
Regulated Rewriting in Formal Language Theory

by: Mohamed A.M.S Taha

Thesis presented in partial fulfilment of the requirements

for the degree of Master of Science in Computer Science

at the University of Stellenbosch

Supervisor: Prof. A.B. van der Merwe

March, 2008

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my own original

work and has not previously in its entirety or in part been submitted at any university for a

degree.

Signature: Date:

Copyright c©2008 Stellenbosch University

All rights reserved

i

Abstract

Context-free grammars are well-studied and well-behaved in terms of decidability, but many

real-world problems cannot be described with context-free grammars. Grammars with regu-

lated rewriting are grammars with mechanisms to regulate the applications of rules, so that

certain derivations are avoided. Thus, with context-free rules and regulated rewriting mech-

anisms, one can often generate languages that are not context-free.

In this thesis we study grammars with regulated rewriting mechanisms. We consider prob-

lems in which context-free grammars are insufficient and in which more descriptive grammars

are required. We compare bag context grammars with other well-known classes of grammars

with regulated rewriting mechanisms. We also discuss the relation between bag context gram-

mars and recognizing devices such as counter automata and Petri net automata. We show

that regular bag context grammars can generate any recursively enumerable language. We

reformulate the pumping lemma for random permitting context languages with context-free

rules, as introduced by Ewert and Van der Walt, by using the concept of a string homomor-

phism. We conclude the thesis with decidability and complexity properties of grammars with

regulated rewriting.

ii

Opsomming

Konteksvrye grammatikas is al deeglik bestudeer. Konteksvrye grammatikas het ook goeie

beslisbaarheid eienskappe, maar baie werklike probleme kan dikwels nie met konteksvrye

grammatikas beskryf word nie. Grammatikas met reguleerbare herskrywing is grammatikas

met meganismes om die toepassing van reëls te beheer, sodat sommige afleidings vermy word.

Dit is dus dikwels moontlik om met reguleerbare herskrywing en konteksvrye reëls tale te

genereer wat nie konteksvry is nie.

In hierdie tesis bestudeer ons reguleerbare herskrywingsmeganismes. Ons beskou probleme

waar konteksvrye grammatikas onvoldoende is en waar meer beskrywende grammatikas dus

benodig word. Ons vergelyk multi-versameling grammatikas met ander bekende grammatikas

met reguleerbare herskrywings meganismes. Ons wys dat regulêre multi-versameling gram-

matikas enige rekursiewe enumereerbare taal kan genereer. Ons herformuleer die pomp lemma

vir willekeurige toelaatbare konteks tale met konteksvrye reëls, soos beskryf in [19], deur van

die konsep van ’n string homomorfisme gebruik te maak. Ons sluit die tesis af met die

beslisbaarheids en komplesiteitseienskappe van grammatikas met reguleerbare herskrywing.

iii

Dedication

To my precious mother (Alawyia)

To the memory of my father

To my lovely family

I dedicate my work

iv

Acknowledgements

First of all, I would like to express my sincere gratitude and appreciation to ALLAH, the one

who kept me with his care and support all the time and facilitated the difficulties along my

way.

I also would like to thank my supervisor Prof. Brink van der Merwe for introducing me to

this field and teaching me how to conduct quality research.

A special thanks to the African Institute for Mathematical Sciences (AIMS), and Faculty of

Science at the University of Stellenbosch for sponsoring my study.

All love and care to my mother, my father, and all my family for their love and support.

v

Contents

Declaration i

Abstract ii

Opsomming iii

Dedication iv

Acknowledgements v

Contents vi

List of figures ix

1 Introduction 1

2 Beyond context-free grammars 3

2.1 Natural languages . 3

2.2 Graphs of discrete functions . 4

2.3 The courier problem . 6

2.4 Developmental biology . 7

2.5 Beyond string languages . 8

3 Generating mechanisms 13

vi

Contents vii

3.1 Elementary definitions . 13

3.2 The Chomsky hierarchy . 14

3.3 Grammars with regulated rewriting . 17

3.4 ET0L systems . 23

3.5 Branching synchronization grammars . 26

3.6 Regular tree grammars . 30

4 Recognizing devices and bag context grammars 32

4.1 Counter automata . 32

4.2 Blind and partially blind counter automata 33

4.3 Counter automata and bag context grammars 35

4.4 Petri nets . 40

4.5 Petri nets and bag context grammars . 43

5 Pumping and shrinking lemmas 48

5.1 A pumping lemma for rPcl-2 . 48

5.1.1 The pumping lemma . 49

5.1.2 Illustration of the pumping lemma with three nonterminals 51

5.2 A shrinking lemma for rFcl-2 . 53

6 Decidability and complexity in regulated rewriting 55

6.1 Decidability properties of regulated rewriting 55

6.2 Petri nets, vector addition systems, and decidability 58

6.3 Groebner bases and decidability . 61

6.4 Complexity of regulated rewriting . 63

7 Conclusion and future work 67

Contents viii

Bibliography 69

List of figures

2.1 The courier problem. 6

2.2 Steps 1, 8, 9, 10, 11, 12, 13, 23 in the growth of red algae using Treebag . . . 7

2.3 Tree representation for the XML document 9

2.4 Binary tree representation for the XML document 11

3.1 After replacing A,B,C,D,E and F by making use of the rules in R2 and in-

terpreting the strings as line drawings . 24

3.2 Steps 1, 2, 3, 4 in terms of pictures . 25

3.3 Steps 8, 9, 10, 11 in Sierpiński gasket using Treebag 25

3.4 Steps 1, 2, 3, 5 in quadratic Koch island using Treebag 26

3.5 Steps 2, 4, 5, 6 in the plant generated by G using Treebag 26

4.1 A counter automaton that recognizes D2 . 33

4.2 A partially blind counter automaton that recognizes D2 34

4.3 A blind counter automaton that recognizes {aibjci+j | i, j ≥ 0} 36

4.4 A 2-counter automaton that recognizes {a2n
| n ≥ 0} 38

4.5 A Petri net automaton with css = {aibjc2(i+j) | i, j ≥ 0} 42

4.6 A Petri net automaton with css = {aibjcidj | i, j ≥ 0} 45

5.1 Derivation tree for w . 50

ix

List of figures x

5.2 Derivation tree for w . 51

5.3 Pumping with three nonterminals . 52

5.4 Pumping lemma: Derivation tree for w . 52

5.5 Shrinking lemma: Derivation tree for z3 . 54

6.1 Reversible Petri net . 62

Chapter 1

Introduction

The study of formal language theory started in the middle of the 20th century, motivated

in part by natural languages. The development of programming languages also contributed

strongly to the development of this discipline. Many other branches of science, such as

developmental biology and logic, also contributed to the development of formal language

theory.

In the Chomsky hierarchy (see Section 3.2), the context-free grammars (including regular

grammars) (see Definitions 3.4 and 3.7) are the best developed and well-studied class of

grammars. This is due to their applications in programming languages. Context-free lan-

guages have many good properties in terms of decidability. The membership, emptiness, and

finiteness problems (see Definition 6.2) are all decidable for the class of context-free languages.

Unfortunately, many real-world problems can only be described by grammars that are not

context-free.

Grammars with regulated rewriting (see Section 3.3) were introduced in 1965. These gram-

mars use rules similar to the grammars in the Chomsky hierarchy, but with additional re-

strictions on when rules can be applied.

This thesis is a survey of regulated rewriting. We compare bag context grammars (see Defi-

nition 3.20), which are relatively new, with counter automata (blind and partially blind) (see

Definitions 4.1 and 4.2) and Petri net automata (see Definition 4.3). In each case we show

how bag context grammars can simulate these recognizing devices such that they describe

the same class of languages. We show that regular bag context grammars generate the recur-

sively enumerable languages (see Definition 3.2). A well-known way to show that a language

is not context-free is by applying the pumping lemma for context-free languages (see Theorem

1

Introduction 2

3.1). A pumping lemma for random permitting context languages with context-free rules (see

Definition 3.17) was introduced in [19]. We state and prove this lemma in terms of string

homomorphisms (see Definition 3.1). Decidability and complexity properties of grammars

with regulated rewriting are also considered. We consider various decidability properties and

explain how Petri nets, vector addition systems (see Definition 6.4) and Groebner bases can

help in determining decidability. Finally we compare the complexity of regulated rewriting

mechanisms in terms of nonterminal complexity.

We present in Chapter 2 circumstances in which context-free languages are not sufficient.

We show how grammars with regulated rewriting and ET0L systems (see Definition 3.22)

can generate some of these languages. Then we briefly consider a generalization of string

languages, namely tree languages.

In Chapter 3 we introduce various generating mechanisms. We consider the Chomsky hier-

archy, grammars with regulated rewriting, and branching synchronization grammars.

Chapter 4 considers the relationship between recognizing devices and generating mechanisms.

We show how to simulate counter automata (blind and partially blind) and Petri net automata

with bag context grammars. We also show that bag context grammars can generate any

recursively enumerable language.

We state and prove in Chapter 5 the pumping lemma for random permitting context languages

with context-free rules in terms of string homomorphisms. We also state without proof

the shrinking lemma for random forbidding context languages with context-free rules (see

Definition 3.17).

We discuss in Chapter 6 decidability and complexity properties of grammars with regulated

rewriting mechanisms. We consider the membership, emptiness, finiteness and equivalence

problems. We show how one can use Petri nets, vector addition systems and Groebner

bases to answer certain decidability problems for grammars with regulated rewriting. We use

the decidability of reachability in Petri nets (see Definition 6.3) to show the decidability of

emptiness and membership in random permitting context grammars with context-free rules.

We conclude the chapter with complexity of regulated rewriting. We compare various classes

of grammars with regulated rewriting by considering nonterminals complexity.

Finally, we give a conclusion and present avenues for future consideration.

Chapter 2

Beyond context-free grammars

In investigating aspects of formal language theory in Computer Science, the motivation nor-

mally starts by referring to the Chomsky hierarchy of languages. We will not deviate from

this practice. In this hierarchy, the regular and context-free languages are well-studied and

well understood. This is mainly due to the use of regular expressions and the extended

Backus-Naur form (EBNF) in programming languages. The problems, of course, with the

type-0 (recursively enumerable) and type-1 (context sensitive) languages are that the mem-

bership, emptiness, and finiteness problems are undecidable for type-0 languages, and that

the emptiness and finiteness problems are undecidable for type-1 languages. In spite of the

fact that the class of context-free languages is nicely behaved in terms of decidability, many

real-world problems cannot accurately be described by context-free languages. This thesis

deals mainly with classes of languages that properly contain the context-free languages, and

that are contained in the recursively enumerable languages. Next we list problems that can be

described by languages, but not context-free languages. This list of problems is mainly from

the introduction in [10]. We illustrate with our own examples how grammars with regulated

rewriting and ET0L systems can generate some of these languages.

The reader that is not familiar with the concepts of regulated rewriting is advised to start by

Chapter 3.

2.1 Natural languages

In our first example we show that the English language is not context-free. The language

consisting of grammatically correct English sentences is denoted by L.

3

Chapter 2. Beyond context-free grammars 4

First we consider sentences of the following form in L.

John, Mary, David, ... are a widower, a widow, a widower, ..., respectively.

Let h be the homomorphism (see Definition 3.1) defined on L that maps each occurrence of

widower or any masculine name to a, and similarly each occurrence of widow or any feminine

name to b. All other words or punctuation marks are deleted by h. We assume that we do not

have any names that are both masculine and feminine. Let N = {John, Mary, David, ...}

be the set of names and R the language described by the following regular expression (see

Definition 3.6): (N comma)∗N are (a widower comma | a widow comma)∗ respectively

fullstop. In the regular expression we use comma and fullstop instead of “,” and “.” , in

order to avoid confusion. Note that h(L ∩ R) = {xx | x ∈ {a, b}∗, |x| ≥ 2}, where |x| is the

length of the string x. From the pumping lemma for context-free languages (see Theorem 3.1)

it follows that h(L∩R) is not context-free. Thus, since the context-free languages are closed

under homomorphisms and intersection with regular languages [30], L is not a context-free

language.

The following matrix grammar G (see Definition 3.8) with context-free rules generates the

language {xx | x ∈ {a, b}∗, |x| ≥ 2}. Let G = ({S,A,B}, {a, b}, R, S), where R consists of

the following matrices: (S → aAaB), (S → bAbB), (A → aA,B → aB), (A → bA,B →

bB), (A→ a,B → a), (A→ b,B → b).

Note that the matrix grammar G ensures that |x| ≥ 2 by applying the matrix (S → aAaB)

or (S → bAbB) initially. The two matrices (A → aA,B → aB) and (A → bA,B → bB)

keep the two parts of the string similar during the derivation, and the last two matrices for

termination.

2.2 Graphs of discrete functions

Let f : Nk
0 → N0 be a function (N0 = N ∪ {0}) where N is the set of natural numbers.

We represent the graph of the function f by the language Lf , which is defined as follows.

Let a1, a2, ..., ak+1 be distinct terminal symbols, then Lf = {an1

1 an2

2 . . . ank

k a
f(n1,n2,...,nk)
k+1 |

(n1, n2, ..., nk) ∈ dom(f)}.

Before we continue, we first state Parikh’s theorem [35]. Parikh’s theorem states that the

Parikh image of every context-free language is semi-linear. Let Σ = {a1, a2, . . . , an}, where

the order of a1, a2, . . . , an is arbitrary but fixed. For w = am1

1 . . . amn
n ∈ Σ∗, the Parikh

image ψ(w) is defined as ψ(w) = (m1,m2, . . . ,mn). Next we give the definition of a semi-

Chapter 2. Beyond context-free grammars 5

linear set as given in [35]. Let Nn
0 denote the Cartesian product of n copies of N0. A

subset Q of Nn
0 is linear if there exist elements α, β1, . . . , βm of Nn

0 such that Q is equal to

{x | x = α+ n1β1 + · · · + nmβm, ni ∈ N0 for 1 ≤ i ≤ m}. A set Q is semi-linear if Q is the

union of a finite number of linear sets.

From Parikh’s theorem we have that a necessary condition for the graph of a function to be

represented by a context-free language as above, is that the graph Lf is semi-linear.

As an example we consider the function f : N0 → N0, defined by f(x) = xk, k > 1. Thus,

Lf = {an
1a

nk

2 | n ≥ 0}. From Parikh’s theorem it follows that Lf is not context-free.

As another example we consider the function f : N2
0 → N0, defined as follows.

f(x, y) =

{

x if x = y

0 otherwise.

Thus Lf = {an
1a

n
2a

n
3 | n ≥ 0} ∪ {an

1a
m
2 | n,m ∈ N0, n 6= m}. From the pumping lemma we

have that Lf is not context-free.

The language Lf can be generated by the bag context grammar (see Definition 3.20) G =

({S, S1, S2, S3, A1, A2}, {a1, a2, a3}, R, S, 0), where R contains the rules below.

S → S1S2S3 (0, 0; 1)

S → ε (0, 0; 1)

S → A1A2 (0, 0; 0)

S → A1 (0, 0; 1)

S → A2 (0, 0;−1)

S1 → a1S1 (1, 1; 1)

S1 → a1 (1, 1;−1)

S2 → a2S2 (2, 2; 1)

S2 → a2 (0, 0; 0)

S3 → a3S3 (3, 3;−2)

S3 → a3 (0, 0; 0),

A1 → a1A1 (−∞,∞; 1)

A2 → a2A2 (−∞,∞;−1)

A1 → a1 (6= 0; 0)

A2 → a2 (6= 0; 0)

Note that we use ε (or sometimes λ) to indicate the empty string.

Chapter 2. Beyond context-free grammars 6

This grammar generates {an
1a

n
2a

n
3 | n ≥ 0} by applying the rule S → S1S2S3 | ε (0, 0; 1)

initially, where it ensures that all a1’s come before all a2’s and a3’s, and all a2’s come before

all a3’s. The bag position in this case ensures that the rules S1 → a1S1, S2 → a2S2 and

S3 → a3S3 are applied consecutively. Then it does the same with the termination rules

S1 → a1, S2 → a2 and S3 → a3. Thus, we get an equal numbers of a1’s, a2’s and a3’s.

When G generates a string in {an
1a

m
2 | n,m ∈ N0, n 6= m} it starts by replacing S with either

A1A2, A1 or A2. The bag position here represents the difference (#a1 +#A1)− (#a2 +#A2),

where #a1, for example, indicates the number of a1’s. The derivation can terminate only if

the difference is not zero.

2.3 The courier problem

Let Γ(X,U) be a directed graph, with nodes X and directed edges U . A courier is moving

from node to node picking up and delivering messages. The only assumption is that all

messages will be delivered. In our example we consider the graph ({x1, x2}, {(x1, x2), (x2, x1)})

with nodes x1 and x2, and directed edges (x1, x2) and (x2, x1) see Figure 2.1. We encode

x1 x2

Figure 2.1: The courier problem.

picking up a message from xi by ‘ai’, and delivering a message to xj by ‘bj ’. Let L be all

strings that describe the correct courier activity. Let R be the regular language described

by the regular expression a+
1 a

+
2 b

+
2 b

+
1 . Since L ∩ R equals {ai

1a
j
2b

i
2b

j
1 | i, j ≥ 1}, which is

not context-free, L is also not context-free. Note that L = {x ∈ {a1, a2, b1, b2}
∗ | |x| ≥ 1,

|x|a1
= |x|b2 , |x|a2

= |x|b1 , |s|a1
≥ |s|b2 and |s|a2

≥ |s|b1 for each prefix s of x}, where |x|a1
,

for example, indicates the number of occurrences of a1 in the string x. The language L is

generated by the 2-bag context grammar G = ({S}, {a1, a2, b1, b2}, R, S, (0, 0)), (see Definition

Chapter 2. Beyond context-free grammars 7

3.20) where R contains the following rules:

S → a1S ((0, 0), (∞,∞); (1, 0)),

S → a2S ((0, 0), (∞,∞); (0, 1)),

S → b1S ((0, 1), (∞,∞); (0,−1)),

S → b2S ((1, 0), (∞,∞); (−1, 0)),

S → b1 ((0, 1), (0, 1); (0,−1)),

S → b2 ((1, 0), (1, 0); (−1, 0)).

In this grammar, the first bag position counts the number of messages from x1 that still need

to be delivered to x2. The second bag position does the same but for the messages from x2

that still need to be delivered to x1. A derivation in the grammar can only terminate if the

courier delivers the last message to its destination.

2.4 Developmental biology

This example is taken from [28], where the growth of a red algae is described in terms of

formal language theory. The first few stages are depicted in Figure 2.2 using Treebag [12].

There are nine cell types which are simply denoted by 1 to 9, respectively.

Figure 2.2: Steps 1, 8, 9, 10, 11, 12, 13, 23 in the growth of red algae using Treebag

The first nine stages can be denoted by [1], [23], [224], [2225], [22265], [222765], [2228765],

[2229[3]8765] and [2229[24]9[3]8765]. The growth of a red algae can be described by a D0L

grammar (see Definition 3.22), given by S = ({1, 2, . . . , 9, [,]}, P, [1]), where P consists of the

production rules below.

1 → 23 2 → 2 3 → 24 4 → 25 5 → 65 6 → 7 7 → 8 8 → 9[3] 9 → 9

Recall that D0L systems, and ET0L systems in general, apply their rules in parallel during

derivations in contrast to context-free grammars where rules are applied sequentially.

Using the rules in the D0L grammar, we can get the following derivation:

Chapter 2. Beyond context-free grammars 8

[1] ⇒ [23] ⇒ [224] ⇒ [2225] ⇒ [22265] ⇒ [222765] ⇒ [2228765] ⇒ [2229[3]8765] ⇒

[2229[24]9[3]8765].

In Figure 2.2 the nine types of cell 1, . . . , 9 are interpreted as lines with unit length, initially

vertical. The pair of brackets [and] indicates the branching, where all cells within a pair of

brackets form a branch from the current branch. Thus, steps 1, . . . , 7, in terms of pictures,

are vertical lines with unit length difference between any two consecutive stages.

We denote the consecutive stages of a red algae by s1, s2, s3, By s′2, s
′
3, ..., we denote the

stages from stage two onwards, but with the first symbol, that is 2, removed from each si.

Thus, for example s′2 = [3] and s′3 = [24].

Then we can derive the following inductive definition for sn, n ≥ 8.

sn = [2229[s′n−6] 9[s′n−7] . . . 9[s′2] 8765] .

Since sn+1 = [2229[s′n−5] 9[s′n−6] . . . 9[s′2] 8765], we conclude that |sn+1| = |sn|+ |sn−5| ≥

2|sn−5|. From the pumping lemma for context-free languages, it follows that the set of lengths

of words in an infinite context-free language must contain an infinite arithmetic progression.

Thus, since |sn+1| ≥ 2|sn−5|, the language describing the growth of a red algae is not context-

free.

In the previous sections we used string languages to describe real-world problems. In the

next section we discuss circumstances in which string grammars and string languages are not

appropriate.

2.5 Beyond string languages

A good motivation to study not only string languages, but also the more general class of

tree languages, is provided by XML (eXtensible Markup Language). XML plays an essential

role in data exchange due to its flexibility, since users are allowed to define their own custom

markup languages.

Our contribution in this section is that we show how to express XML documents in terms of

regular tree grammars.

Consider the following XML document:

<fruitshop>

Chapter 2. Beyond context-free grammars 9

<item>

<name> apple </name>

<price> 5 </price>

<type> green </type>

</item>

<item>

<name> orange </name>

<price> 2 </price>

</item>

</fruitshop>.

The tree representation of the given XML document is given by the tree shown in Figure 2.3.

fruitshop

item

name

apple

price

5

type

green

item

name

orange

price

2

Figure 2.3: Tree representation for the XML document

The leaf nodes in the tree are parsable character data, which we will collectively denote by

PCDATA.

More formally, we define the associated tree t of an XML document recursively as follows [2]:

- The leaves of t have labels PCDATA.

- All other nodes have labels from the set of element names of the document.

- A document < a > w < /a >, where w contains only PCDATA, has an associated tree

with one node labeled a with one child labeled w.

- A document of the form < a > x1 . . . xk < /a >, where the documents x1, . . . , xk have

associated trees t1, . . . , tk, has an associated tree with root a at which the trees t1, . . . , tk

are attached, from left to right.

Chapter 2. Beyond context-free grammars 10

The DTD (Document Type Definition) associated with the XML document above, is given

by

〈! ELEMENT fruitshop (item+) 〉

〈! ELEMENT item (name, price, type?)〉

〈! ELEMENT name (#PCDATA) 〉

〈! ELEMENT price (#PCDATA) 〉

〈! ELEMENT type (#PCDATA) 〉.

We can think of the given DTD file as representing the following rewriting rules:

fruitshop → item+

item → name price (type | ε)

name → PCDATA

price → PCDATA

type → PCDATA

where ε indicates the empty string.

In these rules “fruitshop” is considered as the start symbol. The rule “fruitshop → item+”,

for example, indicates that we may replace “fruitshop” with one or more instances of “item”.

Similarly, “item → name price (type | ε)” indicates that “item” may be replaced with “name”

and “price” or with “name”, “price” and “type”.

Formally, DTD’s are defined as follows.

Definition 2.1. [2] A DTD is a triple (Σ, d, sd), where Σ is a finite alphabet (the element
names), d is a function that maps Σ symbols to PCDATA or to regular expressions over Σ,
and sd ∈ Σ is the start symbol. We write d instead of (Σ, d, sd) if there is no confusion by
doing so.

A tree t is valid with respect to d, or satisfies d if its root is labeled by sd, and for every node
with label a, the sequence a1, . . . , an of labels of its children is in the language defined by d(a).
By L(d) we denote the set of all trees that satisfies d.

The trees which represent the XML documents associated with a given DTD (the tree lan-

guage defined by the DTD) are unranked trees, since an element may have an arbitrary

number of children. For instance, in our example the root element “fruitshop” can contain

an arbitrary number of the children “item”. Also, these tree languages are homogeneous (a

tree language is homogeneous if all trees have the same root [2]).

Chapter 2. Beyond context-free grammars 11

Next we show how we can express the DTD in our example in terms of a regular tree grammar

(see Definition 3.25). Since regular tree grammars are defined over ranked alphabets (see the

notation in Section 3.6), we need a strategy to encode an unranked tree as a ranked tree. We

use here the binary tree encoding for unranked trees which is described as follows [32]:

- The first child of a node remains the first child of that node in the encoding, but it is

explicitly encoded as a left child.

- The remaining children are right descendants of the first child.

- Whenever there is a left child but no right child in the encoded tree, a # is inserted for

the right child.

- When there is only a right child but no left child in the encoded tree, a # is inserted

for the left child.

According to this encoding the binary tree that represents our XML document is shown in

Figure 2.4.

fruitshop

item

name

apple price

5 type

green #

item

name

orange price

2 #

#

#

Figure 2.4: Binary tree representation for the XML document

We can describe the DTD in terms of the regular tree grammar G = (N,Σ, R, S), where:

Chapter 2. Beyond context-free grammars 12

N = {Fruitshop, Item,Name, Price, Type},

Σ = {fruitshop(2), item(2), name(2), price(2), type(2), PCDATA(0),#(0)},

R = { Fruitshop→ fruitshop[Item,#],

Item→ item[Name, Item] | item[Name,#],

Name→ name[PCDATA,Price],

P rice→ price[PCDATA, Type] | price[PCDATA,#],

T ype→ type[PCDATA,#] },
and S = Fruitshop.

A symbol x(2), with x ∈ Σ, indicates that the node with a label x must have exactly two

children, and x(0) is a leaf node.

Using the technique explained in this example, one can express any DTD in terms of a regular

tree grammar. This shows that the binary encoding for the tree language defined by a DTD

is a regular tree language.

In this chapter we gave examples of string languages that model real-world problems, but

which are not context-free. We considered grammars with regulated rewriting and ET0L sys-

tems as an alternative generating mechanisms to describe these problems. Then we presented

circumstances in which string languages are not appropriate. In the next chapter we present

various generating mechanisms and give examples to illustrate them.

Chapter 3

Generating mechanisms

In this chapter we introduce various generating mechanisms. After giving elementary defi-

nitions, we define the grammars in the Chomsky hierarchy. In decreasing descriptive power

they are: the unrestricted, context sensitive, context-free, and regular grammars. After that

we introduce various rewriting mechanisms. Using these mechanisms we obtain matrix, pro-

grammed, random context, valence, and bag context grammars. Bag context grammars were

introduced by Drewes et al. in 2006 (see [14]). We consider, for example, the non-context-free

language L = {anbmanbm | n,m ≥ 1} and show how each of these grammars can generate

L. Then we introduce branching synchronization grammars. These grammars use parallel,

instead of sequential, derivation steps. The ET0L grammars are a well-known subclass of this

class of grammars. We conclude with a definition of regular tree grammars. We give various

examples of our own to illustrate the definitions.

3.1 Elementary definitions

Homomorphisms

Definition 3.1. [30] Let Σ and ∆ be two alphabets. A homomorphism f is a function from
Σ∗ to ∆∗ such that f(xy) = f(x)f(y) for all x, y ∈ Σ∗.

Example 3.1. As an example of a homomorphism, consider h : {a, b, . . . , z}∗ → {a, b, . . . , z}∗,

where h encrypts each word in {a, b, . . . , z}∗ by shifting each letter 3 positions as follows:

h(a) = d, h(b) = e, . . . , h(w) = z, and the last three letters to the first three letters, h(x) =

a, h(y) = b, and h(z) = c. In other words, if we associate an index with each letter defined

by a function i as follows: i(a) = 0, i(b) = 1, . . . , i(z) = 25, then i(h(α)) = (i(α)+3)mod 26,

13

Chapter 3. Generating mechanisms 14

for all α ∈ {a, b, . . . , z}. We note that i also can be extended to a homomorphism from

{a, b, . . . , z}∗ → {0, 1, . . . , 9}∗.

3.2 The Chomsky hierarchy

Unrestricted grammars

Definition 3.2. [10] An unrestricted grammar (type-0 grammar) G is a 4-tuple (N,Σ, R, S),
where

- N is a non-empty set of symbols, called nonterminals;

- Σ is a set of symbols, called terminals, with N ∩ Σ = ∅;

- if VG = N∪Σ, then R is a set of production rules of the form v → w, where v ∈ V ∗
GNV

∗
G

and w ∈ V ∗
G;

- S ∈ N is the start symbol.

A string x ∈ V +
G directly derives y ∈ V ∗

G if x = w1vw2, y = w1ww2, with w1, w2 ∈ V ∗
G, and

there is a rule v → w ∈ R. If x directly derives y, we denote this by x ⇒G y, or simply
x ⇒ y. The reflexive and transitive closure of the relation ⇒ is denoted by ⇒∗. If x ⇒∗ y,
we say that x derives y.

The language generated by G is defined as {x | x ∈ Σ∗ and S ⇒∗ x } and denoted by L(G).

The class of languages generated by unrestricted grammars is called the family of recursively

enumerable languages and denoted by L(RE).

Example 3.2. As an example of an unrestricted grammar, consider G = ({S,A,B,C,X},

{a, b}, R, S), where R contains the following rules: S → aAaX, A → aAa | bBC, B →

bBC, Ca→ aC, CX → bX, Cb→ bb, X → ε, B → ε.

It is easy to see that L(G) = {anbmanbm | n,m ≥ 1}.

The grammar G generates the string a2b3a2b3 as follows:

S ⇒ aAaX ⇒ a2Aa2X ⇒ a2bBCa2X ⇒∗ a2b3BC3a2X ⇒ a2b3C3a2X ⇒∗ a2b3a2C3X ⇒

a2b3a2C2bX ⇒ a2b3a2C2b⇒∗ a2b3a2b3.

Context sensitive grammars

Definition 3.3. [20, 27] A context sensitive grammar (type-1 grammar) is a type-0 grammar
with production rules of the form x1Ax2 → x1wx2, where x1, x2 ∈ V ∗

G, A ∈ N and w ∈ V +
G .

Chapter 3. Generating mechanisms 15

The exception to this is that we allow the rule S → ε, when S does not appear in the right-hand
side of any rule.

Equivalently, the context sensitive grammars can be defined as length increasing type-0 gram-
mars, that is, for each production rule x→ y it holds that |x| ≤ |y|. Again we obviously allow
S → ε, when S does not appear in the right-hand side of any rule.

Again the language generated by G is defined as {x | x ∈ Σ∗ and S ⇒∗ x } and denoted by

L(G). The class of all languages generated by the context sensitive grammars is called the

family of context sensitive languages and denoted by L(CS).

Example 3.3. We show in this example that L = {anbmanbm | n,m ≥ 1} ∈ L(CS). One can

see this by considering the context sensitive grammar G, where G = ({S,A,B,C,X}, {a, b},

R, S), and R contains the following rules: S → AX, A → aAa | aBa, B → bBC, Ca →

aC, Cb→ bb, X → b, B → b.

The grammar G generates the string a2b3a2b3 as follows

S ⇒ AX ⇒ aAaX ⇒ a2Ba2X ⇒∗ a2b2BC2a2X ⇒ a2b3C2a2X ⇒∗ a2b3a2C2X ⇒ a2b3a2C2b

⇒∗ a2b3a2b3.

Context-free grammars

Definition 3.4. [30] A context-free grammar is a type-0 grammar where the rules are of the
form A→ x, with A ∈ N and x ∈ V ∗

G.

The language generated by G is defined as {x | x ∈ Σ∗ and S ⇒∗ x } and denoted by L(G).

The class of all languages generated by context-free grammars is called the class of context-free

languages and denoted by L(CF).

Example 3.4. As an example of a context-free grammar, consider G = ({S}, {∧,∨,∼, (,),

x}, R, S), and R contains the rules: S → S∧S | S∨S |∼ S | (S) | x. Then G is a context-free

grammar that generates all the well-formed logic expressions over the variable x with the

operations ∧ “and”, ∨ “or”, and ∼ “not”.

Pumping lemma for context-free languages

Theorem 3.1. [36] Let A be a context-free language. Then there is a number p (the pumping
length), such that if s ∈ A and |s| ≥ p, then s can be written as uvxyz such that:

- for each i ≥ 0, uvixyiz ∈ A;

Chapter 3. Generating mechanisms 16

- |vy| > 0, and

- |vxy| ≤ p. �

One can use for example the pumping lemma to show that L = {anbmanbm | n,m ≥ 1} is not

context-free.

It should be noted that the family of context-free languages is closed under union, homomor-

phism, concatenation, and intersection with regular languages [30].

Regular grammars

Next we define the regular operations on languages.

Definition 3.5. [36] Let A and B be any two languages, we define the regular operations,
union, concatenation, and star as follows:

- Union: A ∪B or A | B = {x | x ∈ A or x ∈ B}.

- Concatenation: A ◦B = {xy | x ∈ A and y ∈ B}, and we simply write AB.

- Star: A∗ = {x1x2 . . . xk | k ≥ 0 and each xi ∈ A}. The star operation is also called
repetition or Kleene Closure.

Next we define regular expressions.

Definition 3.6. [36] A regular expression R over a finite alphabet Σ is defined recursively as
follows:

- ∅ is a regular expression;

- ε is a regular expression;

- a, for a ∈ Σ is a regular expression;

- if R1 and R2 are regular expressions, then (R1 | R2) is a regular expression;

- if R1 and R2 are regular expressions, then (R1 ◦R2) is a regular expression;

- if R is a regular expression, then R∗ is a regular expression.

Definition 3.7. [30] Let G be a type-0 grammar. We say that G is linear if all the rules of
G are of the form A → αBα′ or A → α, with α,α′ ∈ Σ∗ and A,B ∈ N . G is right-linear
if the rules are of the form A → αB or A → α, and left-linear if the rules are of the form
A→ Bα or A→ α, where A,B ∈ N and α ∈ Σ∗.

A regular grammar is a type-0 grammar that has production rules of the form A → aB, or
A→ a, where A,B ∈ N and a ∈ Σ ∪ {ε}.

Chapter 3. Generating mechanisms 17

As before, the language generated by G is defined as {x | x ∈ Σ∗ and S ⇒∗ x } and denoted

by L(G). The class of languages generated by regular grammars is called the class of regular

languages and denoted by L(REG).

It can been shown that the classes of regular, right-linear, and left-linear grammars are equiv-

alent and that they characterize the family of regular languages [30]. In other words the

family of languages that is generated by these classes of grammars is the family of regular

languages.

Next we give an example of a regular language.

Example 3.5. Let Σ = {0, . . . , 9}, Σ′ = {1, . . . , 9}. Note that Σ, for example, can be written

as a regular expression (0|1| . . . |9) which will also be denoted by Σ. Consider the set of rational

numbers, which can be described by the regular expression 0 | (ε | + | −)(Σ′Σ∗(ε | /Σ′Σ∗)).

This language can be generated using the regular grammar G = ({S,E,A,B,C,D},Σ ∪

{+,−, /}, R, S), where R contains rules: S → 0 | E | +E | −E, E → d′A | d′, A→ dA | dB |

d, B → /C, C → d′D | d′, D → dD | d, where d ∈ Σ and d′ ∈ Σ′.

3.3 Grammars with regulated rewriting

Grammars with regulated rewriting are type-0 grammars with an additional mechanism to

restrict the application of the rules in order to avoid certain derivations. There are many types

of restrictions that can be considered, but we will focus on the grammars defined below.

Matrix grammars

Definition 3.8. [10] A matrix grammar is a quadruple G = (N,Σ,M, S), where N , Σ and
S are defined exactly as in any of the grammars in the Chomsky hierarchy. The rules in M
are sequences m = (r1, r2, ..., rn), where each ri is of the same form as the rules in a type-0
grammar in the Chomsky hierarchy. If the rules in each sequence of rules are of type i, where
i ∈ {0, 1, 2, 3}, then G is a type-i matrix grammar.

Definition 3.9. [10] Let G = (N,Σ,M, S) be a matrix grammar. For x, y ∈ V ∗
G, we write

x ⇒ y if there are x0, ..., xn, x′0, ..., x
′
n−1 and x′′0, ..., x

′′
n−1 in V ∗

G with x0 = x and xn = y,
and a matrix rule (α1 → β1, α2 → β2, ..., αn → βn) ∈ M , such that xi−1 = x′i−1αix

′′
i−1 and

xi = x′i−1βix
′′
i−1 for 1 ≤ i ≤ n.

Definition 3.10. [10] A matrix grammar with appearance checking is a grammar G = (N,Σ,
F,M,S), with F ⊆M and with (N,Σ,M, S) a matrix grammar as defined above.

Definition 3.11. [10] Let G = (N,Σ, F,M,S) be a matrix grammar with appearance check-
ing. For x, y ∈ V ∗

G, we write x⇒ac y if there are x0, ..., xn, x′0, ..., x
′
n−1 and x′′0, ..., x

′′
n−1 in V ∗

G

Chapter 3. Generating mechanisms 18

with x0 = x and xn = y, and a matrix rule (α1 → β1, α2 → β2, ..., αn → βn) ∈ M , such that
for 1 ≤ i ≤ n, xi−1 = x′i−1αix

′′
i−1 and xi = x′i−1βix

′′
i−1, or αi → βi ∈ F , αi is not a substring

of xi−1, and xi−1 = xi.

As usual, the language generated by G is defined as L(G) = {x | x ∈ Σ∗ and S ⇒∗ x } and

denoted by L(G).

The class of matrix grammars with context-free rules without λ productions (productions of

the form A → λ) and no appearance checking, are for example denoted by L(M,CF − λ),

and the same class with appearance checking by L(M,CF − λ, ac). Also, the class of matrix

grammars of type-0, type-1, type-2, and type-3 without appearance checking are denoted

by L(M,RE), L(M,CS), L(M,CF), and L(M,REG) respectively, and with appearance

checking by L(M,RE, ac), L(M,CS, ac), L(M,CF, ac), and L(M,REG, ac).

Example 3.6. As an example of a matrix grammar we consider the following grammar

(exercise in [10]). Let G = ({S,A,B,C,D}, {a, b},M, S), be the matrix grammar with the

matrix rules given below.

m1 : (S → ABCD), m2 : (A → aA,C → aC), m3 : (B → bB,D → bD),m4 : (A → a,C →

a), m5 : (B → b,D → b).

Then L(G) = {anbmanbm | n,m ≥ 1}.

The grammar G generates the string ab2ab2 as follows:

S ⇒m1
ABCD ⇒m4

aBaD ⇒m3
abBabD ⇒m5

ab2ab2.

It should be noted that each word in L(G) consists of four parts A, B, C and D this is given

by m1. The two parts A and C contain only a’s with the same number. Also B and D contain

only b’s with the same numbers. This is given by the two matrices m2 and m3, respectively.

Finally m4 and m5 for termination.

Programmed grammars

Definition 3.12. [10] A programmed grammar is a quadruple G = (N,Σ, P, S), where P
contains finitely many production rules of the form (r : α → β, σ(r), φ(r)), and N , Σ, S,
and α → β are as in the Chomsky grammars. In the rule (r : α → β, σ(r), φ(r)), r is a
label and each rule in P has a unique label. The set of all labels is denoted by Lab(P) thus,
Lab(P) = {r : (r : α → β, σ(r), φ(r)) ∈ P}. In the production rule (r : α → β, σ(r), φ(r)),
we have that σ(r) ⊆ Lab(P) and φ(r) ⊆ Lab(P). The sets σ(r) and φ(r) are referred to as
the success and failure fields associated with r, respectively.

Definition 3.13. [10] If (x, r1), (y, r2) ∈ V ∗
G × Lab(P), we write (x, r1) ⇒ (y, r2) if either:

Chapter 3. Generating mechanisms 19

- x = x1αx2, y = x1βx2, x1, x2 ∈ V ∗
G, (r1 : α→ β, σ(r1), ϕ(r1)) ∈ P and r2 ∈ σ(r1), or

- x = y, (r1 : α→ β, σ(r1), ϕ(r1)) ∈ P with α not a substring of x, and r2 ∈ ϕ(r1).

Definition 3.14. [10] If all the failure fields of rules in P are empty, then the programmed
grammar G is without appearance checking.

For a programmed grammar G, the language generated by G is given by {x ∈ Σ∗ | (S, r1) ⇒
∗

(x, r2) for some r1, r2 ∈ Lab(P) }.

We denote the classes of programmed grammars with and without appearance checking by

L(P,X, ac) and L(P,X), respectively. In L(P,X, ac) and L(P,X) the symbol X could for

example be equal to RE, CS, CF , CF−λ, or REG. Thus, by L(P,RE), L(P,CS), L(P,CF),

L(P,CF − λ) and L(P,RE) for example, we denote the classes of programmed grammars

without appearance checking and with production rules of the same form as in the recursively

enumerable, context sensitive, context-free, context-free without λ productions, and regular

grammars, respectively.

Example 3.7. As an example of a programmed grammar, consider the language L =

{anbmanbm | n,m ≥ 1}. The language L can be generated using programmed grammar

G = ({S,A,B,C,D}, {a, b}, P, S), where R contains the production rules:

(r1 : S → ABCD, {r2, r4, r6, r8}, ∅),

(r2 : A→ aA, {r3}, ∅),

(r3 : C → aC, {r2, r4, r6, r8}, ∅),

(r4 : B → bB, {r5}, ∅),

(r5 : D → bD, {r2, r4, r6, r8}, ∅),

(r6 : A→ a, {r7}, ∅),

(r7 : C → a, {r4, r8}, ∅),

(r8 : B → b, {r9}, ∅),

(r9 : D → b, {r2, r6}, ∅).

The grammar G generates the string ab2ab2 as follows:

(S, r1) ⇒ (ABCD, r6) ⇒
∗ (aBaD, r4) ⇒

∗ (abBabD, r8) ⇒
∗ (ab2ab2, r2).

In this derivation we start from (S, r1), by applying r1 the start symbol is replaced with

ABCD and we choose the next rule from r1 success field, that is σ(r1) = {r2, r4, r6, r8}, thus

we have (ABCD, r6). In general, when we apply the rule r2 we must apply r3 next, since

σ(r2) = {r3} also note that we cannot apply r3 again unless we apply r2. Thus we get equal

Chapter 3. Generating mechanisms 20

number of a’s generated from A and C. Similarly for B and D but we get equal number of

b’s.

Random context grammars

Definition 3.15. [10] A random context grammar is a quadruple G = (N,Σ, R, S), where
R contains finitely many production rules of the form (α → β, P, F), with P,F ⊆ N , and
N,Σ, S, α → β are as in the Chomsky grammars. In the rule (α → β, P, F), the sets P and
F are called the permitting and forbidding context respectively.

Definition 3.16. [10] For two strings x, y ∈ V ∗
G, we write x⇒ y if x = x′αx′′, y = x′βx′′ for

some x′, x′′ ∈ V ∗
G, and (α→ β, P, F) is a rule in R such that all nonterminals in P appear in

x′ and x′′, and none of the nonterminals in F appear in x′ or x′′.

Definition 3.17. [10] A random context grammar is without appearance checking if all for-
bidding contexts of rules are empty. A random context grammar without appearance checking
is also called a random permitting context grammar. We denote the class of random permit-
ting context grammars where all rules are of type i, by rPcg-i.
A random forbidding context grammar is a random context grammar in which the permitting
contexts of all rules are empty. The class of random forbidding context grammars with type-i
rules are denoted by rFcg-i. The families of languages corresponding to rPcg-i and rFcg-i
are denoted by rPcl-i and rFcl-i, respectively.

When G is a rPcg or rFcg we write the rules in the form (α → β,C), where C is the

permitting context, or the forbidding context, respectively.

As before we use the notation L(RC,X, ac) and L(RC,X) with X ∈ {RE,CS,CF,CF −

λ,REG}.

Example 3.8. This example illustrates random context grammars. We consider the language

L = {anbmanbm | n,m ≥ 1}. This language can be generated using the random context

grammar G = ({S,A,B,C,D,A′, B′, C ′,D′}, {a, b}, R, S), where R contains the following

rules:
r1 : (S → ABCD, ∅, ∅),

r2 : (A→ aA′, {C}, ∅),

r3 : (C → aC ′, {A′}, ∅),

r4 : (A′ → A, {C ′}, ∅),

r5 : (C ′ → C, {A}, ∅),

Chapter 3. Generating mechanisms 21

r6 : (B → bB′, {D}, ∅),

r7 : (D → bD′, {B′}, ∅),

r8 : (B′ → B, {D′}, ∅),

r9 : (D′ → D, {B}, ∅),

r10 : (A→ a, {C}, ∅),

r11 : (C → a, ∅, {A,A′}),

r12 : (B → b, {D}, ∅),

r13 : (D → b, ∅, {B,B′}).

The grammar G derives the string ab2ab2 as follows:

S ⇒r1
ABCD ⇒∗

r10,r11
aBaD ⇒∗

r6,r7
abB′abD′ ⇒∗

r8,r9
abBabD ⇒∗

r12,r13
ab2ab2.

The permitting context in the rules r2, . . . , r5 ensures that once we apply r2 then r2 cannot be

applied again unless r3, r4 and r5 are applied. Also if we apply r3 then r3 cannot be applied

again unless r4, r5 and r2 are applied. Thus, ensures that A and C generate equal number of

a’s. Note that A′ is used to check if r2 has been applied, similarly C ′ is used to check if r3

has been applied. In a similar way the rules r6, . . . , r9 are applied. The forbidding context in

r11 shows that C cannot terminate till A terminates and similarly in r13 D cannot terminate

till B terminates.

Valence grammars

Definition 3.18. [25] A valence grammar G over Zk (k copies of the integers) is a quadruple
G = (N,Σ, R, S), where R contains rules of the form (v → w, r), r ∈ Zk is the valence of the
rule, and N,Σ, S and v → w are as in Chomsky grammars.

Definition 3.19. [25] For x, y ∈ V ∗
G and a, b ∈ Zk we write (x, a) ⇒ (y, b) or xa ⇒ yb if there

is a rule (v → w, r) such that x = x1vx2 and y = x1wx2 and b = a+ r, with x1, x2 ∈ V ∗
G.

The language generated by G is defined by L(G) = {x | x ∈ Σ∗, (S,~0) ⇒∗ (x,~0)}.

We will also use the notation L(V,X), with X ∈ {RE,CS,CF,CF − λ,REG}.

Example 3.9. To illustrate valence grammars, consider the language L = {anbmanbm |

n,m ≥ 1}. This language can be generated by using the valence grammar G over Z2, where

Chapter 3. Generating mechanisms 22

G = ({S,A,B,C,D}, {a, b}, R, S), and R contains the following rules:

r1 : (S → ABCD, (0, 0)),

r2 : (A→ aA, (1, 0)), r3 : (A→ a, (1, 0)),

r4 : (C → aC, (−1, 0)), r5 : (C → a, (−1, 0)),

r6 : (B → bB, (0, 1)), r7 : (B → b, (0, 1)),

r8 : (D → bD, (0,−1)), r9 : (D → b, (0,−1)).

The string ab2ab2 is generated by G as follows:

S(0,0) ⇒r1
ABCD(0,0) ⇒

∗
r3,r6

abBCD(1,1) ⇒r7
ab2CD(1,2) ⇒

∗
r5,r8,r9

ab2ab2(0,0).

In this grammar the derivation starts by replacing S with ABCD without changing the

valence. When the first component of the valence is zero that means the number of a’s

generated from A is equal to the number of a’s generated from C. Similarly for the second

component of the valence with B and D.

Bag context grammars (BCGs)

Definition 3.20. [14] A k-bag context grammar (k-BCG) is a 5-tuple G = (N,Σ, R, S, β0),
where N,Σ, S are as in Chomsky grammars, β0 ∈ Zk (k copies of the integers) is the initial
bag, and R contains rules of the form: v → w (λ, µ;α), where v → w are as in Chomsky
grammars and λ, µ ∈ Zk

∞ (Z∞ = Z ∪ {+∞,−∞}) are the lower and upper limits respectively,
and α ∈ Zk is the bag adjustment.

Definition 3.21. [14] We say (x, β) derives (y, β′) in one step, and we write (x, β) ⇒ (y, β′)
or xβ ⇒ yβ′, if x = x1vx2 and y = x1wx2, and there is a rule v → w (λ, µ;α) in R with
λ ≤ β ≤ µ and β′ = β + α.

The language generated by G is defined by L(G) = {x | x ∈ Σ∗, (S, β0) ⇒
∗ (x, β), β ∈ Zk}.

Again we use the notation L(BCG,X), with X ∈ {RE,CS,CF,CF − λ,REG}.

For a vector in Zk
∞ with all its components equal to x, we write xk when there is no confusion.

The rule v → w (6= a;α) for a, α ∈ Zk means this rule is applicable for all Zk \ {a}. For a

k-BCG when k is clear we omit k from notation.

Example 3.10. A 2-BCG that generates the language L = {anbmanbm | n,m ≥ 1} is given

by the grammar G = ({S,A,B,C,D}, {a, b}, R, S, (0, 0)), where R contains the following

rules:

Chapter 3. Generating mechanisms 23

r1 : S → ABCD ((0, 0), (0, 0); (1, 1)),

r2 : A→ aA ((1, 0), (1,∞); (1, 0)),

r3 : C → aC ((2, 0), (2,∞); (−1, 0)),

r4 : B → bB ((0, 1), (∞, 1); (0, 1)),

r5 : D → bD ((0, 2), (∞, 2); (0,−1)),

r6 : A→ a ((1, 0), (1,∞); (−1, 0)),

r7 : C → a ((0, 0), (0,∞); (0, 0)),

r8 : B → b ((0, 1), (∞, 1); (0,−1)),

r9 : D → b ((0, 0), (∞, 0); (0, 0)).

The grammar G generates the string ab2ab2 as follows:

S(0,0) ⇒r1
ABCD(1,1) ⇒

∗
r6,r7

aBaD(0,1) ⇒
∗
r4,r5

abBabD(0,1) ⇒
∗
r8,r9

ab2ab2(0,0).

In this bag context grammar the first bag position ensures that if we apply r2 we cannot apply

it again unless we apply r3. It also ensures that when we apply r3 it cannot be applied again

till we apply r2. Thus, shows r2 and r3 are applied the same number of times and hence A

and C generate equal number of a’s. The same holds for r4 and r5 and they generate equal

number of b’s. The rules r6 and r7 show if A terminates then C must terminate.

3.4 ET0L systems

Definition 3.22. [10] (E stands for extended, T for tables, 0 (zero) for no context, and
L for Aristid Lindenmeyer, the Hungarian biologist that was the originator of this kind of
generating mechanism).

An ET0L system is a quadruple G = (N,Σ, R,w), where Σ is a nonempty subset of the
alphabet N , R is a finite set of tables, R = {R1, . . . , Rk}, where each Ri, for 1 ≤ i ≤ k, is
a finite subset of N × N∗ which satisfies the condition that for each a ∈ N there is a word
wa ∈ N∗ such that (a,wa) ∈ Ri. We write a→ wa if (a,wa) ∈ Ri. When there is no rule for
a ∈ N in Ri, then the rule a→ a is included. The string w ∈ N+ is the starting string.

For x, y ∈ N∗ we say x derives y in G and we write x⇒ y if the following holds:

- x = x1x2 . . . xm, with xi ∈ N for 1 ≤ i ≤ m;

- y = y1y2 . . . ym, with yi ∈ N∗ for 1 ≤ i ≤ m;

- there is a table Rk ∈ R such that xi → yi ∈ Rk for all i with 1 ≤ i ≤ m.

The language generated by G is defined to be L(G) = {x ∈ Σ∗ | w ⇒∗ x},

Chapter 3. Generating mechanisms 24

where ⇒∗ is the transitive and reflexive closure of ⇒.

An ET0L system is deterministic if for each table Ri ∈ R we have precisely one rule a→ w ∈

Ri for each a ∈ N . We denote the class of such generating mechanisms by EDT0L, where the

D is short for deterministic. The class of ET0L systems for which N = Σ, is denoted by T0L,

and the class of deterministic T0L systems by DT0L. Note that a T0L system is defined by

a triple (N,R,w). An ET0L system is λ-free if there are no rules of the form a → λ in any

table. The class of Lindenmayer systems with a single table is denoted by E0L, ED0L, 0L,

and D0L respectively.

The classes of languages corresponding to Lindenmayer systems are denoted by L(ET0L),

L(EDT0L), L(T0L), L(DT0L), etc.

The main difference between these systems and phrase structure grammars is the use of

parallelism in the derivations in Lindenmayer systems. In Lindenmayer systems we replace

all the symbols of sentential forms in parallel during a derivation. There is also no distinction

between terminals and nonterminals in Lindenmayer systems, but a subset Σ of the alphabet

N is identified as the set of output symbols. Derivations in a Lindenmayer system also start

with a word in N+, instead of a single nonterminal symbol, but this difference has no real

effect on the generating power of Lindenmayer systems.

Example 3.11. Our first example of an ET0L system is from [11]. We consider an EDT0L

grammar G = (N,Σ, R, S), with N = {A,B,C,D,E, F, r, l, u, d}, Σ = {r, l, u, d}, A the initial

non-terminal and R = {R1, R2}. The table R1 contains rules: A → BAF, B → ABD, C →

DCE, D → CDB, E → FEC, F → EFA. The table R2 contains rules: A → rurd, B →

ldlu, C → urul, D → dldr, E → rulu, F → ldrd.

We interpret r, l, u, and d as lines of unit length in the directions, right, left, up, and down

respectively and ru, for example, is the concatenation of two line segments where the line that

is going up starts at the end point of the line going to the right. After replacing A,B,C,D,E

and F by the right-hand sides of the rules in R2, and interpreting the strings as line drawings,

we obtain the drawings in Figure 3.1.

Figure 3.1: After replacing A,B,C,D,E and F by making use of the rules in R2 and inter-
preting the strings as line drawings

The first few steps of a derivation are given next:

Chapter 3. Generating mechanisms 25

A⇒ BAF ⇒ ABDBAFEFA⇒ BAFABDCDBABDBAFEFAFECEFABAF .

Using the package Treebag [12] we obtain the line drawings shown in Figure 3.2 that corre-

spond to this derivation.

Figure 3.2: Steps 1, 2, 3, 4 in terms of pictures

After a few steps, using Treebag, we obtain the line drawings shown in Figure 3.3. The

drawings are approximations of the Sierpiński gasket.

Figure 3.3: Steps 8, 9, 10, 11 in Sierpiński gasket using Treebag

We note that the Sierpiński gasket consists of three copies of itself. The rules in R1 are related

to this fact. Let X,Y and Z be the three corners of the triangle read counterclockwise,

where X is the bottom left corner. Let A represent the edge XY , B represent XZ, C

represent Y X, D represent Y Z, E represent ZX, and F represent ZY . Consider, for example,

the rule A → BAF . This rule shows that the edge XY in the triangle is replaced with

XZ XY ZY which related to a triangle has initial and end points which coincide with X and

Y , respectively. Applying this to all nonterminals and with suitable substitution with R2 we

get an approximation for the Sierpiński gasket.

Example 3.12. As a second example we consider the D0L system G = ({F,+,−}, {F →

F +F −F −FF +F +F −F}, F +F +F +F) [34]. In order to express this D0L system in

terms of pictures we use the concept of turtle graphics as in [11]. Informally, turtle graphics

with angles (α0, α) gives a special interpretation for symbols F,+,− and ◦. The symbol ‘F ’

is interpreted as a line segment of unit length from (0, 0) to (sin(α0), cos(α0)), where α0 is

initially 90◦. The symbol ‘+’ is a rotation with angle α where, for example, +F is a unit line

segment rotated with α, and ‘−’ is similar to ‘+’ except the rotation is with angle −α. Lastly,

‘◦’ stands for concatenation where, for example, F ◦ F concatenates the two lines where the

second line starts at the end point of the first line. Usually we drop ‘◦’ and write FF .

Chapter 3. Generating mechanisms 26

In our example, α0 = 90◦ and α = 90◦. Then using Treebag we find that this D0L system

gives approximations to the quadratic Koch island as shown in Figure 3.4.

Figure 3.4: Steps 1, 2, 3, 5 in quadratic Koch island using Treebag

Example 3.13. As a third example we consider the D0L system G = ({F,+,−, [,]}, {F →

F [−F]F [+F][F]}, F) [34]. We use here turtle graphics with angles (0◦, 25◦). The brackets [

and] are used in turtle graphics to reset the position. In other words, after drawing what is

quoted with the brackets [and], the origin is reset to the end point before the open bracket

[. Again the line drawings (or turtle graphics) in Figure 3.5 were obtained by interpreting

the strings appropriately and using Treebag.

Figure 3.5: Steps 2, 4, 5, 6 in the plant generated by G using Treebag

3.5 Branching synchronization grammars

Before we define branching synchronization grammars in their general form, we first define a

special case, namely branching ET0L grammars.

Chapter 3. Generating mechanisms 27

Branching ET0L grammars

Definition 3.23. [13] A branching ET0L grammar is a tuple G = (N,Σ, I, J,R, S), where
N and Σ are disjoint alphabets of nonterminals and terminals respectively, I and J are
nonempty sets of alphabets of synchronization symbols and table symbols respectively, R is
the table specification where it assigns to every τ ∈ J a finite set R(τ) of rules A → ζ such
that A ∈ N and ζ ∈ ((N × I)∪Σ)∗, and S ∈ N is the start symbol or the initial nonterminal.

Related definitions [13]

A synchronization string is any element of I∗. A synchronized nonterminal (A,ϕ) is an

element of N × I∗, which consists of a nonterminal A and a synchronization string ϕ. SNG

denotes the set of all synchronized nonterminals of G. The initial synchronized nonterminal

is (S, λ).

Derivation steps [13]

For every (A,ϕ) ∈ SNG and every rule r = A → v0(B1, α1)v1 . . . (Bl, αl)vl, where l ∈ N,

A,B1, . . . , Bl ∈ N , v0, . . . , vl ∈ Σ∗, and α1, . . . αl ∈ I, we define a derivation step (A,ϕ) ⇒r

v0(B1, ϕα1)v1 . . . (Bl, ϕαl)vl. Note that the nonterminals in the right hand side concatenate

their synchronization symbols to the synchronization string of A.

To define a derivation step in general, consider ξ1, ξ2 ∈ (SNG ∪Σ)∗, where ξ1 = w0(A1, ϕ1)w1

. . . (Ah, ϕh)wh, for some (Ai, ϕi) ∈ SNG and wi ∈ Σ∗. Then there is a derivation step ξ1 ⇒ ξ2

if there are τ1, . . . , τh ∈ J and rules r1 ∈ R(τ1), . . . , rh ∈ R(τh) such that:

- ξ2 = w0ζ1w1 . . . ζhwh, where (Ai, ϕi) ⇒ri
ζi for 1 ≤ i ≤ h, and

- for 1 ≤ i, j ≤ h, ϕi = ϕj implies τi = τj .

The language generated by G is defined to be L(G) = {w ∈ Σ∗ | (S, λ) ⇒∗ w}.

We may redefine the ET0L systems as follows (see [13]): an ET0L system is a tuple G =

(N,Σ, J,R, S), where N and Σ are disjoint alphabets of nonterminals and terminals respec-

tively, J is a nonempty alphabet of table symbols, R is the table specification where it assigns

to every τ ∈ J a finite set R(τ) of rules A→ ζ such that A ∈ N and ζ ∈ (N ∪Σ)∗, and S ∈ N

is the start symbol.

Let ξ1, ξ2 ∈ (N ∪ Σ)∗ where ξ1 = w0A1w1 . . . Ahwh, w0, . . . , wh ∈ Σ∗, and A1, . . . , Ah ∈ N .

Chapter 3. Generating mechanisms 28

Then there is a derivation step ξ1 ⇒ ξ2 if there is some τ ∈ J such that R(τ) contains rules

A1 → ζ1, . . . , Ah → ζh and ξ2 = w0ζ1w1 . . . ζhwh.

From the above discussion we notice that ET0L systems are a special case of branching ET0L

systems with |I| = 1.

Branching synchronization grammars

Definition 3.24. [13] Let n ∈ N (n is called the nesting depth). A grammar with branching
synchronization and nested tables is a tuple G = (N,Σ, I, J,R, S), where N,Σ, I, J, S are as
in branching ET0L systems, and R is the table specification that assigns to every τ ∈ Jn a
finite set R(τ) of rules A→ ζ, such that A ∈ N and ζ ∈ ((N × In) ∪ Σ)∗.

Related definitions [13]

Let x = (x1, . . . , xn) ∈ Xn, where X is any set and n ∈ N. We define firstk(x) to be equal

to (x1, . . . , xk), where 0 ≤ k ≤ n. We extend the definition of firstk from Xn to (Xn)∗ as

follows: for s = γ1 . . . γm with γi ∈ Xn we define firstk(s) to be firstk(γ1) . . . f irstk(γm). If

s, s′ ∈ (Xn)∗ with |s| = |s′|, then we define level(s, s′) to be equal to max{k ∈ {0, . . . , n} |

firstk(s) = firstk(s
′)}.

Let τ ∈ Jk. A supertable R(τ) at nesting depth k for 0 ≤ k ≤ n is obtained by taking the

union
⋃

{R(τ ′) | τ ′ ∈ Jn and firstk(τ
′) = τ}. In particular, when k = n then R(τ) contains

the actual tables R(τ) where τ ∈ Jn. Also, R() is the unique table of depth 0. It contains all

the rules of G and is simply denoted by R.

A synchronization string is an element of (In)∗. A synchronized nonterminal of G is an

element of SNG = N × (In)∗. It consists of a nonterminal and synchronization string. The

initial synchronized nonterminal is (S, λ).

Derivation steps [13]

For every (A,ϕ) ∈ SNG and every rule r = A → v0(B1, α1)v1 . . . (Bl, αl)vl with (Bi, αi) ∈

N × In and vi ∈ Σ∗ we define the derivation step (A,ϕ) ⇒r v0(B1, ϕα1)v1 . . . (Bl, ϕαl)vl.

Consider two strings ξ1, ξ2 ∈ (SNG ∪ Σ)∗, where ξ1 = w0(A1, ϕ1)w1 . . . (Ah, ϕh)wh, for some

(Ai, ϕi) ∈ SNG and wi ∈ Σ∗. Then there is a derivation step ξ1 ⇒ ξ2 if there are tables

τ1, . . . , τh ∈ Jn and rules r1 ∈ R(τ1), . . . , rh ∈ R(τh) such that:

Chapter 3. Generating mechanisms 29

- ξ2 = w0ζ1w1 . . . ζhwh, where (Ai, ϕi) ⇒ri
ζi for 1 ≤ i ≤ h, and

- level(τi, τj) ≥ level(ϕi, ϕj), for all 1 ≤ i, j ≤ h.

The language generated by G is defined to be L(G) = {w ∈ Σ∗ | (S, λ) ⇒∗ w}.

The class of all languages that can be generated by branching synchronization grammars of

nesting depth n is denoted by BSn, and BS =
⋃

n∈N
BSn.

Note that branching ET0L grammars are a special case of the branching synchronization

grammars with nesting depth 1.

Example 3.14. Consider the language Lk = {x$x | x ∈ D2k}, where D2k is the Dyck lan-

guage composed of strings of balanced parentheses of k distinct pairs of parentheses. The lan-

guage D2k is generated by the context-free grammar G1 = ({A}, {a1, . . . , ak, b1, . . . , bk}, R,A)

where R contains the rules:

A→ aiAbiA | ε, 1 ≤ i ≤ k.

But context-free grammars cannot generate the language Lk (this follows from the pumping

lemma), and it seems the ET0L systems also cannot.

In [1], Atcheson, Ewert, and Shell gave a random context grammar, with context-free rules,

that generates L1. The language L1 was conjectured by Dassow and Păun in [10] to be context

sensitive but not random context. The result by Atcheson, Ewert, and Shell thus shows that

this is not the case.

Next we show that a branching ET0L system with two synchronization symbols and k + 2

table symbols can generate Lk. Let G = ({S,A}, {a1, . . . , ak, b1, . . . , bk, $}, {0, 1}, {0, 1, . . . , k+

1}, R, S), where R contains the following tables:

R(0) = {S → A(0)$A(0)},

R(i) = {A→ aiA(0)biA(1)} 1 ≤ i ≤ k,

R(k + 1) = {A→ ε}.

To see how the derivation works in G, consider a string w = a1a
2
2b

2
2b1$a1a

2
2b

2
2b1. The string

w is generated as follows:

Chapter 3. Generating mechanisms 30

S ⇒0 A(0)$A(0)

⇒1 a1A(00)b1A(01)$a1A(00)b1A(01)

⇒k+1 a1A(00)b1$a1A(00)b1

⇒2 a1a2A(000)b2A(001)b1$a1a2A(000)b2A(001)b1

⇒k+1 a1a2A(000)b2b1$a1a2A(000)b2b1

⇒∗
2,k+1 a1a

2
2A(0000)b22b1$a1a

2
2A(0000)b22b1

⇒k+1 a1a
2
2b

2
2b1$a1a

2
2b

2
2b1

where ⇒i indicates the use of table R(i), 0 ≤ i ≤ k + 1, in the derivation step.

In general to generate n copies of D2k, we use the table {S → A(0)$A(0)$. . . $A(0)} as the

first table, with n copies of A(0) in the right-hand side of the rule.

3.6 Regular tree grammars

First we present the notation that is required for tree grammars.

Notation: A set of terminals is a finite set of symbols Σ =
⋃

k∈N
Σ(k), where the symbols

in Σ(k) are said to have rank k. We assume that only finitely many of the Σ(k)’s are non-

empty. If a symbol f is in Σ(k), we can denote this by writing f as f (k). The set of all

trees over Σ is denoted by TΣ and is defined inductively as follows. It is the smallest set of

strings containing Σ and f [t1, . . . , tk] for every f ∈ Σ(k), and all t1, . . . , tk ∈ TΣ. The yield of

t = f [t1, . . . , tk] ∈ TΣ is defined recursively as follows:

yield(t) =

{

f if k = 0

yield(t1) . . . yield(tk) otherwise.

Let X = {x1, x2, . . . } be a set of distinct symbols, all of rank zero that is disjoint with every

other alphabet used here. If t ∈ TΣ(X) for some arbitrary alphabet Σ, then we denote by

t[[t1, . . . , tk]] the tree that results when each occurrence of xi in t is replaced by ti for 1 ≤ i ≤ k.

We denote the subset {x1, . . . , xm} of X by Xm.

Regular tree grammars

Definition 3.25. [15, 16] A regular tree grammar is a quadruple G = (N,Σ, R, S), where N
is a finite set of nonterminals of rank zero, Σ is a set of ranked terminals with N ∩Σ = ∅, R
is a finite set of rules of the form A→ t with A ∈ N and t ∈ TΣ(N), and S ∈ N is the start
symbol.

Chapter 3. Generating mechanisms 31

Let t, t′ ∈ TΣ∪N . There is a derivation step from t to t′ and we write t ⇒ t′ if t = s[[A]] and
t′ = s[[r]], where s ∈ TΣ∪N (X1) contains x1 exactly once and there is a rule A→ r in R.

The tree language generated by G is defined to be the set L(G) = {t ∈ TΣ | S ⇒∗ t}.

Example 3.15. As an example, consider the regular tree language over the ranked alphabet

Σ = {a(0), b(0), p(1), q(2)} that contains all the trees over Σ which have yield of the form

a+b+ (Exercise 3.20 in [16]). This language is generated by the regular tree grammar G =

(N,Σ, R, S) where N = {S,A,B}, and R contains the rules below:

S → a | b | p[S] | q[A,S] | q[A,B] | q[S,B],

A→ a | p[A] | q[A,A],

B → b | p[B] | q[B,B].

In this chapter we introduced various kinds of generating mechanisms. We considered sequen-

tial, and parallel generating mechanisms. We defined the Chomsky hierarchy in decreasing

generative power. Then we considered grammars with regulated rewriting. These grammars

have rules similar to the grammars in the Chomsky hierarchy, but with regulation mechanisms

in order to avoid certain derivations. After that we introduced branching synchronization

grammars that use parallel instead of sequential derivation steps. Finally we defined regular

tree grammars.

In the next chapter we consider various recognizing devices and discuss their relation with

grammars with regulated rewriting mechanisms.

Chapter 4

Recognizing devices and bag
context grammars

In this chapter we consider the relationship between counter automata, Petri nets and BCGs

(bag context grammars). We introduce counter automata in general, and also blind, and

partially blind counter automata. We show how to simulate k-counter automata (blind and

partially blind) with k-BCGs. Then we show that regular BCGs generate the class of recur-

sively enumerable languages. Next we define k-place Petri net automata and consider the

languages associated with them. Then we show how these automata can be simulated with

k-BCGs. We illustrate our definitions and results with our own examples.

4.1 Counter automata

Definition 4.1. [22] A k-counter automaton M = (Q,Σ, δ, q0, F) consists of a finite set Q
of states, a designated initial state q0, a set F of final or accepting states with F ⊆ Q, a
finite set Σ of input symbols, and a transition function δ : Q × (Σ ∪ {ε}) × {0, 1,−1}k →
P(Q× {0, 1,−1}k).

An instantaneous description (ID) of M is an element of Q × Σ∗ × Zk. If (q′, v1, . . . , vk) is
in δ(q, a, u1, . . . , uk) and (q, aw, y1, . . . , yk) is an ID with sgn(ui) = sgn(yi) for 1 ≤ i ≤ k,
(where for an integer x sgn(x) = 1, 0, or −1 if x > 0, x = 0, or x < 0, respectively), then
we write (q, aw, y1, . . . , yk) ⊢ (q′, w, y1 + v1, . . . , yk + vk). If a = ε the transition is called an
ε-transition.

For any ID I we write I ⊢0 I. If ID1 ⊢ ID2 and ID2 ⊢n IDn+1 we write ID1 ⊢n+1 IDn+1.
If ID1 ⊢n IDn for n ≥ 0, we call ID1 ⊢n IDn an n-step computation, and also write ID1 ⊢∗

IDn. If ID1 = (q0, w, 0, . . . , 0) and IDn = (q, ε, 0, . . . , 0) for any q ∈ F , then ID1 ⊢∗ IDn is
an accepting computation for w. The language accepted by M is L(M) = {w ∈ Σ∗ | M has
an accepting computation for w}.

32

Chapter 4. Recognizing devices and bag context grammars 33

Example 4.1. As an example of a counter automaton, consider Figure 4.1. This figure shows

a counter automaton that recognizes the language of well balanced expressions over one pair

of parenthesis “[” and “]”. This language is denoted by D2, and is called the one-sided Dyck

language on one pair of parenthesis (see [22]). The counter automaton recognizing D2 is

formally defined by M = (Q,Σ, δ, q0, F), where Q = {L,R,R′}, Σ = {[,]}, q0 = L, F = {R},

and δ is defined as follows:

δ(L, [, 1) = δ(L, [, 0) = {(L, 1)},

δ(R, [, 1) = δ(R, [, 0) = {(L, 1)},

δ(L,], 0) = {(R′, 0)},

δ(L,], 1) = δ(R,], 1) = {(R,−1)},

δ(R,], 0) = {(R′, 0)}.

L R

],−1, 6= 0

[,+1, .

[,+1, .],−1, 6= 0

R′

], 0, 0], 0, 0

Figure 4.1: A counter automaton that recognizes D2

An accepting computation for a string w = [[]] [] in D2 is given by:

(L, [[]] [], 0) ⊢ (L, []] [], 1) ⊢ (L,]] [], 2) ⊢ (R,] [], 1) ⊢ (R, [], 0) ⊢ (L,], 1) ⊢ (R, ε, 0).

In Figure 4.1, the symbols on each arc represent the input symbol, the action on the counter

(‘+1’ for increase, ‘−1’ decrease, or ‘0’ for no change), and the check for the counter value

(= 0, 6= 0, or ‘.’ for don’t care), respectively.

4.2 Blind and partially blind counter automata

Definition 4.2. [22] A k-counter automaton M = (Q,Σ, δ, q0, F) is called blind if for each
q ∈ Q and a ∈ Σ ∪ {ε} we have that δ(q, a, u1, . . . , uk) = δ(q, a, v1, . . . , vk) for all ui, vi ∈

Chapter 4. Recognizing devices and bag context grammars 34

{0, 1,−1}. A k-counter automaton is partially blind if for all q ∈ Q and a ∈ Σ ∪ {ε} we have
that δ(q, a, u1, . . . , uk) = ∅ whenever any ui is −1, and δ(q, a, u1, . . . , uk) = δ(q, a, v1, . . . , vk)
for all ui, vi ∈ {0, 1}.

Informally, a counter automaton is blind if its counters cannot be checked until the end of

the computation. It is called partially blind if it cannot be checked whether counters are 0 or

positive until the end of the computation, and on decrementing a zero counter the automaton

blocks the remainder of the computation.

In the case of blind and partially blind counter automata, counter values have no effect on

transitions. Thus, in this case we consider the transition function as a function from

Q× (Σ ∪ {ε}) to P(Q× {0, 1,−1}k).

Example 4.2. A partially blind counter automaton that recognizes D2 is shown in Figure

4.2, and is formally described by M = (Q,Σ, δ, q0, F), where Q = {L,R}, Σ = {[,]}, q0 =

L, F = {R}, and δ is defined as follows:

δ(L, [) = δ(R, [) = {(L, 1)},

δ(L,]) = δ(R,]) = {(R,−1)}.

L R

],−1

[,+1

[,+1],−1

Figure 4.2: A partially blind counter automaton that recognizes D2

We notice that our automata in both cases do not accept the empty string. In order to accept

the empty string, we simply add L to the set of the final states. Since it is always interesting

to use minimum number of states then Figures 4.1 and 4.2 can be simplified by the following

figures:

Chapter 4. Recognizing devices and bag context grammars 35

L

[,+1, .

],−1, 6= 0

R′

], 0, 0

L

[,+1

],−1

We will see later in Chapter 4 and 6 that the nonterminals complexity of a BCG that simulates

counter automaton depends on the number of states of this automaton.

It has been shown by Greibach in [22] that no blind counter automata (even with an arbitrary

number of counters) can recognize the one-sided Dyck language over one pair of parenthesis.

Thus, blind counter automata are strictly weaker than the partially blind.

Example 4.3. We consider as an example of blind counter automata, the automaton shown

in Figure 4.3, which recognizes the language L = {aibjci+j | i, j ≥ 0}. It is described by

M = (Q,Σ, δ, q0, F), where Q = {A,B,C}, Σ = {a, b, c}, q0 = A, F = {A,C}, and δ is

defined as follows:

δ(A, a) = {(A, 1)},

δ(A, b) = δ(B, b) = {(B, 1)},

δ(A, c) = δ(B, c) = δ(C, c) = {(C,−1)}.

An accepting computation for a string w = a2b2c4 is given by:

(A, a2b2c4, 0) ⊢∗ (A, b2c4, 2) ⊢∗ (B, c4, 4) ⊢∗ (C, ε, 0).

Note that the counter of M increases with each input a or b and decreases with each input

c. Thus, the counter becomes empty if #c = #a+ #b where, for example, #a indicates the

number of a’s.

4.3 Counter automata and bag context grammars

In this section we show how to simulate counter automata with BCGs. As a result we show

that any recursively enumerable language can be generated by a regular BCG. In a regular

Chapter 4. Recognizing devices and bag context grammars 36

A B

b,+1

a,+1 b,+1

C

c,−1c,−1

c,−1

Figure 4.3: A blind counter automaton that recognizes {aibjci+j | i, j ≥ 0}

BCG all rules are, with the exception of the bag conditions, of the same form as in a regular

grammar.

Theorem 4.1. [26] Any recursively enumerable language can be recognized by a 2-counter
automaton. �

Theorem 4.2. For any 1-counter automaton M , there exists a regular 1-BCG G such that
L(M) = L(G).

Proof: Let M = (Q,Σ, δ, q0, F) be a 1-counter automaton. We construct a regular 1-BCG

G = (Q,Σ, R, q0, 0), such that L(G) = L(M).

- For all qr, qs ∈ Q, a ∈ Σ ∪ {ε}, and x, y ∈ {0, 1,−1}, if (qs, y) ∈ δ(qr, a, x), add to R:

qr → aqs (0, 0; y) if x = 0

qr → aqs (1,∞; y) if x = 1

qr → aqs (−∞,−1; y) if x = −1

- For each state qs ∈ F , add to R: qs → ε (0, 0; 0).

Next we show that L(M) ⊆ L(G). Consider a word w = a0a1 . . . an ∈ L(M), n ≥ 0, and ai ∈

Σ ∪ {ε}, 0 ≤ i ≤ n. We show that w ∈ L(G). Since w ∈ L(M), there is an accepting

Chapter 4. Recognizing devices and bag context grammars 37

computation for w in M given by:

(q0, a0a1 . . . an, 0) ⊢ (q1, a1 . . . an, c1) ⊢ · · · ⊢ (qn, an, cn) ⊢ (qf , ε, 0),

with qi ∈ Q and ci ∈ Z for 1 ≤ i ≤ n, and qf ∈ F .

The accepting computation of w implies that: (q1, c1) ∈ δ(q0, a0, 0), (q2, c2 − c1) ∈ δ(q1, a1,

sgn(c1)), . . . , (qn, cn − cn−1) ∈ δ(qn−1, an−1, sgn(cn−1)), and (qf ,−cn) ∈ δ(qn, an, sgn(cn)).

From the way we constructed G, we have the following rules in R:

q0 → a0q1 (0, 0; c1),

q1 → a1q2 (x1, y1, c2 − c1),
...

...

qn−1 → an−1qn (xn−1, yn−1, cn − cn−1),

qn → anqf (xn, yn,−cn),

qf → ε (0, 0; 0),

where xi = yi = 0 if sgn(ci) = 0, xi = 1 and yi = ∞ if sgn(ci) = 1, and xi = −∞ and yi =

−1 if sgn(ci) = −1.

If we start from (q0, 0) we have the following derivation:

(q0, 0) ⇒ (a0q1, c1) ⇒ (a0a1q2, c2) ⇒ · · · ⇒ (a0a1 . . . an, 0).

This shows that w ∈ L(G) and thus that L(M) ⊆ L(G).

The reverse containment can be obtained in a similar way. We thus conclude that L(G) =

L(M). �

In the previous theorem we showed how to simulate an accepting computation of a 1-counter

automaton with a derivation in a regular 1-BCG. One can generalize the argument to show

that an accepting computation of a k-counter automaton can be simulated by a derivation in

a regular k-BCG.

Corollary 4.3. For each k-counter automaton M , there exists a regular k-BCG G such that
L(G) = L(M). �

Corollary 4.4. Any recursively enumerable language can be generated by a regular 2-BCG.

Proof: The proof of this corollary follows from Theorem 4.1 and Corollary 4.3. �

In case of blind and partially blind 1-counter automata we construct a regular 1-BCG in a

similar way, except if (qs, y) ∈ δ(qr, a) we add the rule qr → aqs (−∞,∞; y) for the blind

Chapter 4. Recognizing devices and bag context grammars 38

automaton, since counter values have no effect on transitions. For the partially blind we add

qr → aqs (0,∞; y), since transitions occur on positive or zero counter values.

Note that in case of a BCG simulating a partially blind counter automata, we have that a

derivation is blocked if the bag becomes negative.

B B′

a,−1,+1, 6= 0, .

ε, 0,+1, ., .

C

ε,
0,

0,
0,
.

ε,
0,

0,
.,

0

X

A

ε,
0,

0,
6=

0,
0

ε,
−

1,
0,
6=

0,
0

ε, 0, 0, 0, .

a,+1, 0, 0, 0 ε,+1,−1, ., 6= 0

ε, 0,−1, 0, 6= 0

Figure 4.4: A 2-counter automaton that recognizes {a2n

| n ≥ 0}

Example 4.4. To illustrate Theorem 4.2, consider the 2-counter automaton shown in Fig-

ure 4.4. This automaton recognizes the language L = {a2n

| n ≥ 0} and is described by

M = (Q,Σ, δ, q0, F), where Q = {A,B,B′, C,X}, Σ = {a}, q0 = A and F = {X}, and the

transition function is defined as follows:

Next we give the transition function. The transition function is given in terms of one-step

computations. Each one-step computation is also given a label. Note that we use for example

the labels t21
and t22

to label (A, ε, 1, 0) ⊢ (X,−1, 0) and (A, ε, 1, 0) ⊢ (B, 0, 0) respectively,

since the cardinality of δ(A, ε, 1, 0) is two.

Chapter 4. Recognizing devices and bag context grammars 39

t1 : (A, a, 0, 0) ⊢ (A, 1, 0),

t21
: (A, ε, 1, 0) ⊢ (X,−1, 0),

t22
: (A, ε, 1, 0) ⊢ (B, 0, 0),

t3 : (B, a, 1, 0) ⊢ (B′,−1, 1),

t4 : (B, a, 1, 1) ⊢ (B′,−1, 1),

t5 : (B′, ε, 0, 1) ⊢ (B, 0, 1),

t6 : (B′, ε, 1, 1) ⊢ (B, 0, 1),

t71
: (B, ε, 0, 1) ⊢ (X, 0, 0),

t72
: (B, ε, 0, 1) ⊢ (C, 0, 0),

t8 : (X, ε, 0, 1) ⊢ (X, 0,−1),

t9 : (C, ε, 0, 1) ⊢ (C, 1,−1),

t10 : (C, ε, 1, 1) ⊢ (C, 1,−1),

t11 : (C, ε, 1, 0) ⊢ (B, 0, 0).

Before we construct the equivalent regular 2-BCG G, we give an intuitive description of the

given counter automaton M . Let C1 and C2 be the first and second counters respectively.

The initial state of M is A. If M receives ‘a’ as input, it stays in state A and increases C1 by

1. The automaton M accepts the input ‘a’ by moving to state X.

If the input string contains more than one ‘a’, the automaton moves from state A to B during

an accepting computation, after reading the first ‘a’. Further note that if C1 is 0 in state B,

then a prefix of length 2m, for m ≥ 1, has been processed, and the value of C2 will also be

2m.

Finally note that state C is used to copy the value of C2 to C1 and to set the value of C2

equal to 0.

Next we apply the procedure given in Theorem 4.2 to construct a regular 2-BCG G =

(N,Σ, R,A, (0, 0)) that generates the language L = {a2n
| n ≥ 0}. In this bag context

grammar N = {A,B,B′, C,X}, Σ = {a} and R is given by:

Chapter 4. Recognizing devices and bag context grammars 40

r1 : A→ aA ((0, 0), (0, 0); (1, 0)),

r2 : A→ X ((1, 0), (∞, 0); (−1, 0)),

r3 : A→ B ((1, 0), (∞, 0); (0, 0)),

r4 : B → aB′ ((1, 0), (∞,∞); (−1, 1)),

r5 : B′ → B ((0, 1), (∞,∞); (0, 1)),

r6, r7 : B → X | C ((0, 1), (0,∞); (0, 0)),

r8 : X → X ((0, 1), (0,∞); (0,−1)),

r9 : C → C ((0, 1), (∞,∞); (1,−1)),

r10 : C → B ((1, 0), (∞, 0); (0, 0)),

r11 : X → ε ((0, 0), (0, 0); (0, 0)).

Consider the string w = a4 ∈ L. The string w has an accepting computation in M given by:

(A, a4, 0, 0) ⊢t1 (A, a3, 1, 0) ⊢t22
(B, a3, 1, 0) ⊢t3 (B′, a2, 0, 1) ⊢t5 (B, a2, 0, 2) ⊢t72

(C, a2, 0, 2)

⊢∗
t9,t10

(C, a2, 2, 0) ⊢t11 (B, a2, 2, 0) ⊢t3 (B′, a, 1, 1) ⊢t6 (B, a, 1, 2) ⊢t4 (B′, ε, 0, 3) ⊢t5 (B, ε, 0, 4)

⊢t71
(X, ε, 0, 4) ⊢∗

t8
(X, ε, 0, 0).

In this computation, ID1 ⊢tk ID2 indicates a transition from instantaneous description ID1

to ID2 by applying rule tk.

The corresponding derivation of w in G is given by:

A(0,0) ⇒r1
aA(1,0) ⇒r3

aB(1,0) ⇒r4
a2B′

(0,1) ⇒r5
a2B(0,2) ⇒r7

a2C(0,2) ⇒∗
r9
a2C(2,0) ⇒r10

a2B(2,0) ⇒r4
a3B′

(1,1) ⇒r5
a3B(1,2) ⇒r4

a4B′
(0,3) ⇒r5

a4B(0,4) ⇒r6
a4X(0,4) ⇒

∗
r8
a4X(0,0) ⇒r11

a4
(0,0).

4.4 Petri nets

Petri nets constitute an important graphical and mathematical modelling tool that is used to

model concurrent systems. In this section we consider the formal language aspects of Petri

nets. We define Petri net automata and extend the definition of [22] to allow ε-transitions.

We consider the languages associated with Petri net automata and show how to generate

these languages with BCGs (bag context grammars).

Definition 4.3. [22, 10] A k-place Petri net automaton M = (P,Σ, T, F,m0) consists of a
finite set of places P = {p1, . . . , pk}, a finite set of input symbols Σ, a finite set of labelled
transitions T ⊆ Nk

0 × (Σ ∪ {ε}) ×Nk
0 (N0 = N ∪ {0}), a set F of final places with F ⊆ P , and

an initial marking m0 ∈ Nk
0.

An instantaneous description (ID) of M is a member of Σ∗ × Nk
0. In the instantaneous

Chapter 4. Recognizing devices and bag context grammars 41

description (w,n1, . . . , nk), we call w the input to be processed and ni the number of tokens
in place pi. If t = (u1, . . . , uk, a, v1, . . . , vk) ∈ T , a ∈ Σ ∪ {ε} and (aw, y1, . . . , yk) ∈ ID such
that ui ≤ yi for all i, 1 ≤ i ≤ k, then we say that t is enabled. Under these circumstances we
have the transition (aw, y1, . . . , yk) ⊢ (w, (y1 − u1) + v1, . . . , (yk − uk) + vk). We describe this
transition as “firing t”. As usual we let ⊢∗ be the transitive and reflexive closure of ⊢.

A marking m for M is an element in Nk
0 where the ith component of m represents the number of

tokens in place pi. Let t = (u1, . . . , uk, a, v1, . . . , vk) ∈ T be an enabled transition at a marking
m = (y1, . . . , yk). We define a transition function δ that gives the next marking of M after
firing t as follows: δ(m, t) = ((y1−u1)+v1, . . . , (yk−uk)+vk). This definition can be extended
from T to T ∗ as follows: δ(m, ε) = m for all markings m, and δ(m,wt) = δ(δ(m,w), t) for
all markings m, t ∈ T , and w ∈ T ∗.

We consider here the following languages that are associated with Petri nets as in [10]:

- Lm(M) = {δ(m0, w) | w ∈ T ∗}. This language contains the set of all markings of M

that can be reached from an initial marking m0 by firing enabled transitions.

- Lf (M) = {w | w ∈ Σ∗ such that (w,m0) ⊢∗ (ε,m) for some marking m of M}. This

language is called the free Petri net language and consists of all strings that can cause

a firing sequence in M starting with the initial marking m0.

- Lt(M,Fm) = {w | w ∈ Σ∗ such that (w,m0) ⊢∗ (ε,m) for some marking m ∈ Fm},

where Fm is a given set of final markings. This language is called the terminal Petri

net language with respect to the set Fm of terminal markings, and consists of all input

strings that transform the initial marking m0 to a final marking m by firing enabled

transitions.

We defined the languages Lf (M) and Lt(M,Fm) over the input alphabet Σ, in contrast to [10]

where they are defined over symbols in T . Dassow and Păun in [10] considered these three

languages and discussed their relation with grammars with regulated rewriting, namely pure

matrix grammars (which are, informally, matrix grammars that do not distinguish between

terminals and nonterminals). We consider here each of these three languages and show how

BCGs can generate them.

We start with a special case of Lt(M,Fm), where we consider the language css(M), which is

defined as follows (see [22]):

css(M) = {w | w ∈ Σ∗ such that (w, 1, 0, . . . , 0) ⊢∗ I},

where I is the ID (ε, n1, . . . , nk) such that nt = 1 for some pt ∈ F and ni = 0 for all i 6= t.

Chapter 4. Recognizing devices and bag context grammars 42

We call (w, 1, 0, . . . , 0) ⊢∗ I an accepting computation of w in M , and I an accepting ID.

Note that in Lt(M,Fm), when m0 = (1, 0, . . . , 0), and Fm = {(0, . . . , 0, 1, 0, . . . , 0) where 1 is

in the tth position for some pt ∈ F}, then we have css(M).

In the graphical representation of Petri nets, we draw places as circles, transitions as bars, and

tokens as small black circles inside places. At each transition we write the input symbol that

is consumed when the transition fires. We label each arc from place to transition or transition

to place with the number of tokens that are consumed or produced when that transition fires.

If there is no label, then one token is consumed or produced.

Example 4.5. As an example of a Petri net automaton, consider the automaton M shown

in Figure 4.5 with css(M) = {aibjc2(i+j) | i, j ≥ 0}. This automaton is described by: M =

(P,Σ, T, F,m0), where P = {p1, p2, p3, p4}, Σ = {a, b, c}, F = {p4}, m0 = (1, 0, 0, 0) and T

contains the following transitions:

t1 = (1, 0, 0, 0, a, 1, 2, 0, 0), t2 = (1, 0, 0, 0, ε, 0, 0, 1, 0), t3 = (0, 0, 1, 0, b, 0, 2, 1, 0),

t4 = (0, 0, 1, 0, ε, 0, 0, 0, 1), t5 = (0, 1, 0, 1, c, 0, 0, 0, 1).

Consider the string w = a2bc6 in css(M). The string w has an accepting computation given

by:

(a2bc6, 1, 0, 0, 0) ⊢t1 (abc6, 1, 2, 0, 0) ⊢t1 (bc6, 1, 4, 0, 0) ⊢t2 (bc6, 0, 4, 1, 0) ⊢t3 (c6, 0, 6, 1, 0) ⊢t4

(c6, 0, 6, 0, 1) ⊢∗
t5

(c, 0, 1, 0, 1) ⊢t5 (ε, 0, 0, 0, 1).

p1 t2/ε p3 t4/ε

t1/a t3/b

p4

t5/c

p2

22

Figure 4.5: A Petri net automaton with css = {aibjc2(i+j) | i, j ≥ 0}

The languages Lm(M) and Lf (M) are given by:

Lm(M) = {(1, 2n, 0, 0) | n ≥ 0} ∪ {(0, 2n, 1, 0) | n ≥ 0} ∪ {(0, n, 0, 1) | n ≥ 0},

Chapter 4. Recognizing devices and bag context grammars 43

and Lf (M) = {aibjck | 0 ≤ i, j, k, and k ≤ 2(i + j)}.

4.5 Petri nets and bag context grammars

In this section we consider the relationship between Petri nets and BCGs. We show how to

simulate k-place Petri net automata with k-BCGs.

Theorem 4.5. For each k-place Petri net automaton M , there exists a regular k-BCG G
with one nonterminal such that css(M) = L(G).

Proof: Let M = (P,Σ, T, F,m0) be a k-place Petri net automaton with P = {p1, . . . , pk}

and m0 = (1, 0, . . . , 0). We construct a regular k-BCG G = ({S},Σ, R, S, (1, 0, . . . , 0)) such

that L(G) = css(M) as follows:

- For each t = (u1, . . . , uk, a, v1, . . . , vk) ∈ T add to R:

S → aS ((u1, . . . , uk),∞k, (v1 − u1, . . . , vk − uk)).

- For each pt ∈ F add to R:

S → ε ((0, . . . , 0, 1, 0, . . . , 0), (0, . . . , 0, 1, 0, . . . , 0), 0k), where the 1 is in the tth position.

Next we show css(M) = L(G). We use a similar argument to the argument that we used to

simulate a counter automaton with a BCG.

Let w = a0a1 . . . an ∈ css(M) where ai ∈ Σ∪{ε} for 0 ≤ i ≤ n. The string w has an accepting

computation in M given by:

(a0a1 . . . an, 1, 0, . . . , 0) ⊢ (a1 . . . an, v11
, . . . , v1k

) ⊢ (a2 . . . an, v21
, . . . , v2k

) ⊢ . . .

⊢ (an, vn1
, . . . , vnk

) ⊢ (ε, 0, . . . , 0, 1, 0, . . . , 0)

where 1 is in the tth position.

This accepting computation implies that M has transitions:

(1, 0, . . . , 0, a0, v11
, . . . , v1k

), (u11
, . . . , u1k

, a1, v21
− v11

+ u11
, . . . , v2k

− v1k
+ u1k

),

(u21
, . . . , u2k

, a2, v31
− v21

+ u21
, . . . , v3k

− v2k
+ u2k

), . . . ,

(un1
, . . . , unk

, an,−vn1
+ un1

, . . . , 1 − vnt + unt ,−vnt+1
+ unt+1

, . . . , −vnk
+ unk

).

In the notation above we have vij , uij ∈ N0 with uij ≤ vij for all i and j.

From the way we constructed G, we have the following rules in R:

Chapter 4. Recognizing devices and bag context grammars 44

S → a0S ((1, 0, . . . , 0),∞k; (v11
− 1, v12

, . . . , v1k
)),

S → a1S ((u11
, . . . , u1k

),∞k; (v21
− v11

, . . . , v2k
− v1k

)),

S → a2S ((u21
, . . . , u2k

),∞k; (v31
− v21

, . . . , v3k
− v2k

)),
...

...

S → an−1S ((un−11
, . . . , un−1k

),∞k; (vn1
− vn−11

, . . . , vnk
− vn−1k

)),

S → anS ((un1
, . . . , unk

),∞k; (−vn1
, . . . , 1 − vnt ,−vnt+1

. . . ,−vnk
)),

S → ε ((0, . . . , 0, 1, 0, . . . , 0), (0, . . . , 0, 1, 0, . . . , 0); 0k).

In the last rule we have a 1 in the tth bag position.

Then w has a derivation in G given by:

S(1,0,...,0) ⇒ a0S(v11
,...,v1k

) ⇒ a0a1S(v21
,...,v2k

) ⇒ · · · ⇒ a0a1 . . . an−1S(vn1
,...,vnk

) ⇒

a0a1 . . . anS(0,...,0,1,0,...,0) ⇒ a0a1 . . . an(0,...,0,1,0,...,0).

This shows that w ∈ L(G) and css(M) ⊆ L(G).

The reverse containment can be obtained in a similar way. Thus, we conclude that L(G) =

css(M). �

Example 4.6. To illustrate Theorem 4.5 consider the Petri net automaton M shown in

Figure 4.6 with css(M) = {aibjcidj | i, j ≥ 0}. This automaton is formally described by: M =

(P,Σ, T, F,m0), where P = {p1, . . . , p6}, Σ = {a, b, c, d}, F = {p6}, m0 = (1, 0, 0, 0, 0, 0), and

T contains the following transitions.

t1 = (1, 0, 0, 0, 0, 0, a, 1, 1, 0, 0, 0, 0), t2 = (1, 0, 0, 0, 0, 0, ε, 0, 0, 1, 0, 0, 0),

t3 = (0, 0, 1, 0, 0, 0, b, 0, 0, 1, 1, 0, 0), t4 = (0, 0, 1, 0, 0, 0, ε, 0, 0, 0, 0, 1, 0),

t5 = (0, 1, 0, 0, 1, 0, c, 0, 0, 0, 0, 1, 0), t6 = (0, 0, 0, 0, 1, 0, ε, 0, 0, 0, 0, 0, 1),

t7 = (0, 0, 0, 1, 0, 1, d, 0, 0, 0, 0, 0, 1).

According to the proof of Theorem 4.5, the corresponding regular 6-BCG that generates the

language css(M) is G = ({S}, {a, b, c, d}, R, S, (1, 0, 0, 0, 0, 0)) where R contains the rules:

r1 : S → aS ((1, 0, 0, 0, 0, 0),∞6 ; (0, 1, 0, 0, 0, 0)),

r2 : S → S ((1, 0, 0, 0, 0, 0),∞6 ; (−1, 0, 1, 0, 0, 0)),

r3 : S → bS ((0, 0, 1, 0, 0, 0),∞6 ; (0, 0, 0, 1, 0, 0)),

r4 : S → S ((0, 0, 1, 0, 0, 0),∞6 ; (0, 0,−1, 0, 1, 0)),

r5 : S → cS ((0, 1, 0, 0, 1, 0),∞6 ; (0,−1, 0, 0, 0, 0)),

r6 : S → S ((0, 0, 0, 0, 1, 0),∞6 ; (0, 0, 0, 0,−1, 1)),

r7 : S → dS ((0, 0, 0, 1, 0, 1),∞6 ; (0, 0, 0,−1, 0, 0)),

r8 : S → ε ((0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 1); 06).

Chapter 4. Recognizing devices and bag context grammars 45

p1 t2/ε p3 t4/ε

t1/a t3/b

p4p2

t5/c

t7/d

p5 t6/ε

p6

Figure 4.6: A Petri net automaton with css = {aibjcidj | i, j ≥ 0}

Consider a string w = a2bc2d ∈ css(M). The string w has an accepting computation given

by:

(a2bc2d, 1, 0, 0, 0, 0, 0) ⊢∗
t1

(bc2d, 1, 2, 0, 0, 0, 0) ⊢t2 (bc2d, 0, 2, 1, 0, 0, 0) ⊢t3 (c2d, 0, 2, 1, 1, 0, 0)

⊢t4 (c2d, 0, 2, 0, 1, 1, 0) ⊢∗
t5

(d, 0, 0, 0, 1, 1, 0) ⊢t6 (d, 0, 0, 0, 1, 0, 1) ⊢t7 (ε, 0, 0, 0, 0, 0, 1).

The corresponding derivation in G for w is given by:

S(1,0,0,0,0,0) ⇒∗
r1
a2S(1,2,0,0,0,0) ⇒r2

a2S(0,2,1,0,0,0) ⇒r3
a2bS(0,2,1,1,0,0) ⇒r4

a2bS(0,2,0,1,1,0) ⇒∗
r5

a2bc2S(0,0,0,1,1,0) ⇒r6
a2bc2S(0,0,0,1,0,1) ⇒r7

a2bc2dS(0,0,0,0,0,1) ⇒r8
a2bc2d(0,0,0,0,0,1).

It can be shown that the languages Lm(M) and Lf (M) are given by:

Lm(M) = {(1, n, 0, 0, 0, 0) | n ≥ 0} ∪ {(0, n1, 1, n2, 0, 0) | n1, n2 ≥ 0} ∪ {(0, n1, 0, n2, 1, 0) |

n1, n2 ≥ 0} ∪ {(0, n1, 0, n2, 0, 1) | n1, n2 ≥ 0},

and

Lf (M) = {aibjckdl | 0 ≤ i, j, k, l, k ≤ i, and l ≤ j}.

Example 4.7. For the automaton shown in Figure 4.5 we have from the proof of Theorem 4.5,

that the corresponding regular 4-BCG that generates the language css(M) = {aibjc2(i+j) |

i, j ≥ 0} is G = ({S}, {a, b, c}, R, S, (1, 0, 0, 0)) and R has the following rules:

Chapter 4. Recognizing devices and bag context grammars 46

r1 : S → aS ((1, 0, 0, 0),∞4 ; (0, 2, 0, 0)),

r2 : S → S ((1, 0, 0, 0),∞4 ; (−1, 0, 1, 0)),

r3 : S → bS ((0, 0, 1, 0),∞4 ; (0, 2, 0, 0)),

r4 : S → S ((0, 0, 1, 0),∞4 ; (0, 0,−1, 1)),

r5 : S → cS ((0, 1, 0, 1),∞4 ; (0,−1, 0, 0)),

r6 : S → ε ((0, 0, 0, 1), (0, 0, 0, 1); 04).

The string w = a2bc6 has a derivation in G given by:

S(1,0,0,0) ⇒r1
aS(1,2,0,0) ⇒r1

a2S(1,4,0,0) ⇒r2
a2S(0,4,1,0) ⇒r3

a2bS(0,6,1,0) ⇒r4
a2bS(0,6,0,1) ⇒∗

r5

a2bc5S(0,1,0,1) ⇒r5
a2bc6S(0,0,0,1) ⇒r6

a2bc6(0,0,0,1).

It is not hard to show that Theorem 4.5 holds for an arbitrary initial markingm0 and arbitrary

set of final markings. In the proof of Theorem 4.5 we only need to set the initial bag in G

to m0, and the limits of the termination rules (rules of the form S → ε) such that they can

be applied only to a bag value corresponding to a final marking. In other words, if mf is

a given final marking, then we add the rule S → ε (mf ,mf , (0, . . . , 0)) to the BCG. In this

case we change our notation of Petri net automata such that we let F refer to the set of final

markings instead of final places, and we write Fm, and for the terminal Petri net language

with respect to Fm we write Lt(M).

Definition 4.4. Let G = (N,Σ, R, S, β0) be a k-BCG. We define bags(G) to be the set of all
bags that can be obtained by applying some applicable rules in R starting from S with initial
bag β0. Thus

bags(G) = {β ∈ Zk | (S, β0) ⇒
∗ (S′, β) where S′ ∈ (N ∪ Σ)∗}.

Definition 4.5. For any BCG G, we define an associated BCG that is given by Gf =
(N,Σ, Rf , S, β0), where Rf is R and the following additional rules: for each nonterminal
A ∈ N we add to Rf a rule A → ε (−∞k,∞k, 0k). Thus, Rf = R ∪ {A → ε (−∞k,∞k, 0k) |
A ∈ N}.

It is easy to see that β ∈ bags(G) if and only if there exists w ∈ L(Gf) such that (S, β0) ⇒
∗
Gf

(w, β). Also, L(G) ⊆ L(Gf).

Let M = (P,Σ, T, Fm,m0) be a k-place Petri net automaton and G = ({S},Σ, R, S,m0) the

corresponding regular k-BCG constructed by Theorem 4.5. Note that as observed before, the

proof of Theorem 4.5 can be generalized to handle an arbitrary initial marking and set of final

markings. Then one can show that Lt(M) = L(G), Lm(M) = bags(G), and Lf (M) = L(Gf).

We will not give a proof for this.

Corollary 4.6. For each k-place Petri net automaton M with a set Fm of final markings,
there exists a regular k-BCG G with one nonterminal such that:

Chapter 4. Recognizing devices and bag context grammars 47

- Lt(M) = L(G);

- Lm(M) = bags(G);

- Lf (M) = L(Gf). �

Example 4.8. For the regular 4-BCG G corresponding to the automaton in Figure 4.5 one

can show that:

bags(G) = {(1, 2n, 0, 0) | n ≥ 0} ∪ {(0, 2n, 1, 0) | n ≥ 0} ∪ {(0, n, 0, 1) | n ≥ 0} = Lm(M),

and L(Gf) = {aibjck | 0 ≤ i, j, k and k ≤ 2(i + j)} = Lf (M).

For the regular 6-BCG G corresponding to the automaton in Figure 4.6 we have:

bags(G) = {(1, n, 0, 0, 0, 0) | n ≥ 0} ∪ {(0, n1, 1, n2, 0, 0) | n1, n2 ≥ 0} ∪ {(0, n1, 0, n2, 1, 0) |

n1, n2 ≥ 0} ∪ {(0, n1, 0, n2, 0, 1) | n1, n2 ≥ 0} = Lm(M)

and L(Gf) = {aibjckdl | 0 ≤ i, j, k, l, k ≤ i, and l ≤ j} = Lf (M).

In this chapter we considered the relation between recognizing devices and generating mech-

anisms. We considered counter automata, blind, partially blind, and Petri net automata as

recognizing devices. We showed how to simulate these recognizing devices with BCGs. We

also showed that regular 2-BCGs generate the class of recursively enumerable languages. We

also introduced various examples of our own in order to illustrate theorems and definitions.

Chapter 5

Pumping and shrinking lemmas

A well-known way to show that a language is not context-free is by using the pumping

lemma for context-free languages. A pumping lemma for rPcl-2 (random permitting context

languages with context-free rules) was introduced in [19]. This pumping lemma generalizes

the pumping lemma for context-free languages, since the class of context-free languages is

included in rPcl-2. We give an alternative description of the pumping lemma for rPcl-2 in

terms of homomorphisms on strings.

We also state, without proof, the shrinking lemma for rFcl-2 (random forbidding context

languages with context-free rules) as in [18]. We illustrate the pumping and shrinking lemmas

with our own examples.

In this chapter we assume our grammars (rPcg-2 and rFcg-2) do not allow ε-productions.

5.1 A pumping lemma for rPcl-2

First we provide some notation that is required.

Recall that N = {1, 2, 3, . . . }, N0 = {0, 1, 2, 3, . . . } and let [l] = {1, 2, . . . , l}. All languages

will be over the terminal set Σ. Let L be a language, thus L ⊆ Σ∗. We denote by L≥m the

set {w ∈ L | |w| ≥ m}. The set X = {X1,X2, . . . } is a new set of symbols with no symbol

in common with any terminal or nonterminal set of the grammars and languages that we

consider. By X≤k, we denote the set {X1,X2, . . . ,Xk}. Let DΣ : (Σ ∪ X)∗ → X∗ be the

homomorphism that deletes Σ and is the identity on X. The homomorphism idΣ : Σ∗ → Σ∗,

is the identity homomorphism on Σ∗. If φ : B → C is a homomorphism and A ⊆ B, then we

denote the restriction of φ to A by φ|A. If ~u = (u1, . . . , un), ~v = (v1, . . . , vn) ∈ Nn
0 , then ~u ≤ ~v

48

Chapter 5. Pumping and shrinking lemmas 49

if ui ≤ vi for i = 1, . . . , n. By |~c| we denote the sum of the components of ~c. For two strings

s1 and s2, if ~p(s1) ≤ ~p(s2) we write s1 � s2, where ~p(s) is the Parikh image for a string s.

Recall that the Parikh image of a string w over the ordered alphabet Σ = {a1, a2, . . . , an} is

given by ψ(w) = (|w|a1
, |w|a2

, . . . , |w|an) where |w|ai
is the number of occurrences of ai in w,

1 ≤ i ≤ n. If s1 is a substring of s2, we write s1 ⊆ s2.

Lemma 5.1. [19] Let p1, p2, . . . be a sequence of nonnegative integers, and n a positive inte-
ger. There exists an integer b that depends only on the sequence p1, p2, . . . with the following
property. If ~c1,~c2, . . . in Nn

0 with |~ci| ≤ pi for i ≥ 1, then there exist indices i and j with
1 ≤ i < j ≤ b and ~ci ≤ ~cj . �

Definition 5.1. Let G be any string grammar. We say that G is sequential if its rules are
applied sequentially during the derivation.

Lemma 5.2. Let G be a sequential string grammar and L = L(G). There exists a positive
integer m such that any w ∈ L≥m has a derivation s0 ⇒∗ s1 ⇒∗ · · · ⇒∗ sd ⇒∗ w, with
|sj| < |sj+1| for 0 ≤ j < d, and su � sv for some u and v with 0 ≤ u < v ≤ d.

Proof: Let N, Σ, R, S be the nonterminals, terminals, rules, and start symbol of G, respec-

tively. Let w be an arbitrary long string in L, and consider a derivation S = s0 ⇒∗ s1 ⇒∗

· · · ⇒∗ sd ⇒∗ w for w with sj ∈ (N ∪ Σ)∗, |sj | < |sj+1|, 0 ≤ j < d, and |sj| ≤ j(a − 1) + 1,

where a is the length of longest right-hand side in R. Let ~p(s0), ~p(s1), . . . , ~p(sd) be the se-

quence of Parikh vectors associated with the derivation above. We have that |~p(sj)| = |sj | ≤

j(a− 1) + 1 for 0 ≤ j ≤ d. Let pj = j(a− 1) + 1 for j ≥ 0 and b an integer as in Lemma 5.1.

If we set m equal to b(a− 1) + 1, we can find the required u and v with su � sv. �

Next we state the pumping lemma for rPcl-2.

5.1.1 The pumping lemma

In this section we state and prove the pumping lemma in terms of string homomorphisms.

Theorem 5.3. Let L ∈ rPcl-2 and w ∈ L≥m with m as in Lemma 5.2. Then we can find:

- l ∈ [m];

- a permutation p : [l] → [l];

- w ∈ (Σ ∪X≤l)
∗ with DΣ(w) = Xp(1) . . . Xp(l);

- a homomorphism ψ : (Σ ∪X≤l)
∗ → Σ∗ with ψ|Σ = idΣ, and ψ(w) = w;

- a homomorphism φ : (Σ ∪X≤l)
∗ → (Σ ∪X≤l)

∗ with φ|Σ = idΣ and DΣφ(X1 . . . Xl) =
Xp(1) . . . Xp(l);

Chapter 5. Pumping and shrinking lemmas 50

- at least one of the strings φ(Xi) for i ∈ [l], contains a terminal symbol;

such that ψφi(w) ∈ L for all i ∈ N0.

Proof: Let G = (N,Σ, R, S) ∈ rPcg-2 and L = L(G). Consider the derivation S = s0 ⇒∗

s1 ⇒∗ · · · ⇒∗ sd ⇒∗ w for w ∈ L≥m and assume that su � sv where u < v. Consider a

derivation tree for w. Let tu and tv be the derivation trees for su and sv respectively, that

are also subtrees of the derivation tree for w. Let A = A1A2 . . . Al and B = B1B2 . . . Bk be

the strings su and sv with terminals removed. By deleting some of the nonterminals from B,

we obtain a string B′ = B′
1 . . . B

′
l and a permutation p : [l] → [l] such that B′

i = Ap(i).

s0

tu

tv

w

...

...

...

Ai

Ai

wi

Figure 5.1: Derivation tree for w

Let wi be the substring of w generated by Ai in B′. Also let w ∈ (Σ ∪ X≤l)
∗ be the word

obtained by replacing each wi in w by Xi, as indicated in Figure 5.1. We can thus define a

homomorphism ψ : (Σ∪X≤l)
∗ → Σ∗ such that ψ|Σ = idΣ, and ψ(Xi) = wi for i ∈ [l]. Clearly

ψ(w) = w and DΣ(w) = Xp(1) . . . Xp(l).

Starting from tv, we can apply to each Ai in B′ the same sequence of rules that were applied

in order to obtain sv from su. Note that the additional context in sv, which is not present

in su, will not prohibit this. This can be repeated as many times as we want. In terms of

homomorphisms we can thus define a homomorphism φ : (Σ∪X≤l)
∗ → (Σ∪X≤l)

∗, such that

φ|Σ = idΣ, DΣφ(X1 . . . Xl) = Xp(1) . . . Xp(l), and φ(Xi) is the substring of w corresponding to

Chapter 5. Pumping and shrinking lemmas 51

the substring of w derived from Ai in A. Note that since there are no ε-productions, there

exists an Xi such that φ(Xi) contains terminal symbols. In terms of φ and ψ, we thus have

that ψφi(w) ∈ L for all i ≥ 0. �

5.1.2 Illustration of the pumping lemma with three nonterminals

s0

tu

tv

w

...

A1
A2 A3

A2A1A3A1

w2w1w3w4

Figure 5.2: Derivation tree for w

In Figures 5.2 and 5.3 we have: l = 3, X≤3 = {X1,X2,X3};

p(1) = 3, p(2) = 1, and p(3) = 2;

ψ(Xi) = wi for i ∈ [l], ψ(w) = w, DΣ(w) = X3X1X2;

DΣφ(X1) = ε, DΣφ(X2) = X3, DΣφ(X3) = X1X2.

Example 5.1. Consider the language L = {(zxy)2n−1 | n ≥ 1} ∪ {(zxy)n(xyz)n | n ≥ 1}.

The language L is generated by the grammar G = ({S,A,B,C,E,G}, {x, y, z}, R, S) ∈ rPcg-

2, where R contains the following rules:

(S → ABC, ∅), (A → zE, {B,C}), (B → x, {C}), (C → yG, {E}), (E → BC, {G}), (G →

A, {B,C}), (A→ z, {B,C}), (C → y, ∅).

Consider the string w = zxyxyz with derivation tree as shown in Figure 5.4. According to

the pumping lemma we have the following:

Chapter 5. Pumping and shrinking lemmas 52

s0

tu

tv

tr

ψφ(w)

...

A1
A2 A3

A2A1A3A1

A3A1A2A1

w3w4w2w1w4

Figure 5.3: Pumping with three nonterminals

S

A

z E

B

x

C

y

B

x

C

y G

A

z

Figure 5.4: Pumping lemma: Derivation tree for w

Chapter 5. Pumping and shrinking lemmas 53

l = 3, X≤3 = {X1,X2,X3}, ψ(X1) = z, ψ(X2) = x, ψ(X3) = y;

p(1) = 2, p(2) = 3, p(3) = 1;

w = zX2X3xyX1, DΣ(w) = X2X3X1, ψ(w) = zxyxyz = w;

φ(X1) = zX2X3, φ(X2) = x, φ(X3) = yX1, and DΣφ(X1X2X3) = X2X3X1.

Now ψφ(w) = ψ(zxyX1xyzX2X3) = (zxy)3, and

ψφ2(w) = ψ(zxyzX2X3xyzxyX1) = (zxy)2(xyz)2.

We notice that ψφ2i−1(w) = (zxy)2i+1 and ψφ2i(w) = (zxy)i+1(xyz)i+1 are in L for all i ≥

1.

5.2 A shrinking lemma for rFcl-2

The shrinking lemma for rFcl-2 (random forbidding languages with context-free rules) is in

essence the dual to the pumping lemma for rPcl-2. For completeness we state this result and

illustrate it with an example.

Theorem 5.4. [18] Let L ∈ rFcl-2. For any integer t ≥ 2 there exists an integer b, which
depends only on L and t, such that for any string z ∈ L with |z| ≥ b there are t strings
z1, z2, . . . , zt = z in L, and t− 1 numbers l2, . . . , lt with 1 ≤ l2, . . . , lt ≤ b, such that for each
j with 2 ≤ j ≤ t,

- zj contains lj mutually disjoint nonempty substrings wj1, . . . , wjlj , and lj mutually dis-
joint nonempty substrings xj1, . . . , xjlj , these being related by a function ϑj : {1, . . . , lj}
→ {1, . . . , lj} such that for each i with i ∈ [lj], xji ⊆ wjϑj(i) and for at least one i with
i ∈ [lj], xji wjϑj(i);

- the word zj−1 is obtained by substituting xji for wji for all i with i ∈ [lj], in zj. �

Example 5.2. The language L = {(zxy)2n−1 | n ≥ 1} ∪ {(zxy)n(xyz)n | n ≥ 1} can

be generated by a grammar G = ({S,A,B,C,E,G,X}, {x, y, z}, R, S) ∈ rFcg-2, where R

contains the following rules:

(S → ABC, ∅), (A→ zE, {G,E}), (B → x, {A,G}), (C → yG, {A,G,X}),

(E → BC, {A,B,C}), (G→ A, {E,X}), (A→ X, {E,G}), (X → z, {A,B,C}),

(C → y, {A,G,E}).

Consider the string z3 = (zxy)3 ∈ L which has a derivation tree as shown in Figure 5.5.

According to the shrinking lemma, starting from z3 we have the following:

w31 = zxyz, w32 = x, w33 = yzxy;

x31 = zxy, x32 = x, x33 = yz;

Chapter 5. Pumping and shrinking lemmas 54

S

A

z E

B

x

C

y G

A

X

z

B

x

C

y G

A

z E

B

x

C

y

Figure 5.5: Shrinking lemma: Derivation tree for z3

ϑ3(1) = 3, ϑ3(2) = 1, ϑ3(3) = 1;

z2 = zxyxyz.

Now starting from z2 = zxyxyz we have the following:

w21 = zxy, w22 = x, w23 = yz;

x21 = z, x22 = x, x23 = y;

ϑ2(1) = 3, ϑ2(2) = 1, ϑ2(3) = 1;

z1 = zxy.

In this chapter we considered the pumping lemma for rPcl-2 as introduced in [19]. We

provided a different proof in terms of string homomorphisms. We also stated the shrinking

lemma for rFcl-2 as in [18].

In the next chapter we consider decidability and complexity properties of grammars with

regulated rewriting.

Chapter 6

Decidability and complexity in
regulated rewriting

In this chapter we consider the decidability and complexity of regulated rewriting mecha-

nisms. We consider the membership, emptiness, finiteness, and equivalence problems. We

list the decidability properties for the grammars with regulated rewriting that were defined

in Chapter 3 and show how bag context grammars behave in terms of decidability. Then

we discuss the relation between Petri nets, vector addition systems and decidability. We

show how we can use Petri nets for decision problems on rPcg-2 (random permitting context

grammars with context-free rules). After that we discuss the relationship between Groebner

bases and the decidability of reachability in Petri nets as in [4, 6]. We show how Groebner

bases are used to decide reachability in reversible Petri nets and illustrate this method with

an example. We conclude the chapter with a discussion on the complexity of grammars with

regulated rewriting. We consider the complexity of different classes of grammars in terms of

the number of nonterminals. We state important results about bounds and relationships be-

tween the complexity of various grammars with regulated rewriting. Then we give an example

that compares the complexity of different classes of grammars.

6.1 Decidability properties of regulated rewriting

First we give a definition of a decision problem.

Definition 6.1. [10] A decision problem is an expression containing one or more variables,
and that becomes “true” or “false” if elements of the basic sets are substituted for the variables.
We say a decision problem is decidable, if and only if, there is an algorithm which, for a given
tuple, decides whether or not the expression becomes “true”.

55

Chapter 6. Decidability and complexity in regulated rewriting 56

In general, a decision problem can be formulated as a question that has the answer “yes” or
“no”.

There are many decision problems that can be considered. We consider here the following

problems.

Definition 6.2. [10] Let G be a family of grammars and V any set of alphabets. Then we
define:

- Membership Problem: Given w ∈ V ∗ and G ∈ G, does w ∈ L(G) hold?

- Emptiness Problem: Is the language generated by a grammar G ∈ G empty?

- Finiteness Problem: Is the language generated by a grammar G ∈ G finite?

- Equivalence Problem: Are given grammars G1, G2 ∈ G equivalent?

Sometimes we talk about decidability for the families of languages instead of families of gram-

mars. Next we list the decidability properties for the families of grammars in the Chomsky

hierarchy and ET0L systems [10].

membership emptiness finiteness equivalence

L(REG) + + + +

L(CF) + + + −

L(CS) + − − −

L(RE) − − − −

L(ET0L) + + + −

Here “+” and “−” indicate the decidability and undecidability respectively and L(REG), for

example, is the class of regular languages.

Let C1 and C2 be two classes of languages such that C1 ⊆ C2, and let d be a decidability

property. We note that if d is decidable for C2 then it must be also decidable for C1, and if d

is undecidable for C1 then it is also undecidable for C2. If C1 = C2 then the two classes have

the same decidability properties.

Recall that M,P,RC, V and BCG are the classes of matrix, programmed, random context,

valence, and bag context grammars, respectively. Let X ∈ {M,P,RC, V,BCG}. From the

property mentioned above it is obvious that the membership, emptiness, finiteness and equiv-

alence problems are undecidable for L(X,RE). Also, the emptiness, finiteness and equiva-

lence problems are undecidable for L(X,CS), and the equivalence problem is undecidable for

L(X,CF).

Chapter 6. Decidability and complexity in regulated rewriting 57

Next we state the relationship between various families of languages generated by regulated

rewriting mechanisms. This theorem can be used to answer various decidability questions.

Theorem 6.1. [9, 10]

1. L(RC,CF) ⊆ L(M,CF) = L(P,CF),
L(RC,CF − λ) ⊆ L(M,CF − λ) = L(P,CF − λ).

2. L(RC,CF, ac) = L(M,CF, ac) = L(P,CF, ac) = L(RE),
L(RC,CF − λ, ac) = L(M,CF − λ, ac) = L(P,CF − λ, ac).

3. L(CF) ⊂ L(RC,CF − λ).

4. For X ∈ {M,P,RC} we have:

L(X,CF − λ) ⊆ L(X,CF) ⊆ L(X,CF, ac).
L(X,CF − λ) ⊆ L(X,CF − λ, ac) ⊆ L(X,CF, ac).

5. For X ∈ {M,P,RC}, the family L(X,CF − λ, ac) is strictly contained in L(CS).

6. L(CF) ⊂ L(V,CF − λ) = L(V,CF) ⊂ L(M,CF − λ). �

For X ∈ {M,P,RC} we have that L(X,CF − λ, ac) ⊂ L(CS). Thus, the membership

problem is decidable for the family L(X,CF − λ, ac). Dassow and Păun showed in [10] that

the emptiness and finiteness problems are undecidable for the family L(M,CF − λ, ac), but

that the emptiness problem is decidable for L(M,CF). It has also been shown that the

membership and finiteness problems are decidable for L(M,CF) (see [24]). Thus, we have

the following table of decidability results:

membership emptiness finiteness equivalence

L(CF) + + + −

L(V,CF) + + + −

L(X,CF − λ) + + + −

L(X,CF) + + + −

L(X,CF − λ, ac) + − − −

L(X,CF, ac) − − − −

In the table above, X ∈ {M,P,RC}.

We notice that for families of grammars with regulated rewriting and no appearance checking,

the decidability properties are equivalent to the decidability properties for the context-free

grammars.

Chapter 6. Decidability and complexity in regulated rewriting 58

Next we consider the families of languages L(BCG,Y), where Y ∈ {RE,CS,CF,REG}.

From Corollary 4.4 we have that any recursively enumerable language can be generated by a

regular bag context grammar. Thus, L(BCG,Y) have the following decidability properties:

membership emptiness finiteness equivalence

L(BCG,Y) − − − −

6.2 Petri nets, vector addition systems, and decidability

Petri nets were introduced in 1962 by A.C Petri, and vector addition systems were defined

independently some years later, in 1969, by Karp and Miller. It was observed that Petri

nets and vector addition systems are mathematically equivalent [17]. Most of the interesting

decision problems, for example reachability, are decidable for Petri nets (see [4]).

In this section we show how to use the decidability of reachability of Petri nets and vector

addition systems to show decidability in regulated rewriting. Our contribution is to prove

that the emptiness of rPcg-2 is decidable, and give a particular answer for the membership

problem using Petri nets reachability.

Next we give a definition of the reachability in Petri nets and vector addition systems. For

our purpose here we consider Petri nets in this chapter as a 4-tuple PN = (P, {ε}, T,m0)

where P, T and m0 are as in Definition 4.3.

Definition 6.3 (Reachability in Petri nets). [4] A marking mj is reachable from a marking
mi in a Petri net PN if and only if there exists w ∈ T ∗ such that δ(mi, w) = mj, where δ is
the transition function of PN .

Definition 6.4 (Vector addition systems). [10] An n-dimensional vector addition system is
a pair (x0, V) where x0 ∈ Nn

0 (the initial point) and V is a finite subset of Zn. A point y ∈ Nn
0

is reachable within this vector addition system if and only if there are vectors v1, . . . , vt in V
such that:

- (x0 +
∑j

i=1 vi) ∈ N
n
0 for 1 ≤ j ≤ t;

- (x0 +
∑t

i=1 vi) = y.

It has been shown by Mayer in 1981 that the reachability for vector addition systems is

decidable, and therefore the same holds for Petri nets (see [17]). The reachability problem

in Petri nets or vector addition systems gained an increasing importance since many other

interesting problems can be reduced to it. For instance, in formal language theory, Dassow

Chapter 6. Decidability and complexity in regulated rewriting 59

and Păun proved in [10] that the emptiness of L(M,CF) is decidable by reducing it to the

reachability of vector addition systems. Also Hauschildt and Jantzen used the decidability of

semilinearity related to a given reachability set of a Petri net, to solve various open problems

in [10]. They proved that the finiteness problem is decidable for L(M,CF), and thus also for

L(RC,CF) [24].

In the rest of this section we discuss decidability problems for rPcg-2. We use the reacha-

bility of Petri nets to show that the emptiness of rPcg-2 is decidable. We also consider the

membership problem.

Next we introduce a procedure that transforms any grammar G ∈ rPcg-2 to a Petri net PN .

Let G = (N,Σ, R, S) ∈ rPcg-2. We construct a Petri net PN = (P, {ε}, T,m0) as follows

(see [5]):

- P = {x | x ∈ (N ∪ Σ)};

- For each rule r : (A → w,Q) add to the Petri net a transition t : (ψ(AQc), ε, ψ(wQc)),

where ψ is the Parikh image taken over N ∪ Σ, and Qc is the string obtained by

concatenating the nonterminals in Q. Without loss of generality we assume that A /∈ Q;

- m0 = ψ(S).

It is clear that the Petri net is designed in such a way that a transition t in PN is enabled if

the corresponding rule r in R is applicable. Moreover ψ(L′(G)) = Lm(PN), where L′(G) =

{w ∈ (N ∪ Σ)∗ | S ⇒∗ w} and Lm(PN) is the language of all reachable markings from the

initial marking.

Example 6.1. To illustrate this procedure consider a grammar G = (N,Σ, R, S) ∈ rPcg-2,

where N = {S,A,B,C,D,E, F}, Σ = {a, b, c}, and R contains rules:

r1 : (S → ABC, ∅), r2 : (A → aD, {B}), r3 : (B → bE, {C}), r4 : (C → c2F, {D}), r5 : (D →

A, {E}), r6 : (E → B, {F}), r7 : (F → C, {A}), r8 : (A → a, {B}), r9 : (B → b, {C}), r10 :

(C → c2, ∅).

This grammar generates the language L = {aibic2i | i ≥ 1}.

The corresponding Petri net is given by PN = (N ∪ Σ, {ε}, T,m0). If we fix the order

S < A < B < C < D < E < F < a < b < c on N ∪ Σ, then m0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0),

and T contains the following transitions:

Chapter 6. Decidability and complexity in regulated rewriting 60

t1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ε, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0),

t2 = (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, ε, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0),

t3 = (0, 0, 1, 1, 0, 0, 0, 0, 0, 0, ε, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0),

t4 = (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, ε, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2),

t5 = (0, 0, 0, 0, 1, 1, 0, 0, 0, 0, ε, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0),

t6 = (0, 0, 0, 0, 0, 1, 1, 0, 0, 0, ε, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0),

t7 = (0, 1, 0, 0, 0, 0, 1, 0, 0, 0, ε, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0),

t8 = (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, ε, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0),

t9 = (0, 0, 1, 1, 0, 0, 0, 0, 0, 0, ε, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0),

t10 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, ε, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2).

Consider the string w = a2b2c4 ∈ L. Then w has a derivation:

S ⇒r1
ABC ⇒r2

aDBC ⇒r3
aDbEC ⇒r4

aDbEc2F ⇒r5
aAbEc2F ⇒r6

aAbBc2F ⇒r7

aAbBc2C ⇒r8
a2bBc2C ⇒r9

a2b2c2C ⇒r10
a2b2c4.

Now consider the sequence of markings of PN corresponding to the derivation above:

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0) ⊢t1 (0, 1, 1, 1, 0, 0, 0, 0, 0, 0) ⊢t2 (0, 0, 1, 1, 1, 0, 0, 1, 0, 0) ⊢t3

(0, 0, 0, 1, 1, 1, 0, 1, 1, 0) ⊢t4 (0, 0, 0, 0, 1, 1, 1, 1, 1, 2) ⊢t5 (0, 1, 0, 0, 0, 1, 1, 1, 1, 2) ⊢t6

(0, 1, 1, 0, 0, 0, 1, 1, 1, 2) ⊢t7 (0, 1, 1, 1, 0, 0, 0, 1, 1, 2) ⊢t8 (0, 0, 1, 1, 0, 0, 0, 2, 1, 2) ⊢t9

(0, 0, 0, 1, 0, 0, 0, 2, 2, 2) ⊢t10 (0, 0, 0, 0, 0, 0, 0, 2, 2, 4).

Recall that we write mi ⊢t mj, if δ(mi, t) = mj .

Note that the sequence of markings corresponding to the derivation of w is the Parikh images

of sentential forms that appear during the derivation.

Let G = (N,Σ, R,A1) ∈ rPcg-2 where N = {A1, . . . , An} and Σ = {a1, . . . , am}. We use

the order A1 < A2 < · · · < An < a1 < a2 < · · · < am in the Parikh map. Let w ∈ L(G)

and consider the Parikh image of w, thus ψ(w) = (0, . . . , 0, |w|a1
, . . . , |w|am). It is easy to

see that when the corresponding Petri net PN completes the computation for w, the places

a1, . . . , am will have |w|a1
, . . . , |w|am tokens respectively, and all places corresponding to the

nonterminals A1, . . . , An will have no tokens.

From the construction of PN we have that the language L(G) is not empty if and only

if PN has a reachable marking m with firstn(m) = (0, . . . , 0). Recall that for a vector

x = (x1, . . . , xn) ∈ Zn we define firstk(x) to be equal to (x1, . . . , xk), where 0 ≤ k ≤ n.

Let t1 = (u1, ε, v1), . . . , tk = (uk, ε, vk) be the transitions of PN where ui, vi ∈ Nn+m
0 . We

construct an n-dimensional vector addition systemX = (x0, V) as follows: x0 = firstn(m0) =

Chapter 6. Decidability and complexity in regulated rewriting 61

(1, 0, . . . , 0) and V = {firstn(v1 − u1), . . . , f irstn(vk − uk)}. It is clear that the zero vector

is reachable within X if and only if a marking m with firstn(m) = (0, . . . , 0) is reachable in

PN .

Hence the reachability of such a marking is decidable, and thus the emptiness for rPcl-2 is

decidable.

Definition 6.5. For a string w ∈ Σ∗ we define per(w) to be the set of strings in Σ∗ which
have the same Parikh image as w. Thus, per(w) = {w′ ∈ Σ∗ | ψ(w′) = ψ(w)}.

Suppose we are given a string w ∈ Σ∗ and we want to decide if w ∈ L(G). We can decide if

ψ(w) is a reachable marking for the corresponding Petri net PN . If it is reachable then one

or more elements from per(w) are in L(G), but we cannot decide which specific strings are in

the random permitting language.

6.3 Groebner bases and decidability

Groebner bases are an important algebraic tool to solve systems of non-linear algebraic equa-

tions. They were introduced by B. Buchberger in 1965 [3]. They have various applications

in algebra, where they are used for the description of ideals in polynomial rings, to solve the

ideal membership problem for polynomial rings, and to solve systems of polynomial equa-

tions in multivariables. They are also applied in integer programming, coding theory, signal

processing and differential equations [6].

In this section we use the theory of Groebner bases to show the decidability of reachability

in reversible Petri nets as introduced in [4, 6], and give an example to illustrate the method.

A good introduction and background on Groebner bases can be found in [8].

Definition 6.6. (Reversibility)[6] A Petri net PN is called reversible if the following condi-
tion holds: if a marking mj is reachable from a marking mi in PN , then it is also the case
that mi is reachable from mj .

We describe a k-place Petri net PN = (P, {ε}, T,m0) in terms of polynomials as follows [4]:

- for each place pi ∈ P we use a variable xi for 1 ≤ i ≤ k;

- for each transition tj = (u1, . . . , uk, ε, v1, . . . , vk) we use a polynomial

fj = xu1

1 . . . xuk

k − xv1

1 . . . xvk

k ;

- each marking m = (u1, . . . , uk) has an associated polynomial xu1

1 . . . xuk

k .

Chapter 6. Decidability and complexity in regulated rewriting 62

Let t ∈ T and f = l − r the polynomial associated with t, where l and r are the two terms

of f . The transition t is enabled in a Petri net PN with a marking mi, if the polynomial

associated with mi can be written as a product ul, where u is a monomial in x1, . . . , xk. After

firing t, the marking mi changes to mj, where mj is the marking with associated polynomial

ul − u(l − r) = ur.

Let G be a Groebner basis of the ideal generated by the polynomials corresponding to tran-

sitions of the Petri net PN . A marking mj is reachable from mi if and only if fj −→G f

and fi −→G f , where −→G indicates the reduction of polynomials to the normal form with

respect to dividing by the elements of G. In other words, mj is reachable from mi if and only

if the corresponding polynomials have the same normal form when they are reduced with

respect to G.

Next we illustrate this procedure with an example of our own.

Example 6.2. To illustrate this procedure, consider the reversible Petri net PN shown in

Figure 6.1.

t1 t2 t3 t4 t5 t6

p2 p5 p8

p1 p4 p7

p3 p6

Figure 6.1: Reversible Petri net

This Petri net is formally described by PN = ({p1, . . . , p8}, {ε}, {t1, . . . , t6},m0) where m0 =

(1, 0, 0, 0, 1, 0, 0, 1) and the transitions are defined as follows:

t1 = (0, 1, 0, 0, 0, 0, 0, 0, ε, 1, 0, 0, 0, 0, 0, 0, 0), t2 = (1, 0, 0, 0, 0, 0, 0, 0, ε, 0, 1, 1, 0, 0, 0, 0, 0),

t3 = (0, 0, 1, 0, 1, 0, 0, 0, ε, 0, 0, 0, 1, 0, 0, 0, 0), t4 = (0, 0, 0, 1, 0, 0, 0, 0, ε, 0, 0, 0, 0, 1, 1, 0, 0),

t5 = (0, 0, 0, 0, 0, 1, 0, 1, ε, 0, 0, 0, 0, 0, 0, 1, 0), t6 = (0, 0, 0, 0, 0, 0, 1, 0, ε, 0, 0, 0, 0, 0, 0, 0, 1).

These transitions have associated polynomials:

f1 = x2−x1, f2 = x1−x2x3, f3 = x3x5−x4, f4 = x4−x5x6, f5 = x6x8−x7 and f6 = x7−x8.

Using Singular [23] and the lexicographic order, we obtain the Groebner basis G = {x7 −

x8, x6x8 − x7, x4 − x5x6, x3x5 − x4, x2x5x6 − x2x5, x2x3 − x2, x1 − x2}.

Chapter 6. Decidability and complexity in regulated rewriting 63

Suppose the Petri net PN has a marking m = (1, 0, 20, 0, 1, 0, 0, 1), and we want to decide

if a marking m′ = (0, 1, 9, 0, 1, 3, 1, 0) is reachable from m. Let f = x1x
20
3 x5x8 and f ′ =

x2x
9
3x5x

3
6x7 be the polynomials corresponding to m and m′ respectively. We have that f −→G

x2x5x8, and f ′ −→G x2x5x8. Since f and f ′ have the same normal form with respect to G,

we have that m′ is reachable from m. Moreover m and m′ are reachable from m0, since the

polynomial corresponding to m0, which is f0 = x1x5x8, has normal form x2x5x8.

Now consider the marking m′′ = (0, 5, 2, 1, 0, 3, 5, 0). This marking has an associated polyno-

mial f ′′ = x5
2x

2
3x4x

3
6x

5
7, which has normal form x5

2x5x
5
8 with respect to G. Thus, m′′ is not

reachable from m or m′.

Note that the reversibility of the Petri net is an essential condition in this procedure.

6.4 Complexity of regulated rewriting

Studying the complexity of grammars is an important issue in theory and practice. In theory

it is always interesting to find “simple” grammars to describe languages. The word “simple”

can be interpreted in terms of the number of nonterminals, the number of rules, or the length

of the description of the grammar in some fixed format (see [9]).

In this section we study the complexity of grammars with regulated rewriting in terms of

the number of nonterminals. We define this measure and state important results from [9, 10]

that give bounds and describe relations between different classes of grammars with regulated

rewriting.

First we need the following definitions.

Definition 6.7. [10] Let X be a family of grammars and let G ∈ X and L ∈ L(X). By
V ar(G) we denote the cardinality of the set of nonterminals of G, and we set

V arX(L) = min{V ar(G) | G ∈ X and L = L(G)}.

Theorem 6.2. [9, 10] Let α ∈ {CF,CF − λ} and let β be ac or empty.

(1) For all L ∈ L(RC,α, β) we have:

– V ar(P,α,β)(L) ≤ V ar(RC,α,β)(L) + 2,

– V ar(M,α,β)(L) ≤ V ar(RC,α,β)(L) + 1.

(2) For all L ∈ L(M,CF, β) we have:
V ar(P,CF,β)(L) ≤ V ar(M,CF,β)(L) + 2.

Chapter 6. Decidability and complexity in regulated rewriting 64

(3) For all recursively enumerable languages L, we have:

– V ar(M,CF,ac)(L) ≤ V ar(P,CF,ac)(L) + 1,

– V ar(M,CF,ac)(L) ≤ 3 and V ar(P,CF,ac)(L) ≤ 3.

(4) For all context-free languages L we have:
V arCF (L) = V arCF−λ(L). �

Next we consider an example that compares the complexity of different families of grammars

in terms of the measure “V ar”.

Example 6.3. Let Σi = {ai, bi, ci, di, ei}, for 1 ≤ i ≤ n, be n pairwise disjoint alphabets.

Consider the language L′
i = {eia

m
i b

m
i | m ≥ 1} ∪ {eic

m
i d

m
i | m ≥ 1} and let Ln =

⋃n
i=1 L

′
i

(Exercise 4.1.6 in [10]). Then we show the following:

- V arCF (Ln) = 2n+ 1,

- V ar(RC,CF,ac)(Ln) ≤ n+ 3,

- V ar(P,CF,ac)(Ln) ≤ 2,

- V ar(BCG,CF)(Ln) = 1.

To show that V arCF (Ln) = 2n+ 1, consider the context-free grammar

G = ({S} ∪
⋃n

i=1{Ai, Bi},
⋃n

i=1 Σi, R, S), where R contains the following rules:

S → eiAi | eiBi, 1 ≤ i ≤ n,

Ai → aiAibi | aibi, 1 ≤ i ≤ n,

Bi → ciBidi | cidi, 1 ≤ i ≤ n.

This shows that V arCF (Ln) ≤ 2n + 1. Next we show that no context-free grammar with

fewer than 2n+ 1 nonterminals can generate Ln.

Let Σ′′
i = Σi \ {ei} and L′′

n =
⋃n

i=1{a
m
i b

m
i | m ≥ 1} ∪ {cmi d

m
i | m ≥ 1}. Let G′′ =

(V,
⋃n

i=1 Σ′′
i , R

′′, S′′) be a context-free grammar without ε-productions that generates L′′
n. Let

w = al
ib

l
i be a sufficiently long string in L′′

n. Consider a derivation for w: S′′ ⇒ w1 ⇒ · · · ⇒

wd ⇒ w. Since G′′ is context-free, wd is of the form w′
dAiw

′′
d , where w′

dw
′′
d is one of the words

described by a∗i b
∗
i , w

′
dw

′′
d 6= ε, Ai ∈ V , and there is a rule Ai → ud where ud is one of the

words described by a∗i b
∗
i .

Suppose there is a nonterminal Bj ∈ V such that Bj = Ai, and that there is a rule Bj → vd,

where vd is one of the words described by the regular expression c∗jd
∗
j . Then there is a

Chapter 6. Decidability and complexity in regulated rewriting 65

derivation S′′ ⇒ w1 ⇒ · · · ⇒ w′
dBjw

′′
d ⇒ w′

dvdw
′′
d . But w′

dvdw
′′
d is not in L′′

n. Similarly, if

there is nonterminal Ak with k 6= i, but such that Ak = Ai, and there is a rule Ak → td, with td

one of the words described by a∗kb
∗
k, then the derivation S′′ ⇒ w1 ⇒ · · · ⇒ w′

dAkw
′′
d ⇒ w′

dtdw
′′
d

generates a word that is not in L′′
n. Note that the only possibility for the termination rules is

to have right-hand side described by c∗jd
∗
j or a∗kb

∗
k.

Suppose S′′ = Ai. Since there is a derivation S′′ ⇒∗ cjdj , the string w′
dcjdjw

′′
d ∈ L′′

n, but this

is a contradiction.

This argument shows that for each pair ai, bi and each pair cj , dj , we need at least one

nonterminal. The start nonterminal S′′ must also be distinct from all other nonterminals.

Thus, no context-free grammar with fewer than 2n+ 1 nonterminals can generate L′′
n.

Next we show that Ln cannot be generated by fewer than 2n+ 1 nonterminals.

Since the rule that generates ei must be applied once during all derivations, we can generate

ei from S′′ (without adding additional nonterminals). All A′
is and B′

js for 1 ≤ i, j ≤ n are

essential in the grammar, since if we remove any, say Ai, then all words of the form eia
m
i b

m
i

cannot be generated by the grammar. Hence no context-free grammar with fewer than 2n+1

nonterminals can generate Ln.

To show that V ar(RC,CF,ac)(Ln) ≤ n + 3, it suffices to introduce a random context grammar

with context-free rules and n + 3 nonterminals that generates Ln. Consider the random

context grammar G = ({S,X, Y } ∪
⋃n

i=1{Ei},
⋃n

i=1 Σi, R, S), where R contains the following

rules:

(S → eiEiX | eiEiY, ∅, ∅), 1 ≤ i ≤ n,

(Ei → aiEibi, | aibi, {X}, ∅), 1 ≤ i ≤ n,

(Ei → ciEidi, | cidi, {Y }, ∅), 1 ≤ i ≤ n,

(X → ε, ∅,
⋃n

i=1{Ei}),

(Y → ε, ∅,
⋃n

i=1{Ei}).

This shows that V ar(RC,CF,ac)(Ln) ≤ n+ 3.

To show that V ar(P,CF,ac)(Ln) ≤ 2, note that the programmed grammar that is defined by

G = ({S, S′},
⋃n

i=1 Σi, R, S), where R has the rules below, generates Ln:

(i1 : S → eiS
′, {i2, i3}, ∅), 1 ≤ i ≤ n,

(i2 : S′ → aiS
′bi | aibi, {i2}, ∅), 1 ≤ i ≤ n,

(i3 : S′ → ciS
′di | cidi, {i3}, ∅), 1 ≤ i ≤ n.

Chapter 6. Decidability and complexity in regulated rewriting 66

Thus, V ar(P,CF,ac)(Ln) ≤ 2.

Next we show V ar(BCG,CF)(Ln) = 1. To show this consider the bag context grammar G =

({S},
⋃n

i=1 Σi, R, S, 0) where R contains:

S → eiS (0, 0, i), 1 ≤ i ≤ n,

S → eiS (0, 0,−i), 1 ≤ i ≤ n,

S → aiSbi | aibi (i, i, 0), 1 ≤ i ≤ n,

S → ciSdi | cidi (−i,−i, 0), 1 ≤ i ≤ n.

This shows that V ar(BCG,CF)(Ln) ≤ 1. Since V arX(L) ≥ 1 for all X and L, we conclude

that V ar(BCG,CF)(Ln) = 1.

Let Lf (PN) and Lt(PN) be the classes of free and terminal Petri net languages, respectively.

From Corollary 4.6 it should be noted that for all L ∈ Lf (PN) we have V ar(BCG,REG)(L) = 1

and for all L ∈ Lt(PN) we have V ar(BCG,REG)(L) = 1.

This chapter discussed decidability and complexity in grammars with regulated rewriting

mechanisms. Different decidability properties of grammars with regulated rewriting were

discussed. We considered membership, emptiness, finiteness and equivalence problems and

showed how each class of grammars with regulated rewriting considered in Chapter 3 behaves

in terms of these decidability problems. We considered Petri nets and vector addition sys-

tems as tools to show decidability. We used reachability in Petri nets to prove decidability

of emptiness for rPcg-2 (random permitting context grammars with context free rules). The

relation between Groebner bases and decidability of reachability in Petri nets was also con-

sidered. We showed how Groebner bases can be used to decide the reachability in reversible

Petri nets. Complexity of grammars with regulated rewriting was the final topic in this chap-

ter. We considered the nonterminal complexity of various classes of grammars with regulated

rewriting.

Chapter 7

Conclusion and future work

This thesis gave a survey of regulated rewriting. We motivated this survey by giving circum-

stances where context-free grammars are not sufficient and more descriptive grammars are

required. Then in the chapter on generating mechanisms, we considered bag context gram-

mars and compared them with other well-known classes of grammars with regulated rewriting

mechanisms. We investigated the relationship between counter automata (blind and partially

blind) and bag context grammars. It turned out that regular bag context grammars with

two bag positions generate the class of recursively enumerable languages. The relationship

between Petri net automata and bag context grammars was also investigated. We showed how

to simulate k-place Petri net automata with k-BCGs considering the languages css, Lm, Lf ,

and Lt associated with Petri nets. We modified the pumping lemma for rPcl-2 as introduced

in [19]. We presented the pumping lemma in terms of string homomorphisms, and gave

an illustration of this lemma. Next we considered decidability and complexity properties of

grammars with regulated rewriting. We showed how each of the various classes of gram-

mars considered in Chapter 3 behaves in terms of the well-known decidability problems. We

considered the relationship between Petri nets, vector addition systems, Groebner bases and

various decidability problems. We showed how we can use Petri nets to show that the empti-

ness problem is decidable for rPcg-2 and also considered the membership problem for rPcg-2.

Finally, we considered the complexity of grammars with regulated rewriting mechanisms, in

that we compared different classes of grammars in terms of their nonterminal complexity.

Since regulated rewriting is a well-researched area, there are various topics that are not covered

in this thesis. Next we make some suggestions regarding problems to be considered for future

research.

We investigated the class of bag context grammars and it turned out that the regular bag

67

Conclusion and future work 68

context grammars can generate the class of recursively enumerable languages. Thus, restric-

tions are needed on the class of bag context grammars in order to find subclasses that are

descriptive enough and also have interesting theoretical properties such as the decidability of

membership and good complexity properties.

We showed how to simulate counter or Petri net automata with regular bag context grammars.

A natural question is to ask what type of restrictions can be placed on regular bag context

grammars, so that we can find for each grammar G from this subclass an equivalent counter

or Petri net automaton.

Also, the bag context grammars that were considered in the simulation of the recogniz-

ing devices allowed ε-productions. What if we consider bag context grammars without ε-

productions?

Another topic of interest that concerns bag context grammars is the pumping lemma. The

pumping lemma for rPcl-2 was introduced in [19]. It should be interesting to investigate

the class of bag context grammar for which a similar pumping or shrinking lemma can be

established.

Bibliography

[1] B. Atcheson, S. Ewert, and D. Shell. A Note on the Generative Capacity of Random

Context. South African Computer Journal, 36:95-98, 2006.

[2] G.J. Bex, W. Martens, F. Neven, and T. Schwentick. Expressiveness and Complexity of

XML Schema. ACM Transactions on Database Systems, 31(3):770-813, 2006.

[3] L. Blair, A. Chandler, A. Heyworth, and D. Seward. Testing Petri Nets for Mobile Robots

Using Gröbner Bases. Proceedings of the Workshop on Software Engineering and Petri

Nets, held at the 21st International Conference on Application and Theory of Petri Nets,

Aarhus, Denmark, 21-34, 2000.

[4] O. Caprotti, A. Ferscha, and H. Hong. Reachability Test in Petri Nets by Gröbner Bases.

Parallel Symbolic Computation, No S5302-PHY, 1995.

[5] M. Češka and V. Marek. Petri Nets and Random-Context Grammars. Proceedings of

the 35th Spring Conference: Modelling and Simulation of Systems - MOSIS’01, 145-152,

2001.

[6] A. Chandler and A. Heyworth. Gröbner Basis Procedures for Testing Petri Nets. eprint

arXiv:math/0002119, UWB Math Preprint 99.11, 2007.

[7] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT press, 1999.

[8] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms : An Introduction to

Computational Algebraic Geometry and Commutative Algebra. Springer, 2007.

[9] J. Dassow. Grammars with Regulated Rewriting. [online]. Available from: <http://

theo.cs.uni-magdeburg.de/dassow/tarraphd.pdf>. [Accessed 25 January 2007].

[10] J. Dassow and G. Păun. Regulated Rewriting in Formal Language Theory. EATCS Mono-

graphs in Theoretical Computer Science 18, Springer-Verlag, 1989.

69

Bibliography 70

[11] F. Drewes. Grammatical Picture Generation: A Tree-based Approach. Texts in Theoret-

ical Computer Science: an EATCS Series, Springer, 2006.

[12] F. Drewes. The TREEBAG Homepage. [online]. Available from: <http://www.infor

matik.uni-bremen.de/theorie/treebag/download.html>. [Accessed 26 February 2007].

[13] F. Drewes and J. Engelfriet. Branching Synchronization Grammars with Nested Tables.

Journal of Computer and System Sciences, 68(3):611-656, 2004.

[14] F. Drewes, C du Toit, S Ewert, B van der Merwe, and A van der Walt. Bag Context

Tree Grammars. Tenth International Conference on Developments in Language Theory,

Lecture Notes in Computer Science, 4036:226-237, 2006.

[15] F. Drewes, C du Toit, S. Ewert, J. Högberg, B. van der Merwe, and A. van der Walt. Ran-

dom Context Tree Grammars and Tree Transducers. South African Computer Journal,

34:11-25, 2005.

[16] J. Engelfriet. Tree Automata and Tree Grammars. Lecture Notes in Computer Science,

Institute of Mathematics, University of Aarhus, 1975.

[17] J. Esparza and M. Nielsen. Decidability Issues for Petri Nets - a Survey. Bulletin of the

European Association for Theoretical Computer Science, 52:245-262, 1994.

[18] S. Ewert and A. van der Walt. A Shrinking Lemma for Random Forbidding Context

Languages. Theoretical Computer Science, 237(1-2):149-158, 2000.

[19] S. Ewert and A. van der Walt. A Pumping Lemma for Random Permitting Context

Languages. Theoretical Computer Science, 270:959-967, 2002.

[20] A. Fleck. Formal Models of Computation. World Scientific Publishing, 2001.

[21] R. Gilman. Counter Machines. Steven Institute of Technology. [online]. Available from:

<www.math.stevens.edu/∼rgilman/ccny/counters.pdf>. [Accessed 18 January 2007].

[22] S. Greibach. Remarks on Blind and Partially Blind One-way Multicounter Machines.

Theoretical Computer Science, 7:311-324, 1978.

[23] G. Greuel, G. Pfister, and H. Schöenemann. SINGULAR. [online]. Available from:

<http://www.singular.uni-kl.de/download.html>. [Accessed 19 October 2007].

[24] D. Hauschildt and M. Jantzen. Petri Net Algorithms in the Theory of Matrix Grammars.

Acta Informatica, 31(8):719-728, 1994.

Bibliography 71

[25] H.J. Hoogeboom. Context-Free Valence Grammars-Revisted. Developments in Language

Theory, Lecture Notes in Computer Science, 2295:293-303, 2002.

[26] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Com-

putation. Addison-Wesley Publishing, 1979.

[27] A.J. Jones. Formal Languages and Automata. School of Computer Science, Cardiff Uni-

versity. [online]. Available from: <http:// users.cs.cf.ac.uk/ Antonia.J.Jones/ Lectures/

AutomataTheory/ AutomataTheory.pdf>. [Accessed 4 October 2006].

[28] L. Kari and P. Prusinkiewicz. Subapical Bracketed L-systems. In J. Cuny, H. Ehrig,

G. Engles, and G. Rozenberg, editors, Grammars and their Application to Computer

Science, Lecture Notes in Computer Science, 1073:550-564, 1996.

[29] C. Martin-Vide, V. Mitrana, eds. and G. Păun. Chapter 6 in: Formal Languages and

Applications. Studies in Fuzziness and Soft Computing, Springer, Berlin, 148:117-138,

2004.

[30] A. Meduna. Automata and Languages, Theory and Applications. Springer, 2000.

[31] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE,

77(4):541-580, 1989.

[32] F. Neven. Automata, Logic and XML. University of Limburg. [online]. Available from:

<http:// alpha.uhasselt.be/ ∼lucg5503/csl2002.ps>. [Accessed 16 July 2007].

[33] J. Nievergelt. Finite Automata with External Storage. Institute of Theoretical Com-

puter Science, Department of Computer Science, ETH Zürich. [online]. Available from:

<www.jn.inf.ethz.ch/education/script/chapter4.pdf>. [Accessed 16 January 2007].

[34] G. Ochoa. An Introduction to Lindenmayer Systems. School of Cognitive and Comput-

ing Sciences, University of Sussex. [online]. Available from: <http://www.biologie.uni-

hamburg.de/ b-online/e28 3/lsys.html>. [Accessed 29 March 2007].

[35] R.J. Parikh. On Context-Free Languages. Journal of the Association for Computing Ma-

chinery, 13(4):570-581, 1966.

[36] M. Sipser. Introduction to the Theory of Computation. Thomson Course Technology,

2006.

	Abstract
	Opsomming
	Contents
	List of figures
	1 Introduction
	2 Beyond context-free grammars
	3 Generating mechanisms
	4 Recognizing devices and bagcontext grammars
	5 Pumping and shrinking lemmas
	6 Decidability and complexity inregulated rewriting
	7 Conclusion and future work
	Bibliography

