
Network Reliability as a result of

Redundant Connectivity

Francois J. A. Binneman

Thesis presented in partial fulfilment of the requirements for the degree
Master of Science

in the inter-departmental programme of Operational Analysis
at the University of Stellenbosch, South Africa

Supervisor: Prof JH van Vuuren March 2007

Stellenbosch University http://scholar.sun.ac.za

iii

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my own original work and
that I have not previously in its entirety or in part submitted it at any university for a degree.

Signature: Date:

Stellenbosch University http://scholar.sun.ac.za

iv

Abstract

There exists, for any connected graph G, a minimum set of vertices that, when removed, disconnects
G. Such a set of vertices is known as a minimum cut-set, the cardinality of which is known as the
connectivity number κ(G) of G. A connectivity preserving [connectivity reducing, respectively] spanning
subgraph G′ ⊆ G may be constructed by removing certain edges of G in such a way that κ(G′) = κ(G)
[κ(G′) < κ(G), respectively]. The problem of constructing such a connectivity preserving or reducing
spanning subgraph of minimum weight is known to be NP–complete.

This thesis contains a summary of the most recent results (as in 2006) from a comprehensive survey of
literature on topics related to the connectivity of graphs.

Secondly, the computational problems of constructing a minimum weight connectivity preserving or
connectivity reducing spanning subgraph for a given graph G are considered in this thesis. In particular,
three algorithms are developed for constructing such spanning subgraphs. The theoretical basis for each
algorithm is established and discussed in detail. The practicality of the algorithms are compared in terms
of their worst-case running times as well as their solution qualities. The fastest of these three algorithms
has a worst-case running time that compares favourably with the fastest algorithm in the literature.

Finally, a computerised decision support system, called Connectivity Algorithms, is developed which is
capable of implementing the three algorithms described above for a user-specified input graph.

Stellenbosch University http://scholar.sun.ac.za

v

Opsomming

Daar bestaan, vir enige samehangende grafiek G, ’n kleinste versameling punte wat, wanneer dit verwyder
word, G in komponente ontbind. So ’n versameling punte staan as ’n minimum snit-versameling bekend,
en die kardinaliteit daarvan staan as die samehangendheidsgetal κ(G) van G bekend. ’n Samehangend-
heids-behoudende [samehangendheids-reduserende, repektiewelik] spangrafiek G′ ⊆ G kan gekonstrueer
word deur sekere lyne uit G op so ’n manier te verwyder dat κ(G′) = κ(G) [κ(G′) < κ(G), repektiewelik].
Die probleem om so ’n samehangendheids-behoudende of -reduserende spangrafiek van minimum gewig
te konstrueer, is NP–volledig.

Hierdie tesis bevat ’n opsomming van die mees onlangse resultate (soos in 2006) van ’n omvangryke
oorsig van literatuur oor onderwerpe verwant aan die samehangendheid van grafieke.

Tweedens word die berekeningsprobleme om ’n minimum-gewig samehangendheids-behoudende of -redu-
serende spangrafiek van ’n gegewe grafiek G te konstrueer, in hierdie tesis beskou. Daar word in die
besonder drie algoritmes vir die konstruksie van sulke spangrafieke ontwikkel. Die teoretiese grondslag
vir elke algoritme word daargestel en breedvoerig bespreek. Die praktiese nut van die algoritmes word
onderling vergelyk in terme van hul slegste–geval looptyd asook die kwaliteit van oplossings met hul
verkry. Die vinnigste van hierdie drie algoritmes het ’n slegste–geval looptyd wat gunstig met dié van
die vinnigste algoritme in die literatuur vergelyk.

Laastens word ’n besluitneming steunstelsel, genaamd Connectivity Algorithms, ontwikkel, wat die
vermoë het om die drie algoritmes soos bo beskryf, rekenaarmatig te implementeer vir ’n gebruiker-
gespesifiseerde toevoergrafiek.

Stellenbosch University http://scholar.sun.ac.za

vi

Acknowledgements

The author hereby wishes to express his gratitude towards the following for their support and guidance
during the writing of this thesis:

• My Heavenly Father, for His guidance and love, making this thesis possible. Soli Deo Gloria!

• Professor Jan van Vuuren for his guidance, dedication and time, and his valuable feedback through-
out this thesis.

• My family and friends for their loyal support during the good and the hard times.

Stellenbosch University http://scholar.sun.ac.za

Table of Contents

List of Figures xi

List of Tables xv

List of Algorithms xvii

Glossary xix

Reserved Symbols xxv

1 Introduction 1

1.1 Introduction to the problem . 1

1.2 Informal problem description . 1

1.3 Objectives of this thesis . 2

1.4 Thesis Layout . 2

2 Basic Concepts in Graph and Complexity Theory 3

2.1 Basic Graph Theoretic Concepts . 3

2.1.1 Walks, trails, paths and fans . 4

2.1.2 Neighbourhoods . 4

2.1.3 Isomorphisms and Subgraphs . 5

2.1.4 Adjacency matrices and edge weights . 6

2.1.5 Graph unions and joins . 7

2.1.6 Special Graphs . 7

2.1.7 Connectedness . 10

2.1.8 Vertex Splitting . 11

2.1.9 Independence number . 11

2.2 Basic Concepts in Complexity Theory . 12

2.2.1 Algorithmic complexity . 12

2.2.2 The classes P, NP and co-NP . 13

2.2.3 Polynomial time reducibility, NP-hardness and NP-completeness 14

2.2.4 Computation problems . 15

vii

Stellenbosch University http://scholar.sun.ac.za

viii Table of Contents

2.3 Chapter Summary . 16

3 Literature Survey 17

3.1 Connectivity and edge-connectivity . 17

3.2 Menger’s Theorem . 17

3.3 Computing κ(G) and λ(G) . 19

3.4 Computing λ(G) with high probability . 19

3.5 k-Connected and k-Edge-Connected Graphs . 20

3.6 Construction of k-connected and k-edge connected graphs 22

3.6.1 Construction from basic graphs . 23

3.6.2 Construction by adding edges . 23

3.6.3 Expansion of a k-connected graph . 23

3.7 Minimally and critically connected graphs . 24

3.8 Disconnecting a graph into more than two components . 25

3.9 The average connectivity number of a graph . 26

3.10 Uniformly connected graphs . 28

3.11 Construction using approximation algorithms . 29

3.12 Chapter Summary . 29

4 Spanning Subgraphs with Connectivity Number ≤ k 31

4.1 Finding the connectivity number of a graph . 31

4.2 Finding a minimum cut-set of a graph . 32

4.2.1 Working of Algorithm Cut-Vertex Set . 32

4.2.2 Time Complexity of Algorithm Cut-Vertex Set . 35

4.3 Finding disjoint paths in a graph . 36

4.3.1 Ford’s Algorithm . 36

4.3.2 Shortest Augmenting Path Algorithm . 38

4.3.3 Converting a graph to a directed graph . 41

4.3.4 Constructing internally disjoint paths for a directed graph 42

4.3.5 Putting it all together . 46

4.4 Implementation of Whitney’s Theorem . 49

4.5 Removing the most expensive edge first . 51

4.5.1 Construction of a spanning subgraph G′ of G, with κ(G′) = κ(G) 51

4.5.2 Construction of a spanning subgraph G′ of G, with κ(G′) < κ(G) 52

4.6 Constructing spanning subgraphs by means of F (x, U) fans 55

4.6.1 Working of Algorithm Fan . 55

4.6.2 Construction of a spanning subgraph G′ of G, with κ(G′) ≤ κ(G) 60

4.7 Comparison of Algorithms . 64

4.8 Chapter Summary . 65

Stellenbosch University http://scholar.sun.ac.za

Table of Contents ix

5 Decision Support System 67

5.1 Technical aspects & limitations of Connectivity Algorithms 67

5.2 Introduction to the system components . 68

5.3 A worked example . 69

5.3.1 Implementation of Algorithm Whitney . 72

5.3.2 Implementation of Algorithm MEEF . 76

5.3.3 Implementation of Algorithm Fan . 79

5.3.4 Summary of results obtained . 83

5.4 Case study: The connectivity of a Spider’s Web . 84

5.5 Chapter Summary . 91

6 Conclusion 93

6.1 Thesis Summary . 93

6.2 Future Work . 94

References 95

A How to use the CD 99

B Source Code for the Program Connectivity Algorithms 101

Index 131

Stellenbosch University http://scholar.sun.ac.za

x Table of ContentsStellenbosch University http://scholar.sun.ac.za

List of Figures

2.1 Graphical representation of an undirected and directed graph 3

2.2 Graphical representation of an F (x, U) fan . 4

2.3 Isomorphism and equality in graphs . 5

2.4 A subgraph, spanning subgraph and induced subgraph of a graph 6

2.5 A subdigraph, spanning subdigraph and induced subdigraph of a digraph 6

2.6 The deletion of a vertex and an edge subset . 7

2.7 The adjacency matrix of a graph . 7

2.8 The union and join of two graphs . 8

2.9 Graphical representation of a path and a cycle . 8

2.10 Illustration of a regular graph and a perfect matching 8

2.11 Graphical representation of a null graph of order 10 . 9

2.12 A complete graph . 9

2.13 Graphical representation of multipartite and bipartite graphs 9

2.14 Illustration of a tree . 10

2.15 Illustration of the notion of a wheel . 10

2.16 Graphical representation of a pseudograph. 10

2.17 Components in a graph. 11

2.18 A bridge and cut-vertex in a connected graph. 11

2.19 Illustration of a 3-vertex splitting . 12

2.20 The independence number of a graph and the notion of a clique. 12

2.21 The classes P, NP and co-NP. 13

2.22 The classes P, NP, co-NP and NP-complete. 14

3.1 The graph G17 . 18

3.2 The graph G18 . 18

3.3 The cycle C4 . 20

3.4 The 3-connected hypercube Q3 . 21

3.5 The graph G19 accompanied with an orthogonal representation of the graph 22

3.6 Graphical representation of graphs with an edge-connectivity number of 1 25

3.7 The graphs G21 and G22 . 27

xi

Stellenbosch University http://scholar.sun.ac.za

xii List of Figures

3.8 Graphical representation of graphs of order and size 5. 27

4.1 The graphs G25 and G′
25 . 33

4.2 Progress of the calculation of the distance labels for the graph G26 38

4.3 Maximum flow operations on the graph G27 . 40

4.4 Conversion of an undirected graph to a directed graph 42

4.5 The adjacency matrices of the graphs G28 and G′
28 . 42

4.6 The graphs G29 and G′
29 and path augmentation steps of Algorithm 6 44

4.7 The symmetric traversal matrix arcCounter . 46

4.8 The graph G30 and steps taken by Algorithm 9. 47

4.9 Obtaining internally disjoint paths in the graph G30 . 48

4.10 Graphical representations of the graphs G31 and G′
31 . 50

4.11 The graph G32 . 52

4.12 Graphical representations of the cases considered in Theorem 4.1 54

4.13 Graphical representations of the graphs relevant to Example 4.11 55

4.14 Graphical representations of the cases considered in Theorem 4.3 57

4.15 Tree representation of the cases considered in Theorem 4.3 58

4.16 The graph G34 and spanning subgraph G′
34 . 60

4.17 Graphical representation of the different steps of Algorithm 15 62

4.18 Different versions of the graph G′′
34, obtained as output from Algorithm 15 63

5.1 Main window of the program Connectivity Algorithms 68

5.2 The window, Load New Graph . 69

5.3 The graph G34 . 70

5.4 The constructed adjacency matrix for the graph G34 . 70

5.5 The coordinates for the vertices of the graph G34 . 70

5.6 Visual representation of the loading process of the file testgraph.xls 71

5.7 The graph G34 . 71

5.8 The graph G34 (with a minimum cut-set) . 72

5.9 The window Enter the desired connectivity number . 72

5.10 Notification window stating that a cheaper spanning subgraph could not be constructed 72

5.11 The file testgraphOutput.xls, displaying an adjacency matrix 73

5.12 The 4-connected spanning subgraph of G34 constructed using Whitney’s Algorithm . . . 73

5.13 The 3-connected spanning subgraph of G34 constructed using Algorithm Whitney 74

5.14 The 2-connected spanning subgraph of G34 constructed using Algorithm Whitney 74

5.15 The 1-connected spanning subgraph of G34 constructed using Algorithm Whitney 75

5.16 The 0-connected spanning subgraph of G34 constructed using Algorithm Whitney 75

5.17 The 5-connected spanning subgraph of G34 constructed using Algorithm MEEF 76

5.18 The 4-connected spanning subgraph of G34 constructed using Algorithm MEEF 76

Stellenbosch University http://scholar.sun.ac.za

List of Figures xiii

5.19 The 3-connected spanning subgraph of G34 constructed using Algorithm MEEF 77

5.20 The 2-connected spanning subgraph of G34 constructed using Algorithm MEEF 77

5.21 The 1-connected spanning subgraph of G34 constructed using Algorithm MEEF 78

5.22 The 0-connected spanning subgraph of G34 constructed using Algorithm MEEF 78

5.23 The 5-connected spanning subgraph of G34 constructed using Algorithm Fan 79

5.24 The 4-connected spanning subgraph of G34 constructed using Algorithm Fan 79

5.25 The 3-connected spanning subgraph of G34 constructed using Algorithm Fan 80

5.26 The 2-connected spanning subgraph of G34 constructed using Algorithm Fan 80

5.27 The 1-connected spanning subgraph of G34 constructed using Algorithm Fan 81

5.28 The 0-connected spanning subgraph of G34 constructed using Algorithm Fan 81

5.29 Graphical representation of a graph that does not have a complete cut-set 82

5.30 A message notifying the user that no complete cut-set exists in the input graph 82

5.31 The Output listing all minimum cut-sets in the input graph 82

5.32 Graphical representation of the k-connectivity level vs. the weight improvement 83

5.33 Graphical representation of the connectivity number vs. the weight improvement 84

5.34 Case Study: Graphical representation of the file Spider21.xls depicting a spider’s web . . 84

5.35 Case Study: The 2-connected spanning subgraph constructed using Algorithm MEEF . 85

5.36 Case Study: The 1-connected spanning subgraph constructed using Algorithm MEEF . 86

5.37 Case Study: The 0-connected spanning subgraph constructed using Algorithm MEEF . 86

5.38 Case Study: The 2-connected spanning subgraph constructed using Algorithm Fan . . . 87

5.39 Case Study: The 1-connected spanning subgraph constructed using Algorithm Fan . . . 87

5.40 Case Study: The 3-connected spanning subgraph constructed using Algorithm MEEF . 88

5.41 Case Study: The 2-connected spanning subgraph constructed using Algorithm MEEF . 88

5.42 Case Study: The 1-connected spanning subgraph constructed using Algorithm MEEF . 89

5.43 Case Study: The 0-connected spanning subgraph constructed using Algorithm MEEF . 89

5.44 Case Study: The 2-connected spanning subgraph constructed using Algorithm Fan . . . 90

5.45 Case Study: The 1-connected spanning subgraph constructed using Algorithm Fan . . . 90

Stellenbosch University http://scholar.sun.ac.za

xiv List of FiguresStellenbosch University http://scholar.sun.ac.za

List of Tables

3.1 Bounds of (p + k − 2)/2 on δ(G) in Theorem 3.10 . 22

3.2 Exact values of q = qn,3(p) for ` = 3, n ∈ {1, . . . , 5} as well as bounds on q6,3(p) 26

4.1 The minimum cut-sets of the graph G7 in Example 4.1 34

4.2 Benchmark tests for Algorithm Cut-Vertex Set on complete graphs 35

4.3 The list of paths used in the construction of the graph G′
31 50

4.4 The list of paths constructed using Algorithm 14 and inserted into the graph G′
34 61

4.5 The list of paths used to construct the graph G′′
34 . 62

4.6 Summary of the worst-case running times of Algorithms Whitney, MEEF and Fan . . . 64

5.1 The weight improvement obtained for each k-connected graph 83

5.2 The weight improvement obtained for each subgraph G constructed, such that κ(G) = k 84

A.1 Description of a list of graphs included in the folder Graphs 99

xv

Stellenbosch University http://scholar.sun.ac.za

xvi List of TablesStellenbosch University http://scholar.sun.ac.za

List of Algorithms

1 Dclique(G, k) . 14

2 Cclique(G) . 15

3 Computing κ(G) of a graph G . 31

4 Cut-Vertex Set . 33

5 Ford’s Algorithm . 37

6 Shortest Augmenting Path Algorithm . 39

7 Undirected Graph to Directed Graph . 42

8 Constructing Internally Disjoint Paths in a Directed Graph 45

9 Finding Internally Disjoint Paths in an Undirected Graph 46

10 Directed Paths to Undirected Paths . 48

11 Whitney’s Algorithm . 50

12 MEEF: Connectivity Preserving . 52

13 MEEF: Connectivity Reducing . 54

14 Fan: Connectivity Preserving . 56

15 Fan: Connectivity Reducing . 61

xvii

Stellenbosch University http://scholar.sun.ac.za

xviii List of AlgorithmsStellenbosch University http://scholar.sun.ac.za

Glossary

Acyclic: A graph G is called acyclic if it does not contain any cycles.

Adjacency Matrix: Let G be a graph whose vertices have been (arbitrarily) ordered V = (v1, v2, . . . , vp).
The adjacency matrix A = [aij] of G is a p×p matrix with entries aij = 0 if vivj /∈ E, else aij = wij ,
where wij is the weight of the edge joining the vertices vi and vj .

Adjacent: Two vertices of a graph G are said to be adjacent if there exists an edge of G joining the two
vertices.

Algorithmic Complexity: Algorithmic complexity is a measure of the number of basic operations per-
formed, and the memory expended by an algorithm. If a problem cannot (with current knowledge)
be solved by a polynomial time algorithm, it is referred to as an intractable or hard problem,
otherwise it is called a tractable problem.

Arc: An arc e = {xy} is considered to be a directed edge from vertex x to vertex y; vertex y is called the
head and vertex x is called the tail of the edge.

Arc Set: The set A(D), comprised of all the arcs of a digraph D, is called the arc set of D.

Average Connectivity Number: The average connectivity number κ(G) of a graph G is the expected
number of vertices that have to be removed in order to disconnect an arbitrary pair of non-adjacent

vertices in G. Hence, κ(G) =
P

u,v
κ(u,v)

(p

2)
, for all vertices u and v in V (G).

Bipartite: An n-partite graph is called bipartite if n = 2.

Bridge: An edge e is called a bridge of a graph G if the graph G− e has more components than does G.

Cardinality: The number of elements in a set is called its cardinality.

Circuit: A circuit is a closed trail.

Clique: A clique is a complete subgraph of a graph G that is not an induced subgraph of any other
complete subgraph of G.

Clique Number: The maximum order of a clique in a graph G is called the clique number of G, denoted
ω(G).

Closed Neighbourhood: The closed neighbourhood of a vertex v in a graph G is the set of all vertices
adjacent to v in G, as well as v itself, and is denoted NG[v]. The closed neighbourhood of a vertex
set S in G is defined as NG[S] = {NG[v] : v ∈ S}.

Closed Walk: A closed walk is a walk in which the start and end vertices are the same.

Complement: The complement G of a graph G is the graph for which V (G) = V (G) and e ∈ E(G) if
and only if e 6∈ E(G).

Complete Graph: A complete graph of order n, denoted by Kn, is a graph in which every pair of
vertices are adjacent.

xix

Stellenbosch University http://scholar.sun.ac.za

xx Glossary

Component: A subgraph H of a graph G is called a component of G if H is a maximally connected
subgraph of G.

Connected: For vertices u and v of a graph G, u is said to be connected to v if G contains a u− v path.
The graph G is called a connected graph if every pair of its vertices u and v are connected.

Connectivity Number: The Connectivity number κ(G) of a graph G is the minimum cardinality of a
set S of vertices for which G \ S is disconnected or is the trivial graph.

Connectivity Sequence: The connectivity sequence s of a graph G of order p is the sequence
s: κ2(G), κ3(G), . . . , κp(G), where κi(G) denotes the minimum cardinality of a set of vertices whose
removal from G produces a graph with at least i components or a graph with fewer than i vertices.

Critically k-connected: A graph G is said to be critically k-connected if κ(G) ≥ k and κ(G − v) < k
for every vertex v ∈ V (G), where κ(G) denotes the connectivity number of the graph G.

Critically k-edge-connected: A graph G is said to be critically k-edge-connected if λ(G) ≥ k and
λ(G − v) < k for every vertex v ∈ V (G), where λ(G) denotes the edge-connectivity number of the
graph G.

Cut-set: A cut-set is a set of vertices whose removal disconnects a connected graph.

Cycle: A cycle is a walk of length n ≥ 3 in which the begin- and end-vertices are the same, but in which
no other vertices repeat. A graph consisting of a single cycle of length n is so called and denoted
Cn.

Degree: The degree of a vertex v of a graph G is the cardinality of the open neighbourhood of v in G,
and is denoted degGv.

Degree Sequence: A sequence d1, d2, . . . , dn of nonnegative integers is called a degree sequence of a
graph G if the vertices of G can be labelled v1, v2, . . . , vn such that deg vi = di.

Deletion: The deletion of a non-empty vertex subset S ⊆ V (G) from a graph G is the subgraph with
vertex set V (G)\S and edge set {uv ∈ E(G) : u, v 6∈ S}. Such a subgraph is written as G \ S. If a
single vertex v is removed from the set V (G), the resulting subgraph may be written as G− v. For
any edge subset J ⊆ E(G) the deletion of the edge set J from G, denoted by G \ J , is the spanning
subgraph of G with edge set E(G)\J . If a single edge e is removed from the set E(G), the resulting
subgraph may be written as G− e.

Digraph: Short for directed graph.

Directed Graph: A directed graph is an ordered pair (V, A), where V is a set of vertices and A is a set
of ordered pairs of vertices called arcs.

Disconnected: A graph that is not connected is said to be disconnected.

Edge: An edge is a 2-element subset of the vertex set of a graph. Edges are indicated by inter-connecting
lines between vertices in graphical representations of a graph.

Edge-connectivity Number: The edge-connectivity number λ(G) of a graph G is the minimum cardi-
nality of a set SJ of edges for which G \ SJ is disconnected or is the trivial graph.

Edge Set: The set E(G), comprised of all the edges of a graph G, is called the edge set of G.

Equal: Two graphs G and H are said to be equal, written as G = H , if V (G) = V (H) and E(G) = E(H).

End-vertex: If the degree of a vertex is 1, then it is called an end-vertex.

Forest: A graph that is acyclic, is called a forest, and consists of a number of disconnected trees.

Graph: A graph is a finite, nonempty set of elements, called vertices, together with a (possibly empty)
set of 2-element subsets of the vertex set called edges. A graph may be represented graphically as
a set of points with inter-connecting lines.

Stellenbosch University http://scholar.sun.ac.za

Glossary xxi

Incident: A vertex v and edge e of a graph G is said to be incident, if e joins v to another vertex in G.

Independent Set: A set of vertices in a graph, none of which are connected by an edge.

Independence Number: The maximum cardinality over all maximal independent sets of a graph G is
called the independence number of G and is denoted β(G).

Induced Subdigraph: For a non-empty subset S ⊆ V (D) of a digraph D the so-called induced subdi-
graph of S in D, denoted 〈S〉D, is the subdigraph of D with vertex set V (〈S〉D) = S and arc set
A(〈S〉D) = {uv ∈ A(D) : u, v ∈ S}.

Induced Subgraph: For a non-empty subset S ⊆ V (G) of a graph G the so-called induced subgraph of
S in G, denoted 〈S〉G, is the subgraph of G with vertex set V (〈S〉G) = S and edge set E(〈S〉G) =
{uv ∈ E(G) : u, v ∈ S}.

Isomorphic: Two graphs G and H are said to be isomorphic, written as G ∼= H , if there exists a
one-to-one mapping φ : V (G)→ V (H) such that uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(H).

Join: The join of two graphs G1 and G2, written as G1 + G2, is defined as the union of G1 and G2

together with all edges uv for which u ∈ V (G1) and v ∈ V (G2). Two vertices of a graph G are said
to be joined in G if the edge uv is contained in the edge set of G.

k-connected: A connected graph G is said to be k-connected (for some k ≥ 1) if the removal of fewer
than k vertices always produces a nontrivial connected graph.

k-edge-connected: A connected graph G is said to be k-edge-connected (for some k ≥ 1) if the removal
of fewer than k edges always produces a nontrivial connected graph.

Loop: A loop is an edge that joins a vertex to itself.

`-connectivity Number: For an integer ` ≥ 2 and a graph G of order p ≥ `, the `-connectivity number
κ`(G) is the minimum cardinality of a set U of vertices whose removal from G produces a graph
with at least ` components or a graph with fewer than ` vertices.

`-edge-connectivity Number: For an integer ` ≥ 2 and a graph G of order p ≥ `, the `-edge-
connectivity number λ`(G) is the minimum cardinality of a set S of edges whose removal from
G produces a graph with at least ` components.

`-way Cut: For an integer ` ≥ 2, a `-way cut of a graph G is a partition of V (G) into ` non-empty
disjoint subsets {V1, V2, . . . , V`}.

Maximal Independent Set: An independent set S of vertices in a graph G is called a maximal inde-
pendent set if S is not a proper subset of any other independent set of G.

Minimally k-connected: A graph G is said to be minimally k-connected if κ(G) ≥ k and κ(G− e) < k
for every edge e ∈ E(G).

Minimally k-edge-connected: A graph G is said to be minimally k-edge-connected if λ(G) ≥ k and
λ(G− e) < k for every edge e ∈ E(G).

Minimum `-way Cut: A minimum `-way cut is a `-way cut that minimizes the weight sum of the
edges between the non-empty disjoint subsets {V1, V2, . . . , V`} into which V (G) is divided.

Multipartite: An n-partite graph is called multipartite if n > 2.

n-partite: A graph G is called n-partite, for some n ≥ 2, if the vertex set of G may be partitioned into
n subsets, such that no edge of G joins vertices in the same subset.

Null Graph: A null graph is a graph with no edges.

Open Neighbourhood: The open neighbourhood of a vertex v in a graph G is the set of all vertices
adjacent to v in G, and is denoted NG(v). The open neighbourhood of a set S is defined as
NG(S) = {NG(v) : v ∈ S}.

Stellenbosch University http://scholar.sun.ac.za

xxii Glossary

Open Walk: An open walk is a trail in which the start and end vertices differ.

Order: The cardinality of the vertex set of a graph G is called the order of G.

Path: A walk in which no vertex is repeated is called a path. A graph solely consisting of a path of order
n is so called and denoted Pn.

Pseudograph: A pseudograph G is a graph in which both multiple edges and loops are permitted.

Regular: A graph G is called r-regular if each vertex of G has degree r, for some r ∈ N0. A graph is also
referred to as regular if it is r-regular for some r ∈ N0.

Sequence of Strong Connectivity Numbers: The sequence of strong connectivity numbers s for a
digraph D of order p is the sequence s: κ2(D), κ3(D), . . . , κp(D), where κi(D) denotes the minimum
cardinality of a set of vertices whose removal from D produces a digraph with at least i strong
components or a digraph with at most i− 1 vertices.

Size: The cardinality of the edge set of a graph G is called the size of G.

Spanning Subdigraph: A digraph H is called a spanning subdigraph of D if V (H) = V (D) and A(H) ⊆
A(D).

Spanning Subgraph: A graph H is called a spanning subgraph of G if V (H) = V (G) and E(H) ⊆ E(G).

Spanning Forest: A spanning forest of a graph G is a spanning graph of G for which every component
is a tree.

Spanning Tree: A spanning tree of a graph G is a connected, acyclic subgraph containing all the vertices
of G.

Star: The bipartite graph K1,n
∼= Kn,1 is a often called an n-star for some n ∈ N.

Strong Component: A strong component of a digraph D is a maximal induced subdigraph of D which
is strongly connected.

Strong Independence Number: The strong independence number βS(D) of a digraph D is the max-
imum cardinality of a set S of vertices of D for which the subdigraph 〈S〉D is acyclic.

Strong `-connectivity Number: The strong `-connectivity number κ`(D) of a digraph D denotes the
minimum cardinality of a a set of of vertices whose deletion from D produces a digraph with at
least ` strong components or a digraph with at most `− 1 vertices.

Strong `-arc-connectivity Number: The strong `-arc-connectivity number λ`(D) of a digraph D as
the minimum number of arcs whose deletion from D produces a digraph with at least ` strong
components or a digraph with at most `− 1 vertices.

Strongly Connected: A digraph D is strongly connected if, for every pair of vertices u and v of D,
there is a directed path from u to v.

Strongly (n, `)-connected: A digraph D is said to be strongly (n, `)-connected if κ`(D) ≥ n for some
n ≥ 0.

Subdigraph: A digraph H is called a subdigraph of a digraph if V (H) ⊆ V (D) and
A(H) ⊆ {uv ∈ A(D) : u, v ∈ V (H)}.

Subgraph: A graph H is called a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ {uv ∈ E(G) : u, v ∈ V (H)}.

Trail: A walk in which no edge is repeated is called a trail.

Tree: A tree is an acyclic connected graph.

Trivial Graph: A graph with only one vertex is called a trivial graph.

Trivial Tree: A tree is trivial if it consists of only one vertex.

Stellenbosch University http://scholar.sun.ac.za

Glossary xxiii

Undirected Graph: A graph with undirected edges.

Union: The union of two graphs G1 and G2, written as G1 ∪G2, is the graph G with vertex set V (G) =
V (G1) ∪ V (G2) and edge set E(G) = E(G1) ∪ E(G2).

Vertex: A vertex is a combinatorial element in terms of which a graph is defined. Vertices are indicated
by points in a graphical representation of a graph.

Vertex Connectivity Number: The (vertex) connectivity number κ(G) of a graph G is the minimum
cardinality of a set U of vertices for which G− U is disconnected or is the trivial graph.

Vertex Set: The set comprised of all vertices of a graph G, is called the vertex set of G.

Walk: A walk in a graph G is an alternating sequence of incident vertices and edges. The number of
edges in the walk defines its length, while the number of vertices defines its order.

Weight: The weight of an edge is a number wij associated with the edge ij of a graph G.

Wheel: A wheel Wn of order n may be defined as the join of a cycle of order n with another vertex,
sometimes referred to as the hub of the wheel.

Stellenbosch University http://scholar.sun.ac.za

xxiv GlossaryStellenbosch University http://scholar.sun.ac.za

Reserved Symbols

A(G) Adjacency matrix of a graph G.
β(G) The independence number of a graph G.
βS(D) The strong independence number of a digraph D.
Cn A cycle of order n.
degGv The degree of a vertex v in a graph G.
∆(G) The maximum vertex degree of a graph G.
δ(G) The minimum vertex degree of a graph G.
E(G) The edge set of a graph G.
G A graph G = (V, E), with vertex set V and edge set E.
G The complement of a graph G.
k(G) The number of components of a graph G.
κ(u, v) The maximum number of internally disjoint u-v paths of a given graph.
κ(G) The (vertex) connectivity number of a graph G.
κ(G) The average (vertex) connectivity number of a graph G.
κ`(D) The strong `-connectivity number of a digraph D.
κ`(G) The `-connectivity number of a graph G.
Kn A complete graph of order n.
Kp1,p2,...,pt

A complete multipartite graph, with partite set cardinalities
p1 ≤ p2 ≤ · · · ≤ pt, t ∈ N.

λ(G) The edge connectivity number of a graph G.
λ`(D) The strong `-arc-connectivity number of a digraph D.
λ`(G) The `-edge-connectivity number of a graph G.
µG(p, q) The maximum average connectivity number of a graph G.
NG(v) The open neighbourhood of a vertex v in a graph G.
NG[v] The closed neighbourhood of a vertex v in a graph G.
NG(S) The open neighbourhood of a set S ⊆ V (G) in a graph G.
NG[S] The closed neighbourhood of a set S ⊆ V (G) in a graph G.
ω(G) The clique number of a graph G.
p The order of a given graph — the graph will be clear from context.
Pn A path of order n.
q The size of a given graph — the graph will be clear from context.
V (G) The vertex set of a graph G.

xxv

Stellenbosch University http://scholar.sun.ac.za

xxvi Reserved SymbolsStellenbosch University http://scholar.sun.ac.za

Chapter 1

Introduction

1.1 Introduction to the problem

It is common practice to incorporate some level of redundancy as fail-safe measure when designing
networks for a variety of applications. When incorporating such redundancy into a network there are
usually two conflicting objectives: (i) to build in enough redundancy so as to guarantee a certain minimum
threshold of fail-safeness in the network, and (ii) to limit the level of redundancy so as to achieve cost-
effectiveness. An optimal level of redundancy is therefore a trade-off between achieving these objectives.

Consider, for instance, the road network in a large city. Roadways should be designed so that one can
drive from any part of the city to any other part, without making too much of a detour. Also, the
planning of which parts of the city to join together by means of roads is very important in terms of
efficient traffic flow. Furthermore, if the shortest or most suitable road to one’s destination has been
damaged or rendered inaccessible due to traffic congestion, one would expect that there should be at
least one other road that one is able to take to one’s destination — hence a level of redundancy should
be present in the road network. Another important aspect of road networks, is that they must be
constructed cost effectively. Building such a network requires considerable amounts of capital; hence
care should be taken not to incorporate excessive levels of redundancy.

Another example of this conflicting bi-objective phenomenon, but on a larger scale, is present in the
design of a national electricity grid. In such a grid cities and power stations have to be interconnected
by means of high-voltage power lines. In this application the aim of the national service provider is
typically to interconnect the cities and power stations in such a way that, should some number of power
lines or power stations (not exceeding a planning threshold) fail simultaneously, all cities still receive
electricity from power stations via some other (functional) infrastructure components. However, at the
same time the service provider typically aims to minimise the total length of high voltage power lines
for the required level of fail-safeness (due to the high cost per unit length of such power lines).

Attempts at achieving a suitable trade-off between the above-mentioned conflicting network design ob-
jectives typically involve an in-depth analysis of those parts of the network that are most vulnerable
in the sense that if such network parts fail, then the network is disconnected into a number of disjoint
components.

1.2 Informal problem description

Networks, such as the ones described above, may be modelled mathematically by means of graphs in
which infrastructure hub components, such as street intersections, cities or power stations, are represented
by vertices, and where interconnecting network components, such as roads or power lines, are represented
by means of edges. In such graphs the edges are typically weighted, indicating the cost in some sense of
the corresponding interconnecting network components.

1

Stellenbosch University http://scholar.sun.ac.za

2 CHAPTER 1. INTRODUCTION

The problems considered in this thesis are (i) to develop a methodology capable of determining which
edges in the model graph should be kept operational at all costs so as to retain a given level of connectivity,
and (ii) to answer the question as to which edges should be removed (from the point of view of cost-
efficiency in terms of the graph weights) during the constructing of a subgraph with a predetermined,
smaller level of connectivity than that of an original graph. It is known that the problem of finding a
shortest subgraph with a predetermined, smaller level of connectivity than that of an original graph is
NP-complete (see Kortsarz & Nutov [34]).

1.3 Objectives of this thesis

Seven objectives are pursued in this thesis:

Objective I: To introduce a framework within which the above mentioned connectivity problems may
be studied and solved, and to provide the reader with precise definitions of the various concepts
that are required in this field of study.

Objective II: To provide the reader with a thorough survey of literature on topics related to the
connectivity of graphs, highlighting the latest results, algorithms and avenues of investigation (as
in 2006).

Objective III: To develop the prerequisite theory underlying any algorithms that form the basis of
constructing subgraphs of a specified connectivity level from a given graph.

Objective IV: To develop and implement an algorithm or algorithms capable of constructing a lower
weighted subgraph of a given graph, without reducing the level of connectivity.

Objective V: To extend Objective III, by developing and implementing an algorithm or algorithms
capable of constructing a lower weighted subgraph with a smaller, user-defined level of connectivity
than that of a given graph.

Objective VI: To draw a comparison between the algorithms in Objectives IV and V in terms of their
worst-case running times and solution qualities.

Objective VII: To develop a decision support system capable of implementing the algorithms in Ob-
jectives IV and V for user-specified input graphs.

1.4 Thesis Layout

This thesis consists of five chapters, in addition to this introductory chapter. In Chapter 2 an overview of
basic graph and complexity theoretic concepts used throughout the remainder of this thesis is given. A
literature review of topics related to graph connectivity is given in Chapter 3. The main contributions of
this thesis may be found in Chapters 4 and 5. Three algorithms capable of constructing a lower weighted
subgraph of a given graph with a predefined level of connectivity are developed in Chapter 4. The
prerequisite theory underlying each algorithm is also presented in Chapter 4. A newly designed decision
support system (DSS) is presented in Chapter 5. This DSS is based on the algorithms of Chapter 4.
Finally, the thesis closes with a summary of the contributions made as well as an indication of possible
future avenues of investigation in Chapter 6.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2

Basic Concepts in Graph and

Complexity Theory

The graph theoretic definitions required for this thesis are introduced in §2.1, and an overview of basic
concepts in complexity theory is given in §2.2.

2.1 Basic Graph Theoretic Concepts

A graph G = (V, E) is a finite, nonempty set V (G), together with a (possibly empty) set E(G) of
2-element subsets of V (G). The elements of V are called vertices, while those of E are called edges.
The number of vertices in a graph G is called the order of G, denoted by p(G) = |V (G)|, while the
number of edges in G is called the size of G, denoted by q(G) = |E(G)|. If no ambiguity exists, the
order and size of a graph are simply referred to as p and q respectively. A graph of order p and size
q is often referred to as a (p, q)-graph. A graph with only one vertex (a (1, 0)-graph) is called a trivial
graph. If the unordered pair e = {u, v} is an edge of the graph G, informally written as e = uv,
it is said that the vertices u and v are adjacent in G, that the edge e joins u and v, and that e is
incident with the vertices u and v. A graph having no loops, or multiple edges between the same pair
of vertices is referred to as a simple graph. A graphical representation of an order 7 graph G1 of size
9 is shown in Figure 2.1 (a). The vertex set is V (G1) = {v1, v2, v3, v4, v5, v6, v7} and the edge set is
E(G1) = {v1v6, v1v3, v1v7, v2v4, v3v5, v3v6, v3v7, v4v5, v5v6}. The vertices v1 and v6 are adjacent in G1,
while v1 and v2 are not. A directed graph is a nonempty set of vertices V (G) and a possibly empty
set E(G) of ordered pairs from V (G). Directed graphs are often called digraphs for short. A graphical
representation of a digraph G2 consisting of 6 vertices and 7 directed edges is shown in Figure 2.1 (b).

v1

v2

v3

v4

v5

v6

v7

(a) The graph G1.

v1

v2 v3

v4 v5

v6

(b) The digraph G2.

Figure 2.1: Graphical representation of an undirected (G1) and directed (G2) graph.

3

Stellenbosch University http://scholar.sun.ac.za

4 CHAPTER 2. BASIC CONCEPTS IN GRAPH AND COMPLEXITY THEORY

2.1.1 Walks, trails, paths and fans

A walk in a graph G is an alternating sequence of vertices and edges

v0, e1, v1, e2, v2, . . . , vi−1, ei, vi, . . . , vn−1, en, vn,

also called a v0-vn walk, such that ei = vi−1vi for i = 1, 2, . . . , n. The number of edges in the walk defines
its length, while the number of vertices defines its order. Non-endpoint vertices of a walk are known as
internal vertices. When referring to a walk, the edges are often omitted where ambiguity is impossible.
An example of a walk in the graph G1 in Figure 2.1(a) is v5, v6, v3, v5, v4. A u-v walk is referred to as
an open walk if u 6= v or as a closed walk if u = v. A walk in which no edge is repeated is called a trail.
A closed trail is referred to as a circuit. A walk in which no vertex is repeated is called a path. A cycle
is a walk of length n ≥ 3 in which the begin- and end-vertices, v0 and vn, are the same, but in which no
other vertices repeat. Considering the graph G1 in Figure 2.1(a), the (open) walk v1, v7, v3 is a path of
order 3 and length 2, while v1, v7, v3, v5, v6, v3, v1 is a circuit. The vertices v5, v6, v3, v5 form a cycle of
length 3.

A set of paths is said to be internally disjoint if none of the paths contain internal vertices of any of the
other paths. Consider the directed graph G2 shown in Figure 2.1 (b). Three v1-v6 paths exist, namely
P (1) = v1, v2, v3, v6, P (2) = v1, v2, v5, v6 and P (3) = v1, v4, v5, v6. Of these three, a maximum set of
internally disjoint paths consists of the two paths P (1) and P (3).

Let U be a subset of the vertices of a graph G and let x ∈ V (G) \U . An F (x, U) fan of G is a set of |U |
paths starting from x and ending in different vertices of the set U , of which any two paths are internally
disjoint. An F (x, U) fan is illustrated in Figure 2.2. Notice that none of the paths from x to the vertices
in U share internal vertices.

x

U

Figure 2.2: Graphical representation of an F (x, U) fan.

2.1.2 Neighbourhoods

The open neighbourhood of a vertex v in a graph G is defined as the set

NG(v) = {u ∈ V (G) : uv ∈ E(G)},

while the closed neighbourhood of v in G is defined as

NG[v] = NG(v) ∪ {v}.

The closed neighbourhood of a set S ⊆ V (G) is defined as N [S] = {N [v] : v ∈ S}, while the open
neighbourhood of a set S is defined as N(S) = N [S] \ S. For any vertex v in a graph G, the number
of vertices adjacent to v, i.e. |NG(v)|, is called the degree of v in G, denoted by degGv. Note that if
the reference to a graph G is clear from the context, the subscript is often omitted, hence written as
deg v only. For a directed graph, neigbours of a vertex v are classified as either an out-neighbour or
in-neighbour. A neighbour u of a vertex v in a directed graph G is an out-neighbour if the arc vu ∈ E(G).
Similarly, the vertex u is an in-neighbour if uv ∈ E(G). If both arcs uv and vu are present, then the
vertex u may be referred to as both an in- and an out-neighbour of the vertex v. If the degree of a vertex

Stellenbosch University http://scholar.sun.ac.za

2.1. Basic Graph Theoretic Concepts 5

is 0, it is called an isolated vertex, while if the degree is 1, it is called an end-vertex. The minimum
degree of the vertices in G is denoted by δ(G), while the maximum degree of these vertices is denoted by
∆(G). The degree sequence of a graph G is a sequence of nonnegative integers d1, d2, . . . , dn such that
the vertices of G can be labelled v1, v2, . . . , vn in such a way that deg vi = di. Referring to the graph
G1 in Figure 2.1, the open neighbourhood of the vertex v5 is NG1(v5) = {v3, v4, v6}, while its closed
neighbourhood is NG1 [v5] = {v3, v4, v5, v6}. The graph has no isolated vertices, but v2 is an end-vertex.
The minimum degree of G1 is therefore δ(G1) = 1, while the maximum degree is ∆(G1) = 4. The degree
sequence of G1 is 1, 2, 2, 2, 3, 3, 4 with respective vertex sequence v2, v1, v4, v7, v5, v6, v3.

The following theorem, often referred to as the Fundamental Theorem of Graph Theory, is probably one
of the most well-known results in the discipline and relates the sum total of the degrees and the size of
any graph.

Theorem 2.1 Let G be a (p, q)-graph, with V (G) = {v1, v2, . . . , vp}. Then
∑p

i=1 degGvi = 2q.

Proof: When the degrees of all the vertices are summed, each edge is counted twice, once for each of
the vertices that it joins. �

2.1.3 Isomorphisms and Subgraphs

Two graphs G and H are called isomorphic, written as G ∼= H , if there exists a one-to-one mapping
φ : V (G) → V (H) such that uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(H). The function φ is called
an isomorphism. If φ maps G onto itself, it is called an automorphism. Two graphs G and H are
said to be equal if V (G) = V (H) and E(G) = E(H). Therefore, equal graphs are isomorphic, but the
converse is not true. The graph G4 shown in Figure 2.3(b) is isomorphic (but not equal) to G3, shown
in Figure 2.3(a), while G5, shown in Figure 2.3(c), is both equal and isomorphic to G3.

v1

v2

v3v4

v5

(a) The graph G3.

v1

v2

v3v4

v5

(b) The graph G4 is isomorphic to G3.

v1

v2

v3 v4

v5

(c) The graph G5 is equal to G3.

Figure 2.3: Illustration of isomorphism and equality in graphs.

A graph H is called a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ {uv ∈ E(G) : u, v ∈ V (H)}, and is
called a spanning subgraph of G if V (H) = V (G) and E(H) ⊆ E(G). For a non-empty vertex subset
S ⊆ V (G) of a graph G the so-called induced subgraph of S in G, denoted by 〈S〉G, is the subgraph
of G with vertex set V (〈S〉G) = S and edge set E(〈S〉G) = {uv ∈ E(G) : u, v ∈ S}. The graph
shown in Figure 2.4(b) is an example of a subgraph of G6, shown in Figure 2.4(a), while the graph
in Figure 2.4(c) is a spanning subgraph of G6. Moreover, the induced subgraph 〈{v1, v2, v4, v5}〉G6 is
illustrated in Figure 2.4(d).

Similar concepts exist for digraphs. A digraph H is called a subdigraph of D if V (H) ⊆ V (D) and
A(H) ⊆ {uv ∈ A(D) : u, v ∈ V (H)}, and is called a spanning subdigraph of D if V (H) = V (D) and
A(H) ⊆ A(D). For a non-empty vertex subset S ⊆ V (D) of a digraph D the so-called induced subdigraph
of S in D, denoted by 〈S〉D, is the subgraph of D with vertex set V (〈S〉D) = S and arc set A(〈S〉D) =
{uv ∈ A(D) : u, v ∈ S}. The digraph shown in Figure 2.5(b) is an example of a subdigraph of D6,
shown in Figure 2.5(a), while the digraph in Figure 2.5(c) is a spanning subdigraph of D6. Moreover,
the induced subdigraph 〈{v1, v2, v4, v5}〉D6 is illustrated in Figure 2.5(d).

The deletion of a non-empty vertex subset S ⊆ V (G) from a graph G is the subgraph with vertex set
V (G)\S and edge set {uv ∈ E(G) : u, v 6∈ S}. Such a subgraph is denoted by G−S. For any edge subset

Stellenbosch University http://scholar.sun.ac.za

6 CHAPTER 2. BASIC CONCEPTS IN GRAPH AND COMPLEXITY THEORY

v1 v2

v3

v4v5

v6

(a) The graph G6.

v1 v2

v4v5

(b) A subgraph of G6.

v1 v2

v3

v4v5

v6

(c) A spanning subgraph of G6.

v1 v2

v4v5

(d) The induced subgraph 〈{v1, v2, v4, v5}〉G6

of G6.

Figure 2.4: Illustration of a subgraph, spanning subgraph and induced subgraph of graph.

v1 v2

v3

v4v5

v6

(a) The digraph D6.

v1 v2

v4v5

(b) A subdigraph of D6.

v1 v2

v3

v4v5

v6

(c) A spanning subdigraph of D6.

v1 v2

v4v5

(d) The induced subdigraph
〈{v1, v2, v4, v5}〉D6

of D6.

Figure 2.5: Illustration of a subdigraph, spanning subdigraph and induced subdigraph of digraph.

J ⊆ E(G) the deletion of the edge set J , denoted by G− J , is the spanning subgraph of G with edge set
E(G)\J . If only one edge e or vertex v is removed from a graph, the subgraph may also be denoted by
G− e or G− v respectively. Considering the graph G7 in Figure 2.6(a), with vertex subset S = {v1} and
edge subset J = {v1v2, v2v3, v3v4, v4v5, v5v1}, the subgraph G7−S (or equivalently G7− v1) is shown in
Figure 2.6(b), while G7 − J is shown in Figure 2.6(c).

2.1.4 Adjacency matrices and edge weights

Each edge e of a graph G may be assigned an edge weight, denoted by w(e). The weight can be seen as
some value lost or gained when moving from one vertex to the other joined by the edge e. For example,

Stellenbosch University http://scholar.sun.ac.za

2.1. Basic Graph Theoretic Concepts 7

v1

v2

v3v4

v5

(a) The graph G7.

v2

v3v4

v5

(b) G7 − S, for S = {v1}.

v1

v2

v3v4

v5

(c) G7 \ {v1v2, v2v3, v3v4, v4v5, v5v1}.

Figure 2.6: Illustration of the deletion of a vertex and an edge subset.

in a map that is represented by a graph, with cities as vertices and roads as edges, the weight of an
edge might represent the distance between the cities joined by e. Figure 2.7(a) shows a graph G8 with
edge weights displayed on the graph. The weights associated with the edge set of a graph G may be
represented on a computer in the form of an adjacency matrix, A(G), in which the entry in row i and
column j corresponds to the weight of edge vivj . If no edge exists, then the entry may either be taken
as zero or infinity, depending on how the adjacency matrix is to be used. The adjacency matrix for G8

is given in Figure 2.7(b). Notice that the adjacency matrix is symmetric for undirected graphs.

v1 v2

v3

v4v5

v6

1

1

2

2

3

4

9

v1 v2 v3 v4 v5 v6

v1

v2

v3

v4

v5

v6











0 2 0 0 0 0
2 0 3 4 0 2
0 3 0 0 0 9
0 4 0 0 1 0
0 0 0 1 0 1
0 2 9 0 1 0











(a) The graph G8. (b) The adjacencey matrix A(G8) of G8.

Figure 2.7: Illustration of the adjacency matrix of a graph.

2.1.5 Graph unions and joins

Graphs may be produced from other graphs in several ways. The union of two graphs F and H , denoted
by F ∪H , is the graph G with vertex set V (G) = V (F)∪V (H) and edge set E(G) = E(F)∪E(H). The
join of two graphs F and H is denoted by F +H which is the union of F and H , including all uv edges for
which u ∈ V (F) and v ∈ V (H). From the symmetry in the definition it follows that H1 ∪H2

∼= H2∪H1,
H1 + H2

∼= H2 + H1. As an illustration, the union and join operations between the two graphs G9 and
G10 depicted in Figures 2.8(a) and (b) are shown in Figures 2.8(c) and (d) respectively.

2.1.6 Special Graphs

A graph solely consisting of a path of order p is so called and denoted by Pp. A path that starts at some
vertex x and ends at a vertex y is sometimes referred to as an x-y path. Similarly, a graph consisting of a
single cycle of length p is so called and denoted by Cp. Paths and cycles are referred to as odd (or even)
if they have odd (or even) lengths. Graphical representations of an (odd) path P8 and (even) cycle C6

are shown in Figure 2.9.

A graph G is called r-regular if each vertex of G has degree r. A graph is referred to as regular if it is
r-regular for some r ∈ N0. Any 1-regular subgraph of G is called a matching of G. A matching of G
with the maximum number of vertices is called a maximum matching of G, while the matching number
ν(G) denotes the number of edges in a maximum matching of G. A perfect matching of G, if it exists, is
a matching of G containing all the vertices of G. The 3-regular graph G12 in Figure 2.10(a) possesses a
perfect matching, shown in Figure 2.10(b).

Stellenbosch University http://scholar.sun.ac.za

8 CHAPTER 2. BASIC CONCEPTS IN GRAPH AND COMPLEXITY THEORY

(a) The graph G9. (b) The graph G10.

(c) The union G9 ∪ G10. (d) The join G9 + G10.

Figure 2.8: Illustration of the union and the join of two graphs.

v1

v2

v3

v4

v5

v6

v7

v8

(a) The path P8.

v1 v2

v3

v4v5

v6

(b) The cycle C6.

Figure 2.9: Graphical representation of a path and a cycle.

v1 v2

v3

v4v5

v6

(a) G12, a 3-regular graph.

v1 v2

v3

v4v5

v6

(b) A perfect matching for the graph G12.

Figure 2.10: Illustration of a regular graph and a perfect matching.

A null graph is a graph with no edges. The null graph G13 depicted in Figure 2.11 has 10 vertices, but
no edges.

A complete graph of order p, denoted by Kp, is a graph in which every distinct pair of vertices are
adjacent. As an illustration of the concept, the complete graphs K5 and K6 are shown graphically in
Figure 2.12.

Stellenbosch University http://scholar.sun.ac.za

2.1. Basic Graph Theoretic Concepts 9

Figure 2.11: Graphical representation of the null graph G13 of order 10.

v1

v2

v3v4

v5

(a) The complete graph K5.

v1 v2

v3

v4v5

v6

(b) The complete graph K6.

Figure 2.12: Illustration of the concept of a complete graph.

A graph G is called n-partite, n ≥ 2, if its vertex set may be partitioned into n subsets, such that no
edge of G joins vertices from the same subset. For n = 2, G is sometimes called bipartite, otherwise it is
sometimes called multipartite. If a vertex in a partition set Vi of a multipartite graph G is adjacent to
every vertex in the other sets {Vj : j 6= i} for any vertex in G, then G is called complete n-partite. Such
a graph G with |Vi| = pi, i = 1, 2, . . . , n, is denoted by Kp1,p2,...,pn

. If p1 = p2 = . . . = pn = p, say, then
G is called a complete, balanced n-partite graph and denoted by Kn×p. Also, the bipartite graph K1,n

is a popular graph, called an n-star. The vertex adjacent to all other vertices of the star is called the
centre. Illustrations of multipartite and bipartite graphs are shown in Figure 2.13.

v1

v2

v3

v4

v5

v6

(a) K2×3.

v1 v2

v3

v4v5

v6

(b) K3×2.

v1 v2

v3 v4 v5

(c) K2,3.

v1

v2

v3

v4

v5

(d) K1,4.

Figure 2.13: Graphical representation of multipartite and bipartite graphs.

The simplest connected graph structure is known as a tree, which is an acyclic connected graph. A graph
which is acyclic, is called a forest, and consists of a number of disconneced trees. A leaf of a tree T is an
end-vertex of T . Similar to the trivial graph, a trivial tree is a graph consisting of only one vertex and

Stellenbosch University http://scholar.sun.ac.za

10 CHAPTER 2. BASIC CONCEPTS IN GRAPH AND COMPLEXITY THEORY

no edges. An example of a tree of order 10 is shown in Figure 2.14, in which the 5 leaves are indicated
as black vertices.

v1

v2

v3v4

v5v6

v7v8
v9

v10

Figure 2.14: Illustrations of a tree, with leaves indicated as black vertices.

Consider a cycle of length n ≥ 3, Cn : v1v2 · · · vn, and another vertex, v0 say. A wheel Wn of order n is
defined as the graph join Cn + 〈v0〉, with the vertex v0 sometimes referred to as the hub of the wheel.
The edges connecting the hub to the rest of the graph are often referred to as spokes. The wheel graphs
W4 and W5 are shown in Figure 2.15 as examples.

v0

v1

v2

v3

v4

(a) The wheel graph W4.

v0

v1

v2

v3v4

v5

(b) The wheel graph W5.

Figure 2.15: Illustration of the notion of a wheel.

A pseudograph is a graph in which both multiple edges and loops are permitted (a loop is an edge that
joins a vertex to itself). A graphical representation of such a graph is shown in Figure 2.16.

Figure 2.16: Graphical representation of a pseudograph.

2.1.7 Connectedness

For vertices u and v of a graph G, u is said to be connected to v if G contains a u-v path. The graph
G is called a connected graph if the vertices u and v are connected for any pair u, v ∈ V (G). A graph
that is not connected is said to be disconnected. A subgraph H of G is called a component of G if H is
a maximally connected subgraph of G. The number of components of a graph G is denoted by k(G).
Hence, a graph is connected if k(G) = 1. An example of a graph G14 for which k(G14) = 3 is shown in
Figure 2.17.

An edge e is called a bridge of a graph G if the graph G− e has more components than G, and a vertex
v is called a cut-vertex of G if the graph G − v has more components than G. Therefore, an edge e in
a connected graph G is a bridge if G − e is disconnected and a vertex v in a connected graph G is a
cut-vertex if G−v is disconnected. The graph G15 shown in Figure 2.18(a) has the edge v3v6 as a bridge,

Stellenbosch University http://scholar.sun.ac.za

2.1. Basic Graph Theoretic Concepts 11

Figure 2.17: An example of the graph G14 for which k(G14) = 3.

while v3 is a cut-vertex of G15. The graphs G15 − v3v6 and G15 − v3 are depicted in Figures 2.18(b)
and (c) respectively. The following theorem provides a characterisation for when an edge is a bridge. A
proof of this theorem may be found in Chartrand & Oellerman [11, p. 22].

Theorem 2.2 An edge e of a connected graph G is a bridge of G if and only if e does not lie on a cycle
of G. �

v1 v2

v3

v4v5

v6

(a) The graph G15.

v1 v2

v3

v4v5

v6

(b) G15 − v3v6.

v1 v2

v4v5

v6

(c) G15 − v3.

Figure 2.18: Illustration of a bridge and cut-vertex in the connected graph G15 in (a). (b) The edge v3v6 is a bridge, since
G15 − v3v6 is disconnected. (c) The vertex v3 is a cut-vertex, since G15 − v3 is disconnected.

2.1.8 Vertex Splitting

Let G be a connected graph and let k be the minimum cardinality of a set U of vertices for which G \U
is disconnected or is the trivial graph. Furthermore, suppose there exists a vertex v ∈ V (G) such that
deg v ≥ 2k − 2. Let N(v) = N1 ∪N2, with |N1| ≥ k − 1 and |N2| ≥ k − 1 and N1 ∩N2 = ∅. Construct
the graph G′ from G by replacing vertex v with two adjacent vertices u1 and u2, and joining vertex ui

to every vertex in Ni, i = 1, 2. Such a construction of the graph G′ from the graph G is referred to as a
k-vertex splitting. Consider the graph G11 depicted in Figure 2.19(a), where k = 3, as at least 3 vertices
must be removed in order to disconnect the graph (for instance, G11 \ {v1, v6, v3} is disconnected). A
3-vertex splitting may be applied to the graph G11 at vertex v6, producing the graph depicted in Figure
2.19(b).

Figure 2.19(b) depicts the graph G11, shown in Figure 2.19(a), after a 3-vertex splitting has occured at
vertex v.

2.1.9 Independence number

A vertex subset S ⊆ V (G) of G is called independent if no two vertices in S are adjacent in G. An
independent set S of vertices in a graph G is called a maximal independent set if S is not a proper subset
of any other independent set of G. The maximum cardinality of such maximal independent sets S is
called the independence number of G and is denoted by β(G). For the bipartite graph K2,3, shown in
Figure 2.20(a), both partite sets {v1, v2} and {v3, v4, v5} are maximal independent sets of K2,3. Since
the independent set {v3, v4, v5}, indicated as dark vertices in Figure 2.20(a), is the largest maximal
independent set, it follows that β(K2,3) = 3. Opposite to the notion of independence is the notion

Stellenbosch University http://scholar.sun.ac.za

12 CHAPTER 2. BASIC CONCEPTS IN GRAPH AND COMPLEXITY THEORY

v

(a) The graph G11.

u1
u2

(b) The graph G11 after a 3-vertex splitting has occurred.

Figure 2.19: Illustration of a 3-vertex splitting.

of a clique, which is a complete subgraph of a graph G that is not an induced subgraph of any other
complete subgraph of G. A clique of a graph G is thus a maximal complete subgraph of G. The order
of a maximum clique is defined as the clique number ω(G) of the graph G. A graphical representation
of a clique consisting of the vertices v1, v2, v3 and v6 in a graph G16 is shown in Figure 2.20 (hence
ω(G) = 4).

v1 v2

v3 v4 v5

(a) For the graph K2,3 β(K2,3) = 3. A maximum
independent set is indicated by the dark vertices.

v1 v2

v3

v4v5

v6

(b) The vertices v1, v2, v3 and v6 form a clique in the
graph G16, with ω(G16) = 4.

Figure 2.20: Graphical representation of the independence number of a graph and the notion of a clique.

2.2 Basic Concepts in Complexity Theory

An overview of basic concepts in complexity theory is now given.

2.2.1 Algorithmic complexity

An algorithm is a specific set of instructions for carrying out a procedure or solving a problem, usually
with the requirement that the procedure terminate at some point. All instructions can be broken down
into a sequence of operations that cannot be broken down any further. These operations are known
as basic operations. Algorithmic complexity is measured by a time complexity variable and a space
complexity variable, usually expressed in terms of the input size n of the algorithm in question. These
variables measure respectively the number of basic operations performed and the memory required by the
algorithm. It is not always easy to measure the time complexity and space complexity of an algorithm.
By knowing these quantities, different algorithms for performing the same task can be compared to
determine which algorithm is more efficient. A well-known measurment used for obtaining a bound on
the running time of an algorithm is by observing the order of magnitude of an algorithm. The order of
magnitude, denoted by means of the symbol O, of the algorithmic complexity is defined as follows: Let
f and g be two real-valued functions. Then f(n) = O(g(n)) if there exist a c ∈ R

+ and an n0 ∈ N such
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0. The function g is said to be an asymptotic upper bound for f .
An algorithm for which the order of magnitude of its worst-case time complexity is of the form O(nk),
for some k ∈ R

+ in terms of its input size n, is called a polynomial time algorithm. If a problem cannot
(with current knowledge) be solved by a polynomial time algorithm, it is referred to as an intractable or

Stellenbosch University http://scholar.sun.ac.za

2.2. Basic Concepts in Complexity Theory 13

hard problem, otherwise it is called a tractable problem. While the term complexity usually refers to the
time complexity of an algorithm, the importance of the space complexity should not be disregarded in
practical algorithm implementations.

2.2.2 The classes P, NP and co-NP

Decision theory is the branch of complexity theory where problems to be solved are interpreted as binary
questions, that may be answered “true” or “false”. Since any computational problem may be reduced
to a decision problem, it is possible, without loss of generality, to consider decision theory only in the
theoretical analysis of complexity issues. The class P is defined as the set of decision problems that
can be solved by way of a polynomial time algorithm. The class NP constitutes the set of decision
problems that may be answered “true” by a polynomial time algorithm, given additional information
(known as a certificate with respect to the specific instance of the decision problem). Similarly, the class
co-NP is the set of all decision problems that may be answered “false” by a polynomial time algorithm,
given additional information (also called a certificate). Note that although a certificate with respect
to a decision problem instance may exist, finding this certificate may be difficult. The various classes
described above into which a problem may be classified, are shown graphically in Figure 2.21.

P

NPco-NP

Figure 2.21: The classes P, NP and co-NP.

As an example, consider the following decision problem.

Dclique(G, k)

INSTANCE: A graph G and k ∈ N.
QUESTION: Does G have clique number ω(G) ≥ k?

The following proposition shows that the decision problem Dclique(G, k) belongs to the class NP, by

using a clique of G of order k, say 〈v1, v2, . . . , vk〉G, as certificate.

Proposition 2.1 Dclique(G, k) ∈ NP

Proof: Algorithm 1 verifies whether the induced graph s = 〈v1, v2, . . . , vk〉G is a clique in G, a graph
of order p, say. Let qs be a counter for summing the degrees for each vertex in 〈s〉G. For 〈s〉G to be a
clique, it must contain 1

2k(k − 1) edges.

The for loop on lines 2 to 4 sums the degree of each vertex in 〈s〉G. It follows from the Fundamental
Theorem of Graph Theory (Theorem 2.1) that if qs = k(k − 1), then 〈s〉G is a clique (the algorithm
actually counts each edge twice). Note that calculating the degree of a vertex in the proposed clique
takes O(p) time, as a row (or column) in the adjacency matrix of the graph G needs to be traversed.
As there are p elements in a row (or column), traversal has a worst-case running time of O(p). Hence it
follows that the for loop on lines 2 to 4, and consequently also the whole of Algorithm 1 has a worst-case
running time of O(kp). It is therefore concluded that the algorithm will produce an output in polynomial
time. As the decision Dclique(G, k) may be answered “true” with the aid of a certificate was required,

it follows that Dclique(G, k) ∈ NP. �

Stellenbosch University http://scholar.sun.ac.za

14 CHAPTER 2. BASIC CONCEPTS IN GRAPH AND COMPLEXITY THEORY

Algorithm 1 Dclique(G, k)

Input: A graph G and vertex set S = {v1, v2, . . . , vk}.
Output: TRUE, if 〈S〉G is a clique, otherwise FALSE.
1: qs ← 0
2: for i = 1 to k do
3: qs ← qs + deg vi

4: end for
5: if qs = k(k − 1) then
6: Return true
7: else
8: Return false
9: end if

The question of whether a graph G does not have a clique number ω(G) ≥ k poses to be a harder
probem. If a certificate exists such that this problem may be answered by a polynomial time algorithm,
it follows that this problem is of the class co-NP. The questions of whether P = NP, NP = co-NP
or P = NP ∩ co-NP remain unanswered to this day. The following result (see Cormen et al. [12,
pp.981–982]) relates the subsets P, NP and co-NP.

Theorem 2.3 (Cormen et al. [12]) P ⊆ NP and P ⊆ co-NP. �

2.2.3 Polynomial time reducibility, NP-hardness and NP-completeness

Let D1 and D2 be two decision problems. The problem D1 is polynomial time reducible to D2, denoted by
D1 � D2, if there exists an algorithm A1 that can solve all instances of D1 which contains as a subroutine
an algorithm A2 that can solve all instances of D2, such that A1 is a polynomial time algorithm if A2

is a polynomial time algorithm. Informally stated, D2 is therefore computationally at least as hard to
solve as D1.

A decision problem D is NP-hard if D1 � D for all D1 ∈ NP. Furthermore, a decision problem D is said
to be NP-complete if D ∈ NP and D is NP-hard. An NP-hard problem may differ from an NP-complete
problem in the sense that it may belong to a different class of computation problems altogether. For
instance, an NP-hard problem may belong to a class of problems that can only be solved in exponential
time. NP-complete problems may be seen as computationally the most difficult problems to solve in NP,
since they are computationally at least as hard to solve as any other problem in NP. Although it is not
currently known whether the classes P and NP differ, it has been proven that, if a decision problem D
exists for which D ∈ NP-complete and D ∈ P, then P = NP (see Sipser [57, pp.247–253]). The relation
between the classes P, NP and NP-complete are shown in Figure 2.22.

P

NPco-NP

NP-complete

Figure 2.22: The classes P, NP, co-NP and NP-complete.

A set of NP-complete problems can be constructed if there exists a method by which a problem of an
unknown class can be compared to a specific NP-complete problem, thereby determining whether the

Stellenbosch University http://scholar.sun.ac.za

2.2. Basic Concepts in Complexity Theory 15

problem of unknown class is also NP-complete. The following result (see Sipser [57, p. 253] for a proof)
illustrates such a method of comparison.

Theorem 2.4 (Sipser [57]) Let D1 and D2 be two decision problems. If D1 ∈ NP, D2 is NP-complete
and D2 � D1, then D1 is NP-complete. �

The decision problem D2 thus acts as a starting point for building up a set of NP-complete problems.
An example of such a decision problem that may be used as a starting point is the decision problem
Dclique(G, k) according to the following theorem (see Cormen et al. [12, pp.1003–1005] for the proof),

which states that Dclique(G, k) is NP-complete.

Theorem 2.5 (Cormen et al. [12]) Dclique(G, k) is NP-complete. �

2.2.4 Computation problems

A computation problem differs from a decision problem in that its solution may be a real value, not
necessarily a mere binary value. Decision problems may therefore be seen as special cases of computation
problems. Some computation problems may be solved efficiently in terms of algorithmic procedures by
implementing the solution to related decision problems. This again provides a means for classifying
computation problems into various classes such as N, NP and NP-complete.

Let Cclique(G) denote the computation problem of finding the clique number ω(G) of a given graph

G. The clique number of a graph may be calculated by means of a so-called interval halving scheme in
terms of the NP-complete decision problem Dclique(G, k). This decision problem is called the underlying

decision problem of the computation problem Cclique(G). Consider Algorithm 2 for solving Cclique(G)

with underlying decision problem Dclique(G, k).

Algorithm 2 Cclique(G)

Input: A graph G of order p.
Output: The clique number ω(G).
1: if Dclique(G, n) = true then

2: print p, stop.
3: else
4: `← 1, r← p
5: m←

⌊
`+r
2

⌋

6: if Dclique(G, m) = true then

7: `← m
8: else
9: r ← m

10: end if
11: if r − ` = 1 then
12: print `, stop.
13: else
14: go to Step 5
15: end if
16: end if

The rationale behind Algorithm 2 is that it maintains, at each iteration, an interval on the real line
with left and right endpoints the integers ` and r respectively, such that Dclique(G, `) = true and

Dclique(G, r) = false, implying that ` ≤ ω(G) < r. During each interval of the algorithm, this interval is

halved (hence the term interval halving scheme) by determining an integer m, such that m is the largest
integer not exceeding the midpoint (`+r)/2 of the interval [`, r). If r−` = 1, then the clique number of G
has been found, since ` ≤ ω(G) < ` + 1 implies that ω(G) = `, at which point the algorithm terminates.

Stellenbosch University http://scholar.sun.ac.za

16 CHAPTER 2. BASIC CONCEPTS IN GRAPH AND COMPLEXITY THEORY

If this condition is not satisfied, the interval is halved. The algorithmic search then continues in the
right half interval if Dclique(G, m) = true (there exists a clique of at least m vertices), otherwise the

algorithmic search will continue in the left half interval (there is no clique in the graph G consisting of
m or more vertices). This process ensures that Dclique(G, `) = true and Dclique(G, r) = false for each

new half interval.

Let `i and ri denote the values of ` and r respectively during iteration i of Algorithm 2. It follows by
the interval halving property that the interval width during iteration i satisfies the inequality ri − `i ≤
(ri−1 − `i−1 + 1)/2. By iteratively applying this inequality j times, it follows that

ri − `i ≤
ri−j − `i−j + 2j − 1

2j
.

Hence, for j = i, the bound

ri − `i ≤
r0 − `0 + 2j − 1

2j
=

n− 2 + 2j

2j

is obtained. Now the process of interval halving will continue as long as

2 ≤ ri − `i ≤
n− 2 + 2i

2i
,

that is, as long as i ≤ log2(n− 2). This implies that Algorithm 2 will apply the interval halving method
a worst-case number of O(log n) times. If the notion of polynomial time reducibility is generalised to
encompass not only decision problems, but also computation problems, it follows that Cclique(G) �
Dclique(G, k). As Dclique(G) ∈ NP-complete, it further follows that Cclique(G) ∈ NP-complete.

The above example serves to demonstrate that the classification scheme of categorizing problems into the
various classes such as N and NP and the notions of polynomial time reducibility and NP-completeness
are not only applicable to decision problems, but may also be generalised to accommodate computation
problems.

2.3 Chapter Summary

In this chapter, the basic concepts of graph theory and complexity theory, relevant to this thesis, were
introduced for the benefit of the reader. The appropriate graph theoretic concepts were discussed in
§2.1-2.1.7. The last section, §2.2, familiarized the reader with the basic concepts in complexity theory.
This chapter does not serve as a comprehensive study in the fields of graph theory and complexity theory.
Extensive research has already been done in both of these fields for which vast amounts of literature exist.
Only those parts of these fields that pertain to the theory described in this thesis have been discussed.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3

Literature Survey

This chapter contains a survey of work published in the field of graph connectivity. Some basic definitions
are given first, after which the cornerstone theorems of Menger and Whitney are reviewed. This is followed
by a survey of other research done on graph connectivity. Some of the results mentioned have a broader
scope than that of this thesis, but are included for the sake of completeness.

3.1 Connectivity and edge-connectivity

Let G be a connected graph. Recall that if G contains an edge e such that G − e is disconnected, then
e is called a bridge of G. Also, if G has a vertex v such that G − v is disconnected, then v is called a
cut-vertex of G. These definitions may be expanded to cases where more than one edge or vertex are
removed. A subset S of the edges of a connected graph G is said to be an edge cut-set of G if G \ S is
disconnected. Similarly, if U is a subset of the vertices of G such that G \ U is disconnected, then U is
called a vertex cut-set of G.

Definition 3.1 The edge-connectivity number λ(G) of a graph G is the minimum cardinality of a set
S of edges for which G \ S is disconnected or is the trivial graph. �

Definition 3.2 The (vertex) connectivity number κ(G) of a graph G is the minimum cardinality of a
set U of vertices for which G \ U is disconnected or is the trivial graph. �

The only connected graph that cannot be disconnected by the removal of edges is the trivial graph K1

Hence λ(K1) = 0. Furthermore, no complete graph Kp can be disconnected by the removal of any subset
of vertices, but removing p − 1 of the vertices produces the trivial graph. Hence κ(Kp) = p− 1. Apart
from these two cases, every non-trivial connected graph may be disconnected by the removal of edges and
every non-complete graph may be disconnected by the removal of vertices. Clearly, for a disconnected
graph G, λ(G) = κ(G) = 0. Whitney [64] related the quantities λ(G), κ(G) and δ(G) for any graph G.

Theorem 3.1 (Whitney [64]) κ(G) ≤ λ(G) ≤ δ(G) for any graph G. �

As an example, consider the graph G17 in Figure 3.1. In this case δ(G17) = 3. The edge-connectivity
number of G17 is λ(G17) = 3, as the removal of three edges (say v1v2, v1v3 and v1v4) disconnects the
graph, but the removal of no set of two egdes disconnects G17. The connectivity number of G17 is
κ(G17) = 1, as the removal of the vertex v4 disconnects the graph.

3.2 Menger’s Theorem

Many of the results dealing with the two parameters κ(G) and λ(G) of a graph G hinge on the 1927
theorem of Menger [46], which was proved in the course of research he conducted on curve theory in

17

Stellenbosch University http://scholar.sun.ac.za

18 CHAPTER 3. LITERATURE SURVEY

v1

v2

v3

v4

v5

v6

v7v8

Figure 3.1: The graph G17.

point set topology. However, the original proof contained a nontrivial gap. The first flawless proof of
Menger’s theorem, due to Noebling, appeared in a publication of Menger’s (Menger [47]).

Before Menger’s theorem may be stated, a few more definitions are required. Two u-v paths P (1) and P (2)

are edge disjoint if P (1) and P (2) have no edges in common. Two u-v paths P (3) and P (4) are said to be
internally disjoint if they have only the start and end vertices in common, thus V (P (3))∩V (P (4)) = {u, v}.
It is clear that if two paths are internally disjoint, then they are also edge disjoint. As an example,
consider the paths P (1) = v1, v2, v5, v8, v6, v4, v10, P (2) = v1, v7, v5, v3, v6, v9, v10, P (3) = v1, v2, v3, v4, v10

and P (4) = v1, v7, v8, v9, v10 in the graph G18 shown in Figure 3.2. The paths P (1) and P (2) are edge-
disjoint and the paths P (3) and P (4) are internally disjoint.

v1

v2 v3 v4

v5 v6

v7 v8 v9

v10

Figure 3.2: The graph G18.

A set U of vertices in G not containing two specified vertices u and v is said to be a u-v vertex-separator
if u and v belong to distinct components of G \U (U separates u and v). For nonadjacent vertices u and
v let κ′(u, v) denote the minimum cardinality of a u-v vertex-separator. Similarly, a set S of edges in
G is called a u-v edge-separator if these vertices lie in distinct components of G \ S (S separates u and
v). Let λ′(u, v) be the minimum cardinality of a u-v edge-separator. Furthermore, for a pair of distinct
vertices u and v in a graph G, let κ(u, v) [λ(u, v), respectively] denote the maximum number of internally
disjoint [edge-disjoint, respectively] u-v paths in G. Menger’s theorem may now be stated.

Theorem 3.2 (Menger [46]) For distinct nonadjacent vertices u and v of a graph G, κ(u, v) = κ′(u, v).
�

The edge analogue of Menger’s theorem (originally proven by Elias et al. [16] and Ford & Fulkerson [20])
follows.

Theorem 3.3 For distinct nonadjacent vertices u and v of a graph G, λ(u, v) = λ′(u, v). �

Again consider the graph G17 in Figure 3.1. For the vertices v1 and v7, κ′(v1, v7) = κ(v1, v7) = 1 (the
vertex v4 may be removed to disconnect the graph). For the same two vertices, λ′(v1, v7) = λ(v1, v7) = 3
as the cardinality of the edge set E = {v1v2, v1v3, v1v4 } and the cardinality of any set of edge-disjoint
v1-v7 paths both equal 3.

Both Menger’s theorem and its edge analogue may be deduced from the max-flow min-cut theorem of
Ford & Fulkerson [20]. A minimum s-t-cut is a set X of edges having a minimum combined weight such
that no flow can be constructed from the vertex s to the vertex t in the graph G \ X . The max-flow
min-cut theorem of Ford & Fulkerson [20] (see Bollobás [5, pp.50–53] for a proof) is now stated.

Stellenbosch University http://scholar.sun.ac.za

3.3. Computing κ(G) and λ(G) 19

Theorem 3.4 (Bollobás [5]) The maximal flow value from a vertex s to a vertex t is equal to a mini-
mum s-t-cut. �

Different methods of proof of Menger’s theorem may be found in Bollobás [4, pp.8–9], Diestel [15, pp.50–
54], Hajós [28], König [33] and West [63, pp.149–150].

3.3 Computing κ(G) and λ(G)

Most of the algorithms that compute κ(G) and λ(G) make use of the max-flow min-cut theorem of Ford
& Fulkerson [20]. Both of these parameters may be computed in polynomial time, where the polynomial
is a function of the order p and size q of a graph. The complexity of computing the parameters depends
on the number of maximum flow problems that have to be solved.

There exist
(
p
2

)
− q pairs of non-adjacent vertices in a graph G of order p and size q. Hence this is the

worst-case number of maximum flow problems that have to be solved in order to compute the vertex
connectivity number of a graph G. Esfahanian & Hakimi [17] improved this bound by developing an
algorithm that computes κ(G) by solving p−δ(G)−1+ 1

2κ(G)(2δ(G)−κ(G)−3) maximum flow problems.
This is the best bound known. Picard & Queyranne [54] developed a method by which all minimum cut-
sets of a graph G may be represented. The fastest algorithm based on these principles is due to Gabow
[22], with a worst-case running time of O

(
pq log

(
p2/q

))
. A method has been developed that calculates

λ(G) and returns a minimum edge-cut-set with very high probability. This method is discussed in the
next section.

The edge-connectivity number of a graph may be computed by solving p(p− 1) maximum flow problems
(see Esfahanian & Hakimi [17]). However, algorithms have been developed that are able to compute
λ(G) without the requirement of solving maximum flow problems. The best procedure known in this
class is an algorithm developed by Nagamochi & Ibaraki [50], which finds λ(G) and a minimum edge
cut-set in O(pq) time. Their algorithm is based on a decomposition of the graph G into spanning forests.

An important question to ask is what the maximum connectivity number (edge-connectivity number)
may be for a graph constructed on p vertices by means of q edges. Harary [29] proved the following
useful result.

Theorem 3.5 (Harary [29]) Among all graphs with p vertices and q edges, the maximum connectivity
number (edge-connectivity number) is 0 when q < p− 1 and b 2q

p
c if q ≥ p− 1. �

3.4 Computing λ(G) with high probability

Mitzenmacher & Upfal [49, pp.12–14] developed a probabilistic method for calculating the edge-connecti-
vity number as well as a minimum edge-cut-set of a graph with very high probability. Multiple edges
between vertices are allowed, but no loops are allowed. An edge contraction is defined as the process of
merging two adjacent vertices u and v. All edges that join u and v are eliminated, while all other edges
are retained. The algorithm functions by selecting an edge uv ∈ E(G) uniformly at random and then
contracts that edge. This operation is repeated p− 2 times. The end result is a graph with two vertices
joined by a certain number of edges. The following result was proved.

Theorem 3.6 (Mitzenmacher & Upfal [49]) The algorithm described above outputs a minimum edge-
cut-set with probability at least 2

p
(p− 1). �

At first sight the above theorem does not seem a very good result. However, if the algorithm is repeated
p(p − 1) ln p times, then the probability of not finding a minimum edge-cut-set is less than 1

p2 . Thus,
if this algorithm is applied to a graph of order 10, the probability of finding a minimum edge-cut-set is
greater than 99%, rendering this simplistic algorithm very powerful.

Stellenbosch University http://scholar.sun.ac.za

20 CHAPTER 3. LITERATURE SURVEY

Unfortunately, it does not seem that this concept can be adapted to calculate the vertex-connectivity
number of a graph. The reason for this is that the removal of an edge-cut-set always splits a connected
graph into two components, whereas the removal of a cut-set disconnects the graph into two or more
components. This is, in fact, why the algorithm terminates after p − 2 iterations when calculating the
edge-connectivity number. It is not clear how many iterations an adapted version of this algorithm
should perform before it is terminated in order to calculate the connectivity number.

3.5 k-Connected and k-Edge-Connected Graphs

It is often more valuable to know that a graph cannot be disconnected or reduced to the trivial graph
by the removal of k − 1 edges or vertices, rather than to know its actual edge-connectivity number or
connectivity number.

Definition 3.3 A connected graph G is said to be k-connected (k ≥ 1) if the removal of fewer than k
vertices always produces a nontrivial connected graph. �

Definition 3.4 A connected graph G is said to be k-edge-connected (k ≥ 1) if the removal of fewer than
k edges always produces a nontrivial connected graph. �

Consider the cycle C4 depicted in Figure 3.3. As κ(C4) = 2, C4 is 1-connected and 2-connected, but not
3-connected.

Figure 3.3: The cycle C4.

The connectivity number of a graph is a sharp upper bound on the value of k ∈ N for which the graph
is k-connected, as stated in the following lemma.

Lemma 3.1 Let G be a graph for which κ(G) = k. Then G is `-connected, ` ∈ {1, . . . , k}.
Proof Suppose that G is an `-connected graph for which κ(G) = k. As there exists a set of k vertices
whose removal disconnects the graph G, it follows that k is an upper bound for `. The removal of any
number of vertices less than k will not disconnect the graph. Hence the result is proven. �

Similarly the edge-connectivity number is a sharp upper bound for the k-edge-connectivity number of a
graph.

Some characterisations of k-connectivity and k-edge-connectivity are now discussed. The first character-
isation of k-connectivity and its edge-analogue was given by Whitney [64].

Theorem 3.7 (Whitney [64]) A graph G is k-connected [k-edge-connected, respectively] if and only if
for each pair of vertices {u, v} there are at least k internally disjoint [k edge-disjoint, respectively] u-v
paths in G. �

Whitney proved this result without making use of Menger’s theorem, although it may be proved more
elegantly by making use of it. Dirac (see Bollobás [4, p.10]) proved the following useful result.

Stellenbosch University http://scholar.sun.ac.za

3.5. k-Connected and k-Edge-Connected Graphs 21

Theorem 3.8 (Dirac) A graph G of order p is k-connected if and only if p ≥ k + 1 and for any k-set
U ⊂ V (G) and vertex x ∈ V (G) \ U , there is an x-U fan in G. �

Another characterisation of k-connected graphs was conjectured independently by Frank [21] and Maurer
(see [44, p.73]) and proved independently by Györi [27] and Lovász [36].

Theorem 3.9 Let G be a graph of order p such that p ≥ k +1. Then G is k-connected if and only if for
any distinct vertices v1, v2, . . . , vk of G and for any partition of p into positive integers m1, m2, . . . , mk

there exists a partition V1, V2, . . . , Vk of V (G) such that for each 1 ≤ i ≤ k, vi ∈ Vi, |Vi| = mi and 〈Vi〉G
is connected. �

The following example illustrates how Theorem 3.9 may be applied.

Example 3.1

Consider the 3-connected hypercube Q3 shown in Figure 3.4.

v1 v2

v3 v4

v5 v6

v7 v8

Figure 3.4: The 3-connected hypercube Q3.

Now m1 = 4, m2 = 2 and m3 = 2 is a partition of the 8 vertices. Furthermore, V1 = {v1, v2, v5, v7},
V2 = {v6, v8} and V3 = {v3, v4} is a partition of the vertex set of Q3 with the desired properties. �

Some well-known results exist that may be used to test whether a graph is k-connected. The advantage
of these results is that they are easily applied and tested in linear time. However, a drawback is that
they do not cover all k-connected graphs — some graphs that are k-connected do not necessarily satsify
the conditions required by the results. One such a result (see Chartrand & Harary [8, pp.61–63]) gives
a sufficient condition for a graph to be k-connected.

Theorem 3.10 Let G be a graph of order p, and let k be an integer satisfying 1 ≤ k ≤ p − 1. If
δ(G) ≥ (p + k − 2)/2, then G is k-connected. �

An advantage of this theorem is that it is not required to know beforehand whether the graph being
tested is connected or not. If the requirements of the theorem hold, then connectedness is guaranteed.
However, a disadvantage of this theorem is that it does not provide tight bounds on δ(G), as may be seen
in Table 3.1. The bound on δ(G) in Theorem 3.10 is typically larger than is required for k-connectivity
for high p and k values. For instance, for a graph to be 2-connected, the minimum degree of a connected
graph should be 2 or greater. If p = 20, then (p + k− 2)/2 = 10, which is much larger than 2. Therefore
the approach of not being required beforehand to test whether the graph is connected does not seem to
be a real advantage, due to the poor bounds on δ(G). To determine whether or not a graph is connected
may be calculated in O(p3) time using Floyd’s shortest paths algorithm, which seems a better option,
typically yielding better bounds on δ(G) so as to guarantee k-connectivity.

A stronger result that may be used to test whether a graph is k-connected is due to Bondy [7].

Stellenbosch University http://scholar.sun.ac.za

22 CHAPTER 3. LITERATURE SURVEY

p k (p + k − 2)/2 p k (p + k − 2)/2 p k (p + k − 2)/2
1 1 0.0 1 2 0.5 1 3 1.0
2 1 0.5 2 2 1.0 2 3 1.5
3 1 1.0 3 2 1.5 3 3 2.0
4 1 1.5 4 2 2.0 4 3 2.5
5 1 2.0 5 2 2.5 5 3 3.0
6 1 2.5 6 2 3.0 6 3 3.5
7 1 3.0 7 2 3.5 7 3 4.0
8 1 3.5 8 2 4.0 8 3 4.5
9 1 4.0 9 2 4.5 9 3 5.0

10 1 4.5 10 2 5.0 10 3 5.5
11 1 5.0 11 2 5.5 11 3 6.0
12 1 5.5 12 2 6.0 12 3 6.5
13 1 6.0 13 2 6.5 13 3 7.0
14 1 6.5 14 2 7.0 14 3 7.5
15 1 7.0 15 2 7.5 15 3 8.0
16 1 7.5 16 2 8.0 16 3 8.5
17 1 8.0 17 2 8.5 17 3 9.0
18 1 8.5 18 2 9.0 18 3 9.5
19 1 9.0 19 2 9.5 19 3 10.0
20 1 9.5 20 2 10.0 20 3 10.5

Table 3.1: Bounds of (p + k − 2)/2 on δ(G) in Theorem 3.10, given values of p and k.

Theorem 3.11 (Bondy) Let G be a graph of order p ≥ 2, let d1 ≤ d2 ≤ . . . ≤ dp be the degree sequence
of G and let k be an integer such that 1 ≤ k ≤ p− 1. If dn ≤ n + k − 2, then G is k-connected. �

An interesting geometric characterisation of k-connected graphs was established by Lovász et al. [37].

Theorem 3.12 A graph G of order p is k-connected if and only if its vertices may be represented by
vectors of R

p−k such that (a) nonadjacent vertices are represented by orthogonal vectors, and (b) the
vectors representing the vertices of G spans the vector space R

p−k. �

As an example of such a representation, consider the 2-connected graph G19 depicted in Figure 3.5(a).
A possible orthogonal representation of the graph G19 is shown in Figure 3.5(b).

v1 v2

v3 v4 v5

v1 v2 v3 v4 v5



1 0 0 0 1
0 0 1 1 0
0 1 0 0 0





(a) The graph G19. (b) Orthogonal representation of the graph G19.

Figure 3.5: The graph G19 accompanied with an orthogonal representation of the graph.

3.6 Construction of k-connected and k-edge connected graphs

The purpose of this section is to review theory and algorithms for generating k-connected or k-edge
connected graphs. Methods for generating a k-connected (k-edge connected) graph from a given set of
basic graphs are discussed in §3.6.1. In §3.6.2 methods for increasing the connectivity of a graph by the
addition of edges is reviewed. A result on how to add vertices to a k-connected graph whilst maintaining
k-connectivity is briefly discussed in §3.6.3.

Stellenbosch University http://scholar.sun.ac.za

3.6. Construction of k-connected and k-edge connected graphs 23

3.6.1 Construction from basic graphs

The first recursive procedure to obtain a new k-connected graph from a given k-connected graph is due
to Tutte [60]. Tutte established the following characterization of 3-connected graphs.

Theorem 3.13 (Tutte) A graph is 3-connected if and only if it is a wheel or can be obtained from
a wheel by repeated applications of the following two operations: (1) edge additions and (2) 3-vertex
splittings. �

Slater [58] subsequently developed a characterization of 4-connected graphs by means of the application of
a sequence of operations from a set of five different types, starting from K5. The problem of constructing
all k-connected graphs, with k ≥ 5, is still unsolved.

The problem of constructing k-edge-connected pseudographs has been solved for all k. Lovász [38, p.45,
pp.286–287] solved this problem for all 2m-edge connected pseudographs, while Mader [43] solved the
problem for all (2m+1)-edge connected pseudographs. Both methods are based on a series of operations
consisting of subdivision of edges (inserting a vertex into an edge) and insertion of new vertices into a
graph that are joined to sets of specific vertices.

3.6.2 Construction by adding edges

Graphs with a higher connectivity number may be constructed by the addition of edges to a graph with
a lower connectivity number. The problem of finding a smallest cardinality set of edges whose inclusion
increases the edge-connectivity number of a graph by some specified increment was solved by Frank [21]
and by Noar et al. [53]. Finding a set of edges whose inclusion increase the connectivity number of a
graph by a specified quantity proved to be a harder problem to solve.

Slater [59] determined the smallest number of edges that have to be added to a tree so as to produce a
2-connected graph. A more general result that determines the smallest number of edges that have to be
added to a graph in order to produce a 2-connected graph was independently discovered by Plesńık [55]
and Rosenthal & Goldner [56]. Rosenthal & Goldner [56] developed an O(p + q) algorithm that finds
such a minimum cardinality set of edges for an arbitrary graph. Eswaran & Tarjan [18] also developed
an O(p + q) algorithm that finds the minimum cardinality set of edges that have to be added to an
unweighted graph to produce a 2-edge-connected graph.

Watanebe & Nakamura [62] solved the problem of finding the smallest cardinality set of edges whose
inclusion in a 2-connected graph produces a 3-connected graph. Hsu & Ramachandran [30] developed a
linear time algorithm that finds such a set of edges.

The problem of finding a smallest cardinality set of edges whose inclusion in a 3-connected graph produces
a 4-connected graph was solved by Hsu [31]. Such a set of edges can also be found in linear time.

The problem of adding a smallest cardinality set of edges to a 4-connected graph in order to obtain a
5-connected graph remains open. However, Jordán [32] considered the problem of finding a minimum
cardinality set of edges whose inclusion in a k-connected graph renders it k + 1 connected. Sharp lower
and upper bounds on this minimum were established and it was shown that the gap between these
bounds is at most k − 2.

3.6.3 Expansion of a k-connected graph

The following result on how to expand a k-connected graph by the addition of vertices whilst maintaining
k-connectivity was established by West [63, p.145]. This result will be used later in this thesis to construct
a spanning subgraph of a given graph with the same connectivity number as that of G.

Theorem 3.14 (West [63]) If G is a k-connected graph and G′ is obtained from G by adding a new
vertex y adjacent to at least k vertices of G, then G′ is k-connected. �

Stellenbosch University http://scholar.sun.ac.za

24 CHAPTER 3. LITERATURE SURVEY

3.7 Minimally and critically connected graphs

Section 3.6.2 was devoted to a review of how the connectivity number of a graph may be increased
by the addition of edges. Another interesting question that arises is how many edges or vertices can
be removed before the connectivity number of a graph is reduced. A graph G is said to be minimally
k-connected (minimally k-edge-connected) if κ(G) ≥ k (or λ(G) ≥ k respectively) and κ(G − e) < k
(or λ(G − e) < k) for every edge e ∈ E(G). A similar definition exists for the removal of vertices.
A graph G is said to be critically k-connected (critically k-edge-connected) if κ(G) ≥ k (or λ(G) ≥ k
respectively) and κ(G − v) < k (or λ(G − v) < k) for every vertex v ∈ V (G). Many nontrivial results
have been established for the above mentioned concepts. Results regarding minimally k-connected and
k-edge-connected graphs will be discussed next, followed by results regarding critically k-connected and
critically k-edge-connected graphs.

It was found by Lick [35] that a minimally k-edge-connected graph will contain at least one vertex of
degree k. Lick’s result was generalised by Mader [40]. Let Vk be the number of vertices of degree k.

Theorem 3.15 (Mader [40]) For every minimally k-edge-connected graph G, Vk ≥ k + 1. �

A similar result was established by Mader [41] for minimally k-connected graphs.

Theorem 3.16 (Mader [41]) For every minimally k-connected graph G, Vk ≥ k + 1. �

The following theorem implicitly provides a good lower bound for Vk in a minimally k-connected graph.

Theorem 3.17 (Mader [41]) Every circuit in a minimally k-connected graph contains a vertex of de-
gree k. �

The problem of determining the number of vertices of degree k in a minimally k-connected graph is
nearly solved. The following result gives bounds for this number.

Theorem 3.18 (Mader [45]) Let |Vk(G)| denote the number of vertices of degree k in a graph G and
let F (Vk) = min {Vk(G) | G is a minimally k-connected graph of order p}. Then for all integers p > 2k,

{
k − 1

2k − 1
p +

2k

2k − 1

}

≤ F (Vk) ≤
{

k − 1

2k − 1
p +

2k

2k − 1

}

+ 1.
�

It has been shown that the lower bound given in Theorem 3.18 is best possible for p ≡ 1, 3, 5, . . . , 2n− 1
(mod 2n−1) and for p ≡ 2 (mod 2n−1). Furthermore, for p ≡ 4 (mod 2n−1) and for n ≥ 3, the upper
bound in Theorem 3.18 is sharp. The cases p ≡ 6, 8, . . . , 2n− 1 (mod 2n− 1) remain undecided.

The problem of determining the number of vertices of degree k in a minimally k-edge-connected graph
has also not been determined thus far. It was shown by Mader [42] that for k 6= 1, 3 there is a constant
ck > 0 such that for all minimally k-edge-connected graphs G of order p, Vk ≥ ckp. The best known
lower bound for Vk was established by Bollobás et al. [6].

Theorem 3.19 (Bollobás et al. [6]) If G is a minimal k-edge-connected graph on p vertices, then
Vk ≥ k, and, if k 6= 1, 3, then Vk is bounded from below as follows:

Vk ≥







⌊
p

k+1

⌋

+ k (k odd),
⌊

p−1
2k+1

⌋

+ k + 1 (k even).

The following result, by Chartrand et al. [9], gives a bound on the degree of a specific vertex in a
critically k-connected graph. It was found that this bound is the best possible.

Theorem 3.20 (Chartrand et al. [9]) Every critically k-connected graph G contains a vertex x such
that degG x ≤ 3p

2 − 1. �

Stellenbosch University http://scholar.sun.ac.za

3.8. Disconnecting a graph into more than two components 25

3.8 Disconnecting a graph into more than two components

Recall that the connectivity number of a graph is the number of vertices that, when removed, disconnects
the graph. The connectivity number itself does not provide any information on how many components
remain in a graph G after the removal of κ(G) vertices. A graph left with more components than another
graph with the same connectivity number after the removal of κ(G) vertices may be thought of as a more
vulnerable graph. Consider the star K1,n and the path Pn+1, (n ≥ 3). Both graphs have a connectivity
number of 1, but the deletion of a cut-vertex from K1,n produces n components, while the deletion of a
cut-vertex from Pn+1 produces only two components. The graph K1,n is thus more vulnerable than the
graph Pn+1.

A connected graph G will have exactly two components after the removal of λ(G) edges. In some graphs,
considerably more edges have to be removed to produce more than two components. As an example,
consider the two graphs depicted in Figure 3.6.

v1

v2

v3

v4

v5

v6

v7

v8

(a) The graph G20.

v1

v2

v3

v4

v5 v6

v7

v8

(b) The path P8.

Figure 3.6: Graphical representation of two graphs with an edge-connectivity number of 1.

Both graphs have an edge-connectivity number of 1. However, four edges have to be removed from the
graph G20 in Figure 3.6(a) (eg. v1v2, v1v3, v1v4 and v3v5), whilst only two edges have to be removed
from the path P8 in Figure 3.6(b) (i.e. v4v5 and v6v7) to produce a graph with three components.

A generalisation of the connectivity number and edge-connectivity number of a graph is now given.

Definition 3.5 For an integer ` ≥ 2 and a graph G of order p ≥ `, the `-connectivity number κ`(G) is
the minimum cardinality of a set U of vertices whose removal from G produces a graph with at least `
components or a graph with fewer than ` vertices.

Definition 3.6 For an integer ` ≥ 2 and a graph G of order p ≥ `, the `-edge-connectivity number
λ`(G) is the minimum cardinality of a set S of edges whose removal from G produces a graph with at
least ` components.

From the above definitions it is clear that, κ2(G) = κ(G) and λ2(G) = λ(G). The concept of `-
edge-connectivity was first introduced by Boesch & Chen [3]. This concept was further studied by
Goldsmith [24, 26] and by Goldsmith et al. [25]. In all these papers, it became aparent that λ`(G) is a
difficult parameter to compute. This led to the development of heuristics and bounds to approximate
the parameter.

For an integer ` ≥ 2, an `-way cut of a graph G is a partition of V (G) into ` non-empty disjoint subsets
{V1, V2, . . . , V`}. A minimum `-way cut is an `-way cut that minimizes the weight sum of the edges
between the different subsets. If a minimum `-way cut of a graph can be deterimined, it may be used to
calculate λ`(G). Nagamochi & Ibaraki [51] developed an algorithm that computes minimum 3-way and
4-way cuts for any edge-weighted graph. The algorithm runs in O(qp` log(p2/q)) time and O(p2) space
for ` = 3, 4 and uses the maximum flow algorithm developed by Goldberg & Tarjan [23].

Nagamochi et al. [52] developed a similar algorithm to compute minimum 5-way and 6-way cuts, with
the same worst-case running time as that of the algorithm used for 3-way and 4-way cuts. To the best
knowledge of the author, no algoritm exists that can calculate minimum `-way cuts, ` ≥ 7.

Stellenbosch University http://scholar.sun.ac.za

26 CHAPTER 3. LITERATURE SURVEY

Chartrand et al. [10] introduced the concept of `-connectivity. They also developed the notion of a
connectivity sequence s for a graph G of order p, which is the sequence s : κ2(G), κ3(G), . . . , κp(G). A
characterisation of `-connectivity sequences was also given in the same paper, as is stated in the following
theorem.

Theorem 3.21 (Chartrand et al. [10]) A sequence k2, k3, . . . , kp of nonnegative integers is realised
as the connectivity sequence κ2(G), κ3(G), . . . , κp(G) of a graph G of order p if and only if there exists
an integer n such that k2 ≤ k3 ≤ . . . ≤ kn ≤ kn+1 and kn+i = p − (n + i) + 1 for i = 1, 2, . . . , p − n.
Moreover, n = β(G). �

It is interesting to note that the sequence s starts to decrease where n = β(G). Similar results exist for
digraphs. The strong independence number βS(D) of a digraph D is the maximum cardinality of a set S of
vertices of D such that the subdigraph 〈S〉D is acyclic. A digraph D is said to be strongly connected if, for
every pair of vertices u and v of D, there is a directed path from u to v. Furthermore, a strong component
of a digraph D is a maximal induced subdigraph of D which is strongly connected. In their article, Day
et al. [13] defined the strong `-connectivity number κ`(D) (strong `-arc-connectivity number λ`(D)) of a
digraph D as the minimum number of vertices (arcs) whose deletion from D produces a digraph with at
least ` strong components or a digraph with at most `− 1 vertices. Furthermore, for an integer n ≥ 0, a
digraph D is said to be strongly (n, `)-connected if κ`(D) ≥ n. Several sufficient conditions for a digraph
to be strongly (n, `)-connected were established in their paper. A characterization of the sequence of
numbers s : κ2(D), κ3(D), . . . , κp(D) for a given digraph D of order p, defined as the sequence of strong
connectivity numbers, was also established.

Let n, `, p ∈ N with ` ≥ 2 and p ≥ ` + n. The smallest integer q for which there exists a graph G of
given order p such that κ`(G) = n is denoted by qn,`(p). Bounds on the size of graphs of given order and
`-connectivity are given in a paper by Day et al. [14]. More specifically, the following result was proved.

Theorem 3.22 (Day et al. [14]) qn,`(p) < qn,`−1(p). �

Among the results in their paper, exact values of q = qn,`(p) for ` = 2, 3 and n ∈ {1, . . . , 5} as well as
bounds on q6,3(p) were provided. Results for ` = 3 are reproduced in Table 3.2.

n p q = qn,3(p)
1 ≥ 4 p− 2
2 ≥ 5 p− 1
3 ≥ 6 p
4 7 or 8 p + 3

4 ≥ 9
⌈

5p
4

⌉

5 8, 9 or 10 p + 6

5 ≥ 11
⌈

3p
2

⌉

6 9 18

6 ≥ 10
⌈

7p
4

⌉
≤ q ≤ 2p

Table 3.2: Exact values of q = qn,3(p) for ` = 3, n ∈ {1, . . . , 5} as well as bounds on q6,3(p).

3.9 The average connectivity number of a graph

The average connectivity number of a graph G is defined as

κ(G) =

∑

u,v κ(u, v)
(
p
2

) , u, v ∈ V (G).

In contrast to the connectivity number of a graph, which is the smallest number of vertices whose deletion
from a connected graph disconnects the graph, the average connectivity number is the expected number of

Stellenbosch University http://scholar.sun.ac.za

3.9. The average connectivity number of a graph 27

vertices that must be removed in order to disconnect an arbitrary pair of non-adjacent vertices. Consider
the graphs depicted in Figure 3.7. Both graphs are of order p = 5 and have a vertex connectivity number
of 1. However κ(G21) = 1 and κ(G22) = 2.2. The graph G22 may thus be seen as a safer construction,
as it has the higher average connectivity number.

v1

v2

v3

v4

v5

(a) The graph G21.

v1

v2

v3
v4

v5

(b) The graph G22.

Figure 3.7: Graphical representation of two graphs with a connectivity number of 1. κ(G21) = 1 and κ(G22) = 2.2.

It should be clear from the definition of the average connectivity number of a graph G that κ(G) ≤ κ(G).
Beineke et al. [2] developed many results on the average connectivity number of a graph. Some of their
results are listed here.

1. κ(G) = 0 if and only if the graph G is a null graph.

2. κ(G) = 1 if and only if the graph G is a non-trivial tree.

3. If a graph G has order p, then κ(G) ≤ p− 1, with equality if and only if G is the complete graph.

It is interesting to note that it is not necessary for a graph to have more edges in order to have a higher
average connectivity number. Consider the graphs depicted in Figure 3.8. Both graphs have the same
order, size and degree sequence. However κ(G23) = 1.3 and κ(G24) = 1.6.

v1

v2

v3

v4 v5

(a) The graph G23.

v1

v2

v3 v4 v5

(b) The graph G24.

Figure 3.8: Illustration of two graphs both of order and size 5.

Beineke et al. [2] established upper bounds for the parameter κ(G).

Theorem 3.23 (Beineke et al. [2]) Let G be a graph of order p with independence number β(G).
Then

κ(G) ≤
[

(p− 1)

(
p− β(G)

2

)

+ (p− β(G))

(
β(G)

2

)

+ (p− β(G))2β(G)

] /(
p

2

)

�

The graph generated by the join Kp−β +Kβ attains the bound for the average connectivity number given
in Theorem 3.23. In the same paper, it was noted that bounds on the average connectivity number of a
graph are more readily established if the order and size of a graph are known.

Stellenbosch University http://scholar.sun.ac.za

28 CHAPTER 3. LITERATURE SURVEY

Theorem 3.24 (Beineke et al. [2]) Let G be a graph of order p, size q and degree sequence d1 ≥ d2 ≥
. . . ≥ dp. Then

κ(G) ≤ 2q

p
−

p
∑

i=1

(p− 2i + 1)

p(p− 1)
di.

�

The following result shows that the average connectivity number is bounded by the average degree of a
graph, just as the connectivity number is bounded by the minimum degree.

Theorem 3.25 (Beineke et al. [2]) Let G be a graph of order p and size q, with q ≥ p, and let
r = 2q − p b2q/pc. Then

κ(G) ≤ 2q

p
− r(p− r)

p(p− 1)
.

�

It has been shown that the bound given in Theorem 3.25 is sharp. Beineke et al. [2] also investigated
what the maximum average connectivity number µG(p, q) for a graph with p vertices and q edges may
be.

Theorem 3.26 (Beineke et al. [2]) The maximum average connectivity number in a graph G with p
vertices and q edges is, with r = 2q − p b2q/pc,

µG(p, q) =







0 if q = 0,

2
p(p−1) if q = 1,

6
p(p−1) if q = 2,

2q(q−1)
p(p−1) if 3 ≤ q ≤ p− 1,

2q(p−1)−r(p−r)
p(p−1) if q ≥ p ≥ 4.

�

3.10 Uniformly connected graphs

In their paper, Beineke et al. [2] also defined a graph G to be uniformly k-connected if κ(u, v) = k for
all pairs of vertices u and v. This implies that κ(G) = κ(G) = k. It is easy to see that a graph G is
uniformly

1. 0-connected if and only if it has no edges,

2. 1-connected if and only if it is a tree,

3. 2-connected if and only if it is a cycle,

4. (p− 2)-connected if and only it is the result of removing
⌊

p
2

⌋
edges from Kp and

5. (p− 1)-connected if and only if G is complete.

The following interesting result relates the notions of minimally and critically connectedness to uniformly
connectedness.

Theorem 3.27 (Beineke et al. [2]) Let G be a uniformly k-connected graph.
(a) If k ≥ 1, then G is minimally k-connected.
(b) If k ≥ 2, then G is critically k-connected. �

Stellenbosch University http://scholar.sun.ac.za

3.11. Construction using approximation algorithms 29

3.11 Construction using approximation algorithms

The focus of this thesis is on the construction of spanning subgraphs with specified connectivity number.
To simplify the writing, the following two definitions are introduced.

Definition 3.7 A connectivity preserving spanning subgraph G′ constructed from a graph G is a span-
ning subgraph such that κ(G′) = κ(G). �

Definition 3.8 A connectivity reducing spanning subgraph G′ constructed from a graph G is a spanning
subgraph such that κ(G′) < κ(G). �

In a recent article Kortsarz & Nutov [34] explained how a connectivity preserving spanning subgraph may
be constructed by making use of an approximation algorithm that they developed. An approximation
algorithm returns an output that differs by at most a fixed factor more than the optimal solution for
the problem at hand. This fixed factor is known as an approximation ratio. In this case, an optimal
solution is a spanning subgraph of minimum cost. The approximation ratio for the algorithm of Kortsarz

& Nutov [34] is O
(

ln k ·min
{√

k, p/(p− k) ln k
})

. It has a worst-case running time of O(k2pq2). This

is indeed a very powerful result and has the lowest approximation ratio of all existing approximation
algorithms for the construction of connectivity preserving spanning subgraphs.

3.12 Chapter Summary

In this chapter, basic definitions were discussed concerning graph connectivity, followed by a survey of
articles relating to this concept. The most recent results concerning the bounds on certain connectivity
parameters were also stated, each followed with a short discussion. The reader should now have a firm
understanding of the various graph connectivity concepts that will further be discussed or built upon in
the remainder of this thesis.

Stellenbosch University http://scholar.sun.ac.za

30 CHAPTER 3. LITERATURE SURVEYStellenbosch University http://scholar.sun.ac.za

Chapter 4

Spanning Subgraphs with

Connectivity Number ≤ k

In this chapter, algorithms for constructing connectivity preserving and reducing spanning subgraphs
are discussed.

Algorithms for returning information about a graph, such as the connectivity number and a minimum
cut-set are introduced in sections §4.1 and §4.2. These algorithms are utilised by some of the algorithms
described in the following sections.

4.1 Finding the connectivity number of a graph

As mentioned in §3.3, the best result known for computing the connectivity number of a graph G was
established by Esfahanian & Hakimi [17]. Define N(u, v) for a given graph G as follows: If uv ∈ E(G),
then N(u, v) = p − 1, else N(u, v) = κ(u, v). The approach of Esfahanian & Hakimi [17] is presented
here in pseudocode as Algorithm 3.

Algorithm 3 Computing κ(G) of a graph G

Input: A graph G.
Output: The connectivity number, κ(G).
1: i ← 1, Nmin(u, v) ← p − 1, select a vertex u ∈ V (G) of minimum degree and let A(u) =

{
u1, u2, . . . , uδ(G)

}
be the neighbours of vertex u.

2: for each v ∈ V (G) \ (A(u) ∪ u) do
3: compute N(u, v) and set Nmin ← min {Nmin, N(u, v)}.
4: end for
5: for j = i + 1 to δ(G) − 1 do
6: if i ≥ δ(G)− 2 or i ≥ Nmin then
7: go to Step 14
8: end if
9: if uiuj /∈ E(G) then

10: compute N(ui, uj), and set Nmin ← min {Nmin, N(ui, uj)}.
11: end if
12: end for
13: i← i + 1, go to Step 5.
14: κ(G)← Nmin; stop.

Algorithm 3 starts by finding a vertex u ∈ G of minimum degree and strores the neighbours of u in the
set A(u) (line 1). The maximum number of internally disjoint u-v paths, with v ∈ V (G)\ (A(u)∪u), are
then calculated in the for loop spanning lines 2 to 4. The algorithm then computes the maximum number

31

Stellenbosch University http://scholar.sun.ac.za

32 CHAPTER 4. SPANNING SUBGRAPHS WITH CONNECTIVITY NUMBER ≤ K

of internally disjoint paths between all pairs of non-adjacent vertices in the set A(u) (lines 5 to 13). The
minimum number of internally disjoint paths that were calculated for any pair of vertices is then taken as
the connectivity number for the graph G (line 14). In their paper Esfahanian & Hakimi [17] showed that
Algorithm 3 makes p−δ(G)−1+ 1

2κ(G)(2δ(G)−κ(G)−3) calls to N(u, v). If the max-flow min-cut theorem
of Ford & Fulkerson [20], with worst-case running time O

(
pq2

)
, is used to compute N(u, v), it follows

that the worst-case running time of Algorithm 3 is O
(
pq2

[
p− δ(G) − 1 + 1

2κ(G)(2δ(G) − κ(G)− 3
])

=

O
(
p3q2

)
.

The advantage of Algorithm 3 is that it is the fastest known algorithm for computing κ(G). However,
a disadvantage of this algorithm, is that it does not return a minimum cut-set of a graph, which is a
requirement for some of the algorithms considered in this chapter.

4.2 Finding a minimum cut-set of a graph

The next algorithm, Algorithm Cut-Vertex Set, finds a minimum cut-set for a given graph. This algorithm
has a relatively low running time. The algorithm employs a bit-vector to mark those vertices to be
removed from the vertex set V (G). The size k of the set of vertices to be removed is varied from 1 to
p−1, while all possible combinations for each set of k vertices are tested. Once a cut-set has been found,
the algorithm terminates.

Algorithm Cut-Vertex Set takes the adjacency matrix N of a graph as input. A vector with two elements
is returned as output. The first element indicates the cardinality of the cut-set found, while the second
element stores the actual vertices comprising the cut-set.

4.2.1 Working of Algorithm Cut-Vertex Set

The Cut-Vertex Set algorithm is presented in two parts. Procedure 1 is contained or called within
Algorithm 4 on line 22. Algorithm Cut-Vertex Set finds a minimum cut-set by performing a brute force
search through all possible combinations of the vertices of G. A minimum cut-set is found by employing
the bit-vector, nodes, in which a position is stored for every vertex in G. A one in position i of nodes
indicates that vertex vi ∈ G is being tested for forming part of a cut-set. The set of vertices chosen as a
cut-set is then stored as a binary string.

Lines 1 to 3 test whether the input graph is connected. If the graph is disconnected, CVS(1) is initialised
to 0 and the algorithm terminates. The next part of Algorithm 4 is responsible for testing all combinations
of vertices, each set forming a possible cut-set. The variable m stores the cardinality of the set of vertices
being tested as a cut-set. Its value is incremented from 1 to p − 1 in the for loop spanning lines 6 to
25. To test for all

(
p
m

)
combinations of m cut vertices, the value of the binary string is initialised with

the first m vertices chosen as the cut-set. The value of the binary string is then incremented in every
iteration of the for loop spanning lines 13 to 24. The function dec2bin(i) on line 14 converts the value of
the counter i to a binary string of length p and stores it in the variable nodes (all positions not storing
a one is filled with a zero). If nodes contains more than m ones, the for loop immediately moves to the
next iteration. The for loop eventually terminates after the last m vertices have been tested for inclusion
in a cut-set. The initial (variable start) and terminal (variable stop) values for the counter of this for
loop is computed on lines 9 to 12.

Once a possible cut-set has been identified by Algorithm 4, control is passed to Procedure 1. Here, a new
adjacency matrix Ntmp is constructed by removing those rows and columns corresponding to cut vertices
(lines 1 to 14). Ntmp is then tested for connectivity by means of Floyd’s shortest path algorithm (line
15). If the graph is disconnected by the removal of the vertices stored in the cut-set, then the adjacency
matrix contains at least one column and row of which the entries have infinite values, indicating that
the graph specified by the adjacency matrix Ntmp is disconnected (lines 16 to 22). This indicates that
a valid cut-set has been found. The cardinality of the cut-set is stored in CVS(1) (line 20) while the
bit-vector for the cut-set is stored in CVS(2) (line 21). The algorithm then immediately terminates. If
no cut-set of cardinality m could be found, control returns to Algorithm 4. A special case exists in the
event where all possible combinations of vertices have been tested in search of a cut-set, but none could

Stellenbosch University http://scholar.sun.ac.za

4.2. Finding a minimum cut-set of a graph 33

Algorithm 4 Cut-Vertex Set: Main

Input: The adjacency matrix N of a graph for which a minimum cut-set is sought.
Output: CVS, a two-element array containing a minimum cut-set cardinality and vertices comprising

a minimum cut-set.

1: if (N = zero matrix) or (N contains a row and column of zeros) then
2: CVS(1)← 0.
3: stop.
4: else
5: CVSFound← false.
6: for m← 1 to p− 1 do
7: start← 0.
8: stop← 0.
9: for i← 1 to m do

10: start← start + 2i−1.
11: stop← stop + 2p−i.
12: end for
13: for i← start to stop do
14: nodes← dec2bin(i).
15: count← 0.
16: for j ← 1 to p do
17: if nodes(j) = 1 then
18: count← count + 1.
19: end if
20: end for
21: if count = m then
22: Call TestCVS.
23: end if
24: end for
25: end for
26: end if

be found. In this case, the first entry in CVSList is initialised to ∞. This is done to indicate to the
algorithm calling Algorithm Cut-Vertex Set that the graph tested was a complete graph and does not
contain a cut-set.

Example 4.1
Consider the graph G25 depicted in Figure 4.1(a). The cardinality of a minimum cut-set returned by
Algorithm Cut-Vertex Set is three, with corresponding bit-vector 00001101. Thus, the minimum cut-set
returned by the algorithm consists of the vertices v1, v3 and v4, coloured black in Figure 4.1. If this
cut-set is removed, the graph G′

25, shown in Figure 4.1(b), is obtained.

v1

v2

v3

v4

v5

v6

v7

v8

(a) The graph G25.

v2

v5

v6

v7

v8

(b) The graph G′

25 = 〈V (G25) \ {v1, v3, v4}〉G25
.

Figure 4.1: The graphs G25 and G′

25. The set of vertices {v1, v3, v4} comprising a possible minimum cut-set in G25 are
coloured black.

Note that this is just one of eight distinct minimum cut-sets. Table 4.1 lists all possible minimum cut-sets
for the graph G25. �

Stellenbosch University http://scholar.sun.ac.za

34 CHAPTER 4. SPANNING SUBGRAPHS WITH CONNECTIVITY NUMBER ≤ K

Procedure 1 Cut-Vertex Set: TestCVS
Output: Returns a minimum cut-set if the given set of vertices comprises a minimum cut-set.

1: V ← ∅.
2: pos← 1.
3: for j ← 1 to p do
4: if nodes(p + 1− j) = 0 then
5: V (pos)← j.
6: pos← pos + 1.
7: end if
8: end for
9: Ntmp← zeros(length(V)).

10: for j ← 1 to length(V) do
11: for k ← 1 to length(V) do
12: Ntmp(j, k)← N(V (j), V (k)).
13: end for
14: end for
15: NShortestPaths← Floyd(Ntmp, length(V)).
16: val← max(NShortestPaths).
17: maxVal← max(val).
18: if maxVal = inf then
19: CVSFound← true.
20: CVS(1)← m.
21: CVS(2)← i.
22: stop.
23: else
24: if (i = stop) and (m = p− 1) and (CVSFound = false) then
25: CVS(1)← inf.
26: end if
27: end if

Bit-Vector CVS
00001101 {v1, v3, v4}
00010011 {v1, v2, v5}
00011001 {v1, v4, v5}
00110001 {v1, v5, v6}
10001100 {v3, v4, v8}
10011000 {v4, v5, v8}
10110000 {v5, v6, v8}
11001000 {v4, v7, v8}

Table 4.1: The minimum cut-sets of the graph G7 in Example 4.1.

It should be noted here that Algorithm Cut-Vertex Set may easily be adapted to find all possible cut-sets
of a graph. This may be achieved by changing the variable CVS to contain rows, each representing a
different cut-set, with cardinalities ranging from the lowest to the highest. Only one algorithm discussed
in this thesis is required to search all minimum cut-sets of the graph, as it needs to find a cut-set that
is also a clique. This special case has the same worst-case running time as that of Algorithm Cut-Vertex
Set. This can be seen from the fact that, if the cardinality of a minimum cut-set is k, then the worst-case
running time for Algorithm Cut-Vertex Set occurs if all

(
p
k

)
combinations of vertices are tested to locate a

minimum cut-set. This is the same as constructing a list of all minimum cut-sets (a possible
(

p
k

)
cut-sets

exist). Searching for all possible cut-sets drastically increases the average running time of the algorithm.
It is clear that the worst-case running time of the algorithm occurs when a complete graph is given as
input. Table 4.2 shows benchmark tests on the running time of Algorithm Cut-Vertex Set that have been
performed on a 3GHz Intel PC with 512MB RAM. The running time of complete graphs from K1 up to
K22 were investigated.

Stellenbosch University http://scholar.sun.ac.za

4.2. Finding a minimum cut-set of a graph 35

Running time
i Time
1 0
2 0.009
3 0.007
4 0.011
5 0.021
6 0.032
7 0.056
8 0.114
9 0.253

10 0.575
11 1.322
12 3.037
13 6.912
14 15.554
15 34.603
16 76.881
17 168.928
18 371.370
19 813.542
20 1773.985
21 3858.282
22 8331.452

Table 4.2: Benchmark tests for Algorithm Cut-Vertex Set on complete graphs. Testing was performed on a 3GHz Intel PC
with 512MB RAM. Complete graphs were used as input ranging from K1 up to K22. The running time is given in seconds.

An input graph will, on average, comprise considerably fewer edges than a complete graph of the same
order, ensuring a much faster computation time than listed in Table 4.2. However, these tests confirm
the importance of terminating the algorithm once a cut-set of minimum cardinality has been discovered.

4.2.2 Time Complexity of Algorithm Cut-Vertex Set

The for loop spanning lines 6 to 25 of Algorithm 4 contributes O(p) to the worst-case running time of
Algorithm Cut-Vertex Set. The nested for loop spanning lines 9 to 11 has a running time of O(k) when
m = k. Although the counter of the for loop on lines 13 to 24 runs from start to stop (decimal values of
the binary strings of the first and last cut-set of cardinality m respectively), Procedure 1 is called only
(

p
k

)
times on line 22 (for cut-sets of cardinality m). The function dec2bin(i) has a worst-case running

time of O(log i). The other
(
stop− start−

(
p
k

))
iterations of the for loop (starting on line 13) have a

linear (O(p)) running time due to the nested for loop spanning lines 16 to 20.

The nested for-loops spanning lines 10 to 14 of Procedure 1 contribute O(p2) to the worst-case running
time of this algorithm. The worst-case running time of Floyd’s shortest path algorithm (line 15) is O(p3).
The remaining part of Procedure 1 either has a linear (the for loop spanning lines 3 to 8) or constant
(line 16) running time. Procedure 1 thus contributes O(p3) to the running time of Algorithm Cut-Vertex
Set.

As a result, the for loop spanning lines 14 to 29 of Algorithm 4 has a worst-case running time of
O

((
stop− start−

(
p
m

))
× p + O

((
p
k

)
×

(
p + p3

)))
= O

((
p
k

)
p3

)
= O

(
pkp3

)
= O

(
pk+3

)
.

Since k may be as large as p − 1, this algorithm is most suitable for graphs where k is relatively small
compared to p.

Stellenbosch University http://scholar.sun.ac.za

36 CHAPTER 4. SPANNING SUBGRAPHS WITH CONNECTIVITY NUMBER ≤ K

4.3 Finding disjoint paths in a graph

In this section a method is described for finding disjoint paths starting from a certain vertex, referred to
as a source, and ending in another vertex or set of vertices, referred to as a sink. Disjoint paths may be
found in polynomial time if the Shortest Augmenting Path Algorithm is used in conjunction with Ford’s
Algorithm, both described in this section.

4.3.1 Ford’s Algorithm

The algorithm described in this section was developed by Ford [19] and is used to find the shortest
path from a specified vertex s to all other vertices in a graph. In addition, vertices are labelled with
the shortest distance from the vertex s using a breadth-first search approach. A breadth-first search
algorithm is an algorithm that first searches for the neighbours of all the vertices that it has already
searched for. In this case, the neighbours of vertex s are searched for and located. The algorithm then
continues by searching for the neighbours of all discovered vertices and continues to iterate in this manner
until all vertices in the graph are found. Ford’s Algorithm has a worst-case running time of O(pq), where
p and q are the order and size of a given graph respectively. The algorithm is presented in pseudocode
in Algorithm 5.

An advantage of Ford’s Algorithm is that it always terminates, even if there are negative cycles (a cycle
with a negative weight) present in the graph. However, the only aspect of Ford’s Algorithm that is
relevant to this thesis, is its labelling of vertices using a breadth-first search approach. The labelled
vertices are used later by the Shortest Augmenting Path algorithm. The labelling process in Algorithm 5
is now described. The sets S and S are initialised as empty sets (lines 1 and 2), after which the distance
label of each vertex v of the graph G is initialised as d(v) =∞ (line 3). The vertex s is added to the set
S and its distance label is set to zero (lines 4 and 5). The while loop spanning lines 8 to 33 then iterates
until all vertices have been labelled, which is achieved when all vertices are included in the set S. In line
9, a vertex in S with the minimum distance label in the set S is assigned to the vertex u. For the first
iteration of this while loop, only the vertex s is included in S and hence is assigned to vertex u. The
chosen vertex u is then removed from the set S and inserted in the set S (lines 10 to 11). The variable
labelCount is used to test for negative cycles in the graph. If a negative cycle is found, the algorithm
terminates (lines 12 to 15).

All neighbours of vertex u are now traversed. The for loop spanning lines 16 to 29 selects a neigbour v
and determines whether d(v) > d(u)+cuv, where cuv is the weight of the edge joining the vertices u and v
(line 17). If the condition evaluates to true, the distance label of vertex v is adjusted to d(v) = d(u)+cuv

(line 18). The vertex v is inserted into the set S, if it was not already included as an element of the
set (lines 21 to 26). The for loop spanning lines 16 to 29 terminates once all neighbours of vertex u
have been traversed. If, after this for loop, S = ∅, all vertices have been inserted into the set S and the
algorithm terminates (lines 30 to 32). If this is not the case, the while loop spanning lines 16 to 29 is
repeated.

A breadth-first search technique is achieved by the way in which vertices are transferred between the
sets S and S. The following example demonstrates this technique.

Example 4.2

Consider the directed, weighted graph G26 depicted in Figure 4.2(a), with arc weights as indicated.
Ford’s algorithm is implemented on this graph, starting from the vertex s. Vertex s is labelled first with
distance d(s) = 0 (see Figure 4.2(b). The vertex s is now removed from the set S and inserted into the
set S (lines 10 to 11 in Algorithm 5). All the out-neigbours of vertex s are now relabelled as the condition
on line 18 evaluates to true (see Figure 4.2(c)). The sets S and S are updated such that S = {s} and
S = {v1, v3, v4} (lines 22 and 23).

The while loop is repeated, with vertex u initialised as vertex v3 (line 9). Vertex v3 is removed from
the set S and inserted into the set S (lines 10 and 11), hence S = {s, v3} and S = {v1, v4}. Control
is passed to the for loop spanning lines 16 to 29, where the distance labels of the out-neighbours of
vertex v3 are tested for possible relabelling. As d(v2) = ∞, the distance label of v2 is relabelled as

Stellenbosch University http://scholar.sun.ac.za

4.3. Finding disjoint paths in a graph 37

Algorithm 5 Ford’s Algorithm

Input: A graph G with edge weights and the vertex s from which shortest paths should be found.
Output: Shortest paths from vertex s to all other vertices in G.
1: S ← ∅.
2: S ← ∅
3: for every vertex vi ∈ V (G) do d(vi)←∞ end for
4: S ← S ∪ s
5: d(s)← 0
6: p(s)← 0
7: for every vertex vi ∈ V (G) do labelCount(vi)← 0 end for
8: while |S| ≤ p do
9: Let u← S such that d(u) = min

{
d(vj) : vj ∈ S

}

10: S ← S ∪ {u}
11: S ← S − {u}
12: labelCount(u)← labelCount(u) + 1
13: if labelCount(u) = p then
14: stop [negative cycle has been found]
15: end if
16: for every vertex v ∈ V (G) do
17: if uv ∈ E(G) then
18: if d(v) > d(u) + cuv then
19: d(v)← d(u) + cuv

20: p(v)← u
21: if v ∈ S then
22: S ← S − {v}
23: S ← S ∪ {v}
24: else if v /∈ S and v /∈ S then
25: S ← S ∪ {v}
26: end if
27: end if
28: end if
29: end for
30: if S = ∅ then
31: stop [no temporary vertices to set permanent]
32: end if
33: end while

d(v2) = d(v3) + cv3v2 = 2 and the vertex v2 is inserted into the set S, so that S = {v1, v4, v2} (lines 18
to 23). The distance label of vertex v4 is less than d(v3) + cv3v4 = 1 + 4 = 5; hence its distance label
remains unchanged (see Figure 4.2(d)). Currently, S = {s, v3} and S = {v1, v4, v2}.
The while loop is repeated, this time with u initialised as vertex v2; hence vertex v2 is removed from the
set S and inserted into the set S (d(v2) = d(v1) = 2 and vertex v2 was arbitrarily selected as the vertex
with the lowest distance label). The only neighbour of vertex v2 whose distance label can be updated
is vertex v5, with a relabelled distance of d(v5) = 7 (see Figure 4.2(e)). The sets S and S are again
updated so that S = {s, v3, v2} and S = {v1, v4, v5} (lines 22 and 23).

The while loop is repeated, with vertex u initialised as vertex v1; hence vertex v1 is removed from the
set S and inserted into the set S. As no distance labels can be updated, vertex v1 is again removed from
the set S and inserted into the set S. The while loop is repeated in a similar fasion for the remaining
vertices in S until the set is empty. The final result is depicted in Figure 4.2(f). �

Thus far, nothing has been said about the variable p(v) mentioned on lines 6 and 20. This variable may
be used to trace back the shortest path from any vertex to the source s. However, this information is
not of importance for this thesis.

Stellenbosch University http://scholar.sun.ac.za

38 CHAPTER 4. SPANNING SUBGRAPHS WITH CONNECTIVITY NUMBER ≤ K

s
d(s) =∞

v1

d(1) =∞
v2

d(2) =∞

v3

d(3) =∞

v4

d(4) =∞

v5

d(5) =∞
1

1

2

3

3

3

4

4

5

(a) The digraph G26.

s
d(s) = 0

v1

d(1) =∞
v2

d(2) =∞

v3

d(3) =∞

v4

d(4) =∞

v5

d(5) =∞
1

1

2

3

3

3

4

4

5

(b) The digraph G26 before first iteration of while
loop. S = S = ∅.

s
d(s) = 0

v1

d(1) = 2
v2

d(2) =∞

v3

d(3) = 1

v4

d(4) = 3

v5

d(5) =∞
1

1

2

3

3

3

4

4

5

(c) First iteration of while loop. S = {s}, S =
{v1, v3, v4}.

s
d(s) = 0

v1

d(1) = 2
v2

d(2) = 2

v3

d(3) = 1

v4

d(4) = 3

v5

d(5) =∞
1

1

2

3

3

3

4

4

5

(d) Second iteration of while loop. S = {s, v3},
S = {v1, v4, v2}.

s
d(s) = 0

v1

d(1) = 2
v2

d(2) = 2

v3

d(3) = 1

v4

d(4) = 3

v5

d(5) = 7
1

1

2

3

3

3

4

4

5

(e) Third iteration of while loop. S = {s, v3, v2},
S = {v1, v4, v5}.

s
d(s) = 0

v1

d(1) = 2
v2

d(2) = 2

v3

d(3) = 1

v4

d(4) = 3

v5

d(5) = 7
1

1

2

3

3

3

4

4

5

(f) Sixth iteration of while loop. S =
{s, v3, v2, v1, v4, v7}, S = ∅.

Figure 4.2: Graphical representations of the progress of Algorithm 5 during the calculation of the distance labels of every
vertex of the graph G26.

4.3.2 Shortest Augmenting Path Algorithm

In many applications, the edges joining vertices in a graph model have certain limitations on the volume
of some substance that may be sent across a link from one station to the other, in some infrastructure
network. For instance, a water pipe may have a limit on the volume of water that is allowed to pass
through it per unit of time. This may be due to physical limitations of the water pipe itself, or that the
station to which the pipe is connected is only able to handle a specified amount of water during a given
time period. The objects that travel or flow through a network are called flow units or units for short.
A maximum flow from a vertex u to a vertex v is the maximum number of units that can be sent from
vertex u to vertex v. For instance, if two stations in a network of water pipes are joined by two pipelines,
of which the first pipeline can transmit 5m3/s of water and the second 3m3/s of water, with both flows
in the same direction then the maximum flow from the one station to the other is 8m3/s. The Shortest
Augmenting Path Algorithm calculates the maximum flow in a directed graph from a source vertex s to
a sink vertex t. It also returns the paths along which the maximum flow from vertex s to vertex t takes
place. The name of the algorithm derives from its mechanism. It always searches for the shortest paths
in the network, using Ford’s Algorithm, to augment the flow from vertex s to vertex t. The Shortest
Augmenting Path Algorithm has a worst-case running time of O(pq2), where p and q are the order and
size of a given graph respectively. The algorithm is presented in pseudocode in Algorithm 6.

Stellenbosch University http://scholar.sun.ac.za

4.3. Finding disjoint paths in a graph 39

Algorithm 6 Shortest Augmenting Path Algorithm

Input: A directed graph G with a unit flow limit on each arc. A source vertex s and a sink vertex t.
Output: The maximum flow possible through G from vertex s to vertex t.
1: E′(G)← the reverse of all arcs in E(G)
2: Determine the distance labels for all vertices from vertex t using Ford’s algorithm and E′(G)
3: ruv ← upper bound on flow allowed for arc uv
4: u← s
5: while d(s) ≤ p do
6: Let v be the neighbour of u with the lowest distance label.
7: if ruv > 0 and d(u) = d(v) + 1 then
8: p(v)← u
9: u← v

10: if v = t then
11: Use p(v) to determine the path P from vertex s to t
12: Let δ ← min {ruv : uv ∈ P}
13: Augment δ units of flow along path P
14: u← s
15: end if
16: else
17: d(u)← d(u) + 1
18: if u 6= s then
19: u← p(u)
20: end if
21: end if
22: end while

The working of Algorithm 6 is now described. The algorithm starts by reversing all arcs in the graph
and stores the reversed set of arcs in the set E′(G) (line 1). This is necessary to compute the correct
distance labels from the vertex sink t to every other vertex (line 2). For the rest of the algorithm, the
original set of arcs, E(G), is used. The variable ruv is defined as the maximum flow allowed along the
arc uv from vertex u to vertex v. It is also known as the residual capacity of the arc uv. The residual
capacity for each arc uv is assigned to ruv on line 3. The sink s is assigned to vertex u on line 4, after
which control is passed to the while loop spanning lines 5 to 22. The out-neighbour of vertex u with the
minimum distance is assigned to vertex v (line 6). The if statement on line 7 evaluates to true if both
conditions ruv > 0 and d(u) = d(v) + 1 are satisfied. The variable p(v) stores the predecessor of the
vertex v along the path traversed thus far, namely vertex u. If v = t (see line 10), then a valid path P
from vertex s to vertex t has been found. The variable p(v) may now be used to reconstruct the path
P . The minimum residual capacity of all arcs along the path P is assigned to the variable δ on line 11.
This is used to augment δ units of flow along the path P on line 13. This means that, for every edge uv
along the path P , ruv = ruv − δ and rvu = rvu + δ. The vertex u is again initialised as vertex s, as the
end of the if statement spanning lines 10 to 15 has been reached and control is again passed to the while
loop starting on line 5. If the if statement on line 7 evaluates to false, then control is passed to line 17,
where the distance label of vertex u is increased by one. Furthermore, if u 6= s, then vertex u is assigned
the value of its predecessor, p(u) (line 19). If the while condition on line 5 evaluates to true, then the
while loop is repeated, otherwise the algorithm terminates.

Maximum flow algorithms have the advantage that they may easily be adapted to incorporate graphs
with more than one sink and/or source vertex. For this thesis, flow to more than one sink vertex is
of importance. This may be achieved by adding another vertex to the graph, called a supersink. All
vertices that act as sinks are joined to the supersink with infinite residual capacities for each of these
arcs. Only graphs with residual capacities of one or zero are of importance for this thesis. In this case,
the arcs from the sinks to the supersink have their residual capacities set to one and not infinity. A
residual capacity of ruv = 1 implies that an arc exists that joins the vertex u to the vertex v. If ruv = 0,
no arc exists between the vertices u and v. These concepts are illustrated in the following example. In
the graphical representations of graphs that follow, the residual capacities of each arc are not indicated
so as to render the graphs less cluttered. The existance of an arc in a graph indicates a residual capacity
in the direction of the arc.

Stellenbosch University http://scholar.sun.ac.za

40 CHAPTER 4. SPANNING SUBGRAPHS WITH CONNECTIVITY NUMBER ≤ K

Example 4.3

Consider the graph G27 depicted in Figure 4.3(a). The vertices v′1 and v′3 are sinks that are joined to
the supersink vertex t. The distance labels for each vertex are indicated on the graph. The predecessor
variable for each vertex is currently unknown (indicated by a question mark). Say, for instance, the
maximum flow from vertex v′4 (acting as the source s) to the supersink t is sought. In Algorithm 6 vertex
u is initialised as vertex v′4 (line 4) after which control is passed to the while loop spanning lines 5 to 22.

v′1

d′(1) = 1

p′(1) =?

v′′1

d′′(1) = 2

p′′(1) =?

v′2
d′(2) = 3
p′(2) =?

v′′2

d′′(2) = 4
p′′(2) =?

v′3

d′(3) = 1
p′(3) =?

v′′3
d′′(3) = 2
p′′(3) =?

v′4

d′(4) = 3

p′(4) =?

v′′4
d′′(4) = 4

p′′(4) =?

t
d(t) = 0
p(t) =?

(a) The digraph G27 before the first iteration.

v′1

d′(1) = 1

p′(1) =?

v′′1

d′′(1) = 2

p′′(1) = v′4

v′2
d′(2) = 3
p′(2) =?

v′′2

d′′(2) = 4
p′′(2) =?

v′3

d′(3) = 1
p′(3) =?

v′′3
d′′(3) = 2
p′′(3) =?

v′4

d′(4) = 3

p′(4) =?

v′′4
d′′(4) = 4

p′′(4) =?

t
d(t) = 0
p(t) =?

(b) The digraph G27 after the first iteration of the
while loop.

v′1

d′(1) = 1

p′(1) = v′′1

v′′1

d′′(1) = 2

p′′(1) = v′4

v′2
d′(2) = 3
p′(2) =?

v′′2

d′′(2) = 4
p′′(2) =?

v′3

d′(3) = 1
p′(3) =?

v′′3
d′′(3) = 2
p′′(3) =?

v′4

d′(4) = 3

p′(4) =?

v′′4
d′′(4) = 4

p′′(4) =?

t
d(t) = 0
p(t) = v′1

(c) The digraph G27 after the third iteration
of the while loop.

v′1

d′(1) = 1

p′(1) = v′′1

v′′1

d′′(1) = 2

p′′(1) = v′4

v′2
d′(2) = 3
p′(2) =?

v′′2

d′′(2) = 4
p′′(2) =?

v′3

d′(3) = 1
p′(3) = v′′3

v′′3
d′′(3) = 2
p′′(3) = v′4

v′4

d′(4) = 3

p′(4) =?

v′′4
d′′(4) = 4

p′′(4) =?

t
d(t) = 0
p(t) = v′3

(d) The digraph G27 after the sixth iteration of the
while loop.

Figure 4.3: Graphical representations of the steps taken by algorithm 6 to calculate the maximum flow from the source
vertex v′4 to the two sink vertices v′1 and v′3 in the graph G27.

As d(s) ≤ p, the while loop is executed. Vertex v′′1 is arbitrarily chosen as vertex v, as d(v′′1) = d(v′′3) = 2
(line 6). The if statement on line 7 evaluates to true; hence p(v) = p(v′′1) is set to vertex v′4 and vertex
u is set to v = v′′1 (lines 8 and 9). The changes are reflected in Figure 4.3(b). The if statement on line
10 is not executed, as v = v′′1 6= t. Consequently, control is passed back to the start of the while loop
spanning lines 5 to 22.

As d(s) ≤ p, the while loop is executed. The only out-neighbour of vertex v′′1 is vertex v′1; hence vertex
v is initialised as vertex v′1. The if statement on line 7 evaluates to true and the predecessor of vertex v′1
is set to vertex v′′1 (line 8). Vertex u is also set to vertex v′′1 . The if statement on line 10 again evaluates
to false and the while loop is repeated, this time extending the path P found to vertex t. Vertex v is
thus set to vertex t, p(t) is set to vertex v′1 and vertex u is set to v. As v = t, the if statement on line 10

Stellenbosch University http://scholar.sun.ac.za

4.3. Finding disjoint paths in a graph 41

evaluates to true. The path P from vertex t may now be traced back to vertex v′4 (line 11) and the path
is augmented (line 12). The vertex u is also reset as vertex s and control is passed back to the while loop
spanning lines 5 to 22. These changes to the graph and the mentioned variables are reflected in Figure
4.3(c). Note that the arcs on the path found are turned around due to the augmentation of the path on
lines 12 and 13.

The while loop spanning lines 5 to 22 now enters its fourth iteration. In a similar fashion to the steps
described above, the path P = v′4, v

′′
3 , v′3, t is discovered through iterations 4 to 6 of the while loop

spanning lines 5 to 22. The changes to the graph are reflected in Figure 4.3(d).

The while loop spanning lines 5 to 22 now enters its seventh iteration. As the vertex v′4 has no out-
neighbours, the if statement on line 7 evaluates to false and control is passed to line 17, where the
distance label of vertex v′4 is increased by one. Since u = s, the if statement spanning lines 18 to 20
is not executed. This process is repeated until d(s) = d(v′4) = p, which is achieved in the thirteenth
iteration of the while loop spanning lines 5 to 22, after which the algorithm terminates.

Two shortest paths v′4, v
′′
1 , v′1, t and v′4, v

′′
3 , v′3, t are thus found by the algorithm. �

4.3.3 Converting a graph to a directed graph

Maximum flow algorithms, such as the Shortest Augmenting Path algorithm, require a directed graph
as input. A special conversion is required to construct a directed graph G′ from a graph G in such a way
that it can be used later to compute internally disjoint paths in the graph G.

An undirected, weighted graph G of order p and size q may be converted to a directed graph G′ as
follows. Every vertex v ∈ V (G) is replaced by two vertices v′ and v′′ in the vertex set V (G′), and is
joined by an arc from vertex v′ to vertex v′′ that is included in the arc set E(G′) of the directed graph
G′. This step inserts p arcs into the arc set E(G′). The vertex v′ is referred to as the in-vertex and the
vertex v′′ is referred to as the out-vertex associated with v ∈ V (G). When using Algorithm 6 to compute
the maximum flow through a graph, this part of the construction of G′ causes flow to occur in only one
direction between the vertices v′ and v′′ (either from v′ to v′′, or from v′′ to v′). This property is used by
later algorithms to construct internally disjoint paths in the graph G′. For every other vertex u ∈ V (G),
if uv ∈ E(G), then the arcs u′′v′ and v′′u′ are inserted into the arc set E(G′) of the directed graph G′.
As each edge uv ∈ E(G) is replaced by two arcs in the graph G′, this step inserts 2q arcs into the arc
set E(G′). Hence, the directed graph G′ has order 2p and size 2q + p.

It should be noted here that any path in the graph G′ comprises an alternating sequence between in-
and out-vertices. It is impossible to construct a path where two in- or out-vertices are adjacent, as no
arc exists in a graph G′ that joins two in- or two out-vertices. A further construction property of the
graph G′ is that it retains the property of being a simple graph. These concepts are used later to revert
paths that are constructed in the graph G′ to internally disjoint paths in the graph G.

The pseudocode for converting an undirected graph G to a directed graph G′ is presented in Algorithm
7.

For the purpose of `-connected subgraph generation, all arcs in the directed graph G′ are required to
have a weight of 1. It is clear that the worst-case running time of Algorithm 7 is O(p2), due to the
two nested for loops spanning lines 4 to 11. The working of the algorithm is explained in the following
example.

Example 4.4

Consider the undirected graph G28 depicted in Figure 4.4(a) with edge weights as indicated. Each
vertex of the graph G28 is replaced by two adjacent vertices (an in- and an out-vertex) in the graph G′

28

(lines 1 to 3 of Algorithm 7). For instance, vertex v1 is replaced by the vertices v′1 and v′′1 which are
joined by the arc v′1v

′′
1 . Furthermore, if uv ∈ E(G28), then the arcs u′′v′ and v′′u′ are inserted into the

arc set E(G′
28) (lines 4 to 11 of Algorithm 7). For instance, the edge v1v4 in the graph G28 is replaced

by the arcs v′′1 v′4 and v′′4 v′1 in the graph G′
28. The directed graph G′

28, obtained as output of Algorithm 7,
is depicted in Figure 4.4(b). The adjacency matrices for the graphs G28 and G′

28 are depicted in Figures
4.5(a) and (b) respectively. �

Stellenbosch University http://scholar.sun.ac.za

42 CHAPTER 4. SPANNING SUBGRAPHS WITH CONNECTIVITY NUMBER ≤ K

Algorithm 7 Undirected Graph to Directed Graph

Input: Adjacency matrix D of an undirected graph G of order p and size q with vertex set V (G) and
edge set E(G).

Output: Adjacency matrix D′ of a directed graph G′ of order 2p and size 2q + p with vertex set V (G′)
and arc set E(G′). All arc weights are set to 1.

1: for i← 1 to p do
2: D′(2i− 1, 2i)← 1
3: end for
4: for i← 1 to p do
5: for j ← i + 1 to p do
6: if D(i, j) > 0 then
7: D′(2i, 2j − 1)← 1
8: D′(2j, 2i− 1)← 1
9: end if

10: end for
11: end for

v1

v2 v3

v41

2

3

4
5

(a) The unidirected graph G28.

v′1 v′′1

v′2 v′′2 v′3 v′′3

v′4 v′′4

(b) The digraph G′

28.

Figure 4.4: Graphical representations of the steps in Algorithm 7 to convert the undirected graph G28 to the directed
graph G′

28.

4.3.4 Constructing internally disjoint paths for a directed graph

Let G be an undirected graph and G′ be the directed graph obtained via Algorithm 7 with G as input.
Let P =

{
P (1), P (2), . . . , P (k)

}
be a set of paths between the vertices s and t obtained as output from

Algorithm 6. It is required by later algorithms that the edges that make out these paths should be
rearranged so as to obtain a set of k internally disjoint paths. This is always possible. A method for
obtaining such a set of paths is now described.

Note that the maximum flow allowed through any vertex in the graph G′ is limited to 1. This implies
that the paths along which the actual flows in the graph take place are internally disjoint. However, the
paths returned by Algorithm 6 are not necessarily internally disjoint due to the way in which the paths
are constructed.

v1 v2 v3 v4

v1

v2

v3

v4







0 4 5 1
4 0 3 0
5 3 0 2
1 0 2 0







v′1 v′′1 v′2 v′′2 v′3 v′′3 v′4 v′′4
v′1
v′′1
v′2
v′′2
v′3
v′′3
v′4
v′′4















0 1 0 0 0 0 0 0
0 0 1 0 1 0 1 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0















(a) Adjacency matrix for the graph G28. (b) Adjacency matrix for the graph G
′

28.

Figure 4.5: The adjacency matrices of the graphs G28 and G′

28.

Stellenbosch University http://scholar.sun.ac.za

4.3. Finding disjoint paths in a graph 43

Every time a valid s-t path has been found, the arcs along the path are reversed due to the path
augmentation in steps 12 and 13 of Algorithm 6. Such a reversed arc may now form part of another s-t
path. Let a be such an arc, joining the vertices u and v (the direction of the arc becomes unimportant,
as every path augmentation reverses its direction). If such an arc is traversed an even number of times,
it implies that no net flow occurs along this arc — the flow of half of the paths employing it will cancel
the flow of the other half. If such an arc is traversed an odd number of times (say 2i + 1 times), then
it would have been traversed i times in one direction and i + 1 times in the other, with the latter case
indicating the direction of one unit of flow along the arc a in an optimal solution. The following example
illustrates these concepts.

Example 4.5
Consider the undirected graph G29 depicted in Figure 4.6(a). Algorithm 7 may now be applied to
produce the directed graph G′

29, as depicted in Figure 4.6(b). For this example, internally disjoint paths
in the graph G′

29 are sought from the vertex s′′ to the vertex t′. Algorithm 6 is executed (starting
from line 4, as the graph is already in the desired directed form) and the first path found is P (1) =
s′′, v′1, v

′′
1 , v′2, v

′′
2 , v′6, v

′′
6 , t′. The path is augmented and the updated graph is depicted in Figure 4.6(c).

The second path located is P (2) = s′′, v′4, v
′′
4 , v′5, v

′′
5 , v′6, v

′′
2 , v′2, v

′′
1 , v′8, v

′′
8 , v′9, v

′′
9 , t′ and is augmented (see

Figure 4.6(d)). The third and final path to be constructed and augmented by Algorithm 6 is P (3) =
s′′, v′7, v

′′
7 , v′2, v

′′
2 , v′3, v

′′
3 , t′ (see Figure 4.6(e)).

Three arcs were used more than once by the discovered paths — the arc joining the vertices v′′1 and
v′2 and the arc joining the vertices v′′2 and v′6 were both traversed twice, namely by the paths P (1) and
P (2). The net flow over these arcs are zero, as they were traversed an even number of times. The arc
joining the vertices v′2 and v′′2 was traversed once by all three discovered paths. This arc has a flow in
the direction from vertex v′2 to vertex v′′2 . �

An easy method for converting the paths returned by Algorithm 6 to internally disjoint paths is to keep
track of how many times each arc has been traversed. An efficient structure for this may be achieved by
means of a symmetric traversal matrix A, in which element (i, j) = (j, i) denotes the number of times
the arc ij has been traversed in total (modulo 2). The matrix A thus consists only of ones and zeros.
Internally disjoint paths may be obtained from the matrix as follows. A new path is created, starting
from the vertex s′′. The first non-zero element (say element j) in row s′′ is taken as the next vertex on
the path (the arc s′′j is inserted into the path). Elements A(s′′, j) and A(j, s′′) are removed from the
matrix (set to zero) and the path is extended by searching in row j for the first non-zero element. The
process of searching for the next vertex that is added to the path is repeated until the vertex t′ is reached.
If any non-zero elements remain in row s′′, then the whole process is repeated to find another path (if
k paths were returned by Algorithm 6, then this process will also repeat k times). The reason that this
method guarantees a set of k internally disjoint paths is that all arcs causing paths to not be internally
disjoint, have been removed from the matrix A. This and the fact that each vertex has a maximum
flow of 1 has the consequence that any vertex in the graph G′ forms part of exactly one s-t path. Hence
all paths created in this fashion are internally disjoint. The pseudocode for obtaining internally disjoint
paths from the set of paths returned by Algorithm 6 is presented in Algorithm 8.

The matrix arcCounter in Algorithm 8 is the structure used as the symmetric traversal matrix. The
nested for loops spanning lines 1 to 5 initializes all elements to zero. The nested for loops spanning
lines 6 to 11 counts the number of times each arc is traversed (note that the direction of traversal is not
important, hence the symmetry in the traversal matrix). The nested for loops spanning lines 12 to 17
ensure that all elements in arcCounter that are even are set to zero and that all elements that are odd
are set to one. The for loop spanning lines 19 to 31 is responsible for determining the internally disjoint
paths. This is explained with the aid of an example.

Example 4.6 (Continuation of Example 4.5)
Consider again the paths that were returned by Algorithm 6 for the graph G′

29. The symmetric traversal
matrix arcCounter for this graph is depicted in Figure 4.7. All elements of arcCounter that are even are
now set to zero and all elements that are odd are set to 1 (lines 12 to 17 of Algorithm 8). Thus the
elements arcCounter(v′′1 , v′2), arcCounter(v′2, v

′′
1), arcCounter(v′′2 , v′6) and arcCounter(v′6, v

′′
2) are all set to

zero, while the elements arcCounter(v′2, v
′′
2) and arcCounter(v′′2 , v′2) are set to 1. Control is now passed

Stellenbosch University http://scholar.sun.ac.za

44 CHAPTER 4. SPANNING SUBGRAPHS WITH CONNECTIVITY NUMBER ≤ K

s

v1 v2 v3

v4 v5 v6

v7 v8 v9

t

(a) The graph G29.

replacements

s′

s′′

v′1

v′′1

v′2 v′′2 v′3
v′′3

v′4 v′′4 v′5 v′′5 v′6 v′′6

v′7 v′′7 v′8 v′′8 v′9 v′′9

t′ t′′

(b) The digraph G′

29 obtained from G29 via Algorithm 7.

s′

s′′

v′1

v′′1

v′2 v′′2 v′3
v′′3

v′4 v′′4 v′5 v′′5 v′6 v′′6

v′7 v′′7 v′8 v′′8 v′9 v′′9

t′ t′′

(c) The digraph G′

29 after the path P (1) = s′′, v′1, v′′1 , v′2, v′′2 , v′6, v′′6 , t′ has been augmented.

s′

s′′

v′1

v′′1

v′2 v′′2 v′3
v′′3

v′4 v′′4 v′5 v′′5 v′6 v′′6

v′7 v′′7 v′8 v′′8 v′9 v′′9

t′ t′′

(d) The digraph G′

29 after the path P (2) = s′′, v′4, v′′4 , v′5, v′′5 , v′6, v′′2 , v′2, v′′1 , v′8, v′′8 , v′9, v′′9 , t′ has been aug-
mented.

s′

s′′

v′1

v′′1

v′2 v′′2 v′3
v′′3

v′4 v′′4 v′5 v′′5 v′6 v′′6

v′7 v′′7 v′8 v′′8 v′9 v′′9

t′ t′′

(e) The digraph G′

29 after the path P (3) = s′′, v′7, v′′7 , v′2, v′′2 , v′3, v′′3 , t′ has been augmented.

Figure 4.6: The graphs G29 and G′

29. The path augmentation steps of Algorithm 6 are shown in Figures 4.6(c) and (e).

Stellenbosch University http://scholar.sun.ac.za

4.3. Finding disjoint paths in a graph 45

Algorithm 8 Constructing Internally Disjoint Paths in a Directed Graph

Input: Adjacency matrix D′ of a directed graph G′ of order p and P , the set of k paths corresponding
to the flows obtained by implementing Algorithm 5 with G′ as input.

Output: The set P ′ of k internally disjoint paths for the directed graph G′.
1: for i← 1 to 2p do
2: for j ← 1 to 2p do
3: arcCounter(i, j)← 0
4: end for
5: end for
6: for i← 1 to k do
7: for j ← 1 to (length of path i in the set P)− 1 do
8: arcCounter(vertex j on path i, vertex j+1 on path i)← arcCounter(vertex j on path i, vertex

j + 1 on path i) + 1
9: arcCounter(vertex j + 1 on path i, vertex j on path i) ← arcCounter(vertex j + 1 on path i,

vertex j on path i) + 1
10: end for
11: end for
12: for i← 1 to p do
13: for j ← i + 1 to p do
14: arcCounter(i, j)← arcCounter(i, j) (mod 2)
15: arcCounter(j, i)← arcCounter(j, i) (mod 2)
16: end for
17: end for
18: j ← 1
19: for every index i where arcCounter(s, i) > 0 do
20: a← s
21: b← i
22: while b 6= t do
23: add arc ab to path P ′(j)

24: arcCounter(a, b)← 0
25: arcCounter(b, a)← 0
26: a← b
27: b← index of first non-zero element in row b
28: end while
29: add arc ab to path P ′(j) [last vertex in path is added here]
30: j ← j + 1
31: end for

to the for loop spanning lines 19 to 31, where the first new path is constructed. As arcCounter(s′′, v′1)
equals one, this arc is inserted into the path P ′(1) (line 23). The elements arcCounter(s′′, v′1) and
arcCounter(v′1, s

′′) are both set to zero (lines 24 and 25), after which row v′1 is investigated. The
first non-zero element is vertex v′′1 , hence the path P ′(1) is extended to include vertex v′′1 , after which
the arcs v′1v

′′
1 and v′′1 v′1 are removed from the matrix arcCounter. Row v′′1 is investigated next. The

first non-zero element is vertex v′8 and the above process is repeated. This process continues until
the path P ′(1) = s′′, v′1, v

′′
1 , v′8, v

′′
8 , v′9, v

′′
9 , t′ is constructed. Control is again passed to the start of the

for loop spanning lines 19 to 31. In a similar fasion the paths P ′(2) = s′′, v′4, v
′′
4 , v′5, v

′′
5 , v′6, v

′′
6 , t′ and

P (3) = s′′, v′7, v
′′
7 , v′2, v

′′
2 , v′3, v

′′
3 , t′ are constructed. Note that all three paths are internally disjoint. �

The sets of nested for loops spanning lines 1 to 5 and 12 to 17 in Algorithm 8 both have a worst-case
running time of O

(
p2

)
. The length of a path discovered can be at most p vertices. Hence the sets of

for loops spanning lines 6 to 11 and 19 to 31 in Algorithm 8 both have a worst-case running time of
O (kp), where k is the number of paths discovered. Hence, the worst-case running time of this algorithm
is O

(
max

{
p2, kp

})
. The number of paths discovered cannot be greater than 2q + p, as there are only

2q + p arcs in the graph G′, and each arc may only be traversed once. Consequently, the worst-case

Stellenbosch University http://scholar.sun.ac.za

46 CHAPTER 4. SPANNING SUBGRAPHS WITH CONNECTIVITY NUMBER ≤ K

s′ s′′ v′1 v′′1 v′2 v′′2 v′3 v′′3 v′4 v′′4 v′5 v′′5 v′6 v′′6 v′7 v′′7 v′8 v′′8 v′9 v′′9 t′ t′′

s′

s′′

v′1
v′′1
v′2
v′′2
v′3
v′′3
v′4
v′′4
v′5
v′′5
v′6
v′′6
v′7
v′′7
v′8
v′′8
v′9
v′′9
t′

t′′











































0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0











































Figure 4.7: The symmetric traversal matrix arcCounter for the graph G′

29.

running time of Algorithm 8 is O
(
max

{
p2, (2q + p)p

})
= O ((2q + p)p) = O (pq).

4.3.5 Putting it all together

In this section, the algorithms discussed in §4.3.1 - §4.3.4 are combined to produce a method for finding
a maximum set of internally disjoint paths between a source vertex s and a sink or set of sink vertices
in an undirected graph G. The steps for obtaining these internally disjoint paths in such a graph G are
outlined in Algorithm 9.

Algorithm 9 Finding Internally Disjoint Paths in an Undirected Graph

Input: Adjacency matrix D of an undirected graph G, a source vertex s and a set of sink vertices T .
Output: A maximum set of internally disjoint paths P between vertex s and the set T in the graph G.
1: Convert the graph G to a directed graph G′, using Algorithm 7. Add a supersink vertex t to the

graph G′. Add arcs to the graph G′ from the supersink vertex t to every in-vertex representing a
sink vertex in the graph G.

2: Calculate the distance labels for each vertex using Algorithm 5, starting from the supersink vertex t.
3: Reverse all arcs of the graph G′.
4: Append the counter on line 5 of Algorithm 6 such that the while loop will execute as long as d(s) ≤ 2p,

where p is the order of the directed graph G′. Use this version of Algorithm 6, starting from line 4,
to calculate the maximum flow from the in-vertex s′ in the graph G′, representing vertex s of the
graph G, to the vertex t.

5: Use Algorithm 8 to convert the set of paths P returned by Algorithm 6 to internally disjoint paths.
Call this set of paths P ′.

6: Remove the supersink vertex t from the ends of all paths in the set P ′.
7: Convert the paths in the set P ′ to internally disjoint paths for the graph G.

Steps 1 to 5 of Algorithm 9 have already been discussed in the previous sections. The structure of the
directed graph obtained using Algorithm 9 differs somewhat from the graph examples presented in the
previous sections. This is primarily due to the way in which a supersink is joined to the directed graph.

Stellenbosch University http://scholar.sun.ac.za

4.3. Finding disjoint paths in a graph 47

s

v1 v2 v3

v4 v5 v6

(a) The graph G30.

s′
d′(s) =?

p′(s) =?

s′′
d′′(s) =?

p′′(s) =?
v′1

d′(1) =?

p′(1) =?

v′′1

d′′(1) =?

p′′(1) =?

v′2

d′(2) =?

p′(2) =?

v′′2

d′′(2) =?
p′′(2) =?

v′3

d′(3) =?

p′(3) =?

v′′3

d′′(3) =?

p′′(3) =?

v′4
d′(4) =?
p′(4) =?

v′′4
d′′(4) =?
p′′(4) =?

v′5
d′(5) =?
p′(5) =?

v′′5
d′′(5) =?
p′′(5) =?

v′6
d′(6) =?
p′(6) =?

v′′6
d′′(6) =?
p′′(6) =?

t
d(t) =?
p(t) =?

(b) The digraph G′

30 after executing lines 1 and 2 of Algorithm 9.

s′
d′(s) = 7

p′(s) =?

s′′
d′′(s) = 8

p′′(s) =?
v′1

d′(1) = 5

p′(1) =?

v′′1

d′′(1) = 6
p′′(1) =?

v′2

d′(2) = 3
p′(2) =?

v′′2

d′′(2) = 4

p′′(2) =?

v′3

d′(3) = 1

p′(3) =?

v′′3

d′′(3) = 2

p′′(3) =?

v′4
d′(4) = 5
p′(4) =?

v′′4
d′′(4) = 6
p′′(4) =?

v′5
d′(5) = 3
p′(5) =?

v′′5
d′′(5) = 4
p′′(5) =?

v′6
d′(6) = 1
p′(6) =?

v′′6
d′′(6) = 2
p′′(6) =?

t
d(t) = 0
p(t) =?

(c) The digraph G′

30 after executing lines 3 and 4 of Algorithm 9. The distance labels are shown for each
vertex. All arcs have been reversed.

Figure 4.8: The graph G30 and graphical representation of steps 1 to 2 (Figure 4.8(b)) and 3 to 4 (Figure 4.8(c)) of
Algorithm 9.

Also note that the enumerating progress of the counter for the while loop on line 5 of Algorithm 6 is
changed to extend to 2p instead of p, as reflected in step 4 of Algorithm 9. This is required, as the arcs
in the graph G′ are reversed after the distance labels have been calculated. This may result in some
distance labels to reaching the bound p before a complete path has been found, causing Algorithm 6 to
terminate prematurely. The problem is alleviated by allowing the counter in the while loop on line 5 of
algorithm 6 to continue incrementing its value until a bound of 2p is reached. Note that the distance
labels are used to test for loops in paths. As the graph G′ consists of p vertices, setting this counter to
2p ensures that all vertices can be visited along some path before Algorithm 6 will terminate.

A complete worked example, implementing steps 1 to 5 of Algorithm 9 now follows.

Example 4.7

Consider the undirected graph G30 depicted in Figure 4.8(a). Vertex s is the source and vertices v3 and
v6 are the sinks. Step 1 of Algorithm 9 may be executed to produce the directed graph G′

30 depicted in
Figure 4.8(b). The distance labels are calculated and all arcs are reversed (steps 2 and 3 — see Figure
4.8(c)). Control is now passed to step 4 of Algorithm 9. Let P (1) = s′, v′′4 , v′4, v

′′
2 , v′2, v

′′
6 , v′6, t be the first

path obtained using Algorithm 6 (at this stage, Algorithm 6 has not yet terminated). The updated
graph G′

30 is depicted in Figure 4.9(a). Note that the arcs on the discovered path have been reversed.
Algorithm 6 now continues to execute and obtains the path P (2) = s, v′′1 , v′1, v

′′
2 , v′4, v

′′
5 , v′5, v

′′
6 , v′2, v

′′
3 , v′3, t

and then terminates. The updated graph G′
30 is depicted in Figure 4.9(b). As the maximum flow has

Stellenbosch University http://scholar.sun.ac.za

48 CHAPTER 4. SPANNING SUBGRAPHS WITH CONNECTIVITY NUMBER ≤ K

s′
d′(s) = 7

p′(s) =?

s′′
d′′(s) = 8

p′′(s) =?
v′1

d′(1) = 5
p′(1) =?

v′′1

d′′(1) = 6
p′′(1) =?

v′2

d′(2) = 3

p′(2) = v′′2

v′′2

d′′(2) = 4

p′′(2) = v′4

v′3

d′(3) = 1

p′(3) =?

v′′3

d′′(3) = 2

p′′(3) =?

v′4
d′(4) = 5
p′(4) = v′′4

v′′4
d′′(4) = 6
p′′(4) = s

v′5
d′(5) = 3
p′(5) =?

v′′5
d′′(5) = 4
p′′(5) =?

v′6
d′(6) = 1
p′(6) = v′′6

v′′6
d′′(6) = 2
p′′(6) = v′2

t
d(t) = 0
p(t) = v′6

(a) The digraph G′

30 after the path P (1) = s′, v′′4 , v′4, v′′2 , v′2, v′′6 , v′6, t has been found and augmented.

s′
d′(s) = 7
p′(s) =?

s′′
d′′(s) = 8

p′′(s) =?
v′1

d′(1) = 5

p′(1) = v′′1

v′′1

d′′(1) = 6

p′′(1) = s

v′2

d′(2) = 3

p′(2) = v′′6

v′′2

d′′(2) = 6

p′′(2) = v′1

v′3

d′(3) = 1

p′(3) = v′′3

v′′3

d′′(3) = 2

p′′(3) = v′2

v′4
d′(4) = 5
p′(4) = v′′2

v′′4
d′′(4) = 6
p′′(4) = s

v′5
d′(5) = 3
p′(5) = v′′5

v′′5
d′′(5) = 4
p′′(5) = v′4

v′6
d′(6) = 1
p′(6) = v′′6

v′′6
d′′(6) = 4
p′′(6) = v′5

t
d(t) = 0
p(t) = v′3

(b) The digraph G′

30 after the path P (2) = s, v′′1 , v′1, v′′2 , v′4, v′′5 , v′5, v′′6 , v′2, v′′3 , v′3, t has been found and
augmented.

Figure 4.9: Graphical representations of the process of obtaining internally disjoint paths from the vertex s to the vertex
t in the graph G30.

been calculated, control is passed to step 5 of Algorithm 9. Note that the arc joining the vertices v′4 and
v′′2 and the arc joining the vertices v′2 and v′′6 have been traversed by both discovered paths. This can be
seen from the symmetric traversal matrix arcCounter after the nested for loop spanning lines 6 to 11 in
Algorithm 8 completed execution (arcCounter(v′4, v

′′
2) = arcCounter(v′2, v

′′
6) = 2). These arcs are removed

from the matrix arcCounter after which the two internally disjoint paths P (1) = s′, v′′1 , v′1, v
′′
2 , v′2, v

′′
3 , v′3, t

and P (2) = s′, v′′4 , v′4, v
′′
5 , v′5, v

′′
6 , v′6, t are calculated in the for loop spanning lines 24 to 36 of Algorithm

8. �

It remains to show how a set of paths found for the directed graph G′ of an undirected graph G are
converted to internally disjoint paths in the graph G (step 7 of Algorithm 9). The pseudocode for this
operation is presented in Algorithm 10 and illustrated in Example 4.8.

Algorithm 10 Directed Paths to Undirected Paths

Input: A set P ′ of k paths that do not share any arcs in the directed graph G′ (of order 2p and size
2p + q) obtained by applying steps 1 to 6 of Algorithm 9 to the graph G (of order p and size q).

Output: A set P of k internally disjoint paths in the undirected graph G.
1: for i← 1 to k do
2: for j ← 1 to 2p do
3: if vertex j on path i in the set P ′ is an in-vertex then

4: Let u be the vertex in the graph G represented by the jth vertex on path i of the set P ′.

Also, let v be the vertex in the graph G represented by the (j + 1)th vertex on path i of the
set P ′. Add the edge uv to path i of the set P .

5: end if
6: end for
7: end for

Stellenbosch University http://scholar.sun.ac.za

4.4. Implementation of Whitney’s Theorem 49

Example 4.8 (Continuation of Example 4.7)

Consider again the graph G30 in Figure 4.8(a) and its corresponding directed graph G′
30 in Figure 4.8(c).

Two paths that do not share any arcs in G′
30 were constructed, namely P ′(1) = s′, v′′1 , v′1, v

′′
2 , v′2, v

′′
3 , v′3, t

and P ′(2) = s′, v′′4 , v′4, v
′′
5 , v′5, v

′′
6 , v′6, t. Control is now passed to step 6 of Algorithm 9 where the ver-

tex t is removed from the paths in the set P ′. Hence P ′(1) = s′, v′′1 , v′1, v
′′
2 , v′2, v

′′
3 , v′3 and P ′(2) =

s′, v′′4 , v′4, v
′′
5 , v′5, v

′′
6 , v′6. Step 7 is now executed; hence control is passed to Algorithm 10. For this example

the path P ′(1) is converted to a path in the graph G30.

In the first iteration of the for loop spanning lines 2 to 6, j = 1. Hence vertex j points to vertex s′, the
first vertex in the path P ′(1). As vertex s′ is an in-vertex and corresponds to vertex s in the graph G30,
and as vertex v′′4 corresponds to vertex v4 of graph G30, the edge sv4 is added to the empty path P (1).
The for loop spanning lines 2 to 6 now iterates until j = 3. The third vertex, vertex v′4 is an in-vertex,
thus the edge v4v5 is added to the path P (1), such that P (1) = s, v4, v5. In a similar fashion, the path is
extended to vertex v6, resulting in the path P (1) = s, v4, v5, v6. The for loop spanning lines 2 to 6 now
terminates as the end of the path has been reached. In a similar fashion, the path P (2) = s, v1, v2, v3 is
constructed. �

Step 1 of Algorithm 9 calls Algorithm 7, which has an O(p2) worst-case running time. Ford’s Algorithm
is called in Step 2, which has a worst-case running time of O(pq). As there are 2q + p arcs to reverse
in step 3, this step has a worst-case running time of O(2q + p). Algorithm 6 is called in step 4 and
has a worst-case running time of O(pq2). The worst-case running time of Algorithm 8, implemented in
step 5 of Algorithm 9, has a worst-case running time of O (pq). Finally, the worst-case running time of
Algorithm 10 is O (kp) due to the nested for loop spanning lines 1 to 7, where k is the number of paths
found in the graph G. As the size of graph G is q, at most q internally disjoint paths can be found.
Hence the worst-case running time of Algorithm 10 is O (pq). The worst-case running time for Algorithm
9 is thus dominated by that of Algorithm 6. Consequently, its worst-case running time is O(pq2).

4.4 Implementation of Whitney’s Theorem

One of the most important results in the field of connectivity is due to Whitney (see Theorem 3.7), which
states that, for a graph G to be k-connected, there must exist at least k internally disjoint paths between
any pair of vertices. The next result, called Algorithm Whitney, is an implementation of this theorem
and produces a spanning subgraph G′ from a graph G with a connectivity number of k. The minimum
connectivity number of the subgraph G′ may be varied from zero to k, depending on the number of
internally disjoint paths that are retained between each pair of vertices. Note that, from the definition
of k-connectivity, this implies that if ` internally disjoint paths are present between every pair of vertices
in the subgraph G′, then the connectivity number of the subgraph is at least `. The pseudocode for this
algorithm is presented in Algorithm 11.

Steps 4 to 7 of Algorithm 11 have already been described in previous sections. In step 8, vertices 2j
and 2j − 1 are added to each path that was generated in step 7 of Algorithm 11. This is necessary, as
the working of Algorithm 6 is such that the last vertex in the path is not included when the paths are
constructed, as some input graphs end in a supersink vertex t, that should not form part of the paths
being constructed (see, for instance, Example 4.7). For Whitney’s Algorithm, no supersink vertex is
added to the graph and the last vertex, vertex 2j, is not included, but is inserted in step 8 of Algorithm
11. The next vertex, vertex 2j − 1, also has to be inserted in order for Algorithm 10, which is called in
step 9 of Algorithm 11, to add vertex j to the paths constructed in the graph G′. Step 10 of Algorithm
11 attempts to optimise the output obtained from this algorithm by selecting the ` cheapest paths from
the set P ′ and inserting these paths into the graph G′. This is done in an attempt to minimise the overall
cost of the graph H .

Example 4.9

Consider the complete, weighted graph G31 depicted in Figure 4.10(a). Suppose that a 3-connected
spanning subgraph is desired. Algorithm 11 may be implemented to produce the spanning subgraph
G′

31, depicted in Figure 4.10(b). The paths inserted into the graph G′
31 are listed in Table 4.3.

Stellenbosch University http://scholar.sun.ac.za

50 CHAPTER 4. SPANNING SUBGRAPHS WITH CONNECTIVITY NUMBER ≤ K

Algorithm 11 Whitney’s Algorithm

Input: A graph G of order p, with κ(G) = k, and `, the desired minimum connectivity number for the
spanning subgraph G′.

Output: A spanning subgraph G′, for which κ(G′) ≥ `.
1: Convert the graph G to a directed graph H , using Algorithm 7.
2: for i← 1 to p do
3: for j ← i + 1 to p do
4: Calculate the distance labels for each vertex using Ford’s Algorithm, starting from the vertex

2j.
5: Reverse all arcs of the graph H .
6: Call Algorithm 6, starting from line 4, to calculate the maximum flow from the in-vertex 2i− 1

to the out-vertex 2j in the graph H .
7: Call Algorithm 8 to convert the set of paths P returned by Algorithm 6 to internally disjoint

paths. Call this set of paths P ′.
8: Add the vertex 2j, followed by the vertex 2j − 1, to the end of each path in P ′.
9: Convert the paths in the set P ′ to internally disjoint paths for the graph G using Algorithm 10.

10: Calculate the cost of each path in P ′ by summating over the weights of the edges on each path.
Select the ` cheapest paths and insert them into the graph G′.

11: end for
12: end for

v1 v2

v3

v4v5

v6

1

1

1

1

1

1 1

11
44

4 44

4

(a) The graph G31, with a total weight of 33.

v1 v2

v3

v4v5

v6

1

1

1

1

1

1 1

11

(b) The graph G′

31, with a total weight of 9.

Figure 4.10: Graphical representations of the graphs G31 and G′

31. The graph G31 has a connectivity number of 5 and a
weight of 33, whilst the graph G′

31 has a connectivity number of 3 and a cost of 9.

Paths to
Paths from v2 v3 v4 v5 v6

v1 v1, v2 v1, v2, v3 v1, v4 v1, v5 v1, v5, v6

v1, v5, v2 v1, v4, v3 v1, v2, v3, v4 v1, v2, v5 v1, v4, v6

v1, v4, v3, v2 v1, v5, v6, v3 v1, v5, v6, v4 v1, v4, v6, v5 v1, v2, v3, v6

v2 — v2, v3 v2, v3, v4 v2, v5 v2, v3, v6

v2, v1, v4, v3 v2, v1, v4 v2, v1, v5 v2, v5, v6

v2, v5, v6, v3 v2, v5, v6, v4 v2, v3, v6, v5 v2, v1, v4, v6

v3 — — v3, v4 v3, v6, v5 v3, v6

v3, v6, v4 v3, v2, v5 v3, v4, v6

v3, v2, v1, v4 v3, v4, v1, v5 v3, v2, v5, v6

v4 — — — v4, v6, v5 v4, v6

v4, v1, v5 v4, v3, v6

v4, v3, v2, v5 v4, v1, v5, v6

v5 — — — — v5, v6

v5, v1, v4, v6

v5, v2, v3, v6

Table 4.3: The list of paths used in the construction of the graph G′

31 so as to ensure 3-connectivity of G′

31.

Stellenbosch University http://scholar.sun.ac.za

4.5. Removing the most expensive edge first 51

The total weight of the graph G31 is 33 and that of G′
31 is 9. Hence a total weight improvement of 24

was possible. �

A disadvantage of Algorithm 11 is that it will not always produce a spanning subgraph with fewer edges
than the original graph. This occurs if every edge joining a certain pair of vertices (say u and v) is
selected as one of the ` cheapest u-v paths that are constructed in steps 6 to 10 of Algorithm 11. In this
manner, all edges in the original graph are used. For many practical implementations of graphs, an edge
joining two vertices indicates the shortest path between these two vertices. The algorithm will not be
able to return a subgraph comprising fewer edges for all such graphs.

However, Algorithm 11 has a relatively low running time. Step 1 of Algorithm 11 has a worst-case
running time of O

(
p2

)
. Ford’s Algorithm is called in Step 4, which has a worst-case running time of

O(pq). There are 2p + q edges to reverse; hence step 5 has a worst-case running time of O(2q + p).
Algorithm 6, called in step 6, has a worst-case running time of O(pq2). The worst-case running time of
Algorithm 8, which is called in step 7 of Algorithm 11, has a worst-case running time of O (pq). The
vertices 2j and 2j − 1 are added to all paths found in step 8 of Algorithm 11. As the size of the graph
G is q, at most q internally disjoint i-j paths can be found; hence the worst-case running time of this
step takes O(q) time. Similar to the worst-case running time analysis of Algorithm 9, the worst-case
running time of Algorithm 10, called in step 9 of Algorithm 11, is O (pq). The calculation of the costs
for each path on line 10 has a worst-case running time of O

(
q2

)
, as there exists a maximum number of

q paths generated between every pair of vertices, each having a maximum length of q. If the well-known
Quicksort algorithm is used to sort the paths according to their cost, this step takes a further O

(
log

(
q2

))

time; hence the worst-case running time of this step is O
(
q2

)
. The worst-case running time of all of

these steps are dominated by that of Algorithm 6. The nested for loop spanning lines 2 to 11 repeats all
these steps O

(
p2

)
times. Consequently, the worst-case running time of Algorithm 11 is O

(
p3q2

)
.

4.5 Removing the most expensive edge first

In this section a number of brute force algorithms for the construction of connectivity preserving and
reducing spanning subgraph of a weighted graph are presented. These algorithms are based on the greedy
approach of removing the most expensive edge, testing what the connectivity number of the resulting
graph is, and repeating the process, if required. The algorithms are referred to as Most Expensive Edge
First, or MEEF for short.

4.5.1 Construction of a spanning subgraph G′ of G, with κ(G′) = κ(G)

Let G be a connected, weighted graph with connectivity number k. Algorithm MEEF: Connectivity
Preserving, as presented in pseudocode as Algorithm 12, repeatedly removes a most expensive edge from
G until the removal of the next most expensive edge reduces the connectivity number of the graph G.
This requires the recalculation of the connectivity number of the graph G′ every time an edge is removed.

The majority of the steps in Algorithm 12 are self explanatory. The while loop spanning lines 7 to 13
removes a most expensive edge uv ∈ E(G′) and adds the cost of uv to the variable costSaved. The
connectivity number of the graph G′ is then recalculated in line 12 by making use of either Algorithm
3 or 4. The while loop terminates once κ(G′) < k. At this point the last edge that was removed, is
re-inserted into E(G′) and its cost is subtracted from costSaved (lines 14 to 15).

Let q and q′ be the sizes of the graphs G and G′ respectively. The while loop spanning lines 7 to 13
completes (q − q′ + 1) iterations. To find a most expensive edge uv ∈ E(G′) takes constant time (O(1))
if the edges are sorted and a counter is used to point to the next most expensive edge. Sorting may
be achieved prior to entering the while loop. If the well-known Quicksort algorithm is used, the sorting
operation takes O(q log q) time, where q is the size of the graph G. The worst-case running time of each
iteration of the while loop is thus dominated by the worst-case running time of the algorithm used to
compute κ(G′) on line 12. If Algorithm 3 is used for this purpose, then the worst-case running time of the
while loop, and consequently that of Algorithm 12, is O (q − q′)×O

(
p3q2

)
= O

(
p3(q − q′)q2

)
= O

(
p3q3

)
.

Stellenbosch University http://scholar.sun.ac.za

52 CHAPTER 4. SPANNING SUBGRAPHS WITH CONNECTIVITY NUMBER ≤ K

Algorithm 12 MEEF: Connectivity Preserving

Input: A connected graph G with connectivity number k.
Output: A connectivity preserving spanning subgraph G′ of the graph G and the cost saved.
1: if the graph G is not connected then
2: print ”Graph is not connected.”, stop.
3: end if
4: G′ ← G
5: costSaved← 0
6: tmpConn← κ(G′)
7: while (tmpConn ≥ k) do
8: find most expensive edge uv ∈ E(G′)
9: Etmp← E(G′)

10: costSaved← costSaved + cost(uv)
11: E(G′)← E(G′) \ uv
12: tmpConn← κ(G′)
13: end while
14: costSaved← costSaved− cost(uv)
15: E(G′)← Etmp
16: return G′, costSaved

The advantage of this algorithm is that it is easy to implement and has a low worst-case running time.
There is a disadvantage, however, as is seen in the following example.

Example 4.10
Consider the graph G32 with edge-weights as depicted in Figure 4.11. By inspection it follows that
κ(G32) = 2.

v1 v2 v3

v4v5

1

1

2

2

8

9

10

Figure 4.11: The graph G32.

If Algorithm 12 is applied to G32, it attempts to remove the edge v1v2 first. The connectivity number
of the graph still equals two and hence the while loop in the algorithm is repeated. It now attempts to
remove the edge v2v5. As this produces a spanning subgraph with a connectivity number of the graph
to one, the edge is replaced and the algorithm terminates, with a total saved cost of 10. However, if the
edges v1v4 and v2v5 are removed instead, the connectivity number remains two for the new subgraph,
with a total saved cost of 17. �

The previous example illustrates that the way in which expensive edges are scattered throughout the
graph has an important effect on the effectiveness of Algorithm 12. More edges will, on average, be
removed from graphs where edges with high costs are dispersed more or less evenly throughout the
graph. If edges with high costs are not dispersed evenly, fewer edges may be removed on average,
resulting in a lower saved cost.

4.5.2 Construction of a spanning subgraph G′ of G, with κ(G′) < κ(G)

To construct a connectivity reducing spanning subgraph G′ with a connectivity number strictly less than
that of the original graph G, say with κ(G′) = ` < κ(G) = k, Algorithm 12 may be implemented by

Stellenbosch University http://scholar.sun.ac.za

4.5. Removing the most expensive edge first 53

adapting the while loop spanning lines 7 to 13 to terminate only once κ(G′) < `. Though this process
will work, it makes an unnecessary number of calls to an algorithm for calculating κ(G′) in each iteration
of the while loop. A faster method, based on the same principles as those of Algorithm 12 may be
established. However, a number of preliminary results are first required.

Theorem 4.1 Let G be a graph for which κ(G) = k. Let F = 〈E(G) ∪ uv〉G, u, v ∈ V (G), uv /∈ E(G).
Then κ(F) ≤ k + 1.
Proof Let U be a minimum cut-set of the graph G and construct the graph H = 〈V (G) \ U〉G. It is
clear that the graph H is disconnected. Three cases result.

Case 1: Consider the case where k(H) > 2, with Wi as the ith component of the graph H . A graph-
ical representation of this case may be found in Figure 4.12(a). As no edge can join more than two
components, it follows that k(〈E(H) ∪ uv〉) ≥ 2. Hence κ(F) = k.

Now consider the case where k(H) = 2. A further two cases result.

Case 2: Consider the case where the vertices u and v are contained within the same component (say W1)
of the graph H . A graphical representation of this case may be found in Figure 4.12(b). The inclusion
of the edge uv in the graph H does not increase its connectivity number. Hence, κ(G) = κ(F) = k.

Case 3: |W1| ≥ 1 and |W2| ≥ 1. Let the vertices u and v be contained in the components W1 and W2 of
the graph H , with u ∈ W1 and v ∈ W2. Two subcases result. Firstly, consider the case where U is the
only minimum cut-set of the graph G. A graphical representation of this case may be found in Figure
4.12(c). As the edge uv joins the two components of the graph H , it follows that U ∪ v is a minimum
cut-set of the graph F and hence κ(F) = k + 1. Secondly, consider the case where the graph G posesses
more than one minimum cut-set, say another cut-set U ′ exists. Let W ′

1 and W ′
2 be the two components

of the graph H ′ = 〈V (G) \ U ′〉G. If the vertices u and v are contained within the same component, it
follows from Case 2 that κ(G) = κ(F) = k. Similarly, if either vertex u or v is contained within U ′,
or both are contained within U ′, it follows that κ(F) = k, as the two components W ′

1 and W ′
2 remain

disjoint. This case is represented in Figure 4.12(d). If, however, u ∈ W ′
1 and v ∈ W ′

2 (without loss of
generality) for any minimum cut-set U ′ for the graph G, it follows that κ(F) = k +1, as the components
W ′

1 and W ′
2 are joined by the edge uv. This case is represented in Figure 4.12(e). �

Note that, if the graph F is taken as the original graph and G as the graph obtained by removing the
edge uv, then Theorem 4.1 states that the graph obtained by the removal of an edge from a connected
graph will have a connectivity number of at most one fewer than that of the original graph.

Proposition 4.1 Let G be a graph for which κ(G) = k and let EX be any subset of edges of E(G).
Then κ(G− EX) ≥ κ(G)− |EX |.
Proof Consider the graph H = G−EX . It follows from Theorem 4.1 that κ(H∪〈EX〉G) ≤ κ(H)+ |EX |.
Hence κ(H) ≥ κ(H ∪ 〈EX〉G)− |EX | = κ(G)− EX . Consequently, κ(G− EX) ≥ κ(G)− |EX |. �

The following approach may be used to construct a connectivity reducing spanning subgraph G′, with
κ(G′) = `, from a graph G, with κ(G) = k. It follows from Proposition 4.1 that the removal of any k− `
edges will result in a graph with a connectivity number of at least `. The actual connectivity number
of G′ may be computed using either Algorithm 3 or 4. If κ(G′) > ` then κ(G′)− ` edges may again be
removed. This process may be repeated until κ(G′) = `. This process is captured in pseudocode form in
Algorithm 13.

Let n be the number of iterations of the while loop spanning lines 7 to 14 used to construct a spanning
subgraph G′, with κ(G′) = `, from the graph G, with κ(G) = k. The for loop spanning lines 8 to 12
has a linear worst-case running time of O(k − `) if tmpConn = k. The recalculation of the connectivity
number in line 13 can be achieved in O

(
p3q2

)
time, if Algorithm 3 is implemented. The worst case

running time of the while loop is thus dominated by the calculation of κ(G′). Hence, the running time
of Algorithm 13 is O

(
np3q2

)
.

Algorithm 13 runs, on average, much faster than an iterative implementation of Algorithm 12, as
tmpConn − ` edges are removed at a time before the connectivity number of the graph G′ is recal-
culated, instead of removing just one edge at a time.

Stellenbosch University http://scholar.sun.ac.za

54 CHAPTER 4. SPANNING SUBGRAPHS WITH CONNECTIVITY NUMBER ≤ K

U

Wi Wj

Wk

u v

(a) Case 1: k(H) > 2. Hence
κ(F) = k.

U

W1 W2

u v

(b) Case 2: u, v ∈ W1. Hence
κ(F) = k.

U

W1

W2

u

v

(c) Case 3: |W1| ≥ 1, |W2| ≥
1: Only one minimum cut-set
exists, with u ∈ W1 and v ∈
W2. Hence κ(F) = k.

U ′

W ′
1

W ′
2W ′
2

u

v

(d) Case 3: |W1| ≥ 1, |W2| ≥
1: A certain minimum cut-set
U ′ exists for which u ∈ U ′, v ∈
W ′

2. Hence κ(F) = k.

U ′

W ′
1

W ′
2W ′
2

u

v

(e) Case 3: |W1| ≥ 1, |W2| ≥ 1:
For all minimum cut-sets U ′,
u ∈ W ′

1, v ∈ W ′

2. Hence
κ(F) = k + 1.

Figure 4.12: Graphical representations of the cases considered in Theorem 4.1.

Algorithm 13 MEEF: Connectivity Reducing

Input: A connected graph G with connectivity number k. The desired connectivity number ` < k.
Output: A connectivity reducing spanning subgraph G′ of the graph G, such that κ(G′) = ` and the

cost saved.
1: if the graph G is not connected then
2: print ”Graph is not connected.”, stop.
3: end if
4: G′ ← G
5: costSaved← 0
6: tmpConn← κ(G′)
7: while (tmpConn ≥ k) do
8: for i← tmpConn − ` do
9: find most expensive edge uv ∈ E(G′)

10: costSaved← costSaved + cost(uv)
11: E(G′)← E(G′) \ uv
12: end for
13: tmpConn← κ(G′)
14: end while
15: costSaved← costSaved− cost(uv)
16: E(G′)← Etmp
17: return G′, costSaved

Stellenbosch University http://scholar.sun.ac.za

4.6. Constructing spanning subgraphs by means of F (x, U) fans 55

It should also be noted that, as Algorithm 13 also removes most expensive edges first, it has the same
drawback as Algorithm 12: It may return a spanning subgraph with a connectivity number considerably
higher than a minimum cost spanning subgraph with the same connectivity number (see Example 4.10).
However, the cost of the graph G′ returned by Algorithm 13 may possibly be reduced further by calling
Algorithm 12 with the graph G′ obtained from Algorithm 13 as input.

Example 4.11

Consider the graph G33 with edge weights as depicted in Figure 4.13(a). To construct a spanning

5

6

7

8

910

(a) The graph G33.

5

6

7

8

9

(b) The graph G′

33.

5

6

7

8

(c) The graph G′′

33.

Figure 4.13: Graphical representations of the graphs relevant to Example 4.11.

subgraph G′
33 with a connectivity number of 2, from the graph G33 for which κ(G33) = 3, Algorithm 13

may be implemented, producing the desired result, as depicted in Figure 4.13(b). The cost saved thus
far is 10, but the cost of the graph G′

33 may be further reduced by implementing Algorithm 12, resulting
in the graph G′′

33 as depicted in Figure 4.13(c), with a total saved cost of 19. �

4.6 Constructing spanning subgraphs by means of F (x, U) fans

In this section, an algorithm, called Algorithm Fan, is presented which constructs a connectivity preserv-
ing spanning subgraph G′ (by means of fans). Note that this algorithm requires that G must contain a
cut-set U that is a clique. Fortunately, this is not too much of a disadvantage, as many types of graph
constructions exist that contain a complete minimum cut-set. For example, electricity networks of cities
are usually constructed in such a way such that the transformers form of a complete minimum cut-set.
This ensures that, should one or more of the transformers fail, electricity can still be provided to the
city. As another example, servers in a computer network may also form a complete minimum cut-set,
where backup servers can take over control of the network, should the main servers fail.

In this section, the working of the algorithm is discussed, followed by proofs of the theoretical principles
that it is based upon. Thereafter, an algorithm is described for constructing a connectivity reducing
spanning subgraph from the graph G′ in near-linear time.

4.6.1 Working of Algorithm Fan

Let G be a graph with connectivity number k and suppose it contains a minimum cut-set that is a clique.
Call this cut-set U . Algorithm Fan then generates a connectivity preserving spanning subgraph G′ ⊆ G
as follows. For every vertex x ∈ V (G \U), an F (x, U) fan is constructed in the graph G′, by making use
of the edge set E(G) to construct the fans. This may be achieved in O

(
pq2

)
worst-case time for each

fan being constructed if Algorithm 9 is used for this purpose, with the vertex x acting as the source and
the cut-set as T , the set of sinks. The algorithm also constructs F (u, U) fans for every vertex u ∈ U , but
these paths are not inserted into the graph G′. All paths constructed (by means of both the F (x, U) and
F (u, U) fans) are stored in a path list Paths, which may be used later to construct a spanning subgraph
with lower connectivity. The final step of the algorithm is to insert all edges between the vertices of the

Stellenbosch University http://scholar.sun.ac.za

56 CHAPTER 4. SPANNING SUBGRAPHS WITH CONNECTIVITY NUMBER ≤ K

cut-set into the graph G′. The graph G′ may be formulated mathematically as

G′ = 〈U〉G
⋃




⋃

x∈V (G)\U

F (x, U)



 ⊆ G.

The pseudocode for Algorithm Fan is presented in Algorithm 14.

Algorithm 14 Fan: Connectivity Preserving

Input: A connected graph G with connectivity number k
Output: A connectivity preserving spanning subgraph G′ of the graph G.
1: Find a minimum cut-set U of G that forms a clique. If no such cut-set can be found, then stop.
2: For every vertex x ∈ V (G \ U), construct F (x, U) fans by implementing Algorithm 9, with vertex x

as the source s and U as T , the set of sinks. Insert the constructed paths into the graph G′. Store
all paths constructed in this fashion in the path list Paths.

3: For every vertex u ∈ U , construct F (u, U) fans by implementing Algorithm 9, with vertex u as the
source s and U as T , the set of sinks. Store all paths constructed in this fashion in the path list
Paths.

4: Insert all edges between the vertices of the cut-set into the graph G′.

A minimum cut-set for the graph G may be found using an adapted version of Algorithm 4 (step 1 of
Algorithm 14). This adapted version should search through all minimum cut-sets (a total of

(
p
k

)
possible

cut-sets exist) for the graph G in an attempt to locate a set that is also a clique. The algorithm is not
shown, as it is very similar to Algorithm 4. It was shown in section §4.2, however, that this algorithm
has the same worst-case running time of O

(
pk+3

)
, as that of Algorithm 4. As fans are constructed (by

implementing Algorithm 9) from every vertex in V (G′) to the cut-set U , steps 2 and 3 of Algorithm 14
have a combined worst-case running time of O

(
p2q2

)
. As the cut-set is a clique, step 4 has a worst-

case running time of O(
(

k
2

)
) = O

(
k2

)
. Consequently, the worst-case running time of Algorithm 14 is

O
(
max

{
pk+3, p2q2

})
. The theory on which Algorithm 14 is based is now developed.

Theorem 4.2 Suppose a graph G is a k-connected graph and that U is any set of k vertices of G. If
|V (G) \ U | = k − `, for some ` ∈ {1, . . . , k − 1}, then 〈U〉G is `-connected.

Proof Suppose 〈U〉G is not `-connected, such that the removal of `− 1 vertices from 〈U〉G disconnects
it. If a certain `− 1 vertices that disconnects 〈U〉G are removed, together with the vertices in V (G) \U ,
then there exists a cut-set of G of cardinality (`− 1) + (k− `) = (k− 1), which contradicts the fact that
the smallest cut-set of G has cardinality k. �

Theorem 4.3 Suppose G is a graph with connectivity number k and that U is a minimum cut set of G
such that 〈U〉G is a complete graph. Let F (x, U) denote an x− U fan for some x ∈ V (G) \ U and let

G′ = 〈U〉G
⋃




⋃

x∈V (G)\U

F (x, U)



 ⊆ G. (4.1)

Then κ(G′) = k.

Proof Let W = V (G) \ U and let X be any set of k − 1 vertices of G′ and let G′∗ = 〈V (G′) \X〉′G. It
is shown that G′∗ is connected, by considering three cases. These cases and further subcases that result
are presented graphically in Figure 4.14. The various cases are represented graphically in a tree format
in Figure 4.15.

Case 1: X ⊂ U . A graphical representation of this case may be found in Figure 4.14(a). Let u be the
vertex in U \X . Consider any two components Wi and Wj of 〈W 〉G and let x ∈ Wi, y ∈ Wj . Because
u is an end-vertex of both fans F (x, U) and F (y, U), the components Wi and Wj are connected in G′∗.
Hence G′∗ is connected.

Stellenbosch University http://scholar.sun.ac.za

4.6. Constructing spanning subgraphs by means of F (x, U) fans 57

U

W

W1 Wi Wj Wn

x

u

X

y

(a) Case 1: X ⊂ U .

U

W

W1 Wi
Wn

x

X

y

(b) Case 2.1 (a): X ⊆ W . Vertices are re-
moved from a single component of Wi of W .
The whole component is removed.

UU

W

W1 Wi Wn

x
X

(c) Case 2.1 (b): X ⊆ W . Vertices are removed
from a single component of Wi of W . Part of
the component is removed.

U

W

W1 Wi Wj Wnx

u

XX

(d) Case 2.2 (a): X ⊆ W . Vertices are removed
from more than one component of W , |W | >
|X| and 〈U〉′G is connected.

U

W
W1 Wi Wn

x

X

y

(e) Case 2.2 (b): X = W . All vertices in W
are removed.

U

W

W1 Wj Wn

x

X

X

y
WX

(f) Case 3.1 (a): X ∩ U 6= ∅ and X ∩ W 6= ∅.
The whole of WX and some vertices from U are
removed.

U

W

W1 Wj Wn

x

X

X

y
WX

(g) Case 3.1 (b): X ∩ U 6= ∅ and X ∩ W 6=
∅. Vertices are removed from U and only one
component WX of W . Not all vertices in WX

are removed.

U

W
W1 Wi Wn

x

X

X

y

(h) Case 3.2 (b): X ∩ U 6= ∅ and X ∩ W 6= ∅.
The whole of W and some vertices from U are
removed.

Figure 4.14: Graphical representations of the cases considered in Theorem 4.3.

Stellenbosch University http://scholar.sun.ac.za

58 CHAPTER 4. SPANNING SUBGRAPHS WITH CONNECTIVITY NUMBER ≤ K

d
eg

′ G
v
≥

k
.

C
a
se

1
:

X
⊂

U
.

C
a
se

2
:

X
⊆

W
.

C
a
se

2
.1

:
V
er

ti
ce

s

re
m

ov
ed

fr
o
m

a

si
n
g
le

co
m

p
o
n
en

t

W
i
in

W
.

2
.1

(a
):

R
em

ov
e

th
e

w
h
o
le

o
f
W

i

(|W
i
|=
|X
|).

2
.1

(b
):

R
em

ov
e

o
n
ly

p
a
rt

o
f
W

i

(|W
i
|>
|X
|).

C
a
se

2
.2

:
V
er

ti
ce

s

re
m

ov
ed

fr
o
m

m
o
re

th
a
n

o
n
e

co
m

p
o
n
en

t
o
f
W

.

2
.2

(a
):

R
em

ov
e

o
n
ly

p
a
rt

o
f
W

(|W
|>
|X
|).

2
.2

(b
):

R
em

ov
e

th
e

w
h
o
le

o
f
W

(|W
|=
|X
|).

C
a
se

3
:

X
∩

U
6=
∅

a
n
d

X
∩

W
6=
∅.

C
a
se

3
.1

:
V
er

ti
ce

s

re
m

ov
ed

fr
o
m

U

a
n
d

o
n
ly

o
n
e

co
m

p
o
n
en

t
o
f
W

.

3
.1

(a
):

W
X

co
m

p
le

te
ly

re
m

ov
ed

.

3
.1

(b
):

W
X

n
o
t

co
m

p
le

te
ly

re
m

ov
ed

.

3
.2

:
V
er

ti
ce

s

re
m

ov
ed

fr
o
m

U

a
n
d

m
o
re

th
a
n

o
n
e

co
m

p
.

o
f
W

.

3
.2

(a
):

W
h
o
le

o
f

W
n
o
t

re
m

ov
ed

.

3
.2

(b
):

W
h
o
le

o
f

W
re

m
ov

ed
.

Figure 4.15: Tree representation of the cases considered in Theorem 4.3.

Stellenbosch University http://scholar.sun.ac.za

4.6. Constructing spanning subgraphs by means of F (x, U) fans 59

Case 2: X ⊆W . Two cases result.
Case 2.1: If |X | vertices are removed from a single component Wi in W , two sub-cases result.

(a) Firstly, the whole of Wi may be removed (thus Wi = X). A graphical representaion of this sub-
case may be found in Figure 4.14(b). The remaining components (recall that W must consist of at least
two components for G′ to be k-connected) of W are still connected to U , as the different components of
W have disjoint sets of paths to the vertices in U . Thus, G′∗ is connected.

(b) Secondly, the cardinality of Wi may be greater than k − 1. A graphical representation of this
sub-case may be found in Figure 4.14(c). For this case, let x be one of the vertices in Wi \X . Due to the
construction of the fan F (x, U), the removal of |X | = k−1 vertices from Wi cannot disconnect x from U
(recall that the x−U fan consists of k internally disjoint paths to the k vertices in U , hence, the removal
of k − 1 vertices can eliminate at most k − 1 of these paths). The vertex x thus remains connected to
at least one vertex in U . Furthermore, every other component of W (there must exist at least one other
component in W other than Wi) is still connected to every vertex in U by means of fans. Therefore
there remains at least one path from x to the other components of W . Hence, G′∗ is connected.

Case 2.2: If |X | vertices are removed from more than one component in W , a further two sub-cases
result.

(a) First consider the case where |W | > |X |. A graphical representation of this sub-case may be
found in Figure 4.14(d). Let x ∈ Wi \X . As the removal of |X | vertices can eliminate at most k − 1 of
the paths of any fan F (x, U), x remains connected to at least one vertex in U . Consequently, as 〈U〉 is
connected, G′∗ remains connected.

(b) Secondly, the whole of W may be removed (W = X). A graphical representation of this case may
be found in Figure 4.14(e). For this case |W | ≤ k − 1. Thus, G′∗ will be connected if, after the removal
of all the vertices in W , U remains connected. But this is guaranteed by Theorem 4.2, as |W | = k − 1.

Case 3: X ∩ U 6= ∅ and X ∩W 6= ∅. Two cases result.
Case 3.1: Firstly consider the case where |X | vertices are removed from U and only one component of
W . Let WX be the component of W from which vertices are removed and let Wj be any other component
of W . Two sub-cases result.

(a) Firstly, component WX may be removed completely by the removal of |X | vertices. A graphical
representation of this subcase may be found in Figure 4.14(f). Because Wj is connected to every remaining
vertex in U , G′∗ is connected.

(b) For the second case, WX may not be completely removed by the removal of |X | vertices. A
graphical representation of this subcase may be found in Figure 4.14(g). The number of vertices removed
from WX is strictly less than k− 1. Let XWX

and XU denote the number of vertices removed from WX

and U respectively. For this case the number of vertices removed may be written as follows:

|X | = (k − i)
︸ ︷︷ ︸

XWX

+ (i− 1)
︸ ︷︷ ︸

XU

= k − 1, i = 2, . . . , k − 1.

Due to the construction of the fans from the vertices in W to U , the remaining vertices in WX are
connected by at least i remaining paths (the removal of k − i vertices from WX can eliminate at most
k − i paths, hence, i internally disjoint paths must remain from the remaining vertices in WX to the
vertices in U) to the vertices in U . Furthermore, only i− 1 vertices are removed from U . Consequently,
there remains at least i− (i− 1) = 1 vertex in U to which the remaining vertices in WX are connected.
Furthermore, because Wj is connected to every vertex in U , G′∗ is connected.

Case 3.2: Secondly, consider the case where |X | vertices are removed from U and more than one
component of W . Again, two subcases result.

(a) Firstly, consider the subcase where vertices remain in W after the removal of |X | vertices. Let
X = A ∪ B, A ⊂ U , B ⊂ W . Since 〈U〉′G remains connected after the removal of |A| vertices from U ,
G′∗ remains connected. This follows as the removal of |B| ∈ {1, . . . , k − 1− |A|} vertices from W can
disconnect at most |B| of the k paths of any fan F (x, U). Hence x remains connected to the vertices in
U .

(b) Now, consider the subcase where the whole of W and some vertices of U are removed by the
removal of |X | vertices. A graphical representation of this case may be found in Figure 4.14(h). For
this case to occur, the cardinality of W must be such that |W | = k − `, ` ∈ {2, . . . , k − 1} so that ` − 1
vertices can be removed from U , with |U | = k > `. Again, let XU denote the number of vertices removed

Stellenbosch University http://scholar.sun.ac.za

60 CHAPTER 4. SPANNING SUBGRAPHS WITH CONNECTIVITY NUMBER ≤ K

from U . Hence, the expression

|X | = (k − `)
︸ ︷︷ ︸

|W |

+ (`− 1)
︸ ︷︷ ︸

XU

= k − 1, ` = 2, . . . , k − 1

must hold. Theorem 4.2 guarantees that 〈U〉′G is `-connected and hence remains connected after the
removal of `− 1 vertices. �

A clear disadvantage of Algorithm 14 is that it does not provide a means by which the paths that
are entered into the spanning subgraph can be chosen. The paths that are selected by Algorithm 9 are
constructed from flows obtained from Algorithm 6. These flows take place along certain edges irrespective
of the edge weights. However, flows take place along the shortest paths. The paths obtained to construct
a spanning subgraph may be such that the solution obtained from the algorithm is far from a minimum
weighted spanning subgraph.

The following example illustrates the working of Algorithm 14. All edge weights are equal in the example.
Hence, comparison between the original graph and the spanning subgraph is performed in terms of the
number of edges each graph contains.

Example 4.12
Consider the graph G34 depicted in Figure 4.16(a), with κ(G34) = 5. Note that the graph posesses a
cut-set (the 5 vertices coloured black) that forms a clique. Algorithm 14 may be implemented to produce
the spanning subgraph G′

34, also with a connectivity number of 5. The path list Paths constructed in
steps 2 and 3 of Algorithm 14 are presented in Table 4.4.

v1 v2

v3 v4 v5

v6

v7

v8

v9

v10

v11

(a) The graph G34.

v1 v2

v3 v4 v5

v6

v7

v8

v9

v10

v11

(b) The graph G′

34.

Figure 4.16: The graph G34 and spanning subgraph G′

34 (constructed from G34 using Algorithm 14), both having a
connectivity number of 5. The three edges v1v4, v1v5 and v2v5 are not included in the graph G′

34. The black vertices in
each graph denote a minimum cut-set for each graph.

Note that the graph G′
34 contains 3 edges fewer than the graph G34, namely the three edges v1v4, v1v5

and v2v5. �

4.6.2 Construction of a spanning subgraph G′ of G, with κ(G′) ≤ κ(G)

Let H be a spanning subgraph generated from a graph G for which κ(G) = k, as described in Theorem
4.2. In this section a method is presented whereby a spanning subgraph H ′ of H may be isolated such
that κ(H ′) ≥ `, with ` < k. Two lemmas that form the basis of this method are first established.

Lemma 4.1 Let G be a graph for which κ(G) = k and let x ∈ V (G). Then κ(G− x) ≥ κ(G)− 1.
Proof By contradiction. Suppose κ(G − x) ≤ κ(G) − 2. Then there exists a subset V ∗ ⊆ V (G) of
cardinality at most κ(G)− 2 such that 〈V (G)− V ∗〉G−x = 〈V (G)− ({x} ∪ V ∗)〉G is disconnected. This
is a contradiction, because V ∗ ∪ {x} has cardinality at most κ(G) − 1, but G is disconnected by the
removal of this set. �

Stellenbosch University http://scholar.sun.ac.za

4.6. Constructing spanning subgraphs by means of F (x, U) fans 61

Paths to
Paths from v6 v7 v8 v9 v10

v1 v1, v6 v1, v2, v7 v1, v8 v1, v9 v1, v3, v10

v2 v2, v6 v2, v7 v2, v1, v8 v2, v3, v9 v2, v4, v10

v3 v3, v6 v3, v7 v3, v8 v3, v9 v3, v10

v4 v4, v6 v4, v7 v4, v8 v4, v9 v4, v10

v5 v5, v6 v5, v7 v5, v8 v5, v9 v5, v10

v6 — v6, v7 v6, v8 v6, v9 v6, v10

v7 v7, v6 — v7, v8 v7, v9 v7, v10

v8 v8, v6 v8, v7 — v8, v9 v8, v10

v9 v9, v6 v9, v7 v9, v8 — v9, v10

v10 v10, v6 v10, v7 v10, v8 v10, v9 —
v11 v11, v6 v11, v7 v11, v8 v11, v9 v11, v10

Table 4.4: The list of paths constructed in steps 2 and 3 of Algorithm 14 that are inserted into the graph G′

34.

Lemma 4.2 Let G be a graph for which κ(G) = k, let U be a minimum cut-set U of G, and let u ∈ U .
Then κ(G− u) = κ(G)− 1 and U − u is a minimum cut-set of G− u.
Proof It is clear that κ(G − u) ≤ κ(G) − 1, because removing a vertex from a cut-set of the graph
G necessarily reduces its connectivity number by at least one. But it also follows by Lemma 4.1 that
κ(G− u) ≥ κ(G)− 1. Consequently, κ(G− u) = κ(G)− 1. Suppose there exists a cut-set of cardinality
at most | 〈U − u〉G | − 1 = |U | − 2 for the graph G − u. This is a contradiction, as it follows from the
result that κ(G − u) = κ(G) − 1, that κ(G − u) = κ(G) − |u| = |U | − 1. Hence U − u is a minimum
cut-set of G− u. �

The algorithm for isolating the subgraph H ′ of H , as described above, hinges on the following result.

Proposition 4.2 Let G be a graph for which κ(G) = k and let UX be any set of |X | vertices of a
minimum cut-set U of G. Then κ(G− UX) = κ(G)− |UX |.
Proof The result follows by applying Lemma 4.2 |UX | times to the graph G. �

Consider a spanning subgraph H of a graph G for which κ(H) = k that was obtained by means of
Algorithm 14. An algorithm that may be used to construct a connectivity reducing spanning subgraph
from H by the removal of certain edges is discussed next. The pseudocode for the algorithm is presented
in Algorithm 15. Graphical representations accompanying each step of the algorithm are given in Figure
4.17.

Algorithm 15 Fan: Connectivity Reducing

Input: A spanning subgraph H for which κ(H) = k, generated from a graph G for which κ(G) = k,
by means of Algorithm 14. The parameter ` < k, the desired minimum connectivity number of the
spanning subgraph H . A minimum cut-set U for the graph H , with the vertices of U forming a clique.
The path list Paths that was generated by Algorithm 14.

Output: A connectivity reducing spanning subgraph H ′ ⊆ H for which κ(H ′) ≥ `.

1: Let W = V (H)\U . Furthermore, let Uk−` be any set of k−` vertices in U and let U` = 〈U \ Uk−`〉H .
2: Insert all edges between the vertices of the set U` into the graph H ′.
3: Let v ∈ U`. Then, for every x ∈ V (H \W), insert all x-v paths in the list Paths into the graph H ′.
4: Let v ∈ U`. Then, for every u ∈ Uk−`, insert all u-v paths in the list Paths into the graph H ′.

The worst-case running time of Algorithm 15 is now established. Line 1 of Algorithm 15 has a worst-case
running time of O (k), as each vertex in the set U is moved to either the set U` or Uk−`. As p− ` paths
are entered into the graph H ′, line 2 has a worst-case running time of O (p− `). All

(
`
2

)
edges between

vertices in U` are inserted in the graph H ′ in line 3; hence it has a worst-case running time of O
(
`2

)
.

Consequently, the worst-case running time of algorithm 15 is O
(
min

{
p− `, `2

})
.

The correct working of Algorithm 15 is established in the following theorem.

Stellenbosch University http://scholar.sun.ac.za

62 CHAPTER 4. SPANNING SUBGRAPHS WITH CONNECTIVITY NUMBER ≤ K

x

u
v

W

U

U` Uk−`

(a) The graph H.

v

U

U`

(b) The graph H′

after step 2.

x

v

W

U

U`

(c) The graph H′ after step 3.

x

u
v

W

U

U` Uk−`

(d) The graph H′ after step 4.

Figure 4.17: Graphical representation of the different steps of Algorithm 15. The dashed lines from the vertices in W
represent possible edges inserted by F (x, U) fans, x ∈ W . Not all vertices or edges are necessarily shown.

Theorem 4.4 For the spanning subgraph H ′ formed by the procedure described in Algorithm 15 it holds
that κ(H ′) ≥ `.

Proof Suppose a spanning subgraph H satisfying κ(H) = k is deduced from a graph G with κ(G) = k,
as described in Theorem 4.3. Furthermore, let Uk−` be any set of k − ` vertices of the minimum cut-set
U of H . By Proposition 4.2 it follows that κ(H \ Uk−`) = k − (k − `) = `, as κ(H) = k. Construct the
graph H ′ as described in steps 2 and 3 of Algorithm 14. As H ′ is a spanning subgraph of H \ Uk−`, it
follows from Theorem 4.3 that κ(H ′) = κ(H \Uk−`) = `. Now complete the construction of the spanning
subgraph H ′ as described in step 4 of Algorithm 14. As each vertex u ∈ Uk−` is connected to every
vertex in U` by means of F (u, U`) fans, it follows from Theorem 3.14 that κ(H ′) ≥ `. �

The following example illustrates the working of Algorithm 15.

Example 4.13 (Continuation of Example 4.12)

Consider again the graph G34 depicted in Figure 4.16(a). Algorithm 15 may be applied to produce a
subgraph G′′

34 with connectivity number ranging from zero to 5. For this example, when Algorithm 15
is used to construct a spanning subgraph with a smaller connectivity number of `, then the first k − `
vertices are used to represent the set Uk−`. All six resulting graphs are depicted in Figure 4.18. The
number of edges present in each graph are also given.

The paths that are inserted for each version of the graph G′′
34 may be obtained from Table 4.4. For

instance, Figure 4.18(d) represents the graph G′′
34 with a connectivity number of 3. Table 4.5 lists the

paths that are inserted into the graph G′′
34 such that its connectivity number is 3. The vertices v9 and

Paths to
Paths from v6 v7 v8

v1 v1, v6 v1, v2, v7 v1, v8

v2 v2, v6 v2, v7 v2, v1, v8

v3 v3, v6 v3, v7 v3, v8

v4 v4, v6 v4, v7 v4, v8

v5 v5, v6 v5, v7 v5, v8

v9 v9, v6 v9, v7 v9, v8

v10 v10, v6 v10, v7 v10, v8

v11 v11, v6 v11, v7 v11, v8

Table 4.5: The list of paths used to construct the graph G′′

34 with a connectivity number of 3 (see Figure 4.18(d) for a
graphical representation of this graph).

v10 comprise the set Uk−` and are removed from the cut-set of the graph G. This implies that, for every
path starting in a vertex x /∈ U , only the paths listed in Table 4.4 that do not end in vertices in the set
Uk−` are included in the graph G′′

34. Furthermore, all paths starting from vertices in the set Uk−` and
ending in vertices in the remaining cut-set Uk, are included in the graph G′′

34. �

Stellenbosch University http://scholar.sun.ac.za

4.6. Constructing spanning subgraphs by means of F (x, U) fans 63

v1 v2

v3 v4 v5

v6

v7

v8

v9

v10

v11

(a) The graph G′′

34 consisting of 39
edges, with κ(G′′

34) = 5.

v1 v2

v3 v4 v5

v6

v7

v8

v9

v10

v11

(b) The graph G′′

34 consisting of 33
edges, with κ(G′′

34) = 4.

v1 v2

v3 v4 v5

v6

v7

v8

v9

v10

v11

(c) The graph G′′

34 consisting of 26
edges, with κ(G′′

34) = 3.

v1 v2

v3 v4 v5

v6

v7

v8

v9

v10

v11

(d) The graph G′′

34 consisting of 19
edges, with κ(G′′

34) = 2.

v1 v2

v3 v4 v5

v6

v7

v8

v9

v10

v11

(e) The graph G′′

34 consisting of 10
edges, with κ(G′′

34) = 1.

v1 v2

v3 v4 v5

v6

v7

v8

v9

v10

v11

(f) The graph G′′

34 consisting of 0 edges,
with κ(G′′

34) = 0.

Figure 4.18: Different versions of the graph G′′

34, obtained as output from Algorithm 15, with connectivities ranging from
5 to zero in Figures 4.18(a)–(f) respectively. The vertices comprising the selected cut-set are coloured black.

Stellenbosch University http://scholar.sun.ac.za

64 CHAPTER 4. SPANNING SUBGRAPHS WITH CONNECTIVITY NUMBER ≤ K

4.7 Comparison of Algorithms

All of the algorithms discussed in this section require knowledge of a minimum cut-set of a given graph.
Algorithm Whitney only requires the connectivity number of a graph in order to determine the maximum
number of paths that should be constructed between every pair of vertices. For instance, if a graph G
has a connectivity number of k, then there exists at least one pair of vertices in the graph for which
there exist exactly k internally disjoint paths connecting them. No set of k + 1 paths can be constructed
between such a pair of vertices.

Algorithm MEEF also only requires the connectivity number of the input graph. This is recalculated
every time an edge or set of edges are removed from the original graph. This process is terminated once
the graph obtained in this fashion has the desired connectivity number (see Algorithms 12 and 13). The
calculation of the connectivity number may be achieved by means of the efficient Algorithm 3.

To be able to implement Algorithm Fan, the input graph must contain a minimum cut-set that is also a
clique. To find such a set of vertices, Algorithm 4 is required, which has a relatively high running time
compared to Algorithm 3.

After the connectivity number of the graph (for Algorithm Whitney) or a minimum complete cut-set (for
Algorithm Fan) has been calculated, both Algorithms Whitney and Fan have very fast running times.
The calculation of the connectivity number or a minimum complete cut-set is performed only once for
these algorithms. Algorithm MEEF, on the other hand, recalculates a minimum cut-set every time an
edge or set of edges is removed (see Algorithms 12 and 13). The running times of the three algorithms
are provided in Table 4.6 with and without (where possible) the calculation of information of a minimum
cut-set. Two columns are shown. The first contains running times for the case where the algorithms are
used to construct a spanning subgraph G′ with the same connectivity k as the original graph G. The
second column contains running times for the case where the algorithms are used to construct a spanning
subgraph which is at least `-connected.

Worst-case running time
κ(G′) = κ(G) κ(G′) ≥ `

With cut-set Without cut-set With cut-set Without cut-set
Whitney O(p3q2) O(p3q2) O(p3q2) O(p3q2)

MEEF O(p3q3) N/A O(np3q2) N/A

Fan O(min
{
p(k+3), p2q2

}
) O(p2q2) O(min

{
p(k+3), p− l, l2

}
) O(min

{
p− l, l2

}
)

Table 4.6: Summary of the worst-case running times of Algorithms Whitney, MEEF and Fan.

From the results in Table 4.6 it may be seen that Algorithms Whitney and Fan have the lowest worst-
case running times, with Algorithm Fan being an order of magnitude faster for constructing a spanning
subgraph G′ for which κ(G′) = κ(G). The reason for the near linear worst-case running time of Algorithm
Fan for constructing a spanning subgraph that is at least `-connected, is that it simply reads the paths
to insert into the spanning subgraph from a list that was constructed when a subgraph with the same
connectivity as the original graph was constructed.

A disadvantage of Algorithm Whitney mentioned earlier is that the spanning subgraph it generates may
contain all or almost all of the edges of the original graph, due to the sets of internally disjoint paths
between every pair of vertices that are inserted into the spanning subgraph. Algorithm Fan usually
outperforms Algorithm Whitney in this regard, as only (p − k) sets of internally disjoint paths are
inserted into the spanning subgraph (there are (p− k) vertices in the graph that do not form part of a
specific cut-set, each having a set of k internally disjoint paths to the vertices in that cut-set), compared
to the

(
p
2

)
sets inserted by Algorithm Whitney.

It should be noted that the three algorithms in this chapter only attempt to provide a method whereby
relatively low cost spanning subgraphs can be constructed. The results obtained may be far from optimal.
The problem of constructing a minimum cost spanning subgraph that is k-connected is NP-complete (see
Kortsarz & Nutov [34]). It is clear from Table 4.6, however, that Algorithm Fan has the best worst-case
running time of all three algorithms.

Stellenbosch University http://scholar.sun.ac.za

4.8. Chapter Summary 65

Only a rough comparison can be made between the running times of the approximation algorithm that
was developed by Kortsarz & Nutov [34], referred to as the K-N algorithm, and Algorithm Fan. The K-N
algorithm has a worst-case running time of O(k2pq2). The connectivity number k may be as large as p−1;
hence k = O(p). The worst-case running time for the K-N algorithm then becomes O(p3q2), which is an
order of magnitude larger than that of the worst-case running time for Algorithm Fan for constructing
a connectivity preserving spanning subgraph (assuming a complete minimum cut-set has already been
calculated). The K-N algorithm suffers the drawback that it cannot construct connectivity reducing
spanning subgraphs. Here, the near-linear worst-case running time of Algorithm Fan for constructing
connectivity reducing spanning subgraphs does show its worth. Algorithm Fan has a worst-case running
time of O(min{p− l, l2}).
In their article, Kortsarz & Nutov [34] proved that the spanning subgraph obtained from their algorithm
always returns a spanning subgraph of weight at most a fixed factor of O(ln k ·min{

√
k, p/(p− k) ln k})

more than a minimum weighted spanning subgraph with a connectivity number of k. No such approx-
imation is known for any of the algorithms discussed in this chapter. Even though these algorithms do
not produce minimum cost spanning subgraphs, their results may hopefully aid in the process of finding
and constructing a spanning subgraph with a near-minimum weighting.

4.8 Chapter Summary

In this chapter, three algorithms, namely Algorithms Whitney, MEEF and Fan, were introduced. The
theoretical background for each algorithm was also provided. Each of these algorithms have advantages
and disadvantages associated with them, which may be weighed up against each other in order to select
an Algorithm that is suitable to implement in a given scenario. The chapter closed with a comparison
of the algorithms amongst each other and also with the K-N algorithm recently developed by Kortsarz
& Nutov [34]. Algorithm Fan proves to be a more efficient algorithm in terms of speed, but it has the
drawback that it is not known how suboptimal the solution obtained is.

Stellenbosch University http://scholar.sun.ac.za

66 CHAPTER 4. SPANNING SUBGRAPHS WITH CONNECTIVITY NUMBER ≤ KStellenbosch University http://scholar.sun.ac.za

Chapter 5

Decision Support System

In this chapter an overview of a decision support system (DSS) is given which implements the connectivity
algorithms Whitney, MEEF and Fan — these algorithms were discussed in §4. The DSS is called
Connectivity Algorithms and allows the user to construct spanning subgraphs with various connectivity
numbers that may then be compared to one another. There are two reasons why the development of this
DSS was deemed necessary. Firstly, most input graphs consist of a large number of vertices and edges,
making it practically impossible to implement these algorithms by hand, as many calculations are done
(a large number of calculations are done even for small graphs consisting of just a few vertices, when
implementing Algorithms Whitney and Fan to find internally disjoint paths). These calculations require
little computer time, and, given that the algorithms are coded correctly, the user has the assurance that
these calculations are performed correctly. Secondly, the output resulting from the three algorithms
mentioned for constructing a spanning subgraph with a given connectivity number may differ quite
drastically. This allows the user to choose between different constructions. The user may, for instance,
decide to choose a constructed spanning subgraph with a larger total weight than another constructed
spanning subgraph, because the layout of that graph may better match the setup required by the user.

The first section of this chapter provides the reader with technical information on the DSS. This is
followed by an explanation of the different components of the system. A complete worked example is
discussed next, in which all three algorithms are used to generate output for the same graph. This is
done so as to give the reader a better feel for how these algorithms operate. The chapter is concluded
with a case study on the connectivity of a spider’s web, where the running times and solution qualities
of the three algorithms are compared. The chapter is concluded with a chapter summary.

5.1 Technical aspects & limitations of Connectivity Algorithms

Connectivity Algorithms was developed using Microsoft Visual Basic 6.0 [61]. It is a 32-bit programming
language, implying that the largest integer that it can store is a 31-bit value (the last bit is used to
indicate the sign of the number stored). This imposes a physical limitation in the sense that only graphs
comprising 31 or fewer vertices can be specified as input. The reason for this limitation is that each vertex
contained in a specific minimum cut-set of the input graph is represented by a 1 in a 31-bit variable.
As any of the 31 vertices may form part of a possible minimum cut-set, 31 bits are required (see §4.2
for a detailed explanation on how the vertices comprising a minimum cut-set are stored using Algorithm
Cut-Vertex Set). It is possible to circumvent this limitation by creating a bit-vector comprising an array
of 32-bit bit-vectors. This was deemed unnecessary, as the running time of Algorithms Fan implemented
in the DSS takes a long time to execute, due to the slower running time of Algorithm 4 that is used
to find a complete minimum cut-set in a graph. A faster algorithm for calculating such a minimum
cut-set would first need to be developed before the DSS would be able to construct spanning subgraphs
in reasonable time for graphs comprising more than 31 vertices.

The CD accompanying this thesis contains the DSS executable — the reader is referred to Appendix

67

Stellenbosch University http://scholar.sun.ac.za

68 CHAPTER 5. DECISION SUPPORT SYSTEM

A for instructions on how to utilise the CD. Adjacency matrices of the graphs in the example and case
study presented in this chapter are also included on the CD.

5.2 Introduction to the system components

In this section the various components of Connectivity Algorithms are discussed. Once the program is
started, the Main window of the program is displayed (see Figure 5.1).

Figure 5.1: Main window of the program Connectivity Algorithms.

The main window consists of a number of components. The Plot Area is the rectangular space located
to the left of the Output window and above the Display Options frame box. The Plot Area is used to
represent an input graph graphically. When the DSS is started, no graph is loaded and the Plot Area
is initialised as a clear screen. The Output window provides output information, depending on what
algorithm is implemented. Information, such as the name of the algorithm implemented and the weight
improvement in the subgraph generated, are displayed here. A number of buttons are located below the
Plot Area. The first set of buttons is located in the Display Options frame box and is used to display
either the original graph or spanning subgraph generated by some algorithm. A minimum cut-set for
both graphs may also be displayed by clicking on the Find Cut-Set button in either the Input Graph or
Output Graph frame boxes. If no graph is loaded, the only button that is enabled is the Clear Plot Area
button, which, as its name suggests, clears the Plot Area. The second set of buttons is used to execute
one of the three algorithms, Whitney, MEEF or Fan, on the graph loaded.

The Load Graph button in the menu bar (top left of Figure 5.1) is used to load a new graph. This option
opens the Load New Graph window, depicted in Figure 5.2.

The first three windows in the Load New Graph window are used to search for an Excel [48] file that
contains the adjacency matrix for a graph that is used to construct the input graph required by the DSS.
The first of these three windows specifies the drive on which the file is located. The window below this

Stellenbosch University http://scholar.sun.ac.za

5.3. A worked example 69

Figure 5.2: The window, Load New Graph, is used to select an input graph for the DSS.

specifies the directory and the window to its right is used to select a specific Excel [48] file as input. Once
a file is selected, its name is displayed next to the File Selected label just below these three windows.
Two worksheet names are required. The first worksheet specifies the x- and y-coordinates of all vertices
in the graph. This information is stored as follows in the Excel [48] spreadsheet. Column i contains
the coordinates of vertex i, with the x-coordinate stored in row 1 and the y-coordinate stored in row 2.
No other information should be stored on this worksheet. These coordinates are used and then scaled
to fit the resulting graph in the Plot Area window on the main form. The second worksheet specifies
the adjacency matrix for the input graph. Element (i, j) = (j, i) of the adjacency matrix is stored in
the ith row and jth column of the worksheet specified, and indicates the weight of the edge vivj = vjvi.
The DSS automatically calculates the number of vertices by calculating the number of non-empty rows
on this worksheet; hence no information other than the adjacency matrix should be included on this
worksheet.

5.3 A worked example

In this section the working of the DSS is discussed with the aid of an example. All three algorithms are
implemented, so as to give the user a feel for the different algorithms.

Consider again the graph G34 depicted in Figure 4.16 (see Example 4.12). The graph is reproduced in
Figure 5.3, for referencing purposes.

For the purpose of this example, the edges are weighted. All weights are reflected in the adjacency matrix
for the graph that is stored in the Excel [48] file testgraph.xls on the worksheet AdjacencyMatrix (see
Figure 5.4). The file testgraph.xls is located on the CD accompanying this thesis. The edge weights are
not shown in Figure 5.3 so as to render the graph less cluttered.

Note that the adjacency matrix is symmetric, as the graph is undirected (the algorithms discussed in
this thesis are designed specifically for undirected graphs). The coordinates for each vertex is stored in
the worksheet XY of the file testgraph.xls (see Figure 5.5).

The DSS may be loaded by executing the file connalgs.exe from the CD accompanying this thesis. Once
the program is launched, the file testgraph.xls may be loaded by clicking on Load Graph and browsing to
the location where the file is stored (see Figure 5.6).

After the file has been selected, the filename testgraph.xls appears next to the File Selected label. The
default names for the worksheets containing the adjacency matrix and coordinates of the vertices are

Stellenbosch University http://scholar.sun.ac.za

70 CHAPTER 5. DECISION SUPPORT SYSTEM

v1 v2

v3 v4 v5

v6

v7

v8

v9

v10

v11

Figure 5.3: Graphical representation of the graph G34.

Figure 5.4: The constructed adjacency matrix for the graph G34 is stored in the worksheet AdjacencyMatrix of the file
testgraph.xls.

Figure 5.5: The coordinates for the vertices of the graph G34 are stored in the worksheet XY of the file testgraph.xls.

AdjacencyMatrix and XY respectively; hence the loading operation is completed by simply clicking on
the OK button, after which the main window of the DSS reappears. The graph may now be displayed
in the Plot Area window by clicking on the Display Original Graph button in the Input Graph frame box
(see Figure 5.7).

A minimum cut-set may be found and displayed in the Plot Area window by clicking on the Find Cut-Set
button in the Input Graph frame box. Vertices are coloured light green by default. After clicking on
the Find Cut-Set button in the Input Graph frame box, vertices comprising a minimum cut-set that is
found by the DSS for the original graph are coloured red. By clicking on the Find Cut-Set button in the

Stellenbosch University http://scholar.sun.ac.za

5.3. A worked example 71

Figure 5.6: Visual representation of the loading process of the file testgraph.xls.

Figure 5.7: The graph G34, represented by the information in the file testgraph.xls, is displayed after clicking on the Display
Original Graph button in the Input Graph frame box.

Output Graph frame box, vertices comprising a minimum cut-set for the relevant spanning subgraph are
coloured yellow. For this example, five vertices are coloured red; hence the connectivity number for the
original graph is 5 (see Figure 5.8).

The three algorithms Whitney, MEEF and Fan may now be implemented on this graph. The connectivity
number of the output spanning subgraph is varied using each of these algorithms, generating spanning
subgraphs with connectivity numbers ranging from 5 down to 0.

Stellenbosch University http://scholar.sun.ac.za

72 CHAPTER 5. DECISION SUPPORT SYSTEM

Figure 5.8: The graph G34 represented by the information in the file testgraph.xls after clicking on the Find Cut-Set button
in the Input Graph frame box. The 5 vertices comprising minimum cut set obtained by the DSS are coloured red.

5.3.1 Implementation of Algorithm Whitney

Algorithm Whitney may be implemented by clicking on the Specify Level of Connectivity button in the
Whitney frame box. A window called Enter the desired connectivity number is displayed, prompting the
user to enter the desired level of connectivity (see Figure 5.9).

Figure 5.9: The window Enter the desired connectivity number appears after clicking on Specify Level of Connectivity in
the Whitney frame box. The desired connectivity number for a spanning subgraph, which is bounded by the connectivity
number of the original graph, may now be entered.

Note that the connectivity number for the spanning subgraph is bounded from above by the connectivity
number of the original graph. The number entered must be between zero and this value inclusive (in
this case the connectivity number of the original graph is 5). Suppose a value of 5 is entered, after which
Algorithm Whitney is implemented. For this case, no edges could be removed and the user is notified
that no cheaper spanning subgraph with connectivity number 5 could be constructed (see Figure 5.10).

Figure 5.10: A notification window appears informing the user that a cheaper spanning subgraph could not be constructed.

The process is repeated, this time specifying a desired connectivity number of 4 for the spanning subgraph.
Whitney’s Algorithm is now able to produce a spanning subgraph with a reduced weight. The adjacency
matrix for the constructed spanning subgraph is stored in an Excel [48] file with the same name as the
input file, followed by the letters Output, i.e. the output file is called testgraphOutput.xls. The output
file is depicted in Figure 5.11.

The weight improvement for the subgraph generated is reflected in the Output window. The spanning
subgraph generated may be displayed by clicking on the Display New Graph button in the Output Graph
frame box. A minimum cut-set for this graph may also be displayed as yellow vertices by clicking on
the Find Cut-Set button in the Output Graph frame box (see Figure 5.12). Note that the connectivity
number of the subgraph that was generated remained 5 — the desired connectivity level of 4 was thus
achieved. By iteratively clicking on the Display New Graph and Display Original Graph buttons, it may
be seen that the two edges v5v10 and v6v9 are not included in the spanning subgraph generated. The
edge weights for these two edges may be read from the adjacency matrix of the original graph, shown

Stellenbosch University http://scholar.sun.ac.za

5.3. A worked example 73

Figure 5.11: The file testgraphOutput.xls, displaying the adjacency matrix that was constructed using Algorithm Whitney.
The connectivity number of the spanning subgraph is at least 4.

Figure 5.12: The 4-connected spanning subgraph of G34 that was constructed using Algorithm Whitney. A minimum
cut-set found by the algorithm is depicted as yellow vertices. A weight improvement of 16 was achieved and is reflected in
the Output window.

in Figure 5.4; edge v5v10 having an edge weight of 7 and edge v6v9 having an edge weight of 9, with a
combined weight of 16.

Similar spanning subgraphs may be constructed in this fashion using Whitney’s Algorithm, with con-
nectivities ranging from 0 to 3. The spanning subgraphs obtained in this fashion, are depicted in the
following four figures (Figures 5.13 to 5.16), with connectivities ranging from 3 down to 0 (in descending
order). A minimum cut-set for each spanning subgraph is displayed as yellow vertices on each graph.
Note that once an output file has been created, the user is prompted by Excel [48] to overwrite the
output file when an algorithm is run on the same input graph more than once.

The steps taken to produce spanning subgraphs as described above may be repeated using the MEEF
and Fan algorithms. Note that the Most Expensive Edge First and Fan frame boxes both contain two
buttons (see Figure 5.1). The first button, Maintain Connectivity Number, (in both frame boxes) is
used to construct a spanning subgraph with the same connectivity number as that of the original graph.
The second button, Lower Connectivity Number, is used to construct an `-connected spanning subgraph,
with ` bounded from above by the connectivity number of the original graph. When a user clicks on
this button, the window depicted in Figure 5.9 is displayed, prompting the user for the desired level of
connectivity.

Stellenbosch University http://scholar.sun.ac.za

74 CHAPTER 5. DECISION SUPPORT SYSTEM

Figure 5.13: The 3-connected spanning subgraph of G34 constructed using Algorithm Whitney. A minimum cut-set found
by the algorithm is depicted as yellow vertices. Note that this graph has a connectivity number of 5. A weight improvement
of 31 was achieved and is reflected in the Output window.

Figure 5.14: The 2-connected spanning subgraph of G34 constructed using Algorithm Whitney. A minimum cut-set found
by the algorithm is depicted as yellow vertices. Note that the graph has a connectivity number of 3. A weight improvement
of 64 was achieved and is reflected in the Output window.

Stellenbosch University http://scholar.sun.ac.za

5.3. A worked example 75

Figure 5.15: The 1-connected spanning subgraph of G34 constructed using Algorithm Whitney. A minimum cut-set found
by the algorithm is depicted as yellow vertices. Note that the graph has a connectivity number of 3. A weight improvement
of 83 was achieved and is reflected in the Output window.

Figure 5.16: The 0-connected spanning subgraph of G34 constructed using Algorithm Whitney. No edges are included in
the graph. A weight improvement of 130 was achieved and is reflected in the Output window.

Stellenbosch University http://scholar.sun.ac.za

76 CHAPTER 5. DECISION SUPPORT SYSTEM

5.3.2 Implementation of Algorithm MEEF

Figures 5.17 to 5.22 depict the spanning subgraphs of G34 generated by the MEEF algorithm, with
connectivities ranging from 5 down to 0 respectively.

Figure 5.17: The 5-connected spanning subgraph of G34 constructed using Algorithm MEEF. A minimum cut-set found
by the algorithm is depicted as yellow vertices. A weight improvement of 56 was achieved and is reflected in the Output
window.

Figure 5.18: The 4-connected spanning subgraph of G34 constructed using Algorithm MEEF. A minimum cut-set found
by the algorithm is depicted as yellow vertices. A weight improvement of 61 was achieved and is reflected in the Output
window.

Stellenbosch University http://scholar.sun.ac.za

5.3. A worked example 77

Figure 5.19: The 3-connected spanning subgraph of G34 constructed using Algorithm MEEF. A minimum cut-set found
by the algorithm is depicted as yellow vertices. A weight improvement of 70 was achieved and is reflected in the Output
window.

Figure 5.20: The 2-connected spanning subgraph of G34 constructed using Algorithm MEEF. A minimum cut-set found
by the algorithm is depicted as yellow vertices. A weight improvement of 96 was achieved and is reflected in the Output
window.

Stellenbosch University http://scholar.sun.ac.za

78 CHAPTER 5. DECISION SUPPORT SYSTEM

Figure 5.21: The 1-connected spanning subgraph of G34 constructed using Algorithm MEEF. A minimum cut-set found
by the algorithm is depicted as yellow vertices. A weight improvement of 108 was achieved and is reflected in the Output
window.

Figure 5.22: The 0-connected spanning subgraph of G34 constructed using Algorithm MEEF. A weight improvement of
119 was achieved and is reflected in the Output window.

Stellenbosch University http://scholar.sun.ac.za

5.3. A worked example 79

5.3.3 Implementation of Algorithm Fan

Figures 5.23 to 5.28 depict the spanning subgraphs of G34 generated by the Fan algorithm, with connec-
tivities ranging from 5 down to 0 respectively.

Figure 5.23: The 5-connected spanning subgraph of G34 constructed using Algorithm Fan. A minimum cut-set found by
the algorithm is depicted as yellow vertices. A weight improvement of 13 was achieved and is reflected in the Output
window.

Figure 5.24: The 4-connected spanning subgraph of G34 constructed using Algorithm Fan. A minimum cut-set found by
the algorithm is depicted as yellow vertices. A weight improvement of 35 was achieved and is reflected in the Output
window.

Stellenbosch University http://scholar.sun.ac.za

80 CHAPTER 5. DECISION SUPPORT SYSTEM

Figure 5.25: The 3-connected spanning subgraph of G34 constructed using Algorithm Fan. A minimum cut-set found by
the algorithm is depicted as yellow vertices. A weight improvement of 48 was achieved and is reflected in the Output
window.

Figure 5.26: The 2-connected spanning subgraph of G34 constructed using Algorithm Fan. A minimum cut-set found by
the algorithm is depicted as yellow vertices. A weight improvement of 64 was achieved and is reflected in the Output
window.

Stellenbosch University http://scholar.sun.ac.za

5.3. A worked example 81

Figure 5.27: The 1-connected spanning subgraph of G34 constructed using Algorithm Fan. A minimum cut-set found by
the algorithm is depicted as yellow vertices. A weight improvement of 84 was achieved and is reflected in the Output
window.

Figure 5.28: The 0-connected spanning subgraph of G34 constructed using Algorithm Fan. A weight improvement of 130
was achieved and is reflected in the Output window.

Stellenbosch University http://scholar.sun.ac.za

82 CHAPTER 5. DECISION SUPPORT SYSTEM

It should be noted that Algorithm Fan can only be implemented on a graph that contains a minimum
cut-set which also forms a clique. If the input graph does not contain such a minimum cut-set, the user
is notified of this fact. All minimum cut-sets are displayed in the Output window, in an attempt to aid
the user in deciding what edges may be inserted into the graph in order to produce a cut-set that is also
a clique. As an example, consider the graph depicted in Figure 5.29.

Figure 5.29: Graphical representation of a graph that does not have a complete cut-set.

If Algorithm Fan is implemented, the message shown in Figure 5.30 is displayed, notifying the user that
no complete cut-set exists in the graph.

Figure 5.30: A message is displayed, notifying the user that no complete cut-set exists in the input graph.

Apart from this, a list of all minimum cut-sets for the graph are displayed in the Output window (see
Figure 5.31). The user may use this information to insert the necessary edges into the input graph in
order to obtain a minimum cut-set that is also a clique.

Figure 5.31: The Output window displays a list of all minimum cut-sets in the input graph. The user may adapt the
adjacency matrix of the input graph, using this information to change one of these cut-sets into a complete cut-set.

Once this is done, the input graph may be loaded again, after which Algorithm Fan may be implemented.

Stellenbosch University http://scholar.sun.ac.za

5.3. A worked example 83

5.3.4 Summary of results obtained

A summary of the weight improvements obtained for each k-connected graph, k = 0, . . . , 5, generated by
the different algorithms is presented in Table 5.1.

Algorithm
Connectivity Whitney MEEF Fan

5 0 56 13
4 16 66 35
3 31 93 48
2 64 106 64
1 83 118 84
0 130 119 130

Table 5.1: The weight improvement obtained for each k-connected graph, k = 0, . . . , 5, by implementing the algorithms
Whitney, MEEF and Fan on the graph G34 stored in the file testGraph.xls.

The weight improvement results of each algorithm may be compared graphically, as shown in Figure
5.32, to determine which algorithm is the most efficient for generating a certain spanning subgraph for
the graph at hand.

Figure 5.32: Graphical representation of the k-connectivity level vs. the weight improvement for each spanning subgraph
calculated by the various algorithms.

From Figure 5.32 it may be seen that, for this example, Algorithm MEEF produces the best results for
1- to 5-connected spanning subgraphs. Algorithms Whitney and Fan both produce a maximum weight
reduction of 130 for a 0-connected graph. To see which algorithm produces the best results regarding
spanning subgraphs with a specific connectivity number, a more careful look should be taken at the graphs
that were generated by the DSS. For instance, a 3-connected spanning subgraph that was constructed
using Algorithm Whitney is depicted in Figure 5.13. A minimum cut-set for this graph consists of 5
vertices, indicating that the connectivity number for this graph is 5. Algorithm MEEF always constructs
a spanning subgraph for which the desired connectivity level equals the connectivity number of the
subgraph. However, Algorithms Whitney and Fan may construct spanning subgraphs for which the
connectivity number is bounded from below by the specified connectivity level. For this example, the
connectivity number of some of the spanning subgraphs that were constructed using Algorithm Whitney
have a higher connectivity number than the desired connectivity level. The weight improvement obtained
by each algorithm for a constructed spanning subgraph with a given connectivity number are depicted
in Table 5.2, followed by a graphical representation in the form of a bar chart (see Figure 5.33).

From this graph it may be seen that Algorithm MEEF still produces the lowest weighted spanning
subgraphs for all connectivity numbers, although Algorithm Whitney produces only a slightly heavier
weighted spanning subgraph with a connectivity number of 3.

Stellenbosch University http://scholar.sun.ac.za

84 CHAPTER 5. DECISION SUPPORT SYSTEM

Algorithm
κ(G) Whitney MEEF Fan

5 31 56 13
4 66 35
3 83 93 48
2 106 64
1 118 84
0 130 119 130

Table 5.2: The weight improvement obtained for each subgraph G constructed, such that κ(G) = k, k = 0, . . . , 5, by
implementing the algorithms Whitney, MEEF and Fan on the graph G34 stored in the file testGraph.xls.

Figure 5.33: Graphical representation of the connectivity number vs. the weight improvement for each spanning subgraph
calculated by the various algorithms.

5.4 Case study: The connectivity of a Spider’s Web

As a small case study, the DSS is used to determine which parts of a spider’s web may be removed
without reducing its connectivity number too much. A graphical representation of the web used for this
case study is presented in Figure 5.34 (file Spider21.xls on the CD). Note that the three vertices v3, v5

and v6 is a minimum cut-set that is also a clique.

Figure 5.34: Graphical representation of the file Spider21.xls depicting a spider’s web.

The adjacency matrix for this graph is too large to present graphically, but may be found on the
accompanying CD (see the worksheet AdjacencyMatrix in the file Spider21.xls). The weights of the
edges are taken as the Euclidean distance between every pair of adjacent vertices.

Stellenbosch University http://scholar.sun.ac.za

5.4. Case study: The connectivity of a Spider’s Web 85

The aim of this case study is to show how the size and weight of a graph can greatly influence the
running time of some of the algorithms and their solution qualities. The running time of Algorithm Fan
is influenced the most by the size of an input graph, due to the high worst-case running time of O

(
pk+3

)

of Algorithm 4, that is used to search for a complete minimum cut-set of the input graph. This causes the
first implementation of Algorithm Fan to be slow, but subsequent calculations are typically very quick,
as a mininimum cut-set only needs to be calculated once for every input graph. For this example, the
calculation of all minimum cut-sets took just over 3 minutes on a 3GHz Intel Pentium, a computation
time that contrasts starkly with the mere seconds it took to calculate a minimum cut-set for the graph
stored in the file testgraph.xls, showing the steep rise in running time.

The running time of Algorithms Whitney and MEEF are less affected by the size of the input graph, as
these algorithms only require the connectivity number of the input graph, which may be calculated using
the more efficient Algorithm 3. The working of Algorithm Whitney itself does not require any knowledge
of the cut-set per se. However, the implemented version in the DSS does require the connectivity number
of the input graph — when the user enters the desired connectivity level for a spanning subgraph (see
Figure 5.9), this number must be bounded from above by the connectivity number of the input graph.
Algorithm MEEF, on the other hand, recalculates the connectivity number of the spanning subgraph for
every iteration in the algorithm where an edge or set of edges are removed.

An implementation of Algorithm Whitney was unable to produce a spanning subgraph with fewer edges
than the input graph, for connectivity numbers ranging from 1 to 3. For a connectivity number of zero,
Algorithm Whitney removed all of the edges in the input graph. Each attempt to construct a spanning
subgraph with connectivity number ranging from 1 to 3 took 5 seconds to complete. A spanning subgraph
with a connectivity number of 0 can be constructed almost immediately, as no paths are required to be
calculated and hence, all edges are simply omitted.

An implementation of Algorithm MEEF was also unable to produce a 3-connected spanning subgraph
with fewer edges than that of the input graph. However, a 2-connected spanning subgraph could be
constructed in less than one second. The subgraph corresponds to a weight improvement of 3.351, the
weight of the removed edge v20v21. A graphical representation of the spanning subgraph is depicted in
Figure 5.35.

Figure 5.35: The 2-connected spanning subgraph constructed using Algorithm MEEF. A minimum cut-set found by the
algorithm is depicted as yellow vertices. A weight improvement of 3.351 (the weight of the edge v20v21) was achieved and
is reflected in the Output window; hence only one edge was removed. Note that the graph has a connectivity number of 2.

Algorithm MEEF could also be used to construct a 1-connected spanning subgraph. This operation
took 3 seconds to complete. The subgraph corresponds to a weight improvement of 50.294, the combined
weight of the 21 removed edges v2v6, v3v6, v3v5, v4v5, v5v6, v6v7, v7v8, v8v9, v9v10, v10v11, v11v12, v12v13,
v13v14, v14v15, v15v16, v16v17, v17v18, v18v19, v19v20, v20v21 and v21v17. A graphical representation of the
spanning subgraph is depicted in Figure 5.36.

Stellenbosch University http://scholar.sun.ac.za

86 CHAPTER 5. DECISION SUPPORT SYSTEM

Figure 5.36: The 1-connected spanning subgraph constructed using Algorithm MEEF. A minimum cut-set found by the
algorithm is depicted as yellow vertices. A weight improvement of 50.294 was achieved and is reflected in the Output
window. Note that the graph has a connectivity number of 1.

The construction of a 0-connected spanning subgraph using Algorithm MEEF took 3 seconds. The
subgraph corresponds to a weight improvement of 51.648. The same 21 edges that were removed when
constructing a 1-connected spanning subgraph are removed, as well as the additional edge v3v4. A
graphical representation of the spanning subgraph is depicted in Figure 5.37.

Figure 5.37: The 0-connected spanning subgraph constructed using Algorithm MEEF. A weight improvement of 51.648
was achieved and is reflected in the Output window.

To implement Algorithm Fan, a complete minimum cut-set must first be calculated. This operation
took just over 3 minutes. The implementation of Algorithm Fan was unable to produce a 3-connected
spanning subgraph with fewer edges than that of the input graph. However, a 2-connected spanning
subgraph could be constructed in less than a second. The subgraph has a weight improvement of 5.154,
which is the combined weight of the removed edges v1v6, v2v6, v6v7, v6v11 and v16v21. A graphical
representation of the spanning subgraph is depicted in Figure 5.38.

Algorithm Fan produced relatively good results when it is applied to obtain a 1-connected graph (the
actual operation again took less than a second) — a weight improvement of 28.917 was achieved. A
graphical representation of the spanning subgraph is depicted in Figure 5.39.

Similar to Algorithm Whitney, Algorithm Fan could construct a 0-connected graph by removing all of
the edges in the original graph (this graph is not shown).

Stellenbosch University http://scholar.sun.ac.za

5.4. Case study: The connectivity of a Spider’s Web 87

Figure 5.38: The 2-connected spanning subgraph constructed using Algorithm Fan. A minimum cut-set found by the
algorithm is depicted as yellow vertices. A weight improvement of 5.154 was achieved and is reflected in the Output
window. Note that the graph has a connectivity number of 2.

Figure 5.39: The 1-connected spanning subgraph constructed using Algorithm Fan. A minimum cut-set found by the
algorithm is depicted as yellow vertices. A weight improvement of 28.917 was achieved and is reflected in the Output
window. Note that the graph has a connectivity number of 1.

Thus far, the solution qualities produced by Algorithm MEEF were the best, when compared to the
other two algorithms. For this example, the running time of Algorithm MEEF is barely slower than that
of Algorithm Fan (after a complete minimum cut-set has been calculated), making it a good candidate
for implementation on similar types of graphs.

However, there are cases where Algorithm Fan outperforms Algorithm MEEF in terms of both running
time and solution qualities. In particular, graphs where the edge weights are either all the same, or
graphs where edges that exist near each other in a graph have larger weights compared to the rest of the
graph, usually produce very inferior solution qualities when using Algorithm MEEF. To illustrate this,
consider again the spider’s web as illustrated above, this time where all edges have a weighting of one.
The adjacency matrix for this graph is stored in the file spider21 2.xls.

An implementation of Algorithm MEEF yields results for 0- to 3-connected spanning subgraphs. A 3-
connected spanning subgraph could be constructed in 2 seconds. The subgraph corresponds to a weight
improvement of 2, which is the combined weight of the removed edges v11v16 and v12v13. A graphical
representation of the spanning subgraph is depicted in Figure 5.40.

A 2-connected spanning subgraph could be constructed in 2 seconds. The subgraph corresponds to a

Stellenbosch University http://scholar.sun.ac.za

88 CHAPTER 5. DECISION SUPPORT SYSTEM

Figure 5.40: The 3-connected spanning subgraph constructed using Algorithm MEEF. A minimum cut-set found by the
algorithm is depicted as yellow vertices. A weight improvement of 2 (the weight of the edge v20v21) was achieved and is
reflected in the Output window; hence only one edge was removed. Note that the graph has a connectivity number of 2.

weight improvement of 4, the combined weight of the removed edges v11v16, v12v13, v12v17 and v13v14.
A graphical representation of the spanning subgraph is depicted in Figure 5.41.

Figure 5.41: The 2-connected spanning subgraph constructed using Algorithm MEEF. A minimum cut-set found by the
algorithm is depicted as yellow vertices. A weight improvement 4 was achieved and is reflected in the Output window;
hence only one edge was removed. Note that the graph has a connectivity number of 2.

Algorithm MEEF could also be used to construct a 1-connected spanning subgraph. This operation
took 3 seconds to complete. The subgraph corresponds to a weight improvement of 8, the combined
weight of the removed edges v4v9, v10v11, v11v16, v11v12, v12v13, v12v17, v13v14 and v13v18. A graphical
representation of the spanning subgraph is depicted in Figure 5.42.

The construction of a 0-connected spanning subgraph using Algorithm MEEF took 3 seconds. The
subgraph corresponds to a weight improvement of 9. The same 8 edges that were removed when con-
structing a 1-connected spanning subgraph is removed, as well as the additional edge v10v15. A graphical
representation of the spanning subgraph is depicted in Figure 5.43.

An implementation of Algorithm Fan was also used to construct 0- to 3-connected spanning subgraphs.
The calculation of a minimum cut-set again took approximately 3.5 minutes. The implementation of
Algorithm Fan was unable to produce a 3-connected spanning subgraph with fewer edges than that of

Stellenbosch University http://scholar.sun.ac.za

5.4. Case study: The connectivity of a Spider’s Web 89

Figure 5.42: The 1-connected spanning subgraph constructed using Algorithm MEEF. A minimum cut-set found by the
algorithm is depicted as yellow vertices. A weight improvement of 50.294 was achieved and is reflected in the Output
window. Note that the graph has a connectivity number of 1.

Figure 5.43: The 0-connected spanning subgraph constructed using Algorithm MEEF. A weight improvement of 51.648
was achieved and is reflected in the Output window.

the input graph. However, a 2-connected spanning subgraph could be constructed in less than a second.
The subgraph represents a weight improvement of 5, which is the combined weight of the removed edges
v1v6, v2v6, v6v7, v6v11 and v16v21. A graphical representation of the spanning subgraph is depicted in
Figure 5.44.

Algorithm Fan obtained a 1-connected graph (the actual operation again took less than a second) with
a weight improvement of 19, which is the combined weight of the removed edges v1v5, v1v6, v2v6, v4v5,
v5v6, v5v10, v6v7, v6v11, v7v8, v8v9, v10v11, v10v15, v11v16, v13v14, v15v16, v15v20, v16v21, v18v19 and
v20v21. A graphical representation of the spanning subgraph is depicted in Figure 5.45.

Algorithm Fan could also, as mentioned before, construct a 0-connected graph by removing all of the
edges in the original graph (this graph is not shown).

It is clear from the results above that, for this example, Algorithm Fan outperformed Algorithm MEEF
in terms of both the running time and the weight reductions obtained for the various cases. Note that
Algorithm MEEF produces even worse solution qualities if the input graph consists of a number of
edges with considerably higher weighting than edges in the rest of the graph, that are located close
to each other or even possibly share a vertex. It is clear that these edges will be removed first, hence

Stellenbosch University http://scholar.sun.ac.za

90 CHAPTER 5. DECISION SUPPORT SYSTEM

Figure 5.44: The 2-connected spanning subgraph constructed using Algorithm Fan. A minimum cut-set found by the
algorithm is depicted as yellow vertices. A weight improvement of 5.154 was achieved and is reflected in the Output
window. Note that the graph has a connectivity number of 2.

Figure 5.45: The 1-connected spanning subgraph constructed using Algorithm Fan. A minimum cut-set found by the
algorithm is depicted as yellow vertices. A weight improvement of 28.917 was achieved and is reflected in the Output
window. Note that the graph has a connectivity number of 1.

quickly reducing the connectivity number of the graph, but succeeding in removing only a few edges. For
example, consider again a spider’s web (as above) with equal edge weights of one for each edge, except,
set the weights of the edges v18v13, v18v17 and v18v19 to 2. If Algorithm MEEF is implemented on this
graph, say for instance, to obtain a spanning subgraph with a connectivity number of 1, then only two of
these three edges are removed. An implementation of Algorithm Fan, on the other hand, removes many
more edges, resulting in a lower weighted spanning subgraph.

It should be noted that other methods exist for constructing minimum-cost spanning subgraphs with a
connectivity number of one or zero. For a connectivity number of zero, all edges may simply be removed.
To construct a minimum-cost spanning subgraph with a connectivity number of one, any minimum-cost
spanning tree algorithm may be implemented (see for instance Kruskal’s algorithm [12, pp.567–570] or
Prim’s algorithm [12, pp.570–573]). However, these calculations are done with Algorithms Whitney,
MEEF and Fan, to further illustrate the working of the algorithms. These results may then be compared
to the (known) optimal solutions obtained by removing all edges (for a connectivity number of zero), or
implementing the minimum-cost spanning tree algorithm (for a connectivity number of 1).

To conclude, a few remarks about the design of the spider’s web are in order. It is clear that the original
spider’s web, depicted in Figure 5.34, has a connectivity number of 3. As the outer vertices all (except

Stellenbosch University http://scholar.sun.ac.za

5.5. Chapter Summary 91

vertex v17) have a degree of 3, the removal of the three edges joined to any specific outer vertex (except
vertex v17) produces a spanning subgraph with a connectivity number of 0. In this sense, the spider’s
web does not seem to be very strong, but all other inner vertices, with the exception of the vertices v1,
v2 and v4, have a degree of 4 or more, making it slightly harder to break the inner part of the spider’s
web (i.e. to separate a vertex or set of vertices in the inner part of the graph from the rest of the graph).
No vertex has a very high degree, which indicates an efficient design in terms of the amount of web
used (or the total weight of the graph); hence the web is 3-connected, but far from being 4-connected.
This implies that, a large amount of additional silk would be required to increase the web’s connectivity
number to 4. At the other end of the scale, comparing Figures 5.39 and 5.34, it may be seen how much
additional silk was required just to increase the connectivity number of the web from 1 (see Figure 5.39)
to 3 (see Figure 5.34).

5.5 Chapter Summary

In this chapter, the DSS Connectivity Algorithms, was discussed in some detail. A technical description
of the DSS was given, followed by a description of its various components. A complete worked example
was given to further introduce the user to the system. This was followed by a short analysis of the
output obtained by the three algorithms that are implemented in the system. A case study on the
connectivity of a spider’s web was also given. The main aim of this case study was to compare the
running times of the different algorithms. As expected, Algorithm Fan produced the fastest running
times, once a complete minimum cut-set was found. For the spider’s web with varying edge weights (see
the adjacency matrix stored in the file spider21.xls), Algorithm MEEF produced the lowest weighted
spanning subgraphs for constructed graphs with connectivity numbers of 1 and 2. Algorithms Whitney
and Fan produced minimum weighted 0-connected graphs by removing all edges of the input graph.
A spider’s web with equal edge weights was also analysed (see the adjacency matrix stored in the file
spider21 2.xls) which illustrated conditions under which Algorithm Fan will outperform Algorithm MEEF
in terms of producing lower weighted spanning subgraphs.

Stellenbosch University http://scholar.sun.ac.za

92 CHAPTER 5. DECISION SUPPORT SYSTEM

Chapter 6

Conclusion

This final chapter comprises two sections. In §6.1 the work contained in this thesis is summarised, and
in §6.2 various avenues of further research are highlighted.

6.1 Thesis Summary

In Chapter 2 an overview of basic prerequisites from graph and complexity theory was given, thereby
achieving thesis Objective I, as listed in §1.3. A concise survey of literature relevant to graph connectivity
was presented in Chapter 3, in fulfilment of Objective II.

Chapter 4 opened with a discussion on two algorithms that may be used for calculating the connectivity
number of a graph (see §4.1 and 4.2), in partial fulfilment of Objective III (Algorithms 3 and 4 are
used by Algorithms Whitney, MEEF and Fan for calculating the connectivity number of a minimum
cut-set of a graph). Algorithm 3 has a much better worst-case running time than Algorithm 4, but the
latter algorithm has the advantage of also finding a minimum cut-set for the graph. These algorithms
are used by the three algorithms Whitney, MEEF and Fan, which are capable of constructing lower
weighted connectivity preserving or reducing spanning subgraphs of a given graph (see §4.4, 4.5 and
4.6). Objectives IV and V have thus been achieved in these sections. Theoretical results supporting
these algorithms were developed and illustrated by means of examples, rounding off the requirement
stipulated by Objective III. The chapter closes with a comparison of the various algorithms developed
in this thesis (see §4.7), in partial fulfilment of Objective VI. A comparison was also made between the
algorithms in this thesis and the very recent K-N algorithm by Kortsarz and Nutov [34]. Algorithm
Fan proved to be very competetive in terms of its worst-case running time for constructing connectivity
preserving spanning subgraphs. However, it should be noted that the worst-case running time of the K-N
algorithm had to be generalised in order to compare it to that of Algorithm Fan. With this generalisation,
Algorithm Fan is an order of magnitude faster than the K-N algorithm. Algorithm Fan may also be
used for constructing connectivity reducing spanning subgraphs in near-linear worst-case running time.
A drawback of the K-N algorithm is that it cannot construct such spanning subgraphs.

A decision support system (DSS), called Connectivity Algorithms, was developed to implement the al-
gorithms of this thesis using Microsoft Visual Basic 6. This DSS is described in detail in Chapter 5,
achieving Objective VII. A technical description of the DSS is given in §5.1. The DSS suffers the draw-
back that the input graph may not consist of more than 31 vertices. This is due to a physical limitation
of the data types used in Visual Basic 6, but this limitation can be eliminated, if required. The working
of the DSS is explained in §5.2. The DSS allows the user to enter any graph by means of an adjacency
matrix stored in an Excel file, after which any of the three algorithms, Whitney, MEEF or Fan may be
implemented to construct spanning subgraphs satisfying certain connectivity requirements. The connec-
tivity number selected by the user may range from zero to κ(G), the connectivity number of the original
graph G. The results of the various algorithms were compared numerically, rounding off the requirements
stipulated by Objective VI. In §5.3, a complete worked example was given in order to familiarise the

93

94 CHAPTER 6. CONCLUSION

reader with the different components of the DSS. The chapter closed with a short case study on the
strength of a spider’s web (see §5.4). Algorithms MEEF and Fan produced the best results in terms of
computation time and the total weight of the spanning subgraph produced.

6.2 Future Work

In Chapters 4 and 5 it became clear that the worst-case running time of Algorithm 4 constitutes a
bottleneck in the worst-case running time of Algorithm Fan. No other algorithm capable of finding a
minimum cut-set in a graph is known to the author. More time-efficient methods for the computation
of a minimum cut-set in a graph should be investigated.

The total weight improvement of the spanning subgraph produced by using Algorithm Fan may be
increased if a method can be developed by choosing the ` internally disjoint paths with the lowest weight
to insert from every vertex not in the selected minimum cut-set, to that cut-set. The current method
for finding these internally disjoint paths (discussed in §4.3) chooses the ` paths based on flows returned
by Algorithm 6. This method is (as is) not able to differentiate between differently weighted paths.

There is currently no way of knowing how sub-optimal the results obtained by Algorithms Whitney,
MEEF and Fan are with respect to the weight of a minimum-cost spanning subgraph solution for any
given graph. In their article Kortsarz and Nutov [34] show that the result obtained by their K-N algorithm
differs by at most a fixed factor from a minimum-cost solution. This factor is known as an approximation
ratio. Finding such an approximation ratio for the algorithms developed in this thesis should contribute
to the field of connectivity and future research in this area is strongly suggested.

The methods developed in this thesis for the construction of a spanning subgraph with a certain connec-
tivity number are very diverse. It should be interesting to see whether further methods can be developed
using other branches of mathematics.

Finally, another avenue of further work would be to investigate whether characterisations can be devel-
oped for some graphs that do not contain a complete minimum cut-set, so that Algorithm Fan may be
implemented on these graphs. For example, an algorithm similar in some aspects to Algorithm Fan, but
differing in the way in which a spanning subgraph is constructed, may be required. Extensive research
was done by the author, but no such algorithm could be developed, nor could any graph characterisations
be found so that such Algorithm Fan could be implemented on a graph that does not contain a complete
minimum cut-set.

References

[1] Balena F, 1999, Programming Microsoft Visual Basic 6.0, Microsoft Press, Redmond, ISBN:
0-735-60558-0.

[2] Beineke LW, Oellermann OR & Pippert RE, 2002, The average connectivity of a graph,
Discrete Mathematics, 252, pp. 31–45.

[3] Boesch FT & Chen S, 1978, A generalization of line connectivity and optimally invulnerable
graphs, SIAM Journal on Applied Mathematics, 34, pp. 657–665.

[4] Bollobás B, 1978, Extremal graph theory, Academic Press, London, ISBN: 0-121-11750-2.

[5] Bollobás B, 1979, Graph theory—An introductory course, Springer-Verlag, New York, ISBN:
0-387-90399-2.

[6] Bollobás B, Goldsmith DL & Woodall DR, 1981, Indestructive deletions of edges from
graphs, Journal of Combinatorial Theory, Series B, 30, 263–275.

[7] Bondy JA, 1969, Properties of graphs with constraints on degrees, Studia Scientiarum Mathe-
maticarum Hungarica, 4, pp. 473–475.

[8] Chartrand G & Harary F, 1968, Graphs with prescribed connectivities, in Theory of graphs:
Proceedings of the Colloquium held at Tihany, Hungary, September 1966, Academic Press, New
York, ISBN: B-000-0CO76-J.

[9] Chartrand G, Kaugars A & Lick DR, 1972, Critically n-connected graphs, Proceedings of
the American Mathematical Society, 32, pp. 63–68.

[10] Chartrand G, Kapoor SF, Lesniak L & Lick DR, 1984, Generalized connectivity in graphs,
Bulletin of the Bombay Mathematical Colloquium, 2, pp. 1–6.

[11] Chartrand G & Oellerman OR, 1993, Applied and algorithmic graph theory, McGraw-Hill,
New York, ISBN: 0-071-12575-2.

[12] Cormen T, Leiserson C, Rivest R, Stein C, 2001, Introduction to Algorithms (Second Edi-
tion), The MIT Press, Cambridge, ISBN: 0-262-03293-7.

[13] Day DP, Oellermann OR & Swart HC, 1994, On the `-connectivity of a digraph, Discrete
Mathematics, 127, pp. 95–104.

[14] Day DP, Oellermann OR & Swart HC, 1999, Bounds on the size of graphs of given order
and `-connectivity, Discrete Mathematics, 197/198, pp. 217–223.

[15] Diestel R, 2000, Graph theory (Second Edition), Springer, New York, ISBN: 0-387-98976-5.

[16] Elias P, Feinstein A & Shannon CE, 1956, Note on maximum flow through a network, IEEE
Transactions on Information Theory, 2(4), pp. 117–119.

[17] Esfahanian AH & Hakimi SL, 1984, On computing the connectivities of graphs and digraphs,
Networks, 14(2), pp. 355–366.

95

96 References

[18] Eswaran KP & Tarjan RE, 1976, Augmentation problems, SIAM Journal on Computing, 5(4),
pp. 653–665.

[19] Ford LR, 1956, Network flow theory, (Unpublished) Technical Report P–923, The RAND Cor-
poration, Santa Monica.

[20] Ford LR & Fulkerson DR, 1956, Maximal flow through a network, Canadian Journal of Math-
ematics, 8, pp. 399–404.

[21] Frank A, 1976, Combinatorial algorithms, algorithmic proofs, PhD dissertation, Eötvös Univer-
sity, Budapest.

[22] Gabow HN, 1993, A representation for crossing set families with application to submodular flow
problems, Proceedings of the 4th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA),
SIAM, Philadelphia, pp. 202–211.

[23] Goldberg AV & Tarjan RE, 1988, A new approach to the maximum flow problem, Journal of
the Association for Computing Machinery, 35, pp. 921–940.

[24] Goldsmith DL, 1980, On the second-order edge-connectivity of a graph, Congressus Numeran-
tium, 29, pp. 479–484.

[25] Goldsmith DL, Manvel B & Faber V, 1980, Separation of graphs into three components by
the removal of edges, Journal of Graph Theory, 4, pp. 213–218.

[26] Goldsmith DL, 1981, On the nth-order edge-connectivity of a graph, Congressus Numerantium,
32, pp. 375–382.

[27] Györi E, 1978, On division of graphs to connected subgraphs, Colloquia Mathematica Societatis
János Bolyai, 18, pp. 485–494.

[28] Hajós G, 1934, Zum mengerschen Graphensatz, Acta Litterarum ac Scientiarum Regiae Uni-
versitatis Hungaricae Francisco-Josephinae, Sectio Scientiarum Mathematicarum [Szeged], 7, pp.
44–47.

[29] Harary F, 1962, The maximum connectivity of a graph, Proceedings of the National Academy of
Sciences of the United States of America, 48, pp. 1142–1146.

[30] Hsu T & Ramachandran V, 1991, A linear time algorithm for triconnectivity augmentation,

Proceedings of the 32nd Annual IEEE Symposium on Foundations of Computer Science, pp. 548–
559.

[31] Hsu T, 2000, On four-connecting a triconnected graph, Journal of Algorithms, 35(2), pp. 202–234.

[32] Jordán T, 1995, On the optimal vertex-connectivity augmentation, Journal of Combinatorial
Theory, Series B, 63(1), pp. 8–20.

[33] König D, 1933, Über trennende Knotenpunkte in Graphen, Acta Litterarum ac Scientiarum Regiae
Universitatis Hungaricae Francisco-Josephinae, Sectio Scientiarum Mathematicarum [Szeged], 6,
pp. 155–179.

[34] Kortsarz G & Nutov Z, 2005, Approximating k-node connected subgraphs via critical graphs,
SIAM Journal on Computing, 35(1), pp. 247–257.

[35] Lick DR, 1972, Minimally n-line connected graphs, Journal für die Reine und Angewandte Math-
ematik, 252, pp. 178–182.

[36] Lovász L, 1977, A homology theory for spanning trees of a graph, Acta Mathematica Academiae
Scientiarum Hungaricae, 30, pp. 241–251.

[37] Lovász L, Saks M & Schrijver A, 1989, Orthogonal representations and connectivity of graphs,
Linear Algebra and its Applications, 114/115, pp. 439–454.

References 97

[38] Lovász L, 1993, Combinatorial problems and exercises (Second Edition), North-Holland Publish-
ing Company, Amsterdam, ISBN: 0-444-81504-X.

[39] Mader W, 1971, Eine eigenschaft der Atome endlicher Graphen, Archiv der Mathematik, 22, pp.
333–336.

[40] Mader W, 1971, Minimale n-fach kantenzusammenhängende Graphen, Mathematische Annalen,
191, pp. 21–28.

[41] Mader W, 1972, Ecken vom grad n in minimalen n-fach zusammenhängenden Graphen, Archiv
der Mathematik, 23, pp. 219–224.

[42] Mader W, 1974, Kantendisjunkte wege in Graphen, Monatshefte für Mathematik, 78, pp. 395–
404.

[43] Mader W, 1978, A reduction method for edge-connectivity in graphs, Annals of Discrete Mathe-
matics, 3, pp. 145–164.

[44] Mader W, 1979, Connectivity and edge-connectivity in finite graphs, Proceedings of the Seventh
British Combinatorial Conference, Cambridge, Surveys in Combinatorics, London Mathematical
Society Lecture Notes Series, 38, Cambridge University Press, Cambridge, ISBN: 0-521-22846-8.

[45] Mader W, 1979, Zur struktur minimal n-fach zusammenhängender Graphen, Abhandlungen aus
dem Mathematischen Seminar der Universität Hamburg, 49, pp. 49–69.

[46] Menger K, 1927, Zur allgemeinen Kurventheorie, Fundamenta Mathematicae, 10, pp. 96–115.

[47] Menger K, 1932, Kurventheorie, American Mathematical Society, Leipzig, ISBN: 0-828-40172-1.

[48] Microsoft Office Excel, 2002, Microsoft Office Excel, [Online], [Cited October 30th, 2006],
Available from http://mvp.support.microsoft.com/communities/mvp.aspx?product=1

&competency=Microsoft+Office+Excel.

[49] Mitzenmacher M & Upfal E, 2005, Probability and computing—Randomized algorithms and
probabilistic analysis, Cambridge University Press, Cambridge, ISBN: 0-521-83540-2.

[50] Nagamochi H & Ibaraki T, 1992, Computing edge-connectivity in multigraphs and capacitated
graphs, SIAM Journal on Discrete Mathematics, 5, pp. 54–66.

[51] Nagamochi H & Ibaraki T, 2000, A fast algorithm for computing minimum 3-way and 4-way
cuts, Mathematical Programming, 88(3), pp. 507–520.

[52] Nagamochi H, Katayama S & Ibaraki T, 2000, A faster algorithm for computing minimum
5-way and 6-way cuts, Journal of Combinatorial Optimization, 4(2), pp. 151–169.

[53] Naor D, Gusfield D & Martel C, 1997, A fast algorithm for optimally increasing the edge
connectivity, SIAM Journal on Computing, 26(4), pp. 698–707.

[54] Picard J & Queyranne M, 1980, On the structure of all minimum cuts in a network and
applications, Mathematical Programming Study, 13, pp. 8–16.

[55] Plesńık J, 1976, Minimum block containing a given graph, Archiv der Mathematik, 27(6), pp.
668–672.

[56] Rosenthal A & Goldner A, 1977, Smallest augmentations to biconnect a graph, SIAM Journal
on Computing, 6(1), pp. 55–66.

[57] Sipser M, 1997, Introduction to the theory of computation, PWS Publishing Company, Boston,
ISBN: 0-534-94728-X.

[58] Slater PJ, 1974, A classification of 4-connected graphs, Journal of Combinatorial Theory. Series
B, 17, pp. 281–298.

98 References

[59] Slater PJ, 1975, Leaves of trees, Proceedings of the Sixth Southeastern Conference on Combi-
natorics, Graph Theory, and Computing, Congressus Numerantium, 14, pp. 549–559.

[60] Tutte WT, 1961, A theory of 3-connected graphs, Indagationes mathematicae / Koninklijke
Nederlandse Akademie van Wetenschappen, 23, pp. 441–455.

[61] Visual Basic Developer Center, 1998, Visual Basic Home, [Online], [Cited October 30th,
2006], Available from http://msdn2.microsoft.com/en-us/vbasic/default.aspx.

[62] Watanebe T & Nakamura A, 1988, 3-Connectivity augmentation problems, Proceedings of the
IEEE International Symposium on Circuits and Systems, 2, IEEE Conference Proceeding, pp.
1847–1853.

[63] West DB, 1996, Introduction to graph theory, Prentice Hall, London, ISBN: 0-132-27828-6.

[64] Whitney H, 1932, Congruent graphs and the connectivity of graphs, American Journal of Math-
ematics, 54, pp. 150–168.

Appendix A

How to use the CD

The contents of the CD attached to this thesis are described in this appendix. The CD contains a
compiled version of the DSS Connectivity Algorithms, the source code of the DSS as well as graphs that
may be used for testing the DSS. All graphs that were mentioned in Chapter 5 are also included.

The contents of the CD is stored in three folders, namely DSS, Code and Graphs. The folder DSS
contains the program Connectivity Algorithms. To install the program, the reader should copy the two
folders, DSS and Graphs, to desired locations on his/her hard drive. The DSS may then be run by
browsing to the folder named DSS on the hard drive and then simply executing the file connalgs.exe.
This program will run on any Windows-based machine. The folder Code contains the source code of the
DSS Connectivity Algorithms. The folder Graphs contains adjacency matrices of graphs that may be
used to test the system. These adjacency matrices are stored as Excel files with the sheet names already
set to the default names that are used by the DSS; hence the coordinates of the vertices of a graph are
stored in the sheet labelled XY and the adjacency matrix is stored in the sheet labelled AdjacencyMatrix.
A list of the graphs that may be found in the folder Graphs on the CD is presented in Table A.1.

File Description κ(G)
graph1.xls Graph on 4 vertices. 1
graph2.xls Graph on 4 vertices (no complete minimum cut-set exists). 2
graph3.xls Graph on 4 vertices (contains a complete minimum cut-set). 2
graph4.xls Graph on 8 vertices (no complete minimum cut-set exists). 3
graph5.xls Graph on 11 vertices (no complete minimum cut-set exists). 5
graph6.xls Graph on 11 vertices (contains a complete minimum cut-set). 5
spider16.xls Representation of a spider’s web on 16 vertices. Edge weights

are taken as the euclidean distance between adjacent vertices (no
complete minimum cut-set exists).

3

spider21.xls Representation of a spider’s web on 21 vertices. Edge weights are
taken as the euclidean distance between adjacent vertices (con-
tains a complete minimum cut-set).

3

spider21 2.xls Representation of a spider’s web on 21 vertices. All edges have an
equal weighting of 1 (contains a complete minimum cut-set).

3

Table A.1: Description of a list of graphs included in the folder Graphs that may be used to test the DSS.

99

100 APPENDIX A. HOW TO USE THE CD

Appendix B

Source Code for the Program

Connectivity Algorithms

In this appendix, the source code for the algorithms that were implemented in the DSS Connectivity
Algorithms (discussed in §5) is given. The algorithms upon which the DSS is based are discussed in §4.
All source code was written using Microsoft Visual Basic 6.0. More information on how to program in
Microsoft Visual Basic 6.0 may be found in Balena [1]. Comments in the code are italicized and keywords
appear in bold.

Option Explicit

Public p As Integer

Public maxInt As Long

Dim D() Array containing Distance matrix.
Private XY() Array containing XY coordinates of vertices.

Private xMin, xMax, yMin, yMax As Double

Public k As Integer Actual connectivity number of the graph.

Public ell As Integer New connectivity number of the graph.
Private edgeList() As Variant

Private cutSetIG(), cutSetOG() As Variant

Private D2() As Variant

Private edgeListSorted As Boolean

Private DHasValue, cutSetsInputGraphHasValue, cutSetsOutputGraphHasValue As Boolean

Public filePath, distanceSheet, XYSheet As String

Private graphPaths() As Variant

Private graphPathsIndex As Integer

Private totalCostSaved As Single

Private oldCutVertex() As Boolean Used to distinguish between paths in graphPaths -
paths originating from vertices that belonged to the original cut-set should not be

included in certain for-loops. Mark these old cut-vertices with flags.
Const PlotAreaWidth = 10815 Width of PlotArea - PlotAreaWidth measured in twips.
Const PlotAreaHeight = 5895 Height of PlotArea - PlotAreaHeight measured in twips.

Const extraSpace = 567 / 2 Number of Twips to add to sides of graph. Scaling will then take place.

Dim prev(), dist()

Private Declare Sub CopyMemory Lib ‘‘kernel32" Alias ‘‘RtlMoveMemory" (dest As

Any, Source As Any, ByVal bytes As Long)

Function xl Col(ByRef Col No) As String

Returns Excel column name from numeric position (e.g.: col no 27 returns ‘‘AA").

example usage:
sColName = xl Col(7)

Only allow valid columns.
If Col No < 1 Or Col No > 256 Then Exit Function

If Col No < 27 Then Single letter.

xl Col = Chr(Col No + 64)
Else Two letters.

xl Col = Chr(Int((Col No - 1) / 26) + 64) &

Chr(((Col No - 1) Mod 26) + 1 + 64)
End If

End Function

101

102 APPENDIX B. SOURCE CODE FOR THE PROGRAM CONNECTIVITY ALGORITHMS

Function xl ColNo(Col Name) As Integer

Returns an Excel column number from its name (e.g.: col name ‘‘AA" returns 27).

example usage:
iColNo = xl ColName(‘‘Z")

Col Name = UCase(Trim(Col Name))
Select Case Len(Col Name)

Case 1: xl ColNo = Asc(Col Name) - 64
Case 2: xl ColNo = ((Asc(Left(Col Name, 1)) - 64) * 26)

+ (Asc(Right(Col Name, 1)) - 64)
End Select

End Function

Function ArrayDims(arr As Variant) As Integer

Returns the number of dimensions of an array.
Dim ptr As Long

Dim VType As Integer

Const VT BYREF = &H4000&

Get the real VarType of the argument.
CopyMemory VType, arr, 2

Exit if not an array.
If (VType And vbArray) = 0 Then Exit Function

Get the address of the SAFEARRAY descriptor. This is stored in the second half of the Variant parameter that has

received the array.
CopyMemory ptr, ByVal VarPtr(arr) + 8, 4

See whether the routine was passed a Variant that contains an array, rather than directly an array in the former case
ptr already points to the SA structure.

If (VType And VT BYREF) Then

ptr is a pointer to a pointer.
CopyMemory ptr, ByVal ptr, 4

End If

Get the address of the SAFEARRAY structure. This is stored in the descriptor. Get the first word of the SAFEARRAY

structure which holds the number of dimensions but first check that saAddr is non-zero, otherwise this routine bombs
when the array is uninitialized.
If ptr Then

CopyMemory ArrayDims, ByVal ptr, 2
End If

End Function

Public Function CountElements(ByVal SimpleArray As Variant) As Long

Returns the number of elements in an array.
Ignore error if array not dimensioned.

On Error Resume Next

If Not IsArray(SimpleArray) Then Exit Function

CountElements = Abs((LBound(SimpleArray) - UBound(SimpleArray))) + 1
End Function

Public Function DecToBin(DeciValue As Long) As String

Converts a decimal value to a binary string. Dim i As Integer

Dim NoOfBits As Integer

NoOfBits = p

Ensures that there are enough bits to contain the number.

Do While DeciValue > (2NoOfBits − 1
NoOfBits = NoOfBits + 8

Loop

DecToBin = vbNullString

Build the string.
For i = 0 To (NoOfBits - 1)

DecToBin = CStr((DeciValue And 2i) / 2i) & DecToBin
Next i

End Function

Public Function MaxArr1D(ByVal D As Variant) As Variant

Returns a maximum value of an array. Dim i, j As Integer

Dim X As Variant

X = D(1)
For i = 2 To UBound(D)

If X < D(i) Then

X = D(i)
End If

Next

MaxArr1D = X

End Function

Public Function MaxArr2D(ByVal D As Variant) As Variant()

Returns a maximum element of a one-dimensional array or, for a two-dimensional array, an array with element i a maximum
element of column i.

103

Dim i, j As Integer

Dim X() As Variant

ReDim X(1 To UBound(D, 2))
For j = 1 To UBound(D, 2)

X(j) = D(1, j)

For i = 2 To UBound(D, 1)
If X(j) < D(i, j) Then

X(j) = D(i, j)
End If

Next

Next

MaxArr2D = X

End Function

Sub QuickSort(arr As Variant, Optional numEls As Variant, Optional descending As Boolean)
Implementation of the well-known Quick-Sort algorithm.
Dim value As Variant, temp(1 To 3) As Variant

Dim sp As Integer

Dim leftStk(32) As Long, rightStk(32) As Long

Dim leftNdx As Long, rightNdx As Long

Dim i As Long, j As Long

Account for Optional arguments.
If IsMissing(numEls) Then numEls = UBound(arr, 1)

Init pointers.
leftNdx = LBound(arr, 1)

rightNdx = numEls
Init stack.
sp = 1

leftStk(sp) = leftNdx
rightStk(sp) = rightNdx

Do

If rightNdx > leftNdx Then

value = arr(rightNdx, 1)
i = leftNdx - 1

j = rightNdx
Find the pivot item.

If descending Then

Do

Do: i = i + 1: Loop Until arr(i, 1) <= value

Do: j = j - 1: Loop Until j = leftNdx Or arr(j, 1) >= value
temp(1) = arr(i, 1)

temp(2) = arr(i, 2)
temp(3) = arr(i, 3)

arr(i, 1) = arr(j, 1)
arr(i, 2) = arr(j, 2)

arr(i, 3) = arr(j, 3)

arr(j, 1) = temp(1)
arr(j, 2) = temp(2)
arr(j, 3) = temp(3)

Loop Until j <= i
Else

Do

Do: i = i + 1: Loop Until arr(i, 1) >= value

Do: j = j - 1: Loop Until j = leftNdx Or arr(j, 1) <= value
temp(1) = arr(i, 1)
temp(2) = arr(i, 2)

temp(3) = arr(i, 3)

arr(i, 1) = arr(j, 1)
arr(i, 2) = arr(j, 2)
arr(i, 3) = arr(j, 3)

arr(j, 1) = temp(1)

arr(j, 2) = temp(2)
arr(j, 3) = temp(3)

Loop Until j <= i
End If

Swap found items.

temp(1) = arr(j, 1)
temp(2) = arr(j, 2)

temp(3) = arr(j, 3)

arr(j, 1) = arr(i, 1)
arr(j, 2) = arr(i, 2)
arr(j, 3) = arr(i, 3)

arr(i, 1) = arr(rightNdx, 1)

arr(i, 2) = arr(rightNdx, 2)
arr(i, 3) = arr(rightNdx, 3)

104 APPENDIX B. SOURCE CODE FOR THE PROGRAM CONNECTIVITY ALGORITHMS

arr(rightNdx, 1) = temp(1)
arr(rightNdx, 2) = temp(2)

arr(rightNdx, 3) = temp(3)
Push on the stack the pair of pointers that differ most.
sp = sp + 1

If (i - leftNdx) > (rightNdx - i) Then

leftStk(sp) = leftNdx

rightStk(sp) = i - 1
leftNdx = i + 1

Else

leftStk(sp) = i + 1
rightStk(sp) = rightNdx

rightNdx = i - 1
End If

Else

Pop a new pair of pointers off the stacks.
leftNdx = leftStk(sp)

rightNdx = rightStk(sp)
sp = sp - 1

If sp = 0 Then Exit Do

End If

Loop

End Sub

Public Function Floyd(ByVal D As Variant, ByVal p As Integer) As Variant()
Floyd’s Algorithm determines the shortest distance between any two vertices.

Dim i, j, k As Integer

Dim a() As Variant

ReDim a(1 To p, 1 To p) As Variant

For i = 1 To p
For j = 1 To p

If (D(i, j) = 0) And (i <> j) Then

D(i, j) = maxInt

End If

Next

Next

For k = 1 To p

For i = 1 To p
For j = 1 To p

If D(i, j) <= (D(i, k) + D(k, j)) Then

a(i, j) = D(i, j)
Else

a(i, j) = D(i, k) + D(k, j)
End If

Next

Next

D = a

Next

Floyd = a

End Function

Public Function Ford(ByVal DFlow, ByVal s As Integer, ByVal nrVertices As Integer) As Variant()

Determines the distance labels for a graph from the vertex s.
Dim setA(), setB()

ReDim setA(1 To nrVertices)
ReDim setB(1 To nrVertices)

Dim ACount, BCount As Integer

Dim i, j, minElement, minDist As Integer

Dim u, v As Integer Two vertices in the graph.

Dim labelCount() As Integer

ReDim labelCount(1 To nrVertices) As Integer

ReDim prev(1 To nrVertices)
ReDim dist(1 To nrVertices)
For i = 1 To nrVertices

setA(i) = False

setB(i) = False

dist(i) = maxInt
labelCount(i) = 0

Next

dist(s) = 0
prev(s) = 0

ACount = 0
setB(s) = True

BCount = 1
While ACount <= nrVertices

Find vertex in setB with minimum distance.
minElement = -1 Indicates that minimum element has not yet been set.
minDist = 0

For i = 1 To nrVertices
If (setB(i) = True) Then

If minElement = -1 Then

minElement = i
minDist = dist(i)

105

End If

If (dist(i) < minDist) Then

minElement = i
minDist = dist(i)

End If

End If

Next

u = minElement
setA(u) = True

ACount = ACount + 1
setB(u) = False

BCount = BCount - 1

labelCount(u) = labelCount(u) + 1
If labelCount(u) = nrVertices Then

MsgBox (‘‘Negative cycle found in graph.")
Exit Function

End If

Find all neighbours v of u.
For v = 1 To nrVertices

If DFlow(u, v) = 1 Then

If dist(v) > dist(u) + 1 Then

dist(v) = dist(u) + 1
prev(v) = u
If setA(v) = True Then

setA(v) = False

ACount = ACount - 1

setB(v) = True

BCount = BCount + 1
ElseIf (setB(v) = False) And (setA(v) = False) Then

setB(v) = True

BCount = BCount + 1

End If

End If

End If

Next

If BCount = 0 Then

No temporary nodes to set permanent.
Ford = dist

Exit Function

End If

Wend

End Function

Public Function ShortestAugPath(ByVal DFlow, ByVal s As Integer, ByVal t As Integer, ByVal pathList,
ByVal nrPaths, ByRef pathCount, ByVal nrVertices, ByVal addT As Boolean) As Variant() pathCount counts the

actual number of paths found (pathCount <= nrPaths).
Finds Paths in a graph by which the maximum flow can take place from vertex s to vertex t.
Dim i, j As Integer

Dim u, v As Integer

Dim minFound As Boolean

Dim minDist, minElement As Integer

Dim pathListIndex As Integer

ReDim pred(1 To nrVertices)

pathListIndex = 1
For i = 1 To nrVertices

pred(i) = 0
Next

u = s
While dist(s) <= 2 * nrVertices

minFound = False

For v = 1 To nrVertices
If (DFlow(u, v) = 1) Then

If minFound = False Then

minFound = True

minElement = v

minDist = dist(v)
End If

If dist(v) < minDist Then

minElement = v

minDist = dist(v)
End If

End If

Next

v = minElement

If (DFlow(u, v) > 0) And (dist(u) = dist(v) + 1) Then

prev(v) = u

u = v
If v = t Then

j = 1

If addT Then Add the vertex t to the path.
pathList(pathListIndex, j) = v Note that t forms part of the path.

v = prev(v)
j = j + 1
While v <> s

106 APPENDIX B. SOURCE CODE FOR THE PROGRAM CONNECTIVITY ALGORITHMS

Augment path if vertex v is not vertex t.
DFlow(prev(v), v) = 0

DFlow(v, prev(v)) = 1
Find path.
pathList(pathListIndex, j) = v Add vertices between s and t to the path.

v = prev(v)
j = j + 1

Wend

pathList(pathListIndex, j) = v Add vertex s to the path.

Else

While v <> s
Augment path.

DFlow(prev(v), v) = 0
DFlow(v, prev(v)) = 1

Find path.
v = prev(v)
pathList(pathListIndex, j) = v Note that t does not form part of the path.

j = j + 1
Wend

End If

pathListIndex = pathListIndex + 1

Reset u.
u = s

End If

Else

dist(u) = dist(u) + 1

If u <> s Then

u = prev(u)
End If

End If

Wend

pathCount = pathListIndex - 1
ShortestAugPath = pathList

End Function

Public Function Zeros(ByVal row, ByVal col As Integer) As Variant()

Creates a matrix of zeros with specified dimensions.
Dim i, j As Integer

Dim a() As Variant

ReDim a(1 To row, 1 To col) As Variant

For i = 1 To row

For j = 1 To col
a(i, j) = 0

Next

Next

Zeros = a
End Function

Public Function GetDFlow(ByVal D) As Variant()
Constructs a directed graph from a graph with adjacency matrix D. The returned graph has twice as much vertices as the

graph D. GetDFlow is constructed for use in the Shortest Augmenting Path calculations. Dim DFlow() As Variant

Dim i, j As Integer

ReDim DFlow(1 To 2 * p, 1 To 2 * p)

For i = 1 To 2 * p index up to 2p as sink has not been added yet.
For j = 1 To 2 * p

DFlow(i, j) = 0
Next

Next

For i = 1 To p
DFlow(2 * i - 1, 2 * i) = 1

Next

For i = 1 To p

For j = i + 1 To p
If D(i, j) > 0 Then

DFlow(2 * i, 2 * j - 1) = 1

DFlow(2 * j, 2 * i - 1) = 1
End If

Next

Next

GetDFlow = DFlow
End Function

Public Function ConnNumber(ByVal D As Variant) As Integer

Implementation of Algorithm 3.

Dim i, j, NMin, u, v As Integer Special variables as defined in Algorithm 3.
Dim a, b, m, n, degCurr, degPrev, index As Integer

Dim neighbours() As Integer

Dim done As Boolean

Dim DFlow(), DFlowOld() As Variant

Dim pathList As Variant

Dim nrPaths, pathCount As Integer

Dim cutSetEdgeCount As Integer

Dim reRun As Boolean

Dim paths() As Variant

107

Dim distOld() As Variant

Dim cutSetIGList() As Variant

Dim completeCutSetFound As Boolean

Dim cutSetRowCount As Integer

Dim oldCutVertexIndex As Integer

done = False

i = 1

NMin = p - 1

Find vertex u in D with minimum degree.
For a = 1 To p

degCurr = 0

For b = 1 To p
If D(a, b) > 0 Then

degCurr = degCurr + 1
End If

Next

If a = 1 Then

degPrev = degCurr

index = a
Else

If degCurr < degPrev Then

degPrev = degCurr The minimum degree.
index = a Points to a vertex with minimum degree.

End If

End If

Next

u = index Vertex u has a minimum degree of degPrev.

If degPrev = 0 Then

ConnNumber = degPrev

Exit Function

End If

Store neighbours of u in variable neighbours.
ReDim neighbours(1 To degPrev) As Integer

b = 1

For a = 1 To p
If D(u, a) > 0 Then

neighbours(b) = a
b = b + 1

End If

Next

For v = 1 To p
If (v <> u) And (D(v, u) = 0) Then

(For all vertices in V(G) \ (u and the neighbours of u) do...)
Compute N(u, v) and set NMin = min{NMin, N(u, v)}.

Construct digraph DFlow.
DFlow = GetDFlow(D)

DFlowOld = DFlow

Reset graphPathsIndex.

Get distance weighting for the digraph DFlow. Distance labels need to be recalculated, as Shortest Augmenting
Paths algorithm changes these labels.

dist = Ford(DFlow, 2 * (u) - 1, 2 * p)

DFlow = DFlowOld
Swop all arcs around.
DFlow = SwopArcs(DFlow, 2 * p)

nrPaths = 0

Find nr of paths for pathList matrix (min degree of vertex s).
For m = 1 To p

If D(u, m) > 0 Then

nrPaths = nrPaths + 1
End If

Next

ReDim pathList(1 To nrPaths, 1 To 2 * p + 1) As Variant

pathList now empty and ready to populate (2p + 1) columns to keep index of for loops when testing for valid edges
in bounds. When a path is shorter than 2p vertices, the other open places in pathList are filled with zeros.
Vertex t is not included in the paths).

Clear pathList.
For m = 1 To nrPaths

For n = 1 To 2 * p + 1
pathList(m, n) = 0

Next

Next

pathList = ShortestAugPath(DFlow, 2 * (u) - 1, 2 * (v) - 1, pathList,

nrPaths, pathCount, 2 * p, True) NOTE: Path starts from in-vertex, not out-vertex (Arcs are reversed, hence, the
in-vertex acts as the out-vertex).

If pathCount < NMin Then

NMin = pathCount

108 APPENDIX B. SOURCE CODE FOR THE PROGRAM CONNECTIVITY ALGORITHMS

End If

End If

Next

While done = False

If (i + 1) > (degPrev - 1) Then

Special condition to terminate while loop if for loop cannot execute.
done = True

Else

For j = i + 1 To degPrev - 1

If (i >= degPrev - 2) Or (i >= NMin) Then

done = True

Exit For

End If

If D(neighbours(i), neighbours(j)) = 0 Then

Compute N(neighbours(i), neighbours(j)) and set NMin = min{NMin, N(neighbours(i), neighbours(j))}.

Construct digraph DFlow.

DFlow = GetDFlow(D)
DFlowOld = DFlow

Reset graphPathsIndex.

Get distance weighting for the digraph DFlow. Distance labels need to be recalculated, as Shortest Augmenting
Paths algorithm changes these labels.
dist = Ford(DFlow, 2 * (neighbours(i)) - 1, 2 * p)

DFlow = DFlowOld

Reverse all arcs.
DFlow = SwopArcs(DFlow, 2 * p)

nrPaths = 0
Find number of paths for pathList matrix (min degree of vertex s).

For m = 1 To p
If D(neighbours(i), m) > 0 Then

nrPaths = nrPaths + 1
End If

Next

ReDim pathList(1 To nrPaths, 1 To 2 * p + 1) As Variant

pathList now empty and ready to populate (2p + 1) columns to keep index of for loops when testing for

valid edges in bounds. When a path is shorter than 2p vertices, the other open places in pathList are filled
with zeros. Vertex t is not included in the paths).
Clear pathList.

For m = 1 To nrPaths
For n = 1 To 2 * p + 1

pathList(m, n) = 0
Next

Next

pathList = ShortestAugPath(DFlow, 2 * (neighbours(i)) - 1,
2 * (neighbours(j)) - 1, pathList, nrPaths, pathCount, 2 * p,

True) NOTE: Path starts from in-vertex, not out-vertex (Arcs are reversed, hence, the in-vertex is actually
now the out-vertex).

If pathCount < NMin Then

NMin = pathCount

End If

End If

Next

End If

If done = False Then

i = i + 1
End If

Wend

ConnNumber = NMin

End Function

Public Function CVSList(ByVal D As Variant, ByRef nrRows As Integer) As Variant()

Implementation of Algorithm 4. Finds all minimum cut-sets in a graph represented by the adjacency matrix D.
Dim i, j, k, count As Integer

Dim zeroMatrix() As Variant

Dim DShortestPaths() As Variant

Dim val() As Variant

Dim maxVal As Variant

Dim errFound As Boolean

Dim index, m, seqStart, seqStop, pos As Integer

Dim CVSListStarted, VStarted As Boolean

Dim Dtmp(), nodes, v() As Variant

Dim List(), ListOld() As Variant

Dim minCutSize As Integer

errFound = False

count = 0

zeroMatrix = Zeros(p, p)

For i = 1 To p
For j = 1 To p

If D(i, j) = zeroMatrix(i, j) Then

109

count = count + 1
End If

Next

Next

DShortestPaths = Floyd(D, p)
maxVal = MaxArr1D(MaxArr2D(DShortestPaths)) If there remains any inf value in the

matrix, then the graph is disconnected.

It is a necessary condition for CutVertexSet that the graph must be connected before the algoritm can start.

If (count = p2) Or (maxVal = maxInt) Then count = p2 => D is a zero matrix.

errFound = True

End If

If errFound = True Then

ReDim List(1 To 1, 1 To 2)
List(1, 1) = 0

List(1, 2) = 0
CVSList = List

Exit Function

Else

index = 1

CVSListStarted = False Binary flag to indicate when the first CVS has been found.
For m = 1 To p - 1

seqStart = 0
seqStop = 0

For i = 1 To m

seqStart = seqStart + 2(i−1)

seqStop = seqStop + 2(p−i)

Next

For i = seqStart To seqStop
nodes = DecToBin(CLng(i))
count = 0

For j = 1 To p
If Mid(nodes, j, 1) = ‘‘1" Then

count = count + 1
End If

Next

If count = m Then

Ensures that only pCm combinations are checked. Eg. if p=3 and m=1, then the for loop will now only test 001,

010, 100, excluding 011.
VStarted = False

pos = 1
For j = 1 To p

If Mid(nodes, p + 1 - j, 1) = ‘‘0" Then Search from right to left.

Remember that element 1 is not in the first position, but in the last position.
If VStarted = False Then

ReDim v(1 To 1) As Variant

VStarted = True

Else

ReDim Preserve v(1 To UBound(v) + 1) As Variant

End If

v(pos) = j Stores positions of the bit-vector nodes that contains zeros. These positions will indicate
the columns to keep to check if the remaining vertices are still connected.

pos = pos + 1
End If

Next

Only the vertices that were not removed from the cut-set should now remain in D. Get the valid edges from N by
indexing with V.

Dtmp = Zeros(UBound(v), UBound(v))
For j = 1 To UBound(v)

For k = 1 To UBound(v)
Dtmp(j, k) = D(v(j), v(k))

Next

Next

DShortestPaths = Floyd(Dtmp, UBound(v))

maxVal = MaxArr1D(MaxArr2D(DShortestPaths)) If there remains any inf value in the matrix, then the graph is
disconnected.
If maxVal = maxInt Then

Minimum cut-set found.
If CVSListStarted = False Then

CVSListStarted = True

ReDim List(1 To 1, 1 To 2)

minCutSize = m
End If

If minCutSize = m Then

ReDim ListOld(1 To UBound(List, 1), 1 To 2)

ListOld = List Makes backup of CVSList.
If Not IsEmpty(ListOld(1, 1)) Then

ReDim List(1 To UBound(ListOld, 1) + 1, 1 To 2)

End If

Now copy ListOld over to List.

For j = 1 To UBound(ListOld, 1)

110 APPENDIX B. SOURCE CODE FOR THE PROGRAM CONNECTIVITY ALGORITHMS

List(j, 1) = ListOld(j, 1)
List(j, 2) = ListOld(j, 2)

Next

List(index, 1) = m Ordinal value of CVS.

List(index, 2) = nodes
index = index + 1

nrRows = index - 1
Else

nrRows = index - 1
CVSList = List
Exit Function

End If

Else

If (i = seqStop) And (m = p - 1) And (CVSListStarted = 0) Then

Special case where no cut-vertex set could be
found. The graph thus has to be a complete graph.

ReDim List(1 To 1, 1 To 2) As Variant

List(1, 1) = maxInt

List(1, 2) = maxInt
Exit Function

End If

End If

End If

Next

Next

End If

CVSList = List
End Function

Public Function CVS(ByVal D As Variant) As Variant()

Implementation of Algorithm 4. Finds a minimum cut-sets in a graph represented by the adjacency matrix D.
Dim i, j, k, count As Integer

Dim zeroMatrix() As Variant

Dim DShortestPaths() As Variant

Dim val() As Variant

Dim maxVal As Variant

Dim errFound As Boolean

Dim index, m, seqStart, seqStop, pos As Integer

Dim CVSFound, VStarted As Boolean

Dim Dtmp(), nodes, v() As Variant

Dim cutSet(), ListOld() As Variant

errFound = False

count = 0
zeroMatrix = Zeros(p, p)

For i = 1 To p
For j = 1 To p

If D(i, j) = zeroMatrix(i, j) Then

count = count + 1
End If

Next

Next

DShortestPaths = Floyd(D, p)

maxVal = MaxArr1D(MaxArr2D(DShortestPaths)) If there remains any inf value in the matrix, then the graph is disconnected.

It is a necessary condition for CutVertexSet that the graph must be connected before the algorithm can start.

If (count = p2) Or (maxVal = maxInt) Then count = p2, hence D is a zero matrix.

errFound = True

End If

If errFound = True Then

ReDim cutSet(1 To 2)
cutSet(1) = 0

cutSet(2) = 0
CVS = cutSet
Exit Function

Else

CVSFound = False Binary flag to indicate when the first CVS has been found.

For m = 1 To p - 1
seqStart = 0

seqStop = 0
For i = 1 To m

seqStart = seqStart + 2(i−1)

seqStop = seqStop + 2(p−i)

Next

For i = seqStart To seqStop
nodes = DecToBin(CLng(i))

count = 0
For j = 1 To p

If Mid(nodes, j, 1) = ‘‘1" Then

111

count = count + 1
End If

Next

If count = m Then

Ensures that only
`

p

m

´

combinations are checked. Eg. if p=3 and m=1, then the for loop will now only check 001,

010, 100, excluding 011.

VStarted = False

pos = 1
For j = 1 To p

If Mid(nodes, p + 1 - j, 1) = ‘‘0" Then Search from right to left (element 1 is not in the first
position, but in the last position).

If VStarted = False Then

ReDim v(1 To 1) As Variant

VStarted = True

Else

ReDim Preserve v(1 To UBound(v) + 1) As Variant

End If

v(pos) = j Stores positions of the bit-vector nodes that contains zeros. These will indicate the columns

to keep to check if the remaining vertices are still connected.
pos = pos + 1

End If

Next

Only the vertices that were not removed from the cut-set should now remain in D. Get the valid edges from N by

indexing with V.
Dtmp = Zeros(UBound(v), UBound(v))

For j = 1 To UBound(v)
For k = 1 To UBound(v)

Dtmp(j, k) = D(v(j), v(k))

Next

Next

DShortestPaths = Floyd(Dtmp, UBound(v))
maxVal = MaxArr1D(MaxArr2D(DShortestPaths)) If there remains any inf value in
the matrix, then the graph is disconnected.

If maxVal = maxInt Then

CVS found

ReDim cutSet(1 To 2)
cutSet(1) = m Ordinal value of CVS.

cutSet(2) = nodes
CVS = cutSet
Exit Function

Else

If (i = seqStop) And (m = p - 1) And (CVSFound = 0) Then

Special case where no cut-vertex set could be found. The graph thus has to be a complete graph.
ReDim cutSet(1 To 1, 1 To 2) As Variant

cutSet(1) = maxInt

cutSet(2) = maxInt
Exit Function

End If

End If

End If

Next

Next

End If

CVS = cutSet

End Function

Private Sub DisplayGraph(ByVal A As Variant, ByVal clearGraph As Boolean)

Draws the graph presented by the adjacency matrix A in PlotArea.
Dim i, j As Integer

If clearGraph Then

plotArea.Cls

End If

plotArea.Scale (0 - extraSpace, 0 - extraSpace)-(PlotAreaWidth + extraSpace, PlotAreaHeight

+ extraSpace)

For i = 1 To p
For j = i + 1 To p

If A(i, j) > 0 Then

plotArea.Line (XY(1, i), PlotAreaHeight - XY(2, i))-(XY(1, j),
PlotAreaHeight - XY(2, j)), QBColor(0)

End If

Next

Next

Plot the vertices.

plotArea.FillStyle = 0
plotArea.FillColor = QBColor(10) RGB(70, 255, 0)

For i = 1 To p
plotArea.Circle (XY(1, i), PlotAreaHeight - XY(2, i)), extraSpace / 2, QBColor(0),,,1
If i < 10 Then

plotArea.CurrentX = XY(1, i) - 100
Else

plotArea.CurrentX = XY(1, i) - 140 Shifts number a bit more to the left if larger than 9.

112 APPENDIX B. SOURCE CODE FOR THE PROGRAM CONNECTIVITY ALGORITHMS

End If

plotArea.CurrentY = PlotAreaHeight - XY(2, i) - 100

plotArea.Print i
Next

End Sub

Private Sub DisplayCutSet(ByVal cutSet As Variant, ByVal color As Integer)
Displays the cut-set represented by the vertices stored in cutSet in PlotArea.

Dim i, j As Integer

For i = 1 To p
If Mid(cutSet(2), p + 1 - i, 1) = ‘‘1" Then

Plot the vertices.
plotArea.FillStyle = 0

plotArea.FillColor = QBColor(color) RGB(70, 255, 0).

plotArea.Circle (XY(1, i), PlotAreaHeight - XY(2, i)), extraSpace / 2, QBColor(0),,,1

If i < 10 Then

plotArea.CurrentX = XY(1, i) - 100

Else

plotArea.CurrentX = XY(1, i) - 140 Shifts number a bit more to the left if larger than 9.

End If

plotArea.CurrentY = PlotAreaHeight - XY(2, i) - 100
plotArea.Print i

End If

Next

End Sub

Private Function AddSink(ByVal DFlow, ByVal cutSetIG As Variant) As Variant()

Adds a sink vertex to the graph represented by the adjacency matrix DFlow.
Dim i, j As Integer

Dim NewDFlow() As Variant

ReDim NewDFlow(1 To 2 * p + 1, 1 To 2 * p + 1) As Variant

For i = 1 To 2 * p
For j = 1 To 2 * p

NewDFlow(i, j) = DFlow(i, j)

Next

Next

Insert zeros for every element in row and column of sink vertex.
For i = 1 To 2 * p + 1

NewDFlow(i, 2 * p + 1) = 0

NewDFlow(2 * p + 1, i) = 0
Next

For i = 1 To p

If Mid(cutSetIG(2), i, 1) = ‘‘1" Then

NewDFlow(2 * p + 1, 2 * (p - i + 1) - 1) = 1
End If

Next

AddSink = NewDFlow

End Function

Private Function disjPathsWhitney(ByVal pathList As Variant, ByVal pathCount As Integer, ByVal s As Integer,

ByVal t As Integer) As Variant()
This function constructs internally disjoint paths from the flow between any vertex s and t for Algorithm Whitney.

Dim i, j, m As Integer

Dim a, b, col As Integer

Dim edgeCounter() As Integer

Construct matrix edgeCounter. The value in position (i, j) indicates the number of times that edge has been traversed.

ReDim edgeCounter(1 To 2 * p, 1 To 2 * p) As Integer Sink vertex not included.
For i = 1 To pathCount

For j = 1 To 2 * p
If (j = 1) And (pathList(i, j + 1) = 0) Then If vertex is a cut-vertex and no path exists (Special case)

Exit For

End If

If pathList(i, j + 1) <> 0 Then

If pathList(i, j) = t Then Make edgeCounter(pathList(i, j), pathList(i, j+1) = 1.
edgeCounter(pathList(i, j), pathList(i, j + 1)) = 1

edgeCounter(pathList(i, j + 1), pathList(i, j)) = 1
Else

edgeCounter(pathList(i, j), pathList(i, j + 1)) = edgeCounter(pathList(i, j),

pathList(i, j + 1)) + 1
edgeCounter(pathList(i, j + 1), pathList(i, j)) = edgeCounter(pathList(i, j + 1),

pathList(i, j)) + 1
End If

End If

Next

Next

Remove all arcs that were traversed an even number of times.

For i = 1 To 2 * p
For j = 1 To 2 * p

If edgeCounter(i, j) > 0 Then

113

edgeCounter(i, j) = edgeCounter(i, j) Mod 2
End If

Next

Next

Clear pathList.
For i = 1 To pathCount

For j = 1 To 2 * p + 1
pathList(i, j) = 0

Next

Next

Repopulate pathList with internally disjoint paths.
j = 1

col = 1
For i = 1 To 2 * p

If edgeCounter(s, i) > 0 Then

a = s
b = i

While (b <> t + 1) While b is not the out-vertex of t (remember that the out-vertex is actually the in-vertex due
to edges that were reversed.

pathList(j, col) = a
pathList(j, col + 1) = b
col = col + 1

Take the edges out of edgeCounter.
edgeCounter(a, b) = 0

edgeCounter(b, a) = 0
a = b
find next value for b.

For b = 1 To 2 * p
If edgeCounter(a, b) > 0 Then

Exit For

End If

Next

Wend

Add cut-vertex (b) (in- and out-vertex) and vertex preceding it to path.

pathList(j, col) = a
pathList(j, col + 1) = b (out-cut-vertex)

pathList(j, col + 2) = b - 1 (in-cut-vertex)
col = 1
j = j + 1

End If

Next

disjPathsWhitney = pathList

End Function

Private Function disjPaths(ByVal pathList As Variant, ByVal pathCount As Integer, ByVal s As Integer) As Variant()

This function constructs internally disjoint paths from the flow between a vertex t and the cut-set cutsetIG.
Dim i, j, m As Integer

Dim a, b, col As Integer

Dim edgeCounter() As Integer

Construct matrix edgeCounter. The value in position (i, j) indicates the number of times that edge has been traversed.
ReDim edgeCounter(1 To 2 * p, 1 To 2 * p) As Integer Sink vertex not included.

For i = 1 To pathCount
For j = 1 To 2 * p

If (j = 1) And (pathList(i, j + 1) = 0) Then If vertex is a cut-vertex and no path exists (Special case).
Exit For

End If

If pathList(i, j + 1) <> 0 Then

edgeCounter(pathList(i, j), pathList(i, j + 1)) = edgeCounter(pathList(i, j), pathList(i, j + 1)) + 1

edgeCounter(pathList(i, j + 1), pathList(i, j)) = edgeCounter(pathList(i, j + 1), pathList(i, j)) + 1
End If

Next

Next

Remove all arcs that were traversed an even number of times.
For i = 1 To 2 * p

For j = 1 To 2 * p
If edgeCounter(i, j) > 0 Then

edgeCounter(i, j) = edgeCounter(i, j) Mod 2

End If

Next

Next

Clear pathList.
For i = 1 To pathCount

For j = 1 To 2 * p + 1

pathList(i, j) = 0
Next

Next

Repopulate pathList with internally disjoint paths.

114 APPENDIX B. SOURCE CODE FOR THE PROGRAM CONNECTIVITY ALGORITHMS

j = 1
col = 1

For i = 1 To 2 * p
If edgeCounter(s, i) > 0 Then

a = s

b = i
If b Mod 2 = 1 Then

b is uneven.
m = (b + 1) / 2

Else

b is even.
m = b / 2

End If

While (Mid(cutSetIG(2), p - m + 1, 1) <> ‘‘1") While m is not a cut-vertex, do...

pathList(j, col) = a
pathList(j, col + 1) = b
col = col + 1

Take the edges out of edgeCounter.
edgeCounter(a, b) = 0

edgeCounter(b, a) = 0
a = b

find next value for b.
For b = 1 To 2 * p

If edgeCounter(a, b) > 0 Then

Exit For

End If

Next

If b Mod 2 = 1 Then

m = (b + 1) / 2

Else

m = b / 2

End If

Wend

Add cut-vertex (b) (in- and out-vertex) and vertex preceding it to path.
pathList(j, col) = a
pathList(j, col + 1) = b (out-cut-vertex)

pathList(j, col + 2) = b - 1 (in-cut-vertex)
col = 1

j = j + 1
Take the edges out of edgeCounter.
edgeCounter(a, b) = 0

edgeCounter(b, a) = 0
End If

Next

Remove all edges traversed more than once from DFlow and return to the calling procedure.
disjPaths = pathList

End Function

Private Function SortPaths(ByVal pathList As Variant, ByVal pathCount As Integer) As Variant()
Sorts the paths in pathList according to the weight of each path in ascending order.
Dim i, j As Integer

Dim paths() As Variant

ReDim paths(1 To pathCount, 1 To 3) As Variant

Set cost of each path to zero.
For i = 1 To pathCount

paths(i, 1) = 0
Next

Find the cost of each path.

For i = 1 To pathCount
For j = 1 To 2 * p Sink vertex not included.

If pathList(i, j + 1) <> 0 Then

Test if vertex j is an out vertex.
If (pathList(i, j) Mod 2) = 1 Then

paths(i, 1) = paths(i, 1) + D((pathList(i, j) + 1) / 2, pathList(i, j + 1) / 2)
End If

End If

Next

paths(i, 2) = i Index of path in pathList. This is necessary as paths will now be sorted from the cheapest to the
most expensive path.
paths(i, 3) = 0 Dummy value of zero allocated to the variable.

Next

Sort paths.
Call QuickSort(paths, pathCount, False)

SortPaths = paths
End Function

Private Sub InsertPaths(ByVal paths As Variant, ByVal pathList As Variant, ByVal nrPaths As Integer)
Inserts paths into the matrix D2. Also builds a list, graphPaths, containing all paths inserted into the graph.

Dim i, j As Integer

Dim col As Integer

For i = 1 To nrPaths Only insert the cheapest nrPaths paths.

115

col = 1
For j = 1 To 2 * p

If pathList(paths(i, 2), j + 1) <> 0 Then

Test if vertex j is an in vertex.
If (pathList(paths(i, 2), j) Mod 2) = 1 Then

D2((pathList(paths(i, 2), j) + 1) / 2, pathList(paths(i, 2), j + 1) / 2)
= D((pathList(paths(i, 2), j) + 1) / 2, pathList(paths(i, 2), j + 1) / 2)

D2(pathList(paths(i, 2), j + 1) / 2, (pathList(paths(i, 2), j) + 1) / 2)
= D(pathList(paths(i, 2), j + 1) / 2, (pathList(paths(i, 2), j) + 1) / 2)

graphPaths(graphPathsIndex, col) = (pathList(paths(i, 2), j) + 1) / 2
col = col + 1

End If

End If

Next

Insert last element in path into graphPaths.
graphPaths(graphPathsIndex, col) = (pathList(paths(i, 2), 2 * col - 1) + 1) / 2
graphPathsIndex = graphPathsIndex + 1

Next

End Sub

Private Sub InsertGraphPaths(ByVal paths As Variant, ByVal pathList As Variant)

Inserts paths into the matrix D2. Also builds a list, graphPaths, containing all paths inserted into the graph.
Dim i, j As Integer

Dim col As Integer

For i = 1 To k Only insert the cheapest k paths.
col = 1

For j = 1 To 2 * p
If pathList(paths(i, 2), j + 1) <> 0 Then

Test if vertex j is an out vertex.

If (pathList(paths(i, 2), j) Mod 2) = 1 Then

graphPaths(graphPathsIndex, col) = (pathList(paths(i, 2), j) + 1) / 2

col = col + 1
End If

Else

Exit For

End If

Next

If (j = 1) And (pathList(paths(i, 2), j) = 0) Then

graphPaths(graphPathsIndex, col) = 0
graphPathsIndex = graphPathsIndex + 1

Else

Insert last element in path into graphPaths.
graphPaths(graphPathsIndex, col) = (pathList(paths(i, 2), 2 * col - 1) + 1) / 2

graphPathsIndex = graphPathsIndex + 1
End If

Next

End Sub

Private Sub InsertCutSet(ByVal cutSet As Variant)
Inserts all edges between vertices of the cut-set used into the adjacency matrix D2.

Dim i, j As Integer

For i = 1 To p
If Mid(cutSet(2), i, 1) = ‘‘1" Then

For j = i + 1 To p
If Mid(cutSet(2), j, 1) = ‘‘1" Then

If D(p - i + 1, p - j + 1) > 0 Then

D2(p - i + 1, p - j + 1) = D(p - i + 1, p - j + 1)

D2(p - j + 1, p - i + 1) = D(p - j + 1, p - i + 1)
End If

End If

Next

End If

Next

End Sub

Private Function MatrixCost(ByVal matrix, ByVal cost As Single) As Single

Calculates the sum of the weight of all edges stored in matrix.

Dim i, j As Integer

cost = 0

For i = 1 To p
For j = i + 1 To p

If matrix(i, j) > 0 Then

cost = cost + matrix(i, j)
End If

Next

Next

MatrixCost = cost
End Function

Private Function SwopArcs(ByVal DFlow, ByVal nrVertices As Integer) As Variant()
Reverses all arcs in the directed graph represented by the adjacency matrix DFlow.

Dim i, j As Integer

Dim NewDFlow() As Variant

ReDim NewDFlow(1 To nrVertices, 1 To nrVertices) As Variant

116 APPENDIX B. SOURCE CODE FOR THE PROGRAM CONNECTIVITY ALGORITHMS

For i = 1 To nrVertices
For j = 1 To nrVertices

If DFlow(i, j) = 1 Then

NewDFlow(j, i) = 1
Else

NewDFlow(j, i) = 0
End If

Next

Next

SwopArcs = NewDFlow
End Function

Private Sub cmdFanReduceConn Click()
If cutSetIG(1) = 0 Then

Graph not connected.
MsgBox (‘‘The graph is not connected. Please insert more edges into the graph.")
Exit Sub

End If

frmMain.Enabled = False

frmFanEnterConnNumber.Show
End Sub

Public Sub FanReduceConn()
Constructs a spanning subgraph with a specified connectivity number using Algorithm 15.

Dim i, j, m, n As Integer

Dim ellCutSet As String

Dim totalCost As Single

Dim DCost As Single

Let U be the cut-set. Let w be a vertex in V(G) U. Remove all paths between (k-ell) vertices in U and any w.

Select ell of the cut-vertices.
j = 0

For i = 1 To p
If (Mid(cutSetIG(2), i, 1) = ‘‘1") And (j < k - ell) Then

ellCutSet = ellCutSet & ‘‘1"
j = j + 1

Else

ellCutSet = ellCutSet & ‘‘0"
End If

Next

Reconstruct D2.

For i = 1 To p
For j = 1 To p

D2(i, j) = 0
Next

Next

totalCost = 0

For i = 1 To k * p
If oldCutVertex(i) = False Then

m = 1
While (graphPaths(i, m) <> 0)

m = m + 1

Wend

m = m - 1

If Mid(ellCutSet, p - graphPaths(i, m) + 1, 1) = ‘‘0" Then If this path does not end in a vertex in ellCutSet.
For j = 1 To p

If (j = 1) And (graphPaths(i, j) = 0) Then

Exit For Special case where vertex in graphpaths(i, j) is actually a cut-vertex and no edges exist.
End If

If graphPaths(i, j + 1) <> 0 Then

If D2(graphPaths(i, j), graphPaths(i, j + 1)) = 0 Then Tests whether edge has already been inserted.

totalCost = totalCost + D(graphPaths(i, j), graphPaths(i, j + 1))
D2(graphPaths(i, j), graphPaths(i, j + 1)) = D(graphPaths(i, j), graphPaths(i, j + 1))
D2(graphPaths(i, j + 1), graphPaths(i, j)) = D(graphPaths(i, j + 1), graphPaths(i, j))

End If

Else

Exit For

End If

Next

End If

End If

Next

Insert paths from vertices in ellCutSet to vertics in reduced cut-set.
For i = 1 To p

If Mid(ellCutSet, i, 1) = ‘‘1" Then

For j = 1 To p
If (Mid(ellCutSet, j, 1) = ‘‘0") And (Mid(cutSetIG(2), j, 1) = ‘‘1") Then

If both vertices are not in ellCutSet.
Insert path from vertex (p − i + 1) to vertex (p − j + 1) .

m = k * (i - 1) + 1 list graphPaths is sorted from vertex p to vertex 1. m now points to the first path from
vertex (p − i + 1) to vertex (p − j + 1).
Search for correct path to add. Cut vertex at end must equal (p − j + 1).

117

n = 1
While graphPaths(m, n) <> p - j + 1

If graphPaths(m, n) = 0 Then

m = m + 1
n = 1

Else

n = n + 1

End If

Wend

Path should have been found now. Insert path.
For n = 1 To p

If graphPaths(m, n + 1) <> 0 Then

If D2(graphPaths(m, n), graphPaths(m, n + 1)) = 0 Then Tests whether edge has already been inserted.
totalCost = totalCost + D(graphPaths(m, n), graphPaths(m, n + 1))

D2(graphPaths(m, n), graphPaths(m, n + 1)) = D(graphPaths(m, n), graphPaths(m, n + 1))
D2(graphPaths(m, n + 1), graphPaths(m, n)) = D(graphPaths(m, n + 1), graphPaths(m, n))

End If

Else

Exit For

End If

Next

End If

Next

End If

Next

Insert all edges between vertices in the remaining CutSet.

For i = 1 To p
If (Mid(cutSetIG(2), i, 1) = ‘‘1") And (Mid(ellCutSet, i, 1) = ‘‘0") Then

For j = i + 1 To p

If (Mid(cutSetIG(2), j, 1) = ‘‘1") And (Mid(ellCutSet, j, 1) = ‘‘0") Then

totalCost = totalCost + D(p - i + 1, p - j + 1)

D2(p - i + 1, p - j + 1) = D(p - i + 1, p - j + 1)
D2(p - j + 1, p - i + 1) = D(p - j + 1, p - i + 1)

End If

Next

End If

Next

DCost = MatrixCost(D, DCost)

If DCost > totalCost Then

Dim xlApp As Excel.Application
Dim wb As Workbook

Dim ws As Worksheet

Set xlApp = New Excel.Application

Dim nrSheets As Integer

nrSheets = xlApp.SheetsInNewWorkbook
xlApp.SheetsInNewWorkbook = 1

Set wb = xlApp.Workbooks.Add
xlApp.SheetsInNewWorkbook = nrSheets

Set ws = wb.Worksheets(1) Specify the worksheet name.

ws.Name = ‘‘Fan(Lower Conn)"

ws.Range(‘‘A1:" & xl Col(p) & p).value = D2

On Error GoTo errHandler
wb.SaveAs (Mid(filePath, 1, Len(filePath) - 4) & ‘‘Output.xls")

On Error GoTo 0
wb.Close
xlApp.Quit

Set ws = Nothing
Set wb = Nothing

Set xlApp = Nothing

txtOutput.Text = txtOutput.Text & ‘‘ALG: Fan" & Chr(13) & Chr(10)
txtOutput.Text = txtOutput.Text & ‘‘INPUT GRAPH:" & Chr(13) & Chr(10) & ‘‘ " & filePath & Chr(13) & Chr(10)
txtOutput.Text = txtOutput.Text & ‘‘OUTPUT GRAPH:" & Chr(13) & Chr(10) & ‘‘ " & Mid(filePath, 1,

Len(filePath) - 4) & ‘‘Output.xls" & Chr(13) & Chr(10) & Chr(13) & Chr(10)
txtOutput.Text = txtOutput.Text & ‘‘Spanning subgraph is " & ell & ‘‘-connected." & Chr(13) & Chr(10)

txtOutput.Text = txtOutput.Text & ‘‘Weight Improvement = " & DCost - totalCost & Chr(13) & Chr(10)
& ‘‘---" & Chr(13) & Chr(10)

cmdNewGraph.Enabled = True

Enable Algorithm Fan-Reduce connectivity button.

cmdFanReduceConn.Enabled = True

cutSetsOutputGraphHasValue = False Used to search for new cut-set.

cmdFindCutsetOutputGraph.Enabled = False

Exit Sub errHandler:
Select Case Err.Number

118 APPENDIX B. SOURCE CODE FOR THE PROGRAM CONNECTIVITY ALGORITHMS

Case 1004
MsgBox (‘‘The output could not be saved, as the file " & Mid(filePath, 1, Len(filePath) - 4) & ‘‘Output.xls" & ‘‘,

is currently open. Please close the file and try again.")
wb.Close
xlApp.Quit

Set ws = Nothing
Set wb = Nothing

Set xlApp = Nothing
Exit Sub

End Select

Else

MsgBox (‘‘A cheaper subgraph could not be found.")

End If

End Sub

Private Sub cmdFanSpanSubgraph Click()
Constructs a spanning subgraph with the same connectivity number as the original graph using Algorithm 14.

Dim i, j, m As Integer

Dim DFlow() As Variant

Dim pathList As Variant

Dim nrPaths, pathCount As Integer

Dim cutSetEdgeCount As Integer

Dim reRun As Boolean

Dim paths() As Variant

Dim DCost, D2Cost As Single

Dim distOld() As Variant

Dim cutSetIGList() As Variant

Dim completeCutSetFound As Boolean

Dim cutSetRowCount As Integer

Dim oldCutVertexIndex As Integer

Initialise button for Algorithm Fan - reduce connectivity to be disabled.

frmMain.cmdFanReduceConn.Enabled = False

cutSetsOutputGraphHasValue = False

Initialise totalCostSaved to 0.
totalCostSaved = 0

completeCutSetFound = False

cutSetsInputGraphHasValue = True

cutSetIGList = CVSList(D, cutSetRowCount)
k = cutSetIGList(1, 1)
If cutSetIGList(1, 1) = 0 Then

Graph not connected.
MsgBox (‘‘The graph is not connected. Please insert more edges into the graph.")

Exit Sub

End If

If cutSetIGList(1, 1) = maxInt Then

MsgBox (‘‘The graph is a complete graph. The removal of any edge will reduce the connectivity number of the
graph.")

Exit Sub

End If

Test if there exists a cut-set that is a complete graph.
For m = 1 To cutSetRowCount

cutSetEdgeCount = 0
For i = 1 To p

If Mid(cutSetIGList(m, 2), i, 1) = ‘‘1" Then

For j = i + 1 To p

If Mid(cutSetIGList(m, 2), j, 1) = ‘‘1" Then

If D(p - i + 1, p - j + 1) > 0 Then

cutSetEdgeCount = cutSetEdgeCount + 1

End If

End If

Next

End If

Next

If cutSetEdgeCount = (k * (k - 1)) / 2 Then

completeCutSetFound = True

ReDim cutSetIG(1 To 2) As Variant

cutSetIG(1) = cutSetIGList(m, 1)

cutSetIG(2) = cutSetIGList(m, 2)
cutSetsInputGraphHasValue = True

cutSetOG = cutSetIG

cutSetsOutputGraphHasValue = True

Exit For

End If

Next

If completeCutSetFound = False Then

txtOutput.Text = txtOutput.Text & ‘‘ALG: Fan" & Chr(13) & Chr(10)
txtOutput.Text = txtOutput.Text & ‘‘Cut-sets Found:" & Chr(13) & Chr(10)

For m = 1 To cutSetRowCount
j = 0 Counts the number of cut-vertices found. Used to deterimine if end of cut-set is reached (hence, a

full-stop and not a comma should be displayed in the Output window).
txtOutput.Text = txtOutput.Text & ‘‘Cut-set #" & m & ‘‘: "
For i = 1 To p

119

If Mid(cutSetIGList(m, 2), p - i + 1, 1) = ‘‘1" Then

j = j + 1

If j < k Then

txtOutput.Text = txtOutput.Text & i & ‘‘, "
Else

txtOutput.Text = txtOutput.Text & i & ‘‘."
End If

End If

Next

txtOutput.Text = txtOutput.Text & Chr(13) & Chr(10)
Next

txtOutput.Text = txtOutput.Text & ‘‘---" & Chr(13)

& Chr(10)
MsgBox (‘‘No complete cut-set could be found. Please insert the necessary edges for any of the cut-set(s) shown in

the Output window to form a clique.")
Exit Sub

End If

Enable button cmdFanReduceConn.
cmdFanReduceConn.Enabled = True

cmdFindCutsetOutputGraph.Enabled = False

Clear the matrix D2.
ReDim D2(1 To p, 1 To p) As Variant

For i = 1 To p

For j = 1 To p
D2(i, j) = 0

Next

Next

ReDim oldCutVertex(1 To k * p) As Boolean

For i = 1 To p * k

Initialise oldCutVertex.
oldCutVertex(i) = False

Next

Construct digraph DFlow.

DFlow = GetDFlow(D)
Add Sink that is connected to all vertices in the cut-set.

DFlow = AddSink(DFlow, cutSetIG)
Get distance weighting for the digraph DFlow.
dist = Ford(DFlow, 2 * p + 1, 2 * p + 1)

distOld = dist

Reverse all arcs.
DFlow = SwopArcs(DFlow, 2 * p + 1)

Reset graphPathsIndex.
graphPathsIndex = 1
Resize graphPaths list and initialise. must contain k rows for every vertex not in the cut-set.

ReDim graphPaths(1 To k * p, 1 To p + 1) As Variant

For i = 1 To k * p

For j = 1 To p + 1
graphPaths(i, j) = 0

Next

Next

For each vertex u not in the cut-set, calculate the set of paths to the cut-set.

Sort each set and choose k cheapest paths to insert into the graph.
For i = 1 To p

oldCutVertexIndex = graphPathsIndex
dist = distOld
nrPaths = 0

Find nr of paths for pathList matrix (min degree of vertex s).
For j = 1 To p

If D(p - i + 1, j) > 0 Then Remember that the bit-vector cutSetIG starts with vertex p and ends with vertex 1.
nrPaths = nrPaths + 1

End If

Next

ReDim pathList(1 To nrPaths, 1 To 2 * p + 1) As Variant

pathList now empty and ready to populate (2p+1 columns to keep index of for loops when testing for valid edges in
bounds. When a path is shorter than 2p vertices, the other open places in pathList are filled with zeros. Vertex t

is not included in the paths).
Clear pathList.
For m = 1 To nrPaths

For j = 1 To 2 * p + 1
pathList(m, j) = 0

Next

Next

pathList = ShortestAugPath(DFlow, 2 * (p - i + 1) - 1, 2 * p + 1, pathList, nrPaths, pathCount, 2 * p + 1, False)
NOTE: Path starts from in-vertex, not out-vertex (Arcs are reversed, hence, the in-vertex is actually now the
out-vertex. addT tests if vertex t should be included on the paths.

Test if some edges are shared. If true, remove these edges and call ShortestAugPath again.
pathList = disjPaths(pathList, pathCount, 2 * (p - i + 1) - 1)

Sort paths.
ReDim paths(1 To pathCount, 1 To 3) As Variant

paths = SortPaths(pathList, pathCount)

120 APPENDIX B. SOURCE CODE FOR THE PROGRAM CONNECTIVITY ALGORITHMS

Insert the cheapest k paths into matrix D2.
If Mid(cutSetIG(2), i, 1) = ‘‘0" Then

Call InsertPaths(paths, pathList, k)
Else

For j = 1 To k

oldCutVertex(oldCutVertexIndex) = True

oldCutVertexIndex = oldCutVertexIndex + 1

Next

Call InsertGraphPaths(paths, pathList) This Sub does everything as InsertPaths, exept, it does not insert paths

into D2. The paths inserted are used later in Alg. Fan - reduce connectivity.
End If

Next

Insert cutset into D2.
Call InsertCutSet(cutSetIG)

Calculate cost saved.
DCost = MatrixCost(D, DCost)
D2Cost = MatrixCost(D2, D2Cost)

totalCostSaved = DCost - D2Cost
D2Backup = D2.

If DCost - D2Cost > 0 Then

Dim xlApp As Excel.Application
Dim wb As Workbook
Dim ws As Worksheet

Set xlApp = New Excel.Application

Dim nrSheets As Integer

nrSheets = xlApp.SheetsInNewWorkbook

xlApp.SheetsInNewWorkbook = 1

Set wb = xlApp.Workbooks.Add
xlApp.SheetsInNewWorkbook = nrSheets

Set ws = wb.Worksheets(1) Specify the worksheet name.
ws.Name = ‘‘Fan(Span Subgr)"

ws.Range(‘‘A1:" & xl Col(p) & p).value = D2

On Error GoTo errHandler

wb.SaveAs (Mid(filePath, 1, Len(filePath) - 4) & ‘‘Output.xls")
On Error GoTo 0

wb.Close
xlApp.Quit

Set ws = Nothing
Set wb = Nothing
Set xlApp = Nothing

txtOutput.Text = txtOutput.Text & ‘‘ALG: Fan" & Chr(13) & Chr(10)

txtOutput.Text = txtOutput.Text & ‘‘INPUT GRAPH:" & Chr(13) & Chr(10) & ‘‘ " & filePath & Chr(13) & Chr(10)
txtOutput.Text = txtOutput.Text & ‘‘OUTPUT GRAPH:" & Chr(13) & Chr(10) & ‘‘ " & Mid(filePath, 1,
Len(filePath) - 4) & ‘‘Output.xls" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

txtOutput.Text = txtOutput.Text & ‘‘Connectivity Number: " & k & ‘‘." & Chr(13) & Chr(10)
txtOutput.Text = txtOutput.Text & ‘‘Weight Improvement = " & DCost - D2Cost & Chr(13) & Chr(10)

& ‘‘---" & Chr(13) & Chr(10)
cmdNewGraph.Enabled = True

Enable Algorithm Fan-Reduce connectivity button.
cmdFanReduceConn.Enabled = True

Exit Sub errHandler:
Select Case Err.Number

Case 1004
MsgBox (‘‘The output could not be saved, as the file " & Mid(filePath, 1, Len(filePath) - 4) & ‘‘Output.xls" & ‘‘,
is currently open. Please close the file and try again.")

wb.Close
xlApp.Quit

Set ws = Nothing
Set wb = Nothing

Set xlApp = Nothing
Exit Sub

End Select

Else

MsgBox (‘‘A cheaper subgraph could not be found.")

End If

End Sub

Private Sub cmdFindCutsetOriginalGraph Click()

If cutSetsInputGraphHasValue = False Then

cutSetsInputGraphHasValue = True

cutSetIG = CVS(D)
End If

k = cutSetIG(1)

121

If cutSetIG(1) = maxInt Then

Graph is a complete graph.

k = p - 1
MsgBox (‘‘The graph is a complete graph. Any " + p - 1 + ‘‘ vertices may be chosen as a cutset")
Exit Sub

End If

Call DisplayCutSet(cutSetIG, 12)

End Sub

Private Sub cmdFindCutsetOutputGraph Click()
If cutSetsOutputGraphHasValue = False Then

cutSetsOutputGraphHasValue = True

cutSetOG = CVS(D2)
End If

If cutSetOG(1) = maxInt Then

Graph is a complete graph.
k = p - 1

MsgBox (‘‘The graph is a complete graph. Any " + p - 1 + ‘‘ vertices may be chosen as a cutset")
Exit Sub

End If

Call DisplayCutSet(cutSetOG, 14)

End Sub

Private Sub cmdMEEFReduceConn Click()

If k = 0 Then

Graph not connected.

MsgBox (‘‘The graph is not connected. Please insert more edges into the graph.")
Exit Sub

End If

frmMain.Enabled = False

frmMEEFEnterConnNumber.Show

End Sub

Public Sub MEEFReduceConn()
Constructs a spanning subgraph with the same connectivity number as the original graph using Algorithm 13.
Dim i, j, index As Integer

Dim q As Integer

Dim tmpConn As Integer

Dim Dtmp() As Variant

Dim CostSaved, CostSavedTmp As Single

Dim kTmp As Integer

cmdFindCutsetOutputGraph.Enabled = False

cutSetsOutputGraphHasValue = False

Sort edgeList if necessary.
Count the number of edges.

q = 0
For i = 1 To p

For j = i + 1 To p

If D(i, j) > 0 Then

q = q + 1

End If

Next

Next

If q = 0 Then

No edges to remove.

MsgBox (‘‘The graph is an empty graph. Please add some edges to the input graph first.")
Exit Sub

End If

Now do the sorting.
index = 1

If edgeListSorted = False Then

Build edgeList.

edgeListSorted = True

ReDim edgeList(1 To q, 1 To 3) As Variant

For i = 1 To p

For j = i + 1 To p
If D(i, j) > 0 Then

edgeList(index, 1) = D(i, j)
edgeList(index, 2) = i

edgeList(index, 3) = j
index = index + 1

End If

Next

Next

Sort edgeList.
Call QuickSort(edgeList, q, True)

End If

Algorithm here.

index = 0
CostSaved = 0

D2 = D
tmpConn = ConnNumber(D)
If tmpConn <> 0 Then ’first condition tests whether graph is disconnected

122 APPENDIX B. SOURCE CODE FOR THE PROGRAM CONNECTIVITY ALGORITHMS

While (tmpConn >= ell)
Dtmp = D2

CostSavedTmp = CostSaved
If tmpConn = 0 Then

Condition to terminate the while loop.

tmpConn = ell - 1
Else

If tmpConn = ell Then

index = index + 1

Dtmp = D2
CostSaved = CostSaved + D2(edgeList(index, 2), edgeList(index, 3))
D2(edgeList(index, 2), edgeList(index, 3)) = 0

D2(edgeList(index, 3), edgeList(index, 2)) = 0 Clear both upper and lower triangle of symmetric matrix.
tmpConn = ConnNumber(D2)

Else

For i = 1 To tmpConn - ell
index = index + 1

CostSaved = CostSaved + D2(edgeList(index, 2), edgeList(index, 3))
D2(edgeList(index, 2), edgeList(index, 3)) = 0

D2(edgeList(index, 3), edgeList(index, 2)) = 0 Clear both upper and lower triangle of symmetric matrix.
Next

tmpConn = ConnNumber(D2)
End If

End If

Wend

End If

CostSaved = CostSavedTmp
D2 = Dtmp

If CostSaved > 0 Then

Dim xlApp As Excel.Application

Dim wb As Workbook
Dim ws As Worksheet

Set xlApp = New Excel.Application

Dim nrSheets As Integer

nrSheets = xlApp.SheetsInNewWorkbook

xlApp.SheetsInNewWorkbook = 1

Set wb = xlApp.Workbooks.Add

xlApp.SheetsInNewWorkbook = nrSheets

Set ws = wb.Worksheets(1) Specify the worksheet name.
ws.Name = ‘‘MEEF(Lower Conn)"

ws.Range(‘‘A1:" & xl Col(p) & p).value = D2

On Error GoTo errHandler

wb.SaveAs (Mid(filePath, 1, Len(filePath) - 4) & ‘‘Output.xls")
On Error GoTo 0
wb.Close

xlApp.Quit
Set ws = Nothing

Set wb = Nothing
Set xlApp = Nothing

txtOutput.Text = txtOutput.Text & ‘‘ALG: Most Expensive Edge First" & Chr(13) & Chr(10)
txtOutput.Text = txtOutput.Text & ‘‘INPUT GRAPH:" & Chr(13) & Chr(10) & ‘‘ " & filePath & Chr(13) & Chr(10)

txtOutput.Text = txtOutput.Text & ‘‘OUTPUT GRAPH:" & Chr(13) & Chr(10) & ‘‘ " & Mid(filePath, 1,
Len(filePath) - 4) & ‘‘Output.xls" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

txtOutput.Text = txtOutput.Text & ‘‘Spanning subgraph is " & ell & ‘‘-connected." & Chr(13) & Chr(10)
txtOutput.Text = txtOutput.Text & ‘‘Weight Improvement = " & CostSaved & Chr(13) & Chr(10)
& ‘‘---" & Chr(13) & Chr(10)

cmdNewGraph.Enabled = True

Exit Sub errHandler:
Select Case Err.Number

Case 1004
MsgBox (‘‘The output could not be saved, as the file " & Mid(filePath, 1, Len(filePath) - 4) & ‘‘Output.xls" & ‘‘,
is currently open. Please close the file and try again.")

wb.Close
xlApp.Quit

Set ws = Nothing
Set wb = Nothing

Set xlApp = Nothing
Exit Sub

End Select

Else

MsgBox (‘‘A cheaper subgraph could not be found.")

End If

End Sub

123

Private Sub cmdMEEFSpanSubgraph Click()
Constructs a spanning subgraph with a specified connectivity number using Algorithm 12. Dim i, j, index As Integer

Dim q As Integer

Dim tmpConn As Integer

Dim Dtmp() As Variant

Dim CostSaved As Single

cmdFindCutsetOutputGraph.Enabled = False

Sort edgeList if necessary.
Count the number of edges.

cutSetsOutputGraphHasValue = False

q = 0
For i = 1 To p

For j = i + 1 To p
If D(i, j) > 0 Then

q = q + 1
End If

Next

Next

If q = 0 Then

No edges to remove.
MsgBox (‘‘The graph is an empty graph. Please add some edges to the input graph first.")

Exit Sub

End If

Now do the sorting.

index = 1
If edgeListSorted = False Then

Build edgeList.
edgeListSorted = True

ReDim edgeList(1 To q, 1 To 3) As Variant

For i = 1 To p
For j = i + 1 To p

If D(i, j) > 0 Then

edgeList(index, 1) = D(i, j)

edgeList(index, 2) = i
edgeList(index, 3) = j
index = index + 1

End If

Next

Next

Sort edgeList.
Call QuickSort(edgeList, q, True)

End If

index = 0
CostSaved = 0

If Not cutSetsInputGraphHasValue Then

k = ConnNumber(D)
End If

If k = 0 Then

Graph not connected.

MsgBox (‘‘The graph is not connected. Please insert more edges into the graph.")
Exit Sub

End If

D2 = D
tmpConn = k

While (tmpConn <> 0) And (tmpConn >= k) First condition tests whether graph is disconnected.
index = index + 1

Dtmp = D2
CostSaved = CostSaved + D2(edgeList(index, 2), edgeList(index, 3))
D2(edgeList(index, 2), edgeList(index, 3)) = 0

D2(edgeList(index, 3), edgeList(index, 2)) = 0 Clear both upper and lower triangle of symmetric matrix.
tmpConn = ConnNumber(D2)

Wend

CostSaved = CostSaved - D(edgeList(index, 2), edgeList(index, 3)) Use D, as it still contains all the edge costs.
D2 = Dtmp

If CostSaved > 0 Then

Dim xlApp As Excel.Application
Dim wb As Workbook

Dim ws As Worksheet

Set xlApp = New Excel.Application

Dim nrSheets As Integer

nrSheets = xlApp.SheetsInNewWorkbook
xlApp.SheetsInNewWorkbook = 1

Set wb = xlApp.Workbooks.Add
xlApp.SheetsInNewWorkbook = nrSheets

Set ws = wb.Worksheets(1) Specify the worksheet name.

ws.Name = ‘‘MEEF(Span Subgr)"

124 APPENDIX B. SOURCE CODE FOR THE PROGRAM CONNECTIVITY ALGORITHMS

ws.Range(‘‘A1:" & xl Col(p) & p).value = D2

On Error GoTo errHandler
wb.SaveAs (Mid(filePath, 1, Len(filePath) - 4) & ‘‘Output.xls")

On Error GoTo 0

wb.Close
xlApp.Quit

Set ws = Nothing
Set wb = Nothing

Set xlApp = Nothing

txtOutput.Text = txtOutput.Text & ‘‘ALG: Most Expensive Edge First" & Chr(13) & Chr(10)

txtOutput.Text = txtOutput.Text & ‘‘INPUT GRAPH:" & Chr(13) & Chr(10) & ‘‘ " & filePath & Chr(13) & Chr(10)
txtOutput.Text = txtOutput.Text & ‘‘OUTPUT GRAPH:" & Chr(13) & Chr(10) & ‘‘ " & Mid(filePath, 1,

Len(filePath) - 4) & ‘‘Output.xls" & Chr(13) & Chr(10) & Chr(13) & Chr(10)
txtOutput.Text = txtOutput.Text & ‘‘Connectivity Number: " & k & ‘‘." & Chr(13) & Chr(10)
txtOutput.Text = txtOutput.Text & ‘‘Weight Improvement = " & CostSaved & Chr(13) & Chr(10)

& ‘‘---" & Chr(13) & Chr(10)
cmdNewGraph.Enabled = True

Exit Sub errHandler:
Select Case Err.Number

Case 1004
MsgBox (‘‘The output could not be saved, as the file " & Mid(filePath, 1, Len(filePath) - 4) & ‘‘Output.xls" & ‘‘,
is currently open. Please close the file and try again.")

wb.Close
xlApp.Quit

Set ws = Nothing
Set wb = Nothing
Set xlApp = Nothing

Exit Sub
End Select

Else

MsgBox (‘‘A cheaper subgraph could not be found.")

End If

End Sub

Private Sub cmdDisplayOriginalGraph Click()
Displays the original graph in PlotArea.

If Not DHasValue Then

DHasValue = True

Dim xlApp As Excel.Application

Dim wb As Workbook
Dim wsDistance, wsXY As Worksheet

Dim i, j, xTmp, yTmp As Integer

Dim zeroMatrix() As Integer

Dim arrDims As Integer

Set xlApp = New Excel.Application

Set wb = xlApp.Workbooks.Open(filePath)

On Error GoTo errHandler
Set wsDistance = wb.Worksheets(distanceSheet) Specify the worksheet name.

On Error GoTo 0
p = wsDistance.Range(‘‘A1").End(xlDown).row

D = wsDistance.Range(‘‘A1:" & xl Col(p) & p).value
On Error GoTo errHandler

Set wsXY = wb.Worksheets(XYSheet) Specify the worksheet name.
On Error GoTo 0
Set wsXY = wb.Worksheets(XYSheet) Specify the worksheet name.

XY = wsXY.Range(‘‘A1:" & xl Col(p) & ‘‘2").value
ReDim zeroMatrix(1 To p, 1 To p) As Integer

For i = 1 To p
For j = 1 To p

zeroMatrix(i, j) = 0

Next

Next

Find the minimum and maximum x and y coordinates.

xMin = XY(1, 1)
xMax = XY(1, 1)
yMin = XY(2, 1)

yMax = XY(2, 1)
For i = 1 To p

If XY(1, i) < xMin Then

xMin = XY(1, i)

End If

If XY(1, i) > xMax Then

xMax = XY(1, i)

End If

If XY(2, i) < yMin Then

yMin = XY(2, i)
End If

If XY(2, i) > yMax Then

125

yMax = XY(2, i)
End If

Next

Scale XY coordinates.

For i = 1 To p
XY(1, i) = ((XY(1, i) - xMin) / (xMax - xMin)) * PlotAreaWidth

XY(2, i) = ((XY(2, i) - yMin) / (yMax - yMin)) * PlotAreaHeight
Next

wb.Close
xlApp.Quit

Set wsDistance = Nothing
Set wsXY = Nothing

Set wb = Nothing
Set xlApp = Nothing

End If

Call DisplayGraph(D, True)

cmdFindCutsetOriginalGraph.Enabled = True

cmdMEEFSpanSubgraph.Enabled = True

cmdMEEFReduceConn.Enabled = True

cmdFanSpanSubgraph.Enabled = True

cmdWhitneySpanSubgraph.Enabled = True

Exit Sub

errHandler:

Select Case Err.Number
Case 9

MsgBox (‘‘The worksheets " & distanceSheet & ‘‘ and/or " & XYSheet & ‘‘ does not exist in the input file " &

filePath & ‘‘ as specified. Please ensure that the worksheets are labelled correctly.")
wb.Close

xlApp.Quit
Set wsDistance = Nothing

Set wsXY = Nothing
Set wb = Nothing
Set xlApp = Nothing

DHasValue = False
Exit Sub

End Select

End Sub

Private Sub cmdNewGraph Click()
Loads a new graph.

Call DisplayGraph(D2, True)
cmdFindCutsetOutputGraph.Enabled = True

End Sub

Private Sub cmdClearGraph Click()

Clears PlotArea.
plotArea.Cls

End Sub

Private Sub cmdWhitneySpanSubgraph Click()

Dim i, j As Integer

Dim q As Integer

q = 0
For i = 1 To p

For j = i + 1 To p
If D(i, j) > 0 Then

q = q + 1

End If

Next

Next

If q = 0 Then

No edges to remove.

MsgBox (‘‘The graph is an empty graph. Please add some edges to the input graph first.")
Exit Sub

End If

If Not cutSetsInputGraphHasValue Then

k = ConnNumber(D)
End If

If k = 0 Then

Graph not connected.

MsgBox (‘‘The graph is not connected. Please insert more edges into the graph.")
Exit Sub

End If

frmMain.Enabled = False

frmWhitneyEnterConnNumber.Show
End Sub

Public Sub WhitneyConnectivity()
Constructs a spanning subgraph with a specified connectivity number using Algorithm 11.

126 APPENDIX B. SOURCE CODE FOR THE PROGRAM CONNECTIVITY ALGORITHMS

Dim i, j, m, n As Integer

Dim DFlow(), DFlowOld() As Variant

Dim pathList As Variant

Dim nrPaths, pathCount As Integer

Dim cutSetEdgeCount As Integer

Dim reRun As Boolean

Dim paths() As Variant

Dim DCost, D2Cost As Single

Dim distOld() As Variant

Dim cutSetIGList() As Variant

Dim completeCutSetFound As Boolean

Dim cutSetRowCount As Integer

Dim oldCutVertexIndex As Integer

Set cutSetsOutputGraphHasValue to False.

cutSetsOutputGraphHasValue = False

Clear the matrix D2.
ReDim D2(1 To p, 1 To p) As Variant

For i = 1 To p
For j = 1 To p

D2(i, j) = 0
Next

Next

Construct digraph DFlow.

DFlow = GetDFlow(D)
DFlowOld = DFlow

Reset graphPathsIndex.

graphPathsIndex = 1

If ell > 0 Then

ReDim graphPaths(1 To ell * (p * (p - 1)) / 2, 1 To p + 1) As Variant p Combination 2 entries exist, each

consisting of ell paths, hence the first index.
For i = 1 To ell * (p * (p - 1)) / 2

For j = 1 To p + 1

graphPaths(i, j) = 0
Next

Next

For i = 1 To p

For j = i + 1 To p
Get distance weighting for the digraph DFlow. Distance labels need to be recalculated, as Shortest Augmenting

Paths algorithm changes these labels.
dist = Ford(DFlow, 2 * (p - i + 1) - 1, 2 * p)

DFlow = DFlowOld
Reverse all arcs.

DFlow = SwopArcs(DFlow, 2 * p)

nrPaths = 0
Find nr of paths for pathList matrix (min degree of vertex s).
For m = 1 To p

If D(p - i + 1, m) > 0 Then Remember that the bit-vector cutSetIG starts with vertex p and ends with vertex 1.
nrPaths = nrPaths + 1

End If

Next

ReDim pathList(1 To nrPaths, 1 To 2 * p + 1) As Variant pathList now empty and ready to populate (2p + 1)
columns to keep index of for loops when testing for valid edges in bounds. When a path is shorter than 2p
vertices, the other open places in pathList are filled with zeros. Vertex t is not included in the paths).

Clear pathList.
For m = 1 To nrPaths

For n = 1 To 2 * p + 1
pathList(m, n) = 0

Next

Next

pathList = ShortestAugPath(DFlow, 2 * (p - i + 1) - 1, 2 * (p - j + 1) - 1, pathList, nrPaths, pathCount,

2 * p, True) NOTE: Path starts from in-vertex, not out-vertex (Arcs are reversed, hence, the in-vertex is
actually now the out-vertex).

Test if some edges are shared. If true, remove these edges and call ShortestAugPath again.
pathList = disjPathsWhitney(pathList, pathCount, 2 * (p - i + 1) - 1, 2 * (p - j + 1) - 1)
Sort paths.

ReDim paths(1 To pathCount, 1 To 3) As Variant

paths = SortPaths(pathList, pathCount)

Insert the cheapest ell paths into matrix D2.
Call InsertPaths(paths, pathList, ell)

Next

Next

End If

DCost = MatrixCost(D, DCost)

D2Cost = MatrixCost(D2, D2Cost)
totalCostSaved = DCost - D2Cost

127

If DCost - D2Cost > 0 Then

Dim xlApp As Excel.Application

Dim wb As Workbook
Dim ws As Worksheet

Set xlApp = New Excel.Application

Dim nrSheets As Integer

nrSheets = xlApp.SheetsInNewWorkbook

xlApp.SheetsInNewWorkbook = 1

Set wb = xlApp.Workbooks.Add
xlApp.SheetsInNewWorkbook = nrSheets

Set ws = wb.Worksheets(1) Specify the worksheet name.
ws.Name = ‘‘Whitney(Span Subgr)"

Set ws = wb.Worksheets.Add(‘‘MostExpEdgeFirst").
ws.Range(‘‘A1:" & xl Col(p) & p).value = D2

On Error GoTo errHandler
wb.SaveAs (Mid(filePath, 1, Len(filePath) - 4) & ‘‘Output.xls")

On Error GoTo 0
wb.Close

xlApp.Quit
Set ws = Nothing
Set wb = Nothing

Set xlApp = Nothing

txtOutput.Text = txtOutput.Text & ‘‘ALG: Whitney" & Chr(13) & Chr(10)
txtOutput.Text = txtOutput.Text & ‘‘INPUT GRAPH:" & Chr(13) & Chr(10) & ‘‘ " & filePath & Chr(13) & Chr(10)

txtOutput.Text = txtOutput.Text & ‘‘OUTPUT GRAPH:" & Chr(13) & Chr(10) & ‘‘ " & Mid(filePath, 1,
Len(filePath) - 4) & ‘‘Output.xls" & Chr(13) & Chr(10) & Chr(13) & Chr(10)
txtOutput.Text = txtOutput.Text & ‘‘Spanning subgraph is " & ell & ‘‘-connected." & Chr(13) & Chr(10)

txtOutput.Text = txtOutput.Text & ‘‘Weight Improvement = " & DCost - D2Cost & Chr(13) & Chr(10) &
‘‘---" & Chr(13) & Chr(10)

cmdNewGraph.Enabled = True

Exit Sub errHandler:

Select Case Err.Number
Case 1004

MsgBox ("The output could not be saved, as the file " & Mid(filePath, 1, Len(filePath) - 4) & "Output.xls" & ",
is currently open. Please close the file and try again.")

wb.Close
xlApp.Quit
Set ws = Nothing

Set wb = Nothing
Set xlApp = Nothing

Exit Sub
End Select

Else

MsgBox (‘‘A cheaper subgraph could not be found.")
End If

End Sub

Private Sub Form Load()
Dim tmp As String

Dim tmp2 As Variant

Dim tmp3() As Variant

maxInt = 231 − 1
edgeListSorted = False

DHasValue = False

cutSetsInputGraphHasValue = False

cutSetsOutputGraphHasValue = False

filePath = ""

End Sub

Private Sub mnuInputFile Click()

frmMain.cmdDisplayOriginalGraph.Enabled = False

frmMain.cmdFindCutsetOriginalGraph.Enabled = False

frmMain.cmdFindCutsetOutputGraph.Enabled = False

frmMain.cmdMEEFSpanSubgraph.Enabled = False

frmMain.cmdMEEFReduceConn.Enabled = False

frmMain.cmdFanSpanSubgraph.Enabled = False

frmMain.cmdFanReduceConn.Enabled = False

frmMain.cmdWhitneySpanSubgraph.Enabled = False

frmMain.cmdNewGraph.Enabled = False

frmMain.plotArea.Cls

128 APPENDIX B. SOURCE CODE FOR THE PROGRAM CONNECTIVITY ALGORITHMS

DHasValue = False

edgeListSorted = False

cutSetsInputGraphHasValue = False

cutSetsOutputGraphHasValue = False

frmMain.Enabled = False

frmInput.Show

End Sub

Option Explicit

Private Declare Function GetSystemMenu Lib "user32"(ByVal hWnd As Long,

ByVal bRevert As Long) As Long

Private Declare Function RemoveMenu Lib "user32" (ByVal hMenu As Long,

ByVal nPosition As Long, ByVal wFlags As Long) As Long

Remove the Close menu item and disable the Close button from a window.

Public Sub RemoveCloseMenuItem(ByVal hWnd As Long)
Const SC CLOSE = &HF060

Const MF BYCOMMAND = 0

Dim hMenu As Long

Get the system menu’s handle.
hMenu = GetSystemMenu(hWnd, 0)

Remove the Close item.
RemoveMenu hMenu, SC CLOSE, MF BYCOMMAND

End Sub

Private Sub cmdCancel Click()

frmMain.Enabled = True
Unload Me

End Sub

Private Sub cmdOK Click()
If frmMain.filePath = "" Then

MsgBox ("No input file Selected. Please Select an input file")

Else

frmMain.distanceSheet = txtDistance.Text

frmMain.XYSheet = txtXY.Text

frmMain.Enabled = True

frmMain.cmdDisplayOriginalGraph.Enabled = True
Unload Me

End If

End Sub

Private Sub Dir1 Change()
File1.Path = Dir1.Path

End Sub

Private Sub Drive1 Change()
Dir1.Path = Drive1.Drive

End Sub

Private Sub File1 Click()

frmMain.filePath = Dir1.Path
If Right$(Dir1.Path, 1) <> "\" Then frmMain.filePath = frmMain.filePath & "\"
frmMain.filePath = frmMain.filePath & File1.FileName
lblFilePath.Caption = File1.FileName

End Sub

Private Sub Form Load()

Call RemoveCloseMenuItem(frmInput.hWnd)
End Sub

Option Explicit

Private Declare Function GetSystemMenu Lib "user32" (ByVal hWnd As Long,
ByVal bRevert As Long) As Long

Private Declare Function RemoveMenu Lib "user32" (ByVal hMenu As Long,
ByVal nPosition As Long, ByVal wFlags As Long) As Long

Remove the Close menu item and disable the Close button from a window.

Public Sub RemoveCloseMenuItem(ByVal hWnd As Long)

Const SC CLOSE = &HF060
Const MF BYCOMMAND = 0

Dim hMenu As Long

Get the system menu’s handle.

hMenu = GetSystemMenu(hWnd, 0)
Remove the Close item.
RemoveMenu hMenu, SC CLOSE, MF BYCOMMAND

129

End Sub

Private Sub cmdCancel Click()
frmMain.Enabled = True
Unload Me

End Sub

Private Sub cmdOK Click()
If txtEll = "" Then

MsgBox ("Please enter a value for the desired connectivity number.")
Else

On Error GoTo errHandler

If (txtEll.Text >= "0") And (txtEll.Text <= frmMain.k) Then

frmMain.ell = txtEll.Text

frmMain.Enabled = True
Call frmMain.WhitneyConnectivity
Unload Me

Else

MsgBox ("The value entered must be between 0 and " & frmMain.k & ".")

End If

On Error GoTo 0

End If

Exit Sub

errHandler:

Select Case Err.Number
Case 13

MsgBox ("Please enter a value in the specIfied range.")
Exit Sub

End Select

End Sub

Private Sub Form Load()
Call RemoveCloseMenuItem(frmWhitneyEnterConnNumber.hWnd)

lblRange.Caption = "(Min: 0, Max: " & frmMain.k & ")"
End Sub

Option Explicit

Private Declare Function GetSystemMenu Lib "user32" (ByVal hWnd As Long,

ByVal bRevert As Long) As Long

Private Declare Function RemoveMenu Lib "user32" (ByVal hMenu As Long,
ByVal nPosition As Long, ByVal wFlags As Long) As Long

Remove the Close menu item and disable the Close button from a window.

Public Sub RemoveCloseMenuItem(ByVal hWnd As Long)

Const SC CLOSE = &HF060
Const MF BYCOMMAND = 0

Dim hMenu As Long

Get the system menu’s handle.

hMenu = GetSystemMenu(hWnd, 0)
Remove the Close item.
RemoveMenu hMenu, SC CLOSE, MF BYCOMMAND

End Sub

Private Sub cmdCancel Click()
frmMain.Enabled = True

Unload Me
End Sub

Private Sub cmdOK Click()
If txtEll = "" Then

MsgBox ("Please enter a value for the desired connectivity number.")
Else

On Error GoTo errHandler

If (txtEll.Text >= "0") And (txtEll.Text <= frmMain.k) Then

frmMain.ell = txtEll.Text

frmMain.Enabled = True
Call frmMain.MEEFReduceConn

Unload Me
Else

MsgBox ("The value entered must be between 0 and " & frmMain.k & ".")

End If

On Error GoTo 0

End If

Exit Sub

errHandler:
Select Case Err.Number

Case 13

MsgBox ("Please enter a value in the specIfied range.")
Exit Sub

End Select

End Sub

130 APPENDIX B. SOURCE CODE FOR THE PROGRAM CONNECTIVITY ALGORITHMS

Private Sub Form Load()
Call RemoveCloseMenuItem(frmMEEFEnterConnNumber.hWnd)

lblRange.Caption = "(Min: 0, Max: " & frmMain.k & ")"
End Sub

Option Explicit

Private Declare Function GetSystemMenu Lib "user32" (ByVal hWnd As Long,
ByVal bRevert As Long) As Long

Private Declare Function RemoveMenu Lib "user32" (ByVal hMenu As Long,
ByVal nPosition As Long, ByVal wFlags As Long) As Long

Remove the Close menu item and disable the Close button from a window.

Public Sub RemoveCloseMenuItem(ByVal hWnd As Long)
Const SC CLOSE = &HF060
Const MF BYCOMMAND = 0

Dim hMenu As Long

Get the system menu’s handle.
hMenu = GetSystemMenu(hWnd, 0)

Remove the Close item.
RemoveMenu hMenu, SC CLOSE, MF BYCOMMAND

End Sub

Private Sub cmdCancel Click()

frmMain.Enabled = True
Unload Me

End Sub

Private Sub cmdOK Click()

If txtEll = "" Then

MsgBox ("Please enter a value for the desired connectivity number.")

Else

On Error GoTo errHandler
If (txtEll.Text >= "0") And (txtEll.Text <= frmMain.k) Then

frmMain.ell = txtEll.Text
frmMain.Enabled = True

Call frmMain.FanReduceConn
Unload Me

Else

MsgBox ("The value entered must be between 0 and " & frmMain.k & ".")
End If

On Error GoTo 0
End If

Exit Sub

errHandler:
Select Case Err.Number

Case 13
MsgBox ("Please enter a value in the specIfied range.")

Exit Sub

End Select

End Sub

Private Sub Form Load()

Call RemoveCloseMenuItem(frmFanEnterConnNumber.hWnd)
lblRange.Caption = "(Min: 0, Max: " & frmMain.k & ")"

End Sub

Index

F (x, U) fan, 4, 55
`-connectivity number, 25
`-connectivity sequence, 26
`-edge-connectivity number, 25
`-way cut, 25

minimum, 25
k-connected, 20

critically, 24
minimally, 24

k-edge-connected, 20
critically, 24
minimally, 24

n-partite, 9
complete, 9
complete, balanced, 9

r-regular, 7

adjacency, 3
adjacency matrix, 7, 42
algorithm, 12
algorithmic complexity, 12

polynomial time reducible, 14
space complexity, 12
the class co-NP, 13
the class NP, 13
the class NP-complete, 14, 64
the class NP-hard, 14
the class P, 13
time complexity, 12

approximation algorithm, 29
approximation ratio, 29
automorphism, 5
average connectivity number, 26

maximum, 28

basic operations, 12
bipartite, 9
bit-vector, 32
breadth-first search, 36
bridge, 10, 17

centre, 9
certificate, 13
circuit, 4
clique, 12, 55
clique number, 12
closed neighbourhood, 4
closed walk, 4

complete n-partite, 9
complete graph, 8
complexity, 12
component, 10, 53, 56
computation problem, 15
connected, 10
connected graph, 10, 32
connectivity number, 17, 31
connectivity preserving, 29, 31
connectivity reducing, 29, 31
cut-set

edge cut-set, 17
minimum, 32
vertex cut-set, 17

cut-vertex, 10, 17
cycle, 4, 7

even, 7
odd, 7

decision problem, 13
decision theory, 13
degree, 4

maximum, 5
minimum, 5

degree sequence, 5
deletion, 5
digraph, 3

strongly (n, `)-connected, 26
directed graph, 3, 38
disconnected graph, 10

edge
join, 3
weight, 6

edge contraction, 19
edge cut-set, 17
edge disjoint, 18
edge weight, 6
edge-connectivity number, 17
edge-separator, 18
edges, 3
end-vertex, 5
equality of graphs, 5

flow units, 38
forest, 9
Fundamental Theorem of Graph Theory, 5

131

graph, 3
n-partite, 9
bipartite, 9
complete graph, 8
digraph, 3
directed graph, 3
edges, 3
join, 7
multipartite, 9
null graph, 8
pseudograph, 10
simple graph, 3
size, 3
star, 9
tree, 9
trivial graph, 3
vertices, 3

hub, 10

in-neighbour, 4
in-vertex, 41
incident, 3
independence, 11

maximal, 11
number, 11

induced subdigraph, 5
induced subgraph, 5
internal vertex, 4
internally disjoint, 4, 18
interval halving scheme, 15
intractable problem, 12
isolated vertex, 5
isomorphic, 5
isomorphism, 5

leaf, 9
length, 4, 45
loop, 10

matching, 7
maximum, 7
number, 7
perfect, 7

maximal independence, 11
maximum degree, 5
maximum flow, 38
minimum degree, 5
multipartite, 9

neighbourhood, 4
closed, 4
open, 4

null graph, 8

open neighbourhood, 4
open walk, 4

order, 3, 4
order of magnitude, 12
out-neighbour, 4, 36
out-vertex, 41

path, 4, 7, 45
even, 7
odd, 7

polynomial time, 12
polynomial time reducible, 14
pseudograph, 10

regular, 7
residual capacity, 39

sequence of strong connectivity numbers, 26
simple graph, 3
sink, 36
size, 3
source, 36
spanning subdigraph, 5
spanning subgraph, 5, 6, 49, 51, 55
spokes, 10
star graph, 9
strong `-arc-connectivity number, 26
strong `-connectivity number, 26
strong component, 26
strong independce number, 26
strongly connected, 26
subdigraph, 5

induced, 5
spanning, 5

subgraph, 5
induced, 5
spanning, 5, 49, 51, 55

supersink, 39

tractable problem, 13
trail, 4
tree, 9

forest, 9
leaf, 9
trivial tree, 9

trivial graph, 3
trivial tree, 9

uniformly k-connected, 28
union, 7
units, 38

vertex
adjacent vertices, 3, 41
degree, 4

vertex connectivity number, 17
vertex cut-set, 17
vertex splitting, 11
vertex-separator, 18

132

vertices, 3

walk, 4
wheel, 10

hub, 10
spokes, 10

133

	Abstract
	Opsomming
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Reserved Symbols
	Introduction
	Basic Concepts in Graph and ...
	Literature Survey
	Spanning Subgraphs with ...
	Decision Support System
	Conclusion
	References
	How to use the CD
	Source Code for the Program ...
	Index

