(id,c[n]); if(el) return el; }

f=o.forms; if(f) for(n=0; n<f.length; n++) { els=f[n].elements;

for(m=0; m<els.length; m++){ el=FP_getObjectByID(id,els[n]); if(el) return el; } }

return null;

}

// -->

</script>

</head>

<body style="text-align: center" onload="FP_preloadImgs(/*url*/'button5.jpg', /

url/'button6.jpg')">

<%

call Connect(Conn, "C:\Users\David\Documents\2007\tesis\daliff\daliff.mdb")

call Openrecordset(Conn, Ops, "Ops")

call Openrecordset(Conn, Parts_Ops, "Parts_Ops")

call Openrecordset(Conn, Ops_Machine, "Ops_Machine")

'call Openrecordset(Conn, Schedule, "Schedule")

ACCT_No = session("ACCT_No")

ACCT_Name = session("ACCT_Name")

Ord_No = session("Ord_No")

NumParts = session("NumParts")

session("Job_No")= ""

%>

<p align="center"><img

border="0"

src="index_r5_c2.jpg" width="669" height="109"></p>

<p align="center"> </p>

<p align="center">Ops Added</p>

<form method="POST" action="OpsAdded.asp">

<table border="5" width=0% height=0% bordercolor="#808080" >

<tr>

<td height=10% width=100%>

<p align="left"> <u>Account Number:</u>

<input type="text" name="txtAcctNo" size="20" value="<%=ACCT_No%>" style="color:

#000000;

border: 1px solid #FFFFFF; background-color: #FFFFFF"> </p>

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

162

<p align="left"> <u>Account

Name:</u>

<input type="text" name="txtAcctName" size="20" value="<%=ACCT_Name%>"

style="color: #000000;

border: 1px solid #FFFFFF; background-color: #FFFFFF"> </p>

<p align="left"> <u>Order

Number:</u>

<input type="text" name="txtOrdNo" size="20" value="<%=Ord_No%>" style="color:

#000000;

border: 1px solid #FFFFFF; background-color: #FFFFFF"> </p>

<p align="left"> <u>Number of

parts:</u>

<input type="text" name="txtPartQty" size="20" value="<%=NumParts%>" style="color:

#000000;

border: 1px solid #FFFFFF; background-color: #FFFFFF">

<p>

</td>

</tr>

<%

k = 0

For i = 1 to NumParts

%><tr><td><%

if i > 1 then

%>
<%

end if

Partname = request.form("txtPart_Name")(i)

NumOps = request.form("hdnNumOps")(i)

Part_ID = request.form("hdnPart_ID")(i)

response.write "Part " & i & ": " & PartName

%>

<table border="0" width=0% height=0% bordercolor="#808080" >

<td></td>

<td><u> Ops Description </u>

 </td>

<td><u> Machine Group

</u> </td>

<td><u> Time </u> </td>

<%

For j = 1 to NumOps

k = k + 1

Ops_Name = request.form("txtOps_Name")(k)

Ops_Mach = request.form("cmbMach")(k)

Ops_Time = request.form("txtOps_Time")(k)

Ops_Setup = request.form("txtSet_Time")(k)

'Update Ops

'---

Ops.AddNew

Ops.Fields("Ops_Name") = Ops_Name

Ops.Fields("Est_Time") = Ops_Time

Ops.Fields("Setup_Time") = Ops_Setup

Ops.Update

'Get Ops_No

'---

Ops.MoveFirst

DO WHILE NOT Ops.EOF

Ops_No = Ops.Fields("Ops_No")

Ops.MOVENEXT

LOOP

'Schedule.movefirst

'Schedule.AddNew

'Schedule.Fields("Ops_No") = Ops_No

'Schedule.Update

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

163

'Update Parts_Ops

'---

Parts_Ops.AddNew

Parts_Ops.Fields("Part_ID") = Part_ID

Parts_Ops.Fields("Ops_No") = Ops_No

Parts_Ops.Update

'Update Ops_Machine

'---

Ops_Machine.AddNew

Ops_Machine.Fields("Ops_No") = Ops_No

Ops_Machine.Fields("Mach_ID") = Ops_Mach

If request.form("chkEnforce"&k) <> "" then

Ops_Machine.Fields("Enforce") = 1

end if

Ops_Machine.Update

%><tr><td><%

response.write "Ops " & j & ": </td><td>"

response.write Ops_name & "</td><td>"

response.write Ops_Mach & "</td><td>"

response.write Ops_Time & "</td><td>"

response.write Ops_Setup

%></td></tr><%

next

'Add end Ops to part Sequence

'---

Ops.AddNew

Ops.Fields("Ops_Name") = "End"

Ops.Fields("Est_Time") = "0"

Ops.Fields("Setup_Time") = "0"

Ops.Update

'Get Ops_No

'---

Ops.MoveFirst

DO WHILE NOT Ops.EOF

Ops_No = Ops.Fields("Ops_No")

Ops.MOVENEXT

LOOP

'Update Parts_Ops

'---

Parts_Ops.AddNew

Parts_Ops.Fields("Part_ID") = Part_ID

Parts_Ops.Fields("Ops_No") = Ops_No

Parts_Ops.Update

'Update Ops_Machine

'---

Ops_Machine.AddNew

Ops_Machine.Fields("Ops_No") = Ops_No

Ops_Machine.Fields("Mach_ID") = "8"

Ops_Machine.Fields("Enforce") = 1

Ops_Machine.Update

%></table></td></tr><%

next

%>

</table>

</form>

<p>

<img border="0" id="img1" src="button4.jpg" height="32" width="187" alt="Back to

Daliff Home" fpstyle="

fp-btn: Braided Row 1; fp-font-size: 14; fp-proportional: 0" fp-title="Back to

Daliff

Home" onmouseover="FP_swapImg(1,0,/*id*/'img1',/*url*/'button5.jpg')"

onmouseout="FP_swapImg(0,0,/*id*/'img1',/*url*/'button4.jpg')"

onmousedown="FP_swapImg(1,0,/

id/'img1',/*url*/'button6.jpg')" onmouseup="FP_swapImg(0,0,/*id*/'img1',/

url/'button5.jpg')"></p>

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

164

<%

Ops.close

'Schedule.close

Ops_Machine.close

Parts_Ops.close

Conn.close

SET Ops = Nothing

'SET Schedule = Nothing

SET Ops_Machine = Nothing

SET Parts_Ops = Nothing

SET Conn = Nothing

%>

</body>

</html>

Add Material 1

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">

<title>New Page 1</title>

<script language="JavaScript">

<!--

function FP_swapImg() {//v1.0

var doc=document,args=arguments,elm,n; doc.$imgSwaps=new Array(); for(n=2;

n<args.length;

n+=2) { elm=FP_getObjectByID(args[n]); if(elm) {

doc.$imgSwaps[doc.$imgSwaps.length]=elm;

elm.$src=elm.src; elm.src=args[n+1]; } }

}

function FP_preloadImgs() {//v1.0

var d=document,a=arguments; if(!d.FP_imgs) d.FP_imgs=new Array();

for(var i=0; i<a.length; i++) { d.FP_imgs[i]=new Image; d.FP_imgs[i].src=a[i]; }

}

function FP_getObjectByID(id,o) {//v1.0

var c,el,els,f,m,n; if(!o)o=document; if(o.getElementById) el=o.getElementById(id);

else if(o.layers) c=o.layers; else if(o.all) el=o.all[id]; if(el) return el;

if(o.id==id || o.name==id) return o; if(o.childNodes) c=o.childNodes; if(c)

for(n=0; n<c.length; n++) { el=FP_getObjectByID(id,c[n]); if(el) return el; }

f=o.forms; if(f) for(n=0; n<f.length; n++) { els=f[n].elements;

for(m=0; m<els.length; m++){ el=FP_getObjectByID(id,els[n]); if(el) return el; } }

return null;

}

// -->

</script>

</head>

<body onload="FP_preloadImgs(/*url*/'button6.jpg',/*url*/'button5.jpg')">

<p align="center"><img

border="0"

src="index_r5_c2.jpg" width="669" height="109"></p>

<p align="center"> </p>

<p align="center">Add Material</p>

<%if request.form("txtMatQty") <> 0 then

sel = request.form("txtMatQty")

else

sel = "1"

end if%>

 <form method="POST" action="add%20material.asp" style="text-align: center">

<p>Number of material types wanted to add:

<select size="1" name="txtMatQty">

<option selected> <%=sel%> </option>

<option>1</option>

<option>2</option>

<option>3</option>

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

165

<option>4</option>

<option>5</option>

<option>6</option>

<option>7</option>

<option>8</option>

<option>9</option>

<option>10</option>

<option>11</option>

<option>12</option>

</select>

<input type="submit" value="Submit" name="B1"></p>

</form>

<%

session("OddNumber") = session("OddNumber")

session("NumParts") = session("NumParts")

session("Job_No") = session("Job_No")

session("ACCT_No") = session("ACCT_No")

session("ACCT_Name") = session("ACCT_Name")

session("Ord_No") = session("Ord_No")

session("PartNum") = session("PartNum")

session("Counter") = session("Counter")

if request.form("txtMatQty") <> 0 then

%>

<form method="POST" action="MatAdded.asp" style="text-align: center"

onsubmit="return

FrontPage_Form2_Validator(this)" language="JavaScript" name="FrontPage_Form2">

<table border="5" width=0% height=0% bordercolor="#808080" >

<tr>

<p >

<td align="center" bordercolor="#000000">

</td>

<td align="center" bordercolor="#000000">

Material Name:

</td>

<td align="center" bordercolor="#000000">

Material Quantity:

</td>

</p>

</tr>

<%for i = 1 to request.form("txtMatQty")

%>

<tr>

<td width="15" align="center">

<%response.write i%>

</td>

<td >

<p align="center">

 <!--webbot bot="Validation" s-data-type="String" b-valuerequired="

TRUE" i-minimum-length="1" i-maximum-length="30" --><input type="text"

name="txtMat_Name" size="40" maxlength="30">

</td>

<td>

<p align="center">

 <!--webbot bot="Validation" s-data-type="Integer" s-numberseparators="

x" s-validation-constraint="Greater than or equal to" s-validationvalue="

1" --><input type="text" name="txtMat_Qty" size="10" value="1">

</td>

</tr>

<%

next

%>

</table>

<p>

<input type="hidden" name="txtMatQty" size="14" value="<%

=request.form("txtMatQty")%>" >

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

166

<input type="submit" value="Submit" name="B2" ><input type="reset" value="Reset"

name="B3"></p>

</form>

<%end if

if session("Job_No") = "" then%>

<p align="center">

<img border="0" id="img1" src="button4.jpg" height="32" width="187" alt="Back to

Daliff Home" fpstyle="

fp-btn: Braided Row 1; fp-font-size: 14; fp-proportional: 0; fp-orig: 0" fp-

title="Back to

Daliff Home" onmouseover="FP_swapImg(1,0,/*id*/'img1',/*url*/'button5.jpg')"

onmouseout="FP_swapImg(0,0,/*id*/'img1',/*url*/'button4.jpg')"

onmousedown="FP_swapImg(1,0,/

id/'img1',/*url*/'button6.jpg')" onmouseup="FP_swapImg(0,0,/*id*/'img1',/

url/'button5.jpg')"></p>

<%end if%>

</body>

</html>

Add Material 2

<html>

<script language="JavaScript">

<!--

function FP_swapImg() {//v1.0

var doc=document,args=arguments,elm,n; doc.$imgSwaps=new Array(); for(n=2;

n<args.length;

n+=2) { elm=FP_getObjectByID(args[n]); if(elm) {

doc.$imgSwaps[doc.$imgSwaps.length]=elm;

elm.$src=elm.src; elm.src=args[n+1]; } }

}

function FP_preloadImgs() {//v1.0

var d=document,a=arguments; if(!d.FP_imgs) d.FP_imgs=new Array();

for(var i=0; i<a.length; i++) { d.FP_imgs[i]=new Image; d.FP_imgs[i].src=a[i]; }

}

function FP_getObjectByID(id,o) {//v1.0

var c,el,els,f,m,n; if(!o)o=document; if(o.getElementById) el=o.getElementById(id);

else if(o.layers) c=o.layers; else if(o.all) el=o.all[id]; if(el) return el;

if(o.id==id || o.name==id) return o; if(o.childNodes) c=o.childNodes; if(c)

for(n=0; n<c.length; n++) { el=FP_getObjectByID(id,c[n]); if(el) return el; }

f=o.forms; if(f) for(n=0; n<f.length; n++) { els=f[n].elements;

for(m=0; m<els.length; m++){ el=FP_getObjectByID(id,els[n]); if(el) return el; } }

return null;

}

// -->

</script>

<script language="JavaScript">

<!--

function FP_swapImg() {//v1.0

var doc=document,args=arguments,elm,n; doc.$imgSwaps=new Array(); for(n=2;

n<args.length;

n+=2) { elm=FP_getObjectByID(args[n]); if(elm) {

doc.$imgSwaps[doc.$imgSwaps.length]=elm;

elm.$src=elm.src; elm.src=args[n+1]; } }

}

function FP_preloadImgs() {//v1.0

var d=document,a=arguments; if(!d.FP_imgs) d.FP_imgs=new Array();

for(var i=0; i<a.length; i++) { d.FP_imgs[i]=new Image; d.FP_imgs[i].src=a[i]; }

}

function FP_getObjectByID(id,o) {//v1.0

var c,el,els,f,m,n; if(!o)o=document; if(o.getElementById) el=o.getElementById(id);

else if(o.layers) c=o.layers; else if(o.all) el=o.all[id]; if(el) return el;

if(o.id==id || o.name==id) return o; if(o.childNodes) c=o.childNodes; if(c)

for(n=0; n<c.length; n++) { el=FP_getObjectByID(id,c[n]); if(el) return el; }

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

167

f=o.forms; if(f) for(n=0; n<f.length; n++) { els=f[n].elements;

for(m=0; m<els.length; m++){ el=FP_getObjectByID(id,els[n]); if(el) return el; } }

return null;

}

// -->

</script>

.

<!--#include file=ADOVBS.INC -->

<!-- #include file=connexion.inc -->

<!-- #include file=openrecordset.inc -->

<head>

<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">

<title>New Page 1</title>

</head>

<%

call Connect(Conn, "C:\Users\David\Documents\2007\tesis\daliff\daliff.mdb")

call Openrecordset(Conn, Materials, "Materials")

session("OddNumber") = session("OddNumber") - 2

session("NumParts") = session("NumParts")

session("Job_No") = session("Job_No")

session("ACCT_No") = session("ACCT_No")

session("ACCT_Name") = session("ACCT_Name")

session("Ord_No") = session("Ord_No")

session("PartNum") = session("PartNum")

session("Counter") = session("Counter") - 1

%>

<body style="text-align: center" onload="FP_preloadImgs(/*url*/'button7.jpg',/

url/'button8.jpg',/*url*/'buttonE.jpg',/*url*/'buttonF.jpg')">

<p align="center"><img

border="0"

src="index_r5_c2.jpg" width="669" height="109"></p>

<p align="center"> </p>

<p align="center">Added Materials</p>

<table border="5" width=0% height=0% bordercolor="#808080" >

<tr>

<p >

<td align="center" bordercolor="#000000">

 Material ID:

</td>

<td align="center" bordercolor="#000000">

 Material Name:

</td>

<td align="center" bordercolor="#000000">

 Material Quantity:

</td>

</p>

</tr>

<%

NumMat = request.form("txtMatQty")

For i = 1 to NumMat

Mat_Name = Request.form("txtMat_Name")(i)

Mat_Qty = Request.form("txtMat_Qty")(i)

Materials.addNew

Materials.fields("Mat_Name") = Mat_Name

Materials.fields("Stock_level") = Mat_Qty

Materials.Update

'Get Mat_ID

'---

Materials.MoveFirst

DO WHILE NOT Materials.EOF

Mat_ID = materials.fields("Mat_ID")

Materials.MOVENEXT

LOOP

%>

<tr>

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

168

<td align="center">

<%response.write Mat_ID%>

</td>

<td >

<p align="center">

<%response.write Mat_name%>

</td>

<td>

<p align="center">

<%response.write Mat_Qty%>

</td>

</tr>

<%

next

%>

</table>

<p align="center"> </p>

<% if session("Job_No") = "" then %>

<p align="center">

<img border="0" id="img1" src="button3.jpg" height="35" width="200" alt="Back to

Daliff home"

fp-style="fp-btn: Braided Row 1; fp-font-size: 14; fp-proportional: 0" fp-

title="Back to Daliff

home" onmouseover="FP_swapImg(1,0,/*id*/'img1',/*url*/'button7.jpg')"

onmouseout="FP_swapImg(0,0,/*id*/'img1',/*url*/'button3.jpg')"

onmousedown="FP_swapImg(1,0,/

id/'img1',/*url*/'button8.jpg')" onmouseup="FP_swapImg(0,0,/*id*/'img1',/

url/'button7.jpg')"></p>

<% else

session("MatAdded") = 1

%>

<p>

<img border="0" id="img2" src="buttonD.jpg" height="32" width="161" alt="Back to

Quote"

onmouseover="FP_swapImg(1,0,/*id*/'img2',/*url*/'buttonE.jpg')"

onmouseout="FP_swapImg(0,0,/

id/'img2',/*url*/'buttonD.jpg')" onmousedown="FP_swapImg(1,0,/*id*/'img2',/

url/'buttonF.jpg')" onmouseup="FP_swapImg(0,0,/*id*/'img2',/*url*/'buttonE.jpg')"

fp-style="fpbtn:

Braided Row 1; fp-font-size: 14; fp-proportional: 0" fp-title="Back to

Quote"></p>

<%end if

Materials.close

Conn.Close

SET Materials = Nothing

SET Conn = Nothing

%>

</body>

</html>

Update status

<html>

<!-- #include file=connexion.inc -->

<!-- #include file=openrecordset.inc -->

<!-- #include file=makedropbox.inc -->

<head>

<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">

<title>New Page 1</title>

<script language="JavaScript">

<!--

function FP_swapImg() {//v1.0

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

169

var doc=document,args=arguments,elm,n; doc.$imgSwaps=new Array(); for(n=2;

n<args.length;

n+=2) { elm=FP_getObjectByID(args[n]); if(elm) {

doc.$imgSwaps[doc.$imgSwaps.length]=elm;

elm.$src=elm.src; elm.src=args[n+1]; } }

}

function FP_preloadImgs() {//v1.0

var d=document,a=arguments; if(!d.FP_imgs) d.FP_imgs=new Array();

for(var i=0; i<a.length; i++) { d.FP_imgs[i]=new Image; d.FP_imgs[i].src=a[i]; }

}

function FP_getObjectByID(id,o) {//v1.0

var c,el,els,f,m,n; if(!o)o=document; if(o.getElementById) el=o.getElementById(id);

else if(o.layers) c=o.layers; else if(o.all) el=o.all[id]; if(el) return el;

if(o.id==id || o.name==id) return o; if(o.childNodes) c=o.childNodes; if(c)

for(n=0; n<c.length; n++) { el=FP_getObjectByID(id,c[n]); if(el) return el; }

f=o.forms; if(f) for(n=0; n<f.length; n++) { els=f[n].elements;

for(m=0; m<els.length; m++){ el=FP_getObjectByID(id,els[n]); if(el) return el; } }

return null;

}

// -->

</script>

</head>

<SCRIPT LANGUAGE="JavaScript" SRC="calendar.js"></SCRIPT>

<%

call Connect(Conn, "C:\Users\David\Documents\2007\tesis\daliff\daliff.mdb")

set Orders = conn.Execute("Orders")

set Customers = conn.Execute("Customers")

call Openrecordset(Conn, RS_Orders, "Orders")

Dim d_today

d_today=Date

%>

<body onload="FP_preloadImgs(/*url*/'button6.jpg',/*url*/'button5.jpg')">

<p align="center"><img

border="0"

src="index_r5_c2.jpg" width="669" height="109"></p>

<p align="center"> </p>

<p align="center">Update Quote to an Order</p>

<%

MakeQuoteTable = "SELECT Orders.Job_No, Orders.Order_No, Orders.Cust_ID,

Orders.OrderStatus,

Customers.Cust_Name "_

& "FROM Customers INNER JOIN Orders ON Customers.[Cust_Id] = Orders.[Cust_ID]

"_

& "WHERE (((Orders.OrderStatus)='Quote'))"

set RS_Status = Conn.Execute(MakeQuoteTable)

if (Orders.BOF and Orders.EOF) then

Response.write "No Orders!"

else

Orders.MoveFirst

if request.form("cmbStatus") <> "" Then

do while not RS_Orders.eof

if RS_Orders.fields("Job_No") = clng(request.form("cmbStatus")) then

Set Session("Orders") = RS_Orders

exit do

end if

RS_Orders.movenext

loop

set orders = session("Orders")

Job_No = clng(Orders.fields("Job_No"))

Order_No = Orders.fields("Order_No")

ApprovedDate = cdate(request.form("AccpDate"))

PromDate = cdate(request.form("PromDate"))

SQLStmt = "UPDATE Orders SET Orders.[OrderStatus] = 'Order', Orders.ApprovedDate =

'" &

ApprovedDate & "',Orders.PromDate = '" & PromDate & "' "_

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

170

& " WHERE (((Orders.[Job_No])=" & clng(Job_No) & ") AND

((Orders.[OrderStatus])='Quote'))"

Set RS = conn.Execute(SQLStmt)

%>

<p align=center>

<%

Response.write "Order : " & Order_No & " is now a Order."

else

If (RS_Status.BOF and RS_Status.EOF) then

%>

<p align="center">No Records of any Quotes Found!</p>

<%

else

%>

<form method="POST" action="Status.asp" name="frmStatus" style="text-align:

center">

<%

response.write "Choose from the following Quotes: " & "
"

call makecombo(RS_Status, "cmbStatus", "Job_No", "Order_No", "Cust_Name")

%>

<p> </p>

<p>Accepted Date:

<INPUT type="text" name="AccpDate" size="10" value="<%=d_today%>">

<A HREF="javascript:void(0)"

onClick="showCalendar(frmStatus.AccpDate,'mm/dd/yyyy','Choose date')">

<IMG SRC="CAL-icon.gif" BORDER="0" width="16" height="16" alt="Click Here to

use a calendar">

</p> </p>

<p>Promised Date:

<INPUT type="text" name="PromDate" size="10" value="<%=d_today%>">

<A HREF="javascript:void(0)"

onClick="showCalendar(frmStatus.PromDate,'mm/dd/yyyy','Choose date')">

<IMG SRC="CAL-icon.gif" BORDER="0" width="16" height="16" alt="Click Here to

use a calendar">

</p>

<p><input type="submit" value="Change Status" name="B1"></p>

</form>

<%

end If

end if

end if

orders.close

customers.close

conn.close

set orders = Nothing

set customers = Nothing

set RS = nothing

set RS_Orders = Nothing

set RS_Status = Nothing

set conn = nothing

%>

<p align="center">

<img border="0" id="img1" src="button4.jpg" height="32" width="187" alt="Back to

Daliff Home" fpstyle="

fp-btn: Braided Row 1; fp-font-size: 14; fp-proportional: 0; fp-orig: 0" fp-

title="Back to

Daliff Home" onmouseover="FP_swapImg(1,0,/*id*/'img1',/*url*/'button5.jpg')"

onmouseout="FP_swapImg(0,0,/*id*/'img1',/*url*/'button4.jpg')"

onmousedown="FP_swapImg(1,0,/

id/'img1',/*url*/'button6.jpg')" onmouseup="FP_swapImg(0,0,/*id*/'img1',/

url/'button5.jpg')"></p>

</body>

</html>

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

171

Show Orders

<html>

<!-- #include file=connexion.inc -->

<!-- #include file=openrecordset.inc -->

<head>

<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">

<title>New Page 1</title>

<script language="JavaScript">

<!--

function FP_swapImg() {//v1.0

var doc=document,args=arguments,elm,n; doc.$imgSwaps=new Array(); for(n=2;

n<args.length;

n+=2) { elm=FP_getObjectByID(args[n]); if(elm) {

doc.$imgSwaps[doc.$imgSwaps.length]=elm;

elm.$src=elm.src; elm.src=args[n+1]; } }

}

function FP_preloadImgs() {//v1.0

var d=document,a=arguments; if(!d.FP_imgs) d.FP_imgs=new Array();

for(var i=0; i<a.length; i++) { d.FP_imgs[i]=new Image; d.FP_imgs[i].src=a[i]; }

}

function FP_getObjectByID(id,o) {//v1.0

var c,el,els,f,m,n; if(!o)o=document; if(o.getElementById) el=o.getElementById(id);

else if(o.layers) c=o.layers; else if(o.all) el=o.all[id]; if(el) return el;

if(o.id==id || o.name==id) return o; if(o.childNodes) c=o.childNodes; if(c)

for(n=0; n<c.length; n++) { el=FP_getObjectByID(id,c[n]); if(el) return el; }

f=o.forms; if(f) for(n=0; n<f.length; n++) { els=f[n].elements;

for(m=0; m<els.length; m++){ el=FP_getObjectByID(id,els[n]); if(el) return el; } }

return null;

}

// -->

</script>

</head>

<body onload="FP_preloadImgs(/*url*/'button6.jpg',/*url*/'button5.jpg')">

<p align="center"><img

border="0"

src="index_r5_c2.jpg" width="669" height="109"></p>

<p align="center"> </p>

<p align="center">Orders Log</p>

<p> <%

call Connect(Conn, "C:\Users\David\Documents\2007\tesis\daliff\daliff.mdb")

set Orders = conn.Execute("Orders")

set Customers = conn.Execute("Customers")

set Parts = conn.Execute("Parts")

set Order_Parts = conn.Execute("Order_Parts")

SQLStmt = "SELECT Order_Parts.Job_No, Orders.Order_No, Orders.Cust_ID,

Customers.Cust_Name,

Orders.RecDate, "_

& "Orders.ApprovedDate, Orders.PromDate, Order_Parts.Part_ID AS

Order_Parts_Part_ID,

Parts.Part_Name, "_

& "Parts.Drawing_No, Parts.Qty FROM Customers INNER JOIN (Parts INNER JOIN (Orders

INNER JOIN Order_Parts "_

& "ON Orders.[Job_No] = Order_Parts.[Job_No]) ON Parts.[Part_ID] =

Order_Parts.[Part_ID]) ON Customers.Cust_Id = Orders.Cust_ID "_

& "WHERE (((Orders.OrderStatus)='Order'))"

Set RS = conn.Execute(SQLStmt)

if (RS.BOF AND RS.EOF) then

%>

</p>

<p align="center">No Records of any Orders Found!</p>

<%

else

RS.Movefirst

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

172

%>

<table border="2" cellspacing="1" Cols="<% =RS.Fields.Count %>">

<tr style="border: 1px solid #000000; padding-left: 4px; padding-right: 4px;

padding-top:

1px; padding-bottom: 1px">

<td width="3%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold" >Job No

</td>

<td width="9%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold">Order No

</td>

<td width="4%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold">Cust ID

</td>

<td width="20%" align=center bordercolor="#000000" style="font-size: 12pt;

fontweight:

bold">Cust Name

</td>

<td width="7%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold">Received

</td>

<td width="7%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold">Approved

</td>

<td width="7%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold">Promised

</td>

<td width="9%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold">Part ID

</td>

<td width="18%" align=center bordercolor="#000000" style="font-size: 12pt;

fontweight:

bold">Part Name

</td>

<td width="9%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold">Drawing No

</td>

<td width="5%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold">Quantity

</td>

</tr>

<%

Do While NOT RS.EOF%>

<tr>

<td width="3%" align=center><%=RS.Fields("Job_No")%>

</td>

<td width="9%" align=center><%=RS.Fields("Order_No")%>

</td>

<td width="4%" align=center><%=RS.Fields("Cust_ID")%>

</td>

<td width="20%" align=center><%=RS.Fields("Cust_Name")%>

</td>

<td width="7%" align=center><%=RS.Fields("RecDate")%>

</td>

<td width="7%" align=center><%=RS.Fields("ApprovedDate")%>

</td>

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

173

<td width="7%" align=center><%=RS.Fields("PromDate")%>

</td>

<td width="9%" align=center><%=RS.Fields("Order_Parts_Part_ID")%>

</td>

<td width="18%" align=center><%=RS.Fields("Part_Name")%>

</td>

<td width="9%" align=center><%=RS.Fields("Drawing_No")%>

</td>

<td width="5%" align=center><%=RS.Fields("Qty")%>

</td>

</tr>

<%

RS.MoveNext

Loop

End if

RS.close

orders.close

customers.close

parts.close

order_parts.close

Conn.close

set RS = nothing

set Orders = nothing

set Customers = nothing

set Parts = nothing

set Order_Parts = nothing

set conn = nothing

%>

</table>

<p align="center">

<img border="0" id="img1" src="button4.jpg" height="32" width="187" alt="Back to

Daliff Home" fpstyle="

fp-btn: Braided Row 1; fp-font-size: 14; fp-proportional: 0; fp-orig: 0" fp-

title="Back to

Daliff Home" onmouseover="FP_swapImg(1,0,/*id*/'img1',/*url*/'button5.jpg')"

onmouseout="FP_swapImg(0,0,/*id*/'img1',/*url*/'button4.jpg')"

onmousedown="FP_swapImg(1,0,/

id/'img1',/*url*/'button6.jpg')" onmouseup="FP_swapImg(0,0,/*id*/'img1',/

url/'button5.jpg')"></p>

</body>

</html>

Show Quotes

<html>

<!-- #include file=connexion.inc -->

<!-- #include file=openrecordset.inc -->

<head>

<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">

<title>New Page 1</title>

<script language="JavaScript">

<!--

function FP_swapImg() {//v1.0

var doc=document,args=arguments,elm,n; doc.$imgSwaps=new Array(); for(n=2;

n<args.length;

n+=2) { elm=FP_getObjectByID(args[n]); if(elm) {

doc.$imgSwaps[doc.$imgSwaps.length]=elm;

elm.$src=elm.src; elm.src=args[n+1]; } }

}

function FP_preloadImgs() {//v1.0

var d=document,a=arguments; if(!d.FP_imgs) d.FP_imgs=new Array();

for(var i=0; i<a.length; i++) { d.FP_imgs[i]=new Image; d.FP_imgs[i].src=a[i]; }

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

174

}

function FP_getObjectByID(id,o) {//v1.0

var c,el,els,f,m,n; if(!o)o=document; if(o.getElementById) el=o.getElementById(id);

else if(o.layers) c=o.layers; else if(o.all) el=o.all[id]; if(el) return el;

if(o.id==id || o.name==id) return o; if(o.childNodes) c=o.childNodes; if(c)

for(n=0; n<c.length; n++) { el=FP_getObjectByID(id,c[n]); if(el) return el; }

f=o.forms; if(f) for(n=0; n<f.length; n++) { els=f[n].elements;

for(m=0; m<els.length; m++){ el=FP_getObjectByID(id,els[n]); if(el) return el; } }

return null;

}

// -->

</script>

</head>

<body onload="FP_preloadImgs(/*url*/'button6.jpg',/*url*/'button5.jpg')">

<p align="center"><img

border="0"

src="index_r5_c2.jpg" width="669" height="109"></p>

<p align="center"> </p>

<p align="center">Quotes Log</p>

<%

call Connect(Conn, "C:\Users\David\Documents\2007\tesis\daliff\daliff.mdb")

set Orders = conn.Execute("Orders")

set Customers = conn.Execute("Customers")

set Parts = conn.Execute("Parts")

set Order_Parts = conn.Execute("Order_Parts")

SQLStmt = "SELECT Order_Parts.Job_No, Orders.Order_No, Orders.Cust_ID,

Customers.Cust_Name,

Orders.RecDate, "_

& "Orders.ApprovedDate, Orders.PromDate, Order_Parts.Part_ID AS

Order_Parts_Part_ID,

Parts.Part_Name, "_

& "Parts.Drawing_No, Parts.Qty FROM Customers INNER JOIN (Parts INNER JOIN (Orders

INNER JOIN Order_Parts "_

& "ON Orders.[Job_No] = Order_Parts.[Job_No]) ON Parts.[Part_ID] =

Order_Parts.[Part_ID]) ON Customers.Cust_Id = Orders.Cust_ID "_

& "WHERE (((Orders.OrderStatus)='Quote'))"

Set RS = conn.Execute(SQLStmt)

if (RS.BOF AND RS.EOF) then

%>

<p align="center">No Records of any Quotes Found!</p>

<%

else

RS.Movefirst

%>

<table border="2" cellspacing="1" Cols="<% =RS.Fields.Count %>">

<tr style="border: 1px solid #000000; padding-left: 4px; padding-right: 4px;

padding-top:

1px; padding-bottom: 1px">

<td width="3%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold" >Job No

</td>

<td width="9%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold">Order No

</td>

<td width="4%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold">Cust ID

</td>

<td width="20%" align=center bordercolor="#000000" style="font-size: 12pt;

fontweight:

bold">Cust Name

</td>

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

175

<td width="7%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold">Received

</td>

<td width="9%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold">Part ID

</td>

<td width="18%" align=center bordercolor="#000000" style="font-size: 12pt;

fontweight:

bold">Part Name

</td>

<td width="9%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold">Drawing No

</td>

<td width="5%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold">Quantity

</td>

</tr>

<%

Do While NOT RS.EOF%>

<tr>

<td width="3%" align=center><%=RS.Fields("Job_No")%>

</td>

<td width="9%" align=center><%=RS.Fields("Order_No")%>

</td>

<td width="4%" align=center><%=RS.Fields("Cust_ID")%>

</td>

<td width="20%" align=center><%=RS.Fields("Cust_Name")%>

</td>

<td width="7%" align=center><%=RS.Fields("RecDate")%>

</td>

<td width="9%" align=center><%=RS.Fields("Order_Parts_Part_ID")%>

</td>

<td width="18%" align=center><%=RS.Fields("Part_Name")%>

</td>

<td width="9%" align=center><%=RS.Fields("Drawing_No")%>

</td>

<td width="5%" align=center><%=RS.Fields("Qty")%>

</td>

</tr>

<%

RS.MoveNext

Loop

End if

RS.close

orders.close

customers.close

parts.close

order_parts.close

Conn.close

set RS = nothing

set Orders = nothing

set Customers = nothing

set Parts = nothing

set Order_Parts = nothing

set conn = nothing

%>

</table>

<p align="center">

<img border="0" id="img1" src="button4.jpg" height="32" width="187" alt="Back to

Daliff Home" fpstyle="

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

176

fp-btn: Braided Row 1; fp-font-size: 14; fp-proportional: 0; fp-orig: 0" fp-

title="Back to

Daliff Home" onmouseover="FP_swapImg(1,0,/*id*/'img1',/*url*/'button5.jpg')"

onmouseout="FP_swapImg(0,0,/*id*/'img1',/*url*/'button4.jpg')"

onmousedown="FP_swapImg(1,0,/

id/'img1',/*url*/'button6.jpg')" onmouseup="FP_swapImg(0,0,/*id*/'img1',/

url/'button5.jpg')"></p>

</body>

</html>

Show Operations

<html>

<!-- #include file=connexion.inc -->

<!-- #include file=openrecordset.inc -->

<head>

<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">

<title>New Page 1</title>

<script language="JavaScript">

<!--

function FP_swapImg() {//v1.0

var doc=document,args=arguments,elm,n; doc.$imgSwaps=new Array(); for(n=2;

n<args.length;

n+=2) { elm=FP_getObjectByID(args[n]); if(elm) {

doc.$imgSwaps[doc.$imgSwaps.length]=elm;

elm.$src=elm.src; elm.src=args[n+1]; } }

}

function FP_preloadImgs() {//v1.0

var d=document,a=arguments; if(!d.FP_imgs) d.FP_imgs=new Array();

for(var i=0; i<a.length; i++) { d.FP_imgs[i]=new Image; d.FP_imgs[i].src=a[i]; }

}

function FP_getObjectByID(id,o) {//v1.0

var c,el,els,f,m,n; if(!o)o=document; if(o.getElementById) el=o.getElementById(id);

else if(o.layers) c=o.layers; else if(o.all) el=o.all[id]; if(el) return el;

if(o.id==id || o.name==id) return o; if(o.childNodes) c=o.childNodes; if(c)

for(n=0; n<c.length; n++) { el=FP_getObjectByID(id,c[n]); if(el) return el; }

f=o.forms; if(f) for(n=0; n<f.length; n++) { els=f[n].elements;

for(m=0; m<els.length; m++){ el=FP_getObjectByID(id,els[n]); if(el) return el; } }

return null;

}

// -->

</script>

</head>

<body onload="FP_preloadImgs(/*url*/'button6.jpg',/*url*/'button5.jpg')">

<p align="center"><img

border="0"

src="index_r5_c2.jpg" width="669" height="109"></p>

<p align="center"> </p>

<p align="center">Ops Log of Orders</p>

<%

call Connect(Conn, "C:\Users\David\Documents\2007\tesis\daliff\daliff.mdb")

set Orders = conn.Execute("Orders")

set Customers = conn.Execute("Customers")

set Parts = conn.Execute("Parts")

set Order_Parts = conn.Execute("Order_Parts")

set Parts_Ops = conn.Execute("Parts_Ops")

set Ops = conn.Execute("Ops")

set Ops_Machine = conn.Execute("Ops_Machine")

set Machine = conn.Execute("Machine")

SQLOps = "SELECT Orders.Job_No, Order_Parts.Part_ID AS Order_Parts_Part_ID,

Parts.Part_Name,

Parts_Ops.Ops_No, Ops.Ops_Name, Ops.Est_Time, Ops_Machine.Mach_ID, "_

& "Machine.Mach_name, Ops_Machine.Enforce FROM (Parts INNER JOIN (Orders INNER JOIN

Order_Parts ON Orders.[Job_No] = Order_Parts.[Job_No]) "_

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

177

& "ON Parts.[Part_ID] = Order_Parts.[Part_ID]) INNER JOIN ((Ops INNER JOIN (Machine

INNER JOIN Ops_Machine ON Machine.Mach_ID = "_

& "Ops_Machine.Mach_ID) ON Ops.Ops_No = Ops_Machine.Ops_No) INNER JOIN Parts_Ops ON

Ops.Ops_No = Parts_Ops.Ops_No) ON Parts.Part_ID "_

& "= Parts_Ops.Part_ID WHERE (((Orders.OrderStatus)='Order'))"

Set RSall = conn.Execute(SQLOps)

if (RSAll.BOF AND RSAll.EOF) then

%>

<p align="center">No Records of any Ops Found!</p>

<%

else

RSAll.Movefirst

%>

<table border="2" cellspacing="1" Cols="<% =RSAll.Fields.Count %>">

<tr style="border: 1px solid #000000; padding-left: 4px; padding-right: 4px;

padding-top:

1px; padding-bottom: 1px">

<td width="3%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold" >Job No

</td>

<td width="5%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold">Part Id

</td>

<td width="13%" align=center bordercolor="#000000" style="font-size: 12pt;

fontweight:

bold">Part Name

</td>

<td width="5%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold">Ops No

</td>

<td width="13%" align=center bordercolor="#000000" style="font-size: 12pt;

fontweight:

bold">Ops Name

</td>

<td width="13%" align=center bordercolor="#000000" style="font-size: 12pt;

fontweight:

bold">Ops Time

</td>

<td width="5%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold">Mach ID

</td>

<td width="13%" align=center bordercolor="#000000" style="font-size: 12pt;

fontweight:

bold">Mach Name

</td>

<td width="6%" align=center bordercolor="#000000" style="font-size: 12pt; font-

weight:

bold">Enforce?

</td>

</tr>

<%

Do While NOT RSAll.EOF%>

<tr>

<td width="3%" align=center><%=RSall.Fields("Job_No")%>

</td>

<td width="9%" align=center><%=RSall.Fields("Order_Parts_Part_ID")%>

</td>

<td width="4%" align=center><%=RSall.Fields("Part_Name")%>

</td>

<td width="20%" align=center><%=RSall.Fields("Ops_No")%>

</td>

Appendix II: Information System ASP Code II

University of Stellenbosch | Department of Industrial Engineering

178

<td width="7%" align=center><%=RSall.Fields("Ops_name")%>

</td>

<td width="9%" align=center><%=RSall.Fields("Est_Time")%>

</td>

<td width="9%" align=center><%=RSall.Fields("mach_ID")%>

</td>

<td width="18%" align=center><%=RSall.Fields("mach_name")%>

</td>

<td width="9%" align=center><%=RSall.Fields("Enforce")%>

</td>

</tr>

<%

RSAll.MoveNext

Loop

End if

rsall.close

orders.close

customers.close

parts.close

order_parts.close

Parts_Ops.close

Ops.close

Ops_Machine.close

Machine.close

Conn.close

set rsall = nothing

set Parts_Ops = nothing

set Ops = nothing

set Ops_Machine = nothing

set Machine = nothing

set Orders = nothing

set Customers = nothing

set Parts = nothing

set Order_Parts = nothing

set conn = nothing

%>

</table>

<p align="center">

<img border="0" id="img1" src="button4.jpg" height="32" width="187" alt="Back to

Daliff Home" fpstyle="

fp-btn: Braided Row 1; fp-font-size: 14; fp-proportional: 0; fp-orig: 0" fp-

title="Back to

Daliff Home" onmouseover="FP_swapImg(1,0,/*id*/'img1',/*url*/'button5.jpg')"

onmouseout="FP_swapImg(0,0,/*id*/'img1',/*url*/'button4.jpg')"

onmousedown="FP_swapImg(1,0,/

id/'img1',/*url*/'button6.jpg')" onmouseup="FP_swapImg(0,0,/*id*/'img1',/

url/'button5.jpg')"></p>

</body>

</html>

Appendix III: Explanation of Subroutines in VBA
Code

III

University of Stellenbosch | Department of Industrial Engineering

179

APPENDIX II I. EXPLANATION OF SUBROUTINES IN VBA CODE

This appendix gives a non technical overview of the custom subroutines coded for the

simulation model. The purpose of each subroutine, the other subroutines it calls, its inputs

and its outputs are stated. The subroutines are called during the execution of the simulation

model, and it customizes the simulation model according to the shop floor and order status.

The actual code of the subroutines is included in the next appendix.

Sub startModel ()

Purpose:

 Open database and record sets

 Clean temporary simulation record set and populate with current system state
information

 Set entity count

 Set number of entities to create
Subs Called:

 setVariables

 createEntities

 AssignEntArray

 AssignEntSuccessor

 AssignDispatchrule

 DetermineNumOps
Input:

 Database
Output:

 Temporary simulation record set

 Entity count

Sub AssignTotalEntCount ()

Purpose:

 Set total entity count variable in Arena
Subs Called:

 None
Input:

 TotalEntCount variable in VBA
Output:

 Arena variable TotalEntCount

Appendix III: Explanation of Subroutines in VBA
Code

III

University of Stellenbosch | Department of Industrial Engineering

180

Sub UpdateSimTableFromTempTable ()

Purpose:

 Update Simulation query record set
Subs Called:

 None
Input:

 Temporary simulation record set
Output:

 Simulation query record set

Sub setVariables ()

Purpose:

 Reset all the variables used in the VBA code
Subs Called:

 None
Input:

 None
Output:

 All VBA variables set to initial values

Sub AssignDispatchRule ()

Purpose:

 Set the queue disciplines according to the chosen scheduling rule
Subs Called:

 None
Input:

 Dispatch variable that represents the chosen scheduling rule
Output:

 Queue disciplines

Sub createEntities ()

Purpose:

 Create entities and assign names to them
Subs Called:

 None
Input:

 Simulation query record set
Output:

 Entities with names

Appendix III: Explanation of Subroutines in VBA
Code

III

University of Stellenbosch | Department of Industrial Engineering

181

Sub AssignEntArray (Origin As Integer)

Purpose:

 Populate the entity array for each entity with its attribute values
Subs Called:

 None
Input:

 Simulation query record set

 TotalEntCount variable

 Origin variable
Output:

 EntityRecord array

 EntityDateRecord array

Sub AssignEntSuccessor ()

Purpose:

 Assign entity successor if one exists
Subs Called:

 None
Input:

 Simulation query record set

 EntityRecord array

 Simulation query record set
Output:

 Updated EntityRecord array

Sub CleanEntities ()

Purpose:

 Delete entities created from Entity spreadsheet
Subs Called:

 None
Input:

 EntityRecord array

 TotalEntCount variable

 Module data
Output:

 Clean Entity spreadsheet

Appendix III: Explanation of Subroutines in VBA
Code

III

University of Stellenbosch | Department of Industrial Engineering

182

Sub AssignEntAttr ()

Purpose:

 Assign attributes to an entity
Subs Called:

 None
Input:

 EntityRecord array

 Simulation run data

 TotalEntCount variable
Output:

 Entity attribute values

Sub DetermineNumOps ()

Purpose:

 Determine the number of operations each part has
Subs Called:

 DetermineDueDate

 DetermineStartTime
Input:

 EntityRecord array

 TotalEntCount variable
Output:

 Entity attribute values

Sub DetermineDueDate ()

Purpose:

 Determine the due date of the entities
Subs Called:

 None
Input:

 EntityRecord array

 EntityDateRecord array
Output:

 Updated EntityRecord array

Appendix III: Explanation of Subroutines in VBA
Code

III

University of Stellenbosch | Department of Industrial Engineering

183

Sub DetermineStartTime (Origin As Integer)

Purpose:

 Determine the earliest possible start time of entities

 Determine entity slack
Subs Called:

 None
Input:

 EntityRecord array

 Origin variable
Output:

 Updated EntityRecord array

Sub UpdateStartTimes ()

Purpose:

 Update the earliest possible start time of entities
Subs Called:

 DetermineStartTime
Input:

 EntityRecord array
Output:

 Updated EntityRecord array

Sub UpdateSimOpsTable (Ops_No As Integer, Column As String, NewValue As Double)

Purpose:

 Writes information to the temporary simulation record set
Subs Called:

 None
Input:

 EntityRecord array

 Temporary simulation record set
Output:

 Updated temporary simulation record set

Appendix III: Explanation of Subroutines in VBA
Code

III

University of Stellenbosch | Department of Industrial Engineering

184

Sub updateCompleteProgress ()

Purpose:

 Update system as processing of the entity finishes
Subs Called:

 UpdateSimOpsTable

 UpdateStartTimes

 UpdateSuccessor

 DetermineCR
Input:

 EntityRecord array

 Simulation run data
Output:

 Updated Entity attributes

 Updated EntityRecord

Sub UpdateSnapShotAtEndRep ()

Purpose:

 Records current system state when replication run ends
Subs Called:

 UpdateSimOpsTable
Input:

 EntityRecord array

 Simulation run data

 Temporary simulation record set
Output:

 Updated temporary simulation record set

Sub UpdateSuccessor ()

Purpose:

 Updates the successor entity attributes and array
Subs Called:

 Reshuffle
Input:

 EntityRecord array

 Simulation run data

 TotalEntCount
Output:

 Updated entity attributes

 Updated EntityRecord array

Appendix III: Explanation of Subroutines in VBA
Code

III

University of Stellenbosch | Department of Industrial Engineering

185

Sub DetermineCR ()

Purpose:

 Determine the critical ratio of the entity
Subs Called:

 None
Input:

 EntityRecord array

 Simulation run data
Output:

 Updated EntityRecord array

Sub Reshuffle (qNum As Integer)

Purpose:

 Reshuffles the queue according to the chosen dispatching rule
Subs Called:

 None
Input:

 qNum variable

 Simulation run data
Output:

 Reshuffled queue

Sub DetermineLateness ()

Purpose:

 Determine the lateness of the part
Subs Called:

 None
Input:

 Simulation run data

 Arena variable varTotLateness
Output:

 Lateness value

Appendix III: Explanation of Subroutines in VBA
Code

III

University of Stellenbosch | Department of Industrial Engineering

186

Sub DetermineEarliness ()

Purpose:

 Determine the earliness of the part
Subs Called:

 None
Input:

 Simulation run data

 Arena variable varTotEarliness
Output:

 Earliness value

Sub UpdateAttrTimesforBusyEnt ()

Purpose:

 Set attribute values of entity that has a busy state at the beginning of the
simulation run

Subs Called:

 None
Input:

 Simulation run data

 EntityRecord array
Output:

 Entity attributes

Sub VBA_Block_19_Fire ()

Purpose:

 Write part statistics to Excel results file
Subs Called:

 DetermineLateness

 DetermineEarliness
Input:

 Simulation run data
Output:

 Excel results file

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

187

APPENDIX IV. SIMULATION MODEL CODE

The VBA code used to customize the simulation model for each scheduling scenario is

included in this appendix. The code can be followed using the previous appendix that states

the purpose of every subroutine, the chapter about the simulation model will also help the

reader understand the code. Comments are included in the code that acted as guidance for

the designer, it is distinguished by the character ‘ and a different colour of text.

Dim oModel As Model, osiman As SIMAN

Dim j, k, TotalEntCount, Counter, CellCount, PartIndex, Dispatch,DDSlack,

 Slack, nReps As Integer

Dim CleanCount, EntityCount, temp, tempPart, HoursToDD, EntDD As Integer

Dim dateProm, dateStart As Integer

Dim CR(200) As Double

Dim EntityRecord(200, 21)

Dim entityDaterecord(200, 2) As Date

Dim Inactive, Active, Complete, Busy, HoursPerWorkDay As Integer

Dim EntLoc, EntName, EntPart, EntSuc, EntProg, EntAddr, EntTotTime,EntST,

 EntCR, EntMachName As Integer

Dim EntTime, EntSet, EntInsp, PartSize, EntType, EntStart, EntEnd,EntSlack,

 EntPredecessor, entTotMakespan As Integer

Dim attrPartsize, attrEnt_Name, attrStartTime, attrSlack, attrLocation,

 attrPart_ID, attrTime, attrTotTime As Integer

Dim attrEnt_Successor, attrDD, attrSetup, attrCompletionTime,attrProgress,

 attrCR, attrInspection As Integer

Dim attrCSetup_Time, attrCProd_Time, attrCInsp_Time, attrCSetup_Process,

 attrCInsp_Process, attrCProd_Process As Double

Dim attrInsp_Start, attrProd_Start, attrSetup_Start, attrTotMakespan As

 Double

Dim HoursInDays, DaysInMinutes As Double

Dim x, y, z, q As Long

Dim txtSeqName, dispatchrule(10) As String

Dim TheDb As DAO.Database 'Ref to database

Dim WS As DAO.Workspace 'Ref to Direct Access Object

Dim RS, TempRS As Recordset 'The query in the db

Dim CurrentPartID As Long

Private Sub startModel()

Set oModel = ThisDocument.Model 'Init ref to this Arena model

Set osiman = oModel.SIMAN 'Ref to its Siman obj.

Set WS = DBEngine(0) 'Create the DAO workspace

Set TheDb = WS.OpenDatabase(Model.Path & "daliff.mdb") 'Open our db in the

workspace

Set RS = TheDb.OpenRecordset("SimOps") 'Execute the query

Set TempRS = TheDb.OpenRecordset("TempSimOps")

 'clear the temp table of previous records

 If TempRS.EOF And TempRS.BOF Then

 'no records in temp table

 Else

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

188

 TempRS.MoveFirst

 TempRS.Edit

 Do While Not TempRS.EOF

 TempRS.Delete

 TempRS.MoveNext

 Loop

 End If

 setVariables

 'In case query is empty:

 If RS.EOF And RS.BOF Then Exit Sub ' Nothing to seq

 'Right, let's begin:

 RS.MoveFirst

'Run through the query. Each time the Part ID changes, we need a new

sequence:

 Do While Not RS.EOF

 'write current state of simulation to temp table

 TempRS.AddNew

 For i = 0 To 16

 TempRS.Fields(i).value = RS.Fields(i).value

 Next i

 'start and end dates?

 For i = 17 To 18

 TempRS.Fields(i).value = 0

 Next i

 TempRS.Update

 CurrentPartID = RS.Fields("Part_ID")

 createEntities

 AssignEntArray (0)

 TotalEntCount = TotalEntCount + 1

 RS.MoveNext

 AssignEntSuccessor

 If RS.EOF Then Exit Do

 Loop 'Do for the whole query

'create ammount of entities for this run

oModel.Modules(oModel.Modules.Find(smFindTag, "object.80")).Data("Max_

Batches") = TotalEntCount - 1

 AssignDispatchrule

 DetermineNumOps

End Sub

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

189

Private Sub ModelLogic_RunEndReplication()

 UpdateSnapShotAtEndRep

'make MS Project schedule

'For i = 1 To TotalEntCount - 1

' MSProject.Application.ActiveProject.Tasks.Add ("Ops_" &

EntityRecord(i, EntName))

' HoursInDays = EntityRecord(i, EntStart) / HoursPerWorkDay

' DaysInMinutes = (Fix(HoursInDays) * 24 * 60) + ((HoursInDays -

Fix(HoursInDays)) * 9 * 60)

' MSProject.Application.ActiveProject.Tasks(i).Predecessors =

EntityRecord(i, EntPredecessor)

' MSProject.Application.ActiveProject.Tasks(i).Start = DateAdd("n",

DaysInMinutes, MSProject.Application.ActiveProject.ProjectStart)

' MSProject.Application.ActiveProject.Tasks(i).Duration =

(EntityRecord(i, EntEnd) - EntityRecord(i, EntStart)) & "h"

' MSProject.Application.ActiveProject.Tasks(i).ResourceNames =

EntityRecord(i, EntMachName)

'Next i

End Sub

Private Sub ModelLogic_RunBegin()

 frmDispRule.Show

 startModel

End Sub

Private Sub ModelLogic_RunBeginReplication()

 DetermineCR

 AssignTotalEntCount

 TotalEntCount = 1

 Counter = 1

 'In case query is empty:

 If RS.EOF And RS.BOF Then Exit Sub ' Nothing to seq

 'Right, let's begin:

 RS.MoveFirst

'Run through the query. Each time the Part ID changes, we need a new

sequence:

 Do While Not RS.EOF

 AssignEntArray (1)

 TotalEntCount = TotalEntCount + 1

 RS.MoveNext

 AssignEntSuccessor

 If RS.EOF Then Exit Do

 Loop

End Sub

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

190

Private Sub AssignTotalEntCount()

Dim i As Integer

 i = osiman.SymbolNumber("TotalEntCount")

 osiman.VariableArrayValue(i) = TotalEntCount - 1

End Sub

Private Sub ModelLogic_RunBeginSimulation()

 nReps = oModel.NumberOfReplications

 Excel.Application.Workbooks.Open (Model.Path & "results.xls")

 'MSProject.Application.FileOpen (Model.Path & "Schedule.mpp")

 'Clear schedule

 'j = MSProject.Application.ActiveProject.Tasks.Count

 'For i = 0 To j - 1

 ' MSProject.Application.ActiveProject.Tasks(j - i).Delete

 'Next i

 'clear excel ranges

 Excel.Application.Workbooks(1).Worksheets(Dispatch + 1).Range_

 ("A2:E2000").Clear

 Excel.Application.Workbooks(1).Worksheets(Dispatch + 1).Range_

 ("T2:X2000").Clear

End Sub

Private Sub ModelLogic_RunEndSimulation()

 'update the simulation table from the temp simulation table

 UpdateSimTableFromTempTable

 'statistic outputs

 Excel.Application.Workbooks(1).Worksheets(Dispatch + 1).Range_

 ("Y2").value = oModel.SIMAN.OutputStatisticValue(1)

 Excel.Application.Workbooks(1).Worksheets(Dispatch + 1).Range_

 ("Y3").value = oModel.SIMAN.OutputStatisticValue(2)

 Excel.Application.Workbooks(1).Worksheets(Dispatch + 1).Range_

 ("Y4").value = oModel.SIMAN.OutputStatisticValue(3)

 Excel.Application.Workbooks(1).Worksheets(Dispatch + 1).Range_

 ("Y5").value = oModel.SIMAN.OutputStatisticValue(8)

 'usage of each machine:

 Excel.Application.Workbooks(1).Worksheets(Dispatch + 1).Range_

 ("AK2").value = oModel.SIMAN.OutputStatisticValue(4)

 Excel.Application.Workbooks(1).Worksheets(Dispatch + 1).Range-

 ("AK3").value = oModel.SIMAN.OutputStatisticValue(5)

 Excel.Application.Workbooks(1).Worksheets(Dispatch + 1).Range_

 ("AK4").value = oModel.SIMAN.OutputStatisticValue(6)

 Excel.Application.Workbooks(1).Worksheets(Dispatch + 1).Range_

 ("AK5").value = oModel.SIMAN.OutputStatisticValue(7)

 Excel.Application.Workbooks(1).Worksheets(Dispatch + 1).Range_

 ("AK6").value = oModel.SIMAN.OutputStatisticValue(9)

 Excel.Application.Workbooks(1).Worksheets(Dispatch + 1).Range_

 ("AK7").value = oModel.SIMAN.OutputStatisticValue(10)

 Excel.Application.Workbooks(1).Worksheets(Dispatch + 1).Range_

 ("AK8").value = oModel.SIMAN.OutputStatisticValue(11)

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

191

 Excel.Application.Workbooks(1).Worksheets(Dispatch + 1).Range_

 ("AK9").value = oModel.SIMAN.OutputStatisticValue(12)

 k = 2

 For j = 1 To 8

 For i = 1 To TotalEntCount - 1

 If EntityRecord(i, EntST) = j Then

 TempRS.MoveFirst

 Do While Not TempRS.EOF

 If TempRS.Fields("Ops_No") = EntityRecord(i, EntName) Then

 Excel.Application.Workbooks(1).Worksheets(Dispatch +_

 1).Range("A" & k).value = TempRS.Fields("Part_ID")

 Excel.Application.Workbooks(1).Worksheets(Dispatch +_

 1).Range("B" & k).value = TempRS.Fields("Ops_No")

‘If then entity start time is smaller than zero, then the starting time

must be set to zero, that the remaining processing time is also shown on

the schedule

 If EntityRecord(i, EntStart) >= 0 Then

 Excel.Application.Workbooks(1).Worksheets(Dispatch_

 + 1).Range("C" & k).value =TempRS._

 Fields("Start_DateTime")

 Else

 Excel.Application.Workbooks(1).Worksheets(Dispatch_

 + 1).Range("C" & k).value = 0

 End If

'If the entity end time is smaller than zero, the ops has been completed

before this simulation run and must then be ignored

 If EntityRecord(i, EntEnd) >= 0 Then

 Excel.Application.Workbooks(1).Worksheets(Dispatch_

 + 1).Range("D" & k).value = TempRS._

 Fields("End_DateTime")

 Else

 Excel.Application.Workbooks(1).Worksheets(Dispatch_

 + 1).Range("D" & k).value = 0

 End If

 Excel.Application.Workbooks(1).Worksheets(Dispatch +_

 1).Range("E" & k).value = TempRS.Fields("Mach_ID")

 'Configure chart to give schedule type bar chart

 Excel.Application.Workbooks(1).Worksheets(Dispatch +_

 1).Select

 Excel.Worksheets(Dispatch + 1).ChartObjects(1).Activate

 Excel.ActiveChart.SeriesCollection(2).DataLabels.Select

 Excel.ActiveChart.SeriesCollection(2).Points(k -

 1).DataLabel.Select

 If EntityRecord(i, EntEnd) < 0 Then

 Selection.Characters.Text = " "

 Else

 Selection.Characters.Text = "O_" & EntityRecord(i,_

 EntName)

 End If

 'give each ops its own colour

 Excel.Worksheets(Dispatch + 1).ChartObjects(1).Activate

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

192

 Excel.ActiveChart.SeriesCollection(2).Points(k -_

 1).Select

 With Selection.Interior

 .ColorIndex = 5 * EntityRecord(i, EntPart) + 18

 .Pattern = xlSolid

 End With

 k = k + 1

 End If

 TempRS.MoveNext

 Loop

 End If

 Next i

 Next j

End Sub

Private Sub UpdateSimTableFromTempTable()

 TempRS.MoveFirst

 RS.MoveFirst

 Do While Not TempRS.EOF

 RS.Edit

 For i = 13 To 16

 RS.Fields(i).value = TempRS.Fields(i).value

 Next i

 If RS.Fields("Status_Id").value >= Busy Then

 If RS.Fields("Start_DateTime").value > 0 Then

 Else

 RS.Fields("Start_DateTime").value = DateAdd("n",_

 TempRS.Fields("Start_DateTime").value * 60,_

 oModel.StartDateTime)

 End If

 If RS.Fields("Status_Id").value = Complete Then

 If RS.Fields("End_DateTime").value > 0 Then

 Else

 RS.Fields("End_DateTime").value = DateAdd("n",_

 TempRS.Fields("End_DateTime").value * 60,_

 oModel.StartDateTime)

 End If

 End If

 End If

 RS.Update

 TempRS.MoveNext

 RS.MoveNext

 Loop

End Sub

Private Sub ModelLogic_RunEnd()

 CleanEntities

 Excel.Application.Workbooks.Close

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

193

 Excel.Application.Quit

 'MSProject.Application.FileCloseAll (pjSave)

 'Go home:

 RS.Close

 TheDb.Close

 WS.Close

Set RS = Nothing

Set TheDb = Nothing

Set WS = Nothing

Set osiman = Nothing

Set oModel = Nothing

End Sub

Private Sub setVariables()

 TotalEntCount = 1

 Counter = 1

 DDSlack = 0

 CleanCount = 1

 CellCount = 1

 'reset entity array

 For i = 1 To 200

 For j = 1 To 21

 If j = 19 Then

 EntityRecord(i, j) = ""

 Else

 EntityRecord(i, j) = -1

 End If

 Next j

 Next i

 'assign dispatch rule chosen by user

 If frmDispRule.FIFO.value = True Then

 Dispatch = 1

 End If

 If frmDispRule.LPT.value = True Then

 Dispatch = 2

 End If

 If frmDispRule.SPT.value = True Then

 Dispatch = 3

 End If

 If frmDispRule.EDD.value = True Then

 Dispatch = 4

 DDSlack = frmSlack.txtSlack.value

 End If

 If frmDispRule.EST.value = True Then

 Dispatch = 5

 End If

 If frmDispRule.SS.value = True Then

 Dispatch = 6

 End If

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

194

 If frmDispRule.CR.value = True Then

 Dispatch = 7

 End If

 'set entity record attributes

 EntLoc = 1

 EntName = 2

 EntPart = 3

 EntSuc = 4

 EntProg = 5

 EntST = 6

 EntTime = 7

 EntSet = 8

 EntInsp = 9

 PartSize = 10

 EntAddr = 11

 EntType = 12

 EntDD = 13

 EntStart = 14

 EntEnd = 15

 EntSlack = 16

 EntCR = 17

 EntMachName = 18

 EntPredecessor = 19

 EntTotTime = 20

 entTotMakespan = 21

 'set entity date record attributes

 dateProm = 1

 dateStart = 2

 'Set hours per work day

 HoursPerWorkDay = CDbl(9.5)

 'set progress attributes

 Inactive = 0

 Active = 1

 Busy = 2

 Complete = 3

 'set attribute for dispatch rule

 dispatchrule(1) = "attrProgress"

 dispatchrule(2) = "attrTotTime"

 dispatchrule(3) = "attrTotTime"

 dispatchrule(4) = "attrDD"

 dispatchrule(5) = "attrStartTime"

 dispatchrule(6) = "attrSlack"

 dispatchrule(7) = "attrCR"

 'set entity attributes according to siman.txt file

 attrPartsize = 1

 attrEnt_Name = 2

 attrStartTime = 3

 attrSlack = 4

 attrLocation = 5

 attrCInsp_Time = 6

 attrTotMakespan = 7

 attrPart_ID = 8

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

195

 attrTime = 9

 attrCProd_Process = 10

 attrProgress = 11

 attrEnt_Successor = 12

 attrCSetup_Time = 13

 attrCInsp_Process = 14

 attrProd_Start = 15

 attrCompletionTime = 16

 attrCR = 17

 attrTotTime = 18

 attrDD = 19

 attrSetup = 20

 attrCProd_Time = 21

 attrSetup_Start = 22

 attrInspection = 23

 attrInsp_Start = 24

 attrCSetup_Process = 25

End Sub

Private Sub AssignDispatchrule()

 Dim strDispatchRule As String

 'change attribute for dispatch rule of all queues

Model.Modules(Model.Modules.Find(smFindTag,_

"object.2584")).Data("Attribute") = dispatchrule(Dispatch)

Model.Modules(Model.Modules.Find(smFindTag,_

"object.2585")).Data("Attribute") = dispatchrule(Dispatch)

Model.Modules(Model.Modules.Find(smFindTag,_

"object.2586")).Data("Attribute") = dispatchrule(Dispatch)

Model.Modules(Model.Modules.Find(smFindTag,_

"object.2587")).Data("Attribute") = dispatchrule(Dispatch)

Model.Modules(Model.Modules.Find(smFindTag,_

"object.2588")).Data("Attribute") = dispatchrule(Dispatch)

Model.Modules(Model.Modules.Find(smFindTag,_

"object.2589")).Data("Attribute") = dispatchrule(Dispatch)

Model.Modules(Model.Modules.Find(smFindTag,_

"object.2590")).Data("Attribute") = dispatchrule(Dispatch)

Model.Modules(Model.Modules.Find(smFindTag,_

"object.23282")).Data("Attribute") = dispatchrule(Dispatch)

 'change rule type

 If Dispatch = 3 Or Dispatch = 4 Or Dispatch = 5 Or Dispatch = 6 Then

 'SPT, EDD, EST, SS

 strDispatchRule = "Lowest Attribute Value"

 Else

 'FIFO,LPT

 strDispatchRule = "Highest Attribute Value"

 End If

Model.Modules(Model.Modules.Find(smFindTag,_

"object.2584")).Data("Type") = strDispatchRule

Model.Modules(Model.Modules.Find(smFindTag,_ "object.2585")).Data("Type") =

strDispatchRule

Model.Modules(Model.Modules.Find(smFindTag,_ "object.2586")).Data("Type") =

strDispatchRule

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

196

Model.Modules(Model.Modules.Find(smFindTag,_ "object.2587")).Data("Type") =

strDispatchRule

Model.Modules(Model.Modules.Find(smFindTag,_ "object.2588")).Data("Type") =

strDispatchRule

Model.Modules(Model.Modules.Find(smFindTag,_ "object.2589")).Data("Type") =

strDispatchRule

Model.Modules(Model.Modules.Find(smFindTag,_ "object.2590")).Data("Type") =

strDispatchRule

Model.Modules(Model.Modules.Find(smFindTag,_ "object.23282")).Data("Type")

= strDispatchRule

End Sub

Private Sub createEntities()

 'insert entities to entity module

 oModel.Modules.Create "BasicProcess", "Entity", 0, 0

 EntityCount = oModel.Modules.Count 'Module counter to assign name

 oModel.Modules(EntityCount).Data("Name") = "Ops_" & RS.Fields("Ops_No")

End Sub

Private Sub AssignEntArray(Origin As Integer)

'ASSUMPTION: all orders to be delivered at 12:00

'Entity (Ops) Attributes saved in array

'if it is the first replication of the simulation, the adress could be

found - it is the same for all the reps once found

 If Origin = 0 Then

 'entityLocation

 EntityRecord(TotalEntCount, EntAddr) = oModel.Shapes.Count

 End If

 'Entity (Ops) name

 EntityRecord(TotalEntCount, EntName) = RS.Fields("Ops_No")

 'Entity (Ops) part ID

 EntityRecord(TotalEntCount, EntPart) = RS.Fields("Part_ID")

 'Entity (Ops) Station

 EntityRecord(TotalEntCount, EntST) = RS.Fields("Mach_ID")

 EntityRecord(TotalEntCount, EntMachName) = RS.Fields("Mach_Name")

 EntityRecord(TotalEntCount, EntSuc) = "0"

 EntityRecord(TotalEntCount, EntProg) = RS.Fields("Status_id")

 EntityRecord(TotalEntCount, entTotMakespan) = RS.Fields("CSetup_Time")_

 + RS.Fields("CInsp_Time") + RS.Fields("CProd_Time")

'check status off entities to determine start times and remaining

processing times

 If EntityRecord(TotalEntCount, EntProg) = 2 Then

'busy entity = startime < sim starttime but start is set to 0 and

remaining set/insp/est time are assigned

EntityRecord(TotalEntCount, EntStart) = DateDiff("h",_

oModel.StartDateTime, RS.Fields("Start_DateTime"))

EntityRecord(TotalEntCount, EntTime) = RS.Fields("Prod_Time") -_

RS.Fields("CProd_Time") '* (RS.Fields("Qty") - 1))

'Entity (Ops) process time

EntityRecord(TotalEntCount, EntSet) = RS.Fields("Setup_Time") -_

RS.Fields("CSetup_Time") '+ RS.Fields("Prod_Time")

'Entity (Ops) Setup time

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

197

EntityRecord(TotalEntCount, EntInsp) = RS.Fields("Insp_Time") -_

RS.Fields("CInsp_Time")

'Entity (Ops) Inspection time"

EntityRecord(TotalEntCount, EntTotTime) =_ EntityRecord(TotalEntCount,

EntInsp) + EntityRecord(TotalEntCount,_ EntSet) +

EntityRecord(TotalEntCount, EntTime)

 Else

 If EntityRecord(TotalEntCount, EntProg) = 3 Then

 'Completed entity = start time < sim starttime

EntityRecord(TotalEntCount, EntStart) = DateDiff("h",-

oModel.StartDateTime, RS.Fields("Start_DateTime"))

 EntityRecord(TotalEntCount, EntTime) = 0

 EntityRecord(TotalEntCount, EntSet) = 0

 EntityRecord(TotalEntCount, EntInsp) = 0

 EntityRecord(TotalEntCount, EntTotTime) = 0

 Else

 'Queueble entity = start time > sim starttime

 EntityRecord(TotalEntCount, EntStart) = 0

 'Entity (Ops) process time

EntityRecord(TotalEntCount, EntTime) = RS.Fields("Prod_Time")

 'Entity (Ops) Setup time

EntityRecord(TotalEntCount, EntSet) = RS.Fields("Setup_Time")

 'Entity (Ops) Inspection time"

EntityRecord(TotalEntCount, EntInsp) = RS.Fields("Insp_Time")

EntityRecord(TotalEntCount, EntTotTime) =_ EntityRecord(TotalEntCount,

EntInsp) +_ EntityRecord(TotalEntCount, EntSet) +_

EntityRecord(TotalEntCount, EntTime)

 End If

 End If

 'enter due time on due date (use constant value of 12:00:00)

 entityDaterecord(TotalEntCount, dateProm) = RS.Fields("PromDate") &_

 "12:00:00"

 entityDaterecord(TotalEntCount, dateStart) = RS.Fields("ApprovedDate")_

 & " 08:00:00"

End Sub

Private Sub AssignEntSuccessor()

 'Set entity successor - no succesor if last ops of part

 If Not RS.EOF Then

'check if current entity has the same part_id as previous entity,then

current entity is successor of previous entity

If EntityRecord(TotalEntCount - 1, EntPart) = RS.Fields("Part_ID")_

 Then

 EntityRecord(TotalEntCount - 1, EntSuc) = RS.Fields("Ops_No")

 EntityRecord(TotalEntCount, EntPredecessor) =_

 EntityRecord(TotalEntCount - 1, EntName)

 Else

 EntityRecord(TotalEntCount - 1, EntSuc) = "0"

 End If

 End If

End Sub

Private Sub CleanEntities()

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

198

 'Clean entity modules

 Do While CleanCount < TotalEntCount

 Model.ActiveView.Selection.DeselectAll

 Model.Shapes(EntityRecord(TotalEntCount - CleanCount, EntAddr) -_

 67).Selected = True

 Model.ActiveView.Selection.Delete

 CleanCount = CleanCount + 1

 Loop

End Sub

Private Sub VBA_Block_1_Fire()

 ' assign attribute values to entity

 AssignEntAttr

End Sub

Private Sub AssignEntAttr()

 'Assign entity attributes from entity array

 If Counter < TotalEntCount Then

 osiman.entityType(osiman.ActiveEntity) = Counter + 1

'if entity is active, then real value must be assigned from entity array

 If EntityRecord(Counter, EntProg) < Busy Then

 If EntityRecord(Counter, EntProg) = Active Then

 osiman.EntityAttribute(osiman.ActiveEntity, attrDD) =_

 EntityRecord(Counter, EntDD)

osiman.EntityAttribute(osiman.ActiveEntity,_ attrStartTime)=

EntityRecord(Counter, EntStart)

osiman.EntityAttribute(osiman.ActiveEntity, attrTotTime)_ =

EntityRecord(Counter, EntTotTime)

osiman.EntityAttribute(osiman.ActiveEntity, attrSlack) =_

EntityRecord(Counter, EntSlack)

osiman.EntityAttribute(osiman.ActiveEntity, attrCR) =_

EntityRecord(Counter, EntCR)

 Else

'assign dummy value to entity processing time attribute, because entity is

inactive

If Dispatch = 3 Or Dispatch = 4 Or Dispatch = 5 Or_ Dispatch = 6 Then

 'big value of DD for EDD

osiman.EntityAttribute(osiman.ActiveEntity,_ attrDD) = 999999999

 'big value of StartTime for EST

osiman.EntityAttribute(osiman.ActiveEntity,_ attrStartTime) = 999999999

 'big value of Processing time for SPT

osiman.EntityAttribute(osiman.ActiveEntity,_ attrTotTime) = 999999999

 'big value of Slack for SS

osiman.EntityAttribute(osiman.ActiveEntity, attrSlack) = 999999999

 Else

 'Assign real value to DD, because DD doesn't apply

 osiman.EntityAttribute(osiman.ActiveEntity,_ attrDD) =

EntityRecord(Counter, EntDD)

 'Assign real value to slack, because slack doesn't apply

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

199

osiman.EntityAttribute(osiman.ActiveEntity,_ attrSlack) =

EntityRecord(Counter, EntSlack)

'Assign real value to StartTime, because EST doesn't apply

osiman.EntityAttribute(osiman.ActiveEntity, attrStartTime) =

EntityRecord(Counter, EntStart)

 'small value of Processing time for LPT

osiman.EntityAttribute(osiman.ActiveEntity, attrTotTime) = 0

 'small value of CR for CR

osiman.EntityAttribute(osiman.ActiveEntity,_ attrCR) = 0

 End If

 End If

 Else

osiman.EntityAttribute(osiman.ActiveEntity, attrDD) =_

EntityRecord(Counter, EntDD)

osiman.EntityAttribute(osiman.ActiveEntity, attrSlack) =_

EntityRecord(Counter, EntSlack)

osiman.EntityAttribute(osiman.ActiveEntity, attrStartTime) =_

EntityRecord(Counter, EntStart)

osiman.EntityAttribute(osiman.ActiveEntity, attrTotTime) =_

EntityRecord(Counter, EntTotTime)

 End If

osiman.EntityAttribute(osiman.ActiveEntity, attrTime) =_

EntityRecord(Counter, EntTime)

osiman.EntityAttribute(osiman.ActiveEntity, attrEnt_Name) =_

EntityRecord(Counter, EntName)

osiman.EntityAttribute(osiman.ActiveEntity, attrEnt_Successor) =_

EntityRecord(Counter, EntSuc)

osiman.EntityAttribute(osiman.ActiveEntity, attrCompletionTime) =_

EntityRecord(Counter, EntInsp)

osiman.EntityAttribute(osiman.ActiveEntity, attrLocation) =_

EntityRecord(Counter, EntAddr)

osiman.EntityAttribute(osiman.ActiveEntity, attrSetup) =_

EntityRecord(Counter, EntSet)

osiman.EntityAttribute(osiman.ActiveEntity, attrInspection) =_

EntityRecord(Counter, EntInsp)

osiman.EntityAttribute(osiman.ActiveEntity, attrProgress) =_

EntityRecord(Counter, EntProg)

osiman.EntityAttribute(osiman.ActiveEntity, attrPartsize) =_

EntityRecord(Counter, PartSize)

osiman.EntityAttribute(osiman.ActiveEntity, attrPart_ID) =_

EntityRecord(Counter, EntPart)

 'get entity location as stored in Arena

 EntityRecord(Counter, EntLoc) = osiman.ActiveEntity

 'assign station number

osiman.EntityStationAttribute(osiman.ActiveEntity) =_ EntityRecord(Counter,

EntST)

 Counter = Counter + 1

 End If

End Sub

Private Sub DetermineNumOps()

 temp = 1

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

200

 parts = 1

 CompletedHoursAtSimStart = 0

 'determine number of ops per part

 For x = 1 To TotalEntCount - 1

 If x > 1 Then

 'check if previous entity in array is same as current, then

 count it as temp

 If EntityRecord(x - 1, EntPart) = EntityRecord(x, EntPart) Then

 temp = temp + 1

 'repeat until new parts ops starts

 Else

 'assign partsize to entities from last entity of part set

 backwards

 y = x - 1 'entity number in entity record array(1 -

 TotalEntCount)

 z = 1 'Temp var used in DetermineStartTime

 tempPart = temp 'number of entities in part set

 'Do loop is used to start from last entity of part set

 'and move backwards to first entity of part set, temp is

 'set to zero when first entity of part set ha been assigned

 Do While temp > 0

 EntityRecord(y, PartSize) = tempPart

 EntityRecord(y, EntType) = parts

 DetermineDueDate

 DetermineStartTime (0)

 CompletedHoursAtSimStart = CompletedHoursAtSimStart +_

 EntityRecord(y, entTotMakespan)

 z = z + 1

 y = y - 1

 temp = temp - 1

 Loop

 EntityRecord(x - 1, entTotMakespan) =_

 CompletedHoursAtSimStart

 'reset temp that next part set can start at 1 entity

 temp = 1

 'count number of parts (not number of entities)

 parts = parts + 1

 End If

 CompletedHoursAtSimStart = 0

 'The last entity must be treated differently

 If x = TotalEntCount - 1 Then

 y = x

 z = 1

 tempPart = temp

 Do While temp > 0

 EntityRecord(y, PartSize) = tempPart

 EntityRecord(y, EntType) = parts

 DetermineDueDate

 DetermineStartTime (0)

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

201

 CompletedHoursAtSimStart = CompletedHoursAtSimStart +_

 EntityRecord(y, entTotMakespan)

 z = z + 1

 y = y - 1

 temp = temp - 1

 Loop

 EntityRecord(x, entTotMakespan) = CompletedHoursAtSimStart

 temp = 1

 End If

 End If

 Next x

End Sub

Private Sub DetermineDueDate()

Dim TempDD As Date

 TempDD = CDate(entityDaterecord(y, dateProm))

 'determine due dates of all the entities of the current part set

 If tempPart = temp Then

 'DD of last entity of part set = dd of part set

 'HoursToDD is equal to the difference in model start time and

 'promised date,equals the total hours differnece - it must be

 'converted into work hours difference the DD slack must be removed

 'as well

 DaysInMinutes = DateDiff("n", oModel.StartDateTime, TempDD)

 Days = DaysInMinutes / 1440

 daysinhours = (Fix(Days) * 9.5) + ((Days - Fix(Days)) * 24)

 EntityRecord(y, EntDD) = daysinhours

 For i = 1 To tempPart - 1

 'determine dd of entities in part set from backwards

 daysinhours = daysinhours - EntityRecord(y - i + 1, EntTotTime)

 EntityRecord(y - i, EntDD) = daysinhours

 Next i

 End If

End Sub

Private Sub DetermineStartTime(Origin As Integer)

 st = EntityRecord(y - temp + z, EntStart)

 'when z = 1 then it is the first entity of the part set

 If z = 1 Then

 'start times can only change whilst entity is inactive,

 'accept for the first entities of a part set it can change if

 'its not completed

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

202

 If EntityRecord(y - temp + z, EntProg) = Active Then

 Slack = EntityRecord(y - temp + z, EntDD) - EntityRecord(y_

 - temp + z, EntStart) - EntityRecord(y - temp + z,_

 EntTotTime)

 'check if it is not the first time that start times are

 'being calculated origin = 0 for the first time start times

 'are being calculated

 If Origin = 1 Then

 'get the new start time of the first entity in the part

 'set, it will be the difference between the original

 'starttime and the current starttime (assumed to start

 'on current time)

 If EntityRecord(y - temp + z + 1, EntPart) =_

 EntityRecord(y - temp + z, EntPart) Then

 st = osiman.RunCurrentTime - EntityRecord(y – temp_

 + z, EntStart)

 EntityRecord(y - temp + z, EntStart) = st

 Slack = EntityRecord(y - temp + z, EntDD) -_

 EntityRecord(y - temp + z, EntStart) -_

 EntityRecord(y - temp + z, EntTotTime)

 End If

 End If

 End If

 Else

 If EntityRecord(y - temp + z, EntProg) = Inactive Or_

 EntityRecord(y - temp + z, EntProg) = Active Then

 'if the entity before the current entity in the same part set

 'is completed, and if processing on current entity has not

 'started the start time of the current entity is equal to the

 'current time

 If EntityRecord(y - temp + z - 1, EntProg) = Complete Then

 If Origin = 1 Then

 EntityRecord(y - temp + z, EntStart) =_

 osiman.RunCurrentTime

 End If

 Slack = EntityRecord(y - temp + z, EntDD) -_

 EntityRecord(y - temp + z, EntStart) -_

 EntityRecord(y - temp + z, EntTotTime)

 Else

 'If entity before current entity in the same part set is

 'busy being processed, the earliest start time of the

 'current entity is after processing the previous entity

 'is finished

 If EntityRecord(y - temp + z - 1, EntProg) = Busy Then

 EntityRecord(y - temp + z, EntStart) =_

 EntityRecord(y - temp + z - 1, EntTotTime)

 Slack = EntityRecord(y - temp + z, EntDD) -_

 EntityRecord(y - temp + z, EntStart) -_

 EntityRecord(y - temp + z, EntTotTime)

 Else

 'earliest start time equals start time of previous

 entity in part set plus its processing time

 st = EntityRecord(y - temp + z - 1, EntStart) +_

 EntityRecord(y - temp + z - 1, EntTotTime)

 EntityRecord(y - temp + z, EntStart) = st

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

203

 Slack = EntityRecord(y - temp + z, EntDD) -_

 EntityRecord(y - temp + z, EntStart) -_

 EntityRecord(y - temp + z, EntTotTime)

 End If

 End If

 End If

 End If

 'the entity has no slack if processing started or completed on it

 If EntityRecord(y - temp + z, EntProg) < 2 Then

 EntityRecord(y - temp + z, EntSlack) = Slack

 Else

 EntityRecord(y - temp + z, EntSlack) = 0

 End If

End Sub

Private Sub determineSlack(Origin As Integer)

 temp = 1

 parts = 1

 For x = 1 To TotalEntCount - 1

 If x > 1 Then

 If EntityRecord(x, EntType) = EntityRecord(x - 1, EntType)_

 Then

 'count number of entities in current part set

 temp = temp + 1

 Else

 'determine slack of entity in part set when all entities in

 'part set have been counted

 y = x - 1

 z = 1

 Do While temp > 0

 'get due date and processing time of next entity in

 'part set

 Slack = EntityRecord(y - temp + z, EntDD) -_

 EntityRecord(y - temp + z, EntStart) -_

 EntityRecord(y - temp + z, EntTotTime)

 z = z + 1

 y = y - 1

 temp = temp - 1

 Loop

 temp = 1

 End If

 If x = TotalEntCount - 1 Then

 y = x

 z = 1

 Do While temp > 0

 'get due date and processing time of next entity in

 'part set

 Slack = EntityRecord(y - temp + z, EntDD) -_

 EntityRecord(y - temp + z, EntStart) -_

 EntityRecord(y - temp + z, EntTotTime)

 z = z + 1

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

204

 y = y - 1

 temp = temp - 1

 Loop

 temp = 1

 End If

 End If

 Next x

End Sub

Private Sub UpdateStartTimes()

 temp = 1

 parts = 1

 For x = 1 To TotalEntCount - 1

 If x > 1 Then

 If EntityRecord(x, EntType) = EntityRecord(x - 1, EntType) Then

 temp = temp + 1

 Else

 y = x - 1

 z = 1

 Do While temp > 0

 DetermineStartTime (1)

 'determineSlack

 z = z + 1

 y = y - 1

 temp = temp - 1

 Loop

 temp = 1

 End If

 If x = TotalEntCount - 1 Then

 y = x

 z = 1

 Do While temp > 0

 DetermineStartTime (1)

 'determineSlack

 z = z + 1

 y = y - 1

 temp = temp - 1

 Loop

 temp = 1

 End If

 End If

 Next x

End Sub

Private Sub updateStartProgress()

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

205

 osiman.EntityAttribute(osiman.ActiveEntity, attrProgress) = Busy

 tempstart = osiman.RunCurrentTime

 osiman.EntityAttribute(osiman.ActiveEntity, attrStartTime) = tempstart

 'change entity attribute status

 q = 1

 Do While q <= TotalEntCount

 If osiman.EntityAttribute(osiman.ActiveEntity, attrEnt_Name) =_

 EntityRecord(q, EntName) Then

 EntityRecord(q, EntProg) = Busy

 EntityRecord(q, EntStart) = tempstart

 'convert hours into days using minutes

 HoursInDays = tempstart / 9.5

 DaysInMinutes = (Fix(HoursInDays) * 24 * 60) + ((HoursInDays -_

 Fix(HoursInDays)) * 9 * 60)

 UpdateSimOpsTable CInt(EntityRecord(q, EntName)), "Status_Id",_

 CDbl(Busy)

 UpdateSimOpsTable CInt(EntityRecord(q, EntName)),_

 "Start_DateTime", CDbl(tempstart) 'DaysInMinutes / nReps

 End If

 q = q + 1

 Loop

End Sub

Function UpdateSimOpsTable(Ops_No As Integer, Column As String, NewValue As

Double)

 'Scan trough records to find particular one and update accordingly

 TempRS.MoveFirst

 Do While Not TempRS.EOF

 If TempRS.Fields("Ops_no") = Ops_No Then

 TempRS.Edit

 If Column = "Status_Id" Then

 TempRS.Fields(Column).value = NewValue

 Else

 TempRS.Fields(Column).value = NewValue +_

 TempRS.Fields(Column).value

 End If

 TempRS.Update

 End If

 TempRS.MoveNext

 Loop

End Function

Private Sub updateCompleteProgress()

Dim pic As Long

Dim SetTemp, InspTemp, ProdTemp As Double

 'assign completed status to processed entity

 osiman.EntityAttribute(osiman.ActiveEntity, attrProgress) = Complete

 osiman.EntityAttribute(osiman.ActiveEntity, attrCompletionTime) =_

 osiman.RunCurrentTime

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

206

 Ops_No = osiman.EntityAttribute(osiman.ActiveEntity, attrEnt_Name)

 'change entity picture to resemble completed status (green)

 q = 1

 Do While q <= TotalEntCount

 If osiman.EntityAttribute(osiman.ActiveEntity, attrEnt_Name) =_

 EntityRecord(q, EntName) Then

 osiman.EntityAttribute(osiman.ActiveEntity, attrStartTime) =_

 EntityRecord(q, EntStart)

 osiman.EntityAttribute(osiman.ActiveEntity, attrTotMakespan) =_

 osiman.RunCurrentTime + EntityRecord(q, entTotMakespan)

 EntityRecord(q, EntProg) = Complete

 EntityRecord(q, EntEnd) = osiman.RunCurrentTime

 endtime = osiman.RunCurrentTime

 pic = EntityRecord(q, EntType) * 3 - 2

 osiman.EntitySetPicture EntityRecord(q, EntLoc), pic + 2

 'determine date that ops was finished - convert ammount of

 'hours into days that it could be added to the start date and

 'time of the simulation

 HoursInDays = EntityRecord(q, EntEnd) / 9.5

 DaysInMinutes = (Fix(HoursInDays) * 24 * 60) + ((HoursInDays -_

 Fix(HoursInDays)) * 9.5 * 60)

 'Update completed time on each type of operation on ops

 SetTemp = CDbl(osiman.EntityAttribute(EntityRecord(q, EntLoc),_

 attrCSetup_Time) / nReps)

 InspTemp = CDbl(osiman.EntityAttribute(EntityRecord(q, EntLoc)_

 , attrCInsp_Time) / nReps)

 ProdTemp = CDbl(osiman.EntityAttribute(EntityRecord(q, EntLoc)_

 , attrCProd_Time) / nReps)

 'update the dynamic simulation table records

 UpdateSimOpsTable CInt(Ops_No), "CSetup_Time", CDbl(SetTemp)

 UpdateSimOpsTable CInt(Ops_No), "CInsp_Time", CDbl(InspTemp)

 UpdateSimOpsTable CInt(Ops_No), "CProd_Time", CDbl(ProdTemp)

 End If

 q = q + 1

 Loop

 'update the dynamic simulation table records

 'Update status to completed

 UpdateSimOpsTable CInt(Ops_No), "Status_Id", CDbl(Complete)

 'update Finished date

 EndDate = DateAdd("n", DaysInMinutes, oModel.StartDateTime)

 UpdateSimOpsTable CInt(Ops_No), "End_DateTime", CDbl(endtime)

 'DaysInMinutes / nReps

 UpdateStartTimes

 'check if entity has successor, then change successor status to active

 If osiman.EntityAttribute(osiman.ActiveEntity, attrEnt_Successor) <> 0_

 Then

 UpdateSuccessor

 End If

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

207

 DetermineCR

End Sub

Private Sub UpdateSnapShotAtEndRep()

Dim TempVal As Double

 'update information on ops that are still being processed

 For i = 1 To TotalEntCount - 1

 'find all ops that are busy

 If EntityRecord(i, EntProg) = Busy Then

 'check what type of operation is being done on ops - if the

 'Process attr has the value 1 it has been completed

 If osiman.EntityAttribute(EntityRecord(i, EntLoc),_

 attrCSetup_Process) = 1 Then

 'setup has been completed - record in simulation database

 'check if Csetup_time has a value, meaning that work has been

 'done on setup process then the new amount of work must be

 'added to the previous ammount

 TempRS.MoveFirst

 RS.MoveFirst

 Do While Not TempRS.EOF

 If TempRS.Fields("Ops_no") = EntityRecord(i, EntName)_

 Then

 TempVal = CDbl(osiman.EntityAttribute(EntityRecord_

 (i, EntLoc), attrCSetup_Time) / nReps)

 End If

 TempRS.MoveNext

 RS.MoveNext

 Loop

 UpdateSimOpsTable CInt(EntityRecord(i, EntName)),_

 "CSetup_Time", TempVal

 If osiman.EntityAttribute(EntityRecord(i, EntLoc),_

 attrCInsp_Process) = 1 Then

 'Inspection has been completed - record in simulation

 'database check if CInsp_time has a value, meaning that

 'work has been done on Insp process then the new amount

 'of work must be added to the previous ammount

 TempRS.MoveFirst

 RS.MoveFirst

 Do While Not TempRS.EOF

 If TempRS.Fields("Ops_no") = EntityRecord(i,_

 EntName) Then

 TempVal = CDbl(osiman.EntityAttribute_

 (EntityRecord(i, EntLoc), attrCInsp_Time) /_

 nReps)

 End If

 TempRS.MoveNext

 RS.MoveNext

 Loop

 UpdateSimOpsTable CInt(EntityRecord(i, EntName)),_

 "CInsp_Time", TempVal

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

208

 If osiman.EntityAttribute(EntityRecord(i, EntLoc),_

 attrCProd_Process) = 1 Then

 'Ops has been completed, but the simulation stopped

 'before it could be saved as completed check if

 'CProd_time has a value, meaning that work has been

 'done on Prod process then the new amount of work must

 'be added to the previous ammount

 TempRS.MoveFirst

 RS.MoveFirst

 Do While Not TempRS.EOF

 If TempRS.Fields("Ops_no") = EntityRecord(i,_

 EntName) Then

 TempVal = CDbl(osiman.EntityAttribute_

 (EntityRecord(i, EntLoc), attrCProd_Time)_

 / nReps)

 End If

 TempRS.MoveNext

 RS.MoveNext

 Loop

 UpdateSimOpsTable CInt(EntityRecord(i, EntName)),_

 "CProd_Time", TempVal

 Else

 'Production process is not completed check if

 'CProd_time has a value, meaning that work has been

 'done on Prod process then the new amount of work

 'must be added to the previous ammount

 TempVal = CDbl(osiman.RunCurrentTime -_

 osiman.EntityAttribute(EntityRecord(i, EntLoc),_

 attrProd_Start))

 TempRS.MoveFirst

 RS.MoveFirst

 Do While Not TempRS.EOF

 If TempRS.Fields("Ops_no") = EntityRecord(i,_

 EntName) Then

 TempVal = TempVal / nReps

 End If

 TempRS.MoveNext

 RS.MoveNext

 Loop

 UpdateSimOpsTable CInt(EntityRecord(i, EntName)),_

 "CProd_Time", TempVal

 End If

 Else

 'The Inspection process is not completed check if

 'CInsp_time has a value, meaning that work has been

 'done on Insp process then the new amount of work must

 'be added to the previous ammount

 TempVal = CDbl(osiman.RunCurrentTime -_

 osiman.EntityAttribute(EntityRecord(i, EntLoc),_

 attrInsp_Start))

 TempRS.MoveFirst

 RS.MoveFirst

 Do While Not TempRS.EOF

 If TempRS.Fields("Ops_no") = EntityRecord(i,_

 EntName) Then

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

209

 TempVal = TempVal / nReps

 End If

 TempRS.MoveNext

 RS.MoveNext

 Loop

 UpdateSimOpsTable CInt(EntityRecord(i, EntName)),_

 "CInsp_Time", TempVal

 End If

 Else

 'The setup process is not completed, thus the completed

 'time of setup must be completed check if Csetup_time has a

 'value, meaning that work has been done on setup process

 'then the new amount of work must be added to the previous

 '`ammount

 TempVal = CDbl(osiman.RunCurrentTime -osiman._

 EntityAttribute(EntityRecord(i, EntLoc),_

 attrSetup_Start))

 TempRS.MoveFirst

 RS.MoveFirst

 Do While Not TempRS.EOF

 If TempRS.Fields("Ops_no") = EntityRecord(i, EntName)_

 Then

 TempVal = TempVal / nReps

 End If

 TempRS.MoveNext

 RS.MoveNext

 Loop

 UpdateSimOpsTable CInt(EntityRecord(i, EntName)),_

 "CSetup_Time", TempVal

 End If

 End If

 Next i

End Sub

Private Sub UpdateSuccessor()

 q = 1

 Do While q <= TotalEntCount

 'find entity successor and change status and picture

 If osiman.EntityAttribute(osiman.ActiveEntity, attrEnt_Successor)_

 = EntityRecord(q, EntName) Then

 EntityRecord(q, EntProg) = Active 'update entity array

 osiman.EntityAttribute(EntityRecord(q, EntLoc), attrTotTime) =_

 EntityRecord(q, EntTotTime) 'update entity time attr

 osiman.EntityAttribute(EntityRecord(q, EntLoc), attrProgress)_

 = Active 'update entity progress attr

 osiman.EntityAttribute(EntityRecord(q, EntLoc), attrDD) =_

 EntityRecord(q, EntDD) 'update entity DD attr

 'update entity earliest Start time attr

 osiman.EntityAttribute(EntityRecord(q, EntLoc), attrStartTime)_

 = EntityRecord(q, EntStart)

 osiman.EntityAttribute(EntityRecord(q, EntLoc), attrSlack) =_

 EntityRecord(q, EntSlack) 'update entity slack attr

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

210

 osiman.EntityAttribute(EntityRecord(q, EntLoc), attrCR) =_

 EntityRecord(q, EntCR) 'update entity critical ratio attr

 'change status attr in simulation database

 UpdateSimOpsTable CInt(EntityRecord(q, EntName)), "Status_Id",_

 CInt(Active)

 'there are 3 types of the same picture

 pic = EntityRecord(q, EntType) * 3 - 2

 osiman.EntitySetPicture EntityRecord(q, EntLoc), pic + 1

 'find queue that contains newly updated active entity

 For qNum = 1 To osiman.QueuesMaximum

 For qRank = 1 To osiman.QueueNumberOfEntities(qNum)

 If osiman.QueueEntityLocationAtRank(qRank, qNum) =_

 EntityRecord(q, EntLoc) Then

 'reshuffle queue according to selected dispatching rule

 Reshuffle (qNum)

 Exit Do

 End If

 Next qRank

 Next qNum

 End If

 q = q + 1

 Loop

End Sub

Private Sub DetermineCR()

 i = 2

 pt = 0

 tempPartSize = 1

 'find CR for all the entities

 Do While i <= TotalEntCount - 1

 'if 2 entities that follow each other have the same entPart they

 'belong to the same part set and the PT of the 1st one must be

 'considered

 If EntityRecord(i - 1, EntPart) = EntityRecord(i, EntPart) Then

 tempPartSize = tempPartSize + 1

 'if work has not started on previous entity, the PT of the

 'entity must be included in the remaining PT of the part

 If EntityRecord(i - 1, EntProg) <= Active Then

 pt = pt + EntityRecord(i - 1, EntTotTime)

 Else

 'if work is still being done, the remaining PT of the

 'entity must be added to the remaining PT of the part

 If EntityRecord(i - 1, EntProg) = Busy Then

 If EntityRecord(i - 1, EntStart) < 0 Then

 pt = EntityRecord(i - 1, EntTotTime)

 Else

 pt = osiman.RunCurrentTime - EntityRecord(i - 1,_

 EntStart)

 End If

 'else if it is completed, its PT doesn't play a role

 Else

 pt = 0

 End If

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

211

 End If

 'if the 2 entities don't match, a new part set has started.

 'thus the last entity of the previous part determine the CR of the

 'part. After CR is determined, PT must be set to zero - in case

 'there is a part with only 1 entity (or else the it will use the PT

 'of the previous part)

 Else

 If EntityRecord(i - 1, EntProg) = Busy Then

 pt = osiman.RunCurrentTime - EntityRecord(i - 1, EntStart)

 If CInt(EntityRecord(i - 1, EntDD) - osiman.RunCurrentTime_

) <= 0 Then

 CR(EntityRecord(i - 1, EntName)) = pt / 1E-18

 Else

 CR(EntityRecord(i - 1, EntName)) = pt /Cint_

 (EntityRecord(i - 1, EntDD) - osiman.RunCurrentTime)

 End If

 pt = 0

 End If

 If EntityRecord(i - 1, EntProg) <= Active Then

 pt = pt + EntityRecord(i - 1, EntTotTime)

 'if the due date of the entity has passed, the CR must be

 'really big

 If CInt(EntityRecord(i - 1, EntDD) - osiman._

 RunCurrentTime) <= 0 Then

 CR(EntityRecord(i - 1, EntName)) = pt / 1E-18

 Else

 CR(EntityRecord(i - 1, EntName)) = pt / Cint_

 (EntityRecord(i - 1, EntDD) - osiman.RunCurrentTime)

 End If

 pt = 0

 End If

 'if it is complete,the part is also complete then the CR = zero

 If EntityRecord(i - 1, EntProg) = Complete Then

 pt = 0

 CR(EntityRecord(i - 1, EntName)) = 0

 End If

 'CR of the last ops of part set has been calculated, assign

 'same value to each ops of the part set

 For a = 1 To tempPartSize - 1

 CR(EntityRecord(i - 1, EntName) - tempPartSize + a) =

 CR(EntityRecord(i - 1, EntName))

 Next a

 tempPartSize = 1

 End If

 'if the current entity is the last entity of the last part

 'the CR must be computed

 If i = TotalEntCount - 1 Then

 If EntityRecord(i, EntProg) = Busy Then

 pt = pt + osiman.RunCurrentTime - EntityRecord(i, EntStart)

 If CInt(EntityRecord(i, EntDD) - osiman.RunCurrentTime) <=_

 0 Then

 CR(EntityRecord(i, EntName)) = pt / 1E-18

 Else

 CR(EntityRecord(i, EntName)) = pt / Cint_

 (EntityRecord(i, EntDD) - osiman.RunCurrentTime)

 End If

 pt = 0

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

212

 End If

 If EntityRecord(i, EntProg) <= Active Then

 pt = pt + EntityRecord(i, EntTotTime)

 If CInt(EntityRecord(i, EntDD) - osiman.RunCurrentTime) <=_

 0 Then

 CR(EntityRecord(i, EntName)) = pt / 1E-18

 Else

 CR(EntityRecord(i, EntName)) = pt / Cint_

 (EntityRecord(i, EntDD) - osiman.RunCurrentTime)

 End If

 pt = 0

 End If

 'if it is complete,the part is also complete then the CR = zero

 If EntityRecord(i, EntProg) = Complete Then

 pt = 0

 CR(EntityRecord(i, EntName)) = 0

 End If

 'CR of the last ops of part set has been calculated, assign

 'same value to each ops of the part set

 For a = 1 To tempPartSize - 1

 CR(EntityRecord(i, EntName) - tempPartSize + a) =_

 CR(EntityRecord(i, EntName))

 Next a

 End If

 i = i + 1

 Loop

 For i = 1 To TotalEntCount - 1

 EntityRecord(i, EntCR) = CR(EntityRecord(i, EntName))

 Next i

End Sub

Private Sub Reshuffle(qNum As Integer)

Dim qSize, qCount, qLoc, Loc As Integer

Dim qAttr(100, 5) As Integer

 'reset temp variables

 qSize = osiman.QueueNumberOfEntities(qNum)

 qCount = 1

 Loc = 1

 For i = 1 To 100

 For k = 1 To 5

 qAttr(i, k) = 0

 Next k

 Next i

 'find the locations of all the entities in the queue

 Do While qCount <= qSize

 qLoc = osiman.QueueEntityLocationAtRank(qCount, qNum)

 qAttr(qCount, Loc) = qLoc

 qCount = qCount + 1

 Loop

 'remove all entities from queue and reinsert them, FIFO and active

 'first will automaticaly apply

 qCount = 1

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

213

 Do While qCount <= qSize

 osiman.QueueRemoveEntity qAttr(qCount, Loc), qNum

 osiman.EntityInsertIntoQueueByRank qAttr(qCount, Loc), qNum

 blab = osiman.EntityAttribute(qAttr(qCount, Loc), attrDD)

 qCount = qCount + 1

 Loop

End Sub

Private Sub DetermineLateness()

 'Determine if part was late and record value to total lateness

 i = osiman.SymbolNumber("varTotLateness")

 lateness = osiman.EntityAttribute(osiman.ActiveEntity, attrDD) -_

 osiman.EntityAttribute(osiman.ActiveEntity, attrCompletionTime)

 If lateness < 0 Then

 osiman.VariableArrayValue(i) = osiman.VariableArrayValue(i) +_

 Abs(lateness)

 End If

End Sub

Private Sub DetermineEarliness()

 'Determine if part was early and record value to total earliness

 i = osiman.SymbolNumber("varTotEarliness")

 Earliness = osiman.EntityAttribute(osiman.ActiveEntity, attrDD) -_

 osiman.EntityAttribute(osiman.ActiveEntity, attrCompletionTime)

 If Earliness > 0 Then

 osiman.VariableArrayValue(i) = osiman.VariableArrayValue(i) +_

 Earliness

 End If

End Sub

Private Sub VBA_Block_19_Fire()

'lateness and earliness are calculated in VBA because the total of each

'must only be adjusted when it is actually a late entity or early entity,

'which ever applies a record module doesn't distinguise if it is late or

'not, it just adds the value

 DetermineLateness

 DetermineEarliness

 CellCount = CellCount + 1

 'write Part ID

 Excel.Application.Workbooks(1).Worksheets(Dispatch + 1).Range("T" &_

 CellCount).value = osiman.EntityAttribute(osiman.ActiveEntity,_

 attrPart_ID)

 'write Part DD

 Excel.Application.Workbooks(1).Worksheets(Dispatch + 1).Range("U" &_

 CellCount).value = osiman.EntityAttribute(osiman.ActiveEntity,_

 attrDD)

 'write completion time of part

 Excel.Application.Workbooks(1).Worksheets(Dispatch + 1).Range("V" &_

 CellCount).value = osiman.EntityAttribute(osiman.ActiveEntity,_

 attrCompletionTime)

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

214

 If osiman.EntityAttribute(osiman.ActiveEntity, attrDD) -_

 osiman.EntityAttribute(osiman.ActiveEntity, attrCompletionTime) < 0_

 Then

 Excel.Application.Workbooks(1).Worksheets(Dispatch + 1).Range("W"_

 & CellCount).value = Abs(osiman.EntityAttribute_

 (osiman.ActiveEntity, attrDD) - osiman.EntityAttribute_

 (osiman.ActiveEntity, attrCompletionTime))

 Else

 Excel.Application.Workbooks(1).Worksheets(Dispatch + 1).Range("X"_

 & CellCount).value = osiman.EntityAttribute(osiman.ActiveEntity,_

 attrDD) - osiman.EntityAttribute(osiman.ActiveEntity,_

 attrCompletionTime)

 End If

End Sub

Private Sub UpdateAttrTimesforBusyEnt()

 osiman.EntityAttribute(osiman.ActiveEntity, attrSetup) =_

 EntityRecord(osiman.EntityAttribute(osiman.ActiveEntity,_

 attrEnt_Name), EntSet)

 osiman.EntityAttribute(osiman.ActiveEntity, attrInspection) =_

 EntityRecord(osiman.EntityAttribute(osiman.ActiveEntity,_

 attrEnt_Name), EntInsp)

 osiman.EntityAttribute(osiman.ActiveEntity, attrTime) =_

 EntityRecord(osiman.EntityAttribute(osiman.ActiveEntity,_

 attrEnt_Name), EntTime)

End Sub

Private Sub VBA_Block_2_Fire()

 updateCompleteProgress

End Sub

Private Sub VBA_Block_20_Fire()

 updateCompleteProgress

End Sub

Private Sub VBA_Block_22_Fire()

 UpdateAttrTimesforBusyEnt

End Sub

Private Sub VBA_Block_23_Fire()

 UpdateAttrTimesforBusyEnt

End Sub

Private Sub VBA_Block_24_Fire()

 UpdateAttrTimesforBusyEnt

End Sub

Private Sub VBA_Block_25_Fire()

 UpdateAttrTimesforBusyEnt

End Sub

Private Sub VBA_Block_26_Fire()

 UpdateAttrTimesforBusyEnt

End Sub

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

215

Private Sub VBA_Block_27_Fire()

 UpdateAttrTimesforBusyEnt

End Sub

Private Sub VBA_Block_28_Fire()

 UpdateAttrTimesforBusyEnt

End Sub

Private Sub VBA_Block_29_Fire()

 UpdateAttrTimesforBusyEnt

End Sub

Private Sub VBA_Block_3_Fire()

 updateCompleteProgress

End Sub

Private Sub VBA_Block_4_Fire()

 updateCompleteProgress

End Sub

Private Sub VBA_Block_5_Fire()

 updateCompleteProgress

End Sub

Private Sub VBA_Block_6_Fire()

 updateCompleteProgress

End Sub

Private Sub VBA_Block_7_Fire()

 updateCompleteProgress

End Sub

Private Sub VBA_Block_8_Fire()

 updateCompleteProgress

End Sub

Private Sub VBA_Block_21_Fire()

 updateStartProgress

End Sub

Private Sub VBA_Block_9_Fire()

 updateStartProgress

End Sub

Private Sub VBA_Block_12_Fire()

 updateStartProgress

End Sub

Private Sub VBA_Block_13_Fire()

 updateStartProgress

End Sub

Private Sub VBA_Block_14_Fire()

 updateStartProgress

End Sub

Private Sub VBA_Block_15_Fire()

Appendix IV: Simulation Model Code IV

University of Stellenbosch | Department of Industrial Engineering

216

 updateStartProgress

End Sub

Private Sub VBA_Block_16_Fire()

 updateStartProgress

End Sub

Private Sub VBA_Block_17_Fire()

 updateStartProgress

End Sub

