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Abstract

The ever-increasing reliance of society on computer systems has led to a need for highly reliable

systems. There are a number of areas where computer systems perform critical functions and

the development of such systems requires a higher level of attention than any other type of

system. The appropriate approach in this situation is known as formal methods. Formal

methods refer to the use of mathematical techniques for the specification, development and

verification of software and hardware systems. The two main goals of this thesis are:

1. The design of mathematical models as a basis for the implementation of error-free soft-

ware for the safety interlock system at iThemba LABS (http://www.tlabs.ac.za/).

2. The comparison of formal method techniques that addresses the lack of much-needed

empirical studies in the field of formal methods.

Mathematical models are developed using model checkers: Spin, Uppaal, Smv and a theorem

prover Pvs. The criteria used for the selection of the tools was based on the popularity of

the tools, support of the tools, representation of properties, representativeness of verification

techniques, and ease of use.

The procedure for comparing these methods is divided into two phases. Phase one involves

the time logging of activities followed by a novice modeler to model check and theorem prove

software systems. The results show that it takes more time to learn and use a theorem prover

than a model checker. Phase two involves the performance of the tools in relation to the time

taken to verify a property, memory used, number of states and transitions generated. In spite

of the differences between models, the results are in favor of Smv and this maybe attributed

to the nature of the safety interlock system, as it involves a lot of hard-wired lines.
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Afrikaans abstract

Die hedendaagse samelewing se steeds-groeiende afhanklikheid op rekenaarstelsels lei tot die

behoefte aan hoogsbetroubare sagteware. In verskeie areas verrig rekenaarstelsels kritiese take

and die ontwikkeling van sulke stelsels verg ’n hoër vlak van aandag as enige andere. Die mees

gepaste benadering vir hierdie geval staan bekend as formele metodes, en behels die gebruik

van wiskundige tegnieke vir die spesifikasie, ontwerp, en verifikasie van beide sagteware en

hardeware. Die twee hoof doelstellings van hierdie tesis is:

1. Die ontwikkeling van wiskundige modelle as ’n basis vir die implementering van foutvrye

sagteware vir die safety interlock system by iThemba LABS (http://www.tlbs.ac.za/)

2. ’n Vergelyking van formele metodes om die ernstige gebrek aan empiriese studies in

heirdie veld aan te spreek.

Wiskundige modelle is ontwikkel vir die model toetsers Spin, Uppaal, and smv, en vir die

outomatiese stellingbewyser pvs. Die kriteria wat gebruik word vir die vergelyking in die

gewildheid van die stelsels, die ondersteuning wat hulle geniet, hul vermoëns om die probleem

aan te spreek, hoe verteenwoordigend hulle is, en hul bruikbaarheidgemak.
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Chapter 1

Introduction

The ever-increasing reliance of society on computer systems has led to a need for highly reliable

software and hardware systems. There are a number of areas where computers perform critical

functions ranging from on-line transaction processing systems, such as banking systems and

airline reservation systems, to embedded computer systems, such as manufacturing systems,

automobiles, air traffic and space vehicle control systems, nuclear power plant safety control

systems, medical and military applications. In these areas failure of a computer system may

result in just mere inconvenience, economic disruption, loss of time or may even worse cause

catastrophic loss of human life. It is clear that the development of such systems requires a

higher level of attention than any other type of system and it is also clear that the need for

these kind of systems will continue to grow. The appropriate approach in this situation is

known as formal methods.

Formal methods refer to the use of mathematical techniques for the specification, development

and verification of software and hardware systems. A number of success stories about the use

of formal methods has been reported in the literature, including [22, 24, 11], but many software

practitioners are still skeptical about the use of formal methods in industry [5]. To encourage

practitioners to use formal methods, Bowen and Hinchey [13, 14] have proposed ten guidelines

in using formal methods in the software development process, while Hall [36], Bowen and

Hinchey [12] clarify some myths that people have about formal methods. However, the main

problem — which is the focus of this thesis — is the lack of comparative studies undertaken to

1



CHAPTER 1. INTRODUCTION 2

compare different formal method techniques [5] such as model checking and theorem proving.

Model checking is an automatic verification technique for finite state concurrent systems,

while theorem proofing involves the use of deductive methods to develop computer programs

in which it can be shown that some statement is a logical consequence of a set of axioms

and hypotheses. The system of the case study in this thesis is a safety interlock system at

iThemba LABS.

1.1 The iThemba LABS

The iThemba LABS is a multidisciplinary research laboratory which is involved in a number

of activities such as basic and applied research using particle beams, particle radiotherapy

for the treatment of cancer, and the supply of accelerated-produced radioactive isotopes

for nuclear medicine and research. More information about the laboratory can be found

at http://www.tlabs.ac.za/. At the time of writing of this thesis, iThemba LABS was

engaged in a large project referred to as the “Second Beam Line Project” (2BL). This entailed

the development of an additional beam line for the treatment of cancer using protons, and

formed part of a large system known as the therapy control system (TCS). The components of

TCS include a patient positioning system, a supervisory system, a high voltage power supply

unit, a dose monitoring system, beam line components, primary and secondary treatment

nozzles, a beam analysis and control system, and the therapy safety control system. The full

specification can be found in [59].

1.2 Motivation of the research

The two main contributions of this thesis are (1) the design of mathematical models as a basis

for the implementation of error-free software for the safety interlock system at iThemba LABS,

and (2) a comparison of formal method techniques that addresses the lack of much-needed

empirical studies in this field.

The primary purpose of the safety interlock system (SIS) is to enforce safety requirements

for the whole TCS. To demonstrate safety, it must be shown that every reachable state of
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the system is safe, and ensuring the correctness of the system at the early stages of design

is important. Designing an embedded system can be a complex endeavor since it normally

consists of a combination of software and (often new) hardware that interact closely. It

is useful to take a holistic approach in designing this kind of system and formal methods

like model checking and theorem proving can help in both verifying the correctness of and

understanding the overall system design, thus improving its reliability. This thesis contains

four models of the SIS: three for the model checking tools Spin, Uppaal and Smv, and

another for the theorem prover Pvs. The models differ significantly from each other because

the tools differ significantly. They capture different properties of the system or the same

property in different ways, they have different levels of ease-of-use, have different interfaces,

are based on different logics, etc.

The thesis surveys and compares the above mentioned verification tools. Since the correct-

ness of the SIS is considered important, the comparative analysis is directed towards formal

methods that can express both untimed and timed safety properties. The procedure for com-

paring these methods is divided into two phases. The first phase involves the time logging of

activities followed by a novice modeler to model check and theorem prove the models and the

second phase involves performance evaluation of the tools with regard to time taken to verify

a property, memory usage, number of states and transitions generated during verification of

a property.

1.3 Organization of the thesis

Chapter 2: Background and related work presents the theoretical background needed to

understand the material in the later chapters. The formal methods covered in this thesis are

model checking and theorem proving; others, for example, formal description techniques and

program refinement, are not addressed. Three types of model checking are used, namely, linear

temporal logic (LTL) model checking, computational tree logic (CTL) model checking, and

timed computational tree logic (TCTL) model checking. In the theorem proving category, the

thesis considers one higher-order theorem prover called Prototype Verification System (Pvs).

The chapter ends with a discussion of related work, namely, empirical case studies already
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undertaken in formal specification and verification of concurrent reactive systems. Since the

main focus of the research is model checking and theorem proving, only those case studies

that cover similar ground are considered.

Chapter 3: Safety Interlock System (SIS) presents specification of the system used in

the study. This study is a comparative case study and the system that is used to achieve the

aim of the research is the safety interlock system at iThemba LABS. Safety interlock system

is a real time reactive system which forms part of the whole proton therapy control system

(TCS) at iThemba LABS. The detailed description of how the system interacts with other

systems is discussed.

Chapter 4: Methodology outlines the approach that is followed to achieve the goals of the

study. The justification of the criteria that is followed for the selection of the model checkers

and the theorem prover is presented. The graphical representation of a general model the SIS

is described, free from influences from any of the tools used in later chapters. This forms the

basis for system models that are developed in Chapters 5, 6, 7 and 8.

Chapter 5: The SPIN model checker deals with the design and specification of the SIS in

Spin. Spin is a model checking tool for verifying the correctness of distributed software such

as operating systems, data communication protocols, etc. To make the chapter self-contained,

an overview of the Promela constructs that are used in the design of the system is given.

Promela is a specification language for Spin which is a C-like programming language and

is mostly based on Dijkstra’s guarded command language.

Chapter 6: The UPPAAL model checker presents the design and specification of the

SIS in Uppaal. Uppaal is an integrated tool environment for modeling, validation and

verification of real-time systems modeled as networks of timed automata. A timed automaton

is a standard finite-state automaton extended with set of real-valued clock variables (or just

clocks in short). The chapter also contains the description of the tool’s constructs that are

used to design the system.

Chapter 7: The SMV model checker deals with the specification and verification of

the SIS in Cadence Smv, just as in Chapter 5 and Chapter 6. Cadence Smv is a verifi-

cation tool meant for hardware designs, but it is also used in some software systems. The
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tool uses Ordered Binary Decision Diagrams (OBDDs) based on a symbolic model checking

algorithm [16].

Chapter 8: The PVS theorem prover presents a high-order logic theorem prover called

Prototype Verification System (Pvs). Pvs consists of a specification language, a number of

predefined theories, a theorem prover, various utilities, and documentation. In this chapter,

it is used to write specifications and constructs proofs about the SIS.

Chapter 9: Discussion of the results compares the tools applied to the design and

verification of the SIS. The results are divided into two phases. The first phase outlines the

experiences of the modeler, while the second phase discusses the verification results of the

tools described in Chapters 5–8.

Chapter 10: Conclusion concludes the thesis by briefly reviewing the main issues ad-

dressed in the study, outlining its contribution, and presenting ideas for future work.



Chapter 2

Background

The intention of this chapter is to give a basic overview of the theoretical background and

related work as well as harmonising the terminology in formal methods. Further references to

more comprehensive studies of the subject are also mentioned. Safety-critical software systems

are already an integral part of our everyday lives and their importance is growing rapidly.

These systems are inherently large and complex. Avionics, medical systems, automotive

systems and railway signalling systems are some examples of such systems whose failure

cannot be tolerated. This explains why system validation — that is, the correct design and

implementation of such systems — is extremely important. The current practice is that the

correctness of such systems is achieved by human inspection: peer reviews and testing with

little or no automation. Peer reviews refer to the inspection of software by a team of engineers

that were preferably not involved in the design of the system, while testing refers a process

whereby software is executed with some inputs, called test cases, along different execution

paths known as runs.

However, both practices have serious deficiencies when applied to safety-critical systems. In

peer review process, it has been shown that it is difficult to catch subtle errors involving

concurrency and algorithms [43]. Testing on the other hand is never complete: it is difficult

to say when to stop as it is infeasible to check all the runs of a complex system like safety

interlock system, and it is easy to omit those runs which may reveal subtle errors. It also has

the drawback of only showing the presence of errors, not their absence. The application of

6
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these techniques can be complemented by the use of formal methods.

Formal methods refer to the use of mathematical techniques for the specification, development

and verification of software and hardware systems. In spite of success stories about the use of

formal methods [22, 24, 11], George et al. [5] have shown that some software practitioners are

still skeptical about the use of formal methods in industry. Many researchers in the formal

methods community have tried very hard to eradicate the perceptions that people have about

formal methods. Bowen and Hinchey [13, 14] have come up with ten guidelines in using

formal methods in the software development process, while Hall [36], Bowen and Hinchey [12]

are encouraging software developers to use formal methods by clarifying myths people have

about this approach.

The formal methods discussed in this thesis are model checking and theorem proving. Section

2.1 presents three basic model checking algorithms, that is, Linear Time Logic (LTL), Com-

putational Tree Logic (CTL) and Timed Computational Tree Logic (TCTL) model checking

algorithms. Section 2.2 presents the Prototype Verification System (PVS) and Section 2.3

presents related work.

2.1 Model Checking

Model checking is an automatic verification technique for finite state concurrent systems [53]

such as safety critical systems, communication protocols, and sequential circuit design. The

technique was first introduced around 1980s by two independent groups of researchers, Clarke

and Emerson [23], and Queille and Sifakis [52]. Clarke and Emerson [23] are responsible for

coining the phrase. Model checking is an attractive alternative to simulation and testing to

validate and verify systems. Figure 2.1 depicts the process of model checking. Given a real

system (Example 2.1 ) and system specification (Example 2.2 ), a model checker explores the

full state-space of an abstract model derived from the real system to check whether or not a

given system property is satisfied by the model. The model checker either verifies the given

property successfully or generates a counterexample.

Example 2.1: The treatment room at iThemba LABS has two side doors (also called “access
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Real system System Specification

Abstract Model Formal Specification

Model Checker

NO

YES

Figure 2.1: Model checking process

doors”), that must be primed and closed within two seconds before the room is evacuated for

treatment. This is a function of the room clearance system, which sets a flag to either “true”

if the doors are successfully primed and closed or “false” to indicate a failure. One of the

properties that can be verified is given in Example 2.2 below.

Example 2.2: It is always the case that if an access door is open, it will eventually be primed.

There are two main advantages of using model checking compared to other formal verification

methods. Firstly, it is fully automatic, and secondly, it provides a counterexample whenever

the system fails to satisfy a given property. In the process, proper use of abstraction techniques

plays an important role as model checking techniques are hindered by the state-space explosion

problem, where the size of the representation of the behavior of a system grows exponentially

with the size of the systems. Often, software systems have infinite state spaces, due to

unbounded real and integer input variables and timing constraints, and thus model checking

software systems without any abstractions is almost always impossible. In this study only

three types of model checking algorithms are considered in Sections 2.1.1, 2.1.2 and 2.1.3.

2.1.1 LTL Model Checking

Logics have been used to precisely describe the properties of concurrent systems. The most

widely-used types of logics are temporal logics, which were first introduced by Pnueli around

1977 for the specification and verification of computer systems. There are two types of
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temporal logics, linear temporal logic (LTL) and computational tree temporal logic (CTL).

In this section, the LTL syntax, semantics and basic model checking algorithm are presented

and CTL is discussed in section 2.1.2.

LTL Syntax: The syntax of linear temporal logic is defined in terms of atomic proposi-

tions, logical connectives and temporal operators. Atomic propositions are the most simple

statements that can be made about the system in question and thus take the value true or

false. Examples of atomic propositions are the door is closed, x is less than 2, etc. Atomic

propositions can be represented by alphabetic symbols such as p and q. The set of atomic

propositions is referred to as AP . The boolean operators that are used in the syntax of LTL

are ∨, ∧, ¬, ⇒, and ⇔; in addition, there are several temporal operators, with the following

meanings:

• � denotes “always”,

• � denotes “eventually”,

• U denotes “strong until”, and

• X denotes “next”.

The structure of a formula of propositional linear temporal logic is given by the following

grammar expressed in Backus-Naur Form (BNF) notation:

α ::= p | ¬α | α ∨ β | Xα | αUβ

The operators ∧,⇒,⇔, true, false,� and �, which are not mentioned in this syntax, can be

thought of merely as abbreviations by using the following rules:

α ∧ β ≡ ¬(¬α ∨ ¬β) α⇒ β ≡ (¬α ∨ β)

α⇔ β ≡ (α⇒ β) ∧ (β ⇒ α) true ≡ (¬α ∨ α)

false ≡ ¬true �α ≡ true U α

�α ≡ ¬�¬α
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LTL Semantics: The syntax defines how LTL formulas are constructed, but does not provide

an interpretation of the formulas or operators. Formally, LTL formulas are interpreted in

terms of a model defined as a triple M = (S,R,Label), where

• S is a non-empty countable set of states,

• R : S −→ S, is a function which assigns to each s ∈ S a unique successor R(s), and

• Label : S −→ 2AP , is a function which assigns to each state s ∈ S the atomic proposi-

tions Label(s) that are valid in s.

The meaning of LTL-formulas are defined in terms of a satisfaction relation, denoted by |=,

between a model M , a state s ∈ S and the formulas α and β. Therefore M,s |= α if only if

α is valid in the state s of the model M . If it is understood from the context, M is dropped

and the satisfaction relation is mathematically defined as follows:

s |= p iff p ∈ Label(s)

s |= ¬α iff ¬(s |= α)

s |= α ∨ β iff (s |= α) ∨ (s |= β)

s |= Xα iff R(s) |= α

s |= αUβ iff (∃j ≥ 0 : Rj(s) |= β) ∧ (∀0 ≤ k < j : Rk(s) |= α)

Here we have used Ri to denote i applications of the function R. For example, R3(s) is the

same as R(R(R(s))). The formal interpretation of the other connectives, true, false,∧,⇒,�,

and � can be derived in a similar way from the definitions above.

Finite state automaton

A central component in the model checking of temporal properties is the finite-state automa-

ton. A finite state automaton is a model of behaviour composed of states, transitions and

actions. Formally, a finite-state automaton M is a tuple (Σ, S, S0, ρ, F, l) where

• Σ is a non-empty set of symbols, that represent atomic propositions,
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• S is a finite, non-empty set of states,

• S0 ⊆ S is a non-empty set of initial states,

• ρ : S −→ 2S , is a transition relation,

• F ⊆ S is a set of accepting states, and

• l : S −→ 2Σ, the labelling function of states.

A state s ∈ S stores information (such as the truth values of the atomic propositions) about

the system at a specific moment in time. A transition ρ denotes a state change and is an atomic

step that makes a system to change a state from one to another. Such transitions sometimes

have an enabling condition that needs to be satisfied for the transition to be executable. The

ρ(s) is the set of states that the automaton can make a transition into when it is at state s,

and we write s −→ s′ if and only if s′ ∈ ρ(s). An action is a description of an activity that is

performed when a transition executes. A finite-state automaton may either be deterministic

or non-deterministic, and it is deterministic if and only if ‖{s ∈ S0 | l(s) = a}‖ ≤ 1 for all

a ∈ Σ, and ‖{s′ ∈ ρ(s) | l(s′) = a}‖ ≤ 1 for all a ∈ Σ and all s ∈ S. Figure 2.2(a) depicts an

example of deterministic finite-state automaton, whereas Figure 2.2(b) depicts an example of

a non-deterministic finite-state automaton.

s0 s1 s2

(a)

s0 s2

s1

s3

(b)

{o} {o,p} {{c,f} ∪ {c,p}} {o} {p}

{o}

{c}

Figure 2.2: Examples of (a) deterministic and (b) non-deterministic finite automata

Example 2.3: The finite-state automaton in Figure 2.2(a) has Σ = {access door is open (o),

access door is primed (p), access door is closed (c), flag is true (f)}, S = {s0,s1,s2}, S0 =

{s0}, ρ(s0) = {s1}, ρ(s1) = {s0, s2}, ρ(s2) = {s0, s2}, F = {s2}, l(s0) = {o}, l(s1) = {o, p},
l(s2) = {{c, f} ∪ {c, p}}
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A run of the finite state automaton M is a sequence σ = s0, s1, ..., sn such that s0 ∈ S0 and

si −→ si+1 for all 0 ≤ i < n. A run σ is accepting if and only if sn ∈ F . The language (L) of

the finite state automaton is the (possibly infinite) set of finite words accepted by M , i.e.,

L(M) = {w ∈ Σ∗ | w is accepted by M},

where Σ∗ denotes the set of all finite words over Σ.

Example runs of the finite state automaton depicted in Figure 2.2(b) are s0, s2, s3 and

s0, s2, s2, s3. The accepted words that correspond to these accepting runs are respectively

opc and oppc. The language accepted by this automaton is described by the regular expres-

sion op+c, where p+ means one or more p’s.

Büchi automaton

Model checking of concurrent systems is based on infinite accepting runs of a finite state au-

tomaton. However, standard finite state automata cannot describe the continuous behaviour

of concurrent systems. Around 1960 Büchi J.R. came up with a special type of finite state

automaton called a Büchi automaton. Büchi automata have exactly the same components

as finite state automata. However, they differ in how and when runs are accepted. The

Büchi-acceptance condition states that if σω is an infinite run of the automaton and inf (σω)

is the set of states that occur infinitely often in σω, then σω is Büchi-accepting if and only if

inf (σω) ∩ F �= ∅. The set of infinite words accepted by a finite Büchi automaton A is denoted

by Lω(A), i.e.,

Lω(A) = {w ∈ Σω | ω is accepted by A},

where Σω denotes the set of infinite words over Σ.

Figure 2.3 depicts examples of Büchi automata. The one Büchi-accepting run of the automa-

ton in Figure 2.3(b) is s0, s1, s1, s1, . . . and the corresponding run is occc . . .. This run can be

represented by the regular expression ocω. Two Büchi automata A1 and A2 are equivalent if
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and only if Lω(A1) = Lω(A2). Just as before, a Büchi automaton can also either be deter-

ministic or non-deterministic. Unlike standard finite automata, however, non-deterministic

Büchi automata are more expressive than deterministic Büchi automata.

s0 s1
{o,¬p}

{true} {¬p}
(a)

s0 s1
{o}

{c}
(b)

Figure 2.3: Büchi automata

Basic model checking algorithm for LTL

We have now seen all the necessary “mechanics” needed to describe an algorithm for LTL

model checking. Around 1983 Wolper, Vardi, and Sistla have shown that for every LTL

formula β, there is a corresponding Büchi automaton, denoted by Aβ. In order to verify

whether a system modelM satisfies a given property β, a Büchi automatonMsys is constructed

for the model M . The construction of Msys involves adding one initial state which initializes

all the atomic propositions and then converting all states to accepting states. Figure 2.4 is a

Büchi automaton for the finite-state automaton depicted in Figure 2.2(a).

i s0 s1 s2
{o} {o,p} {c,f}

{o}

{o} {c,p}

Figure 2.4: Büchi automaton for system model M

The three steps below provide a basic algorithm for verifying that M |= β:

1. Construct the Büchi automaton for the LTL-formula β, denoted by Aβ.
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2. Construct the Büch automaton for the model of the system, denoted by Msys .

3. Check whether Lω(Msys) ⊆ Lω(Aβ).

The accepting runs of Msys correspond to the system model behaviour, while the accepting

runs for Aβ correspond to the desired behavior of the system model. The third step involves

checking the inclusion of the language of Lω(Msys) in Lω(Aβ). We implicitly restrict the

alphabet of Msys to be the same as the alphabet of Aβ. However, the problem of deciding this

inclusion is PSPACE-complete. To overcome this problem we can check whether Lω(Msys)∩
Lω(¬Aβ) = ∅, since

Lω(Msys) ⊆ Lω(Aβ) ⇐⇒ Lω(Msys) ∩ Lω(¬Aβ) = ∅.

Note that ¬Aβ simulates undesired behavior of the system model and if Msys has an accepting

run that is also an accepting run of ¬Aβ, then this means that the system model M does

not satisfy the property β. Emerson and Lei [31] have proved that Lω(Msys) ∩ Lω(¬Aβ) = ∅
is decidable in linear time. To check whether the intersection is empty, a new automaton,

called the synchronous product, is constructed. It is closed under the product operation

and it is easy to check that it is empty. However the construction of ¬Aβ is quadratically

exponential, therefore the observation that ¬Aβ = A¬β is used. In other words, checking

whether Lω(Msys) ∩ Lω(A¬β) = ∅ has been reduced to the following two steps:

1. Construct the product automaton Msys ⊗A¬β such that Lω(Msys ⊗A¬β) = Lω(Msys) ∩
Lω(A¬β).

2. Check whether Lω(Msys ⊗A¬β) = ∅.

To check the emptiness of the product automaton, it suffices to check whether there is an

accepting state reachable from some initial state and also from itself in one or more steps.

Put in graph-theoretic terms, Lω(Msys ⊗A¬β) is non-empty if and only if there is a cycle that

is reachable from an initial state and that contains at least one accepting state. This can be

implemented using nested depth-first search as explained in [39].
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i, s0 s0, s0 s1, s0 s2, s0

s0, s1

{o,true} {o,p,true} {c,f,true}

{o,true}

{o,true}

{o,¬p}

{o,¬p}

{o,¬p}

{c,p,true}

Figure 2.5: Synchronous product finite state automaton

Example 2.4: In Example 2.1 the description of an access-door control system is given and its

labelled finite-state automaton, denoted by M , is depicted in Figure 2.2(a). Figure 2.4 depicts

a corresponding Büchi automaton, denoted by Msys . Example 2.2 gives a system property,

denoted by β. Formally, β = (�(o ⇒ � p)) and the corresponding negated Büchi automaton,

denoted by ¬Aβ, is depicted in Figure 2.3(a). Figure 2.5 is a synchronous product automaton

of the Büchi automata in Figures 2.3(a) and 2.4. Since there is no cycle passing through an

accepting state (s0, s1), the property that if the door is open, it will eventually be primed is

satisfied by the model M — depicted in Figure 2.2(a).

2.1.2 CTL Model Checking

Computational tree logic (CTL) is based on the concept that for each state there are many

possible successors, unlike in LTL which is based on a model where each state s has only

one successor s′. Because of this branching notion of time, CTL is classified as a branching

temporal logic. The interpretation of CTL is therefore based on a tree rather than a sequence

as in LTL. In this section, the syntax and semantics of CTL as well as a basic CTL model

checking algorithm are discussed.

CTL Syntax: The formulas of CTL consist of atomic propositions, standard boolean con-

nectives of propositional logic, and temporal operators. Each temporal operator is composed



CHAPTER 2. BACKGROUND 16

of two parts, a path quantifier (universal ∀ or existential ∃) followed by a temporal modality

(�,�,X,U). The temporal modalities have the same meanings as in Section 2.1.1. The

syntax is given by the BNF:

α ::= p | ¬α | α ∨ β | α ∧ β | ∃Xα | ∃[αUβ] | ∀[αUβ]

CTL Semantics: CTL semantics slightly differs from that one of LTL defined in Section

2.1.1, that is, the notion of a sequence is replaced by a notion of a tree. The interpretation

of CTL is defined by a satisfaction relation |= between a model M , one of its states s and

some formula. Let AP = {p, q, r} be a set of atomic propositions, M = (S,R,Label) be a

CTL-Model, s ∈ S, α and β be CTL-formulas. In order to define the satisfaction relation

(|=), the following definitions are first given:

• A path is an infinite sequence of states s0, s1, s2... such that (si, si+1) ∈ R

• Let ρ ∈ Sw denotes a path. For i ≥ 0, ρ[i] denotes the (i + 1)th element of ρ, i.e., if

ρ = s0, s1, ... then ρ[i] = si

• PM (s) = {ρ ∈ Sω | ρ[0] = s} is a set of paths starting at s

Just like in LTL if it is understood from the context, M can be dropped in the satisfaction

relation |= defined as follows:

s |= p iff p ∈ Label(s)

s |= ¬α iff ¬(s |= α)

s |= α ∨ β iff (s |= α) ∨ (s |= β)

s |= ∃Xα iff ∃ρ ∈ P (s) : ρ[1] |= α

s |= ∃[αUβ] iff ∃ρ ∈ P (s) : ∃j ≥ 0 : (ρ[j] |= β ∧ ∀0 ≤ k < j : ρ[k] |= α)

s |= ∀[αUβ] iff ∀ρ ∈ P (s) : ∃j ≥ 0 : (ρ[j] |= β ∧ ∀0 ≤ k < j : ρ[k] |= α)
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Basic model checking algorithm for CTL

The idea behind the original model checking algorithm for CTL [21, 23] is to label each state

with all the subformulas of the correctness property that holds in the particular state. If a

particular state s is labeled with the entire formula that represents the correctness property,

then the property is satisfied at that state of the model. Mathematically, subformulas are

computed as follows:

Sub(p) = {p}
Sub(¬α) = Sub(α) ∪ {¬α}
Sub(α ∨ β) = Sub(α) ∪ Sub(β) ∪ {α, β}
Sub(∃Xα) = Sub(α) ∪ {∃Xα}
Sub(∃[αUβ]) = Sub(α) ∪ Sub(β) ∪ {∃[αUβ]}
Sub(∀[αUβ]) = Sub(α) ∪ Sub(β) ∪ {∀[αUβ]}

The labelling algorithm is inductive, that is, it starts by labelling states with subformulas of

length 1 (i.e., atomic propositions) and proceeds to formulas of length i+ 1 for 1 ≤ i <| α |.

There are more sophisticated algorithms for verifying CTL properties of models. Two of

the most successful approaches is symbolic model checking [17, 47] and bounded model check-

ing [10]. In very general terms, symbolic model checking computes the set of states that

satisfy a given CTL subformula α. It does this by calculating fixpoint expressions that are

derived from both the transition relation of the model and the structure of α. Interested

readers are referred to the afore-mentioned sources for more information on these interesting

techniques. The SMV system, discussed in Chapter 7, makes use of symbolic model checking.

Example 2.5: Using the same example used in Section 2.1.1, the same property is verified,

that is, the property that it is always the case that if the door is open, it will eventually be

primed. For the model M depicted in 2.2(a) the CTL-formula α = ∀�(o → ∃�p) which is

equivalent to ¬∃�(o ∧ ∃�¬p) is checked. Sat(o) = {s0, s1}, Sat(¬p) = {s0}. In order to

compute Sat(∃�¬p) the set of nontrivial strongly connected components(SCC) are identified,

i.e., SCC = {∅}. The union of the sets in SCC is T = ∅ are then labelled with ∃�¬p, i.e.,

Sat(∃�¬p) = ∅. Then, Sat(o∧∃�¬p) = Sat(o)∩Sat(∃�¬p) = ∅. The set Sat(∃�(o∧∃�¬p))
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is computed by using the converse transition relation, since Sat(o∧∃�¬p) = ∅, the set is also

empty. Finally, Sat(¬∃�(o ∧ ∃�¬p)) = S − Sat(∃�(o ∧ ∃�¬p)) = {s0, s1, s2}. Since the

initial state s0 is the element of this set, the property is satisfied by the model.

2.1.3 TCTL Model Checking

The temporal logics presented in Sections 2.1.1 and 2.1.2 focus on the temporal order of

events and do not explicitly state the actual time taken by these events. Time-critical systems

necessitate the consideration of quantitative time between the occurrence of events, that is,

the correctness of time-critical systems do not only depend on the functional requirements,

but also on the time requirements. Typical examples of these systems include communication

protocols, radiation control systems, and avionics. In this section, the syntax and semantics of

timed computational tree logic (TCTL) are discussed and the basic model checking algorithms

for TCTL are also presented.

Timed automata syntax

Finite-state real-time systems are modelled with timed automata. A timed automaton is a

standard finite-state automaton extended with set of non-negative real-valued clock variables

(or just clocks in short). Clocks are assumed to proceed at the same rate to measure the time

elapsed since they were last reset. In order to formally define a timed automaton, clocks and

clock constraints are first defined as follows:

• A clock is variable ranging over R
+ (where R

+ represents non-negative real numbers)

• For set C of clocks with x, y, z ∈ C, a clock constraint α over C is defined by

α ::= x ≺ c | x− y ≺ c | ¬α | (α ∧ α), where c ∈ N and ≺ ∈ {<,≤}

• Ψ(C) is the set of all possible clock constraints.

Clocks are defined to range over the non-negative real numbers, i.e., x, y, z ∈ R
+. A state of

a timed automaton consists of a location and values of clocks. When the system starts, all
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variables are initialized to zero and then incremented implicitly at the same rate. The values

of the clocks indicate the time elapsed since they have been initialized. Clock constraints

are used to label the edges of a timed automaton and represent guards that are used to

either enable or block transitions between locations. Clock constraints are also used to label

locations and such constraints are then invariants that limit the amount of time to be spent

in a location. Formally, a timed automaton A over set of actions Σ, set of atomic propositions

AP and set of clocks C is defined as a tuple (L, l0, E, I, Label), where:

• L is a non-empty set of locations with the initial location l0 ∈ L.

• E ⊆ L x Ψ(C) x Σ x 2C x L corresponds to a set of edges. (l, g, a, r, l′) ∈ E represents

an edge from location l to location l′ with clock constraint g (also known as enabling

condition of the edge or guard) action a to be performed and the set of clocks r to be

reset.

• I : L→ Ψ(C) is a function which assigns a clock constraint (i.e., an invariant) for each

location.

• Label : L → 2AP is a function which assigns to each locations l ∈ L set of atomic

propositions that hold in the location.

O W C
{prime?;
x := 0}

{close?;
x < 2; flag := 1}

{open?; flag := 0}

{time elapsed?;x == 2} {prime?; flag := 0}

x ≤ 2

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

time →

cl
oc

k
→

(a) (b)

Figure 2.6: Access door control system

Example 2.6: In Figure 2.6(a), the sets are defined as follows:
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• Σ = {prime?, close?, open?},

• AP = {acess door is open (p), access door is primed (q), access door is closed(r),

f lag is true (f)},

• C = {x},

• L = {O,W,C},

•

E = { (O,−−−−−−−−−−→true,prime?,x:=0 ,W ),

(W,−−−−−−−−−−−−→x==2,time elapsed? , O),

(W,−−−−−−−−−−−→x<2,close?,flag:=1 , C),

(C,−−−−−−−−−−−−→true,prime?,flag:=0 , C),

(C,−−−−−−−−−−−→true,open?,flag:=0 , O)},

• I(W ) = {x ≤ 2}, and

• Label (O) = {p}, Label (W ) = {p, q}, Label(C) = {{r, f} ∪ {r, q}}.

Here x == 2 is an example of a “guard” and x ≤ 2 is an example of an “invariant”. A

depiction of the automaton’s execution is shown in Figure 2.6(b).

Timed automaton semantics

The interpretation of a timed automaton is defined in terms of an infinite transition system

and in order to formally define the semantics of the timed automaton, the clock assignment

function and state of a timed automaton are defined as follows:

• A clock valuation (clock assignment) u for the set of clocks C is a function u : C → R
+,

assigning each clock x ∈ C its value u(x). Let the set of all clock valuations over C be

denoted by V (C). The clock evaluation has the following characteristics:

– For u ∈ V (C) and d ∈ R
+, clock valuation u+ d over C means that all clocks are

increased by d, that is (u+ d)(x) = u(x) + d for all x ∈ C.



CHAPTER 2. BACKGROUND 21

– For C ′ ⊆ C, u[C ′ → 0] means that all the clocks in C ′ are assigned to zero, that is,

all assigned and zero clocks in C ′ are reset, so that u[C ′ → 0](x) = 0 for all x ∈ C ′

and u[C ′ → 0](x) = u(x) for all x �∈ C ′. If C ′ is the singleton set {z}, we shall just

write u[z → 0].

– For a given clock valuation u ∈ V (C) and a clock constraint α ∈ Ψ(C), α(u) is a

boolean value stating whether or not α is satisfied or not.

• A state is a pair (l, u) where l is a location of an automaton A and u is a clock valuation

over C.

The operational semantics of a timed automaton A = (L,E, I,Label ) over the clock set C is

therefore defined by an infinite state transition system MA = (S, s0,→,Label ) where:

• S = L× V (C) is the set of states,

• s0 is the initial state of A (l0, u0),

• → is the transition relation with its members defined by the following two rules:

– action transition: (l, u)−→a (l′, u′) if there is an edge (l−−→g,a,r l′) such that g(u) holds

and u′ = u[r → 0], and inv(u′) holds for each inv ∈ I(l′);

– delay transition: (l, u)−→d (l, u′) if, for d ∈ R
+, u′ = u+ d and inv(u+ d′) holds for

all d′ ≤ d and all inv ∈ I(l).

• Label : S → 2AP is atomic proposition function extended from Label : L→ 2AP simply

by Label(l, u) = Label (l).

Example 2.7: Consider Figure 2.6(a). One possible transition sequence or run of the au-

tomaton is (O, 0)−−−−→prime? (W, 0)−→2 (W, 2), ...,−−−−−−−−→time elapsed? (O, 2.1)−−−−→prime? (W, 0)−→1.2 (W, 1.2)−−−→close?

(C, 1.2)−−−→open? (O, 1.2) . . .

There are two important observations to draw from Example 2.7: (1) the set of states of the

transition system MA is infinite and this is due to the real valued clocks, and (2) the successor

behaviour of the states forms groups, that is, some sets of states such as (O, 0), (O, 2), and

(O, 1.2) do not depend on the clock valuation. However the group of states (W,u(x)) has
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one possible successor behaviour for u(x) < 2 and the other for u(x) == 2. The existence of

groups of states leads to the introduction of clock regions, which are the key to model checking

real-time systems. Before we look at this in more detail, the syntax and semantics of timed

computational tree logic (TCTL) are given.

TCTL Syntax: The syntax of TCTL is based on the syntax of CTL, extended with clock

constraints. In order to clearly define the syntax, the following definitions are given:

• A path is an infinite sequence s0a0s1a1... states alternated by transition labels such that

si−→ai si+1 for all i ≥ 0, where ai is either (g, a, r) or d.

• Let ρ ∈ Sw denotes a path. For i ≥ 0, ρ[i] denotes the (i+1)th element of ρ (see Section

2.1.2).

• PM (s) = {ρ ∈ Sω | ρ[0] = s} is a set of paths starting at s (see Section 2.1.2).

• A position of a path is a pair (i, d) such that d equals 0 if ai = (g, a, r), and equal ai

otherwise.

• Let Pos(ρ) be the set of positions in ρ. For convenience the state (li, vi + d) can also

be written as ρ(i, d).

• A total order of positions is defined by:

– (i, d) � (j, d′) if and only if (i < j) ∨ (i = j ∧ d ≤ d′).

• Path ρ is called time-divergent if limi→∞Δ(ρ, i) = ∞, where Δ(ρ, i) denote the time

elapsed from s0 to si, i.e.,

Δ(ρ, 0) = 0

Δ(ρ, i) = Δ(ρ, i) +

⎧⎪⎨
⎪⎩

0 if ai = (g, a, r)

ai if ai ∈ R
+

• Let P∞
M (s) = {ρ ∈ Sω | ρ[0] = s} denote the set of time-divergent paths starting at s.

Let p ∈ AP and D be a non-empty set of clocks that is disjoint from the clocks of A (i.e., D

is the set of clocks of the TCTL-formulas and (C ∩D) = {}), z ∈ D and α ∈ Ψ(C ∩D). The

TCTL-formulas are then defined by the following BNF:
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β ::= p | α | ¬β | β ∨ β | z in β | ∃[βUβ] | ∀[βUβ]

A clock constraint α is defined over formula clocks and timed automaton clocks and thus

allows comparison of both formula and timed automaton clocks. Clock z is known as a freeze

identifier and bounds formula clocks in β. For instance, ∀[β U≤4 φ] can be defined as z in

∀[(β ∧ z ≤ 4) U φ].

TCTL Semantics: For p ∈ AP,α ∈ Ψ(C ∪ D) is a clock constraint over C ∪ D, model

M = (S,→, L) is an infinite transition system, s ∈ S, w ∈ V (D), and ψ, φ TCTL-formulas.

The satisfaction relation |=, is defined as in [42].

s,w |= p iff p ∈ L(s)

s,w |= α iff v ∪w |= α

s,w |= ¬φ iff ¬(s,w |= φ)

s,w |= φ ∨ ψ iff (s,w |= φ) ∨ (s,w |= ψ)

s,w |= z in φ iff s,w[z → 0] |= φ

s,w |= ∃[φUψ] iff ∃ρ ∈ P∞
M (s) : ∃(i, d) ∈ Pos(ρ) : (ρ(i, d), w + Δ(ρ, i) |= ψ∧

(∀(j, d′) � (i, d) : ρ(j, d′), w + Δ(ρ, j) |= φ ∨ ψ))

s,w |= ∀[φUψ] iff ∀ρ ∈ P∞
M (s) : ∃(i, d) ∈ Pos(ρ) : (ρ(i, d), w + Δ(ρ, i) |= ψ∧

(∀(j, d′) � (i, d) : ρ(j, d′), w + Δ(ρ, j) |= φ ∨ ψ))

Clock equivalence

The satisfaction relation of TCTL formulas is defined in terms of an infinite transition system

and not in terms of a finite state automaton as before. In other words, given a TCTL formula

α and a timed automaton A, the satisfiability of α over A is defined as:

A |= α ⇐⇒ M(A), (s0, w0) |= α

The main obstacle to checking whether A |= α is the potentially infinite state space of M(A)

(that is, the fact that L × V (C) may be infinite). We have already seen an instance of
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this problem in Example 2.7. To make model checking of timed automaton possible, Alur

and Dill [1] have proposed the idea of an equivalence relation, ≈, which has two important

properties. The first property involves correctness, that is, it ensures that for the model

M equivalent clock valuations satisfy the same TCTL-formula, whereas the second property

involves finiteness, that is, replacing clock valuations with finite set equivalent classes. Let �d�
be the integral part and frac(d) be the fractional part of a real number d ∈ R

+ and let ci be

largest number (a ceiling) which is compared to a clock variable i ∈ C of a timed automaton.

Then the clock equivalence is defined as follows: v ≈ v′ if and only if

1. �v(x)� = �v′(x)� or, for all x ∈ C, v(x) > cx and v′(x) > cx,

2. frac(v(x)) ≤ frac(v(y)) iff frac(v′(x)) ≤ frac(v′(y)) for all x ∈ C with v(x) ≤ cx and

v(y) ≤ v(y), and

3. frac(v(x)) = 0 iff frac(v′(x)) = 0 for all x ∈ C with v(x) ≤ cx.

Figure 2.7 depicts an example of clock regions for an automaton with one and two clocks.

Two clock valuations are in the same clock region if they satisfy the same clock constraints.

The integral part of the clock valuation determines whether the clock constraints are satisfied

or not, while the fractional part refers to a clock which will change its integral part first.

x=0
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1

1<x<2 x=2
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x
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Figure 2.7: Clock regions
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Model checking region automaton

Informally, a region automaton can be seen as a product of equivalence classes and a timed

automaton. Figure 2.8 depicts an example of the region automaton constructed from the

equivalence classes depicted in Figure 2.7(a) and the timed automaton depicted in 2.6(a).

The resulting region graph RA is finite and each node (or state) of RA is a pair (l, [u]), where

l is a location in A and [u] is a clock region. The transition relation of the graph RA is defined

as follows:

• There is a transition (l, [u′])−→a (l′, [u′]) in RA if there is a transition (l, u)−→a (l′, u′) in

MA

• There is a transition (l, [u′])−→d (l, [u′]) in RA if there is a transition (l, u)−→d (l, u′) in

MA

The model checking of a timed automaton involves the following four steps [42]:

1. Determine equivalence class under equivalent relation ≈.

2. Construct the region automaton.

3. Apply the CTL model checking algorithm.

4. A |= α if and only if (l0, [u0]) ∈ SatR(α).

Unfortunately, the number of regions is exponential in the number of clocks and the number

of ceilings of all clocks [8, 30, 64].

Model checking clock constraints

A more compact and efficient representation of the timed automaton is the so-called zone

graph. This is based on the notion of a clock zone. A clock zone is a conjunction of inequalities

comparing either a clock value or a difference between two clock values to an integer. By

introducing a special variable x0 which is always equal to zero, Clarke et al. [30] formally

define a clock zone as:
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x0 = 0 ∧
∧

0≤i�=j≤n

xi − xj ≺ ci,j

In a timed automaton, a clock constraint is either an invariant of a location or a guard of a

transition and hence can be used for state reachability analysis. Clarke et al. [30] have shown

that three operations — intersection, reset and elapsing — can be applied to clock zones to

define the transition relation between states of the zone. In other words, these operations are

sufficient to define how successor states are computed from current states.

• Intersection between two clock zones ϕ and Θ (i.e. ϕ ∧ Θ) is also a clock zone.

• Reset of set of clocks r for a clock constraint ϕ, results in a clock zone ϕ[r → 0].

• Elapsing of time from a clock zone ϕ, results in a clock zone ϕ↑.

A pair (l, ϕ) is a state (or zone) of a zone graph ZA, where l is a location and ϕ is clock zone.

The transition relation in ZA is then defined as follows:

• There is a transition (l, ϕ)−→a (l′, (ϕ ∧ g)[r → 0] ∧ I(l′)) in ZA for each edge (l−−→g,a,r l′) in

MA.

• There is a transition (l, ϕ)−→d (l, ϕ↑ ∧ I(l)) in ZA for each l of the timed automaton MA.

An example of a zone graph corresponding to the timed automaton depicted in Figure 2.6(a)

and clock region shown in Figure 2.7(a) is shown in Figure 2.9. The graph in Figure 2.9

clearly has far fewer states and transitions than the graph in Figure 2.8, and consequently it

is much more efficient to model check.

One data structure that can be used to represent a zone graph is known as a difference bound

matrix (DBM). Interested readers are referred to [8, 30, 60] for a detailed description of the

DBM. The model checking algorithm for the model checker Uppaal, which is discussed in

more detail in Chapter 6, is based on clock zones as described in [8, 30].



CHAPTER 2. BACKGROUND 27

2.2 Theorem Proving

Theorem proving is the process of using deductive methods to develop computer programs

that show that some statement (i.e., conjecture) is a logical consequence of a set of axioms

and hypotheses. Theorem proving is another type of system verification technique that can

be applied to formal specifications of models. Conjectures, axioms and hypotheses must be

written in a logic which is accepted by an automated theorem prover. Theorem provers, also

known as proof assistants, are computer programs that are used to assist users to produce

proofs that state why and how the conjectures are derived from the axioms and hypotheses

in such a way that it can be agreed upon by everybody.

The main advantages of theorem proving are that it helps users to have a deeper understanding

of the system specification and that it is not limited by the size of the state-space, that is, large

systems that cannot be verified using the model checkers discussed in Sections 2.1.1, 2.1.2

and 2.1.3, may still be verified by theorem prover. Unfortunately, theorem proving process

is generally harder and requires considerable technical expertise and a deep understanding of

the specification. It is also generally slower, more error-prone and labour intensive.

Prototype Verification System (Pvs) theorem prover is a complex system which consists of

a specification language, a number of predefined theories, a theorem prover, various utilities,

and documentation with examples that illustrate different ways of using the system in several

application areas [48, 50]. The algorithms that are implemented in Pvs are beyond the scope

of this thesis and are not discussed. The following explanation is taken from [63]:

Pvs [50] is a specification and verification environment developed by SRI Interna-

tional’s Computer Science Laboratory. It provides an integrated environment for

the development and analysis of formal specifications, and supports a wide range

of activities involved in creating, analyzing, modifying, managing and document-

ing theories and proofs. In distinction to other widely used verification systems,

such as HOL [35] and the Boyer-Moore prover [15], Pvs supports both a highly

expressive specification language and an interactive theorem prover in which most

low-level proof steps are automated. The system consists of specification lan-

guage [48], a parser, a type checker, and an interactive proof checker [49]. The
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Pvs specification language is based on a richly higher-order logic that permits

a type checker to catch a number of semantic errors in specifications. The Pvs

prover consists of a set of inference steps that can be used to reduce a proof goal

to simpler sub goals that can be discharged automatically by the primitive proof

steps of the prover. The primitive proof steps incorporate arithmetic and equality

decision procedures, automatic rewriting, and BDD-based boolean simplification.

2.3 Related Work

The success of model checking and theorem proving in the design and verification of software

and hardware systems is well documented. Despite the success stories about the application of

formal verification in both software and hardware systems, not many practitioners incorporate

formal verification in their software development and George et al. [5] claim that one of the

reasons which hinders the transfer of technology is the lack of empirical studies. It is well

known that among advantages of finite-state verification, early detection of errors leads to a

cheaper correction of such errors. Research among the formal methods community seems to

have been focused more on the development of efficient model checking algorithms to combat

the problem of state explosion [33, 34, 45, 54, 57, 58], and there is very little work that

has been done in the comparative analysis of verification tools. This claim is supported by

George et al. [5], as they clearly show that there is a lack of set of benchmarks which can

assist software developers to choose appropriate tools for verification analysis of a particular

type of system.

In this thesis an empirical case study is undertaken on three model checkers (Spin, Smv, and

Uppaal) and a theorem prover (Pvs). The study involves the formal verification of the SIS

at iThemba LABS, of which its detailed specification is presented in Chapter 3. Some of the

empirical case studies on verification techniques were conducted by the following researchers:

Corbett [25], Chamillard et al. [18], Mark et al. [3], George et al. [4, 6], Jensen et al. [40],

Pasareanu [51], Dong et al. [28, 29], Currie [26], Mariëlle Stoelinga [55], Brard et al. [9], and

Devillers [27].

Corbett [25] uses Spin, Smv and Inca for verifying deadlock freedom in Ada programs. He
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uses an automated conversion tools to translate finite-state automata of an Ada-like language

into the input languages: Inca, Spin and Smv. And this is done with the consultation of

the developers of these tools. Chamillard et al. [18] later extend Corbett’s study by using his

translations and application specific properties in addition to the deadlock property and they

use the following tools: Spin, Smv, Inca and Flavers. They further use statistical analysis

to assess the biasness of Corbett’s translators. Although both Corbett and Chamillard et al.,

notice a considerable variation of both absolute and relative performance of the tools, neither

of them are able to conclusively pinpoint the source of the differences [18, 25]. Corbett’s study

suggests that the communication structure of the application has an effect on the performance

of Spin and Smv, while Inca’s performance is influenced primarily by the sizes of tasks to

be performed. Chamillard et al., on the other hand, build predictive models for the failure

and performance of the tools, but their only conclusion is that while predictive models are

fairly good in predicting failure, they cannot identify those features of programs that affect

the performance of the tools.

Dong et al. [28] used Cospan, Murϕ, Smv, Spin and Xmc to verify the i-protocol (an opti-

mized sliding-window protocol for GNU UUCP). Among these model checkers, Xmc belongs

to the authors. Dong et al [28] construct abstract models manually and after verification they

conclude that Xmc performs better than Spin and Smv. On the contrary, Holzmann [38] the

author of Spin, conducts the same study using the same abstract models that are used by

Dong et al. [28] and he finds that Dong et al. [28] make two mistakes when using Spin. The

first mistake involves the use of parameters, Holzmann finds that they override the default

settings of Spin which hurts its performance. The second mistake is about the equivalence

of abstract models. Holzmann modifies the models written in Spin’s input language and

discovers that the Spin model (by Dong et al. [28]) contains more than twice as much per

state compared to other model checkers. After these modifications, Spin performs better than

Xmc in almost of all the cases. However, the results helps Holzmann to come up with a new

Spin version 3.3.0, which outperformes Xmc in all cases. Dong et al. [29] conduct a similar

study on i-protocol and the tools used are Cospan, Murϕ, Spin and Xmc of which each of

the tools support some kind of explicit-state model checking. The results of the study build

upon the results of [38] and replace or improve upon the results presented in [28].
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George et al. [6] have compared Spin, Smv, Inca and Flavers by verifying properties of

event dispatch mechanism in Chiron [56], which had a deadlock that was never described

by its developers. The results show that no matter how equivalent system models are, the

tools yield different performance results and they are not able to conclude with certainty as

to what could be the source of the differences. Jensen et al. [40] compares Spin and Uppaal

for verification of Collision Avoidance Protocol for an Ethernet–like medium. Jensen et al.,

do not measure the performance of the tools rather they compare them in terms of properties

which can easily be verified by the other tool as opposed to another. Spin is used to verify

untimed properties while Uppaal is used to very timed properties. Brard et al. [9] investigate

comparative performances of Uppaal, Kronos and Hytech on the Railroad Crossing. The

property verified is the safety property that whenever a train is inside the crossing, the

gate must be closed. The analysis is based on forward, backward and on-the-fly verification

techniques. On both forward and backward analysis Kronos performs better than Hytech,

while on-the-fly analysis Uppaal outperforms Kronos. However, surprisingly, backward

analysis for both Kronos and Hytech outperforms on-the-fly analysis of Uppaal. Brard et

al. [9] do not conclude with conformity as to what could be the sources of these performace

variations.
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Figure 2.8: Region graph corresponding to the access door control system (see 2.6).
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Chapter 3

Safety Interlock System

Specification

This Chapter discusses the system specification of the case study. As already mentioned in

Chapter 1, the system of the case study is the safety interlock system at iThemba LABS. The

iThemba LABS (http://www.tlabs.ac.za) is a multidisciplinary research facility involved

in basic and applied research using particle beams, particle radiotherapy for the treatment

of cancer, the supply of accelerated-produced radioactive isotopes for nuclear medicine and

research, and similar activities. Currently, iThemba is engaged in a new project called “Second

Beam Line Project” (2BL), that involves an additional beam line for the treatment of cancer

using protons, and the development of a system referred to as the Therapy Control System

(TCS). As one may expect, TCS is large and complex and comprises of a number of subsystems

and components that work together to achieve the effective and safe treatment of patients.

One central feature of the system is the way in which its parts are interlocked (in other words,

synchronized) to ensure its smooth and safe operation.

Figure 3.1 shows an overview of the system and some of the electronic units and subsystems

involved. The thick, dotted arrow that runs from left to right in the middle of the figure shows

the path of the physical beam. It originates in accelerator control (AC) system and passes

through the beam analysis and control system (through the beam current, beam steering, and

energy degrader controller units) and through the primary and secondary treatment nozzles

33
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(through the two ionisation chambers, range modulator, range verifier, and general electronic

units) before emerging to treat the patient. At the top right is the patient positioning system,

the supervisory system, the dose monitoring system, and the high voltage power supply unit.

The heart of the system is the therapy safety control system, shown in the bottom right of

Figure 3.1. It consists of the safety interlock system (described in more detail in Section 3.1)

and the master and physics consoles (described in Section 3.1.3). All these parts are connected

in two ways: by a 13-line bus and an ethernet network. Finally, there are also control

connections between the safety control and the accelerator control system.

TCS operates in three mutually exclusive modes:

1. Patient treatment is conducted in clinical mode. In this mode none of the interlocks

may be overridden.

2. The physics mode is used mainly for physics experiments and it allows more flexibility

in the configurations of the beam line and treatment nozzle as the clinical mode. In

this mode it is possible to override a limited set of the interlocks to the safety interlock

system via the supervisory system.

3. The test mode is used mainly for the development and test purposes, and it allows for

even more flexibility in the configurations of the system. In this mode it is possible to

override an even larger set of interlocks.

The rest of the chapter focuses on the safety interlock system, which is part of the therapy

safety control system as shown in Figure 3.1.

3.1 Safety Interlock System

The main task of the safety interlock system (SIS) is to monitor and evaluate the safety

conditions in the system as a whole, using inputs from therapy safety bus (TSB) and also

hard wires from all over the TCS. When the operating conditions of the system are violated,

the SIS must send control commands to the accelerator control system to take appropriate

action. The SIS consists of the safety interlock computer (SIC), the programmable logic
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Figure 3.1: Architecture of the 2BL

controller (PLC) and the voting logic unit (VLU). The SIC is a standard personal computer,

while the PLC is a special-purpose computer designed for control tasks. One of the goals

of the case study is to write a control program such that the TCS systems including SIS

can behave as intended. A control program runs on both SIC and PLC and both computers

(should) produce the same outputs to the VLU, which then synchronises the outputs and

produces the final output to the accelerator control system. The control program runs a

permanent loop (i.e., a cycle) and each cycle involves three steps, that is, the first step is to

read inputs from TSB and hard wires, the second step is to evaluate conditions of the TSB

and hard wires. The last step is to send control commands to the accelerator control system

if operating conditions are violated.

The components of the system consist of comprehensive arrangement of relays, switches and

transistor-controlled circuits which ensure correct and safe operational conditions at all times.
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There are two categories of interlocks namely: personnel interlocks and machine interlocks

that ensure safe operation of the whole TCS. The two categories of interlocks are not com-

pletely independent, personnel interlocks provide safe and accurate delivery of patient treat-

ment prescription and the protection of radiotherapy staff and the general public. Machine

interlocks, on the other hand, prevent the equipment being operated, that is, this category

of interlocks is concerned with safe operation of machines and prevent the damage which

can be done to them. In this study, both personnel and machine interlocks are referred to

as input interlocks and there are two types of input interlocks namely: discrete interlocks

and non-discrete interlocks. Discrete interlock inputs are communicated to the SIS via hard

wires while non-discrete interlock inputs are communicated indirectly, that is, through TSB.

Indirect communication refers to the fact that the exact detail of which interlock failed is not

known to the SIS from TSB status, SIS only knows that there is a failure from reading the

status of the TSB.

The main purpose of the TSB is to provide a fast means by which any system of the TCS

can communicate its functional and hardware failures detected to the rest of the system, and

most importantly to the SIS as shown in Figure 3.1. Sections 3.1.1 and 3.1.2 present the

detailed description of the discrete and non-discrete interlocks, respectively, and Section 3.1.3

explains two types of consoles that are used to manipulate the interlocks. Sections 3.2 — 3.4

discusses systems which directly interact with the SIS.

3.1.1 Non-Discrete interlocks

Electronic units in TCS indirectly communicate system status, requests and failures to the

SIS via TSB. TSB consists of a number of discrete wires which will henceforth be called

TSB lines and each of these lines represents a specific status or request in the TCS. The

TSB lines CONSOLE-ON , PRIMARY-NOZZLE, SECONDARY-NOZZLE, and BEAM-ON

communicate current system configuration status to the SIS while the TSB lines SABUS

and HIGH-VOLTAGE-PSU communicate interlock failures (see Table 3.1). The TSB lines

RF-TRIP OFF , BEAM DEFLECTOR OFF , FC 1/2 & SHUTTER OUT , FC 10/19 OUT ,

PHYSICS MODE , TEST MODE are used to communicate requests to and from the SIS (see

Table 3.2). A current source is attached to each of these lines, so a TSB line has a value true
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if the current is flowing through the line otherwise it has a value false.

Table 3.1: Status for TSB Lines

TSB Line Description

CONSOLE-ON indicates that either the master or physics console is switched

on.

HIGH-VOLTAGE-PSU indicates a failure of one or more of the high voltage power

supplies.

SABUS indicates that some system has failed. Any system may set the

status of this line.

PRIMARY-NOZZLE indicates that the primary nozzle is active.

SECONDARY-NOZZLE indicates that the secondary nozzle is active.

BEAM-ON indicates that the proton beam is on. The beam is on when

both the neutron shutter and the high energy FC 1/2 are not

in the path of the beam. This status will be calculated from

the status feedback received from the Neutron Shutter and the

High Energy FC 1/2.

The systems and components that communicate their requests and status through continu-

ous (i.e., Non-Discrete) interlocks are beam current controller unit (BCCU), beam steering

controller unit (BSCU), energy degrader controller unit (EDCU), ionization chambers elec-

tronic unit 1 (ICEU1), range modulator electronic unit (RMEU), range verifier electronic

unit (RVEU), ionization chambers electronic unit 2 (ICEU2), general electronic unit (GEU),

high voltage power supply unit (HVP), patient positioning system (PPS) and dose monitoring

system (DMC). All of these units can change the status of the lines so, it is not possible for

the SIS to identify the interlock failed since the TBS does not provide the details of which

interlock(s) failed. If the SIS detects a failure from any of the systems and/or electronic units,

it will send the interlock statuses via LAN, to the supervisory system for displaying purposes.

Figure 3.1 shows all the electronic units and the systems which communicate non-discrete

interlocks to the SIS. Table 3.3 lists all non-discrete interlocks associated with each of the
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Table 3.2: Requests for TSB lines

TSB Line Description

RF-TRIP OFF indicates to the SIS when it should send an RF-trip request

signal to the cyclotron (accelerator) control system.

BEAM DEFLECTOR OFF indicates to the SIS when it should send a request to the

beam gating control unit (BGCU) to gate the beam off by

deflecting it with the high voltage plates of the beam gating

device. This request line is defined separate from the Fara-

day Cup (FC) request lines since it is necessary to switch

the beam off in some cases without dropping the FC cups

into place.

FC 10/19 OUT indicates when the SIS should send a request signal to the

Faraday-cups (accelerator) control system to extract the

Faraday cups FC-10 and FC-19 from the low-energy beam

line.

FC 1/2 & NS OUT indicates when the SIS should send a request signal to the

Faraday-cups (accelerator) control system to extract the

Faraday cups FC-1, FC-2 and the Neutron shutter from the

low-energy beam line. This request line is defined separate

from the faster Faraday Cup 10/19 request lines. The Fara-

day Cup 10/19 lines will be used with the beam deflector

request to switch the beam off when small patient move-

ments are detected. The Faraday Cup 1/2 and shutter line

will be used when large patient movements are detected.

PHYSICS MODE indicates that the physics mode is selected on the active

console.

TEST MODE indicates that the test mode is selected on the active console.
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systems and electronic units whose status will be displayed on the supervisory system. The

interlocks can be set to a value true or false depending on whether they are overridden or not

due to the mode in which the system is operating in as explained above.

3.1.2 Discrete Interlocks

Discrete interlocks are communicated to the SIS via hard wires and each wire is directly

connected from an interlocked device. The components and systems that communicate their

interlock status through hard wires include general interlocks (GI), primary and secondary

treatment nozzles and beam line interlocks (TNBL), accelerator group interlocks (AGI) and

room clearance interlock (RCI). Table 3.4 lists all these interlocks grouped in four categories.

All these categories of interlocks are manipulated by TCS — they will henceforth be called

TCS interlocks — except AG category which is manipulated by accelerator control systems.

The interlocks can either have a value true or false and can also be overridden depending on

the mode in which the system is operating in. The SIS will then transmit the status of all

these discrete interlocks via LAN to the supervisory system for displaying purposes.

3.1.3 Master and Physics Consoles

In addition to the SIS, therapy safety control system also includes master and physics consoles.

The purpose of the master console (MC) is to provide the user (radiation therapist or physicist)

with a simple interface to select between physics, test and clinical mode, to start and stop

the beam, and to perform an emergency stop at any time. The physics console (PHC) will be

physically separated from the MC but it must perform the same functions as the MC. Only

one of the consoles must be active at any given time. The Master console should also provide

the radiation therapist with feedback of the beam characteristics and dose delivery to the

patient. The console shall also indicate the status of the TSB and the room clearance system

status. Room clearance system is part of the therapy safety control system which ensures

safe evacuation of the treatment room.
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Table 3.3: Non-Discrete Interlocks

Category Non-Discrete Interlocks

Beam Current Controller Unit (BCCU) (1) BCCU Status

(2) BCCU PID Status

(3) BCCU Beam-Off Status

Beam Steering Controller Unit (BSCU) (1) BSCU Status

Energy Degrader Controller Unit (EDCU) (1) EDCU Status

(2) EDCU Transition Status

(3) EDCU Position Sensing Status

Ionization Chambers Electronic Unit 1 (ICEU1) (1) ICEU1 Status

(2) Beam Ratio Status

(3) Beam Alignment Status

Range Modulator Electronic Unit (RMEU) (1) Range Modulator Status

Range Verifier Electronic Unit (RVEU) (1) Range Verifier Status

Ionization Chambers Electronic Unit 2 (ICEU2) (1) ICEU2 Status

(2) In Plane Symmetry Status

(3) Cross Plane Status

General Electronic Unit (GEU) (1) GEU Status

(2) First Scatter Status

(3) Second Scatter Status

High Voltage PSU (HVP) (1) HVP Status

Patient Positioning System (PPS) (1) PPS Status

Supervisory System (1) Patient Components Ok

(2) Patient Identification Ok

Dose Monitoring Control System (DMC) (1) DMC Ok Status
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Table 3.4: Discrete Interlocks

Category Discrete Interlocks

General Interlocks (GI) (1) Area Radiation Monitor

Treatment Nozzle and Beam Line Interlocks (TNBL) (1) Pointer Laser Cover Status (2)

Snout IN or OUT (3) Patient Col-

limator Status (4) Patient Com-

pensator Status (5) Beam Defin-

ing Lamp IN or OUT (6) Laser

IN or OUT (7) Ionization Cham-

ber Set B IN or OUT (8) X-Ray

Tube IN or OUT (9) First Scatter

IN or OUT (10) Range Modulator

Assembly IN or OUT (11) Energy

Degrader IN or OUT (12) MWIC

IN (13) Second Scatter OUT

Accelerator Group (AG) (1) ACC Safety Status (2) FC 10 &

19 IN or OUT (3) FC 1 IN or OUT

(4) FC 2 IN or OUT (5) Neutron

Shutter IN or OUT

Room Clearance Interlock (RCI) (1) Panic Buttons Status (2) Base-

ment Door Status (3) Left Beam

Line Door Status (4) Right Beam

Line Door Status (5) Left Door

Prime Input (6) Right Door Prime

Input (7) Room Prime Input (8)

Boom Status (9) Infrared 1 or 2

Status (10) Room Arm Input (11)

Room Disarm Input
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3.2 Supervisory system

Just like the master and the physics consoles, the purpose of the supervisory system (SS) is to

provide the user (radiation therapist or physicist) with the following: (1) a simple interface to

select between physics, test and clinical mode, (2) to select between primary and secondary

treatment nozzles, (3) to start or stop the control system. In addition, it can also change

the status of the TSB lines just like any other systems attached to the bus lines (see Figure

3.1). The system is also responsible for displaying the status of the TSB lines, room clearance

system interlocks, TCS interlocks and accelerator control system interlocks.

3.3 Room clearance system

There is a sequence of actions that should be followed to make sure that the treatment room

is armed (i.e., ready for patient treatment). Room clearance system (RCS) is responsible for

ensuring that this procedure is followed and it is outlined as follows:

1. There are eight emergency buttons that are distributed around the treatment vault.

All these eight buttons must be normal (a normal condition is a short circuit) for the

treatment to begin, this means that each circuit representing a button must be closed.

If at any point in time one of these buttons is pressed (that is a circuit representing a

button is open), the room must resort to a safe condition, that is, neither armed nor

primed — prime refers to the intermediate preparations of the room, e.g., if an access

door is ready to be closed.

2. There is a gate placed across the entrance to the basement of the treatment room and

this gate must be closed for the treatment to begin. When the gate is closed its circuit

is also closed and when the door is open its circuit is also open. If at any time this gate

is open, the room must resort to a safe condition that is neither primed nor armed.

3. There is a door to the annex off the maze and this door must be closed for the treatment

to begin. When the door is open its circuit is also open and when it is closed its circuit

is also closed. If at any time this door is open, the treatment room must resort to a safe



CHAPTER 3. SAFETY INTERLOCK SYSTEM SPECIFICATION 43

condition, that is, neither armed nor primed.

4. There are two access doors in the partition on either side of the beam-line. These doors

must be primed and closed with 10 seconds before the room is primed. When any of

these doors is open, its circuit is also open and when it is closed its circuit is also closed.

If any of these doors is not primed and closed within 10 seconds the treatment vault

must resort to a safe condition that is neither armed nor primed. If at any time any of

these doors is open the vault must resort to a safe condition.

5. If all the conditions from 1 to 4 are satisfied, that is, a circuit for each device is closed,

then the room may be primed for evacuation. The priming is done by pressing an exit

button in the treatment room.

6. Once the room has been primed, the operators have 40 seconds to leave the room and

close the boom gate at the maze exit, a circuit for the boom gate is open when the gate

is open and closed when the gate is closed. The boom gate must be primed and closed

for the treatment to begin and if at any time the boom gate is open the room must

neither be primed nor armed. If the boom gate is not closed within 40 seconds, the

room must resort to a safe condition after which the room may be primed once again.

7. If the boom gate is primed within the allowed 40 seconds, the room may be armed at

any time after the closing of the boom gate. This means sending a Ok signal to the SIS.

Once all the above conditions are satisfied and the room is in the armed state, it is easy to

return to the state in which the room is ready to be primed, thus removing Ok signal to the

SIS. The removal of Ok to the SIS can be achieved in six different ways:

1. There are two infra-red detectors in the maze. If either of the detectors is tripped, the

room goes to a state in which it can be primed.

2. There is a disarm button in the control room and the treatment room can be disarmed

by depressing this button.

3. If the boom gate described in items 6 and 7 above is opened, the treatment room goes

to a state in which it maybe primed.
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4. If either of the access doors described in item 4 above is opened, the room goes to a

state in which it is ready to be primed.

5. If the gate across the entrance to the basement which is described in item 2 above is

opened, the treatment room returns to a state in which it can be primed.

6. If any of the panic buttons described in item 1 is pressed, the treatment room returns

to a state in which it can be primed.

Most of the outputs from room clearance system are informative, that is, they do not have an

effect on the operation of the system but just informs the personnel about the status of the

RCS. There is however one output which is not only informative but also have some effect on

the operation of the system, Room Armed. The Room Armed output informs the SIS that

the treatment room is ready for treatment.

3.4 Accelerator control system

There are two types of beam stop devices: a Faraday cup which is a cup shaped piece of

copper and a neutron shutter which is a steel cylinder for shielding radiation. Both Faraday

cup and neutron shutter have two micro-switches, associated with each extreme movement of

the device, which are used to detect whether the device is in the beam line or not. There are

five of these beam-stop devices and they are listed as follows:

1. Faraday Cup 1: can be in or out of the beam line and it is located at the end of the

beam line, that is, it is the last beam stop device just before the patient.

2. Faraday Cup 2: can be in or out of the beam line and it is located between the cyclotron

and the neutron shutter.

3. Faraday Cup 10: can be in or out of the beam line and it is located next to the injector

cyclotron.

4. Faraday Cup 19: can be in or out of the beam line and it is located next to the main

cyclotron.
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5. Neutron Shutter: can be in or out of the beam line and it is located in the wall of the

treatment room, that is, between Faraday cups 1 and 2.

Accelerator control system (ACS) is responsible for the extraction of these devices out of the

beam line and their insertion into the beam line, due to commands received from the SIS.

The system produces ten feedback outputs to the SIS, that is, whether a device is in or out,

where in represents in the beam line (safe condition) and out represents out of the beam line

(unsafe condition). There are ten outputs since each device produces two outputs.



Chapter 4

Methodology

This chapter presents a methodological approach which is followed in the design and verifica-

tion of the SIS described in Chapter 3. There are two main goals of the study: (1) the design

of mathematical models as a basis for the implementation of error-free software for the SIS at

iThemba LABS, and (2) a comparison of formal method techniques that addresses the lack

of much-needed empirical studies in this field. To achieve these goals, a five phase approach

is followed. Phases one to four will be discussed in this chapter. Phase five will be spread

over Chapters 5 — 8, each describing a selected tool. The first phase is about the selection

of formal verification tools and it is presented in Section 4.1. Section 4.2, which is the second

phase, involves verification criterion and it explains the criterion used to evaluate and com-

pare these tools. Section 4.3 is the third phase and it presents a mathematical framework of

the SIS. Section 4.4 involves a tool-independent formulation of system properties.

4.1 Selection of verification tools

Model checking and theorem proving are useful in first, helping to verify the correctness of

the system design and thus increasing reliability; second, they are fault avoidance techniques

that assist in reducing the number of errors in the systems at the earliest state of system

development. There are a number of tools that implement these techniques and they differ

in terms of degrees of rigor, that is, different type of properties they can verify, the logic

46
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used etc. In this thesis, model checkers Spin, Uppaal, Smv and a theorem prover Pvs are

selected due to the following criteria:

1. Popularity (Number of case studies in industrial applications, publications indicating

application in the real world, etc.)

2. Support of the tool (recent publications, updates from its website, etc.)

3. Representation of properties (Safety, Liveness, deadlock, temporal, real-time, etc.)

4. Representative of verification technique (explicit, symbolic, etc.)

5. Degree of complexity (easy of use; simulation, graphical interface)

Investigation conducted so far in this thesis reveals that Spin seems to be the most popular

model checker since it is used in a number of case studies including [18, 20, 22, 24, 25, 26,

28, 29, 6, 38, 39, 51, 65]. Second to Spin is Smv which appears in the following case studies:

[18, 22, 24, 25, 28, 6, 61, 51, 55, 19], to name a few. The third is Uppaal, and most of its case

studies including [2], appear in its website — http://www.uppaal.com/. It should be noted

that model checkers are not released in the same year and it is possible that the ranking done

may not be accurate. Moreover, it is not the aim of the study to compare and rank the tools.

However, Spin, Uppaal, and Smv are the most popular model checkers used today. Variety

of theorem provers (PVS, HOL, OTTER, etc) also exists and Pvs is among the most used

theorem provers and this is due to a number of case studies it is applied to, which include

[46].

In this study, the support of a tool is based on the recent publications about the tool and

the latest release date of the tool. The model checkers Spin, Smv, and Uppaal fall among

the mostly supported tools. Spin has an annual workshop which provides an environment

for Spin users to meet and interact directly to exchange experiences, ideas, theories, wishes,

improvements, etc., about the tool. At the writing of this thesis, its latest was Version 4.2.7

released on 23 June 2006. Uppaal is the most supported tool for verification of real time

systems and the latest official release of Version 4.0.2 was released on Aug 7, 2006. As for

Cadence Smv, it was released in 1996 and it is based on the original Smv from Carnegie
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Mellon University by the same author — McMillan. Pvs’s latest Version is 3.2 and it is one

of the most supported theorem provers.

The selection of tools is also based on the expressive power of representing different system

properties. The tools can be categorised into two groups, Spin and Smv can be used to verify

qualitative temporal properties, while Uppaal and Pvs can be used to verify quantitative

timing constraints. These groups can be used together to complement each other in verifying

the properties of the system. Different state-space techniques, such as explicit and symbolic,

are adopted in various tools. Spin represents tools using explicit state-space representation,

while Smv and Uppaal represent tools that use some form of symbolic representation. The

ease of use also plays an important role in achieving the ultimate goal of formal verification,

that is, the transfer of technology into the industry, therefore all the tools are quite easy to

use except Pvs.

4.2 Verification criterion

In this thesis four tools are used to verify properties of the SIS. Each of these tools is devel-

oped by different authors, have different verification algorithms, employ different state-space

representation techniques, use different logics etc. In short, the tools are different and to

deal with the problem of biasness in the verification process, models are based on the same

mathematical framework, discussed in section 4.3. The mathematical framework may favor

other tools, but the idea is to model the system with an appropriate framework. However,

where possible, similar constructs like if-statements, message passing etc., are used.

The performance analysis of the tools is based on four factors, first the time taken to un-

derstand and be able to use a tool; second, the time taken to analyse a property; third, the

amount of memory used in verification of a property and fourth, number of states and tran-

sitions generated during verification of a property. The effectiveness of a tool is to be able

to analyse large systems and this is normally based on time and memory usage as these are

the limiting factors of verifying large systems. To assess the use of these tools in industry,

subjective conclusions as to which of the tools is easier to learn and use than the other is also

considered. The findings and conclusions of the study are discussed in Chapter 9.
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4.3 Architectural design of the SIS

Glück and Holzmann [32] stated that “Flight software is the central nervous system of modern

spacecraft” and the same thing can be said about the SIS in relation to the TCS at iThemba

LABS. SIS is the heart of the TCS and it is sitting between the TCS systems and the

accelerator control system. The architectural design of the SIS is depicted in Figure 4.1 and

an object-oriented approach is followed in this design, where each box in the picture refers to

an object. The modelling of each object follows the timed automaton framework proposed by

Alur et al. [1], which is presented in Section 2.1.3. Section 4.3.1 explains the execution cycle

of the system and Sections 4.3.2 — 4.3.7 describe the timed automata for each object (or

system), where “!” means send output and “?” means receive input.

Message Transmissions
Synchronizations

Environment

supervisorSys()

electronicUnts() therapySafetyBus()

accessDoor() treatmentRoomSys()

tcsComponents() tcsInterlockSys()

acceleratorControlSys()

Synchroniser

cycleScan()

Controller

sisControllerSys()

changeDetection()

Figure 4.1: Controller Architecture for the SIS
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4.3.1 Cycle scan

The control program for SIS runs a permanent loop (i.e., a cycle scan) and in each cycle all

the processes providing the inputs and requesting outputs are executed once. The process

cycleScan manages the synchronisation between all the processes. The advantage of the

design is that there is an explicit synchronisation between all the processes and also the

controller process (sisControllerSys) can only execute when a change of the input line(s) has

been detected, thus make a fast controller process. Figure 4.2 depicts the cycle of the system.

The cycleScan process distributes a token in a cyclic fashion and a process with the token

executes its code and returns the token when it has finished its execution. The process is also

responsible for managing shared data, the shared data refers to an array variable which stores

all the inputs that are required by the controller process to make appropriate decisions.

Requests changeDetection sisControllerSys

acceleratorControlSys

Figure 4.2: A control cycle

The cycle starts by first reading the input requests from the physical environment or receiving

a stop command from the supervisorySys process. If the system starts with input requests,

the changeDetection process goes through the updated shared input array to check if there are

any changes. If a change is detected, the changeDetection process informs the sisControllerSys

process about the change, otherwise it gives the token back to start a new cycle. When the

sisControllerSys process receives a request it will eventually send control commands to the

acceleratorControlSys process and the commands will be processed only when the control

token is given to the acceleratorControlSys process. If a new cycle is started by receiving the

stop command from the supervisorySys process, the changeDetection process is bypassed and

the token is given to the sisControllerSys process to synthesis appropriate commands to the

acceleratorControlSys process, which will then be given the token to process the request.
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4.3.2 Supervisory system

The description of the SS is presented in Section 3.2 and Figure 4.3 depicts its automaton.

L0 L1 L2

L3

selectNozzletsb
[i]
!

start!

stop!

selectMode

Figure 4.3: Supervisory system automaton

The system goes in synchronised cycle, it begins by first starting the entire control system

and allows the selection of operational mode and the treatment nozzle. The system can

also updates the TSB lines after which it can either stop the system or wait for another

execution cycle. The value of i corresponds to a TSB line and ranges between zero and eleven

(i.e., 0 ≤ i ≤ 11).

4.3.3 Therapy safety bus system

Therapy safety bus system is responsible for managing the updates of the TSB lines. The

corresponding automaton is given in Figure 4.4. The system receives requests from all the

systems and electronic components that communicate their hardware and functional failures

through TSB. When it is time for it to execute, the system responds with an updated TSB

lines to allow the control system to make appropriate decisions. The decisions are mainly

control commands to the accelerator control system to either extract or insert Faraday cups

and neutron shutter in the beam line.
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L0

tsb[0]?

tsb[1]?

tsb[2]?

tsb[3]?

tsb[4]?

tsb[5]?

tsb[6]?

tsb[7]?

tsb[8]?

tsb[9]?

tsb[10]?

tsb[11]?

Figure 4.4: Therapy safety bus automaton

4.3.4 Room clearance system

The RCS, which is discussed in Section 3.3, is broken down into smaller and less complex

timed automata. The first component is concerned with priming and closing access doors and

a timed automaton for the procedure is depicted in Figure 4.5.

O W C
{prime?;
x := 0}

{close?;
x ≤ 2; flag := 1}

{open?; flag := 0}

{time elapsed?;x > 2} {prime?; flag := 0}

Figure 4.5: Access door control system

The access doors should be primed and closed within x units of time (x ≤ 2 is an example as

shown in Figure 4.5) and the process accessDoor models the procedure by setting a flag to

indicate that the access doors have been primed and closed successfully, otherwise the flag is

cleared.
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compFail? closeBoom? armRoom?

openBoom?

compFail?

compFail?

compFail?

openBoom?

disarmRoom?

lightFail?

Figure 4.6: Room clearance timed automaton

Figure 4.6 depicts the main timed automaton of the RCS. The process of the automaton calls

the process of the automaton — accessDoor — every cycle scan to compute the composite

flag which is set if the room is primed and armed successfully, otherwise cleared to indicate

failure.

4.3.5 Therapy control interlock system

Therapy control interlock system is responsible for the management of all the TCS interlocks.

Figure 4.7 depicts the corresponding automaton.

The system’s behaviour is similar to the therapy safety bus system’s behaviour, even though

it does some extra work. The system keeps the status of all the discrete interlocks up to date,

that is, it receives requests of the systems and electronic devices that change their interlocks

and when it is time for it to execute, the system checks the mode in which the entire system

is operating and then checks whether the interlocks which are not overridden are all working

properly. If the interlocks are working as expected the system responds with a flag assigned

a value true, or a value false otherwise. At the writing of this document, the total number

of interlocks were not yet finalised, so i in Figure 4.7 represents an interlock in the range

0 ≤ i ≤ N , where N is the total number of interlocks.
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Figure 4.7: Therapy control interlock automaton

4.3.6 Accelerator control system

Accelerator control system is responsible for the extraction and insertion of Faraday cups and

a neutron shutter and its description is presented in Section 3.4. Figure 4.8 depicts a timed

automaton for the system.

The extraction of the Faraday cups and the neutron shutter can proceed if and only if all the

beamline components are working properly and the treatment room is cleared. The system

knows about the status of all these conditions from the commands sent by the controller

process — sisControllerSys. If all the conditions are satisfied the system will extract neutron

shutter and then Faraday cups 1, and 2 and finally Faraday cups 10 and 19. If during the

extraction any failure is detected either from beam line components or treatment room, then

the system should immediately stop extracting the devices and start inserting them in the

beam line. The pass action in the picture refers to the success of extracting or inserting the

devices in the beam. The eDevice (e.g., eFC1) refers to the request for extrating a device

while iDevice (e.g., iFC1) refers to the request for inserting the device.
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Figure 4.8: Accelerator system automaton

4.3.7 Safety interlock control system

The control system generates three control outputs to the VLU derived from TSB lines, room

clearance system inputs, TCS inputs and feedback from accelerator control systems. These

control outputs are used to control Faraday Cup 1, Faraday Cup 2, Faraday Cup 10, Faraday

Cup 19, Neutron Shutter, Beam Gating and RF-Trip. The control system is defined as a

timed automaton, depicted by Figure 4.9 and consists of thirteen control locations: idle(L0),

clinical beam off (L2), physics beam off (L1), test beam off (L3), faraday cup 1, faraday cup 2

and neutron extraction(L4), switching beam off (L5), faraday cups 10 and 19 extraction (L6),

beam on(L7), beam gated(L8), switching movement on(L9), switching movement off (L10),

movement(L11), failure(L12).

The system begins at location idle(L0) and make a transition to either clinical beam off (L2),

physics beam off (L1) or test beam off (L3) locations, depending on whether clinical mode,

physics mode or test mode is selected respectively. The Faraday cup 1, Faraday cup 2 and

neutron extraction(L4) refers to an ordered sequence of extracting Faraday cups 1 and 2 as

well as neutron shutter before extracting Faraday cups 10 and 19 out of the beam line. This is

done to prevent secondary particle (neutron) production when the proton beam hit Faraday



CHAPTER 4. METHODOLOGY 56

L0

L1

L3

L2 L4

L5

L6 L7 L8

L9

L10

L11

L12

Figure 4.9: Timed automaton for safety interlock system

cups 1 or 2 in case the beam is not deflected. Faraday cup 1, Faraday 2 and neutron shutter

must be completely extracted before the extraction of Faraday cups 10 and 19. The extraction

of all Faraday cups and neutron shutter is limited to a period of time. In the Faraday cups 10

and 19 extraction(L6) location Faraday cups 10 and 19 are extracted and the location changes

to beam on(L7) when Faraday cups 10 and 19 are completely extracted, that is, completely

out of the beam line.

The beam is gated on upon entry into the beam on(L7) location and all Faraday cups and

neutron shutter are removed out of the beam line, but the beam is not gated! In this location

the beam can be on for an unlimited period of time. In the beam gated(L8) location all

Faraday cups and neutron shutter are removed from the beam line but the beam is gated

off. This location can be active for an unlimited period of time. In the switching movement

on(L9) location the beam is gated off and Faraday cups 10, 19 and neutron shutter are in the

process of being inserted in the beam line. This location must be active for a limited period of

time. If this time period is exceeded the location should change to switching beam off (L5) or

failure(L12) location. In the movement(L11) location the beam is gated off and Faraday cups

10, 19 and neutron shutter are in the beam line. This location can be active for an unlimited

period of time. In the switching movement off (L10) location, the beam deflection is turned

off and Faraday cups 10, 19 and neutron shutter are in the process of being extracted from

the beam line. This state is active for a limited period of time and if this time period is

exceeded the location should change to switching beam off (L5) or failure(L12) location.
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In the switching beam off (L5) location actions are performed that are the opposite of the

actions performed in the Faraday cup 1, Faraday cup 2 and neutron extraction(L4) and

Faraday cups 10 and 19 extraction(L6) locations. In the Faraday cup 1, Faraday cup 2 and

neutron extraction(L4) location, the Faraday cups and the neutron shutter are inserted into

the beam line at the same time. The beam is already deflected when this location becomes

active. Beam deflection is an exit condition of the previous location. A timer is started when

this location is entered. The location changes to the failure(L12) location, if the neutron

shutter or Faraday cups are not extracted before the timer expired. Failure(L12) location is

entered due to a failure detected in one of the other locations of the timed automaton. In

this location the timed automaton must force the system into a “safe” condition. In a safe

condition the beam is gated off and the Faraday cups and neutron shutter are inserted in

the beam line. This location can be active for an unlimited period of time. An RF-Trip can

also be generated in this location to be even more “safe” by being surer that the beam is not

coming through anymore.

4.4 System properties

Section 4.3 presents the architectural design of the SIS that is followed to model the system

as well as verifying the correctness properties of the models developed in Chapters 5, 6, 7

and 8. This thesis only considers untimed properties, but the models are designed in such a

way that clock variables can be added to allow the verification of timed properties in Uppaal

and Pvs verification tools. The following four properties are verified:

1. Property: The SIS should be free from deadlocks.

Description: TCS comprises of a number of systems — including SIS— which commu-

nicate through wired lines and Ethernet. It is important to make sure that the system

is free from deadlocks.

2. Property: Always, when the access doors are not primed and closed successfully (i.e.,

on time), then the treatment room cannot be armed.

Description: Treatment room comprises of a number of components, such as access
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doors, panic buttons, etc. Access doors are primed and closed before the room can be

primed and armed, therefore the property makes sure that this protocol is followed.

3. Property: It is always the case that, when the clinical mode is selected from supervisory

system and the interlock flag is set to true, it implies that all the TCS interlocks are

not overridden.

Description: The TCS operates in three modes, namely clinical, physics, and test

modes. TCS interlocks flag is used to indicate whether or not the appropriate interlocks

are overridden due to the mode in which the system is operating.

4. Property: It is always the case that, when the treatment room is not armed, then the

extraction of Faraday Cups and neutron shutter cannot occur.

Description: This property is used as a representative for all the interlocks that form

conditions for the generation of control commands to the accelerator control system.

The interlocks are therapy safety bus lines, TCS interlocks flag, treatment room flag,

and feedback interlocks from accelerator control system.



Chapter 5

The SPIN model checker

Spin (Simple Promela INterpreter) is a model checking tool for verifying the correctness

of distributed software systems such as operating systems, data communication protocols

etc., in a rigorous and mostly automated fashion. The tool originated at AT&T’s Bell Labs

developed by Gerard Holzmenn. The tool specifically targets software system not hardware

systems and the input language is Promela (PROtocol MEta-LAnguage). Spin follows

an automata-theoretic approach and the algorithms for model checking LTL-formulas are

basically the ones discussed in Chapter 2, Section 2.1.1. The model checker Spin is a very

powerful system as it does not only perform model checking, but also supports a number

of features including guided, interactive and random simulation, use of embedded C code as

part of model specification, dynamically growing and shrinking numbers of processes, both

rendezvous and buffered message passing, and communication through shared memory. The

tool also assists in tracing logical errors in the system design and checks logical consistency of

the system specification. The other interesting feature is that it does verification on-the-fly,

that is, it does not preconstruct the entire state graph as a prerequisite for verification of

properties, but constructs as it is required.

The Spin tool is a very complex system and Figure 5.1 gives an overview of the tool. In-

terested readers who would like to know more about the architectural design of the tool are

encouraged to read the following book [39], or a paper [37] or browse through the website

http://spinroot.com/spin/whatispin.html. In this chapter the SIS model is developed

59
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Figure 5.1: Architectural design of Spin [37].

in Promela and verified with Spin. Promela is a C-like programming language and it is

mostly based on Dijkstra’s guarded command language and in this chapter, only Promela

constructs that are used in the model are explained and for a complete reference of the

language, an interested reader can visit the website — http://spinroot.com/.

5.1 An overview of Promela

A Promela specification that is presented in this chapter consists of processes, directives,

global and local variables, communication channels, run, and init constructs. The constructs

can be summarized as follows:

• #define directive, global, and local variables have the same semantics as in C/C++

programming language.

• A process P is defined as follows

Proctype P (formal parameters) { local variables; statements }

• If-statement has the form

if

:: guard1 → statements

:: ...

:: guardn → statements

fi
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If one of the guards is enabled, the corresponding statements will be executed and if

more than one guard is enabled the selection of the guards is done non-deterministically.

• Do-statement has the form

do

:: guard1 → statements

:: ...

:: guardn → statements

od

The selection of the guards in the Do-statement is the same as If-statement except that

the latter does not terminate after the execution of the statements unless the statements

being executed include either goto or break.

• The constructs init and run are used to instantiated processes. The processes P and

Q can therefore be instantiated as follows

init{run P(actual parameters); run Q(actual parameters);...}

• Processes communicate between channels, declared with a constructs chan and the

capacity of the channel can be zero or more. Zero capacity of a channel refers to the

blocking communication between processes while more than zero refers to the non-

blocking communication. The messages are processed in a first-in first-out manner and

sending is indicated by an exclamation mark (!) while reception by a question mark

(?).

5.2 The SIS model in Promela

The SIS is the heart of the TCS, and it is sitting between the TCS systems and the accelerator

control system. The validation and verification of the SIS is crucial to ensure correct and safe

operation of the TCS and this section describes an approach for designing the system in

Promela. An object-oriented design is followed, all the systems providing the SIS with

inputs are divided into components, as shown in Figure 4.1, of which each component is

represented by a process.
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5.2.1 Synchronisation process

Figure 5.2 depicts a Promela source code for synchronisation cycle between processes. As

mentioned in Section 4.3.1, the scanCycle process distributes execution time in a cyclic manner

to all the processes and thus enables transmission of data between the controller and the

environment. More precisely, at the beginning of the cycle, the process receives all the requests

from SS, TSB, RCS, TCS interlocks and feed back from ACS (lines 6-10). The process then

updates the shared variables of the controller (line 16) and if there is no change detected from

the inputs, the execution continues normally, otherwise the controller will send appropriate

control commands to the accelerator control system to take necessary action.

1 proctype cycleScan(chan request, supervisorySysResponse,...){

2 ...

3 do

4 ::startstop ? startSys(token) ->

5 do

6 :: request ! readSupervisorySysStatus(0);

7 request ! readBuslines(0);

8 request ! readRoomline(0);

9 request ! readTCSInterlocks(0);

10 request ! readFeedbacklines(0) ->

11 supervisorySysResponse ? supervisoryStatus(sysMode,sysNozzle);

12 tsbSysResponse ? tsbStatus(tsb[0],tsb[1],tsb[2],...);

13 rcSysResponse ? roomStatus(roomFlag);

14 tcInterlockSysResponse ? tcsInterlocksStatus(interlocksFlag);

15 acSysResponse ? acceleratorSysStatus(fbk[0],fbk[7],...) ->

16 ...

17 cyclescan ! issueCommands(0) -> cyclescan ? return(token)

18 :: startstop ? stopSys(token); cyclescan ! issueCommands(0);

19 cyclescan ? return(token); break

20 od

21 od

22 }

Figure 5.2: Promela source code for synchronisation cycle
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5.2.2 Supervisory system process

The main function of the SS is to communicate configuration data with all the processes

interacting with the controller. Figure 5.3 depicts the Promela source code for the system.

The process first allows the cycleScan process to start distributing execution time (line 4).

Since in every execution cycle, the supervisorySys process is executed first, this ensures that

the correct configuration data in that cycle is send to the processes that require it to make

accurate decisions (lines 10 and 16). The process is also supposed to send interlocks that are

overridden to the tcsInterlockSys process and the changes it has made on the TSB lines to the

therapySafetyBus process, but these “send statements” are not shown in the process. They

are absorbed in the destination processes (i.e., tcsInterlockSys and therapySafetyBus). The

process then responds to the cycleScan process with the selected system mode and treatment

nozzle (line 16). The process can also stop the cycleScan process to distribute the execution

time (line 17).

1 proctype supervisorySys(chan read, response, write, startstop){

2 ...

3 do

4 :: startstop ! startSys(token) ->

5 do

6 :: if

7 :: mode = 1

8 :: mode = 2

9 :: mode = 3

10 fi; write ! operationMode(mode) ->

11 if

12 :: nozzle = 0

13 :: nozzle = 1

14 fi;

15 :: read ? readSupervisorySysStatus(token) ->

16 response ! supervisoryStatus(mode,nozzle)

17 :: startstop ! stopSys(1);break

18 od

19 od

20 }

Figure 5.3: Promela source code for supervisory system
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5.2.3 Therapy safety bus lines process

The main purpose of the TSB line process — therapySafetyBus — is to model the behavior of

the TSB lines. Figure 5.4 depicts the Promela source code for the process. The TSB lines

can either take a value true (lines 4 and 6) or a value false (lines 5 and 7) due to functional

and hardware failures detected from the TCS systems and the decision taken by the controller

process depends on the true values of these lines. An example of a hardware failure maybe

when one of the systems on the SABUS racks fails, which then clears the SABUS STATUS

TSB line. The line maybe indexed with a value i in an array variable tsb[i ] (line 2), where

0 ≤ i ≤ N and N equals the number of TSB lines. In every cycle scan the process responds

with the new values of the TSB lines (lines 9-10) to let the controller process take any required

decision if the changes are detected.

1 proctype therapySafetyBus(chan write, read, response){

2 bit tsb[6];

3 do

4 :: tsb[0] = 1

5 :: tsb[0] = 0

6 :: tsb[1] = 1

7 :: tsb[1] = 0

8 ...

9 :: read ? readBuslines(token) ->

10 response ! tsbStatus(tsb[0],tsb[1],...)

11 od

12 }

Figure 5.4: Promela source code for therapy safety bus

5.2.4 Room clearance system process

There is a defined protocol (referred to as “room clearance system”) for preparing the treat-

ment room to be ready for patient treatment. The RCS process — treatmentRoomSys — is

responsible for safe and correct functioning of the protocol. The system is broken down into

smaller and less complex processes — accessDoorSys and treatmentRoomSys.
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The accessDoorSys process is concerned with priming and closing the side doors and its

Promela source code is depicted in Figure 5.5. The process keeps a flag variable which can

either be set or cleared. When the flag is set (line 7), it implies that the door has been primed

and closed successfully, otherwise it is cleared (lines 4-6). In every cycle, the process responds

with the current state of the door, either primed and cleared successfully or not (line 8).

1 proctype accessDoorSys(chan read, response){

2 bool S0=1,S1,S2,doorFlag;

3 do

4 :: atomic{input1Location(S2) ->

5 doorFlag=0; outputLocation(S0)}

6 :: atomic{input1Location(S0) -> doorFlag=0; outputLocation(S1)}

7 :: atomic{input1Location(S1) -> doorFlag=1; outputLocation(S2)}

8 :: read ? readDoorstatus(token) -> response ! doorStatus(doorFlag)

9 od

10 }

Figure 5.5: Promela source code for access door subsystem

Figure 5.6 depicts the main process of the RCS — treatmentRoomSys. The process is respon-

sible for priming and arming the treatment room. It also keeps a flag variable to test whether

the room is ready or not. The room can only be primed and armed if all other componets, in

this case access doors, have been successfully primed and closed. In every cycle, the process

reads the flag (line 6) of the process accessDoorSys and if its value is true, it proceeds with

priming and arming the treatment room (8-15), otherwise it responds with a flag assigned

the value false to indicate failure.

5.2.5 TCS interlocks process

The tcsInterlockSys process is concerned about the interlocked devices which should be work-

ing properly before and during the treatment. The inputs to the process, depicted in Figure

5.7, are binary in the sense that the device is either working (i.e., true) or not working

(i.e., false) and if all the input conditions are satisfied, the TCS is allowed to continue oper-

ating normally otherwise it is not allowed to proceed, thus switch to a safe state. The process
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1 proctype treatmentRoomSys(chan read, response){

2 bool S0,S1,S2,S3,S4=1;

3 do

4 :: read ? readRoomline(token) ->

5 response ! readDoorstatus(token);

6 read ? doorStatus(doorFlag) ->

7 do

8 :: atomic{doorFlag && input4Locations(S1,S2,S3,S4) ->

9 roomFlag=0; outputLocation(S0)}

10 :: atomic{doorFlag && input1Location(S0) ->

11 roomFlag=0; outputLocation(S1)}

12 :: atomic{doorFlag && input1Location(S1) ->

13 roomFlag=0; outputLocation(S2)}

14 :: atomic{doorFlag && input1Location(S2) ->

15 roomFlag=1; outputLocation(S3);}break

16 :: atomic{!(doorFlag) ->

17 S0=0;S1=0;S2=0;S3=0;S4=1;roomFlag=0;break}

18 od;

19 response ! roomStatus(roomFlag)

20 od

21 }

Figure 5.6: Promela source code for room clearance system

is also responsible for monitoring the interlocked devices depending on the mode in which the

TCS is operating in (lines 11 — 13), that is, certain interlocks are overridden (lines 4 and 6)

depending the operational mode. If all the conditions are satisfied the process responds with

a true flag, otherwise a false flag (line 16) to the cycleScanSys process, to let the controller

take action.

5.2.6 Accelerator control system process

There are other important systems which are responsible for the extraction and insertion of

the devices that control the beam. In this thesis, the description of these systems are not

given in detail, they are just highlighted as how they relate to the SIS. Interested readers

are encouraged to consult the documentation [59] at iThemba LABS. The accelerator control

system process — acceleratorControlSys — is used to model the behaviour of the cups control
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1 proctype tcsInterlockSys(chan write, read, response){

2 ...

3 do

4 :: override[0] = 1

5 :: override[0] = 0

6 :: override[1] = 1

7 :: override[1] = 0

8 :: write ? operationMode(ssMode)

9 :: read ? readTCSInterlocks(token) ->

10 if

11 :: ssMode == 2 && !(override[0]) && !(override[1]) ||

12 ssMode == 1 && override[0] ||

13 ssMode == 3 && override[1] -> interlocksFlag = true

14 :: atomic{else -> interlocksFlag = false}

15 fi;

16 response ! tcsInterlocksStatus(interlocksFlag)

17 od

18 }

Figure 5.7: Promela source code for the TCS interlocks

systems, which are responsible for extraction and insertion of the Faraday Cups (i.e., Faraday

Cup 1, Faraday Cup 2, Faraday Cup 10 and Faraday Cup 19) and Neutron Shutter. Figure

5.8 depicts the process’s fragment Promela source code. The process receives commands

(line 4) from the controller process and when it is time for it to execute it responds with the

state of the stopping beam devices (lines 15 — 16).

5.2.7 The SIS controller process

The SIS controller process — sisControllerSys — is responsible for evaluating all the interlocks

and sending control commands to the ACS. Figure 5.9 presents its Promela source code.

The main purpose of this process is to evaluate safety conditions (lines 1 — 9) in the whole

therapy control system using inputs received from four categories of interlocks, that is, input

from TSB lines, input from RCS, input from TCS interlocks and feedback inputs from ACS.

The process produces four control commands to the accelerator control system (lines 17 and

20) and these commands are used to control Faraday Cup 1, Faraday Cup 2, Faraday Cup
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1 proctype acceleratorControlSys(chan read, readcommands,response){

2 ...

3 do

4 :: readcommands ? ctrlCommands(RF Trip, Beam Gated, FC12NS, FC1019)

5 :: read ? readFeedbacklines(token) ->

6 if

7 :: atomic{(!(RF Trip) && !(Beam Gated) && FC12NS && FC1019) ->

8 dIn[0]=1; dIn[1]=1; dIn[2]=1; dIn[3]=1; dIn[4]=1;

9 dOut[0]=0; dOut[1]=0; dOut[2]=0; dOut[3]=0; dOut[4]=0}

10 :: atomic{(!(RF Trip) && !(Beam Gated) && !(FC12NS) && FC1019) ->

11 dIn[0]=0; dIn[1]=0; dIn[2]=0; dIn[3]=1; dIn[4]=1;

12 dOut[0]=1; dOut[1]=1; dOut[2]=1; dOut[3]=0; dOut[4]=0}

13 ...

14 fi;

15 response ! acceleratorSysStatus(dIn[0], dOut[0], dIn[1], dOut[1],

16 dIn[2], dOut[2], dIn[3], dOut[3], dIn[4], dOut[4])

17 od

18 }

19

Figure 5.8: Promela source code for accelerator control system

10, Faraday Cup 19, Neutron shutter, Beam Gating and RF-Trip. A detailed description of

the SIS is presented in Chapter 3.
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1 #define toClinicalBeamOff() (line[0] && !(line[1]) && !(line[2]) &&

2 !(line[3]) && !(line[4]) && !(line[5]) && line[6] && !(line[7]) &&

3 line[8] && !(line[9]) && line[10] && !(line[11]) && line[12] &&

4 !(line[13]) && line[14] && !(line[15]) && line[16] && line[17])

5

6 #define toFC12NSExtraction() (line[0] && line[1] && line[2] &&

7 line[3] && !(line[4]) && !(line[5]) && line[6] && !(line[7]) &&

8 line[8] && !(line[9]) && line[10] && !(line[11]) && line[12] &&

9 !(line[13]) && line[14] && !(line[15]) && line[16] && line[17])

10 ...

11 proctype sisControllerSys(chan read, response, cyclescan){

12 ...

13 do

14 :: cyclescan ? issueCommands(token) ->

15 if

16 :: atomic{(state == notReady || state == failure) &&

17 toClinicalBeamOff() -> response ! ctrlCommands(0,0,1,1);

18 state = clinicalBeamOff}

19 :: atomic{state == clinicalBeamOff && toFC12NSExtraction();

20 response ! ctrlCommands(0,0,0,1); state = FC12NSextraction}

21 ...

22 fi;

23 cyclescan ! return(token)

24 od

25 }

Figure 5.9: Promela source code for a controller process

5.3 Formal specification in LTL

Section 4.4 has outlined requirements of the SIS. The version of Spin used in this thesis does

not have a concept of time, henceforth the requirements verified here are those independent

of time. The Properties presented in Section 4.4, can be expressed in LTL formulas as follows:

1. In Spin, a deadlock property is built-in.

2. Let;

p = accessDoorSys@accessDoorClosed, and
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q = treatmentRoomSys@roomArmed

� (¬p→ ¬q)

However, this property is not valid when verified with Spin due to asynchronous be-

haviour of the processes, instead the following stability property is verified;

�((¬p ∧ q ∧ �¬q) → (qU(�¬q)))

3. Let;

p = (ssMode == 2 && !(override[0]) && !(override[1]) ||
ssMode == 1 && override[0] || ssMode == 3 && override[1]), and

q = interlocksF lag == 1

� (¬p→ ¬q)

However, as in item 2, this property is not valid when verified with Spin due to asyn-

chronous behaviour of the processes, instead the following stability property is verified;

�((¬p ∧ q ∧ �¬q) → (qU(�¬q)))

4. Let;

p = treatmentRoomSys@roomArmed, and

q = sisControllerSys@extractionFC12NS

� (¬p→ ¬q)

However, as in items 2 and 3, this property is not valid when verified with Spin due

to asynchronous behaviour of the processes, instead the following stability property is

verified;

�((¬p ∧ q ∧ �¬q) → (qU(�¬q)))

The results of the properties are discussed in Chapter 9.



Chapter 6

The UPPAAL model checker

Uppaal (UPPsala AALborg) is an integrated tool for modeling, simulation and verification of

real-time systems such as real-time controllers and communication protocols in particular [7,

44]. The tool was first released around 1995 with the collaboration of researchers from the

University of Uppsala in Sweden and University of Aalborg in Denmark. It is appropriate for

systems that can be modeled as a collection of non-deterministic processes with finite control

structure and real-valued clocks, communicating through channels or shared variables. The

two main design criteria for Uppaal have been efficiency and ease of usage. The application

of on-the-fly searching technique has been crucial to the efficiency of the Uppaal model-

checker. Another important key to efficiency is the application of a symbolic technique that

reduces verification problems to that of efficient manipulation and solving of constraints.

.atg .ta

execution
trace

.q

checktaatg2ta verifyta

simulator

autograph

"yes"

"no"

trace
diagnostic

hs2ta

Figure 6.1: Architectural design of Uppaal [44].
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Figure 6.1 depicts architectural design of the tool. It comprises of three components, model-

checker, analyser and simulator [44]. In modelling, two description languages can be used,

that is, graphical description or textual description. Autograph is used to define a system in

graphical representation of timed automata (i.e., .atg) and textual format (i.e., .ta) is used

as a programming language for timed automata. The compiler atg2ta is used to transform

a graphical representation of timed automata (i.e., .atg) to textual representation of timed

automata (i.e., .ta), which is then checked for syntactical errors by the module checkta. The

tool Uppaal also allows modelling, analysis and simulation of simple hybrid systems by

using the compiler hs2ta to transform a graphical representation of hybrid system to textual

representation. Model-checking is done by the module verifyta which takes as an input a

network of timed automata in textual format (i.e., .ta) and a formula (i.e., .q). In model-

checking, a diagnostic trace can be generated to check whether the formula is satisfied or

not. The simulator, on the other hand, is used to interactively analyze the dynamic behavior

of the system. The difference between the model-checker and the simulator is that, the

model-checker explores the entire state-space while the simulator only explores a particular

execution trace. It is beyond the scope of this thesis to give an intensive description of

Uppaal. Instead its overview is presented in Section 6.1 and interested readers can visit the

tool’s website at http://www.uppaal.com/ for a detailed description of the tool.

6.1 An overview of UPPAAL

A Uppaal specification consists with a number of features for describing real-time systems.

In this chapter only features that are used to describe SIS are explained and they include

timed automata, a guard, an assignment, a synchronization, and an invariant:

• Timed automaton is a standard finite state machine extended with clocks, integer vari-

ables, and synchronization labels.

• Guard is a boolean expression defined on clocks, constants, global and local variables

that their expressions evaluate to either true or false.

• Assignment is a statement that sets or re-sets values to either clocks or other types of
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variables.

• Synchronization is a mechanism that enables binary handshake between two automata.

The handshake is initiated by an exclamation mark (!) while reception by a question

mark (?).

• Invariant is a condition that should not change and is defined on clocks.

6.2 The SIS model in a network of timed automata

The same procedure, as in Chapter 5, for designing the SIS model in Uppaal is followed.

Based on the architectural design depicted in Figure 4.1, each component (box) is viewed as

an object which is then represented by a timed automaton — or just an automaton when

the meaning is understood from the context. The model consists of eight timed automata,

namely, cycleScan(), supervisorySys(), therapySafetyBus(), accessDoorSys(), treatmentRoom-

Sys(), tcsInterlockSys(), acceleratorSys() and sisControllerSys() presented in Sections 6.2.1,

6.2.2, 6.2.3, 6.2.4, 6.2.4, 6.2.5, 6.2.6, and 6.2.7 respectively. It should be noted that the term

process in this chapter is replaced by the term timed automaton — or just an automaton in

short. Only the fragments of the automata that present the main features of the model are

highlighted.

6.2.1 Timed automaton for a cycle scan process

The responsibilities of the component cycleScan are presented in Section 4.3.1 and it is men-

tioned that one of its tasks is to enforce synchronization between all other components. In

Chapter 5, the corresponding process — cycleScan() — does enforce a synchronised cycle

between processes. However, in this chapter a slightly different approach is taken due to the

problem of state-explosion, which is discussed in detail in Chapter 9. In this case, a boolean

variable cycle is used to mimic a cyclic behaviour of the system. It toggles between true (lines

8-9) and false (lines 7 and 10). The true value of cycle corresponds to the request of inputs

and if there is any change detected the timed automaton sisControllerSys() is executed to

synthesize control commands to the accelerator control system. Otherwise, cycle is assigned
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a false value to enable other automata execute their code. Figure 6.2 depicts a snapshot of

the automaton.

1 process cycleScan() {

2 ...

3 state S0,S1,S2,S3,S4;

4 commit S4;

5 init S0;

6 trans

7 S0 -> S1 {sync startSys?; assign cycle:=false;},

8 S1 -> S0 {sync stopSys?; assign cycle:=true;},

9 S1 -> S2 {assign cycle:=true;},

10 S2 -> S1 {guard !(isChange()); assign cycle:=false;},

11 S2 -> S3 {guard isChange(); assign readInputs();},

12 S3 -> S4 {sync toCtrl!;},

13 S4 -> S1 {sync toAc!; assign cycle:=false;};

14 }

Figure 6.2: Uppaal source code for synchronisation cycle

6.2.2 Timed automaton for supervisory system

Figure 6.3 depicts the source code for a supervisory system automaton — supervisorySys().

The main task of the automaton is to start (line 5) and stop (line 10) the control system,

allow the non-deterministic selections of the system mode (line 6) and treatment nozzle (line

7), as well as non-deterministic selection of interlocks that are overridden (lines 8-9). The

automaton achieves the same effect as the process depicted in 5.3.

6.2.3 Timed automaton for therapy safety bus lines

Figure 6.4 depicts an automaton for therapy safety bus lines — therapySafetyBus(). The main

purpose of the automaton is to model the behavior of the TSB lines. The lines are either

assigned a value true (line 5) or a value false (line 7) by the TCS systems communicating

through TSB lines. Section 5.2.3 provide more information about the therapy safety bus lines.
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1 process supervisorySys() {

2 state S0,S1;

3 init S0;

4 trans

5 S0 -> S1 {sync startSys!;},

6 S1 -> S1 {select id:int[0,2];guard !(cycle);assign sysMode:=id; },

7 S1 -> S1 {select id:int[0,1];guard !(cycle);assign sysNozzle:=id;},

8 S1 -> S1 {select id:int[0,1];guard !(cycle);sync clearInterlock[id]!;},

9 S1 -> S1 {select id:int[0,1];guard !(cycle);sync setInterlock[id]!;},

10 S1 -> S0 {sync stopSys!;};

11 }

Figure 6.3: Uppaal source code for supervisory system

1 process therapySafetyBus() {

2 state S0;

3 init S0;

4 trans

5 S0 -> S0 {select id:int[0,3]; guard !(cycle); sync setTsb[id]?;

6 assign tsb[id]=1;},

7 S0 -> S0 {select id:int[0,3]; guard !(cycle); sync clearTsb[id]?;

8 assign tsb[id]=0;};

9 }

Figure 6.4: Uppaal source code for therapy safety bus

6.2.4 Timed automaton for room clearance system

There is a defined procedure for preparing a treatment room for patient treatment. The

procedure involves priming and closing access doors, as well as, priming and arming the

room. A system that enforces the procedure is broken down into access door and room

clearance automata.

Figure 6.5 depicts the access door automaton — accessDoorSys(). The automaton keeps a

flag variable which can either be set or cleared. When the flag (doorFlag) is set (line 7), it

implies that the door has been primed and closed successfully, otherwise it is cleared (lines 8-

9). The main automaton — treatmentRoomSys() — of the room clearance system is depicted
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in Figure 6.8. The automaton also keeps a flag (roomFlag) variable to test whether the room

is ready or not. When the flag (roomFlag) is set (line 12), it implies that the room has been

primed and armed successfully, otherwise it is cleared. Sections 3.3 and 5.2.4 present more

information about the system.

1 process accessDoorSys() {

2 state S0,S1,S2;

3 init S0;

4 trans

5 S0 -> S1 {sync primeDoor?;},

6 S1 -> S0 { },

7 S1 -> S2 {sync closeDoor?; assign doorFlag:=1;},

8 S2 -> S2 {sync primeDoor?; assign doorFlag:=0;},

9 S2 -> S0 {sync openDoor?; assign doorFlag:=0;};

10 }

Figure 6.5: Uppaal source code for access door subsystem

6.2.5 Timed automaton for TCS interlocks

Figure 6.7 depicts an automaton for TCS interlock system — tcsInterlockSys(). The main

purpose of the automaton is to check whether the interlocks overridden agree with the selected

system mode. A flag (interlockFlag) is either assigned a value true (line 7), return by a

function isInterlockOk(), if correct TCS interlocks are bypassed. Otherwise the flag is assigned

a value false (line 9).

6.2.6 Timed automaton for accelerator control system

There are other important systems which are responsible for the extraction and insertion of

the devices that control the beam. As shown in Figure 6.8, the functions of an automaton —

acceleratorSys() — is to extract or insert Faraday Cup 1, Faraday Cup 2, Faraday Cup 10 and

Faraday Cup 19 and Neutron Shutter. Sections 3.4 and 5.2.5 elaborate on the responsibilities

of the system.
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1 process treatmentRoomSys() {

2 state S0,S1,S2,S3,S4;

3 init S0;

4 trans

5 S1 -> S0 {guard !(cycle)&&!(doorFlag);},

6 S4 -> S0 {guard !(cycle)&&!(doorFlag); assign roomFlag:=0;},

7 S3 -> S0 {guard !(cycle)&&!(doorFlag);},

8 ...

9 S3 -> S1 {guard !(cycle)&&doorFlag; sync openBoom?;},

10 S3 -> S4 {guard !(cycle)&&doorFlag; sync armRoom?;

11 assign roomFlag:=1;},

12 S2 -> S3 {guard !(cycle)&&(doorFlag); sync closeBoom?;

13 assign roomFlag:=0;},

14 S2 -> S0 {guard !(cycle)&&!(doorFlag);},

15 S1 -> S2 {guard !(cycle); sync primeRoom?;},

16 S2 -> S1 {guard !(cycle);},

17 S0 -> S1 {guard !(cycle)&&doorFlag;};

18 }

Figure 6.6: Uppaal source code for room clearance system

1 process tcsInterlockSys() {

2 ...

3 state S0;

4 init S0;

5 trans

6 S0 -> S0{select id:int[0,1];guard !(cycle); sync clearInterlock[id]?;

7 assign overridden[id]:=0,interlockFlag:= isInterlockOk();},

8 S0 -> S0{select id:int[0,1];guard !(cycle); sync setInterlock[id]?;

9 assign overridden[id]:=1,interlockFlag:= isInterlockOk();};

10 }

Figure 6.7: Uppaal source code for TCS interlocks system
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1 process acceleratorSys() {

2 ...

3 state S0,S1,S2,S3,S4;

4 commit S1,S2,S3,S4;

5 init S0;

6 trans

7 S0 -> S4 {guard sisFailure(); sync toAc?;},

8 S0 -> S0 {guard beamSwitchedOn(); sync toAc?; assign beamOnOutput();},

9 S0 -> S0 {guard extractAll(); sync toAc?; assign allOutput();},

10 S0 -> S2 {guard extractFC1019(); sync toAc?;},

11 S0 -> S1 {guard extractFC12NS(); sync toAc?;},

12 S0 -> S0 {guard defaultCtrl(); sync toAc?; assign defaultOutput();},

13 S1 -> S3 { },

14 S1 -> S0 {assign FC12NSOutput();},

15 S2 -> S4 { },

16 S2 -> S0 {assign FC1019Output();},

17 S3 -> S0 {assign failureOutput();},

18 S4 -> S3 { };

19 }

Figure 6.8: Uppaal source code for accelerator control system

6.2.7 Timed automaton for the SIS controller

The main purpose of the timed automaton — sisControllerSys() — is to evaluate safety

conditions of the TCS using inputs received from four categories of interlocks, that is, input

from therapy safety bus lines, input from room clearance system, input from interlocks all over

the TCS and feedback inputs from accelerator control system. The timed automaton produces

four control commands to the accelerator control system. The commands are generated in

the functions such as clinicalBeamOffCtrl() and FC12NSExtractionCtrl() (line 9 and 13) and

these commands are used to control Faraday Cup 1, Faraday Cup 2, Faraday Cup 10, Faraday

Cup 19, Neutron shutter, Beam Gating and RF-Trip. A detailed description of the SIS is

presented in Chapter 3.
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1 process sisControllerSys() {

2 ...

3 state S0,S2,S4,S5,S6,S7,S8,S9,S10,S11,S12;

4 init S0;

5 trans

6 S0 -> S0 {guard !(toClinicalBeamOff()); sync toCtrl?;},

7 S0 -> S2 {guard toClinicalBeamOff(); sync toCtrl?;

8 assign clinicalBeamOffCtrl();},

9 S2 -> S0 {guard !(toClinicalBeamOff())&&!(toFailure());

10 sync toCtrl?; assign notReadyCtrl(); },

11 S2 -> S4 {guard toFC12NSExtraction(); sync toCtrl?;

12 assign FC12NSExtractionCtrl();},

13 S2 -> S12 {guard toFailure(); sync toCtrl?;},

14 ...

15 }

Figure 6.9: Uppaal source code for the SIS controller

6.3 Formal specification in TCTL

SIS is a real time system and Uppaal is a perfect model checking tool for the system.

Uppaal’s property specification language is a subset of TCTL (explained in Section 2.1.3)

because it does not allow A[], E<>, A<> and E[] to contain one another. It supports only

safety, reachability, and bounded liveness properties. The properties listed in Section 4.4 are

written in Uppaal specification language as follows:

1. A[] not deadlock

2. Let;

tr = treatmentRoomSys()

A[] (not tr.S4 and !(doorFlag) imply not tr.S4)

3. Let;

ti = tcsInterlockSys())
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A[]((sysMode==1 && (not ti.overridden[0]) && (not ti.overridden[1])) imply interlock-

Flag)

4. Let;

cs = cycleScan(), si = sisControllerSys(), and tr = treatmentRoomSys()

A[](cs.S4 and si.S4 imply tr.S4)

The results of the properties are discussed in Chapter 9.



Chapter 7

The SMV model checker

Smv (Symbolic Model Verifier) is model checking tool which was originally meant for ver-

ification of synchronous hardware circuits, but it has been applied to a number of systems

including communication protocols. Smv was originally developed at Carnegie-Mellon Uni-

versity by Ken McMillan around 1992/1993 for his Ph.D. degree. The tool used in this thesis

is referred to as Cadence Smv which is the extension of the original Smv by the same au-

thor Ken McMillian. Cadence Smv uses shared variables to communicate between processes

and processes can communicate either synchronously or asynchronously. Cadence Smv has a

number of features which makes it possible to verify large systems and the techniques include

compositional verification, refinement verification, symmetry reduction, temporal case split-

ting, data type reduction and induction. These techniques are described in [41]. The tool

also verifies models written in a modeling language called verilog and it can verify properties

written in both LTL and CTL formulas. The model checking algorithm discussed in section

2.1.2 is basically the one used by Smv. The state space of systems modeled in Smv is rep-

resented by Reduced Binary Decision Diagrams (RBDD) [16]. This thesis is not intended to

give complete introduction of the tool, interested readers are referred to Smv tutorial [41] or

browse through the website http://www.kenmcmillian.com/.

81
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7.1 An overview of SMV specification language

A Cadence Smv specification has a global structure which includes constructs such as pro-

cesses, global and local variables. In this section the structure is outlined, the structure only

includes constructs that are used in the modeling of SIS.

• Module is a self-contained set of states and transitions

• Main refers to the main module where the program starts executing.

• Init assigns initial values to the variables

• Next designates the next value of the variable

• Case is the same as branching conditions in programming languages like C/C++.

• Non-determinism is a choice from a set of values. For example, the following assignment,

CONSOLE ON STATUS := {0,1}; then the value of CONSOLE ON STATUS is chosen

arbitrarily from the set {0,1}.

• Input assigns actual parameters to the corresponding formal parameters.

• Output assigns formal parameters to the corresponding actual parameters.

7.2 The SIS model in SMV

In Chapter 6 the timed automata — cycleScan(), supervisorySys(), therapySafetyBus(), ac-

cessDoorSys(), treatmentRoomSys(), acceleratorSys() and sisControllerSys() — of the SIS are

explained in relation to Promela processes discussed in Chapter 5. In this chapter, the same

procedure is followed, that is, Smv modules are explained in relation to Promela processes

presented in Chapter 5 and only important features of the modules are highlighted.

7.2.1 Cycle scan module

The cyclic program execution of the SIS is modeled as a module — cycleScan(...) — depicted

in Figure 7.1. After the system has started, the program execution goes through three phases:
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(1) requests inputs (line 7), (2) the execution control is given to the sisControllerSys(...) (line

8) process to send commands to the acceleratorSys(...) if there is any change detected from

inputs. And (3) the execution control is given to the acceleratorSys() (line 9) process and it

reacts by adjusting beam control devices accordingly.

1 MODULE cycleScan(...){

2 ...

3 next(csstate):=

4 case{

5 csstate = sysStoped & ssstate = sysStarted:sysStarted;

6 csstate = sysStarted & ssstate = sysStoped:sysStoped;

7 csstate = sysStarted & ssstate = sysStarted: requestStatus;

8 csstate = requestStatus:sisControllerSys;

9 csstate = sisControllerSys:acceleratorControlSys;

10 csstate = acceleratorControlSys:sysStarted;

11 default:csstate;

12 };

13 ...

14 }

Figure 7.1: Cycle scan module

7.2.2 Supervisory module

The detailed description of supervisory system is discussed in Chapter 3, Section 3.2 and

Figure 7.2 depicts part of the system module — supervisorySys(...). The module has ar-

guments (line 1) that are the outputs of the process and only system mode output (line 3)

is shown. All the outputs (system mode, system nozzle and bypassed interlocks) are non-

deterministically assigned values, and line 7 shows an example of the system mode selected

non-deterministically.

7.2.3 Therapy safety bus module

The main function of therapy safety bus is to facilitate a fast means of communication between

TCS systems. The description of the bus is presented in Section 4.3.3 and Figure 7.3 depicts



CHAPTER 7. THE SMV MODEL CHECKER 84

1 MODULE supervisorySys(ssstate,csstate,ssMode,ssNozzle,override){
2 ...

3 OUTPUT ssMode: {clinicalMode, physicsMode, testMode};

4 ...

5 next(ssMode):=

6 case{
7 ssstate = sysStarted: {clinicalMode,physicsMode,testMode};
8 default:ssMode;

9 };
10 ...

11 FAIRNESS running;

12 }

Figure 7.2: Supervisory system module

Smv source code for the process. The output of the module is a boolean array of twelve

therapy safety bus lines (line 1). The true values of the lines are assigned non-deterministically

(line 5).

1 MODULE therapySafetyBus(tsbstate,csstate,tsb){
2 ...

3 next(tsb[0]):=

4 case{
5 tsbstate = idle: {0,1};
6 default:tsb[0];

7 };
8 ...

9 FAIRNESS running;

10 }

Figure 7.3: Therapy safety bus module

7.2.4 Room clearance system module

There are defined steps for preparing the treatment vault for patient treatment and the room

clearance system is responsible for ensuring that the steps are followed as required. Further

details about the system are discussed in Chapter 3, Section 3.3 and Figures 7.4 and 7.5
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present the Smv source code for the system modules — accessDoorSys() and treatmentRoom-

Sys(...), respectively.

The accessDoorSys() module is responsible for priming and closing the side doors (access

doors), while the treatmentRoomSys(...) module is concerned with priming and arming the

treatment room. The output of the module accessDoorSys() is the status of the access door

(line 3) and if the door is primed and closed successfully (line 9), the treatment room can

then be primed and armed, otherwise the room cannot be armed.

1 MODULE accessDoorSys(adstate,adstatus){
2 ...

3 OUTPUT adstatus: {dooropen, waiting, doorclosed};
4 ...

5 init(adstatus):= dooropen;

6 next(adstatus):=

7 case{
8 adstatus = dooropen: waiting;

9 adstatus = waiting:{dooropen,doorclosed};
10 adstatus = doorclosed:dooropen;

11 default:adstatus;

12 };
13 FAIRNESS running;

14 }

Figure 7.4: Access door system module

The main output (line 3) of the treatmentRoomSys() module is a flag variable, which tests

whether the room is ready for treatment or not. The room can only be primed and armed

if all other componets of the treatment room are working properly, in this case, a successful

prime and closure of the access doors.

7.2.5 TCS interlock module

The responsibility of the TCS interlock system — presented in Section 4.3.5 — is to monitor

all the interlocked devices of the TCS. An Smv module for the system is depicted in Figure 7.6

— tcsInterlockSys(...). The module has one output (line 3), a flag variable, which is assigned
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1 MODULE treatmentRoomSys(rcsstate,rcsstatus,adstatus,csstate,roomFlag){
2 ...

3 OUTPUT roomFlag: boolean;

4

5 ...

6 init(roomFlag):= 0;

7 ...

8 next(roomFlag):=

9 case{
10 rcsstate = idle: (rcsstatus = roomArmed) ? 1: 0;

11 default: roomFlag;

12 };
13 FAIRNESS running;

14 }

Figure 7.5: Room clearance system module

a value true if all the interlocks that are not supposed to be bypassed are working properly

and a value false otherwise. To compute the required results, the module needs two inputs

(lines 4—5): (1) a system mode and (2) a list of interlocks which should not be bypassed in

that mode.

7.2.6 Accelerator system module

Accelerator control system is responsible for the extraction and insertion of the Faraday Cups

as well as the Neutron Shutter. An Smv module — acceleratorControlSys(...) — for the

system is depicted in Figure 7.7. These devices are used to control the beam, that is, either

to extract or insert (lines 11 — 12) in a sequence of steps and then updates (15— 16) feedback

inputs to SIS. More details about the description of the system is given in Sections 3.4.

7.2.7 The SIS controller module

SIS is responsible for the evaluation of the TCS interlocks and sending of control commands

to the accelerator control system. An Smv module — sisControllerSys(...) — for the system

is depicted in Figure 7.8. In the previous chapters it is already mentioned that the main
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1 MODULE tcsInterlockSys(tcsistate,csstate,tiMode,tiOverride,interlockFlag){
2 ...

3 OUTPUT interlockFlag:boolean;

4 INPUT tiMode:{clinicalMode,physicsMode,testMode};
5 INPUT tiOverride: array 0..1 of boolean;

6 ...

7 next(interlockFlag):=

8 case{
9 tcsistate = idle & tiMode=clinicalMode:

10 !(tiOverride[0] | tiOverride[1]) ? 1 : 0;

11 tcsistate = idle & tiMode=physicsMode: !(tiOverride[0]) ? 1 : 0;

12 tcsistate = idle & tiMode=testMode: !(tiOverride[1]) ? 1 : 0;

13 default:interlockFlag;

14 };
15 FAIRNESS running;

16 }

Figure 7.6: TCS interlock module

purpose of this module is to evaluate safety conditions (lines 7 — 14) of the TCS using inputs

received from four categories of interlocks, i.e., input from TSB lines, input from RCS, input

from TCS interlocks and feedback inputs from ACS. The module then produces four control

commands to the accelerator control system (line 18) and these commands are used to control

the beam stopping devices.



CHAPTER 7. THE SMV MODEL CHECKER 88

1 MODULE acceleratorControlSys(acstate,acstatus,csstate,dIn,dOut,FC12 NS,

2 FC1019,RF TRIP,BEAM GATED){
3 OUTPUT acstate: {idle, readfbkStatus};
4 OUTPUT acstatus:{waiting, extractingNS, extractingFC1, extractingFC2,

5 FC12NSout, extractingFC10, extractingFC19, insertingNS,

6 insertingFC1, insertingFC2, insertingFC10, insertingFC19,

7 beamOn};
8 ...

9 next(acstatus):=

10 case{
11 acstate = idle & acstatus = extractingNS:

12 acstate = idle & acstatus = insertingFC1:insertingNS;

13 ...

14 };
15 (next(dIn[0]), next(dOut[0]),next(dIn[1]), next(dOut[1]),next(dIn[2]),

16 next(dOut[2]),next(dIn[3]), next(dOut[3]),next(dIn[4]), next(dOut[4])):=

17 case{
18 acstate = idle & next(acstatus) = extractingNS : (1,0,1,0,1,0,1,0,1,0);

19 acstate = idle & next(acstatus) = insertingNS : (1,0,1,0,1,0,1,0,1,0);

20 ...

21 };
22 FAIRNESS running;

23 }

Figure 7.7: Accelerator system module

7.3 Formal specification in CTL

The CTL formula below corresponds to the untimed property described in Section 4.4. The

verification results of the property in Smv are discussed in Chapter 9.

1. The deadlock property is not verified.

2. Let;

ad = processaccessDoorSys(...), tr = treatmentRoomSys(...)

assert G(((G !(ad.adstatus = doorclosed)) & (tr.rcsstatus = roomArmed) &

(F !(tr.rcsstatus = roomArmed))) →
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(tr.rcsstatus = roomArmed) U (G !(tr.rcsstatus = roomArmed)));

3. Let;

ti = tcsInterlockSys(...))

assert G((G !(ti.tiMode=clinicalMode & !(ti.tiOverride[0]) & !(ti.tiOverride[0])) &

ti.interlockFlag & (F !(ti.interlockFlag))) →
(ti.interlockFlag) U (G !(ti.interlockFlag)));

4. Let;

si = sisControllerSys(...)

assert G(((G !(inputlines[22])) & (si.sisstate = FC12NSextraction) &

(F !(si.sisstate = FC12NSextraction))) →
(si.sisstate = FC12NSextraction) U (G !(si.sisstate = FC12NSextraction)));
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1 MODULE sisControllerSys(sisstate,FC12 NS,FC1019,RF TRIP,BEAM GATED,csstate,

2 line,sysMode,sysNozzle){
3 ...

4 next(sisstate):=

5 case{
6 ...

7 csstate = sisControllerSys & sisstate = notReady & line[0] &

8 line[1] & line[2] & !(line[3]) & ((line[4])(̂line[5])) &

9 (line[4] & sysNozzle = primaryNozzle | line[5] &

10 sysNozzle = secondaryNozzle) & line[9] & !(line[10]) &

11 !(line[11]) & sysMode = clinicalMode & line[12] &

12 !(line[13]) & line[14] & !(line[15]) & line[16] & !(line[17]) &

13 line[18] & !(line[19]) & line[20] & !(line[21]) & line[22] &

14 line[23]: clinicalBeamOff;

15 ...

16 default:failure;

17 };
18 (next(RF TRIP),next(BEAM GATED),next(FC12 NS),next(FC1019)):=

19 case{
20 csstate = sisControllerSys & next(sisstate) = notReady:(0,0,1,1);

21 csstate = sisControllerSys & next(sisstate) = physicsBeamOff:(0,0,1,1);

22 csstate = sisControllerSys & next(sisstate) = clinicalBeamOff:(0,0,1,1);

23 ...

24 default:(RF TRIP,BEAM GATED,FC12 NS,FC1019);

25 };
26 FAIRNESS running;

27 }

Figure 7.8: SIS controller module



Chapter 8

The PVS theorem prover

Three previous chapters — Chapters 5, 6, and 7 — presented SIS formal models in Spin,

Uppaal, and Smv respectively. These tools implement model checking for verification of

properties. However, model checking does not solve all the problems in formal analysis of

systems, as Qingguo Xu and Huaikou Miao [62] state that, it is usually impossible to model

check the entire system such as SIS due to the state explosion problem. They even added that

for system specifications involving parameters, model checking can only check a subset of the

domain value rather than the entire domain. This chapter therefore discusses the process of

specifying and verifying SIS in a theorem prover called Prototype Verification System (Pvs),

which does not experience the problems mentioned above. The framework adopted is detailed

in [62] and it is based on the theory of timed automata by Alur and Dill [1]. The specification

of the SIS fits well in the framework as both safety and real-time liveness properties can be

checked on the entire formal specification of the system. Section 8.1 discusses the process of

formally specifying the system while Section 8.1.4 discusses a theorem for formalising safety

properties of the system, all the Pvs language features that are used are explained thoroughly

to make the chapter self-contained.
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8.1 Formal specification of SIS

The state of the SIS is a collection of attributes categorised in clock variables, therapy safety

bus lines, hard wired lines, feedback input lines. These attributes determine whether the

system is operating safely in one of its modes — clinical, physics and test modes. The SIS

comprises of nine Pvs theories, namely, cycleScan, supervisorySys, therapySafetyBus, access-

DoorSys, treatmentRoomSys, tcsInterlockSys, acceleratorSys, sisControllerSys, and tcsGlobal.

All the theories, except tcsGlobal and tcsProduct, correspond to the processes, automata and

modules discussed in Chapters 5, 6, and 7 respectively, so their descriptions are not presented

in this Chapter. However, since a different approach is followed in designing the SIS in Pvs,

Section 8.1.2 presents the sisControllerSys theory as an example of illustrating how other

theories are implemented. Section 8.1.4 discusses the product theory — tcsProduct.

8.1.1 Global declarations

The description of SIS is divided into a collection of modules and each module is represented

by a theory in Pvs. The system Actions, Locations and States are shared in all the modules

of the system and are declared in the following fragment of the theory tcsGlobal :

1 tcsGlobal: THEORY

2 BEGIN

3 N: posnat = 23

4 Time: TYPE+ = nonneg real

5 ...

Figure 8.1: Global declaration theory

Pvs provides a construct Datatype as a mechanism for defining abstract datatype and it

includes constructors, accessors and recognizers. The fragment in Figure 8.2 depicts Ac-

tions abstract datatype with constructors setTsb, clearTsb, toClinicalBeamOff, etc., accessors

id:below[N] and del:posreal as well as recognizers setTsb?, clearTsb?, toClinicalBeamOff?, etc.

The datatype Actions is shared in all the theories and actions that do not occur in a certain

theory are regarded as stuttering.



CHAPTER 8. THE PVS THEOREM PROVER 93

1 Actions: DATATYPE

2 BEGIN

3 ...

4 setTsb(id:below[N]): setTsb?

5 clearTsb(id:below[N]):clearTsb?

6 ...

7 toClinicalBeamOff:toClinicalBeamOff?

8 toFC12NS:toFC12NS?

9 ...

10 delay(del:posreal):delay?

11 END Actions

Figure 8.2: The Actions datatype

In Pvs, a type Locations can be defined with values that are shared among the theories in

the system.

1 Locations: TYPE+ = {clinicalBeamOff, physicsBeamOff, testBeamOff,

2 FC12NSExtraction, FC1019Extraction, beamOn,

3 beamGated, switchingMovementOn, movement,...}

Figure 8.3: The type Locations

The values (clinicalBeamOff, physicsBeamOff, testBeamOff, etc.) represent the locations of

the timed automata — (sisControllerSys).

The States of the system are the attributes that represent the system’s operations. The set

of attributes that define the behaviour of SIS are defined as a record. In Pvs, the symbols

[#...#] are records brackets and the States type is defined as follows:

1 States:TYPE = [#loc:Locations, x, now:Time,

2 ...,

3 roomFlag:bool,interlockFlag:bool,

4 tsb:[below[12]->[#value:bool#]],

5 ...

Figure 8.4: The type States
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The record shows that the state of the system contains; location, local clock variables, global

time and a record of input lines.

8.1.2 The SIS control theory in PVS

The inputs to the sisControllerSys are all lines which can either be on or off. In Pvs this

can be represented by a vector below[N] which is a predefined Pvs type and it is the range

of natural numbers [0...N-1]. The variable N represents all the input lines to the system. A

compact way of representing the switching on and off of the lines is a function with domain

below[N] and range bool, if a tsb is a vector then tsb(0) denotes the boolean value of the first

line. The TYPE+ (unlike just TYPE) means that the type is non-empty and Pvs requires

a proof that at least there is one element of the type. The following is an example of the

function type for a vector representing the therapy safety bus lines to the system.

tsb: TYPE+ = [below[12] → [#value:bool#]]

8.1.3 Timed automata functions

The design of the predicates Init, Pre, and Effect are defined based on the timed automata

framework presented in [62]. The Init function is used to define an initial state of the timed

automata. For example, the Init function for the theory sisControllerSys is defined as follows;

Init(s):bool = loc(s) = notReady

Note that there are two forms of record access, that is, if s is of type States, loc field maybe

accessed using either loc(s) or s‘loc.

A Precondition function

The precondition function (Pre) is defined on each action of the timed automata to check

whether an action is enabled or not. In Figure 8.5 for instance, at location notReady an

automaton can make an infinite delay transition while at location FC12NSExtraction the

system can only stay for less than 10 units of time. The automaton can make a switch
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transition from notReady location to clinicalBeamOff location if the system is at the location

notReady and the edge between these locations is enabled.

1 Pre(a)(s):bool =

2 CASES a OF

3 delay(d):

4 IF NOT(loc(s) = FC12NSExtraction & loc(s) = FC1019Extraction) THEN

5 TRUE

6 ELSE

7 x(s)+d < 10

8 ENDIF,

9

10 toNotReady:

11 loc(s) = clinicalBeamOff & NOT((s‘tsb(0)‘value) & (s‘tsb(1)‘value) &

12 (s‘tsb(2)‘value) & (s‘tsb(3)‘value & NOT s‘tsb(4)‘value &

13 s‘nozzle = primaryNozzle) OR (NOT s‘tsb(3)‘value & s‘tsb(4)‘value &

14 s‘nozzle = secondaryNozzle) & (NOT s‘tsb(5)‘value) &

15 (NOT s‘tsb(6)‘value) & (NOT s‘tsb(7)‘value) & (NOT s‘tsb(8)‘value) &

16 (s‘tsb(9)‘value) & (NOT s‘tsb(10)‘value) & (NOT s‘tsb(11)‘value) &

17 (s‘fbk(0)‘value) & (NOT s‘fbk(1)‘value) & (s‘fbk(2)‘value) &

18 (NOT s‘fbk(3)‘value) & (s‘fbk(4)‘value) & (NOT s‘fbk(5)‘value) &

19 (s‘fbk(6)‘value) & (NOT s‘fbk(7)‘value) & (s‘fbk(8)‘value) &

20 (NOT s‘fbk(9)‘value) & s‘roomFlag & s‘interlockFlag),

21 ...

22 ENDCASES

Figure 8.5: Precondition function

An Effect function

The Effect function (Effect), depicted in Figure 8.6, is also defined on each action of the timed

automata. The function updates the values of the record States if the precondition for an

action holds.

8.1.4 The product automaton of the system

In order to be able to verify the properties of the system, a product timed automaton is de-

fined. The automaton also comprises of three functions Init, Pre and Effect and each of the

functions is defined as a product of the corresponding functions, for example, the Init function
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1 Effect(s0,a,s1):bool = CASES a OF

2 delay(d):s1 = s0 WITH[x := x(s0)+d,now:=now(s0)+d],

3 toNotReady: s1 = s0 WITH[loc := notReady, RF Trip:=FALSE,

4 BeamGated:=FALSE, FC12NS:=TRUE, FC1019:=TRUE],

5 ...

6 ELSE

7 s1=s0

8 ENDCASES

Figure 8.6: Effect function

is defined as a product of Init functions defined in other theories of the system — cycleS-

can, supervisorySys, therapySafetyBus, accessDoorSys, treatmentRoomSys, tcsInterlockSys,

acceleratorSys, sisControllerSys, and tcsGlobal.

1 tcsProduct: THEORY

2 BEGIN

3 IMPORTING cycleScan AS cs

4 IMPORTING supervisorySys AS ss

5 IMPORTING therapySafetyBus AS ts

6 IMPORTING accessDoorSys AS ad

7 IMPORTING treatmentRoomSys AS rc

8 IMPORTING tcsInterlockSys AS ti

9 IMPORTING acceleratorSys AS ac

10 IMPORTING sisControllerSys AS si

11 IMPORTING tcsGlobal AS G

12 ...

13 Init(s):bool = cs.Init(s) & ss.Init(s) & ts.Init(s) & ad.Init(s) &

14 rc.Init(s) & ti.Init(s) & ac.Init(s) & si.Init(s)

15 ...

Figure 8.7: First part of the product theory

To complete the product automaton, a template theory Timed automata is imported to define

the behaviour of the system - SIS.
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1 ...

2 IMPORTING TimedAutomata[States, Actions, Init, Pre, Effect, now]

3 END tcsProduct

Figure 8.8: Last part of the product theory

8.2 Theorem proving

In Chapters 5, 6, and 7 the selected properties are formalized in LTL, TCTL and CTL

respectively. In this section the property similar to property four (4. Property:) in Section

4.4 is verified with Pvs. In Figure 8.9, safe is the safety property which must hold at the

initial state of the product automaton as well as in the subsequent states of the automaton.

The results of the proof are discussed in Chapter 9.

1 safe(s): bool =

2 (((s‘tsb(0)‘value) & (s‘tsb(1)‘value) & (s‘tsb(2)‘value) &

3 (s‘tsb(3)‘value & NOT s‘tsb(4)‘value &

4 s‘nozzle = primaryNozzle) OR (NOT s‘tsb(3)‘value &

5 s‘tsb(4)‘value & s‘nozzle = secondaryNozzle) &

6 (NOT s‘tsb(5)‘value) & (s‘tsb(6)‘value) & (s‘tsb(7)‘value) &

7 (s‘tsb(8)‘value) & (s‘tsb(9)‘value) & (NOT s‘tsb(10)‘value) &

8 (NOT s‘tsb(11)‘value) & (NOT s‘fbk(0)‘value) & (s‘fbk(1)‘value) &

9 (NOT s‘fbk(2)‘value) & (s‘fbk(3)‘value) & (NOT s‘fbk(4)‘value) &

10 (s‘fbk(5)‘value) & (s‘fbk(6)‘value) & (NOT s‘fbk(7)‘value) &

11 (s‘fbk(8)‘value) & (NOT s‘fbk(9)‘value) & s‘roomFlag &

12 s‘interlockFlag) =>

13 loc(s) = FC12NSExtraction)

14

15 Safety: THEOREM FORALL r, i: LET s = states(r)(i) IN safe(s)

Figure 8.9: Theorem for the safety property
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Discussion

This chapter discusses the comparison of the model checking tools: Spin, Uppaal, and Smv

together with a theorem prover Pvs presented in Chapters 5, 6, 7 and 8, respectively. In

spite all the differences of verification techniques, every verification tool has its strengths

and weaknesses. And it should, therefore, be the goal of everyone in the formal methods

community to realise all these strengths and weaknesses, so that, all verification tools can deal

with each other and join forces to combine their strengths. Fortunately, there are signs that

this time is coming as some softwere engineers and hardware industries are becoming more

interested in formal methods and are also supporting joint projects with academics — this

thesis presents an example of such projects. However, the problem is that, the interest is more

based in single case studies rather than comparison between verification tools. Comparison

among verification tools is the area of study where people in formal methods community

should pay a lot of attention [5] as this will ease the use of verification tools in the long run.

It should be noted that in this study more attention is on the verification tools rather than

underlying verification algorithms implemented by the tools. The attention is paid to the

tools mainly because they are the ones being used by the practitioners for verification of

systems. The procedure for comparing these methods is divided into two phases. The first

phase involves the time logging of activities followed by a novice modeler to model check and

theorem prove software systems, in particular, the SIS at iThemba LABS. This is referred

to as understandability analysis as it involves understanding activities involved in model
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checking and theorem proving of software systems. The activities include learning verification

tools, modelling the system and verifying safety properties of the system. These results are

summarised in Table 9.1 and the details of each activity is elaborated in the subsequent

sections. The second phase involves the performance of the tools in relation to time taken

to verify a property, memory usage, number of states and transitions generated during the

verification process.

9.1 Understandability analysis

This section presents the percentage effort for each activity. The work involving these activi-

ties spreads over approximately 18 months. Table 9.1 depicts the activities, effort percentage

and general comments on each activity. It should be noted that the time spent in learning

the system, that is, the SIS, is not included in the effort analysis as the attention is on the

verification tools.

9.1.1 Learning modelling languages and tools

The first objective was to learn the modelling languages of the tools and how to use them

to write abstract models. All the documents about the tools listed in the bibliography were

thoroughly reviewed and some examples relating to the tools were completed. The modelling

languages for Spin and Smv are similar to the C programming language and the expectation

is that any individual who has C programming experience and some basic knowledge of finite

state machines will find the tools straightforward and easy to learn. Another feature which

makes both tools easy to understand are graphical user interfaces they provide, which also

include simulation environments. Specifications written in Uppaal are in timed automata

which are comparatively easy to understand and model. The tool provides a good graphical

user interface and it accepts both hybrid and timed automata inputs. The tool also provides

a good simulation environment and it has shown to be applied to a number of large and

complex real-time verification problems. It is expected that anyone with the understanding

of the theory of timed automata by Alur and Dill [1] will be able to use the tool to model

real-time systems. However, a learner without prior knowledge of the theory is expected to
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Table 9.1: Percentage time for each activity

Tools Activity Effort(%) Comments

Spin Learning Promela 5% Familiar with the tool, Section 2.1.1

Modelling 9% This refers to Chapter 5, Section 5.2

Verification 3% This refers to Chapter 5, Section 5.3

Uppaal Learning TA 12% Not familiar with the tool, Section 2.1.3

Modelling 8% This refers to Chapter 6, Section 6.2

Verification 3% This refers to Chapter 6, Section 6.3

Smv Learning Smv 10% Not familiar with the tool, Section 2.1.2

Modelling 6% This refers to Chapter 7, Section 7.2

Verification 3% This refers to Chapter 7, Section 7.3

Pvs Learning Pvs 15% Not familiar with the tool, Section 2.2

Modelling 13% This refers to Chapter 8, Section 8.1

Verification 13% This refers to Chapter 8, Section 8.2

Total 100%

take longer time compared to those already familiar with the theory. As shown in Table 9.1,

the modeler took longer time to be able to use Uppaal as compared to other modelling tools

since (s)he was not familiar with the theory. Comparatively the theorem prover Pvs was the

most difficult to understand and learning the tool took almost the same amount of time to

learn the tools: Spin, Uppaal and Smv. It is expected that learning the tools one has to be

comfortable with discrete mathematics and logic.
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9.1.2 Modelling the system

The goal of this activity was to generate models of the system written in Spin, Uppaal, Smv

and Pvs. The modeler was already familiar with Spin/Promela from the model checking

course, so the system was first modelled in Spin/Promela. Modeling of the system was

a very iterative process as the modeler had to go back to the designers of the specification

to clarify some of the ambiguities identified during modelling process. The state explotion

problem was an obstacle in making a quick progress to other tools as the modeler wanted

to use the Promela model as the basis to generate other models. The model was kept

module to facilitate changes and when it was felt that the model has reached a fair level of

stability, it was manually converted to other modelling languages. The conversion to Uppaal

and Smv was easy, but the conversion to Pvs was difficult. With the help of verification

framework in [62], it was then easy to generate a Pvs model as the modeler already understood

theory of timed automata. The observation is that converting a Promela model to Uppaal

is comparatively easier than converting the model to both Smv and Pvs. However, the

conversion from Uppaal to Pvs was much easier than from Promela to Pvs and this is due

to the framework proposed in [62]. Spin and Uppaal were good at modelling a synchronised

communication between processes. It seemed natural to model the system with Smv as it

is good at modelling hardware systems, that is, the system involving bus and hard-wired

communication. Pvs was good as it did not suffer from state explotion problem when adding

clock variables to the model and it is observed to be the ideal tool to model the entire system,

maybe in conjunction with Uppaal so as to avoid errors which maybe caused by error-prone

nature of theorem provers, in this case Pvs.

9.1.3 Verifying the system

The objective of this activity was to identify safety properties of the system and express them

in verification languages such as Linear Temporal Logic (LTL), Computational Tree Logic

(CTL), Timed Computational Tree Logic (TCTL) and High Order Logic (HOL). The modeler

was only familiar with LTL and had to learn other types of logics used in this study. LTL and

CTL are comparatively the easiest to understand and apply. These property specification
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languages are presented as boolean formulas on the system safety properties. TCTL is the

same as CTL except that formulas are extended with clock variables. In addition to these

temporal logics, Pvs HOL was also learned. Some expertise is required as this logic is very

expressive and thus extreme care is needed for formulating property claims correctly.

9.2 The case study

The second phase to understandability is the case study results presented in Tables 9.2 —

9.4. Tools are compared in terms of number of states, number of transitions, memory usage

and time taken to verify a property. However, it must be noted that the models are not

necessarily the same, the aim was to develop models in an efficient way for all the tools, so

that it can be concluded as to which of the tools can best model the system in question.

9.2.1 Verification results

Verification process was done on a personal computer with 1024MB of RAM and speed of

1.5 MHz. The results for Spin, Uppaal, and Smv are shown in Tables 9.2, 9.3, and 9.4,

respectively. The results are explained based on two factors: (1) the configuration parameters

of the tool, and (2) the number interlocks considered in each model. In Spin the supertrace

search mode is used with patial-order reduction in order to cover a large state space of the

model and there are 18 total number of interlocks (boolean variables) manipulated by the

controller process — sisControllerSys — of the Spin model.

Table 9.2: Spin Verification results

Properties States(m) Transitions(m) Memory(MB) Time(sec)

Property1 3.09 97.94 108.85 222.66

Property2 3.44 10.01 209.65 48.85

Property3 2.96 10.10 182.56 468.85

Property4 2.95 87.87 444.77 1607.8
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In Uppaal the bit-state hashing with conservative state space reduction algorithm is used

to represent the state space of the model. The breadth first search order is used as this is

the most efficient option when the complete state space must be searched. There are 9 total

number of interlocks manipulated by the controller process in Uppaal model.

Table 9.3: Uppaal Verification results

Properties States explored Memory(MB) Time(sec)

Property1 1, 968, 214 509.75 203.74

Property2 1, 969, 912 508.82 91.94

Property3 1, 957, 387 482.70 92.23

Property4 1, 957, 321 482.97 90.98

Verification of Smv model did not experience any state explosion problem (like Spin and

Uppaal) and there are 24 interlocks that are manipulated by the corresponding controller

module. The state reduction techniques: compositional verification, refinement verification,

symmetry reduction, temporal case splitting, data type reduction and induction [41] were not

even considered.

Table 9.4: Smv Verification results

Properties BDD nodes Memory(MB) Time(sec)

Property2 10, 010 5.90 0.21

Property3 30, 097 6.34 0.33

Property4 521, 906 16, 21 24.29

In all the properties verified, the results show that Smv has generated fewer number of

states (nodes) compared to Spin and Uppaal. The difference maybe attributed to the fact

that Smv was developed to verify hardware systems, that is, SIS involves TSB and hard wired

lines which are directly declared with constructs such as input and output in Smv. On the

other hand Spin and Uppaal are developed to verify software systems and they are likely
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to perform badly for hardware systems involving many hard wired lines. It took a fewer

seconds to verify the property with Smv than it took with Spin and Uppaal due to the size

of state space generated by the respective tools. However, looking only at Spin and Uppaal,

Spin has performed better than Uppaal and this maybe attributed to the combination of

supertrace search mode and partial-order reduction technique.

Table 9.5: Pvs Verification results

First Run(Real time) Re-Run(Real time)

Property 10.173 0.964

Pvs is treated differently from the model checking tools — Spin, Uppaal, and Smv — as

it does not suffer from the problem of state space explotion and only the real time of the

verification is considered. It takes a longer time to prove the property with Pvs for the first

time, but takes fewer seconds when the proof is rerun. Table 9.5 shows the results of the

proof.
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Conclusion

This thesis presents a comparative case study between three model checking tools: Spin,

Uppaal and Smv as well as a theorem prover Pvs. The case study is conducted with the SIS

at iThemba LABS and the specification of the system is presented in Chapter 3. The criterion

used for the selection of these tools is discussed in Chapter 4. Chapters 5 — 8 summarise the

features of each tool and the models developed in Spin, Uppaal, Smv and Pvs, respectively.

There are two main goals to this study, the first one is to compare the tools so that some

important observations can be outlined to assist software engineering practitioners with the

easy selection of a tool for specifying and verifying systems similar to safety interlock system

(SIS). Section 10.1 below summarises some observations derived from the discussion presented

in Chapter 9 and Section 10.2 proposes some future work.

10.1 Observations

It must be emphasised that the aim of the study is to bring out the pro’s and con’s of each

tool in relation to the SIS and hence provide insight and understanding of the tool. The

comparison does not necessarily indicate that one tool is better than the other. In fact the

tools are complementary not competing. Final remarks are then outlined as follows:

• It was observed that representing the system in graphical state machines was found
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useful for three reasons. First, graphical notation facilitate communication with the

other designers and other stakeholders, help in learning the system, and simple to use

and follow. Second, modular graphical structure facilitate an easy changing of the

system. Third, the conversion from state machines to any of the tools was easy.

• Learning the model checking tools was easy as the modeler was familiar with C program-

ming. However, the theorem prover Pvs was more difficult and needed some expertise

and experience. Specifying system properties was also challenging in the sense that

extreme care was needed to make sure that a formalised property represents what is ac-

tually meant. The exercise requires some expertise and experience. Once the properties

were stated, checking them was done in seconds.

10.2 Recommendations and Future work

The SIS presented in this study is not complete. Only clinical mode was considered in detail.

The next step is to expand the models, incoperating physics and tests modes. However, this

phase has already been taken care of as the models are designed in such a way that it would

be easy to expand without changing the design.

It is recommended that the combination of Uppaal and Pvs can be an ideal when expanding

the model as the system is a real-time system and both tools are good at modeling such

systems. In order to be able to use Uppaal effectively, a computer with a maximum RAM

available is needed.
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