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Synopsis

The predominately manual, time-consuming and error-prone procedure cur-
rently used in engineering offices for the calculation of preliminary column forces
in multi-storey buildings constitutes the motive for the research described in this
study. Identifying the current procedure as in need of improvement, techniques
and prototype software posing a semi-automated alternative, are developed.

Influence areas used for load-assignment are established with the use of a
Voronoi diagram calculated for a specific floor geometry. The forces transferred
to the columns are based solely on the size of the influence areas thus calculated.

The definition of the floor geometry, as well as the definition of loads and
other necessary input parameters, are performed in a CAD-system, into which
the Voronoi functionality is integrated.

The accuracy of the forces obtained with the implemented procedure and,
consequently, the accuracy of the forces as they are calculated in current prac-
tice, is determined through comparison with the results of finite element analy-
ses. The comparative analysis of a sample of typical floor geometries allows an
evaluation of the results and the identification of tendencies observed regarding
the errors obtained.

It is concluded that calculating column forces based on influence areas, i.e.
solving a geometrical problem without taking any stiffness properties into ac-
count, is unsafe. The implication hereof is twofold. Firstly, it serves as a warning
concerning the technique currently used in practice and secondly, it steers the in-
vestigation in the direction of a finite element analysis: using the influence areas
as a basis for automatic meshing, a semi-automated analysis can be performed
relatively inexpensively, using plate elements.
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Samevatting

Voorlopige kolomkragte in multi-verdieping geboue word huidiglik op ’n tydrowende
manier met die hand in ingenieurskantore bereken d.m.v. ’n proses waardeur
foute maklik kan insluip. Hierdie feit dien as motivering vir die navorsing on-
derneem in hierdie studie. Deur die huidige proses te identifiseer as een wat
sonder twyfel sal baat by ’n verbetering, is tegnieke en proto-tipe sagteware wat
’n semi-geautomatiseerde alternatief illustreer, ontwikkel.

Invloedsareas wat gebruik word om laste toe te ken aan die kolomme word
verkry na aanleiding van ’n Voronoi diagram wat bereken kan word vir ’n spe-
sifieke vloergeometrie. Die kragte wat oorgedra word na die kolomme word dus
gebaseer op die grootte van die invloedsarea.

Die Voronoi funksionaliteit word gëıntegreer in ’n CAD-sisteem om voorsien-
ing te maak vir die geometriese definisie van die vloer, die definisie van laste,
asook ander nodige invoerparameters.

Die akkuraatheid van die kragte wat verkry word d.m.v. die geimplementeerde
prosedure en, gevolglik, die akkuraatheid van die kragte soos wat hulle bereken
word in huidige praktyk, word vasgestel deur vergelyking met die resultate van
eindige element analises. Die vergelyking maak die beoordeeling van die resul-
tate en die identifisering van sekere neigings aangaande die foute wat gemaak
word moontlik.

’n Gevolgtrekking word gemaak dat die berekening van kragte gebaseer op in-
vloedsareas, m.a.w. waar ’n geometriese probleem opgelos word sonder dat enige
styfheidseienskappe in berekening gebring word, onveilig is. Twee implikasies hi-
ervan word identifiseer. Eerstens dien die gevolgtrekking as ’n waarskuwing rak-
ende die tegniek wat huidiglik gebruik word in die praktyk en tweedens stuur dit
die ondersoek in die rigting van ’n eindige element analise: deur die invloedsareas
te gebruik as ’n basis vir automatiese netindeling, kan ’n semi-geautomatiseerde
eindige element analise relatief goedkoop uitgevoer word deur gebruik te maak
van plaat elemente.
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Chapter 1

Introduction

In civil engineering practice, values of column forces in multi-storey buildings
are often required before any detailed analysis of the structure has been per-
formed. One of the reasons for this arises from the fast-tracked nature of the
majority of construction projects: foundations are laid and base columns con-
structed whilst analysis and design are still in progress. A need for quick results
when feasibility studies are performed or when evaluating the effect of design
changes on supporting columns form other situations in which column forces
are required, but where performing a detailed analysis to get these forces seems
superfluous. Thus it was concluded that the development of an efficient tool for
approximate column force calculations, in which the extensive input required in
a finite element analysis is to be avoided, would be highly beneficial.

1.1 Investigating the motive

In an attempt to gain a better understanding of the problem, time was spent
investigating current consulting engineering practice regarding the computation
of preliminary column forces. It soon became clear that, if a tool capable of
calculating these forces in an efficient manner could be developed, it would
certainly serve as an improvement over the largely manual, time-consuming and
error-prone procedure currently used: influence areas for the columns and/or
walls of a floor are approximated using rulers and hand-held calculators and the
forces thus obtained are accumulated with the use of spreadsheets.

1.2 Defining objectives

Having confirmed the motive for developing an efficient solution, the objectives
of the task could be defined. These objectives were to:

1. Identify a way in which to efficiently calculate preliminary column forces
without performing a detailed finite element analysis.

2. Implement the proposed procedure in prototype software.

3. Model a sample of typical floor geometries using the proposed procedure.

1



CHAPTER 1. INTRODUCTION 2

4. Model the sample using finite element software.

5. Evaluate results and identify any tendencies regarding the errors obtained.

1.3 Limitations and scope of investigation

It is to be expected that a complete solution of the stated problem extends be-
yond the scope of what can be achieved in a single master’s thesis. As an initial
approach it was decided to adopt the consulting engineering practice approach,
i.e. to compute influence areas for load-bearing elements, but to do this in an
efficient and optimal way. The result is that a geometrical problem is to be
solved, without taking any stiffness properties into consideration. Furthermore,
only vertical loading is to be considered. This leaves ample room for further
study on this subject. For instance, if a manner in which to efficiently mesh
the obtained influence areas can be developed, a relatively simple finite element
analysis using plate elements can be performed and results may be drastically
improved without the need for any additional input. This topic forms but one
for future investigation and more shall be discussed at a later stage.

The stated objectives steers the investigation in the direction of two fields,
namely that of dealing with geometric entities in a Computer Aided Draughting
(CAD) environment, and computational geometry of planar surfaces.

CAD:
The load-bearing mechanisms of the buildings under consideration are iden-

tified in CAD drawings. In most cases the drawings are also available, and
manipulated, in digital form using CAD software like AutoCAD[1]. It is obvi-
ous that an efficient solution to the stated problem has to be embedded in CAD
software, thus extending the identification and design of the structural entities
in a natural way. Consequently, it was decided to use a CAD environment which
supports easy programmatic access for the development of the prototype soft-
ware. This would suitably demonstrate the proposed solution and would also
allow further development for supporting the transfer of information to and from
other CAD systems. The CADemia system[2] developed at Bauhaus Univer-
sität Weimar, Germany, provides a CAD kernel with all the features required
for the proposed project. It was thus decided to use this system as the basic
CAD environment, and to extend it to provide the special features required for
the proposed solution. Details of CADemia and the implemented extensions
are described in later chapters.

Computational geometry:
The assignment of loads transferred by a floor to its supporting columns

requires the solution of a number of problems pertaining to the geometry of
the floor under consideration, and details of the loading applied to the floor.
A survey of computational geometry literature[3, 4, 5] revealed a computable
geometric structure, called the Voronoi diagram, which was considered optimal
for the purpose of determining influence areas. This discovery essentially meant
that a semi-automatic procedure could be developed which would remove the
responsibility to draw influence areas from the engineer. Other geometric prob-
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lems, for example the computation of the area of an arbitrarily shaped closed
region or the intersection of loaded areas and influence areas, etc., would also
have to be dealt with. The various problems, and their proposed solutions, are
discussed in later chapters.

1.4 Plan of development

In the first chapter the Voronoi diagram is defined and the algorithm used for
its computation, as well as the implementation of this algorithm, is described.
The next chapter is dedicated to explaining how the Voronoi functionality was
attached to a CAD-system. The chapter focuses on the development of numer-
ous tools that were required in order to make the Voronoi functionality useful
for computing column forces in engineering offices. The results obtained by
performing finite element analyses of a chosen set of floors, and a comparison of
these forces to the forces obtained using the prototype software, are presented
in Chapter 4. The last chapter deals with the tendencies observed during a
comparative analysis. The chapter also includes the mentioning of certain as-
pects that have to be addressed and outstanding functionality. Conclusions are
drawn and recommendations made.



Chapter 2

The Voronoi diagram

The primary objective of the study is to identify a way in which to efficiently
calculate preliminary column forces in multi-storey buildings. Column forces
per se can be computed by performing a finite element analysis of the complete
structure. However, this is certainly not an efficient way in which to determine
preliminary results given the current tools supporting finite element modeling.
Limited support is available for transferring geometric information from CAD
files to FEM software and, furthermore, automated mesh generation is inade-
quate. As a result, the execution of a finite element analysis of a building is
time consuming.

Two possible courses of action were identified:

1. Automated finite element analysis
The performance of a simple, largely automated finite element analysis
for which user input is minimized, represents a valid option. However,
automated meshing is the topic of extensive research worldwide and was
considered to fall outside the scope of this investigation. Furthermore,
it was hoped that the geometric approach described below might provide
insights that could be useful in automated meshing of building floors, and
in that way pave the way for further investigations.

2. Geometric solution
A geometric solution requires the identification of a way in which to mimic
the procedure that is currently used in practice, namely the assignment of
influence areas to columns. Such a solution would only be useful provided
that the procedure can be automated and implemented using digital CAD
data.
This approach was chosen for the research described in this thesis.

Having chosen to solve the problem geometrically, an investigation to find a
method to automate the subdivision of a floor geometry into influence areas was
undertaken. The definition of the Voronoi diagram in Section 2.1 below makes
it clear why this structure was considered an optimal solution for the creation
of such influence areas. A Voronoi diagram is a versatile geometric structure
and has applications in many more fields including social geography, physics
and astronomy. In this application the diagram, by means of the subdivision of

4



CHAPTER 2. THE VORONOI DIAGRAM 5

Figure 2.1: A Voronoi diagram

the floor into influence areas, provides a basis for automatic load assignment.

This chapter is dedicated to providing some theoretical background regard-
ing these diagrams and to describing their computation and the way in which
it was implemented in the prototype software.

2.1 Definition

Let P := p1, p2, . . . , pn be a set of n distinct points in the plane. Each of these
points represents a site. The Voronoi diagram of P is defined as the subdivision
of the plane into n cells, a cell for each site in P , with the property that a point
q lies in the cell corresponding to a site pm if and only if dist(q, pm) < dist(q, pn)
for each pn ∈ P with m 6= n.

Considering Figure 2.1, it can be seen that the Voronoi diagram consists of
a) edges, forming bisectors of pairs of sites and b) vertices, defining intersections
between these bisectors.

2.2 Computation

The algorithm used to compute the Voronoi diagram, a plane sweep algorithm
commonly known as Fortune’s algorithm, has been identified as optimal[3]. The
algorithm involves sweeping a horizontal line - the sweep line - from top to bot-
tom over the plane. As the sweep line moves downwards over the plane it strikes
certain special points referred to as the event points. Relevant information re-
garding the structure of the diagram (i.e. its edges and vertices) is stored at
these specific occurrences only, since it is only at the event points that the dia-
gram structure changes. The following paragraphs are dedicated to explaining
the algorithm in more detail.
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(a) (b)

Figure 2.2: The beach line

A fundamental concept of the algorithm is the formation and development
of the beach line: a line situated above the sweep line and consisting of a se-
quence of parabolic arcs. Referring to Figure 2.2a, it is easy to visualize that
each parabola corresponding to a certain site pi above the sweep line bounds
the locus of points that are closer to pi than to the sweep line. Thus the beach
line can be seen as the line bounding the locus of points that are closer to a
respective site above the sweep line than to the sweep line itself. The beach line
is defined as the line passing through, for each x-coordinate, the lowest point of
all parabolas.

As the sweep line moves from top to bottom the edges of the Voronoi dia-
gram are traced out by the breakpoints separating the different parabolic arcs
that form the beach line. Refer to Figure 2.2b for clarity.

The previously mentioned event points represent the points where, during
the planar sweep, the combinatorial structure of the beach line changes. The
first type of event, a site event, occurs when the sweep line strikes a new site.
At this instance a new parabolic arc is formed which at first is simply a vertical
line segment connecting the site to the beach line. As the downward movement
of the sweep line progresses, this new parabola widens and the breakpoints at
its beginning and end start tracing out a new edge. The edge is initially not
connected to the rest of the Voronoi diagram above the sweep line and it is when
such growing edges connect to form a vertex, that the second type of event, a
circle event, takes place.

Referring to Figure 2.3, a circle event marks the disappearance of a parabolic
arc from the beach line. This happens at an instant where a circle passing
through points pi, pj and pk, with the vertex q at its centre and its lowest point
on the sweep line, can be drawn. To be more specific, a circle event can be
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Figure 2.3: A circle event

defined as an event where the sweep line reaches the lowest point of a circle
through three sites defining consecutive arcs on the beach line.

The construction of the Voronoi diagram can now be perceived to consist of
a sequence of a) site events, when new edges start to grow and b) circle events,
when two growing edges meet to form a vertex.

2.3 Implementation

2.3.1 Basic structure and initial considerations

As a starting point on implementation the structure of Fortune’s algorithm is
presented. Figure 2.4 defines the coordinate system used. The algorithm’s basic
strategy is as follows:

while the event queue is not empty
do remove the event with the largest y-coordinate (i.e. the next event)

from the queue
if the event is a site event

then handleSiteEvent()
else handleCircleEvent()

It is necessary to set up two initial data structures before entering into this
loop:

1. The initial event queue
The initial event queue consists only of site events and is formed by simply
sorting all defined sites in terms of descending y-coordinates. The circle
events are detected and added to the queue only once the planar sweep
has commenced.

2. The initial beach line
A data structure representing the beach line has to be created before the
planar sweep starts. This requires the creation of an arc for the topmost
site or, in the case where there is more than one topmost site, the creation
of multiple arcs for these sites. The topmost site(s) are identified from
the initial event queue and stored in a list. Their coordinates are used
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Figure 2.4: Coordinate system

to create an initial beach line where the position of the sweep line is
taken as the position of the first site in the initial event queue that is not
contained in the list of topmost site(s). This implies that the breakpoints
separating the arcs of the initial beach line are calculated as if the sweep
line is already in its ’second’ position. Thus, when subsequently entering
the abovementioned loop representing the planar sweep, these top site(s)
are not handled and the sweep starts with the beach line in its second
position.

Figure 2.5 shows the fundamental classes used to compute the Voronoi dia-
gram. The following paragraphs are dedicated to explaining these classes, their
key methods and the difficulties that surfaced during their development.

2.3.2 Calculating the breakpoints

A breakpoint is defined by two sites, the bisector of which it traces out. These
two sites are used to calculate the breakpoint’s coordinates which, of course,
are different for every new position of the sweep line. Thus the breakpoint()
method receives as parameter the current position of the sweep line and uses
it to calculate the breakpoint’s coordinates as follows (refer to Figure 2.6 and
Figure 2.7):

X0 =
−b±

√
b2 − 4ac

2a
and Y0 =

(pjx −X0)2

2(pjy − ly)
+

1
2
(ly + pjy)

where a = 1− piy − ly
pjy − ly

;
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Figure 2.5: The fundamental classes used to compute the Voronoi diagram

b = 2pjx
piy − ly
pjy − ly

− 2pix and

c = pix
2 − pjx

2 piy − ly
pjy − ly

− (piy − ly)(pjy − piy).

The derivation of these equations are presented in Appendix A.

Two possible values for X0, and its corresponding Y0, can be calculated,
each defining one of the intersection points of the two parabolas, and it remains
to be determined how the correct coordinate will be identified. Consider the
creation of BreakPoint objects:

. . . = new BreakPoint(s1, s2)
OR

. . . = new BreakPoint(s2, s1)
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Figure 2.6: Intersections between parabolas: defining variables.

Figure 2.7: Definition of variables, continued.



CHAPTER 2. THE VORONOI DIAGRAM 11

Figure 2.8: Determination of breakpoint coordinates.

Depending on the parameter sequence in which the Site objects are entered
to create the breakpoint, the breakpoint will have an ‘internal’ site s1 and s2,
e.g. the last breakpoint created in the example above will have site s2 as its
‘internal’ site s1. If the two possible breakpoints are then defined as illustrated
in Figure 2.8, where breakpoint s1s2 represents the beach line transition from
α1 to α2 and breakpoint s2s1 the transition from α2 to α1, the appropriate
breakpoint can be identified as follows:

IF internal site s1 < internal site s2
return s1s2 as the coordinates

IF internal site s1 > internal site s2
return s2s1 as the coordinates

where site s1 < site s2 if s1y > s2y, i.e. the site event s1 will take place before
the site event s2.

There is one more aspect that can be mentioned regarding the breakpoint()
method, namely the handling of certain special cases. The abovementioned
equations don’t hold true and special provision has to be made in the following
situations:

1. The y-values of the two sites are the same.
In this case the x-coordinate of the breakpoint cannot be calculated nor-
mally since piy−ly

pjy−ly
= 1 and thus a = 0. Instead it is calculated as follows:
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Figure 2.9: The start and end of the beach line.

X0 =
−c

b

2. Both sites and the sweep line lie on the same y-value.
The breakpoint lies mid-way between the two points. The scenario requires
special handling since piy−ly

pjy−ly
cannot be calculated.

3. The sweep line coincides with pj.
At this instant the parabola defined by pj is a vertical line extending
upwards from pj and the breakpoint is therefore directly above pj . Again,
this scenario requires special handling since piy−ly

pjy−ly
cannot be calculated.

2.3.3 Special breakpoints: the start and end of the beach
line

The previous section dealt with the calculation of breakpoints, specifically the
mathematics behind the breakpoint() method and the important role played by
the sequence in which Site objects are passed on to a breakpoint’s constructor.
This section presents another aspect of breakpoint implementation.

The beach line extends indefinitely to the left and right and it was therefore
necessary to create two special breakpoints representing the start and end of the
beach line. Since a breakpoint can only be defined by two sites, it was necessary
to create a fictitious leftmost and rightmost site. These leftEdge and rightEdge
objects, illustrated in Figure 2.9, are in fact not stationary and their coordinates
are updated at each new position of the sweep line: they are given constant x-
coordinates of −∞ and +∞, respectively, and their y-coordinates correspond
to the current position of the sweep line. By placing them on the sweep line one
ensures that the leftmost and rightmost breakpoint will also have x-coordinates
of −∞ and +∞, respectively, because the parabolas used to calculate these
breakpoints will always be vertical lines extending from the fictitious sites to
the beach line.
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2.3.4 Representing the beach line

The beach line, being comprised of a certain number of parabolic arcs, is rep-
resented by a LinkedList object that was extended to allow for a special way
in which to add objects to the list. When a new site is encountered and a new
parabolic arc is formed the composition of the linked list has to be altered. In
the position where the new arc cuts into the beach line, three new parabolic arcs
are created where originally there was only one. The original arc is dissected by
the new arc.

It is worth mentioning that this replacement procedure causes the reference
of the original arc to be lost, which, as will be explained at a later stage, plays
an important role when handling circle events.

2.3.5 The handling of site events

The procedure to handle a site event is defined as follows:

1. Search the list of arcs to find the arc vertically above the current site. If
a) the event queue contains a circle event that has a pointer to this arc
and b) the current site lies within such a circle, the circle event must be
removed from the queue.

2. Create the new parabolic arc for the site and place it into the arc list in
the correct position.

3. Create a new instance of a HalfEdge object for the bisector separating
the current site from the site responsible for the parabolic arc situated
vertically above the current site.

4. Detection of new circle events: Checks are performed on two sets of triples
of consecutive arcs in the arc list. The triple that has the new arc as its
left arc is checked to see whether the breakpoints converge, followed by a
check on the triple where the new arc is the right arc. If a circle event is
detected, it is inserted into the event queue.

The definition of the first step in the list above cost a great deal of time since
it differs from the definition specified in the literature used. The additional con-
straint, b), was added to the first step when it became clear that circle events
were being lost. The following paragraphs serves as an attempt to explain the
reason for this.

The first step originally stipulated that all circle events that have pointers
to the arc vertically above the current site should be deleted. Consider the
following:

• Circle events involve the meeting of two edges that are growing towards a
common point, or vertex.

• Once the circle event has taken place, the two edges aren’t growing any-
more, but instead they have been replaced by a newly created edge that
now grows from the vertex.
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Figure 2.10: Midpoint of circle through three points

Consequently, it is possible for a circle event to render another circle event
impossible. This depends on the order in which these circle events would take
place, and typically happens when the first circle event connects edges that are
also involved in the second event in such a way that the meeting of edges defined
by the second circle event can no longer take place. The original definition im-
plied that the scenario sketched above always occurs and that the circle event/s
that would be detected in step 4, for instance, would in all cases overrule the cir-
cle events of step 1. This was found to be untrue. Instead it was found that the
circle event should not be deleted in step 1 if the current site lies outside such
a circle, because in these situations the meeting of edges should still take place.
It immediately became apparent, once this modification was implemented, that
there was indeed a flaw in the original step definition. The problem of edges
not being terminated in vertices, and thus growing indefinitely, was solved.

Step two has already been explained in section 2.3.4, which brings us to step
three: creating new HalfEdge objects. HalfEdge objects could have as their
start and end attributes either BreakPoint or Vertex objects. Initially they are
constructed using only two breakpoints and the references of the two sites of
which they form the bisector, but through the occurrence of circle events one of
their endpoints could be made permanent, i.e. could be transformed into a ver-
tex. If more than one circle event operates on the same half edge then its start-
as well as its endpoint would eventually be turned into vertices, thus transform-
ing it into an Edge object. This process will shortly be explained in more detail.

Step 4 involves the detection of circle events in which a circle event is added
to the event queue if the following is true (refer to Figure 2.10 for the definition
of variables):

a1b2 − b1a2 < 0 (2.1)



CHAPTER 2. THE VORONOI DIAGRAM 15

where a1 = x2 − x1;
a2 = y2 − y1;
b1 = x3 − x2 and
b2 = y3 − y2.

The coordinates of the midpoint can then be calculated as follows:

{
x0

y0

}
=

1
a1b2 − b1a2

[
b2 −a2

−b1 a1

]{
c1

c2

}

where, additionally,

c1 =
1
2
(x2

2 − x2
1 + y2

2 − y2
1) and

c2 =
1
2
(x2

3 − x2
2 + y2

3 − y2
2)

It should be noted that inequality (2.1) is only valid for a coordinate system
in which the positive x and y axes extend to the right and top, respectively.
Flipping such a coordinate system around the x-axis would require the opposite
inequality sign in the above equation.

The derivation of these equations are presented in Appendix B.

2.3.6 The handling of circle events

A circle event is handled in six steps:

1. Remove a) the disappearing arc from the arc list and b) all circle events
that has a pointer to it from the event queue. Create a new breakpoint
using the sites responsible for the arcs on each side of the disappearing
arc.

2. Create a new vertex at the center of the circle causing the event and add
it to the set of vertices.

3. Call breakPointToVertex() on the connecting half-edges.

4. Update the breakpoint references of the side arcs.

5. Use the new breakpoint (defined in 1.) and the new vertex (defined in 2.)
to create a new HalfEdge record starting at the vertex.

6. Perform checks and take action in a manner analogous to step 4 under
handleSiteEvent(), but for the triples of consecutive arcs use the triple
that has a) the former left neighbor as its middle arc and b) the former
right neighbor.
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There are two points worth elaborating on here. Firstly, either the start-
or the endpoint of each of the two connecting half-edges is transformed from a
breakpoint to a vertex in step three. To assure that the correct breakpoint is
transformed it is necessary to have the old breakpoint object as an input parame-
ter for the breakPointToVertex() method so that the choice between breakpoints
can be made at reference level.

public void breakPointToVertex(Vertex v, BreakPoint bp){
. . . if(start.equals(bp)){

start = v;
hasBeenClosed = true;

}
. . . if(end.equals(bp)){

end = v;
hasBeenClosed = true;

} . . .
}

Furthermore, this method should allow for the deletion of the half-edge and
its subsequent replacement with a new Edge object in the case where both its
start- and endpoints have been transformed into vertices, i.e. when breakPoint-
ToVertex() is called for a second time.

. . . if(start instanceof Vertex && end instanceof Vertex){
toBeRemoved.add(this);
Edge e = new Edge((Vertex) start, (Vertex) end, top, bottom);

} . . .

The second point concerns step four, where one of the breakpoint references
of each of the side arcs has to be updated. This poses a problem if one does
not take into consideration the fact that, when a site event is handled, some
arc references are lost. This makes it necessary to search through the arc list
each time a breakpoint reference has to be updated and to then identify the
breakpoint that should be updated by comparing it to the old breakpoint at
reference level.

BreakPoint newBP = newBreakPoint(leftSite, rightSite);
. . .
BreakPoint oldBreakPointLeft = ((BeachLineArc) ((CircleEvent) currentSite).arc1).right;
BreakPoint oldBreakPointRight = ((BeachLineArc) ((CircleEvent) currentSite).arc3).left;
for(int z=0;z¡arcList.size();z++) {

BeachLineArc arc = (BeachLineArc) arcList.get(z);
if(arc.right.equals(oldBreakPointLeft)) {;

arc.right = newBP;
}
if(arc.left.equals(oldBreakPointRight)) {

arc.left = newBP;
}

}



CHAPTER 2. THE VORONOI DIAGRAM 17

2.3.7 Numerical issues

Whether it is the determination of the event queue, the calculation of break-
points or the detection of circle events, provision has to be made for loss of
numerical accuracy caused by limited storage. In section 2.3.6, for instance,
the necessity to make a choice between breakpoints on reference level in the
breakPointToVertex() method was discussed. The alternative to this would be
to identify a certain breakpoint by testing whether it falls within some ‘small’
circle drawn around the vertex it is growing towards. Although this initially
seems like a valid solution one realizes, upon reflection, that there are numerical
issues working against such a solution. Consider the following:

• Circle events are calculated using the raw data i.e. the defined coordi-
nates of the site events. The coordinates of the vertex are thus calculated
relatively accurately.

• Breakpoints, however, are calculated and re-calculated as parabola inter-
section points during the planar sweep, using a specific sweep line position.

These considerations, together with the fact that it is possible, for certain
groupings of sites, to have edges of extremely short lengths, make it easy to
understand why it is necessary to identify the correct breakpoint through its
reference.

This illustrates but one scenario in which numerical considerations become
important. Loss of accuracy has to be continually accounted for during imple-
mentation.



Chapter 3

CAD-tools for approximate
column forces

The primary objective of the research was to identify a way in which to efficiently
calculate preliminary column forces. A choice was made to find a geometric so-
lution to this problem which would serve as a semi-automated alternative to the
procedure used in current engineering practice. Voronoi diagrams were identi-
fied as ideal equipment for this task and a tool for calculating these diagrams
given a set of predefined sites was developed. The question of how the Voronoi
functionality can be made useful to compute column forces in engineering offices
is addressed in this chapter.

The data available to solve the column-force problem comprises the CAD
drawings of floor geometries. In many instances these drawings still have a
preliminary status. The Voronoi functionality has to be used to geometrically
divide each floor into influence areas, an area for each column. Consequently,
a choice was made to proceed by attaching the Voronoi functionality to a CAD
system. This would not only permit the geometrical definition of the floor, but
would also provide an environment in which loaded areas could be defined.

This chapter is dedicated to explaining the integration of the Voronoi func-
tionality into the chosen CAD system, as well as all subsequent tasks that have
to be performed in order to arrive at a set of preliminary column forces.

3.1 The CADemia system

The CADemia system[2] is an open source CAD system under development
at the Bauhaus University Weimar (BUW), Germany. One of the features of
the system is its problem-orientated extensibility, which makes it ideal for use in
the application under consideration. What is essentially required from the CAD
system is the provision of an environment in which not only the Voronoi dia-
gram can be calculated and displayed, but in which floor geometries, columns
and loads can be defined. CADemia’s architecture applies the Model-View-
Controller (MVC) paradigm, in which model components, their geometrical
representation, and the commands that operate on them are clearly separated.

18
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Figure 3.1: Components

In this way it provides an existing structure to which the intended function-
ality can be added. New components, e.g. columns and loads, and commands
to define them, are integrated into CADemia by extending superclasses and
implementing interfaces. The added components automatically become part of
the CAD database.

The extensions to the system can be divided into two categories, namely

• the components added to the model and

• the commands added to define them.

3.2 Components

Referring to Figure 3.1, the following components are required:

Column Represents columns and load-bearing walls in the structure and are
the ‘sites’ of the Voronoi diagram.

OuterBoundary Represents the outer boundary of a floor.

InnerBoundary Represents the stairwells, lift shafts, etc. which cause open-
ings in a floor.

Edge Represents the edges of the Voronoi diagram.
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HalfEdge Represents the half-edges of the Voronoi diagram which are eventu-
ally transformed into Edge’s.

VoronoiCell Represents a closed influence area for a given column.

Load Represents a loaded area.

The standardized structure of all components in CADemia is enforced through
the Component interface, where the following methods are defined:

• transformBy()

• getShapes().

These methods allow, respectively, for the transformation of a component
and its visual representation by the graphical user interface. All of these classes
were all either directly or indirectly made to implement Component. For the
boundary classes, as well as classes VoronoiCell and Load, the implementation
was done indirectly, i.e. by extending an already existing component, namely
ComponentGeneralPath.

The commands required to instantiate these components, as well as com-
mands providing other functionality, are discussed below.

3.3 Commands

Commands are represented by command objects. They represent user interac-
tion and are used to insert, remove or change elements of the model. Commands
are integrated into the CADemia environment by implementing the interface
Cmd. This interface defines, amongst others, three essential methods:

• doCmd(),

• undoCmd() and

• redoCmd().

The interface is implemented by a number of command-classes described
below. With the exception of commands Calculate and Transfer, all commands
are used to instantiate components.

3.3.1 Commands DefineOuterBoundary and
DefineInnerBoundary

Through an extension of the existing selectByPickIntersect command in
CADemia, these commands permit the definition of an outer boundary of the
floor as well as any inner boundaries, e.g. lift shafts, it may have. Graphical
components, whether they be line-, curve- or general path objects, are selected
and have to be concatenated into a general path object representing the particu-
lar boundary. The concatenation functionality was developed separately since it
is used not only in these two commands, but many times in the overall process.
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The concatenation algorithm is described below.

The problem of concatenating various elements into a continuous general
path is divided into a number of different tasks. Firstly, functionality has to
be developed for creating a GeneralPath object from any number of geometric
objects, where these objects are more specifically defined as objects that im-
plement Java’s Shape interface. Secondly, in order to avoid forcing the user to
select these objects in a specific order, i.e. the order in which they would be ap-
pended to the general path, a way is required to sort a set of shapes representing
a boundary geometrically. Thirdly, considering the fact that the set of shapes
used to construct the general path may itself contain general path objects, we
need to be able to ‘explode’ a general path object into its underlying shapes.

Class GenPathSort provides the functionalities described above. This class
contains a number of methods, of which three were written for application in
this specific context, i.e. as a tool for defining boundaries. Other methods of
the class will be discussed at a later stage.

nextShapeFromPoint()
The method receives a set of shapes and a point object, which will be re-

ferred to as the ‘frompoint’. It proceeds to search through the set of shapes
for a shape that either starts or ends at the given frompoint. If the endpoint
coincides with the frompoint, the shape is reversed. The first shape attaching to
the frompoint and its endpoint are returned in an object array. While defining
boundaries, it is implicitly assumed that no more than two shapes connect at
the frompoint, i.e. that the boundary does not diverge, although the method
does not check for this.

explodePath()
The method receives a general path. A list of shapes is returned, where

these shapes form the atomic parts from which the given general path was con-
structed.

constructSingleClosedPath()
The method receives a set of shapes. A GeneralPath object is constructed

using the given set of shapes. The shapes have to be lines, quadratic curves
or cubic curves and together they have to form a closed path. The startpoint
and the direction of the path are chosen arbitrarily. If the shapes do not form
a single closed path, null is returned.

When commands DefineOuterBoundary and DefineInnerBoundary are called,
geometric elements are:

• selected by drawing an intersecting window,

• exploded into their underlying shapes if necessary, and

• added to a set of shapes which is sorted geometrically and used to construct
a GeneralPath object representing the boundary.



CHAPTER 3. CAD-TOOLS FOR APPROXIMATE COLUMN FORCES 22

3.3.2 Command ReadColumns

Column objects, representing the ‘sites’ of the Voronoi diagram, are read into
the database from a text file. If duplicate sites are defined - a mistake easily
made when the number of columns becomes large - the Voronoi diagram will
not be calculated correctly and thus special provision is made to ensure that
this does not happen.

The format of the text file is shown in Appendix C.

3.3.3 Command AddColumn

In addition to the ReadColumns command described above, this command can
be used to add Column objects to the database through the graphical user
interface. When prompted for the coordinates of the column, the user can
define the position either by using the mouse or by typing.

3.3.4 Command Calculate

The Voronoi functionality is executed through the Calculate command. Apart
from the implementation of Fortune’s algorithm, which has already been dis-
cussed in section 2.3, this command required the development of various ad-
ditional tools. Adjustments had to be made in order to effectively deploy the
Voronoi functionality for use within the CAD-system and, more specifically, for
the proposed application. These adjustments and additional developments will
be discussed in the following paragraphs, in the order in which the need for
them became apparent.

In section 2.3.7 the customary numerical issues that arise within applications
like these were mentioned. A tolerance value has to be chosen through which one
can account for inevitable inaccuracies. Since the problem is bounded, the toler-
ance value can be fitted to the specific problem by making it directly dependent
on the size of the defined outer boundary: it is calculated, at the outset, as a
function of the largest diagonal that can be drawn for the specific floor geometry.

A few more consequences are brought about by the presence of an outer
boundary. Firstly, it dictates the sweep line’s start- and end position for the
planar sweep and, more importantly, it bounds the Voronoi diagram. The edges
produced by the initial implementation extend past the boundaries of the floor
and has to be ‘trimmed’ at the outer boundary.

Trimming

The trim() method is called after the Voronoi diagram has been calculated.
It involves, amongst other things, the calculation of all intersections between the
Voronoi edges and the defined outer boundary and/or the set of inner bound-
aries. These intersections, in conjunction with a way in which to identify the
part of the edge that has to be thrown away, are used to ‘cut’ the Voronoi dia-
gram into its bounded shape.
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Figure 3.2: Parametric line clipping

The first difficulty that presents itself in this context is calculating the in-
tersections in non-linear regions of the boundary. The GeneralPath objects
representing the boundaries can contain quadratic- or cubic segments and there
exists no easy way to calculate intersections between such segments and line
objects. A decision was made to use line approximations of the actual Gener-
alPath objects when calculating intersections. Apart from this particular case,
other reasons for using linear-approximated boundaries exist. Consequently the
linear approximation is used throughout the computation.

What is essentially required for this task is a line-clipping algorithm. A
variety of these algorithms can be found in literature and the Cyrus-Beck
technique[3] was chosen. For reasons that will be explained shortly this al-
gorithm could not be used to identify the line segment that should be thrown
away, but is used only to calculate the intersection. Referring to Figure 3.2,
the line that has to be clipped to the boundary is represented parametrically as
follows:

P (t) = P0 + t(P1 − P0)

where t = 0 at P0 and t = 1 at P1.

An arbitrary point PEi
on Edge Ei is identified. Three vectors can be drawn

from this point to three designated points on the line from P0 to P1: the inter-
section point, a point on the part of the line inside the clip region and a point
on the part of the line outside the clip region. The value of the dot product of
these vectors with the edge’s outward normal, Ni, can be used to distinguish in
which region a point lies, and to calculate the intersection.
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Ni • [P (t)− PEi ] > 0 for the vector PEi → 1;
Ni • [P (t)− PEi ] = 0 for the vector PEi → 2 and
Ni • [P (t)− PEi ] < 0 for the vector PEi → 3.

To calculate the intersection, we need to use the second equation above and
solve for the value of t at point 2. The equation below is derived in Appendix
D.

t =
Ni • [P0 − PEi

]
−Ni •D

where D = P1 − P0.

Although the other two equations can theoretically be used to identify the
part of the line that should be discarded, they are of no use in this context.
The reason for this stems from the fact that, in this application, the same line
can possibly have intersections with different boundaries and/or more than one
intersection with a single boundary. The same Voronoi edge can, for example,
run across an inner as well as the outer boundary or cross any boundary more
than once as shown in Figure 3.4. As a result an alternative way is required to
decide which parts of a Voronoi edge should be discarded.

Referring to the two endpoints of an edge, four possible scenarios exist:

• the startpoint, but not the endpoint, falls inside the floor geometry,

• the endpoint, but not the startpoint, falls inside the floor geometry,

• the startpoint and the endpoint fall inside the floor geometry, or

• the startpoint and the endpoint fall outside the floor geometry.

By identifying the applicable scenario, an edge can be dissected into how-
ever many pieces are necessary and the redundant parts can be identified and
discarded. The algorithm is described below, following an explanation of how
the Cyrus-Beck technique for calculating intersections was implemented.

The Cyrus-Beck algorithm requires the creation of a vector that serves as an
outward normal to the boundary. Since it is only used to calculate the intersec-
tion, the ‘outward’ specification falls away and any vector that is normal to the
boundary segment under consideration has to be created. This is accomplished
in two steps. Refer to Figure 3.3. First a vector, C, that is perpendicular to
the plane is found by calculating the cross product of the boundary segment,
A, with any other vector, B, which lies in the same plane:

C = A×B

The vector B can have two possible orientations. This is not strictly neces-
sary - an orientation can be chosen at the outset - but it improves the accuracy
of the components of the normal vector being calculated: by always choosing an
orientation for B so as to maximize the angle between A and B, the accuracy
of the components of vector C is ensured which, in turn, ensures the accuracy
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Figure 3.3: Creating the normal vector

of the normal. The choice between the two orientations is made by calculating
the dot product A • B. The orientation of B for which the angle, θ, is largest,
will produce the smallest value for this dot product.

In the second step the normal vector is calculated:

N = A× C

This vector, together with the start- and endpoints of the two lines, can be
used to calculate the intersection using the equations presented earlier.

Figure 3.4 illustrates the four possible endpoint-position scenarios. The pos-
sibility that an edge can have more than one intersection with a boundary has
repercussions beyond just the need for this compartmentalizing. If one considers
the fact that the direction in which the boundary may be traversed is arbitrary
and that the intersections will be found in an arbitrary order, it becomes clear
that the intersections will have to be sorted after they have been calculated.
For each edge, the intersections are stored in an array which is sorted from left
to right (or from bottom to top in the case of a vertical line) once all the inter-
sections have been calculated. The ‘direction’ that is thus enforced has to be
correlated with the direction of the edge in order to use the proposed compart-
mentalizing to solve the problem. This, in turn, also demands that the edge is
‘sorted’: all edges have to run from left to right/bottom to top.

For each endpoint-position scenario, the sorted intersection array and the
start- and endpoint of the Edge or HalfEdge is used to, with the help of a
counter, create multiple Edge records if necessary, i.e. if intersection does in-
deed occur.

At the time when the trimming is done, i.e. after the Voronoi diagram has
been calculated, there exists a set of HalfEdge as well as a set of Edge objects.
During trimming the elements of both these sets are individually handled and
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Figure 3.4: Distinguishing between segments

replaced by an appropriate number of Edge objects so that, upon completion,
there exists only one set, comprising Edge objects.

Using the commands and functionalities described above, and given the ge-
ometry of a floor in a CAD-environment, the following can now be achieved:

• the definition of the outer boundary and/or inner boundaries of the floor,

• the definition of the positions of the supporting columns,

• the calculation of the Voronoi diagram, and

• the trimming of the Voronoi diagram to the defined boundaries.

What remains is to develop a way in which to place loads on the floor and
to transfer the loads to the supporting columns. This is achieved by building
Voronoi cells around each column and assigning the loads contained inside the
cell to the column. This implies that the area of a cell has to be computed.
The representation of Voronoi cells in such a way as to achieve the described
objectives is discussed below.

Building the Voronoi Cells

If the Voronoi cells were to be represented by GeneralPath objects, the prob-
lem comprises moving from an outer boundary, a set of inner boundaries and
a set of edges to a set of GeneralPaths. Whilst discussing the definition of the
boundaries in section 3.3.1, class GenPathSort was described. It has methods
that enable the concatenation of geometric objects into a GeneralPath object.
If the individual geometric objects that form a cell can be identified, this func-
tionality can be used to create a general path to represent the cell.

The first task is to split the boundaries into segments between points of
intersection with the Voronoi edges. Once this has been done, i.e. once a set
of boundary segments that each form a ‘leg’ of a Voronoi cell is available, the
cells can be assembled. The intersections calculated whilst trimming are stored
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Figure 3.5: Multiple areas of a single cell

and used to perform the segmentation of the boundary. The splitPath() method,
used to split a boundary into segments given a set of points on the boundary, was
developed. This method receives the general path representing the boundary
and the stored array of intersection points. It returns a set populated with the
calculated segments, each of them represented as a general path. The method
is called on each of the boundaries as soon as all the intersections, calculated
during the trimming operation, are known.

Given the set of boundary segments and the set of Voronoi edges, what
remains is to identify, for each column, the edges and boundary segments com-
prising its cell, and to then concatenate these elements into a general path.
Referring to Chapter 2, each Edge object has as attributes the two columns
it separates, making it easy to identify the edges belonging to a column. One
could then argue that, by searching through the set of boundary segments for a
segment or segments that close the discontinuities, if any, between the identified
edges, the boundary segments of the cell can be identified. This is not the case.

Figure 3.5 illustrates a scenario in which there is more than one area con-
tributing to a single Voronoi cell. If one were to identify the boundary segments
belonging to this cell simply by searching for those that would close the dis-
continuities between edges, one too many segments - i.e. segment 2 - would be
identified. It is clear that an alternative, more robust way in which to identify
the different geometric elements comprising a cell is required.

The algorithm that was developed for the creation of the cells as well as
the additional developments it necessitated, will be discussed using Figure 3.6.
The fundamental principle employed by this algorithm rests on the ability of an
edge to distinguish between its ‘left’ and its ‘right’ side. Prior to explaining the
algorithm, more detail regarding this ability is presented.

Assigning sides
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Figure 3.6: Building the Voronoi cells

If one were to consider cell 1 in Figure 3.6, it is easy to see that boundary
segment 2 will have to be identified as forming a part of it. Conversely, for
cell 2, this segment should not be identified. Apart from reinforcing the earlier
statement concerning the identification of segments through closing discontinu-
ities, this fact serves to illustrate that, if edge e1 could provide information on
whether a certain column lies on a certain ‘side’ of it, it could possibly pro-
vide the missing tool needed to solve the problem. This was indeed found to
be the case and a method, assignSides(), was developed. The method is called
after the Voronoi diagram has been calculated and before trimming commences.

Method assignSides() involves giving a value of either ‘L’ or ‘R’ to a ‘top-
Side’ attribute that is defined for each edge and half-edge. The value is de-
termined by simply calculating the cross product of vectors A and B, running
from the startpoint to the endpoint and the startpoint to the top column, re-
spectively. Refer to Figure 3.7. If the resultant of this cross product points
downwards, the edge’s top column lies on its right side and, alternatively, if the
resultant points upwards, the top column lies to the left of the edge.

During all subsequent calculations involving the edge sets, and especially
whilst trimming, it is important to maintain the topSide attribute. When the
Voronoi diagram is trimmed, and the original edge and half-edge sets are trans-
formed into a new edge set, the attribute is inherited by every newly created
edge. Furthermore, this attribute has to be updated whenever the direction of
an edge is inverted, as is required during trimming. To maintain the attribute
during such modifications, the flip() method was written. This method is called
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Figure 3.7: Assigning sides

on an edge whenever its start and end point has to be altered and ensures that
the topside attribute gets updated accordingly.

Apart from defining a topSide attribute for all edges and half-edges, addi-
tional functionality had to be put in place in order to effectively construct the
Voronoi cells. Before presenting the algorithm, a method is discussed which was
developed for merging two or more Voronoi edges. The need for this method
will, however, only become apparent within the context of the algorithm.

Merging edges
Referring to Figure 3.6, cell 1, four edges can be identified - e1, e2, e3

and e4 - as belonging to the cell. The proposed algorithm requires that all edges
used for the construction of a cell extend from one point on a boundary to an-
other unless, of course, the edges have no intersections with the boundaries. For
cell 1, this implies that edge e2 and e3 should be merged. The same can be said
for edges e2 and e5 of cell 2. The unifyEdges() method receives a set of edges,
i.e. the edges that were identified as belonging to a certain cell, merges edges
where necessary, and returns a set comprised of the modified, merged edges, in
the form of general paths. The functionality developed in class GenPathSort for
concatenating geometric elements is used again, only now the elements do not
have to form closed paths. Thus, instead of using constructSingleClosedPath(),
a method called constructPath() was developed. This method returns an object
array containing the general path as well as a boolean indicating whether the
path is, in fact, closed.

The cell-building algorithm is presented on the next page.



CHAPTER 3. CAD-TOOLS FOR APPROXIMATE COLUMN FORCES 30

for every column{
find all edges that belong to the column
concatenate edges where necessary → unified edge set
find boundary segments that close the discontinuities between the edges →
boundary set

while the unified edge set is not empty{
for every unified edge{

for every boundary segment{
if the boundary segment fits between the start and end vertices of
the edge{

if the area thus formed is on the same side of the edge as the
column{

add the boundary segment and edge to a result set
remove the edge from the edge set
remove the boundary segment from the boundary set
break

}
else{

remove the boundary segment from the boundary set
break

}
}

}
}
if the unified edge set is not empty{

add the unified edge set to the result set
add the boundary set to the result set
clear the unified edge set

}
}
using the result set, construct the Voronoi cell

}

To illustrate the fundamental concept of this algorithm, i.e. the test it uses
to distinguish between boundary segments that should be kept and those that
should be discarded, refer to Figure 3.6. The essential distinction between
segments is made by the if -statement in the innermost loop: if the area thus
formed is on the same side of the edge as the column. For cell 1, this involves
the following:

• creating an area using boundary segment 2 and edge e1,

• establishing, through edge e1’s topSide attribute, that the column lies to
its left,

• subsequently creating a point, x, to the left of the edge and

• testing whether this point is contained in the area.

In this specific case, the point is contained and thus the boundary segment
will be kept. Conversely, using the same boundary segment in the context of
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cell 2, the point would be created to the right of the edge, would thus not be
contained in the area and boundary segment 2 would, rightly, be discarded.

The algorithm as described provides a robust way in which to identify the
edges and boundary segments comprising a cell. These edges and segments are
concatenated to create a Voronoi cell, i.e. a general path which can consist of
more than one area and should be closed. For this purpose the method, con-
structClosedPath() is added to class GenPathSort.

A Connected Edge

The algorithm behind the construction of the Voronoi cells as well as the ad-
ditions and most of the modifications it necessitated have been explained. There
exists, however, another important modification that has not been described,
namely that the Edge and HalfEdge objects as they exist after the Voronoi dia-
gram has been calculated are not used when the cells are constructed. Instead
ConnectedEdge objects are used, especially created for use in the process of
building the cells. The following paragraphs are dedicated to explaining why
this modification was necessary and serve to illustrate how the edges are trans-
formed from their original representations into ConnectedEdge’s.

The reader is referred to the description of edge-merging. The aim of the
unifyEdges() method is to concatenate a number of edges together into a general
path where necessary. This general path, however, has to inherit the topSide
attribute from the edges out of which it is constructed and thus Java’s Gen-
eralPath object cannot be used. One initially expects that this obstacle can
be overcome simply by extending GeneralPath and adding the attribute, but
this was found to be impossible, and there exist good reasons for this. Firstly,
a topSide() attribute is worthless without its accompanying top and bottom
attributes. Secondly, even if all three the attributes were accounted for in an
extended GeneralPath, it would not be possible to assign meaningful values to
them, since their values differ for each of the edges that we are trying to merge.

To account for these problems, class ConnectedEdge was written. The re-
quirements were the following:

• The topSide attribute had to be maintained.

• The object could have one or more contributing edges.

• The class has to implement Java’s Shape interface since the general path
builders require shapes. The reason for this stems from the fact that the
builders rely strongly on the use of a path iterator, which they receive
from each contributing geometric object, to construct a path.

The first two requirements were satisfied by creating a set of contributing
edges for each connected edge. This implies that, when edges are merged, each
of them is added to this set by way of the connected edge’s constructor. When-
ever information on whether a specific column lies to the left or to the right of
a certain connected edge is required, it can be extracted from any single con-
nected edge in the set of contributing edges. Furthermore, since the possibility
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of having more than one contributing edge necessitates representation by means
of a general path, a general path builder is built into the class. This builder is
called as part of the construction of a new connected edge and uses the set of
contributing edges to create a general path.

The implementation of the Shape interface was achieved by simply divert-
ing, by means of the general path, all the required methods to class GeneralPath.

It is important to note that, during computation, edge directions are fre-
quently inverted and consequently an edge in the set of contributing edges could
have one orientation at the time when the connected edge is constructed and
another orientation shortly afterwards. Bearing this in mind, the general path
builder is not called during construction, but rather each time the path is called
upon, for example when the path’s iterator is required.

The internal general path builder of connected edges has to be discussed in
more detail. Although this builder uses the same algorithm as the one used
in class GenPathSort, it was necessary to make some modifications since the
geometric elements used to construct the path are, in this context, not standard
java.awt.geom elements, but Edge objects. Whilst discussing the DefineOuter-
Boundary command, method nextShapeFromPoint(), which is frequently called
during the construction of general paths, was mentioned. This method, for ex-
ample, has to be altered since we require it to return Edge’s and not Shape’s.
Furthermore, modifications to class GenPathSort were also required since the
construction of the final general path representing the cell will happen here.
NextShapeFromPoint() sometimes requires the inversion of a shape’s direction
- when the given ‘frompoint’ coincides with the shape’s end point - as has been
discussed earlier. If the shape is a connected edge, this inversion implies the in-
version of all its contributing edges. Consequently it is necessary to test for the
possibility of the next shape being a connected edge and handle such a scenario
separately.

The methods and specializations described above make it possible to calcu-
late the Voronoi diagram, performing the necessary trimming of the edges and
building the Voronoi cells. Figure 3.8 shows a floor geometry as it would appear
at the completion of the Calculate command.

3.3.5 Command AddLoad

In a manner analogous to that described for defining a boundary, Load objects
are created and added to the database. The geometric elements defining the
loaded area, e.g. the four line objects of the square in Figure 3.9, are selected by
drawing intersecting windows. The lines, in conjunction with a kN/m2 pressure
value, are assembled into the geometrical object that defines a loaded area.

If the defined loaded area contains or is intersected by any inner boundaries,
the GeneralPath object representing it should be altered accordingly. This is
done by creating an Area object using the concatenated geometrical elements
which were selected by the user and subsequently subtracting all inner bound-
aries from it. If the defined area does not contain or is not intersected by any
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Figure 3.8: A floor geometry divided into influence areas based on the Voronoi
diagram.

Figure 3.9: Adding a load and transferring the forces.
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inner boundaries, the area would remain unchanged, If, however, the opposite is
true, the area would be altered accordingly. The new Area object is then used
to create the final GeneralPath representing the load.

3.3.6 Command Transfer

This command is used to transfer the effect of all loads to the columns. Central
to the command is the calculation of cell areas by bounding-line integration,
based on the Gauss divergence theorem:∫

xmyn dA =
1

m + n + 2

∫
xmyn(xdy − ydx)

By splitting this integral and setting m = n = 0 for the area itself:

A0,0 =
1
2

n∑
e=1

∫ 1

0

(xdy − ydx)

In Appendix E the expressions below for the representation of linear, quadratic
and cubic segments in the above summation are derived:

Linear:

A =
1
2

n∑
e=1

(xspyep − yspxep)

Quadratic:

A = 1
2

∑n
e=1{−

1
3C2,0C2,1xp1ycp + 1

3C2,0C2,1xcpyp1 − 1
3C2,0C2,2xp2ycp

+ 1
3C2,0C2,2xcpyp2 + 1

3C2,1C2,2xp1yp2 − 1
3C2,1C2,2xp2yp1}

Cubic:

A = 1
2

∑n
e=1{

1
5C3,0C3,1xcpyp1 + 1

10C3,0C3,2xcpyp2 + 1
10C3,0C3,3xcpyp3

− 1
5C3,0C3,1xp1ycp − 1

30C3,1C3,2xp2yp1 + 1
5C3,2C3,3xp2yp3

− 1
10C3,0C3,3xp3ycp − 1

10C3,1C3,3xp3yp1 − 1
5C3,2C3,3xp3yp2

+ 1
30C3,1C3,2xp1yp2 − 1

10C3,1C3,3xp1yp3 − 1
10C3,0C3,2xp2ycp}

Although these expressions permit the exact integration of the area, the last
two are not used since straight-line approximations are used in non-linear re-
gions of the boundary. The functionality has, however, been incorporated into
the area calculations and can be used as soon as the need for approximating the
boundary falls away, i.e. when intersections on non-linear segments of general
paths can be calculated, and when a non-linear general path can be divided into
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two or more general paths given a set of intersection points.

Once the cell areas have been calculated, they are intersected with each Load
object to obtain the load increment produced by the load. The reader is again
referred to Figure 3.9. The summation of these increments yield the load trans-
ferred to each column.

The CAD functionality of CADemia, together with the additional compo-
nents and commands described in this chapter, yield a practical and effective
set of tools for the computation of preliminary column forces based on the con-
cept of influence areas for load assignment. The method used in engineering
practice is thereby transferred to a computational platform which is far more
effective, accurate and reliable than the tools currently in use. In this respect
it can lead to a significant improvement in productivity. However, the accuracy
of the method itself has to be evaluated. This is done in the following chapter.



Chapter 4

Finite element modeling
and comparative results

The accuracy of the forces obtained using the prototype implementation is deter-
mined through comparison with the results of finite element analyses. For this
exercise a sample of typical floor geometries are modeled using a commercially
available FEM software package, DIANA. The floor geometries were chosen to
each represent a different design in order to, considering the limitations imposed
by the time available for this task, create a representative sample. Three floor
geometries were modeled:

• the third floor of an apartment building,

• the mezzanine floor of an industrial building and

• a parking lot floor.

The modeling of these floors as well as, for each floor, two sets of com-
parative results, obtained by placing an appropriate live load on the floor, are
presented in this chapter. For all individual value pairs percentage errors are
calculated which are subsequently used to calculate an average error. These
average errors are calculated for various subsets that are identified for the floor
geometry, e.g. a set of internal columns and a set of edge- or boundary columns.

The results are analyzed and elaborated on in Chapter 5.

4.1 An apartment building floor

The first floor modeled can be seen as representing floors with uniform stiffness
properties and irregular support groupings. Geometrically speaking, it has var-
ious lift shafts and stair cases inside an arbitrarily shaped outer boundary. A
layout of the floor is presented in Appendix F.

4.1.1 Model description

The reinforced concrete slab is modeled using 3-node triangular plate bending
elements, based on the Discrete Kirchhoff theory, adapted to take shear de-

36
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Figure 4.1: Mesh and boundary conditions for the apartment building floor.

formation into account. Where walls or columns are present, the nodes are
restricted against translation in the z-direction. Figure 4.1 shows the mesh and
boundary constraints.

Two physical properties, defined by the thickness of the plate elements, are
assigned to two surfaces representing the 225mm slab of the main floor body
and the 150mm slabs of the balconies, respectively. For each of these surfaces,
an appropriate mass density for the material is assigned.

The material properties below are assigned to all surfaces of the model:

Young’s modulus = 25GPa
Poisson’s ratio = 0.2

A distributed load of 1.5kPa[7] is placed on the floor.

4.1.2 The Voronoi diagram

Figure 4.2 shows the calculated Voronoi diagram. An outer boundary and a
total of 14 inner boundaries are created to represent the geometry. Walls are
represented by a series of linearly placed columns.

4.1.3 Comparative results

Displacement contour plots for the finite element model subjected to the 1.5kPa
live load are presented in Figure 4.3. The displacements are in meters. Figure 4.4
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Figure 4.2: Voronoi diagram of the apartment building floor

shows the deformed shape using a deformation scale factor of 1200.

Where walls are present the nodal reaction forces obtained using DIANA,
as well as the forces obtained for the linearly placed columns representing the
walls in the prototype software, are transformed into kN/m line loads. The
two sets of column forces and line loads are tabulated in Appendix G, where a
distinction between boundary walls, inner walls and columns are made and a
percentage error is calculated for each of the pairs of values. Errors obtained
for areas of the floor subjected to hogging bending moments are specifically
marked. Greatly exaggerating deformation, such an area is illustrated by way
of Figure 4.5.

Due to the DIANA reaction forces having relatively small values compared
to the Voronoi forces in such areas, the errors are large and of little scientific
value. Omitting them, an average error value for the column, wall, internal-
and boundary wall subsets, are calculated.

The average error for the walls was found to be significantly higher than
that of the columns and, additionally, the boundary walls’ contribution to this
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Figure 4.3: Displacement contour plots for the apartment building floor.

Figure 4.4: Deformed shape, applying a deformation scale factor of 1200.
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Figure 4.5: Hogging moments.

Subset Number of error values in set Average error
Columns 25 55%
Walls 48 26%
Internal walls 29 18%
Boundary walls 19 38%

Table 4.1: Average errors for the apartment building floor.

error larger than the internal walls’ contribution. The results are tabulated in
Table 4.1 and will be discussed in the following chapter.

4.2 Mezzanine floor of an industrial building

The second floor is an industrial coffer slab structure with varying stiffness and
self-weight. Deep transfer beams, in both directions, separate the coffers. In
the north-western and south-eastern corners are 250mm slabs. The columns are
spaced fairly regularly, a number of inner boundaries are present and the outer
boundary has an almost rectangular shape. Refer to Appendix H for a layout
of the floor.

4.2.1 Model description

As in the previous model, 3-node triangular Discrete Kirchoff plate bending el-
ements are used to model the floor. Where columns are present, the nodes are
restricted against translation in the z-direction. Figure 4.6 shows the boundary
constraints and surface outlines.
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Figure 4.6: Surface outlines and boundary conditions for the industrial floor.

The flexural rigidity, D, of a plate element is analogous to the flexural stiff-
ness EI of a beam[6]:

D =
Et3

12(1− υ2)

where t = the plate thickness and
υ = Poisson’s ratio for the material.

Thus to counteract the added stiffness caused by the (1 − υ2) term, an
equivalent plate thickness, te, is calculated as follows:

EI =
Et3e

12(1− υ2)

→ te = 3
√

12I(1− υ2)

This modification requires that an adjustment is made to the material’s mass
density:

volume× ρ = volumee × ρe

→ ρe =
volume

volumee
× ρ.

The material and physical properties of the surfaces are adjusted to counter-
act the added stiffness caused by the use of the Kirchoff element. The moment
of inertia used for this adjustment for the coffer surfaces is calculated using the
dimensions presented in Figure 4.7. Figure 4.7 also supplies the information
needed to calculate an equivalent mass density for the coffer material.

Equivalent plate thicknesses and mass densities for not only the coffers, but
also the 250mm slabs and 550mm as well as 1000mm deep beams are calculated
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Figure 4.7: Coffer dimensions and volume

and assigned. Young’s modulus and Poisson’s ratio are, for each of the three
defined ‘equivalent’ materials, assigned values of 25GPa and 0.2, respectively.

A distributed load of 16.12kPa, comprised of service and live loads multiplied
by their appropriate safety factors[7] is placed on the floor.

4.2.2 Voronoi diagram

The Voronoi diagram of this floor has already been presented as Figure 3.8 in
Chapter 3. 67 Voronoi cells, one for each of the columns, are created and used
to distribute the abovementioned load amongst the columns.

4.2.3 Comparative results

The results of the finite element analysis are presented by way of two figures.
The first figure, Figure 4.8, shows displacement contour levels. Displacements
are in meters. The second figure, Figure 4.9, shows the deformed shape. A
deformation scale factor of 500 is applied.

The pairs of column force values are tabulated in Appendix I where a dis-
tinction is made between columns that fall on outer- or inner boundaries and
internal columns. The percentage errors obtained for each of these pairs are
presented in the appendix and their average values summarized in Table 4.2.
Where the DIANA reaction forces point in an upwards direction the calculated
errors are irrelevant and are, following an argument analogous to that presented
in section 4.1.3., not used when calculating averages. At a quick glance the ten-
dency for columns that fall on edges to produce greater errors than the internal
columns is once again observed.
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Figure 4.8: Displacement contour levels for the industrial floor.

Figure 4.9: Deformed shape, applying a deformation scale factor of 500.

Set/Subset Number of error values in set Average error
Columns 63 65%
Internal columns 12 21%
Edge columns 51 76%

Table 4.2: Average errors for the industrial floor.
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Figure 4.10: Mesh and boundary conditions for the parking lot.

4.3 A parking lot floor

The last floor can be seen as representing floors with uniform stiffness properties
as well as regular support groupings: a 225mm post-tensioned concrete slab is
supported by columns placed on a fairly regular 30 × 19 grid. The floor has a
rectangular shape and no inner boundaries are present.

4.3.1 Model description

Due to simple geometry the meshing of this floor did not require the use of
triangular elements, as was the case with the previous two floor geometries.
Eight-node quadrilateral plate bending elements, based on the Mindlin-Reissner
theory, could be used. The appropriate plate thickness and mass density as well
as values for Young’s modulus and Poisson’s ratio are assigned as in the previous
two analyses. Constraints against translation in the z-direction are applied to
nodes where walls or columns are present. Figure 4.10 shows the mesh and
boundary constraints.

4.3.2 Voronoi diagram

The Voronoi diagram of this floor is comprised of nothing more than a number of
rectangular cells. As for the apartment building floor, the walls are represented
by a number of linearly placed columns. Refer to Figure 4.11.

4.3.3 Comparative results

Displacement contour levels and deformation plots are presented in Figure 4.12
and Figure 4.13, respectively. Displacements are in meters and a scale factor
of 500 is applied in Figure 4.13. Appendix J contains the pairs of column force
values and the calculated errors. Average errors for the set of internal columns
and the set of walls are calculated and presented in Table 4.3.
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Figure 4.11: Voronoi diagram of the parking lot floor.

Figure 4.12: Displacement contour levels for the parking lot.

Subset Number of error values in set Average error
Internal columns 476 4.5%
Walls 4 56%

Table 4.3: Average errors for the parking lot.
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Figure 4.13: Deformed shape, applying a deformation scale factor of 500.



Chapter 5

Conclusions and
recommendations

The column forces obtained using the Voronoi diagram were compared to the
results of finite element analyses in the previous chapter. Before continuing
to discuss the tendencies observed through this comparison, it is important to
remind the reader of the third set of values available for comparison, namely
the forces as they would be calculated in current engineering practice, as was
explained in section 1.1. The developed software, serving as a semi-automated
alternative to this procedure, is based on exactly the same principles as those
used in practice, but the forces are calculated faster and more accurately in
an integrated CAD environment. Considering this, this study could also be
seen as providing insight into the accuracy with which preliminary forces are
calculated in industry. Consequently, this chapter will be used not only to
present a number of tendencies observed regarding the errors obtained, but also
to make judgements concerning the method used in practice and, lastly, to give
guidelines as to how this study should be continued.

5.1 Observed tendencies

Referring mainly to the tables presented in the previous chapter, in which aver-
age errors were calculated for a number of subsets for each floor, three tendencies
were identified. Each of them will be discussed separately.

5.1.1 Columns situated on boundaries

All of the floors, in varying degrees, showed a tendency to produce greater er-
rors for columns or walls situated on the boundaries. In Table 5.1 the errors are
presented so as to highlight this tendency.

A reason for such a tendency can be found by examining Figure 4.13 pre-
sented in the previous chapter. The deformations in the first span of the parking
lot slab are considerably larger than those in the subsequent spans, a fact that
can be attributed to the lack of continuity existing at the boundary, which
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Average errors
Boundary columns Internal columns

Apartment building 38 18
Industrial building 76 21

Parking lot 56 4.5

Table 5.1: Boundary vs internal forces.

Figure 5.1: Extract from table of beam diagrams.

causes a reduction in the slab’s resistance to rotation. One expects the proto-
type software to produce forces that are smaller than the actual forces in the
boundary regions since, for a regular grid, the forces allocated to the boundary
columns are exactly half of what is allocated to the internal columns because
the influence areas are halved at the boundary. The opposite was found to be
true, i.e. it was found that in most cases the Voronoi technique produces forces
that are larger than the actual forces at the boundaries. However, by comparing
the reactions produced at the first row of columns and the reactions produced
at the boundary to the reactions given in Figure 5.1 for a propped cantilever,
the results are better understood.

5.1.2 Hogging bending moments

This tendency has been discussed to some extent in the previous chapter (see
section 4.1.3). The reaction forces in certain areas of the floor subjected to
hogging moments can assume not only very small values, but can in some cases
even point in a downwards direction. The errors obtained for such reaction
force pairs were omitted when calculating averages because their extremely large
values would only serve to distort the average whilst they actually have little
scientific value in such a context. They do, however, still exist and it can be
confidently stated that the prototype software, through its inability to take
stiffness properties into account, will generally produce large errors in regions
subjected to hogging bending moments. It is also worth noting that these errors
will always be on the safe side.

5.1.3 Uniform stiffness properties

Considering the parking lot slab as representative of floors having uniform stiff-
ness properties and the industrial floor with its deep transfer beams as repre-
sentative of floors with non-uniform stiffness properties, Table 5.2 is created.
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Average errors
Uniform stiffness Non-uniform stiffness

Internal columns 4.5 21
Boundary columns or walls 56 76

Table 5.2: Uniform vs non-uniform stiffness properties.

Percentage
Calculating the Voronoi diagram 9.1%
Trimming 1.8%
Building the Voronoi cells 87.5%

Table 5.3: Percentage of computation time spent on a task.

The table serves as confirmation of a rather intuitive conclusion that can
be drawn regarding the role played by the extent in which a floor’s stiffness
properties varies. When stiffness properties are relatively uniform, the errors
obtained using the prototype software can be expected to be smaller than those
obtained when stiffness varies. The presence of transfer beams, for instance,
has a great influence on the way in which the total load on a floor is divided
amongst the load-bearing elements.

5.2 Aspects that need to be addressed

There are certain aspects that can be improved upon in the current imple-
mentation. One of these aspects has already been discussed in section 3.3.4
under Trimming and concerns the line approximations used for curves. It was
stated that linear-approximated boundaries are used because intersections be-
tween lines and GeneralPath’s cannot be calculated. Although not to a great
extent, the approximation influences the accuracy with which areas are calcu-
lated (consider section 3.3.6 where the calculation of areas based on the Gauss
divergence theorem is discussed). Consequently, accuracy could be improved by
developing a way in which the abovementioned intersections can be calculated,
thus allowing for the exact integration of the area.

The next aspect concerns the algorithm implemented for building the Voronoi
cells, thoroughly discussed in section 3.3.4 under Building the Voronoi cells. The
overall time currently needed for the calculation of the forces is not satisfactory.
Computation time for the apartment building floor, for instance, having more
than 500 columns for which cells have to be calculated, amounts to 141s. Table
5.3 illustrates, percentagewise, the time spent on the three main tasks compris-
ing the calculation.

It is clear that the optimization of the software would primarily involve
optimizing the construction of the Voronoi cells. The reason for the extensive
time required to build the cells stems from the fact that the algorithm requires,
for each column, an iteration over the complete set of boundary segments where,
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furthermore, a path iterator is called and traversed for each boundary segment.
Due to time-constraints the task of developing and implementing a new and

improved algorithm could not be performed. (The reader is referred back to
the difficulties that were encountered in trying to develop a robust algorithm to
handle the problem). This aspect should, however, be seen as one of the first
that should be addressed as part of a continuation of the study.

5.3 Outstanding functionality

Apart from having to improve the algorithm currently implemented for con-
structing the Voronoi cells, other tasks that would have to be performed if the
study were to be continued, can be identified.

5.3.1 Building definition

The functionality as it exists at present solves a two-dimensional problem and
needs to be extended to allow for the definition of the building in three di-
mensions. It is only when this extension has been carried out that the vertical
accumulation of the forces can be calculated - a task that can be dealt with as
a flow problem in the column network.

5.3.2 Horizontal loading

Horizontal forces, that would account for earthquake and wind loading, are cur-
rently not taken into consideration. Referring to Figure 5.2, a suggestion is
made as to how these forces could, as a separate exercise involving a greatly
simplified finite element model, be accounted for.

Viewing the floors as lumped masses, the distributed horizontal loading is
concentrated into horizontal forces applied only at floor elevations. A bar and
framework model of the columns and bracings can be set up without great effort.
An assumption is made that the floors themselves act as rigid bodies and they
are consequently not explicitly modeled, but rather their effect on the model is
accounted for with the use of constraint equations.

This simplified model can be analyzed to determine the column forces due
to horizontal loading. These forces can subsequently be superimposed upon the
vertical forces to obtain the total column force in each column.

5.4 Final comments and recommendations

Having developed and tested software for the calculation of preliminary column
forces based on the method used in current engineering practice, and having
seen the errors produced by calculating the forces in this manner, a few more
important conclusions can be drawn.

Firstly, relying solely on influence areas to calculate column forces is un-
safe. Secondly, the alternative previously mentioned, namely the performance
of a simple, largely automated finite element analysis, is suggested. Taking this
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Figure 5.2: Horizontal Loading

course of action would involve using the influence areas as a basis for automatic
meshing and subsequently performing a finite element analysis using plate ele-
ments.

It is concluded that the calculation of column forces based on the subdivision
of floors into influence areas may be dangerous. Even when a floor has uniform
stiffness properties, which supports an inclination to believe that solving the
problem geometrically is acceptable, the errors obtained are far greater than
what can be accepted.



Appendix A

Intersecting parabolas

Derivation of coordinates of parabola intersection.

x2 + (y − a)2 = (y + a)2

→ x2 + y2 − 2ay + a2 = y2 + 2ay + a2

⇒ x2 = 4ay

a = 1
2 (piy − ly)

ly + a + y = Y
→ y = Y − ly − 1

2 (piy − ly)
= Y − 1

2 (ly + piy)

Figure A.1: Intersections between parabolas: defining variables.
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Figure A.2: Definition of variables, continued.

pix + x = X
→ x = X − pix

=⇒ (X − pix)2 = 4ay
= 2(piy − ly)(Y − 1

2 (ly + piy))

For two points i and j the intersections point is (X0, Y0).

1) (X0 − pix)2 = 2(piy − ly)(Y0 − 1
2 (ly + piy))

2) (pjx −X0)2 = 2(pjy − ly)(Y0 − 1
2 (ly + pjy))

From 2):

Y0 = (pjx−X0)
2

2(pjy−ly) + 1
2 (ly + pjy)

Substitute Y0 into 1):

(X0 − pix)2 = 2(piy − ly)[ (pjx−X0)
2

2(pjy−ly) + 1
2 (ly + pjy)− 1

2 (ly + piy)]

X2
0 − 2pixX0 + p2

ix = piy−ly
pjy−ly

(pjx −X0)2 + (piy − ly)(pjy − piy)

= piy−ly
pjy−ly

(p2
jx − 2pjxX0 + X2

0 ) + (piy − ly)(pjy − piy)

[1− piy−ly
pjy−ly

]X2
0 +[2pjx

piy−ly
pjy−ly

−2pix]X0+[p2
ix−p2

jx
piy−ly
pjy−ly

−(piy−ly)(pjy−piy)] = 0

Thus

Y0 = (pjx−X0)
2

2(pjy−ly) + 1
2 (ly + pjy) and X0 = −b±

√
b2−4ac
2a
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where a = 1− piy−ly
pjy−ly

;

b = 2pjx
piy−ly
pjy−ly

− 2pix and

c = p2
ix − p2

jx
(piy−ly)
(pjy−ly) − (piy − ly)(pjy − piy)



Appendix B

Midpoint of circle

Derivation of the midpoint coordinates of a circle, given three points
on its circumference.

(x0 − x1)2 + (y0 − y1)2 = (x0 − x2)2 + (y0 − y2)2 = (x0 − x3)2 + (y0 − y3)2

→ x2
0 − 2x0x1 + x2

1 + y2
0 − 2y0y1 + y2

1 = x2
0 − 2x0x2 + x2

2 + y2
0 − 2y0y2 + y2

2

→ 2(x2 − x1)x0 + 2(y2 − y1)y0 + x2
1 − x2

2 + y2
1 − y2

2 = 0

Similarly:

2(x3 − x2)x0 + 2(y3 − y2)y0 + x2
2 − x2

3 + y2
2 − y2

3 = 0

Thus[
(x2 − x1) (y2 − y1)
(x3 − x2) (y3 − y2)

]{
x0

y0

}
= 1

2

{
x2

2 − x2
1 + y2

2 − y2
1

x2
3 − x2

2 + y2
3 − y2

2

}
or[

a1 a2

b1 b2

]{
x0

y0

}
=

{
c1

c2

}
=⇒

{
x0

y0

}
= 1

a1b2−b1a2

[
b2 −a2

−b1 a1

]{
c1

c2

}

Figure B.1: Defining variables
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Appendix C

Text file format

Extract from Columns.txt:
(x-coordinate, y-coordinate)

6.4 0.0
9.4 0.0
14.1 0.0
20.9 0.0
28.0 0.0
61.82 0.3
64.45 0.3
70.0 12.7
56.0 35.0
9.6 42.5
14.1 42.5
0.0 22.5
7.4 42.5
9.6 42.5
61.82 6.8
0.0 34.7
41.8 31.8
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Appendix D

Parametric line-clipping

Derivation of intersection coordinates of lines and edges.

P (t) = P0 + t(P1 − P0)

Solve for the value of t at the intersection of P0P1 with the edge:

Ni • [Pt − PEi
] = 0

Substitute for P (t):

Ni • [P0 + t(P1 − P0)− PEi ] = 0

Group terms and distribute the dot product:

Ni • [P0 − PEi
] + Ni • t[P1 − P0] = 0

Let D = P1 − P0 be the vector from P0 to P1, and solve for t:

t = Ni•[P0−PEi
]

−Ni•D

Figure D.1: Parametric line-clipping
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Appendix E

Bounding line integration

Derivation of bounding line integration formulae for linear, quadratic
and cubic segments based on the Gauss divergence theorem.

Gauss integration theorem:∫
xmyn dA = 1

m+n+2

∫
xmyn(xdy − ydx)

Split the integral:

1
m+n+2

∫
xmyn(xdy − ydx) = 1

m+n+2

∑n
e=1

∫
xmyn(xdy − ydx)

=⇒ Am,n = 1
m+n+2

∑n
e=1

∫ 1

0
akxmyn dt where xdy − ydx = akdt

Substitute m = n = 0 for the area itself:

A0,0 = 1
2

∑n
e=1

∫ 1

0
akdt = 1

2

∑n
e=1

∫ 1

0
(xdy − ydx)

1) For linear segments:

P (t) = sp(1− t) + ep(t), 0 ≤ t ≤ 1

where sp = the startpoint and ep = the endpoint.

→ x(t) = xsp(1− t) + xept and
y(t) = ysp(1− t) + yept

dx
dt = xep − xsp

→ dx = (xep − xsp)dt

dy
dt = yep − ysp

→ dy = (yep − ysp)dt

(xdy − ydx) = [(xsp(1− t) + xept)(yep − ysp)− (ysp(1− t) + yept)(xep − xsp)]dt
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= (xspyep − yspxep)dt
→ ak = xspyep − yspxep

A = 1
2

∑n
e=1(xspyep − yspxep)

2) For quadratic segments:

Parametric equation for a quadratic segment, from the Java API :

P (t) = B2,0cp + B2,1p1 + B2,2p2, 0 ≤ t ≤ 1

where cp = the most recently specified (current) point,
p1 = the first control point and
p2 = the final interpolated control point.

Bn,m = mth coefficient of nth degree Bernstein polynomial
= Cn,mtm(1− t)n−m.

Cn,m = Combination of n things, taken m at a time
= n!

m!(n−m)! .

Thus P (t) = [C2,0(1− t)2]cp + [C2,1t(1− t)]p1 + [C2,2t
2]p2

→ x(t) = C2,0(1− t)2xcp + C2,1t(1− t)xp1 + C2,2t
2xp2 and

y(t) = C2,0(1− t)2ycp + C2,1t(1− t)yp1 + C2,2t
2yp2.

dx
dt = C2,0xcp(2t− 2) + C2,1xp1(1− 2t) + C2,2xp2(2t)
→ dx = [C2,0xcp(2t− 2) + C2,1xp1(1− 2t) + C2,2xp2(2t)]dt

Similarly,

dy = [C2,0ycp(2t− 2) + C2,1yp1(1− 2t) + C2,2yp2(2t)]dt

xdy−ydx = [C2,0C2,1xcpyp1−2C2,0C2,1xcpyp1t+2C2,0C2,1xcpyp1t
2+2C2,0C2,2xcpyp2t

+2C2
2,0xcpycpt

3−C2,0C2,1xp1ycp+2C2,0C2,1xp1ycpt−2C2,0C2,2xp2ycpt]dt

A = 1
2

∑n
e=1

∫ 1

0
(xdy − ydx)

= . . .
= 1

2

∑n
e=1[−

1
3C2,0C2,1xp1ycp+ 1

3C2,0C2,1xcpyp1− 1
3C2,0C2,2xp2ycp+ 1

3C2,0C2,2xcpyp2

+ 1
3C2,1C2,2xp1yp2 − 1

3C2,1C2,2xp2yp1]

3) For cubic segments:

Parametric equation for a cubic segment, from the Java API :

P (t) = B3,0cp + B3,1p1 + B3,2p2 + B3,3p3

where cp = the most recently specified (current) point,
p1 = the first control point,
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p2 = the second control point and
p3 = the final interpolated control point.

Bn,m = mth coefficient of nth degree Bernstein polynomial
= Cn,mtm(1− t)n−m.

Cn,m = Combination of n things, taken m at a time
= n!

m!(n−m)! .

Thus P (t) = C3,0(1− t)3cp + C3,1t(1− t)2p1 + C3,2t
2(1− t)p2 + C3,3t

3p3

→ x(t) = C3,0xcp(1− t)3 + C3,1xp1t(1− t)2 + C3,2xp2t
2(1− t) + C3,3xp3t

3 and
y(t) = C3,0ycp(1− t)3 + C3,1yp1t(1− t)2 + C3,2yp2t

2(1− t) + C3,3yp3t
3

dx
dt = − 3C3,0xcp + 6C3,0xcpt− 3C3,0xcpt

2 + C3,1xp1 − 4C3,1xp1t + 3C3,1xp1t
2

+ 2C3,2xp2t− 3C3,2xp2t
2 + 3C3,3xp3t

2

→ dx = [− 3C3,0xcp +6C3,0xcpt−3C3,0xcpt
2 +C3,1xp1−4C3,1xp1t+3C3,1xp1t

2

+ 2C3,2xp2t− 3C3,2xp2t
2 + 3C3,3xp3t

2]dt

Similarly,

dy = [− 3C3,0ycp + 6C3,0ycpt− 3C3,0ycpt
2 + C3,1yp1 − 4C3,1yp1t + 3C3,1yp1t

2

+ 2C3,2yp2t− 3C3,2yp2t
2 + 3C3,3yp3t

2]dt

A = 1
2

∑n
e=1

∫ 1

0
(xdy − ydx)

= . . .
= 1

2

∑n
e=1[

1
5C3,0C3,1xcpyp1+ 1

10C3,0C3,2xcpyp2+ 1
10C3,0C3,3xcpyp3− 1

5C3,0C3,1xp1ycp

− 1
30C3,1C3,2xp2yp1+ 1

5C3,2C3,3xp2yp3− 1
10C3,0C3,3xp3ycp− 1

10C3,1C3,3xp3yp1

− 1
5C3,2C3,3xp3yp2+ 1

30C3,1C3,2xp1yp2+ 1
10C3,1C3,3xp1yp3− 1

10C3,0C3,2xp2ycp]



Appendix F

Layout of apartment
building floor
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Appendix G

Comparative results for
apartment building floor

62



Appendix H

Layout of industrial floor
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Appendix I

Comparative results for
industrial floor
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Appendix J

Comparative results for
parking lot
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