On-board Image Quality Assessment for a
Satellite

by

[zak van Zyl Marais

Dissertation presented for the degree of Doctor of Philosophy
in Electronic Engineering at Stellenbosch University

Department of Electrical and Electronic Engineering
University of Stellenbosch
Private Bag X1, 7602 Matieland, South Africa

Promoters:

Prof W.H. Steyn
Prof J. du Preez

March 2009

Declaration

By submitting this dissertation electronically, I declare that the entirety of the
work contained therein is my own, original work, and that I am the owner
of the copyright thereof (unless to the extend explicitly otherwise stated) and
that I have not previously in its entirety or in part submitted it for obtaining
any qualification.

Signature:l
[.v.Z. Marais

Copyright (©) 2009 Stellenbosch University
All rights reserved.

Abstract

The downloading of images is a bottleneck in the image acquisition chain
for low earth orbit, remote sensing satellites. An on-board image quality as-
sessment system could optimise use of available downlink time by prioritising
images for download, based on their quality.

An image quality assessment system based on measuring image degrada-
tions is proposed. Algorithms for estimating degradations are investigated.
The degradation types considered are cloud cover, additive sensor noise and
the defocus extent of the telescope.

For cloud detection, the novel application of heteroscedastic discriminant
analysis resulted in better performance than comparable dimension reducing
transforms from remote sensing literature. A region growing method, which
was previously used on-board a micro-satellite for cloud cover estimation, is
critically evaluated and compared to commonly used thresholding. The thresh-
olding method is recommended. A remote sensing noise estimation algorithm
is compared to a noise estimation algorithm based on image pyramids. The
image pyramid algorithm is recommended. Tt is adapted, which results in
smaller errors. A novel angular spectral smoothing method for increasing the
robustness of spectral based, direct defocus estimation is introduced. Three
existing spectral based defocus estimation methods are compared with the
angular smoothing method.

An image quality assessment model is developed that models the mapping
of the three estimated degradation levels to one quality score. A subjective
image quality evaluation experiment is conducted, during which more than
18000 independent human judgements are collected. Two quality assessment
models, based on neural networks and splines, are fitted to this data. The
spline model is recommended.

The integrated system is evaluated and image quality predictions are shown
to correlate well with human quality perception.

ii

Opsomming

Die aflaai van beelde is 'n wurgplek in die afstandswaarneming satelliet-beeld-
verwerkingsketting. 'n Aanboord-beeldkwaliteit-bepalingstelsel kan, deur voor-
keur te gee aan beelde met beter beeldkwaliteit, die beskikbare aflaaityd opti-
maal benut.

'n Beeldkwaliteit-bepalingstelsel, wat verlagings in beeldkwaliteit meet,
word voorgestel. Algoritmes om verlagings af te skat word ondersoek. Die
verlagings wat afgeskat word, is: additiewe sensor-ruis, wolkdekking en die
hoeveelheid wat die teleskoop uit fokus is.

Vir wolkedeteksie toon die nuwe toepassing van heteroskedastiese diskri-
minant analise op afstandswaarneming aan dat die tegniek beter verrigting
as vergelykbare dimensie-verlaging-tegnieke uit afstandswaarneming-literatuur
lewer. 'n Gebied-groei-algoritme, wat voorheen aanboord van 'n mikrosatel-
liet vir wolkdekking bepaling gebruik is, word krities ge-evalueer en vergelyk
met 'n meer algemene grysskaaldrempel-tegniek. Die drempel-tegniek word
aanbeveel. 'n Satelliet-beeld ruisafskattingsalgoritme word vergelyk met 'n al-
goritme wat op beeldpiramiedes gebaseer is. Die piramiedemetode word aan-
beveel. Die algoritme word aangepas met gevolg dat kleiner afskattingsfoute
begaan word. 'n Nuwe hoekspektrale vergladdingsalgoritme, wat die robuust-
heid van spektraal gebaseerde, uit-fokus-afskattingsalgoritme verbeter, word
ontwikkel. Die nuwe algoritme word met drie bestaande, spektraal gebaseerde
uit-fokus-afskattingsalgoritmes vergelyk.

'n Beeldkwaliteit-beoordelingsmodel word ontwikkel wat die drie geme-
te verlagings op een kwaliteitspunt afbeeld. 'n Subjektiewe beeldkwaliteit-
beoordelingseksperiment, waarin meer as 18000 onafhanklike menslike oordele
versamel word, word uitgevoer. Twee beeldkwaliteitsmodelle, onderskeidelik
op neurale netwerke en stuksgewyse polinome gebaseer, word op die versamelde
data gepas. Die stuksgewyse-polinoommodel word aanbeveel.

Die geintegreerde stelsel word getoets en lewer beeldkwaliteitskattings wat
goed met menslike waarneming van beeldkwaliteit korreleer.

iii

Acknowledgements

I thank the Lord for giving me the talents, discipline and ideas necessary for
writing this dissertation. I gratefully acknowledge the funds received from the
Wilhelm Frank bursary fund. I would like to thank the following people (in
no specific order) for their contribution towards this project:

Dr. Hanno Coetzer for his help with design of the dispertion measure.

Dr. Ludwig Schwart for always being willing to explain difficult concepts
in understandable language.

All the dedicated people who helped to develop the various free, open
source tools that were used: Ubuntu, Python and its various libraries,
the IPython shell environment, IXTEX, the Kile and TeXnicCenter KTEX

editors, the SciTe editor, gce, pCLinux, Doxygen.

Eugene van Wyk for his help with getting started programming the Hico
SH4 board.

Prof. du Preez for his insights.

My mother for tirelessly proofreading the dissertation even though she
might not find it very entertaining.

Prof. Steyn for his guidance and dependability.

Wolfgang Liick for his guidance concerning existing algorithms and for
providing many images on behalf of the Satellite Application Centre (part
of the Council for Scientific and Industrial Research of South Africa).

Corné van Daalen for his help with mathematical simplification.

Everybody who participated in the subjective image quality assessment
experiment. I decided to keep the duplicate names of those who parti-
cipated in more than one experiment. Your masochism is greatly appre-
ciated!

iv

ACKNOWLEDGEMENTS

— The ‘blur’ experiment:

A Nonymous
Alistair Baldwin
Altus van Tonder
Andre Young

Arno Barnard

E. Hansmann
Farron Yssel

Gen Blan

Gerrit Kruger
Helgard van Rensburg
Henk Marais

Johan Schoonwinkel
Madelé van der Walt
Patricia Taylor
Patrick Duriez
Rinus Brand

Rudi Gaum

Stefan van der Walt
Tinus Stander
Waine Smith

The ‘clouds’ experiment:

A Nonymous

Albert Swart
Eugene Pretorius
Gerrit Kruger
Helgard van Rensburg
Henk Marais
Herman Steyn
Janto Dreijer
Jemma Shipton
Johan Schoonwinkel
John Dalton

Juan Pablo Lozano
Keith Browne
Kobus Botha

Leo Herselman
Rebecca Vanderpool
Simphiwe

Steven Kriel

Suné Smith

Tinus Stander

Vian Espost

— The ‘cross-coupling’ experi-

ment:

Albert Swart

Arno Barnard
Arnold Mulder
Barry Smith
Bernard Visser
Carlo van Schalkwyk
Cobus Stals

Eric Baker

Esti Hansmann
Francois Marais
Gerrit Kruger
Gideon Spreeth
Graham Hardie
Hannes van den Berg
Helgard van Rensburg
Henk Marais
Herman Steyn

Jaco Badenhorst
Johan Schoonwinkel
Johannes van der Horst
John Wilson
John-Philip Taylor
Jonathan Hoole
Keith Browne

Liza Baker

Neil Kruger

Nelius Rossouw
Peter Peiser

Ruan de Hart

Rudi Gaum

Steven Kriel
Susanne Kolditz
Wouter Kriegler

The ‘alignment’ experiment:
Adam Sparks

Albert Strasheim

Andre Young

Andy Kniss

Catherine Laporte

Charl Miiller

Christiaan Brand

ACKNOWLEDGEMENTS

Eduard Burger
Francois Marais
Gerrit Kruger
Gideon Spreeth
Helgard van Rensburg
Henk Marais
Herman Steyn
Hilton Gibson

Inge Blom

Johan Botha

Johan Lourens
Johan Schoonwinkel
Lara Kotze

Ludwig Schwardt
Migael Jordaan
Neilen Marais
Nelius Rossouw
Ruan Venter
seeker84

Susanne Kolditz
Tinus Stander
Troels Kofoed Jacobsen
Willie Krige

vi

Willie van Rooyen
Zelda Doyle

The ‘noise’ experiment:
Bernard Visser
Caitriona Murray
Dewald Mienie
Gerrit Kruger
Helgard van Rensburg
Johan Schoonwinkel
Jonathan Hoole
Marianne du Preez
Mark Byrnes
Myshele Goldberg
Paul van der Merwe
Peter Wiles

Renier Marchand
Robin van Wyk
Ruan de Hart
Susanne Kolditz
Tinus Stander
Willem Mostert
Wouter Kriegler
WPF Schonken

Table of contents

Declaration i

Abstract ii

Opsomming iii

Acknowledgements iv

Table of contents vii

List of figures xiii
List of tables xvii
List of Acronyms xviii

1 Introduction 1

1.1 Motivation 1

1.1.1 On-board processing in remote sensing 1

1.2 Ranking images oo 2

1.2.1 Good quality images 2

1.2.2 Bad quality images 3

1.3 Goals. 3

1.4 Fundamentals 4

1.5 Structure 4

2 Cloud estimation 5

2.1 Literature)

2.1.1 Introduction D

2.1.2 Applicable image processing techniques 6

2.1.3 Spectral methods 9

vii

TABLE OF CONTENTS viii

Dimension reducing transforms 13

2.1.4 An alternative dimension reducing transform: Heteroscedas-
tic discriminant analysis 14
2.1.5 Spatial methods 17
A contextual classifier o000 17
Texture features and neural networks 18
Conclusion 19
2.1.6 A promising region-growing based method 20
Context 20
Algorithm description 21
2.2 Experiments 22
2.2.1 Dimension reducing transforms 22
Data 22
Adaptive transform test 25
Fixed transform test 26
Statistical significance test 26
2.2.2 Region growing 28
2.2.3 Measuring cloud dispersion 28
Justificationo oo 28
Algorithm design Lo 30

Using the measure in an experiment: Introduction of

thresholds 33
2.2.4 Down-sampling options 35
23 Results. 37
2.3.1 Dimension reducing transforms 37
[ustration of the unsuitability of LDA 37
Adaptive transform test 37
Fixed transform test 41
Statistical significance testo 43
2.3.2 Region growing o 46
Upper limit o 46
Comparative test 47
2.3.3 Cloud dispersion o0
2.3.4 Down-sampling 53
24 Conclusion 55
2.4.1 Dimension reducing transforms 55
2.4.2 Region growingo 56
2.4.3 Cloud dispersion o7
2.4.4 Down-sampling o7
3 Noise estimation 58
3.1 Literature L o8
3.1.1 Introduction oo 58

3.1.2 The Semivariogram: Optimal manual noise estimation . 60

TABLE OF CONTENTS ix

3.1.3 Methods based on a standard deviation histogram 62
3.1.4 A method based on image pyramids and order statistics . 63
The noise variance estimator 63
Estimating noise variance: The dichotomy between sig-
nal and noise L. 65
A similar method applied to remote sensing 69
3.1.5 Dark current L o 69
3.1.6 Comparative literature survey 70
3.2 Experiments and implementation 71
3.2.1 Implementation 71
Selected algorithms 71
Embedded evaluation 71
Details on image pyramid method’s implementation . . . 71
3.2.2 Experiment 72
3.3 Results. 7
3.3.1 Standard deviation histogram method 77
3.3.2 Image pyramid method 79
Dynamic range saturation 79
Making the algorithm more conservative 82
3.3.3 Feasibility of embedded implementation 83
3.4 Conclusion e 84
3.4.1 Choice of method 84
3.4.2 The saturation problem 86
3.4.3 Use of multiple channels 86
3.4.4 Choice of SNR, 86
4 Defocus estimation 88
4.1 Introduction 88
4.1.1 Degraded image model 89
4.1.2 Defocus estimation in the context of image quality as-
sessment . ..o .. Lol L 90
4.2 Literature 90
4.2.1 Point spread function estimation 90
4.2.2 Blur identification based on spectral techniques 92
Power spectrum and power cepstrum 92
Bispectrum and bicepstrum 93
Spectral subtraction and comb filtering 94
4.2.3 Problems with methods in existing literature 95
Lack of comparative defocus tests 95
Inappropriate generalisation from 1-D to 2-D 96
4.3 Angular spectral smoothing L. 99
4.3.1 Avoiding power spectrum distortion 99
4.3.2 Smoothing procedureo 100

4.3.3 The variance of a noise image’s power spectrum estimate 102

TABLE OF CONTENTS X

4.3.4 Reducing the variance of the power spectrum estimate . 106

4.3.5 Estimate confidence 109

4.4 Experiments e 110
4.4.1 Choice of windowing function 110
4.4.2 Comparative experiment 112
4.4.3 Effect of reduced dynamic range 114
4.4.4 FEmbedded evaluation 114

45 Results. 115
4.5.1 Comparative results 115
4.5.2 Effect of reduced dynamic range 117
4.5.3 Feasibility of embedded implementation 117

4.6 Conclusion e 119
5 Quality assessment model 121
5.1 Introduction 121
5.2 Literature Lo 121
5.2.1 Image quality assessment 121
Full-reference quality assessment 122

Blind image quality assessment 122

Outcome based quality assessment 123

Conclusion o o 124

5.2.2 Model fitting oo 125
General notes on statistical learning 125

Model complexity and prediction error 126

Evaluating the entire model space 128

5.2.3 Piecewise polynomials and splines 129
5.2.4 Neural networks 130
Structure and terminology 130

Working with neural networks 132

5.3 Experiments o 133
5.3.1 Introduction 133
5.3.2 Image database 134
Input reference images 134
Degradation of images 134

Adding clouds to images 135

Multiple distortion types in a single image 136

5.3.3 Test methodology 138
Equipment and software 139
Single-variable sessions L. 140
Realignment session 140
Cross-coupling session 141

5.3.4 Processing theraw data 141
Outlier detection and rejection 141

Difference mean opinion scores 142

TABLE OF CONTENTS

5.3.5 Creating a spline model
Available regularisation options

Cloud axis
Bluraxis.

Noise axis
Central area
Combining individual models

5.3.6 Creating a neural network model
5.3.7 Hypothesistests. L
5.3.8 Testing the integrated system
54 Results
5.4.1 Cloud dispersion
5.4.2 DMOSscores
Individual variable sessions

Full factorial experimental data
Realignment of scores

5.4.3 Comparison between models
Visual comparison

Test data comparison

5.4.4 Testing the integrated system
55 Conclusion e

Conclusion

6.1 Summary of chapter conclusions
6.2 Recommendations.
6.3 Contribution e

Appendices

A Implementing the region-growing algorithm

A.1 Languages, data structures and optimisation
A.2 Stopping rule complications
A.3 Using the algorithm for cloud detection

Critical evaluation of MATLAB neural network regularisa-
tion options

Embedded implementation documentation
C.1 Embedded implementation data structure documentation
C.1.1 ImageD struct reference
Detailed description
Field documentation
C.1.2 TImageF struct reference
Detailed description

xi

175
175
177
178

179

180
180
184
187

TABLE OF CONTENTS xii

Field documentation 195

C.1.3 TImageUC struct reference 196
Detailed description 196

Field documentation 196

C.2 Embedded implementation file documentation 197
C.2.1 blur.c File reference 197
Detailed description 198

Define documentation 198
Function documentation 198

C.2.2 Dblur.h File reference 202
Detailed description 202

C.2.3 flt.c File reference 202
Detailed description 203

Define documentation 203
Function documentation 203

C.2.4 fIt.h File reference 205
Detailed description 205
Enumeration type documentation 206

C.2.5 imaux.c File reference 206
Detailed description 207
Function documentation 207

C.2.6 imaux.h File reference 211
Detailed description 212

Define documentation 212

C.2.7 noise.c File reference 212
Detailed description 213
Function documentation 213

C.2.8 noise.h File reference 215
Detailed description 215

Bibliography 216

List of figures

2.1
2.2
2.3

2.4

2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

2.22

A histogram partitioned by a threshold.

An example grayscale image with the corresponding threshold image.

Scatter plots of two images showing example spreads of class values.

The image for (b) is shown in Figure 2.7.
Heteroscedastic extension to LDA minimises classification error when
class covariances differ.o 000
The two boundary definitions.
Segmentation results for Gaussian image.
A sample Quickbird sub-scene with its cloud mask.
Division of image pixels into training and test sets.
A cloudy scene with high dispersion.
Comparison of dispersion amount using masks.
Residual blocks encountered with continuously varying block size.

Design of the dispersion measure.
The images from Figure 2.10 show pronounced differences in dis-

PErsSiON MEASUTE. . . « « o v v v v e e e e e e e e e e
Flow diagramme of the dispersion classification algorithm.
Images used in the down-sampling experiment.

LDA fails to minimise overlap between classes in in projected space.

Test results for the adaptive transform test.
HDA suppresses the lake for better segmentation, while HOT and
D increases overlap between classes.
A different projection direction in the blue—red-space increases class
separation of HDA compared to HOT.
In certain cases HOT severely reduced separation ability, while the
other transforms retained it.
Test results for the fixed transform test with segmented images in
training and test sets. L.
Test results for the fixed transform test with whole images in train-
ing and test sets.

15

16
21
23
24
25
29
29
30
32

33
34
36
38
38
40
41
41
42

42

LIST OF FIGURES xiv

2.23
2.24
2.25
2.26
2.27

2.28
2.29

2.30
2.31
2.32
2.33
2.34
2.35

2.36

3.1
3.2

3.3
3.4
3.5
3.6

3.7
3.8

3.9

4.1
4.2
4.3
4.4
4.5

4.6

4.7

4.8
4.9

Region-growing segmentation boundary with no upper limit imposed. 46
Difference measures and grey levels with no upper limit imposed. . 47
Region-growing segmentation boundary with upper limit imposed. . 48
Difference measures and grey levels with upper limit imposed. . . . 48
Test results comparing region growing and thresholding segmenta-

LION eITOTS. v v o e e 49
Sample input images for segmentation. L. 50
Difference images that compare region growing and thresholding

clondmasks. 51
Images unconditionally rejected because of cloud abundance. 52
Images unconditionally accepted because of cloud paucity. 52
Images accepted after dispersion analysis. 52
Images rejected after dispersion analysis. 53
The effect of down-sampling on the cloud cover estimate. 54
The difference between full resolution and down-sampled cloud

cover estimates. Lo Lo 95
Images and masks demonstrating the difference between NEAREST

and ANTIALIAS. s e 51§}
The general form of the semivariogram. 61
Example deviation sequences, «(l), with varying levels of signal-

noise separation.o 66
Image of dam with large high variance area with scattergram. . . . 74
Base images used during experiment, with their resolutions. 75
Scattergrams clearly show the differences in local statistics. 76
Histogram of relative error percentages for the standard deviation

histogram method. oo o000 77
Histogram of relative error percentages for the image pyramid method. 80

Histogram of relative error percentages for the image pyramid method
using e (l). . oo 83
The execution time of the embedded image pyramid implementation. 84

Base images used during experiment, with their resolutions. 97
Power spectra estimated by spectral subtraction. 98
Effect of removing radial periodicity in P,(u,v) on Cy(p,q).. 99
Clipping distortion in power spectra. 99
Use of angular smoothing to reduce variance and enforce circular

SYIMIMEtTY.« « o v v i e e e e e e e e e 101
Neighbouring pixels close to the origin » = 0 of the polar coordinate

system are highly correlated. 107
Variance of angular averaged periodogram predicted by equation

(4.3.13) agrees with estimated variance. 108
Spurious peaks dominate at higher o,, and result in lower E,.. . . . 110
Different window types for data of length M. 111

LIST OF FIGURES XV

4.10
4.11
4.12

4.13
4.14
4.15
4.16

417
4.18

5.1
5.2
5.3

5.4
5.5
5.6
2.7
5.8
5.9

5.10

5.11

5.12

5.13
5.14
5.15
5.16
5.17
5.18

5.19
5.20
5.21
5.22

5.23
5.24

The effect of window function on the power spectrum and cepstrum.111
Effect of varying E, on number of classification. 113
Normalised cepstral sequences for an in-focus image prior to comb

filtering. 113
An image with successively reduced dynamic range. 114
Comparison between direct blur identification techniques. 115
Average errors in an example classified-unclassified split based on F,.115
Comparison results when in-focus images and classifications are

discarded. Lo 117
The effect of reducing the dynamic range on Co(r). 118
The execution time of the embedded angular smoothing implemen-

tation. L. 118
General effect of model complexity on testing and training error. . . 126
Data divided into parts for 4 way cross-validation. 127
Schematic of a single hidden layer, feed-forward neural network

with one output. 131
The hyperbolic tangent sigmoid function. 131
A selection of the input images used. 134
Example input masks for the cloud generation algorithm. 136
Different cloudy images generated by the cloud-adding algorithm. . 137
An example of the user interface to the experiment. 140
DMOS values and Z scores for images used in the realignment ex-

periment.o 143
The linear realignment mappings obtained for the individual vari-

able sessions. 143
The effect of increasing the number of knots on testing and training

data. L 145
The effect of altering the polynomial order on the test prediction

error of the spline cloud cover IQA model. 147
Different spline fits on cloud data 148
The prediction error of various spline models fit to blur data. 149
Different spline fits on blur data. 150
The prediction error of various spline models fit to noise data. . . . 151
The linear regression noise fit 151
Division of the full factorial data into test and training sets for

cross-validation.o Lo Lo 152
Average across training datao 152
Different spline fits on central area data. 153
A spline model with unequal number of knots in the each axis. . . . 154
Prediction errors for different splines models fitted to the central

ATEA. .« + « e e e e e e e e e e 154
Prediction errors encountered during neural network training. . . . 157
How the 5% F-value, z in the figure, is determined. 158

LIST OF FIGURES xvi

5.25

5.26
5.27

5.28

5.29

5.30

5.31
5.32
9.33
5.34
9.35
5.36
5.37
5.38
5.39

5.40

Al
A2
A3
A4
A5
A6

B.1
B.2

Probability density function and cumulative distribution functions
for the F-distribution with degrees of freedom df = (242,242). . . . 158
The effect of the relative energy threshold, F,, on classification error.159
The process followed in an attempt to observe the effect of cloud

dispersion on image quality.o 160
The results of the single variable sessions of subjective IQA exper-

iment. L L 162
The relationship between raw difference scores and the realigned

DMOS values for the individual variable session. 165
The relationship between raw difference scores and the realigned

DMOS values for the cross-coupling session. 166
A comparison between the training data and resulting surface. . . . 166
Surfaces of fsplm@(X) at fixed noise levels. 167
Surfaces of fsplmg(X) at fixed cloud cover levels. 168
Surfaces of fsplme(X) at fixed defocus extent levels. 168
Surfaces of f,,(X) at fixed noise levels. 169
Surfaces of f,,(X) at fixed cloud cover levels. 170
Surfaces of f,,(X) at fixed defocus extent levels. 170
Extrapolation of the neural network model. 171
Correlation between expected output y; and model prediction y; for

test data. Lo 172
Correlation between true DMOS, y;, and DMOS predicted by model,

y;, for input feature levels x; estimated from test images. 173
Execution speed with boundary updating algorithm. 182
Execution speed with extended mask array. 183
Execution speed with extended mask array and priority queue. . . . 185
Valid local maxima. oo 186
The effect of € on the local maximum. 187
Regions consumed because of lack of ordering. 189
The toy problem data and two example fits. 191

A comparison between different regularisation options for neural
networks. L 192

List of tables

2.1
2.2

2.3
2.4

3.1
3.2
3.3
3.4
3.9
3.6
3.7
3.8

3.9
3.10

4.1

5.1
5.2
5.3

5.4
3.5

AVHRR sensor specifications.
The number of occurrences of the joint classification outcomes for

two algorithms. NV is the random variable and n is the outcome. . .
McNemar counts for the dimension reducing transforms.
Outcomes w of W for the dimension reducing transforms.

The employed bounds for the ratio v(l — 1)/v(l)..

Average error percentage per image over 30 instances of each image.
Estimated noise variance per image over 30 instances of each image.

Standard deviation of error estimates from Table 3.2.
Standard deviation of noise variance estimates from Table 3.3. . . .
Average error percentage per image over 30 instances of each image.
Standard deviation of noise variance estimates from Table 3.6. . . .
Average error percentage per image over 30 instances of each image

using ae(l). . o oL
Standard deviation of noise variance estimates from Table 3.8. . . .
A summary of the comparative results: average and median relative

CITOr percentages.

Comparison of defocus blur classification accuracy using 1D and
2D image sections.

A simple full factorial experiment. L.
Experimental sessions. Lo oL
The average zero mean (AZM) main effects of each of the single

variables, cloud cover, noise ,, and defocus extent, R.
The results of a 3-way ANOVA.
A performance comparison between the models based on test data.

xvii

27
44
45

65
78
78
79
79
81
81

84

List of Acronyms

ADT Abstract data type.
AVIRIS Airborne visible/infrared imaging spectrometer.
AVHRR Advanced very high resolution radiometer.
CB Current boundary.
DEM Digital elevation model.
DMOS Difference mean opinion score.

GSI Ground Sample Interval, also called ground instantaneous field of view
(GIFOV).

HDA Heteroscedastic discriminant analysis.
HOT Haze optimised transform.

HVS Human visual system.

IB Internal boundary.

IQA TImage quality assessment.

LDA Linear discriminant analysis.

LEO Low Earth Orbit.

MWIR Medium wave infrared spectrum, 3 — 5um.

NDVI Normalised difference vegetation index.

NIR Near infrared spectrum, 0.7 — 1.1um.

PCA Principal component analysis.

xviii

LIST OF ACRONYMS

PDF
PSEF
PSNR
RAM
SNR
SWIR
TC
TIR
VIS

Probability density function.

Point spread function.

Peak signal to noise ratio.

Random access memory.

Signal to noise ratio.

Short wave infrared spectrum, 1.1 — 2.5um.
Tasseled cap (transform).

Thermal infrared spectrum, 8 — 14um.

Visible spectrum, 0.4 — 0.7pm.

xix

Chapter 1

Introduction

1.1 Motivation

The design of an on-board image processing system for a low earth orbit (LEO),
remote sensing micro satellite is presented in this dissertation. The system
must be able to prioritise images for download according to an image quality
measure. Given that the number of images that can be downloaded in a day is
fewer than the number that can be acquired, it is desirable to download only
the acquired images with the best quality.

1.1.1 On-board processing in remote sensing

In the past the processing capability of satellites has been limited. As processor
and memory technology advances, increased use can be made of on-board
processing. It becomes feasible to undertake more complex processing tasks
on board of the satellite, which increases the autonomy of the spacecraft [111].

On-board processing has been successfully used to reduce data rates, which
leads to cost savings [111, pp. 539-550]. Downlink bandwidth and -time
are constraints in satellite design: increasing bandwidth increases cost, while
downlink time is a function of the satellite’s orbital path. LEO satellites re-
main in contact with a single tracking station for only a few minutes. Reduced
data rate requirements can lead to reduced downlink bandwidth requirements.
Alternatively, given a predetermined bandwidth, reduced data rates can allow
optimal use of available downlink time.

Often, not all of the data collected by the satellite is needed. By processing
the data on board of the satellite, it is possible to transmit only the necessary
data. For example, Europe’s METEOSAT satellites store and format cloud
scanner data before transmitting it to numerous ground stations at a reduced

1.2 Ranking images 2

rate. In [68] an on-board neural network classifier is used to generate thematic
maps, which are downloaded instead of full resolution multi-spectral images.
Different image data compression schemes also utilise on-board processing to
reduce data rates [54, 36]. NASA’s recent MISR satellite includes custom
digital circuits that can average 4 x 4 pixels into a single pixel to conserve data
rates [32].

The system that is the subject of this dissertation must be able to compare
acquired images on board of the satellite. This processing can be done when
the satellite is in eclipse, when the processing power will not be needed for
image acquisition. By generating a quality score for each image, it is possible
to rank images according to quality scores. Optimal use of available downlink
time is ensured by downloading images from the top of this ranked list.

1.2 Ranking images

Algorithmically determining a quality score for an image is the domain of image
quality assessment (IQA). The problem can be divided into feature estimation
and quality estimation. During feature estimation, certain features of the
image are considered and given numerical values. During quality estimation,
these numerical values are mapped to an image quality score.

When ranking images and choosing features, two conceptually different ap-
proaches are available. One can either promote good quality images or penalise
bad quality images. In terms of features used, this dichotomy is between mea-
suring image content features and image degradation features. Various IQA
and feature selection approaches are discussed in Chapter 5. However, some
introductory information is given to provide a conceptual framework for the
chapters devoted to feature estimation, Chapters 2 to 4.

1.2.1 Good quality images

What constitutes a good quality image? The answer to this question is subjec-
tive and depends upon the application [47, p. 76]. One could propose numerous
image features that attempt to measure information content. For example con-
trast, variance, texture content, entropy or sharpness can be considered. Some
of these features have been used by researchers and are discussed in Chapter
5.

The conceptual problem with content measures is that they are only ob-
jective when considering images of the same subject. For example, when com-
paring images taken 16 years apart by different satellites, various statistical
measures, such as variance and kurtosis were used to compare carefully aligned
scenes of the same targets |[55]. When comparing different scenes, the scene
content severely influences these features and, therefore, they cannot be used
to rank different good quality images.

1.3 Goals 3

1.2.2 Bad quality images

The images acquired by satellite sensors are often imperfect. Sometimes de-
sign errors can cause unwanted degradations. In these cases image processing
can often be used to restore such known degradations. An example is the
mirror aberration on the Hubble Space telescope [56]. Even when there are
no design shortcomings, environmental factors such as temperature variations,
radiation, available light and weather conditions can conspire to degrade im-
age quality. In such cases the level of degradation varies between images and,
therefore, image restoration techniques have to be applied on a case-by-case
basis. Furthermore, certain types of degradations cannot be restored.

It is not meaningful to rank images based on constant degradations that
result from design errors or choices. Although contrast is a content measure, a
design choice often causes satellite images to have reduced contrast. Satellite
sensors with global coverage must view a wide range of scenes, from very low
radiance to very high radiance. Therefore, the dynamic range of such sensors
is set at the design stage to accommodate a large range of scene radiances.
However, this range is seldom present in a single scene. Thus, images typically
use less than the full quantisation range, which means the contrast is low.
After the images have been downloaded, the dynamic range is increased using
post-processing |94, pp. 202-227|. Another typical constant degradation that
is removed by post-processing, is striping caused by sensor calibration (see
Chapter 3).

For the IQA system that is the subject of this dissertation, the features
selected attempt to estimate variable degradations. Cloud cover, additive noise
and the amount that the telescope is out of focus (the defocus extent) are
estimated.

1.3 Goals

The goals of this dissertation were:

e To investigate ways of measuring image quality. This includes investiga-
tion of possible features and quality models.

e To investigate feature estimation algorithms. These algorithms must be
able to estimate features autonomously (without human intervention)
and blindly (using only a single image, without a reference image).

e To evaluate the feasibility of the selected estimation algorithms and qual-
ity assessment model. This includes accuracy as well as speed evalua-
tions.

1.4 Fundamentals 4

1.4 Fundamentals

The notation used in this dissertation for an image quantised and sampled so
that the digital image has L rows and M columns follows [47]:

1,0 1,1 1, M—-1
T I (CUR L A)

The values of the coordinates (x,y) are discrete quantities represented by in-
teger values. The right side of equation (1.4.1) is by definition a digital image.
Each element of the digital image, i.e., each element of the array, is called
a pizel (picture element). The value of f(i,j) at a specific coordinate corre-
sponds to the quantised intensity level of the pixel in row ¢ column j.

1.5 Structure

The dissertation is structured into self-contained chapters. Each chapter has
its own literature review, methodology, results and conclusions sections. Three
chapters are dedicated to the three estimated features respectively: Chapter
2 covers cloud estimation, Chapter 3 covers noise estimation and Chapter 4
covers defocus estimation. In Chapter 5 the design of the quality assessment
model is discussed. Finally, conclusions are summarised and recommendations
made in Chapter 6.

Chapter 2

Cloud estimation

2.1 Literature

2.1.1 Introduction

Analysis of cloudy images has a long history in remote sensing. The research
usually has one of two goals: distinguish cloudy pixels from cloud-free pixels
or classify cloudy pixels into different cloud types.

It is essential to distinguish cloudy and cloud free pixels before auto-
matic estimation of surface variables from remote sensing images can be done.
While previous researchers have cited land surface albedo!, -insolation and
-temperature [51], Normalised Difference Vegetation Index (NDVI, used to
monitor vegetation) [23] and sea surface temperatures [91] as variables that
cannot be measured in the presence of cloud cover, most surface variables
measured in the visual (VIS) through to thermal infrared (TIR) bands will be
meaningless in the presence of cloud cover. Given that approximately 50% of
the earth’s surface is covered by cloud at any given moment [90], the impor-
tance of cloud detection can be easily understood.

To classify and analyse clouds, cloudy regions also first have to be dis-
tinguished from cloud free regions. This plays an important part in weather
prediction and climate-ecological studies [14], such as the International Satel-
lite Cloud Climatology Project [100]. In general, cloud analysis algorithms
only need to identify pixels with more than 50% cloud cover, while cloud de-
tection algorithms are more strict: even pixels with as low as 1% cloud cover
have a significant effect on measured brightness temperature [90].

In section 2.1.2 general image processing techniques applicable to cloud

!The albedo, or reflectivity, of an object is the extent to which it diffusely reflects sunlight.

2.1 Literature 6

detection and used in the following sections are discussed. Cloud detection
algorithms can be divided into two categories: those based on spectral tech-
niques and those based on spatial techniques, examined in the sections 2.1.3
and 2.1.5. Spectral techniques include transforms that reduce the dimension
of the data. Heteroscedasitc discriminant analysis, a novel dimension reducing
transform in the context of remote sensing, is discussed in 2.1.4. In addition to
spectral and spatial techniques it is possible to use time domain information in
cloud detection (by comparing a cloud free image of a region with the image to
be segmented), but the practical challenges associated with such a scheme are
severe [51]. Finally, in section 2.1.6 a region growing technique, that combines
spatial and spectral domain ideas and has been used on board a microsatellite,
is considered.

2.1.2 Applicable image processing techniques

Estimation of the amount of cloud cover in an image belongs to the domain of
image segmentation: the goal is to divide (segment) the image into cloudy and
clear regions?. It is then easy to measure the relative size of the cloudy area.
Segmentation is the process of grouping pixels in an image into homogeneous
regions based on one or more properties. Most common image segmentation
algorithms use one of two comparative pixel intensity properties: discontinu-
ity or similarity [47, p. 568|. Algorithms based on discontinuity use sudden
changes in intensity, such as edges of a region, to segment a region. Meth-
ods based on similarity partition the image into regions with similar intensity
values.

Image thresholding is a popular segmentation method that belongs to the
similarity category. Its importance can be ascribed to its intuitive nature and
the fact that it requires less processing power than more advanced techniques.
Thresholding is the most popular approach to cloud estimation (see section
2.1.3). Starting with a gray-level histogram such as the one in Figure 2.1,
which corresponds to an image of light objects (clouds) on a dark background,
Figure 2.2(a), it is possible to separate the objects from the background by
associating all pixels of intensity greater than the threshold with the object.
A threshold image g(z,y) is defined as:

)1 if f(z,y) > T
g(x,y) = {o it fry) < T, (2.1.1)

where f(x,y) is the gray level of the point (z,y) and T is the threshold level.
Figure 2.2(b) shows the threshold image corresponding to the threshold value

2Tt is implied that after segmentation it is known which segment is cloudy and which
is clear. In the context of pattern recognition such labelling of data is called classification.
However, often the use of a certain segmentation technique presupposes specific classes
resulting from segmentation. Therefore the two terms are used interchangeably in this
discussion.

2.1 Literature 7

----- Threshold

3500

3000

N

w

o

o
T

2000

Number of Pixels

—

194

o

o
T

1000}

% 100 120 140 160 180 200h_ 220 240
Grey Levels

Figure 2.1: A histogram partitioned by a threshold.

from Figure 2.1. In this example, 7" depends only on the f(z,y) and the

(a)

Figure 2.2: An example greyscale image (a), with the corresponding threshold
image (b).

threshold is a global threshold. In general, T' could be of the form:

T =T[z,y,p(z,y). f(z,9)], (2.1.2)

2.1 Literature 8

where p(z,y) is some local property of the point (z,y). If T is dependent
on p(x,y) the threshold is local. An example of a local property that has
been used for cloud estimation is variance (see section 2.1.3). If T' depends
on the coordinates (z,y), the threshold is called dynamic; a variation of this
type of threshold has recently been introduced to cloud detection [114, 58|. In
these cases thresholds were not varied on a pixel by pixel basis, but different
thresholds were trained for different surface types. When evaluating an im-
age, its surface type was first determined by using the image’s latitudinal and
longitudinal coordinates as entry into a global lookup table.

Considerable research has been done in the field of automatic thresholding;
an overview of techniques can be found in references [88] and [65]. These
techniques try to determine an optimum threshold to separate light objects
from a dark background automatically. However, the methods assume that the
histogram has two dominant modes, like the two peaks in Figure 2.1. Hence,
the assumption is that there is always a dark and a light region in the image and
that they are to be separated. This makes these techniques unsuitable for cloud
estimation: all remote sensing images do not contain clouds and, conversely,
some images may consist of only clouds; so two dominant histogram modes
are not guaranteed.

Even if no automatic thresholding techniques are used, some measure to
compare the performance of different segmentations is needed. Reference |65]
introduces a measure to evaluate the performance of thresholding techniques
that does not require these techniques to be automatic. It is a meaningful,
objective performance criterion for global thresholding algorithms:

Pr(err) = Pr(O) x Pr(B|O) + Pr(B) x Pr(O|B), (2.1.3)

where Pr(B|O) is the probability of error in classifying object as background
and Pr(O|B) is the probability of error in classifying background as object.
For a thresholding technique to give good performance both these probabili-
ties must be low. Pr(O) and Pr(B) are a priori probabilities. To calculate
these probabilities one must manually segment an image to create a reference
threshold image, and measure the area of the object and background.

When using global thresholding, it is important to consider the illumination
of the scene. Image intensity can be modelled as the product of an illumination
i(z,y) component and a reflectance component r(z, y):

f(x,y) =iz, y)r(z, y)- (2.1.4)

If there is a nonuniform light distribution across the scene, the shape of the
histogram will be altered proportionately to the degree of non-uniformity of
i(xz,y) |47, p. 598]. Luckily, there is normally nothing between cloud tops and
the sun, so illumination is uniform. The level of uniform illumination can differ
depending on the time of day and this is taken into account by many of the
algorithms in section 2.1.3. Furthermore, it is possible for high layers of cloud

2.1 Literature 9

to cast shadows on lower layers, resulting in nonuniform illumination. This
creates the possibility that lower, shaded clouds visible through gaps in higher
clouds might not be identified by a global threshold.

A different segmentation technique, also based on similarity, but taking
the relative position of pixels into consideration, is region growing |47, p. 613|.
Pixels are grouped together based on predefined, application specific criteria.
Algorithms generally start with one or more seed points. Neighbouring pixels
with properties similar to the seed point are added to the region. Since only
neighbouring pixels can be added to a region, the concept of connectivity is
inherent to region growing: starting from a single seed point, a region-growing
algorithm will produce a connected region. Lastly, a stopping rule is needed: a
definition of when neighbouring pixels are suitably different from those already
in the region. When it is satisfied the growing process stops. Stopping rules can
be based on local properties such as grey levels or texture, but more powerful
rules also take into account the growing history or the shape of the region. A
cloud segmentation technique based on region growing is discussed in section
2.1.6.

2.1.3 Spectral methods

Applying thresholds to images has been used to detect clouds since the first
satellite images were produced [87]. A large portion of the initial work in cloud
identification used global thresholds based on the fact that clouds are generally
bright in the visible and cold in the infrared spectra. ® Since global spectral
thresholds apply to each pixel independently, they are also referred to as per
pixel techniques. In |38| it was found that all clouds exhibit approximately
the same albedo, apart from thin cirrus clouds, which are semi-transparent in
the VIS band. A method was formulated based on automatic thresholding; it
relied on a large scale of cloud cover, so many pixels are completely filled with
cloud. Given a large enough area, sea, earth and cloud surfaces will produce
two or three distinct peaks in the VIS histogram. Since the histogram has dis-
tinct main modes, automatic thresholding techniques become applicable. The
method starts with a preset initial threshold value that is iteratively refined
by moving it toward the valleys in the histogram. During the iteration, data
from the infrared channel is used to stop iteration once the mean temperature
of the cloudy area starts to increase, indicating that ground pixels are being
included in the cloudy area.

This assumption of two or three main histogram modes might be appro-
priate for satellites with very large ground sample interval (GSI), such as ME-
TEOSAT (GSI = 2500m) for which the algorithm in reference [38] was devel-
oped. A large GSI averages acres of surface detail into a single pixel. In the

3In this chapter the term ‘spectrum’ refers to electromagnetic waves with limited range
of frequencies. In chapter 4, ‘spectrum’ refers to the Fourier decomposition of a spatial
domain image.

2.1 Literature 10

Table 2.1: AVHRR sensor specifications.

Channel Wavelength region [pm)] GSI [m]

1 0.58-0.68 (VIS:red) 1100
2 0.725-1.10 (NIR) 1100
3 3.55-3.93 (high-temp TIR) 1100
1 10.3-11.3 (TIR) 1100
5 11.5-12.5 (TIR) 1100

resulting satellite image, the surface of the earth appears considerably more
uniform than in an image where the GSI is in the order of meters. More uni-
form earth, cloud and sea surfaces result in clearly defined histogram modes.
Satellites with large GSI are often weather satellites, designed to acquire fre-
quent images of large areas to monitor and map large scale climate effects.
The large GSI is a fundamental difference between these and resource satel-
lites: low earth orbit (LEO) remote sensing satellites designed for mapping the
surface conditions on the earth. In satellites with a smaller GSI more detail
can be discerned and frequently it is a technological goal to get the GSI as
small as possible. In these images the abundance of surface detail can influence
the histogram in unpredictable ways. Furthermore, as mentioned in section
2.1.2, smaller GSI increases the likelihood of having images with no cloud cover
or complete cloud cover, thereby also invalidating the assumption of a modal
histogram [114].

The heavy reliance of the algorithm on the infrared channel also makes it
unsuitable for LEO satellites with spectral reach in the VIS and near infrared
(NIR) bands, such as Sumbandilasat. The algorithm struggled to distinguish
clouds from snow and ice. This is a common problem in cloud estimation
algorithms, since snow and ice are also bright in the VIS and cold in the
TIR bands. Over desert regions such as the Sahara, a high surface albedo
necessitated using TIR exclusively.

The method was adapted and expanded upon by Saunders in [90] for
AVHRR scanner (Advanced Very High Resolution Radiometer, see table 2.1).
The main improvement is the selective use of AVHRR channels depending
on location. If the image was taken over land, AVHRR channel 1 is used
for cloud detection, while channel 2 is used when the background is predom-
inantly ocean. The reason given is that, while clouds have a high reflectance
at both these wavelength intervals, the longer channel 2 wavelengths are less
affected by aerosols and Rayleigh scattering than the shorter channel 1 wave-
lengths. But land surfaces have a higher albedo at the longer wavelengths.
Therefore channel 2 is used for cloud detection over sea, since it is less affected
by scattering, while over land channel 1 is used since the lower reflectance of
land surfaces increases the contrast between land and cloud. Greater contrast
makes identification easier. Once a channel has been chosen, the histogram

2.1 Literature 11

is analysed to see if a peak exists. If a peak exists and it is below the prede-
termined value for a cloudy scene, the peak is assumed to be cloud free. The
cloud threshold 7' is then set to a predetermined reflectance above the peak.
In the case of coastal regions there can be two histogram peaks (one each for
land and sea) and the dynamic threshold determination method fails and a
predetermined single threshold is used. This test is combined with two other
tests based on channel 3 and 5 respectively. In channel 5, pixels must be colder
than (have an intensity less than) a predefined threshold. The channel 3 test is
only useful over sea and flags pixels with high local variance as cloudy. A pixel
must be flagged as cloud free by all three tests to pass. The channel 1 or 2
test is only applicable during the day, which is defined as solar zenith less than
80°. Since the tests based on different channels are not so intertwined as those
from [38] it is possible to apply only the channel 1 or 2 test in a satellite with
limited spectral reach, such as Sumbandilasat. However, while less dependent
on the TIR band, any advance beyond a basic predetermined threshold relies
on large GSI for a strong histogram peak and still uses a predetermined off-
set. So it is merely a different parameter that has to be predetermined. Also
when a single, strong histogram peak is absent, the method falls back on a
predetermined threshold.

In [91] Saunders and Kriebel add two additional tests to the three just
discussed, bringing the total to five tests. The two new tests are based on the
ratio of AVHRR channels 2 and 1, and the difference of channel 4 and 5. The
channel intensity values are first converted to at-sensor reflectance? defined as:

L,

_ 2.1.5
Ecos,’ ()

pn =

where L, is the recorded radiance signal [W m~2 sr~! um™!], E, is the extra-
atmospheric solar irradiance for the selected band, 1, is the solar zenith angle
and p, is the at-sensor reflectance. The recorded radiance signal L, is typ-
ically calculated from raw channel intensity value C' using the gain G, and
intercept Y,, for the sensor channel n: L, = G,,C +Y,,. It is meaningful to
normalise the raw intensity before thresholding so that the threshold value can
be independent of the time of day and the specific sensor variables. The ratio

used in the test is
_ P2

£1
When using more than one channel it is assumed that the radiation from
different channels originates from the same place. Therefore it is paramount
that the different channels be accurately aligned. The main motivation for
using a ratio is that in the histogram of (), land and sea are well separated
at opposite ends of the histogram and a cloudy peak can be looked for in
the central region of the histogram. It is worth noting that reference [51]

(2.1.6)

4 At-sensore reflectance is also referred to as top-of-atmosphere reflectance

2.1 Literature 12

claims that a ratio test is less sensitive to differences in anisotropic properties
between channels than a difference test. The ratio thresholds are determined
similarly to those for VIS or NIR: cloud free peaks at the top or bottom of the
() histogram are identified and only values of () closer than predefined levels
to the peaks are labelled as cloud free. Such ‘dynamic’ thresholding is biased
towards misclassifying cloud-free pixels as cloudy. If no clear peaks are present
(often the case over land), a predefined threshold is used. Once again a pixel
is only identified as cloud free if all five of the tests prove negative.

Various other authors advanced the work from [90, 91| discussed in the
previous two paragraphs. References [23, 14] underscore the need to adapt
algorithms and thresholds to local weather conditions and specific satellites.
Thresholds should be based on data collected over a long period and deter-
mination of the optimum threshold is a human lead, iterative process. In 23]
two cloudy images were taken each month for 11 months and used to derive
representative radiometric thresholds for the Texas region. While it is imper-
ative for TIR thresholds (since seasonal changes affect temperature levels), it
remains sound advice for VIS and NIR thresholds. Since ice and snow also
have high VIS and NIR albedo, work has been done that relies on TIR bands
to improve discrimination of these surfaces from clouds [10]. Reference [98|
uses local threshold techniques in the TIR band to improve identification of
clouds over the ocean. In reference 14| the threshold value T is dependent
on a digital elevation model (DEM). This allows thresholds to be adapted for
mountainous, snowy regions. Also, the ratio test from equation (2.1.6) is criti-
cised for being over eager to identify desert areas as cloudy. It is recommended
that its use be limited solely to images over the ocean.

The eagerness of Saunders and Kriebel’s algorithm to classify pixels as
cloudy is criticised by Guttman in [51], again for the AVHRR sensor. He
advocates a ‘clear-until-proven-cloudy’ policy as opposed to the scheme where
failure of any one of five tests results in a pixel classified as cloudy. Also, all
dynamic thresholds are replaced with static thresholds. While many of the
tests rely on TIR channels, a useful solar glint test is introduced. Solar glint
is a highlight caused by the reflection of the sun on water bodies and has the
same bright white appearance in the VIS band as clouds. However, glint is only
allowed in the forward scatter direction (i.e., towards the sun) and close to the
principal plane (i.e., small relative azimuth). Glint is possible if the satellite
zenith angle 1, and relative azimuth 6, are both smaller than corresponding
thresholds:

IF 60, <60 AND ¢, <1 THEN glint is possible. (2.1.7)

If the possibility of glint exists, an additional test based on a channel 5 thresh-
old is required before a pixel is flagged as cloudy.

2.1 Literature 13

Dimension reducing transforms

In a memory-scarce on-board environment, memory requirements can be min-
imised by considering spectral techniques which use only a single channel.
When selecting a single channel for thresholding, there are various options
present in cloud detection literature. Similar to reference [90] mentioned above,
red channel at-sensor reflectance, p,.q (around 670 nm), has been advocated
for cloud detection over land [114]. It has also been used for cloud detection
over water [31]. On the other hand, the blue channel reflectance, pye (around
480 nm), or alternately, the lowest wavelength band available for a given satel-
lite, is used for an initial cloud mask by the ATCOR (atmospheric correction)
program [85, 86].

Instead of selecting a single channel for thresholding, one can combine
multiple channels’ spectral bands into a memory efficient greyscale image,
which can then be thresholded. Since RAM is limited on board of a satellite,
the memory efficiency of a greyscale representation is useful. Specifically, for
Sumbandilasat the multispectral bands are stored in non-volatile mass storage,
with a capacity that greatly exceeds that of the RAM. Furthermore, when
reading data from the non-volatile memory into RAM, the architecture requires
that large blocks of data from a single channel must be read at a time. Since
the architecture does not allow reading the non-volatile memory scanline-by-
scanline, assembling a greyscale by adding a weighted version of the channel
being read to the current weighted average greyscale in RAM allows for optimal
use of limited RAM. The challenge is to determine which channels to combine
and which relative weights to use for optimal detection of clouds. Various
transforms have been proposed.

One option is the non-linear NDVT transform [94, p. 183], which has been
used in conjunction with thresholds for cloud detection [87]. The definition is
NDVI = (pnir — pred)/(Pnir + Prea), where pp;, is the reflectance in the NIR
channel. Since clouds are less dependent on frequency than plants, cloudy
NDVI pixels have values closer to zero, while vegetated land values are positive
and ocean values negative. However, bare soil also maps close to zero, and it
is unlikely that a transformation derived for measuring vegetation properties
will be the optimal choice for detecting clouds.

A transformation based on the NDVI was proposed for cloud detection [31]:

 INDvI

D
p?ﬂed

: (2.1.8)

where b is chosen to separate clear and cloudy classes optimally. The value
of b can be related to the slope of the decision boundary between the two
classes in log-space. This decision boundary is chosen to be orthogonal to
the line connecting the class centroids. The cloud detection ability of the D
transform has been compared favourably against NDVI, p,..; and a standard
deviation-based transform over a range of images [114]. In these tests, pixels

2.1 Literature 14

covered with thin clouds were treated as cloud-free since the application only
demanded thick, completely opaque clouds be identified.

The tasseled-cap is a linear transform also originally designed for agricul-
tural monitoring using Landsat imagery, but found effective for detection and
correction of thin clouds or hazes |94, pp. 198-201], [26]. The component of
the tasseled-cap useful for these purposes is TC = 0.846 X Lyjye — 0.464 X L4,
where L is the recorded radiance signal for the respective Landsat channels
[85].

The haze optimised transform (HOT) is a data-dependent improvement on
the tasseled-cap that has recently been developed for detecting and correcting
for thin clouds [120]. It also uses the blue and red channels, but determines
the weight of the channels based on the image data:

HOT =sin¢ X Lyjye — €08 @ X Liyeq, (2.1.9)

where ¢ is the slope angle of a linear regression line between Ly, and L4 for
clear (cloud-free) areas. For this regression Ly is the independent variable
and the resulting line is called the ‘clear line’. The HOT transform, equation
(2.1.9), projects data onto a line perpendicular to the clear line. This transform
has replaced the tasseled-cap as the transform of choice for haze detection and
correction in ATCOR |[86].

In summary, without access to TIR it is not possible to discriminate be-
tween clouds, ice, snow or bright desert. Furthermore, cloud shadows, which
also affect surface variable estimates, could not be identified even with access
to TIR [23]. Methods attempting dynamic thresholding tend to be biased to-
wards classifying pixels as cloudy and rely on large GSI. In an on-board system
without access to a global land/sea classification model or a DEM, the best
one can do is to use a static, predetermined global reflectance threshold. Con-
verting an image to greyscale is a way to conserve memory that also allows
for easy application of a threshold. Methods to convert a multi-channel im-
age to greyscale include selecting single channels or applying transforms like
D and HOT. Sensor data should be normalised using equation (2.1.5). If the
geometry allows for solar glint according to equation (2.1.7), bright VIS pixels
cannot be unconditionally accepted as cloudy and uncertainty will remain.

2.1.4 An alternative dimension reducing transform:
Heteroscedastic discriminant analysis

Heteroscedastic discriminant analysis (HDA) is a transform suitable for reduc-
ing the dimension of data before applying a linear classifier. It is conceptually
similar to the spectral methods from section 2.1.3: when applied to cloud de-
tection it can combine different channels into a greyscale image. When com-
bining the channels, each channel’s weight is based on a criterion for optimal
classification of clouds. To the author’s knowledge, HDA has not previously

2.1 Literature 15

0.18

016/ | ™ Clear : 016/ | ™ Clear :
’ mm Cloudy | ; mm Cloudy |

0.14
0.12
— 0.10
O: 0.08
0.06
0.04

0.02

0.00

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.02 0.04 0.06 0.08 0.10 012 014 0.16
Phblue Pblue
(a) Small overlap. (b) Larger overlap resulting from urban area.

Figure 2.3: Scatter plots of two images showing example spreads of class values.
The image for (b) is shown in Figure 2.7.

been applied in a remote sensing scenario; its application has been mostly lim-
ited to speech classification, where it originated. It was selected from various
dimension reducing techniques found in pattern classification literature.

When considering candidate transforms, it is instructive to visualise sam-
ple class distributions, as in Figure 2.3. In this example the data are four-
dimensional: red, green, blue and NIR channels are present. To enable visu-
alisation, only the red and blue channels are presented. In both images there
is some overlap between classes; the increased overlap in Figure 2.3(b) is the
result of bright urban structures. Classes can generally be well separated or
highly overlapping, with overlap caused by either thin semi-transparent clouds
or bright backgrounds, like urban structures, glint, snow and desert. It is often
impossible to separate the overlapping classes perfectly using any combination
of the four available bands. While the two classes are often mono-modal, cases
where the clear area consists of a few large distinct regions might result in
multi-modal behaviour. The shapes (spread of the data) of the two classes
almost always differ significantly.

To combine four different channels into a greyscale image, the dimension
of the feature space must be reduced from four to one. Classical dimension-
reducing transforms include principal component analysis (PCA) and linear
discriminant analysis (LDA) [15, pp. 186191 and 561-570]. Both transforms
use Gaussian probability density functions (PDF) to model the data and lin-
ear projections to reduce dimension. PCA projects data onto the axis cor-
responding to the direction of maximum data variance. Since PCA does not
incorporate class information, it is unlikely to be optimal for classification.
LDA attempts to find a projection that maximises the separation between
class means (the between-class variance) while minimising the variance within
each class (within-class variance). In practice this is achieved by maximis-
ing the ratio of between-class variance to within-class variance. By effectively

2.1 Literature 16

class B

misclassification

HDA projection

Figure 2.4: Heteroscedastic extension to LDA minimises classification error when
class covariances differ.

minimising average within-class variance, it is hoped that the area of overlap
between the classes (and thus the misclassification rate) will also be minimised.
Since average within-class variance is minimised, equal covariance class PDFs
are assumed. When this condition holds, the area of overlap is indeed min-
imised [52, p. 95|, but for cloud data, classes generally have greatly differing
covariances as illustrated in Figure 2.3. LDA is therefore inappropriate and
gives poor results as illustrated in section 2.3.1.

Recent expansions on LDA include HDA [61, 89] and kernel discriminant
analysis (KDA) [81]. KDA is a non-linear transformation that first maps data
to a very high dimensional space using a kernel function before applying LDA
to reduce dimension. Although non-linear decision boundaries might improve
performance in highly overlapping cases, like the one shown in Figure 2.3(b), in
many cases, such as the one shown in Figure 2.3(a), a linear boundary would
suffice. Moreover, the computational requirements for KDA are prohibitive
for on-board use: using the kernel function, an input sample is compared to
each of the n points in the training set during transformation. For typical
training sets used in the experiments discussed in section 2.2 n > 6000000
was common, which makes KDA impractical.

Heteroscedastic discriminant analysis (HDA) — sometimes referred to as
heteroscedastic linear discriminant analysis (HLDA) — is a generalisation of
LDA derived to handle unequal-covariance classes. This makes it more suitable
for application to cloud detection. Figure 2.4 illustrates the difference between
HDA and LDA in a simple example; since the class covariances are so different,
LDA projects along a line connecting the class means, which does not minimise
the area of overlap.

Equivalent formulations of HDA can be derived in different ways [61, 89).
The output is a m x m transformation matrix A = [A,A,,_,|, of which only
the first p columns, A, = [a; ... a,), are used to achieve dimension reduction
from R™ — RP. In the experiments conducted in section 2.2, m = 4 and

2.1 Literature 17

p = 1; i.e., only the first column A, = a; is used. Since HDA is a linear
projection, y = Agw, transforming a m-dimensional input sample, x, to a
p-dimensional output y for a given A requires only a simple and fast matrix
multiplication. To find an expression for A, the implicit assumption that the
discarded (m — p)-dimensional subspace contains no classification information
is modelled and the maximum likelihood criterion is used to find A under this
assumption [61]:

J
n — n, -
A = argmax {—5 log |[A} [TA, |- > 5 log |ATW,A,| +nlog |A|} :
j=1
(2.1.10)
where n is the total number of samples, n; is the number of samples in class
J and the number of classes J = 2 for cloud classification. T is a measure of
total data variance and W, is the within-class covariance matrix for class j:

T - % > (i~ @), —)",

- 1 ¥
W, =— Z(a:Z —z;)(x; — x;)7, x €classj, j=1.../J,

nA
J =1

where @ is the data mean and &; is the class mean for class j. Although
reference [61] went no further than stating equation (2.1.10) as a result of
their derivations, one can interpret it as follows: the first term minimises the
variance in the discarded subspace (this space should contain no classification
information), the second term minimises the sum of within-class variance in the
projected subspace (as opposed to the projected average within-class variance
of LDA), while the last term prevents A from becoming zero. Since there is
no closed form solution for equation (2.1.10), gradient descent optimisation is
used to find A. The LDA solution is taken as the initial guess for A required
by the optimisation process.

For application to cloud detection, full covariance matrices [15, pp. 75-85]
(for which equation (2.1.10) was derived) are assumed for each class. Since the
spread of the data, as shown in Figure 2.3, is neither isotropic nor diagonal, this
assumption is most suitable. If covariance matrices were restricted to being
diagonal or isotropic, alternate, simplified expressions for HDA also derived in
[61] could be applied.

2.1.5 Spatial methods
A contextual classifier

In [59] Kittler and Pairman assert that a human meteorologist considers more
than radiance when identifying clouds: the size and shape, texture, global

2.1 Literature 18

position as well as relative position to other weather systems are taken into
account. Two existing options for advancing beyond per pixel, spectral clas-
sification are discussed. Omne option is to divide the image into coarse cells
and use texture features within a cell for additional information. Two previ-
ous studies where texture has been used are examined: in one it was found
that spatial methods brought no increase in accuracy, while the other found
that use of spatial methods increased the ability to discriminate between dif-
ferent cloud types. The second spatial domain option is to use unsupervised
clustering to find groups of similar pixels in multidimensional space and draw
decision boundaries between them. A study where this approach was used
is commented upon: the advantage of clustering is that once pixel clusters
have been formed data from the whole cluster can be used in classifying it,
as opposed to data from a single pixel. However this is outweighed by dis-
advantages: small clusters can be swamped (erroneously grouped with larger
clusters), each pixel is still assigned to a cluster on a individual basis so that
noise at class boundaries is the same as with individual pixel classifiers. Addi-
tionally, classes exhibit great differences in within class variance, which make
them unsuitable for unsupervised clustering.

To address these problems Kittler and Pairman develop a contextual clas-
sifier. It iteratively classifies pixels while taking into account already classi-
fied neighbouring pixels’ classes. When applied to AVHRR data, the resulting
method succeeds in reducing the noisiness of the between class boundary. Simi-
lar results were recently achieved with a k-means clustering classifier that takes
into account neighbouring pixels’s intensity values [12]. However, contextual
classifiers are not able to correct any large incorrectly classified areas in the
image. This is because incorrectly classified pixels tend to support each other.
Therefore, while the method represents a small improvement over a per-pixel
spectral classifier due to cleaner boundaries, it does not improve discrimination
between the similar snow, ice, sun glint, desert and cloud classes. For such an
improvement extra features are needed.

Texture features and neural networks

In reference [109] an attempt is made to identify useful textural features for
the discrimination of cloud and various ice-covered surfaces. Sixteen Land-
sat MMS scenes were digitised to a 2048 x 2048 array with a GSI of 100m.
Numerous 256 x 256 pixel areas from each scene were selected for textural
analysis. Several textural features based on a sum and difference histogram
approach were investigated. It is claimed that sum and difference histogram
textural features give similar accuracy to traditional textural features based on
the grey level cooccurence matrix [47, pp. 668-669], but with the advantage of
decreased memory and computational time. Certain features exhibited good
class separation when classifying clouds over snow- or ice-covered mountains.
Good separation was also achieved for certain clouds over glaciers and sea ice.

2.1 Literature 19

However, there was not proper separation of broken strato-cumulus clouds or
thin cirrus and ice floes.

The authors of [102] investigate texture features based on the Gabor trans-
form for cloud detection. However, in later work where the class separation
ability of different texture measures were compared, the Gabor transform did
not perform favourably [106].

In [106] neural networks are used in a cloud classification system for AVH-
RR data. Two images were divided into 32 x 32 pixel sections, from which tex-
tural and brightness features were calculated. Many textural features based on
spatial grey-level difference statistics, Fourier statistics, autocorrelation statis-
tics and Gabor functions were evaluated. Fourteen texture features were com-
pared and the five best used in the classifier along with four features based
on the mean and maximum intensities of pixel segments in channels 1 and
4. Four different neural network configurations were studied and it was found
that a two stage classifier gave the best performance. In the first stage a per
pixel classification based only on spectral brightness is used to separate the
data into broad categories of land, sea and cloud. Textural features are only
introduced in the second stage to classify cloud into 10 different cloud types.
Classification accuracies of 91% are reported, but the test and training data
is taken from two AVHRR images only. For the classifier to be of practical
use, it will have to be trained on a diverse collection of many images taken at
different locations, times of day and seasons. For example, no images incor-
porating problem areas such as desert or ice were tested. It is notable that
the algorithm effectively relies solely on spectral classification to distinguish
cloudy and cloud free pixels, since the first stage classifier uses no textural
information.

Neural networks and spatial texture features have also recently been used
in cloud detection from the MODIS (Moderate-Resolution Imaging Spectro-
radiometer) sensor [99] as well as the SPOT (Satellite Pour ’'Observation de
la Terre) sensor [57]. For the MODIS sensor, its increased spectral resolution
is utilised: seven bands ranging from VIS to TIR are selected, but insufficient
detail of the implementation and results is given.

Conclusion

While there has been much work done in applying texture features and pattern
classification systems to cloud classification, it is difficult to compare results
from studies where different satellites are used [59, 54]. The effectiveness of
texture features derived for weather satellites with large GSI will have to be
tested for a resource satellite with small GSI. Also, much effort has been di-
rected toward classifying different cloud types which does not necessarily result
in improved detection of clouds.

The most relevant for the purpose of this dissertation is the work done in
[109] and its follow-up article [110]. The Landsat data used there has relatively

2.1 Literature 20

small GSI (still more than a factor 10 larger than Sumbandilasat’s) and the
focus was on cloud detection over difficult terrain. Although cloud detection
was improved, some types of cloud over snow remained inseparable.

The biggest problem with attempting to build such a pattern recognition
system is that it will have to be trained with data from the specific satellite it
is intended to be used with. Although the same can be said for thresholds, the
increased complexity of the classifier and the features used mean considerably
more and diverse training data is needed. A general classifier able to distin-
guish between cloud and snow or ice or desert based on texture will have to
be presented with all (or at least most) possible textures that these surfaces
can have. For a resource satellite with small (GSI this problem is compounded;
not only does the ability to see more detail imply a larger variety of possi-
ble textures, reduced swath width® means it will take much longer to acquire
a general dataset that covers a large range of locations. Therefore data will
have to be collected from the intended satellite over a long period and such an
undertaking is beyond the scope of this dissertation.

2.1.6 A promising region-growing based method
Context

Hou et al. implemented an on-board cloud detection scheme for PoSat-1, a
microsatellite developed at Surrey Satellite Technologies [54]. The goal of
the project was similar to this one: image processing was employed to make
optimal use of downlink time. In this case it was achieved by identifying cloud
boundaries and adapting the standard JPEG compression algorithm so that
the boundaries are compressed at a higher ratio. Since it was found that many
bits are typically used in storing the transition from bright cloud centres to
cloud-exterior, this increased local compression resulted in significant savings.

The project also had similar constraints to this work: since PoSat images
are single-band, the authors could not use methods developed for multispectral
imagers with access to TIR. Additionally, constraints of on-board implementa-
tion favour methods that are less computationally complex than using texture
features with neural networks. Since the algorithm was suitable for the given
constraints and had already been implemented on board a microsatellite, it was
decided to investigate it further. An overview of the algorithm is given below,
the experiments, results and concusions are described in sections 2.2.2, 2.3.2
and 2.4.2, while details regarding implementation are reserved for Appendix

A.

5 Swath width refers to the area on the ground imaged by the satellite.

2.1 Literature 21

Algorithm description

The region-growing algorithm used in [54] was first described in reference [53|
and is particularly suitable for segmenting grey-level areas with high contrast
relative to their local backgrounds, such as bright clouds on a darker back-
ground. Similar to other region-growing algorithms, the method starts with a
seed point that satisfies certain criteria and expands the region in all directions
until the stopping criterion is reached. Unlike most region-growing algorithms
only one pixel is added at a time, making the method more predictable. A
combination of two discontinuity measurements of the region being grown,
namely average contrast and peripheral contrast, is used to stop the growing
process.

The pixel to be added to the current region is the neighbouring pixel with
the highest intensity. If the method starts at a local maximum bright pixel,
this ensures that the boundary pixels added will have monotonically decreasing
grey levels. If more than one neighbouring pixel has the same intensity, a first
come first served strategy is adopted. To define the two region measurements,
the following two boundaries are required:

current boundary (CB) the set of pixels adjacent to the current region,

internal boundary (IB) the boundary produced by the set of connected
outermost pixels of the current region.

These two boundaries are illustrated in Figure 2.5. Each time a pixel is added

Current boundary, CB

Internal boundary, IB

HDI

Current region

Figure 2.5: The two boundary definitions. In this schematic the current region
comprises 20 pixels.

to the current region, the boundaries are updated. Next, the two region de-
scriptors used for the stopping criterion can be defined:

average contrast the difference between the average grey level of the region
and the average grey level of its CB pixels,

2.2 Experiments 22

peripheral contrast the difference between the average grey levels of a re-
gion’s IB and CB.

As the region is grown, one pixel at a time, the values of these two measure-
ments are remembered. They can be plotted as functions of the pixel index
like in Figure 2.6(c).

The average contrast will increase as long as high intensity pixels are being
added to the region: once the region starts growing into the background, the
rate of grey-level decrease for the boundary will be less than that for the region
and the average contrast will start decreasing.

The peripheral contrast is representative of the gradient at the CB. How-
ever, it it less sensitive to noise than the gradient since it computed using the
average across the two boundaries instead of the average across two pixels. For
a bright blob against a uniform background, the peripheral contrast will have
a well-defined maximum. However, for a textured or noisy background, it will
exhibit many local maxima.

The stopping criterion is that the last local maximum in peripheral contrast
before the global maximum in average contrast defines the final segmentation
boundary. These concepts are illustrated in Figure 2.6 using a 2-D Gaussian
shape

2 2
gz,y) = Me™ = (2.1.11)
where u,, u, specifies the centre of the Gaussian blob, o specifies the spread
and M is a constant used to normalise the output to the maximum grey-level
range. The highest magnitude gradient for a Gaussian shape is located one
standard deviation from the mean. Thus the maximum peripheral contrast
measure defines a circle with radius o seen in Figure 2.6(b). The grey-level
mappings in 2.6(c) behave as expected: as pixels further away from the centre
of the Gaussian are added, the average grey-levels decrease. Since the current
region average retains the bright centre pixels, its average decreases at a slower
rate. Asexpected, the average contrast increases until the region starts growing
into the background at approximately pixel number 12000 and then decreases.
The last local maximum of peripheral contrast is in this case also the global

maximum, but this is not the case with real images.

2.2 Experiments

2.2.1 Dimension reducing transforms
Data

Since Sumbandilasat had not yet been launched, the data set® for compar-
ing dimension reducing transforms consisted of cloudy Quickbird and Landsat

6Courtesy of Satellite Application Centre, a branch of the CSIR.

2.2 Experiments 23

(b)

— current region
- = current boundary
- internal boundary |1

N
(O]
o

N
o
o

100

Average Grey
Level Intensity
&

o

ul
o

0 N e L < —

0.0 0.2 0.4 0.6 0.8

1
xle5

— average contrast
—- — peripheral contrast

Difference Measures
N
o

0.0 0.2 0.4 0.6 0.8 1.0
Number of Pixels xle5

()

Figure 2.6: Segmentation results for Gaussian image. (a) Original image. (b)
Segmentation result. (c) Mappings for grey-levels, peripheral contrast and average
contrast obtained during region growing. The segmentation point is indicated with

aé.

2.2 Experiments 24

Figure 2.7: A sample Quickbird sub-scene with its cloud mask.

images. Four Quickbird multispectral scenes from which 12 sub-scenes were
extracted, and nine Landsat 5 images from which 20 sub-scenes were extracted,
were used. Each of the 32 sub-scenes measured 1000 x 1000 pixels. The sub-
scenes were selected to represent different surface or cloud types present in
a scene. Surface types present in the scenes were farmland, mountain and
urban areas, while cloud types present were cumulus and stratus of various
thickness. Images were acquired during the day with solar elevations varying
between 32 and 72 degrees. Since only combinations of the visual and NIR
channels are applicable to Sumbandilasat, the last three channels from the
Landsat 5 images were discarded. To allow reflectance values from different
images to be compared, all data was first converted to at-sensor reflectance
using equation (2.1.5) and normalised with respect to mean earth sun distance
[60]. Satellite specific details regarding conversion from raw sensor data to
at-sensor reflectance are available for Landsat 5 [20] and Quickbird [60].

To establish ground truth cloud masks for evaluation purposes, each sub-
scene was manually segmented. This was aided by segmentation tools present
in the photo editing software used”. Segmentation was carefully checked
against each channel and false colour composites to ensure that any visibly
cloudy pixel be labelled as cloudy. This process took two weeks. Establish-
ing ground truth masks are a known difficulty in evaluation of cloud-detection
algorithms [48]; there will invariably be errors in these masks, but effort was
made to limit these to a minimum. Figure 2.7 shows an example of a man-
ually created cloud mask. Contrast enhancement (for display purposes only)
has caused saturation in the clouds.

Cloud masks were generated by applying thresholds to transformed images.
To evaluate a transform, these masks were compared against the manually cre-
ated cloud masks. Both classification and evaluation were done at the individ-
ual pixel level. The performance measure for comparing image segmentation
from equation (2.1.3) on page 8 was used.

"Krita, a free photo editing program that includes support for 16 bit images, was used

[1]-

2.2 Experiments 25

B training set
test set

1000

1000

Figure 2.8: Division of image pixels into training and test sets.

Adaptive transform test

The dimension reducing transforms selected for comparison were: the HDA
transform discussed in section 2.1.4, the HOT transform from equation (2.1.9)
and the D transform from equation (2.1.8). Since HOT and D are data-
dependent improvements of the static tasseled-cap and NDVI, also mentioned
in section 2.1.3, these static transforms were not evaluated. The single ppye
and p,.q channels were also included in the comparative tests.

Since HOT was derived for interactive masking and correction, in the first
test thresholds and transformation parameters were allowed to adapt to each
image. Although these adaptive tests are not as practically applicable to on-
board implementation as the fixed tests of the following section, they nonethe-
less provide an additional comparison between transforms. Furthermore, using
different parts of a single image for test and training data is common in remote
sensing literature. Each 1000 x 1000 image was divided into a training set (30%
of the pixels) and a test set (the remaining 70%). The training set consisted
of four evenly spaced vertical image segments, depicted in Figure 2.8. For
each image, the transformation parameters, followed by the thresholds, were
trained separately. The transformation parameters — b (scalar) for the D trans-
form, ¢ (scalar) for HOT transform and a (4 x 1 vector) for HDA transform —
were trained as described in sections 2.1.3 and 2.1.4. Optimal thresholds were
determined for each transform following the example of reference [114]: after
applying the transform, a 128-bin histogram was constructed for each image.
Outliers were discarded to lessen their impact on the histogram shape: the dy-
namic range of the image was minimised while keeping 98% of the data. The
segmentation error was computed at each threshold level according to equation
(2.1.3) from page 8 and the threshold that resulted in optimum segmentation
was chosen.

For each image, using the transformation parameters and thresholds de-
rived for it, the performance was evaluated on both the test and the train-
ing sets. The average performance was then calculated separately across the
training sets and the test sets. Furthermore, data sets as well as results for the
Quickbird and Landsat 5 images were kept separate. Images that contained
only clouds (two of the 32 images) or only clear sky (four images) were not
evaluated for these adaptive tests, since two classes are required to determine
b and a. Such discarding of images from the test sets was unnecessary for the
fixed transform test, discussed below, since parameters were based on averages

2.2 Experiments 26

over many images. For the adaptive transform test, the training sets contained
7.8 million pixels while the test sets contained 18.2 million pixels.

Fixed transform test

In the second set of tests, the transformation parameters and thresholds were
kept fixed across multiple images.

For the first test using this approach, images were again segmented into
training and test sets as in Figure 2.8. Since no images were discarded, the
training sets contained 9.6 million pixels and the test sets contained 22.4 mil-
lion pixels. The transformation parameters were again calculated for each
image based on its training set, but then averaged across all images. For
HDA, each a vector was normalised prior to averaging. As an alternative to
averaging, one might pool all the training data from the different images be-
fore training each parameter, however averaging had previously been used to
derive values for b based on multiple images [31]. Furthermore, tests were con-
ducted that confirmed that pooling training data did not give good results with
HDA. When pooling data from different images with different surface types,
the ‘clear’ class has a multi-modal distribution. This explains why training
HDA on pooled data gives poor results: HDA’s single Gaussian PDF, used
to model each of the two classes, cannot accurately represent the spread of
multi-modal data.

To determine the optimal threshold, the segmentation error on the training
set was calculated for each image, for each histogram bin level. The level that
resulted in the lowest total segmentation error across all images was selected
as the optimal threshold.

For the second test using fixed transformation parameters, individual im-
ages were not segmented into test and training parts. Instead, whole 1000 x
1000 images were randomly divided into test and training sets. During this
division care was taken to ensure that all sub-scenes from the same original
scene were in the same set. About half of the images were used for training and
the rest for testing. Similar to the previous test, transformation parameters
were averaged and the global optimal threshold determined across the training
set. These values were then used to segment both sets and the segmentation
errors recorded. This test was the most difficult but also the closest to the
reality of the on-board application: parameters have to be determined on a set
of training images (on the ground) and then applied to a completely different
set of images (on board of the satellite).

Statistical significance test

When comparing the classification accuracy of two algorithms with similar
performance, the difference in observed performance might be the result of
sampling error: given another experiment, the results might be reversed. Using

2.2 Experiments 27

a statistical significance test allows one to test whether a hypotheses about a
population parameter is true [70]. In this case the hypotheses concerning the
cloud detection algorithms that must be tested in a mathematically principled
manner are:

Hy : The algorithms are equally accurate.
H; : The algorithms are not equally accurate.

By calculating the probability that differences between the algorithms can be
attributed to chance, one can draw conclusions with a specified certainty. This
certainty depends upon the amount of data used to evaluate the algorithms.
When the accuracy of the two algorithms are close to each other, a large
amount of data is required to reject Hy. Conversely, failure to reject Hg can
be caused either by the fact that the algorithms are equally accurate, or by a
lack of data to sufficiently discriminate between them.

The McNemar significance test can be used to discriminate between two
algorithms classifying common data segments [45, 34]. The performance of the
algorithms is first represented by a 2 x 2 array as shown in Table 2.2.

Algorithm 2
Correct Incorrect

Algorlthm 1 Correct NO() = TNopo N01 = Np1

Incorrect | Nig = nio | Nii = nit

Table 2.2: The number of occurrences of the joint classification outcomes for two
algorithms. N is the random variable and n is the outcome.

In the McNemar test, the cases where both algorithms gave identical clas-
sification results, i.e., Ngg and Ny;, are ignored since they describe the algo-
rithms’ common behaviour. The difference between the algorithms is described
by Njp and Npy;. The number of occurrences where only one of the algorithms
made an error is given by the random vatiable K = Nyg + Nyp, with outcome
k = nio + ne1. Under the hypothoses Hy it can be shown [45] that Ny has a
binomial B(k, 0.5) distribution. For large k& (k > 50) and niy not too close to
0 or k, the binomial may be approximated as Gaussian:

[Ny —k/2] - 0.5
k/4

W , (2.2.1)

where W is a random variable with a Gaussian distribution having a mean of
zero and a standard deviation of one. The probability P of observing a given
value of Nig can then be approximated as:

P =2P(W > w), (2.2.2)

2.2 Experiments 28

where w is the outcome of W.

Since the McNemar test only applies to a pair of two algorithms (while
5 cloud detection algorithms are to be compared) the solution is to consider
all possible pairs of algorithms. Given that the algorithms classify per pixel,
we assume the classification errors are statistically independent, which is a
prerequisite for applicability of the McNemar test. The McNemar counts from
Table 2.2 for all testing results from the various fixed and adaptive transform
experiments where added together. No training results were included. The
results of the pairwise statistical significance tests are presented in section
2.3.1.

2.2.2 Region growing

Since a comparative evaluation of the region growing algorithm (section 2.1.6)
has not been done [54], it was compared to a single global threshold on the
basis of segmentation performance.

The same data set described in section 2.2.1 on page 22 was used. The
thresholding segmentation error was evaluated using the experimental set-up
from the fixed transform test in section 2.2.1: test and training sets consisted
of whole images. To increase the size of the experiment, the different dimen-
sion reducing transforms evaluated in section 2.2.1 were applied to generate
different greyscale images. In keeping with the fixed transform test’s method-
ology, transforms were averaged across the whole training set and the global
optimal threshold for the entire training set was selected. Thus, for each base
multichannel image, five greyscale images based on ppye, preq; HOT, D and
HDA (a total of 75 training and 80 test greyscale images each with dimen-
sions 1000 x 1000) were to be segmented using both thresholding and region
growing. The per-pixel segmentation errors for each greyscale image were av-
eraged across all images as well as all transforms in a set, preserving only the
training—test and Landsat—Quickbird divisions.

The seed-points for the region growing algorithm were derived from the
cloud masks created by applying the above mentioned global thresholds. The
central point of each connected region in a mask was used. Similar to thresh-
olding, the per-pixel segmentation errors of the resulting region growing masks
were calculated using equation (2.1.3) on page 8. These errors were averaged
across all images and transform types as described in the previous paragraph.
Results are presented in section 2.3.2 on page 46.

2.2.3 Measuring cloud dispersion
Justification

It can occur in remote sensing that the target only covers a fraction of the
image. In such a case it is possible that the image has some cloud cover but it

2.2 Experiments 29

Figure 2.9: A cloudy scene with high dispersion.

(a) Dispersed cloudy pixels. (b) Concentrated cloudy pixels.

Figure 2.10: Comparison of dispersion amount using masks. (a) and (b) have the
same total cloud cover.

does not occlude the desired target. Alternatively it is possible that the image
has very slight cloud cover that does occlude the target. Therefore, whilst the
amount of cloud cover is the primary indicator of a cloud-corrupted image,
the specific location of the cloud is also significant. However, the location of
a specific target within an image is seldom known during imaging. Thus, a
more general and useful measure is perhaps the dispersion of the clouds.

Figure 2.9 shows an example of a scene with only about 20% cloud cover,
but very high dispersion. It is unlikely that much useful information can be
extracted from this image. In Figure 2.10 a cloud mask based on the image
from Figure 2.9 is compared with a mask where the same amount of cloud
cover is concentrated in a single area. It is clearly possible in Figure 2.10(b)
that the target could be located in the right half of the image and therefore
visible. Measuring cloud dispersion is consequently justified when one wants
to determine if a given target might be occluded.

2.2 Experiments 30

. Cloud mask

@ Residual blocks

Figure 2.11: Residual blocks encountered with continuously varying block size. In
the left hand figure the marked blocks are about the become residuals if d increases.
In the right hand figure some of the residuals no longer have cloud cover although
the number of blocks has stayed the same.

Algorithm design

An algorithm was developed to measure the dispersion of cloudy pixels through-
out the image. Similarly to the noise estimation algorithm discussed in Chap-
ter 3, the image is divided into blocks of varying sizes during different stages
of the algorithm. For a given block size, the percentage of blocks that con-
tain no cloudy pixels is calculated and this used as a dispersion measure. To
understand this measure one must observe its behaviour with varying block
size.

When the block size is equal to 1 x 1 pixel, there is no difference between
an image with dispersed clouds (Figure 2.10(a)) and an image with all the
cloudy pixels tightly grouped together (Figure 2.10(b)). This is logical since
a 1 x 1 pixel block size corresponds to the conventional notion of cloud cover.
At the other end of the scale, when the block size is equal to the image size, it
is again impossible to distinguish between the images from Figure 2.10. Since
any image with some cloudy pixels will have a 100% cover in this case, it
is not surprising. Hence the useful information is located between these two
extreme block sizes. An attempt was made to vary the block size continuously
and observe the behaviour of the dispersion measure. Dividing the image into
d x d pixel blocks and letting

1 < d < image size,

graphs like those in Figure 2.12 can be generated, expressing the percentage of
clear blocks as a function of block size. A problem arises when the image size is
not an integer multiple of the block size: how does one weigh the contribution
of the smaller, residual blocks (see Figure 2.11)? Initially they were weighed
the same as the other blocks. This resulted in a distorted dispersion measure
graph that sometimes increases (see Figure 2.12(c)). As d increases a residual
block that previously overlapped with the cloud mask can decrease until it has
no cloud cover, undesirably increasing the percentage of clear blocks. Although
the residual block’s size continues to decrease as d increases, its relative weight
stays the same resulting in the stair step appearance of Figure 2.12(c). When

2.2 Experiments 31

each block’s contribution to the percentage of clear blocks is weighed by its
relative size, a graph like Figure 2.12(d) is generated. It looks slightly better
but the same problem persists; as d increases, residual blocks that previously
had cloud cover ‘slide’ off the cloud mask and become clear. However, while
increasing d, there is no useful information to be extracted when the total
number of blocks remains unchanged. Therefore, it would be more useful to
directly increase the number of blocks. Nevertheless, the problem of what
to do when the image proportions are not an integer multiple of the block
size remains. One option is simply to disregard residual area, but this might
discard useful information. The solution devised is to down-sample the image
so that the sidelengths are both powers of two and then let the number of
blocks also be a power if two. This ensures that the image proportions are
always an integer multiple of the block size. Although information is still
discarded, it is evenly distributed throughout the image, so it does not affect
the dispersion measure. A more detailed discussion of down-sampling is given
in section 2.2.4. The dispersion measure can be described mathematically:

s(d;) = percentage of clear blocks in cloud mask (2.2.3)
d=2.,1=1,2,3,....n,

where d; x d; is the block size and 2" is the sidelength of the shortest side of
the image after down-sampling.

Figure 2.12(e) shows the result of this approach. Note that the maximum
block size is now 256 pixels (the original image was approximately 300 x 300).
By looking at the central area of the graph, it is clearly possible to discern the
dispersed and the concentrated cloudy images. When the algorithm is applied
to the two images from Figure 2.10, the difference is even more pronounced,
Figure 2.13, since the dispersion of Figure 2.10(a) is more extreme. The result
is that the amount of open ground rapidly decreases with increasing d;. Also
note that, because of the aspect ratio of the image, there are still two blocks in
the image at maximum d;. This explains why the solid graph has a minimum
of 50% instead of 0%.

In its final form the dispersion measure algorithm can be seen as a vari-
ation of an image pyramid. Image resolution pyramids are an efficient way
to analyse global, intermediate and local scale effects in remote sensing im-
age processing, [47, pp. 351-354| and |94, pp. 265-271], and form the basis of
multi-resolution techniques such as wavelet expansions. The noise estimation
method discussed in section 3.1.4 also uses image pyramids. It is common to
refer to the tessellation of the image into 2! x 2! blocks as level [of the pyramid.
In section 2.3.3 the dispersion measure is used in conjunction with thresholds
to classify clouds into suitable and unsuitable categories.

2.2 Experiments

(a) Dispersed pixel cloud mask.
cloud in graphs.

32

(b) Concentrated pixel cloud

mask. solid in graphs.

0.9

Open ground [Fraction of image size]

0.1f

0.5f

0.0

solid | |

50 100 150 200 250 300
Block size [pixels]

(c) Residual blocks weighed evenly.

°
N

Open ground [Fraction of image size]
© I o
%) » o

°
[N

0.1f

o
o)

0.0

Block size [pixels]

(d) Residual blocks weighed according to size.

0.9 T T
i
\
0.8}*

0.7}

0.6 \

0.5 \

0.4} '

0.3 .

Open ground [Fraction of image size]
g

0.2 \\

0.1

0.0 L

T T

444 cloud
®-e-¢ solid | |

0 50 100

150

200 250" 300

Block size [pixels]

(e) Image resampled and integer number of blocks used.

Figure 2.12: Design of the dispersion measure. (a) and (b) show the two input
images. (c) and (d) show attempts at continually varying the block size, while (e)
shows the final implementation of the algorithm.

2.2 Experiments 33

44+ cloud
e-e-¢ solid

o
ol
J

o
EN

o
%)

Open ground [Fraction of image size]

0.0, b=y 4 ‘ 4
0 500 1000 1500 2000 2500

Block size [pixels]

Figure 2.13: The images from Figure 2.10 show pronounced differences in dispersion
measure.

Using the measure in an experiment: Introduction of thresholds

An attempt was made to use the dispersion measure to classify cloud masks
into suitable and unsuitable based on cover and dispersion. Although, in
its current form, this experiment cannot be integrated into the classification
system developed in Chapter 5, it nevertheless demonstrated the potential
usefulness of the dispersion measure.

A graph is difficult to use in a classifier; a single number is preferable. As
described in section 2.2.3, it is the centre area of s(d;) (as opposed to the left or
right end-points, [= 1 or [= n) that contains useful dispersion information.
After examining different dispersion measure graphs similar to the ones in
Figure 2.12 and 2.13, it was decided that a meaningful single number to use is
the open-ground percentage of the third last entry, [= n — 2, in the dispersion
graph, s(2"72). This corresponds to an image divided into at least 2% x 2% = 16
blocks (for a more or less square image). If the one side of an image is between
two and four times the length of the other, this would correspond to division
into (2% x 22) x 2 = 32 blocks.

For this experiment hard thresholds were used to classify an image as suit-
able or unsuitable. First, a threshold was introduced to ensure blocks are not
counted as cloudy when only a few pixels of a big block are cloudy: blocks
are only considered cloudy if more than T) pixels are cloudy. After some
experimentation 7 was set to 3%: at this level it had the desired result of
suppressing the effect of blocks with very slight cloud cover.

To prevent images with extremely scarce but widely dispersed cloudcover

2.2 Experiments 34

Yes: too
little open ground

Yes: too scarce
cloud cover

No:
do spatial analysis

Yes: too
dispersed

Y
[+

Figure 2.14: Flow diagramme of the dispersion classification algorithm.

from being rejected, or images with so much cloud cover that spatial analysis
is unnecessary from being analysed, a preliminary screening is done:

unacceptable (too little open ground) if s(1) < Ty,

9(z,y) = ¢ gspat(2,y), a candidate for spatial analysis if Ty, < s(1) < Ty
acceptable (too scarce cloud cover) if Ty < s(1),

(2.2.5)

where g(x,y) is the cloud mask, Ty, = 50% is the unconditional reject thresh-
old and Ty, = 90% is the unconditional acceptance threshold. Finally the
deciding threshold, T3, to be applied to remaining candidate images’ third last
dispersion measure entry, was set to 40%:

too dispersed if s(2"7?) < T3

2.2.6
acceptable if T3 < s(2772). ()

Gspat(T,y) = {

A flow diagramme of the decision process is presented in Figure 2.14. Thirty
one cloud masks (of which 17 were artificially generated, i.e., were not derived
from actual satellite photos) were classified into acceptable and unacceptable
groups using the method just described. The results are presented in section
2.3.3.

2.2 Experiments 35

2.2.4 Down-sampling options

When measuring blur and noise, the assumption of spatial uniformity comes to
the rescue since one can consider only a subsection of an image. However, when
analysing cloud cover, the whole image has to be considered, as seen in the
previous section. Memory constraints on board the satellite might mean it is
not possible to load the entire image into memory®. For any technique requiring
some variation of spatial analysis (such as the region-growing algorithm from
section 2.1.6 or the dispersion measure from 2.2.3) this poses a problem. The
solution is to retrieve parts of the image from secondary storage and down-
sample them so that a reduced resolution version of the entire image can be
assembled in RAM.

An experiment aimed at measuring the effect of down-sampling on cloud
detection was conducted. First, suitable cloudy images were chosen. Two high
resolution cloudy images® (Figure 2.15(a) and (b)), one medium resolution im-
age (2.15(c)) and one low resolution Sunsat image (2.15(d)) were chosen. The
images were selected to represent a variety of cloud types: (a) has a low cloud
cover but high dispersion, (b) has higher cloud cover, (c) has scarce cover and
(d) has solid clouds with high cover. To measure the effect of down-sampling on
segmentation, a ground truth segmentation has to be established. To this end
cloud masks were manually created using Corel Photo-paint”. Based on these
masks an optimal threshold for each image was computed using the method
described in section 2.2.1. These thresholds were then used to generate new
cloud masks from the original resolution images. The images were successively
down-sampled using one of two methods and the same thresholds used to gen-
erate new cloud masks at the lower resolutions. By comparing the cloud cover
percentage estimates at the lower resolutions to those at the original resolution
the relative error introduced by down-sampling can be assessed.

Since down-sampling maps multiple input pixels to a single output pixel,
there are different methods available to weigh the input pixels. The two down-
sampling methods used were the NEAREST and ANTIALIAS resampling filters
of the thumbnail () function of the Python Imaging Library (PIL) [2]. The
NEAREST resampling filter picks the nearest pixel from the input image and
ignores all other input pixels. In the case of ANTIALIAS, a weighted average of
the input pixels is used to produce each output pixel. Results are presented
in section 2.3.4 on page 53.

81t is not even possible to load a single channel of an image completely into the 64MB
RAM on Sumbandilasat.
9 Acquired from the Satellite Application Centre.

2.2 Experiments 36

(c) 2263 x 2072 (d) 349 x 327

Figure 2.15: Images used in the down-sampling experiment. The resolution of each
image is given.

2.3 Results 37

2.3 Results

2.3.1 Dimension reducing transforms
Illustration of the unsuitability of LDA

As described in section 2.1.3, the popular LDA transform is unsuitable for
dimension reduction during cloud detection, because of the differing covariance
matrices of the two classes. An example of LDA’s failure is presented here for
a single image. Dimension reduction using both LDA and HDA was applied
to the image shown in Figure 2.7 on page 24, with the scatterplot in Figure
2.3(b) on page 15. The training segment for this image, as defined in Figure
2.8 on page 25, was used to determine the parameters. Histograms for the
projected classes are presented in Figure 2.16. Because no distinction is made
between the two classes’ covariance matrices, LDA’s minimisation of within-
class variance has resulted in completely overlapping classes in the projected
space. Observe the transformation vector weighs a* = [apjue, Qgreens Qred, @nir]
for each transform:

al,, =[0.92,0.13,-0.36,0.00], af,, =[—0.33,0.68,—0.58,0.30].

It is interesting to note that while HDA gave most weight to the blue channel
followed by the red channel (it automatically chose the two channels used in
the TC and HOT transforms), LDA gave most weight to the green and the
red channels and erroneously subtracted the blue channel.

Adaptive transform test

The average per-pixel segmentation errors after applying each image’s optimal
transforms and thresholds are presented in Figure 2.17.

For images from both the Landsat and Quickbird satellites the perfor-
mance difference between the training and test sets was small. Such similar
performance is to be expected for the training-test division depicted in Figure
2.8 on page 25: since the data in both sets were taken from adjacent areas,
segmentation parameters were easily generalisable.

Applying thresholds to py.-images gave better segmentation results than
applying thresholds to p,..q-images. Compared to the clouds, the backgrounds
were darker in the pye-images. Thin clouds and hazes were included in the
‘cloud’ set and were more visible in the py,.-images against these darker back-
grounds. In the p,.q-images, brighter backgrounds led to increasing overlap
between classes.

In p,,-images, this overlap was greater than in p,.s-images. Since the D-
images are formed by combining p,.s- and p,;-images, it is to be expected
that such a combination will not separate the ‘clear’ and ‘cloudy’ classes of
data set well. The original requirements for the D transform did not include
detection of thin clouds [31]; therefore its relatively poor performance on thin

2.3 Results 38

g xled . 5 Xled T

3 Clear 3 Clear
5 " 1 Cloudy 1 Cloudy

s 4

[
T
L

: ﬂ FH | Hﬂml—lﬁ 7 0 0 : mﬁmmmﬁm

(a) LDA projection. The classes overlap (b) HDA projection. The overlap between
completely. classes is minimised.

Figure 2.16: LDA fails to minimise overlap between classes in in projected space.

Red_j
Blue
B Train
HDA ‘ 1 Test ‘
HOT j
D——\
[L L L L L L L [L L L L L L L
0.00 0.02 004 006 008 010 012 014 0.16 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Segmentation error Segmentation error
(a) Quickbird images. (b) Landsat 5 images.

Figure 2.17: Test results for the adaptive transform test. Reported errors are per
pixel, for example 0.04 implies 4% of pixels were incorrectly classified.

2.3 Results 39

clouds is reasonable. Since the Landsat images contained more thick cumulus
clouds, these images had better class separation than the Quickbird images.
This is reflected in the average performance differences between the two sets
in Figure 2.17(a) and 2.17(b). However it is also visible in the slight relative
performance increase of the D transform in Figure 2.17(b).

The HOT transform generally did not give better segmentation perfor-
mance compared to using only the py.-image. This might point to its em-
phasis on haze correction as opposed to haze and cloud detection. However, in
some cases this transform failed completely in a manner similar to LDA in Fig-
ure 2.16(a). In these cases both haze and thick cloud were projected onto the
same range as the clear class. It accounts for the high average segmentation
error in Figure 2.17(b). Individual examples are elaborated on below.

For all four cases (test and training in Figure 2.17(a) and (b)) HDA gave
the best average segmentation performance. It is useful to investigate some
individual images. One Quickbird sub-scene included a difficult patch of cloud
over a lake shoreline. Figure 2.18 shows the different transformed images.
The lake is bright in the py.- and even the p,.g-image (Figure 2.18(b) and
(c)), resulting in an overlap with the cloud class. HOT is known to give
poor results over water [120], and fails to separate the two classes (Figure
2.18(e)). D images do not visualise well: since the transform is non-linear,
it compresses the dynamic range of certain areas in the image. Note that,
for D, clouds should map closer to zero than other classes. While clouds
do map to zero, the lake and some of the surrounding urban structures also
map to zero in this case (Figure 2.18(d)). The HDA-image suppresses the
bright lake, resulting in better separation between cloud and background, both
visibly (Figure 2.18(a)) and quantitatively (segmentation error for HDA is 2.9%
compared to 5.1%, 5.6%, 6.3% and 9% for pyiue, pred, D and HOT respectively).
This suppression is allowed by HDA’s extra freedom to use any combination
of the four available channels: for this image a” = [0.64, —0.75,0.15,0.04]. In
this case the green channel, not used by any of the other transforms, played
an important role in decreasing the segmentation error. In most other HDA-
images the green channel did not outweigh the blue, but in cases where HOT
gave poor separation, the HDA green component often outweighed the red
component.

In cases where the HDA transform relied primarily on the red and blue
channels, similar to the HOT transform, it is interesting to observe the dif-
ferences between the two. Going back to the image from Figure 2.7 on page
24, the scatterplot from 2.3(b) is repeated in Figure 2.19 with the projection
directions for both HDA and HOT superimposed. To decrease the overlap
between classes, the HDA projection gave more weight to the blue channel:
segmentation error of HDA is 4.2% as opposed to 4.8%, 5.8%, 10% and 12%
for HOT, pyue, prea and D respectively.

In another image, not shown here, of thin haze over bright urban areas, all
transforms struggled to separate the classes, as expected. However, the HDA

2.3 Results 40

(a) HDA (b) Pholue

(C) Pred (d) D (e) HOT

Figure 2.18: HDA suppresses the lake for better segmentation, while HOT and D
increases overlap between classes.

again gave better segmentation error than the single channels and the other
transforms.

For five of the Landsat images, HOT increased the overlap between the
classes, resulting in considerably worse performance than the other three trans-
forms. This might be ascribed to the HOT transform’s design goals: its aim
was not primarily cloud detection, but rather to reduce the reflectance varia-
tion of cloud-free surfaces so that atmospheric correction for thin clouds can
be attempted. For the example in Figure 2.20 the HOT segmentation error
was 26% compared to the other transforms’ errors of about 5%. Note that,
while the HDA gave significant weight to the green channel in this case, the
HDA projection line in 2.20(a) only depicts the blue and red components.

2.3 Results 41

(a) Scatterplot with projection directions. (b) HOT-image. (c) HDA-image.

Figure 2.19: A different projection direction in the blue-red-space increases class
separation of HDA compared to HOT. HDA gives more weight to the blue channel
to decrease overlap in the projected space.

(a) Scatterplot with projection directions. (b) HOT-image. (c) HDA-image.

Figure 2.20: In certain cases HOT severely reduced separation ability, while the
other transforms retained it.

Fixed transform test

Figure 2.21 gives the average segmentation error for the test described in sec-
tion 2.2.1: fixed transformation parameters and thresholds across training and
test sets consisting of segmented images. Once again, for all four cases, the
HDA transform gives the best average performance. The differences between
training and test data for all transforms were small, indicating good gener-
alisability in spite of a large data set. The training error is slightly larger
than the test error for all transforms in the Quickbird data set, as depicted
in Figure 2.21(a). This unexpected behaviour was caused by a quirk in the
data: three of the 12 images had large, difficult-to-classify areas at the left edge
of the image. Due to the training-test division from Figure 2.8 on page 25,

2.3 Results 42

Red Red

|

u

Blue

B Train
O Test HDA

Blue

HDA

B Train
[Test

]

|

HOT HOT
D— D—
[i] i i i [i i] i]
0.00 0.05 010 0.15 020 025 0.30 0.35 0.00 0.02 0.04 0.06 0.08 0.10 0.12
Segmentation error Segmentation error
(a) Quickbird images. (b) Landsat 5 images.

Figure 2.21: Test results for the fixed transform test with segmented images in
training and test sets.

Red_ Red_
_ B Train = Train
HDA | |= Tesﬂ HDA 3 Test
o | :
D_ | D_
[[| | i | |
0.0 0.1 0.2 0.3 0.4 0.5 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Segmentation error Segmentation error
(a) Quickbird images. (b) Landsat 5 images.

Figure 2.22: Test results for the fixed transform test with whole images in training
and test sets.

these images resulted in disproportionately large training error. The relative
performance of HOT segmentation has improved compared to the adaptive
test. This was caused by its mapping of optimal segmentation points to a
smaller range compared to for example py., decreasing sensitivity to a global
threshold. Thus, if each image were to be segmented with its own optimal
threshold, the performance of the other transforms would increase more than
that of HOT. However, since its optimal thresholds lay closer together, its
performance when applying a global threshold was comparable to, though not
better than that of HDA.

Figure 2.22 presents the average segmentation error for the test where the
training and test sets consisted of completely different images. The relative

2.3 Results 43

rank of the different transforms was similar to that from Figure 2.21, with HDA
again giving the best performance in each of the four cases. The dramatic
difference between the test and training performance in Figure 2.22(a) can
be ascribed to two difficult test images, containing large areas of thin clouds,
which all transforms completely failed to identify. In the previous test, figure
2.21(a), these images were segmented across both training and test sets, which
decreased the training performance but increased the test performance. For
the Landsat images, Figure 2.22(b), overall performance only decreased slightly
compared to Figure 2.21(b). Since these images contained mostly thick clouds,
class separation was better and images less sensitive to variations in thresholds.

Statistical significance test

The McNemar counts, as described in section 2.2.1 and Table 2.2 on page
26, are presented in Table 2.3. These counts are for the adaptive transform
test as well as the two fixed transform tests. Only testing data results are
included. One can feel intuitively that, for any given pair, the probability of
nio and ng; being drawn from a B(k,0.5) distribution is low since nowhere is
n1g approximately equal to ng,. Table 2.4 shows the w outcomes, as computed
using equation (2.2.1). Recall that, under Hy, the hypothosis that the algo-
rithms are equally accurate, w should be an outcome of a Gaussian random
variable with a mean of zero and a standard deviation of one. Clearly this is
not the case. The probability P (computed according to equation (2.2.2)) that
observed differences between any two algorithms arose by chance rounded to
0.00 in all cases, as expected given the values in Table 2.4. Therefore, due in
part to the very large number of data samples in the combined testing sets, it
is possible to conclude with 99.9% certainty that observed differences between
the algorithms did not arise by chance.

44

2.3 Results

6ETTGY S O8TP96 T
a| 1egL09¥ 09T .L8GGY
[c0€08Y 86¢c09¢ | 06996LY 086¢CIC ¢
VAH | ¢8E676 666 G¥c6¥ | €1L99%6 L19¥8S 9V
9€LGLEG €8G600C | €c0VPF 6 LVIVIY 9EvevLy L96600 1
d | 61E8YV 98V IILGY | 806FIF GCV9CI Ly | 96V 911G COLTELIY
€8ECTLY 9€6689¢C | 0T9¢9¢S 0909097 | TcOTI8CS CYETLY VITCIGSG LIBIVET
d | OP86ILT T¥8¥VCcy 8y | €19¢CE6 LTL8O99Y | COCPOCT G6EETVI0NG | 60T €L 096 L9.L 9¥
LOH VAdH d

1'¢ ¢ U01309s Ul

¢’z oqe], ul paure[dxo se ‘yunod uoryesyisse[d jurol a1y juaserdar sppow Jo ared WAAIS ® JO UOIIIASIDIUI) e SAN[RA INOJ OYJ, "UWIN[0D
JsoW-ySL1 pure mo1 doj o1} UT pajsI[oIk PojenyeAs SULIOJSURI) o], ‘SULIOJSURI) SUIDNPaI UOISUOWIP o1} I0J SIUN0D JRWLNOIIN :€°Z 9[qelL

2.3 Results 45

Table 2.4: Outcomes w of W for the dimension reducing transforms. Clearly, the
probability that any of these values have been drawn from a zero mean, 1 standard
deviation Gaussian random variable is very low.

R HDA D HOT
1462 966 | 1532 435 | B
1659 196 961 | R
1726 877 | HDA
1035 | D

2.3 Results 46

2.3.2 Region growing
Upper limit

Although it is claimed that the stopping rule makes the region-growing algo-
rithm insensitive to the size of the upper limit, this is not always the case.
In the very first test image no upper limit was specified, i.e., the region was
allowed to grow to the full image size and the last local maximum of peripheral
contrast before the global maximum of average contrast was used to segment
the image. The resulting segmentation boundary is shown in Figure 2.23. The
seed point was located inside the cloud in the lower left of the image. The final
segmentation boundary identifies the entire island as cloud. By examining the
grey level and difference measures in Figure 2.24 one can understand why this
is the case.

Figure 2.23: Region-growing segmentation boundary with no upper limit imposed.
The white line is the segmentation boundary.

The intensity measures behave as expected, starting at a maximum at
the seed point and decreasing more or less monotonically. One can see the
three distinct levels the region consumes as it grows by considering the current
boundary: the bright initial cloudy area (pixels 0-5000) followed by the land
area (pixels 10000-70000) and finally the darker ocean (pixels 70000-92000).
The current boundary grey levels take a dip at about pixel 8000 when more of
the boundary is located over ocean than land.

An average contrast peak corresponding to the cloud boundary occurs early
in the growing process. As the region grows into the darker background of
the island, the average contrast decreases. However, once the region starts
growing into the still darker ocean the average contrast between the region
(now comprised of both the very bright cloud and relatively bright island)
and the background increases to more than its previous levels. Therefore the
segmentation occurs at this second peak in Figure 2.24 indicating that the

2.3 Results 47

300

— current region

250N == current boundary

200! '™ - internal boundary

150
100

Average Grey
Level Intensity

50
8.

120

— average contrast
100F — — peripheral contrast

80 i

T
~
4

60
40t * , f

~
Ll T, - O

201 1

Difference Measures
<
7
~

8.0 0.2 0.4 0.6 0.8 1.0
Number of Pixels xle5

Figure 2.24: Difference measures and grey levels with no upper limit imposed.
Segmentation point is indicated with a ¢.

contrast between the island and the background is greater than the contrast
between the cloud and the island.

To curb this type of behaviour it was decided to set the upper limit of the
algorithm to some value smaller than the total image size. A multiple of the
rough mask (used to establish the seed point) area size was used, as discussed
in Appendix A.3 where implementation details of the region growing algorithm
are given. Figure 2.25 shows the results of this limit. Proper segmentation
occurs at the first peak, which is now the only peak, as shown in Figure 2.26.
By examining the previous difference measures graph, Figure 2.24, one can see
that it will not be very sensitive to the choice of the multiple, since there is a
broad valley between the two peaks in the graph. Were the island in the image
to be only slightly larger than the cloud, this would be more difficult to do.

Comparative test

The average segmentation errors for region growing and thresholding, from the
experiment described in section 2.2.2 on page 28, are presented in Figure 2.27.
Compared to simple global thresholding, the region growing method fared
poorly. In three of the four data sets, thresholding outperformed region grow-

2.3 Results 48

Figure 2.25: Region-growing segmentation boundary with upper limit imposed.
The white line is the segmentation boundary, which is now satisfactory. Note that
still only one seed point was used, so all clouds are not expected to be identified.

260 :
240 — current region i
> 220) == current boundary
o= NP - - internal boundary
(35 2 200+ \ ‘o .
o 3 180 '
o S A e
o — 160 AN .,]
S D N R R
Q> 140 N Tty
<y hR
— 120} -~ rmm T m e e~ e~ .~ =
‘N‘_/
1085 0.5 1.0 1.5 2.0
xle4
100 :
" — average contrast
v 80 - - peripheral contrast |
§ 60
q) v
Z II ‘\’\F"’\"—_
g 40r . 7
C \—-——_,____~ ______ ~
S 20t .
S
[a) 8 | | |
.0 0.5 1.0 1.5 2.0
Number of Pixels xle4

Figure 2.26: Difference measures and grey levels with upper limit imposed. The
4 on the average contrast graph shows the global maximum, while the ¢ on the
peripheral contrast graph is the segmentation point.

2.3 Results 49

[Region Growing 1 Region Growing
Bl Threshold Hl Threshold
Test ‘
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.00 0.02 0.04 0.06 0.08 010 0.2 0.14 0.16
Segmentation error Segmentation error
(a) Quickbird images. (b) Landsat 5 images.

Figure 2.27: Test results comparing region growing and thresholding segmentation
errors.

ing by an ample margin. In the fourth data set (the Quickbird train set, from
Figure 2.27(a)) both methods fared poorly, with the region growing method
not able to improve significantly when segmenting difficult, thin clouds.

To gain understanding into why region growing performs worse than thresh-
olding, one should look at individual examples. Figure 2.28 shows four exam-
ple input images. In Figure 2.29, difference images are used to compare the
cloudmasks generated from the input images using region growing and thresh-
olding. In these images black and light grey indicate areas where the methods
gave the same results (for background and cloud respectively). White indi-
cates areas that the thresholding method identified as cloudy but the region
growing method identified as clear. Conversely, dark grey indicates areas that
the region growing method identified as cloudy but the thresholding method
identified as clear. Because seed-points for region growing are derived from
the threshold cloud masks, both methods struggle with some of the same ar-
eas: the bright patches of farmland in Figures 2.28(a) and (d) are erroneously
labelled as cloudy in both cases (Figures 2.29(a) and (d)). The large white
areas in Figures 2.29(a) to (c) clearly correspond to cloudy areas in the input
images that the region growing method failed to identify. In these cases the
stopping condition based on peripheral contrast was not robust enough. The
contrast between the thick, bright central area of the clouds and the thin rest
of the clouds was greater than the contrast between the clouds and the back-
ground, resulting in early stopping and a large segmentation errors. In Figure
2.29(a) such contrast differences are exacerbated by clouds being only ‘loosely’
connected: they are connected in threshold cloud mask resulting in a single
seed-point, but there are dips in intensity between small adjacent clouds. The
resulting intensity variation as a function of region size differs considerably
from that of a smooth Gaussian blob like the one from Figure 2.6 on page

2.3 Results 50

(c) (d)

Figure 2.28: Sample input images for segmentation. Images (a) to (¢) are Landsat
5 scenes while (d) is a Quickbird scene. In all cases the blue channel is depicted.

23. In Figure 2.29(d) the region growing method fared better by expanding
beyond the threshold mask. However, one can see that the shape of the clouds’
boundary are being influenced by the roads and fields beneath them, which is
undesirable.

2.3.3 Cloud dispersion

The dispersion experiment described in section 2.2.3 was carried out on 31
cloud masks. Of these 17 were artificially generated to represent various pos-
sible groupings of concentrated cloud cover that might occur. The best way
to analyse the results is to judge visually the classifications made. Figure 2.31
shows the images that passed the unconditional acceptance test because of
cloud paucity while Figure 2.30 shows the images that were unconditionally

2.3 Results 51

1 only thresholding cloudy ~1 both cloudy
M only region growing cloudy I both clear

(d)

Figure 2.29: Difference images that compare region growing and thresholding cloud
masks.

2.3 Results 52

S X 2

Figure 2.30: Images unconditionally rejected because of cloud abundance.

Figure 2.31: Images unconditionally accepted because of cloud paucity.

Figure 2.32: Images accepted after dispersion analysis.

2.3 Results 53

Figure 2.33: Images rejected after dispersion analysis.

rejected because of an abundance of cloud. The rest of the images were passed
on to the dispersion analysis step: Figure 2.33 shows the images that failed the
dispersion requirement, while Figure 2.32 shows the those images that were
accepted.

The results appear meaningful: the clouds in Figure 2.33 are indeed dis-
persed throughout the image in such a way that would likely occlude a target,
while those from figure 2.32 are more clumped together so that it is possible
a target could be visible. However, the precise choice of thresholds, especially
for the unconditional acceptance and rejection, is contentious. It is discussed
further in the conclusions, section 2.4.3.

2.3.4 Down-sampling

The results of the down-sampling experiment described in section 2.2.4 on
page 35 are presented here. The graphs in Figure 2.34 show the decrease in
cover estimation as a result of down-sampling. The horizontal axis represents
relative image size, thus, the point at the right of the graph corresponds to
the original image size. As one moves left on the horizontal axis the image
size decreases. Figure 2.35 is a different view of the same data: here the
percentage difference between the true cloud cover estimate and the estimate
after down-sampling is depicted.

Image 2.15(d) has the worst performance at 6% difference between the
original, full resolution cloud estimate image and the down-sampled version in
Figure 2.35(d). However, this is because the very low resolution of the starting
image means that the 2000 times smaller version is only 6 x 7 pixels. This is
clearly unrealistic. If one considers the next to smallest version in 2.35(d) the
difference is about 1% for both NEAREST and ANTIALIAS, which is acceptable
and expected, given the solidity of the cloud cover.

Image 2.15(b) has an insignificant error percentage even for a 2000 times
smaller down-sampled image. This is because the high resolution original has

2.3 Results 54

fol ~
o (=]
fol ~
o o

ul
o

w
(=]

cloud cover [%]
S
o
cloud cover [%]
S
o

N
(=]
\»
N
(=]

-
o
=
o

o7 1073 1072 10t 10° o7 1073 1072 10t 10°
size [Fraction of image] size [Fraction of image]
(a) (b)
70 70 7 ¢
60 60
= sof < sof
2 40f 2 40
o o
o o
T 30 T 30}
o° o
“ 20} © 20
10 [——— * 10
o7 1073 1072 10t 10° o7 1073 1072 10t 10°
size [Fraction of image] size [Fraction of image]
(c) (d)

Figure 2.34: The effect of down-sampling on the cloud cover estimate. The graphs
correspond to the images in Figure 2.15 on page 36, for example (a) is the graph for
the image from Figure 2.15(a). The e graphs are for the ANTIALIAS filter while the
A indicates the NEAREST filter.

clearly defined big groupings of solid cloud.

Both images 2.15(a) and (c) have noticeably worse performance with the
ANTIALIAS resampling filter than the NEAREST one. This is caused by a combi-
nation of small clouds and open ground being averaged together into a single
pixel, lowering the intensity of the pixel to below the cloud threshold. The
averaging together results in an underestimate of the cloud cover which agrees
with previous recommendations that satellites with large GSI may lead un-
derestimating cloud cover when detecting small clouds [48, 113]. When the
NEAREST filter is used instead, the pixel intensity levels are not affected and
statistically both clouds and open ground have a similar chance of being near-
est to the output pixel. Thus, the amount of clouds and open ground in the
final estimate should remain more or less the same as in the high resolution
original.

In Figure 2.36 the down-sampled images and resulting cloud masks illus-
trate the difference. In the image in Figure 2.36(a) the intensity levels are
reduced and the image appears smoother. In the resulting cloud mask the
areas of high cloud concentration in the original are detected as solid cloud,

2.4 Conclusion 55

4.0 T T T 0.40
3.5] 0.35]
3.0] 0.30f
£ 2.5 {1 Zoast
g 8
S 2.01 1 €0.20f
® 3
£ 1.5 1 Eous|
©
1.00] o.10}
0.5/ 1 0.05}
‘\ e A ———— .
090 107 107 107 o 0% 07 107 107 10°
size [Fraction of image] size [Fraction of image]
(a) (b)
3.0 6
2.5 5F
O'E'Z.O '0\?4,
g 8
c 1.5 c3
® ®
L 9]
% 1.0F % 2l
| A\i\‘\ 7 l
090 107 107 107 Toe o7 107 107 107 To°
size [Fraction of image] size [Fraction of image]
(c) (d)

Figure 2.35: The difference between full resolution and down-sampled cloud cover
estimates. Note the different scales. The graphs correspond to the images in Figure
2.15 on page 36, for example (a) is the graph for the image from Figure 2.15(a). The
e graphs are for the ANTIALIAS filter while the A indicates the NEAREST filter.

while areas with dispersed cloud in the original are detected as cloud free. In
2.36(b) the aliasing can be clearly seen in the roughness of the image. How-
ever, this is desirable since the high intensity of the cloudy pixels can still be
seen dispersed throughout the image, as confirmed by the cloud mask.

2.4 Conclusion

Equations (2.1.5) and (2.1.7) should be used to normalise image brightness
and eliminate the possibility of glint, if the necessary information on satellite
and solar positions is available.

2.4.1 Dimension reducing transforms

HDA was shown to be a competitive image transform when the goal is to detect
both thin and thick clouds in images with visual to NIR bands by applying
a single threshold. It consistently gave the best average segmentation errors

2.4 Conclusion 56

(a) ANTIALIAS (b) NEAREST

Figure 2.36: Images and masks demonstrating the difference between NEAREST and
ANTTALTIAS.

across surface and cloud types present in a set of high resolution images, when
compared to existing transforms from remote sensing literature. Although
the data set used is a respectable size, limited access to images restricted the
variety of surface and cloud types that could be evaluated.

Nevertheless, the flexibility of HDA allows it to weigh the available channels
in an optimal way for a specific combination of surface and clouds types,
based on the training data. Thus, although the data set resulted in better
segmentation results on py.-images than on p,..q ones, HDA should still give
superior performance even if other surface types reversed this situation. It was
also shown to be most suitable when using averaged weights across a variety
of images. These two properties make it suitable for a use in a fast, global
cloud detection system.

A paper based on the application of HDA to dimension reduction for cloud
detection has been accepted for publication in an international journal [71].

2.4.2 Region growing

Based on the test results the region growing algorithm cannot be recommended
over simple global thresholding for cloud detection. In the context of [54],
where high contrast cloud boundaries are compressed using more aggressive
JPEG compression, it is definitely worthwhile: the algorithm segments at the
boundary with a maximum peripheral contrast, and they wanted to identify a
high contrast boundary for aggressive compression.

However, when faced with a combination of thin and thick clouds where

2.4 Conclusion 57

the desired cloud boundaries are not necessarily high contrast, its performance
compared to thresholding does not warrant its increased complexity.

Although not analysed as such by the authors of [54], the same arguments
that applied to the contextual classifier described in section 2.1.5 can be ap-
plied to the region-growing algorithm. The continuity prerequisite inherent
in region growing cleans up the segmentation boundaries in a similar manner
to the contextual information from [59]. The same counter argument also ap-
plies: one can expect no improvement in misclassified areas (bright desert or
snow) over normal thresholding. Therefore all the increased complexity can
hope to achieve, is a marginal improvement in the precise detection of cloud
boundaries.

Furthermore, if an image has to be down-sampled as suggested in section
2.2.4 and nearest neighbour down-sampling is used as suggested in section
2.4.4, then it is likely that the aliasing introduced will also negatively affect
the region-growing algorithm since intensity surfaces vary less smoothly in the
presence of aliasing. The aliasing introduced can also lead to many single-
pixel, unconnected areas, as seen in Figure 2.36(b) on page 56. The resulting
excessive number of seed points and unconnectedness of the areas will make the
region-growing algorithm slow and further reduce its performance compared
to thresholding.

2.4.3 Cloud dispersion

The dispersion measure developed in section 2.2.3 was tested in an example
application and results presented in section 2.3.3. While the experiment proves
the usefulness of the measure, hard decision boundaries based on thresholds
are undesirable. The images on board the satellite must be ordered in terms
of image quality, not classified into acceptable or unacceptable classes.

Rather than thresholding based on total cloud cover, s(1), and dispersion,
s(2"72), it might be better to combine these features in some statistical model
to map possible combinations to an output score. To determine if dispersion is
a worthwhile measure was one of the goals of the subjective quality assessment
experiment discussed in Chapter 5. As will be discussed there, the contribution
of cloud spread to image quality was found to be very small compared to the
other variables measured.

2.4.4 Down-sampling

Based on the results from the down-sampling experiment in section 2.3.4 it
is clear that the down-sampling can have an effect on cloud detection, albeit
a small one. Nevertheless, it was found that nearest neighbour resampling is
preferable to other, more advanced averaging schemes. Nearest neighbour is
also the simplest to implement, which represents another advantage.

Chapter 3

Noise estimation

3.1 Literature

3.1.1 Introduction

Noise is an unwanted variation in sensor output that interferes with our abil-
ity to extract information from the data. It is introduced into the data by
the sensor and can take a variety of forms. The performance of imaging sen-
sors can be affected by various environmental factors: light levels and sensor
temperature are major factors that affect the amount of noise present in an
image taken with a CCD sensor [47]. Sensor noise determines the accuracy
with which absorption features can be distinguished in the spectra and objects
identified on the ground [28]. Additionally, multispectral ratios, like the nor-
malised difference vegetation index (NDVI) used to indicate vegetation, are
particularly susceptible to image noise since any noise is amplified by the ratio
calculation [94, p. 185].

The simplest noise model is an additive, signal independent component at
each pixel:

g(a@y) :f(x,y)+n(x,y), (3‘1‘1)

where f(z,y) is the input image, n(z,y) is the noise term and g(z,y) is the
output. The function n(x,y) can be tailored to describe many common types
of noise. It is frequently a reasonable assumption that the noise has zero
mean over a large area and is manifested as positive or negative fluctuations
about f(x,y). In references |28] and [11| the assumptions of a stationary,
additive signal, not correlated with intensity nor autocorrelated were applied
to remote sensing data. Because of its mathematical tractability in both the
spatial and frequency domains, n(z,y) is often modelled as Gaussian, i.e., at

58

3.1 Literature 59

each location (z,y) the noise fluctuation has a zero-mean Gaussian probability
density function (PDF):
1 2 2
— —(2)*/20
z) = —¢) 3.1.2
p(2) Nz (3.1.2)
where 2 is the grey level and o is its standard deviation. Sensor noise in remote
sensing applications has been approximated by equation (3.1.2) in |25], |[42] and
[94, p. 165].
To quantify global additive noise levels in a meaningful, relative way various
signal to noise ratios (SNRs) exist. The most common one is variance SNR:

SNRyar = -, (3.1.3)

§ql\:> | fnqw

where o2 is the variance of the uncorrupted signal and o2 is the noise variance.
However, this is not the only descriptor; in [28, 42| the mean signal intensity,
z, and noise standard deviation are used:

SNRiayg = (3.1.4)
g

z
n

Also common in image quality assessment is the peak signal to noise ratio [29]:

Z:LM

2
On

PSNR = , (3.1.5)
where Z is the peak signal value (255 for 8-bit images) and L and M are the
image dimensions. Given that the problem at hand is one of blind estima-
tion, where access to the original uncorrupted image is not available, PSNR
is an attractive measure. Fortunately it was found that PSNR is an excellent
measure of quality for white noise distortion in images [97].

Other types of noise also occur in remote sensing. While additive noise
is more common in AVIRIS (Airborne visible /infrared imaging spectrometer)
and Landsat images, signal dependant, multiplicative noise is more frequently
encountered in synthetic aperture radar (SAR) images [42]. Periodic noise is
also common in high resolution pushbroom or whiskbroom scanners. This is
typically manifested as striping, caused by differences in calibration and re-
sponse of each of the detectors. Electronic interference can also cause periodic
noise, visible in many Sunsat images. Isolated, local random noise or dropped
scanlines can be caused by data loss during transmission.

Although periodic noise is more visible than global random noise, it is
generally easier to correct. Striping can be comfortably rectified by detector
matching [94, p. 301]. Other types of periodic noise can be characterised by
Fourier analysis and removed using lowpass®, bandpass or notch filters [94,

!Lowpass filters were successfully used to remove periodic noise from Sunsat images.
Nevertheless, it is not the correct approach since these filters block all high frequency content
instead of only the periodic noise’s frequency.

3.1 Literature 60

pp. 259-264, 302-323|, [47, pp. 227, 246-248|. Because of the many differ-
ent types of periodic noise and its variation between different sensors, these
methods are usually ad hoc. Furthermore, robust SNR measures for striping
or local noise have not been developed yet [94, p. 135].

Because of the various reasons outlined in the previous paragraphs, it was
decided to focus on estimation of global, additive GGaussian noise. The blind
noise variance estimation problem is important in many branches of computer
vision, image processing and remote sensing and can be stated as follows:

Estimate o2, the noise variance, from the noisy image g(z,y) with-

out having access to a priori information about the original image

fz,y).

In the remainder of this section, 3.1, existing noise estimation literature
is presented: section 3.1.2 considers the optimal noise estimation procedure,
while sections 3.1.3, 3.1.4 and 3.1.5 present practical alternatives. Existing
comparative literature is discussed in section 3.1.6.

The selection, implementation and testing of the algorithms is discussed in
section 3.2, while the results of the experiments are presented in section 3.3.
Finally, various conclusions are drawn in section 3.4.

3.1.2 The Semivariogram: Optimal manual noise
estimation

The most common method of estimating noise in images is to locate an area in
the image with low variance manually, compute the variance and assume that
noise is the main contributor to the variance [47, pp. 227-230]. However, the
recommended method for estimating image noise in remote sensing relies on
the semivariogram [94, pp. 165-166] [22] [11], a more advanced measure first
introduced in [27] and applied to noise estimation in [28], where its application
was called the geostatistical method.

The main advantage of the semivariogram over the popular basic method
described at the start of the previous paragraph, called the ‘image’ method in
[28], is that its noise estimates are independent of interpixel variability. Propo-
nents of the geostatistical method claim that any method based on calculating
variance of an array will estimate a noise variance that inherently contains
image interpixel variance as well.

To calculate the semivariogram one must first take a transect of the image
and extract the signal intensity z(z) at pixels x = 1,2, ..., n along the transect.
The relation between a pair of pixels distance h apart (called the lag distance)
can be given by the variance of the differences of all such pairs. Within the
transect there will be m pixels separated by the same lag. Their average is

3.1 Literature 61

Sl S

o Spatially

2 dependtant

2 structural

g variance, C

’

GEJ ,,,

0 Nugget
variance, Cq

0 h

Figure 3.1: The general form of the semivariogram.

given by .
8 (h) = 5 S lelw) — 2o +)P

i=1

§Q(h) is an unbiased estimate of the semivariance v(h), which is a useful mea-
sure of the difference between spatially separate pixels. The larger ~(h) the
more dissimilar pixels h apart are. A typical semivariogram is presented in
Figure 3.1. The important features of the semivariogram are:

the sill: The asymptotic upper bound of y(h),
Co, the nugget variance: The limit of v(h) as h approaches 0 and

the spatially dependent structural variance: The sill minus the nugget
variance.

From the definition v(h) = 0 when h = 0 but in practice there is an offset, Cj,
caused by intrapixel variability and spatially independent noise. The statistical
proof of

: _ 2
lim y[z(h)] = o3,

(3.1.6)

is given in [28].
Although the most statistically sound method available for noise estima-
tion, the transect z(z) has to be manually selected from a homogeneous image

area to minimise the effect of intrapixel variability on the estimate. Also, EQ(h)
is a discrete function with h = 1,2,... n, so the limit from equation (3.1.6)
must be estimated by fitting a curve on the discrete data and extrapolating to
0, which re-introduces some spatial dependence as well as dependence on the
function used for extrapolation [11].

It is impossible to select a transect manually in an automatic IQA algo-
rithm. Thus alternative methods must be investigated even if they are theo-
retically suboptimal.

3.1 Literature 62

3.1.3 Methods based on a standard deviation histogram

Gao developed an automatic method for estimating additive noise in remote
sensing images [42]. The algorithm is based on the idea of detecting a peak in
a standard deviation histogram and is relatively simple and intuitive.

The method consists of the following steps:

1. The image is divided into many small blocks or cells each with the di-
mensions d X d pixels. Cell sizes considered include d = 4,5, ...,8. The
cells are located within the image with index k£ = 1,2,..., K, where K
depends on the size of d. For each cell the local mean, g, of the signal

is calculated:

G= 0 D k(i) (317

i=1 j=1

where g (i,7) is the grey level of the pixel at location (i, 7) in the cell.
The mean signal over the entire image, g(x,y) is computed. The unbi-
ased estimate of local standard deviation for the kth cell, o(k), is also
calculated:

700 = \| gy ki)~ T (BL8)

It is asserted that homogeneous blocks with small o(k) provide infor-
mation on the noise in the image, while inhomogeneous blocks having
larger o,(k) typically contain image edges or textures. The minimum
and maximum of o,(k) for all blocks are also computed.

2. A histogram of o (k) values is constructed. Between the maximum and
minimum of o,(k) a number of bins are set up. The o (k) values of all
blocks are then grouped into these bins and the number of o (k) values in
each bin is counted. The bin with the largest number of blocks (the peak
of the histogram) is associated with the mean noise o, for the image.

3. The SNR is calculated according to equation (3.1.4).

Gao demonstrates the usefulness of the algorithm by testing it on a simu-
lated constant image with added Gaussian noise, a simulated checkboard pat-
tern image with added Gaussian noise and several sets of AVIRIS data GERIS
data. AVIRIS has a GSI of 20m and 10 bands covering 0.4-2.5um. The Geo-
physical and Environmental Research Imaging Spectrometer (GERIS) has 64
channels between 0.43um and 2.5um. To minimise the effect of image features
on the noise estimate the use of 4 x 4 pixel blocks was recommended. The
choice of bin width was found to be problematic and affected the precision
of the noise estimate. Because the maximum o,4(k) can vary greatly, using a

3.1 Literature 63

fixed number of bins sometimes resulted in a relatively large bin width, which
negatively impacted the noise estimate. To curb this influence, the bins were
set in a range between the minimum o, (k) of all blocks and 1.2 times the aver-
age 04(k) of all blocks. It was recommended that 150 bins be used for images
larger than 500 x 500 pixels.

It was concluded that the method is feasible. Furthermore, it was claimed
to be superior to the ‘image” and ‘geostatistical’ methods since it incorporates
data from the entire image instead of selected areas or transects.

In [25] a very similar method is presented, again in a remote sensing con-
text, although no reference is made to Gao’s work. In this the median of a
histogram of o, (k) values is used. Additionally, an edge mask identifying edges
in the image is constructed using Laplacian and gradient operators. Blocks
that contain edge pixels are omitted from the histogram in an attempt to de-
crease the sensitivity of the method to image variance. The method was found
to work well on simulated images containing sharp edges, but slightly overes-
timated the noise in Landsat images due to residual image variance. Different
block sizes (d = 4,...,9 pixels) were also investigated; it was found that a
trade-off exists between block size and ability to estimate variance. While
smaller block sizes, as advocated by Gao, decrease the sensitivity to image
variance they also decrease the ability to identify high levels of noise. This
is because estimating variance from a small area that is not sufficiently large
results in an underestimate.

3.1.4 A method based on image pyramids and order
statistics

Meer et al. developed a method that creates a dichotomy between signal and
noise by analysing the noise statistics at different levels of an image pyramid
[76]. They cited previous examples of noise estimation algorithms that attempt
to separate image and noise based on identification of image features. These
methods struggled to identify image features in the presence of high noise
levels.

The noise variance estimator

Since the method is based on an image pyramid, it is required that the image
size N X N be a power of two: N = 2". The image is again divided into square
cells of size d; x d;, where d; = 2!, 1 = 1,2,...,n. The tessellation of the image
into cells of size 2! x 2! is referred to as level [of the image pyramid. The index
of cells at level l'is k; = 1,2, ..., K;, where K; = 4"~!. The variance oz(k‘l) at
the kth cell is computed according to

j=2l j=2!
1

og(k) = D (ow (i) = T)” (3.1.9)

i=1 j=1

3.1 Literature 64

Since the noise is additive, from equation (3.1.1) follows:
o2(ki) = (k) + o (k). (3.1.10)

Order statistics refer to operations on the list of variance estimates ag(k:l)
for all K of the cells at level [, ordered according to the variance size. The es-
timator for noise variance at level [is the smallest value of the sample variance
U;(kl)Z

q(l,1) = %inai(kl), (3.1.11)
1

where the second parameter, set to 1, emphasises that this is a first order
statistic (as opposed to higher order statistics introduced later). Equation
(3.1.11) is a good estimator since 02(k;) is a quasi constant function of o2 and
the contribution of o%(k;) is minimised by selecting the cell with the smallest
variance, i.e., the cell in the original image that was the most homogeneous.

The usefulness of the image pyramid approach becomes apparent when one
considers the properties of ¢(I,1): it increases with increasing {. The mono-
tonic behaviour of the first order statistic is a result of the fact that sample
variance is a consistent estimator: its spread (confidence interval) decreases
with increasing degrees of freedom of the sample. In a uniform image, f(x,y),
the larger the cell size the closer the first order statistic is to the true noise
variance o7.. For a realistic image, more image features o7(k;) are also incor-
porated into ¢(I + 1, 1) further increasing it relative to ¢(l, 1).

However, especially at small tessellations where the number of cells Kj is
large, there is a possibility that ¢(l,1) is an outlier. In this case the noise
variance is severely underestimated. To guard against outliers, the first four
order statistics ¢(l,4),7 = 1,2, 3, 4 (the four smallest values for sample variance)
are used. The higher the order statistic of a sample the lower the probability
that it is an outlier. A slippage test is employed to determine if any of the first
three values are outliers. Any outliers are discarded and the remaining values
averaged to give the final variance estimate for level [, v(l).

The slippage tests compare ratios of differences of order statistics to thresh-
old values. The ratios are:

Q(l>2) - Q(lv 1) Q(ng) - Q(lv 2)
ol V= T — 1) o2 =ty —qtzy 1Y
ol -g3)
o8 = iy gy)

The threshold tests are:

> qlli) (3.1.13)

i=1

if 7o(l,1) <0.5 then ()=

| =

else

> qli) (3.1.14)

=2

if 79(l,2) <0.7 then o(l) =

Ll —

3.1 Literature 65

Table 3.1: The employed bounds for the ratio v(I — 1)/v(l).

3 4 5 6 7 8 9
g() 02 0.6 0.8 0.9 095 0975 0.9875

else

it 1o(1,3) <07 then o(l) — %Zq(l,i) (3.1.15)
else B
v(l) = q(l,4). (3.1.16)

For very large cell sizes K; =4 (I =n — 1) and K; = 1 (Il = n) the slippage
tests cannot be applied. v(l) is instead taken as the average of the four order
statistics when K; = 4 or equal to the global sample variance o7(1) when
K, =1.

By tessellating, computing order statistics and applying slippage tests at
each level [of the image pyramid, as described in the preceding paragraphs, a
sequence of variance estimates v(l) is obtained for [= 1,2,...,n. To achieve
the dichotomy between signal and noise and to obtain a final value for o2,
the ratios of consecutive variance estimates, v(l — 1)/v(l), are used. Based on
experimental tests on a uniform image with added Gaussian noise, as well as
theoretical derivations (also assuming the noise to be Gaussian), an expression
for the lower bound for this ratio is obtained in [76]. The lower bounds of
v(l —1)/v(l) are generated by the expression:

Bl)=1-01x27"6 =34 .. . n (3.1.17)
Values for (1) are given in Table 3.1.

Estimating noise variance: The dichotomy between signal and noise

To arrive at the final noise variance estimate from the sequence of variance
estimates v(l), a variety of rules is employed. The first rule detects an image
that is not corrupted by noise:

Rule 1
if 31 >2 suchthat ¢(l,4) <1 then 62 =0, (3.1.18)
where 62 is the estimated noise variance value output by the algorithm. In
this rule incorrect decisions for small noise variances are avoided by comparing
the fourth order statistic to a minimum variation threshold.
When noise is present the dichotomy between signal and noise is achieved
by analysing a deviation sequence:

vl —1)
“0="10

=801 1=23,...n (3.1.19)

3.1 Literature

a {ITT

-1

3 4 5 6

Y !

-1

66

3‘41516171»81

314J5J617lsl

-1

(a) Uniform image. (b) Good separation. (c¢) Moderate

separation.

(d) Poor separation.

Figure 3.2: Example deviation sequences, «(l), with varying levels of signal-noise
separation.

where () obtained from (3.1.17). Since v(l — 1) < v(l) it must be true
that —1 < «a(l) < 1. For fine tessellations at low [the cells used to derive
v(l) are quasi uniform and «(l) is positive since G(l) is the lower bound for
uniform regions. As the cell size increases with greater [, at a given level
lp it becomes impossible to find a uniform region. The order statistics for
sample variance start to include image variance, which causes a sudden increase
in v(lp) and —1 < a(ly) < 0. Therefore, the signal-noise dichotomy can
be achieved by searching for the level at which the deviation sequence «(l)
becomes significantly negative.

To avoid false alarms for images where the signal-noise separation is poor
(to be elaborated upon below) a cumulative thresholding technique is used to
detect the level at which «(l) becomes significantly negative:

l, = mlin[arg(oz(l) < 0)] l=3,4,....n (3.1.20)
l
lo = rnlm[arg(; a(i) < T)] [=3,4,....n (3.1.21)
lo+1
and > a(i) <T lo=1lyly+1,...,n—1. (3.1.22)

1=ly

The threshold T' is set equal to a small negative value -0.1. Thus, [, is the
first level where the deviation sequence becomes negative and [y is the level
where a cumulative deviation sequence sum is below a threshold. The variance
estimates for [< [y belong to the noise domain, while for [> [, they belong to
the signal domain.

Example deviation sequences are presented in Figure 3.2, for 256 x 256
pixel images (n = 8). In the case of a uniform image with no variation the
deviation sequence remains positive and all values belong to the noise domain,
Figure 3.2(a). A special rule is employed in this case:

Rule 2

if a(l)>0 Vi=3,4,....,n then &2 =uv(n). (3.1.23)

3.1 Literature 67

In an image with good signal-noise separation, Figure 3.2(b), the transition
to signal domain occurs at a high level and is sharp: [, = 5. In this case the
order statistics are accurate estimates of the true noise variance and 62 is
precise. In an image with moderate signal noise separation, Figure 3.2(c), the
transition occurs at intermediate levels and is not well defined (lp = [, + 1).
The sample variances have larger spreads. In an image with poor signal-noise
separation, the transition occurs at low levels, 3.2(d). In this case the noise
domain is severely reduced and it is impossible to get a good estimation of the
noise variance. The algorithm recognises this situation by using the following
two rules:

Rules 3 and 4

if lp=3or4 then &2cannot be estimated. (3.1.24)

Note that for rules greater than 2 the convention is that the rule number
corresponds to the deviation sequence transition level.

To characterise the separation between signal and noise further, the busy-
ness of the signal, i.e., how much grey level variation there is in the signal
domain, is analysed. If the signal domain spans multiple levels and its se-
quence of variance estimates increase steeply then it is a busy signal. In the
rules applied for 5 < [y < n a busyness parameter is introduced and used
during interpolation between v(l) for different .

Transition at level [= 5. The busyness of the signal is given by the
parameter:
p=a(d)+ a(6) —2<p<T=-01 (3.1.25)

The relation from (3.1.25) holds because of the requirement enforced on I
by equation (3.1.22). The more negative p is, the more busy the original
image was and the more the lower levels belonging to the noise domain are
contaminated by variance from the signal domain.

The range (-2,T) of p is divided into four regions marked by index i =
1,2,3,4 with p;_; and p; the bounds for the ith region. In the first region p is
the smallest and, correspondingly, the signal is the busiest; the noise domain
is strongly contaminated by image variance, reflected by the following rule:

Rule 5-1

for pp=-2<p<p=-15 &2 =v(3). (3.1.26)

The contamination by signal is the weakest at level 3; v(3) is the most reliable.
In the remaining three regions of p linear interpolation is used. First the
interpolation variable is computed:

P — Pi

) 3.1.27
Pi—1 — Pi ()

for pi1<p<p 0=

3.1 Literature 68

The interpolation rules are identical and result in continuous interpolation
across p:

Rule 5-2

for p1=—-15<p<p=-1 &2=6xv(3)+(1-0)xv(4). (3.1.28)

Rule 5-3

for pp=-1<p<p3=-05 &2 =0dxv(4)+(1-6)xv(5). (3.1.29)

Rule 5-4

for p3=—-05<p<py=T 62 = 6xv(5)+(1—0)xv(6). (3.1.30)

Transition at Level [y =6 or 7. Transitions occurring at level 6 or 7 imply
large cell sizes and therefore the sample variances constitute accurate estimates
of noise variance. The busyness of the signal is characterised by considering
a(lp — 1) and a(lp). Their ranges T' < aflp — 1) < 1 and —1 < a(ly) < T
are partitioned into two regions. T is still -0.1 as previously defined. Again
interpolation between two levels in the noise domain is used.

If a(lp — 1) is negative (the first region), the transition from signal to noise
domain is moderately-defined. The interpolation variable is 6 = |a(lp)].

Rule 6-1

for T <a(lp—1)<0
62 =0xv(lg—2)+(1—0)xv(ly—1). (3.1.31)

The more negative a(lp) is (the more busy the signal), the closer to v(ly — 2)
(deeper into the noise domain) is 2.

If a(lp — 1) is positive (the second region), the transition from signal to
noise domain is well-defined. Let the two regions of a(ly) be bounded by p;_;
and p;, i = 1,2. Similar to (3.1.27), the interpolation variable is:

a(lo) — pi

for 0<a(lp—1)<1 and pi_1 <a(ly) <p; 0=
Pi—1 — Pi

. (3.1.32)

The interpolation rules are:

Rule 6-2

for pp=—-1<a(ly) <pr=-05
2=6xv(lpg—2)+ (1 —=6) xv(ly—1). (3.1.33)

3.1 Literature 69

Rule 6-3

for p1=-05<aly) <p=T
62 =05[(1+0) xv(lp—1)+ (1 —=36) xv(lp)]. (3.1.34)

The interpolation is continuous across the regions of a(ly). The largest value
of 62 cannot exceed 0.5[v(ly — 1) + v(ly)], which is still in the noise domain.

When the transitions occur at higher levels [y the estimate values at the
transitions are used; the large cell sizes ensure these are reliable.

In summary, after the variance estimate sequence v(l) has been computed,
the following steps are followed:

e Compute the deviation sequence «((), (3.1.19).

e Find the transition level [y between the signal and noise domains (3.1.21)—
(3.1.22).

e Apply the correct rule to estimate 62, (3.1.23)—(3.1.34).

A similar method applied to remote sensing

A somewhat similar method, also based on dividing the image into cells of
increasing size, was recently developed in a remote sensing context [112]. Tt
utilises the presence of multiple channels in remote sensing images by first
averaging across all channels before identifying homogeneous areas in the image
suitable for use in noise estimation.

However, after this step no attempt is made to separate image from noise
further; unlike the image pyramid method the algorithm does not evaluate
its own ability to estimate noise correctly. Instead it assumes that the most
homogeneous areas contain no image variance, which is obviously not a valid
assumption in all cases. Furthermore, it required interactive tuning on a scene
by scene basis to give optimal results. This human intervention requirement
is unacceptable for an autonomous application.

3.1.5 Dark current

If a part of the sensor is shielded from exposure, the dark current can be
used to estimate noise without fear of image features influencing the estimate.
In |28, 42| it is argued that it is difficult to use dark current for estimation
of random global additive noise in the presence of periodic noise, since dark
current pixels are not usually subjected to the same calibration processing as
image pixels. Furthermore the very presence of shielded pixels is dependent on
the design of the sensor; a method capable of estimating noise directly from
the image is therefore generally more applicable.

3.1 Literature 70

3.1.6 Comparative literature survey

Because of the importance of noise estimation in image processing there have
been many algorithms designed to tackle the problem. A comparative test of
six methods, including Meer et al.’s image pyramid method from section 3.1.4,
was done in reference [78]. However, Gao’s remote sensing specific algorithm
from section 3.1.3 post-dates this test.

The six tests used are classified into two categories:

e Those based on filtering g(x,y) to suppress image structure and then
derive 62 from the filtered image. These methods are very basic. Two of
the six methods tested fall into this category: simple average and median
filters are tested. The median filter is used in such a manner as part of
a blur estimation algorithm discussed in section 4.2.2.

e Those based on computing 62 from the image regions in g(z,y) that are
initially classified as showing little image structure. The image pyramid
method falls into this category.

Of the six methods evaluated, the image pyramid method was the only one
that attempted to establish an image noise dichotomy so that it can warn
when the algorithm is unable to give an accurate noise estimate. While Gao’s
method was not investigated, its predecessor [64], also belonging to the second
category and developed in a remote sensing context, was.

Four synthetic and five real-life images were corrupted with varying levels
of both uniform and Gaussian additive noise to generate a large set of test
images. Depending on which criteria is used to evaluate the results, different
conclusions could be drawn. The image pyramid method gave the best per-
formance by far for low noise images. However, it was prone to giving large
estimation errors sometimes (10% of the images). Although not mentioned
by the authors, it is noteworthy that the image pyramid method showed no
apparent decrease in performance with uniform noise even though the lower
bound A(1) (3.1.17) was developed for Gaussian noise statistics. The basic
averaging filter method gave surprisingly good performance across a range of
02 levels while the median method performed the best at very high o2 lev-
els. The simple filter based methods have a 10 times speed advantage over
the more advanced methods. No single method could consistenly give correct
estimation results in all test cases.

3.2 Experiments and implementation 71

3.2 Experiments and implementation

3.2.1 Implementation
Selected algorithms

If the satellite performs as designed, most of the images to be analysed by
the TQA system will either have no noise or low noise levels. Therefore, based
on the comparative test from section 3.1.6, the image pyramid method was
decided upon since it outperforms other methods in low noise situations. Since
it was not developed specifically for a remote sensing context, it is evaluated on
remote sensing images representative of the different types of image structures
that might be encountered.

Additionally, Gao’s standard deviation histogram method from section
3.1.3 is also implemented and tested for comparison. It is interesting to note
that, although Gao mentions the image pyramid method in the introduction
of [42], no comparative conclusions are drawn.

Embedded evaluation

Both algorithms were implemented using Python. After consideration of the
comparative results, it was decided to evaluate the performance feasibility
of the image pyramid method by implementing it in C on embedded SH4
hardware similar to the Sumbandilasat.

A Hico SH4 evaluation board running the puCLinux operating system was
used for initial development. However, the hardware had much greater RAM
limitations than the Sumbandilasat hardware, so final speed tests were done on
the experimental payload development board that had the same specifications
as Sumbandilasat.

Since C has less built in functionality, auxiliary functions to handle file
access and memory management had to be implemented.

All embedded C code was thoroughly documented using Doxygen [3| com-
patible comments. This enabled convenient, html browsable as well as print-
able documentation to be generated using Doxygen. The printable documen-
tation is included in Appendix C.

Details on image pyramid method’s implementation

During the implementation of the image pyramid method two optimisations
were made to minimise the execution speed.

Firstly, the variance calculation from equation (3.1.9) on page 63, that
would normally take two passes of the data, was done in a single pass. Two
passes are needed as g, must first be computed by considering all the pixels
in the cell before (3.1.9) is evaluated, again considering all the data in the cell.
Through algebraic manipulation (3.1.9) can be written in a form suitable for

3.2 Experiments and implementation 72

single pass calculation:

= 21 j= 21 i:2l j:21 i:21 j:21
(4= xogk) = 3D g (6:) = 2> 200 (0.0) ¥ Tu + D DT

=1 j=1 =1 j=1 i=1 j=1

i=2l j=2! i=2! j=2!

=1 j=1 =1 j=1

i:2l j:2[

=3 gi(i.5) — 23, x (47, + (47,

=1 j=1

i=2! Jj= 2l 4l
o2(k) = 1)~ (32.1)

i=1 j=1

(3.2.1) can be evaluated in a single pass through the data: at each point, (4, j),
values are added to the sum of squares and to the average. After the last pixel
has been considered the two terms can be subtracted and o (k;) computed.

For a big image the sum of squares term can become large enough to cause
overflow in the embedded implementation if the C variable used to store it is
too small. However, the 64-bit unsigned long long int data type is capable
of storing the large numbers without overflow. Consider:

(maximum integer size) = (maximum intensity)® x (image size).

For an image with a bit-depth of sixteen bits? and an image size of 8000 x 80000
where every pixel is at the maximum intensity, the maximum integer number
that must be representable is:

(2'9)2 x (8000 x 80000) = 2.75 x 10'® ~ 261 < 201,

The second optimisation is typical in image pyramid algorithms: the results
obtained at the previous level of the pyramid are stored so they can be used
in the next level. In this case the sum of squares (left hand term in term
(3.2.1)), as well as the average (right hand term in term (3.2.1)) for each cell,
is stored. When computing o7 (k;) for level I these intermediate results from
[l — 1 can be used to determine the sum of squares and average, drastically
reducing computation speed. In the embedded implementation care was taken
to free the memory of the intermediate results from level [— 2 since these are
redundant. This optimisation increased the performance speed by a factor of
three for the test image from Figure 3.3.

3.2.2 Experiment

From the structure of Gao’s standard deviation histogram algorithm described
in section 3.1.3, it was suspected that it might struggle with noise estimation

2The Sumbandilasat sensor is capable of capturing at this bit depth.

3.2 Experiments and implementation 73

in noiseless images. Since the histogram peak is used, it was surmised that it
would be especially sensitive to images where large parts of the image contain
fine texture.

As an initial test image, Figure 3.3(a) was used. The image has large areas
of high variation caused by waves on the surface of the water. Scattergrams,
like the one in 3.3(b), are used extensively by Gao in [42]| to analyse image
structure. Each point on the scattergram represents a cell in the tessellated
image. The position of the cell in the scattergram is determined by its local
mean, g, and local standard deviation. The dark concentrations in the lower
left hand side indicate that there are many blocks with low variance and low
intensity, corresponding to the soil region in the image. The stripe running
from left to right along the bottom of the image results from the the choppy
dam surface. The effect of noise on a scattergram can be observed in Figure
3.3(c): although the entire scattergram is shifted towards the right, the move-
ment is most visible at the left end of the graph. While the standard deviation
histogram considers all the data points, the image pyramid method is only
concerned with cells at the left end of the graph.

Without considering the scattergram, it was thought that this large area of
high variance might be sufficient to prove the superiority of the image pyramid
method. However, both methods proved to be equally capable of identifying
noise, or the lack thereof, in Figure 3.3(a). As can be seen in the scattergram,
the concentration of clear cells proved higher than that of cells in the choppy
dam area. This results in a very low standard deviation histogram peak,
enabling correct identification of noise free images.

It was clear that a more thorough test was needed to differentiate between
the two methods. Furthermore, since the image pyramid method contains
many different rules, a variety of image types is needed to test the algorithm
thoroughly. The five remote sensing images shown in Figure 3.4 were chosen
since they cover a broad spectrum of remote sensing image types. Figure (a)
has low spatial detail. Figure (b) has sharply defined edges typical of coastal
regions. High spatial detail typical of city scenes can be seen in figures (e) and
(d), while (c¢) contains a combination of dense spatial detail and open spaces.
All images are 8-bit greyscale with resolutions shown in the figure and were
acquired by the KITSAT imager.

To give a different perspective on the vastly differing spatial structures
encountered in remote sensing, scattergrams for the Lasvegas and Redsea
images are depicted in Figure 3.5(a) and (b). From 3.5(a) one can see that
there are very few blocks with low standard deviation; a high concentration
of cells is located at approximately o,(k) = 6. In Figure 3.5(b), on the other
hand, the many homogeneous areas mean that there is a concentration of low
variance cells. The semi-periodic bands visible to the right of the graph are
caused by quantisation.

As will be discussed in section 3.3.2 on page 3.3.2, the dynamic range of the
images from Figure 3.4 was reduced to allow fair comparison between the two

3.2 Experiments and implementation 74

g

Local Mean

T TR O B A

40 60 80 100
Local Standard Deviation

(c)

Figure 3.3: Image of dam with large high variance area with scattergrams. The
scattergrams were constructed using 6 x 6 pixel cells. (b) was derived from the
noise-free image shown, while for (¢) Gaussian noise with o,, = 5 was added.

3.2 Experiments and implementation 75

o i

(e) Lasvegas. 1228 x 780

Figure 3.4: Base images used during experiment, with their resolutions.

3.2 Experiments and implementation

250

200

Local Mean
-
v
o

100|

50

10 20 30 40 50
Local Standard Deviation

(a) Lasvegas

300

Local Mean

50,

Figure 3.5:

10 20 30 40 50
Local Standard Deviation

(b) Redsea

Scattergrams clearly show the differences in local statistics.

76

3.3 Results 77

1000 T T T T 700

600
800

500

600 400

400 300

200

200
100

. — 0
0 1000 2000 3000 4000 5000 0 50 100 150 200
Relative error percentage Relative error percentage

(a) All errors. (b) Greatest 10% of errors discarded.

Figure 3.6: Histogram of relative error percentages for the standard deviation
histogram method. In (b) the greatest 10% of errors have been discarded to allow
for a more detailed view of the distribution of the remaining errors.

algorithms. Varying levels of Gaussian noise was added to these images to test
the estimation algorithms’ abilities in differing circumstances. Values chosen
were 0, = {0,1,3,5,7,9,14,20}, which broadly correspond to the range of
noise levels usually used for testing algorithms in the literature encountered.
For each noise level (o, = 0 excluded), 30 different outcomes were generated.
The total number of images used in the test was therefore 1055.

3.3 Results

3.3.1 Standard deviation histogram method

The accuracy of the noise estimates was measured by computing the relative
error. The error percentages were calculated using:

A2 2
190 = 7l 100%,

n

where 62 is the variance estimate and o2 is the known added Gaussian variance.
If the true image is noiseless and any noise is reported, the error percentage is
taken as 100%.

Application of the standard deviation histogram method resulted in the
relative errors shown in Figure 3.6 in histogram form. While 70% of the
estimates had better than 25% error, some images resulted in unacceptably
large errors of 100% and greater.

The errors for each individual image (averaged over the 30 noise outcomes)
are presented in Table 3.2. Since the method has no rule to treat a noiseless?.

3 An image free of additive Gaussian noise; all images possess at least quantisation noise

3.3 Results 78

Table 3.2: Average error percentage per image over 30 instances of each image.
Results are for the standard deviation histogram method.

o2 TLasvegas Volcano Redsea Kuwait Cairo
0 100 0 0 0 100
1 3225 37.9 1514 4.83 1801
9 325 13.8 20.1 9.40 143
25 111 6.32 7.29 4.68 61.0
49 64.1 8.50 4.08 3.23 38.7
81 40.1 10.3 3.52 3.00 27.8
196 18.1 9.34 5.03 3.31 14.5
400 8.08 3.36 6.22 5.75 5.57

Table 3.3: Estimated noise variance per image over 30 instances of each image.
Results are for the standard deviation histogram method.

02 Lasvegas Volcano Redsea Kuwait Cairo
0 29.1 0.00 0.00 0.00 18.9
1 33.2 1.38 2.52 1.04 19.0
9 38.2 10.2 10.8 9.78 21.9
25 52.8 26.4 26.6 25.9 40.2
49 80.4 53.1 49.3 48.7 67.9
81 113 89.3 80.6 81.1 103
196 231 214 188 194 224
400 429 410 377 377 421

image as a special case, all images were estimated as having some finite noise.
This noise variance was rounded to the nearest 1072 Entries in the 02 = 0
row with variance after rounding > 0 have 100% error. Note that only one
noiseless image was evaluated for each input image instance since the outcome
is deterministic. To gain better insight into the behaviour of the algorithm on
noiseless images, the actual estimates, 62, similarly averaged, are presented in
Table 3.3. The three images containing large areas of low spatial detail were
correctly identified as having negligibly small noise. However, in the Lasvegas
and Cairo images, with their lack of large homogeneous areas, large noise
estimates were erroneously made.

For 02 = 1, the relative error is very large for all the images except for
the Kuwait image. Since o2 is so small one might argue that the relative
error is an over sensitive indicator. From the average estimates in Table 3.3,
one can see that the same two images are the problem cases. Generally, with
increasing noise levels,the accuracy of the method increases since the increasing
contribution of o7 to o7 starts to outweigh that of o7.

To allow insight into the algorithm’s variation in behaviour, a measure

3.3 Results 79

Table 3.4: Standard deviation of error estimates from Table 3.2.

o2 Lasvegas Volcano Redsea Kuwait Cairo

0 0 0 0 0 0

1 603 10.4 56.8 5.19 367

9 60.1 6.26 8.87 4.17 34.8
25 18.3 4.15 5.07 3.66 11.8
49 11.6 4.56 3.13 2.52 8.64
81 8.06 6.89 2.18 2.47 5.67
196 5.92 4.23 3.35 2.16 4.17
400 5.19 2.20 3.53 2.87 2.97

Table 3.5: Standard deviation of noise variance estimates from Table 3.3.

02 Lasvegas Volcano Redsea Kuwait Cairo
0 0 0 0 0 0

1 6.04 0.10 0.57 0.06 3.67
9 5.41 0.56 0.80 0.50 3.14
25 4.58 1.22 1.44 1.17 2.95
49 5.71 2.33 2.49 2.00 4.23
81 6.53 5.68 3.33 3.14 4.59
196 11.6 8.33 8.96 7.49 8.17
400 24.7 12.5 17.4 12.1 13.5

of spread about the averages (listed in Tables 3.2 and 3.3) is also reported.
The standard deviation across the 30 images at each noise level is shown in
Table 3.4 for relative estimate error and Table 3.5 for noise variance estimates.
Generally, each measure’s standard deviation increases with an increase in
the measure. The spread of data does not refute the claim that the method
performs poorly for the Lasvegas and Cairo images.

3.3.2 Image pyramid method
Dynamic range saturation

In initial tests, the image pyramid method severely underestimated the amount
of noise present in the images. Although initially surprising, it is a known
weakness of the method when dealing with images where the dynamic range is
saturated. The problem occurs when the lowest variance cells selected through
order statistics have very high or very low average intensity, i.e., grey level
values saturated at or close to 0 or 255 for 8-bit images. Since the average
value is already at the limit of the dynamic range, and the Gaussian noise
added has a zero mean value, half of the noise signal is ’clipped’. This reduces
the variance in these cells to far below typical values. Because the method

3.3 Results 80

900

800 B

700 b

600

500

400

300 B

200 B

100 B

0 50 100 150 200 250
Relative error percentage

Figure 3.7: Histogram of relative error percentages for the image pyramid method.

uses order statistics, it is these low variance cells that are then used to derive
the noise estimate.

The remote sensing images from Figure 3.4, used in the test, had already
been subjected to severe contrast stretching. The resulting images all con-
tained areas of saturated white or black. In the case of the Volcano and
Kuwait images, 3.4(b) and 3.4(c), these areas were very large.

As mentioned in the introduction, it is a typical form of image processing
applied to satellite images before they are viewed by humans, since it enables
us to make full use of the available dynamic range of monitors or printers
during analysis. It is also more aesthetically pleasing. However, unprocessed
satellite images rarely make full use of the dynamic range of the sensor, since
this would imply possible information loss at the very start of the remote
sensing chain.

Therefore, without great loss of generality, the input images were scaled
so all intensity values fall in the 30-225 range, leaving ample headroom for
the noise. The same noise levels were applied again and the algorithms re-
run. The histogram of error percentages is presented in Figure 3.7, while a
more detailed view of the results is presented in Table 3.6. By comparing the
histogram in 3.7 with the one from Figure 3.6, it is clear that there are fewer
large errors with the image pyramid method than with the standard deviation
histogram method. If one considers Table 3.6, it is apparent that in each case
noiseless images were correctly identified as such, even for the Lasvegas and
Cairo images with high spatial density of details throughout the image. For
the images where 02 = 1 a 100% error was recorded, since application of Rule 1
meant that 62 = 0 in every case. Considered objectively, this is not a problem.

Images where 02 = 1 are indistinguishable from ¢ = 0. Additionally, even

2 =
though noise with 02 = 1 was added, it is suppressed by integer quantisation
of the image, so 62 = 0 is probably a better characterisation of the image

3.3 Results 81

Table 3.6: Average error percentage per image over 30 instances of each image.
Results are for the image pyramid method.

o2 TLasvegas Volcano Redsea Kuwait Cairo
0 0 0 0 0 0

1 100 100 100 100 100
9 216* 11.0 14.6 14.7 39.1
25 139 17.6 7.47 4.68 34.3
49 101 16.3 9.36 2.14 12.9
81 89.0 12.4 12.4 1.72 13.0
196 21.6 2.01 8.07 4.65 11.9
400 26.5 5.48 3.85 5.39 8.04

2 Only 4 instances evaluated.

Table 3.7: Standard deviation of noise variance estimates from Table 3.6.

02 Lasvegas Volcano Redsea Kuwait Cairo
0 0 0 0 0 0

1 0 0 0 0 0

9 16.0% 0.95 4.15 0.64 6.04
25 10.5 0.88 1.55 2.03 15.8
49 5.31 0.66 6.24 0.34 9.32
81 9.59 1.51 5.52 0.30 7.81
196 2.27 1.52 1.66 5.37 1.59
400 1.42 0.28 2.41 2.22 5.23

2 Only 4 instances evaluated.

noise. These ‘errors’ were taken as 0 when generating the histogram.

In the low noise, 02 = 9, Lasvegas image, signal noise separation was
deemed too poor to enable an accurate noise estimate in 26 of the 30 cases. In
the remaining four cases, the noise estimate resulted in a large error of 216%.
Considering this large error, as well as the results of the standard deviation
histogram experiment on the image, refusing to estimate would be the correct
decision in this case.

Given the variation in the algorithm’s behaviour, i.e., rejecting some of the
Lasvegas images while estimating others, the spread of the data is reported to
quantify some of this variation. The standard deviation of the error estimates
are presented in Table 3.7. Note that the standard deviation is the largest for
the image where only 4 instances were evaluated.

While most of the other error percentages seem acceptable, especially the
Lasvegas but also the Cairo images result in large errors at low noise levels.
The results from the histogram agree with the findings from the comparative
test [78]: the image pyramid method performs better than other methods

3.3 Results 82

at low noise levels, but still gives very large errors in approximately 10% of
images tested. Furthermore, while the algorithm correctly refused estimation
in most of the cases for the Lasvegas image with o2 = 9, some estimates were
attempted with poor results.

Making the algorithm more conservative

It is suspected that the reason for the image pyramid algorithm performing
worse than in the original paper [76] is simply because the test images are
more difficult. The busiest image from the test suite in [76] appears to have
less dense spatial structure than the extremely dense Lasvegas image or one
of the synthetic test images from the comparative test. Everyday photographs
typically have considerably lower spatial density than remote sensing images.
This is why testing the algorithm on remote sensing images is important.

Rules were examined to determine which rules were used to classify which
images, as well as the average errors associated with each rule. It was found
that Rules 5 were only being used for the low noise Lasvegas and Cairo
images, with very large average errors relative to the other rules. It was also
interesting to note that the uniform image rule, Rule 2, was never used, as is
to be expected. However, when testing the algorithm on a uniform image it
was used.

In an attempt to make the algorithm more conservative, the deviation
sequence, «(l) was ‘shifted to the left”:

a.(l) = a(l+1),

where a.(l) is a more conservative deviation sequence. The reasoning behind
this shift is that images that would previously be detected as having the noise
to signal transition at level [= 5, would now transition at [= 4, so Rule 3 and
4 would apply. Therefore, by changing «, one’s view on what constitutes good
signal-noise separation is effectively becoming more conservative. By shifting
the entire deviation sequence instead of modifying individual rules, the more
conservative approach filtered through to all levels of the image pyramid.
The algorithm was re-evaluated on the same test images. The histogram is
shown in Figure 3.8, while Tables 3.8 and 3.9 gives the detailed results. Upon
comparing the histogram to Figure 3.7, the improvement is obvious. If one
considers Table 3.8 one can see the cause: four images were classified as having
signal noise separation that is too poor to attempt estimation. The four images
are specifically those in which the noise variance was overestimated previously,
confirming the success of the modification. Rules & and 4 were also applied to
some of the the 02 = 25 and 02 = 49 Cairo images; the average in Table 3.8
was computed from the remaining images, as detailed in the table footnotes.

3.3 Results 83

700

L | ——" |
0 10 20 30 40 50 60
Relative error percentage

Figure 3.8: Histogram of relative error percentages for the image pyramid method
using ae(l).

Table 3.8: Average error percentage per image over 30 instances of each image
using ae(l).

o2 Lasvegas Volcano Redsea Kuwait Cairo
0 0 0 0 0 0

1 100 100 100 100 100
9 - 2.71 3.24 0.61 -
25 - 2.42 8.08 1.96 1.99
49 0.73 5.59 2.42 4.95¢

81 59.9% 0.46 3.22 2.13 8.04
196 39.40 3.38 1.70 3.21 4.24
400 6.33 9.49 6.92 9.61 6.39
2 Ounly 1 instance evaluated.

> Only 13 instance evaluated.
¢ Only 29 instance evaluated.

3.3.3 Feasibility of embedded implementation

The embedded C implementation of the image pyramid method was tested on
images of various sizes. For each image size the algorithm was repeated 10
times and the average execution time recorded. The results are presented in
Figure 3.9. The time taken for each of the 10 runs at a given size was almost
identical.

Given the image pyramid structure with calculations being repeated at each
level, one would expect the algorithm to be O(nlogn); however, the graph in
3.9 appears more linear. This is the result of the optimisations previously
described: reusing the results from the previous level means that for each of
successive level of the logn levels, the time spent decreases drastically. The

3.4 Conclusion 84

Table 3.9: Standard deviation of noise variance estimates from Table 3.8.

o2 Lasvegas Volcano Redsea Kuwait Cairo
0 0 0 0 0 0

1 0 0 0 0 0

9 - 0.12 0.19 0.06 -
25 - 0.16 026 018 047
49 - 0.35 1.93 0.17 0.95¢
81 0? 0.41 3.49 0.28 2.53
196 5.34 1.00 1.91 1.88 5.00
400 6.14 2.23 11.98 3.45 12.04

2 Ounly 1 instance evaluated.
> Only 13 instance evaluated.
¢ Only 29 instance evaluated.

9
8l
71
6l
4
3l
21
1l
RN
Image size [pixels] xle+6

Figure 3.9: The execution time of the embedded image pyramid implementation.

largest image tested, the 6.1 megapixel image at the end of the graph, had
dimensions 2200 x 2800 pixels and took 8.43 seconds.

Therefore, even though the algorithm was developed with parallel architec-
ture in mind, it still performs more than adequately on sequential SH4 chip.

3.4 Conclusion

3.4.1 Choice of method

It is evident from the experiments conducted that the conservative image pyra-
mid method is preferable to the standard deviation histogram method. Ta-
ble 3.10 presents the average and median relative error percentages for each
method. Since there are large errors in the standard deviation method, which
can have a disproportionate influence on the average, the median is presented

3.4 Conclusion 85

Table 3.10: A summary of the comparative results: average and median relative
error percentages.

SDH® IPY a(l) TP - a.(l)

Average 158 21.4 5.24
Median 11.8 114 3.45
Standard deviation 613 33.1 7.52

Standard deviation histogram.
> Image pyramid.

as well.

The experimental results confirm the findings of the comparative study
discussed in section 3.1.6, namely that the image pyramid method gives the
best results in low noise conditions. This is an important requirement: it is
crucial for the chosen algorithm to be able to successfully identify a noiseless
image, lest a good image erroneously be given a low priority.

The standard deviation in a comparative experiment can be used as an
informal way to evaluate whether the compared methods’ confidence intervals
overlap. Although, in this case the it appears as if the confidence intervals
indeed do overlap, an alternative interpretation is available: the standard de-
viation is an additional measure of algorithm performance. As suggested in
the histograms, Figures 3.6, 3.7 and 3.8, the probability density function of rel-
ative error is not symmetrical: higher standard deviation instead corresponds
to a longer tail on the high-error, right hand side of the histogram. Since the
SDH method results in very large relative errors, the spread of these errors are
also greater than the IP methods. Furthermore, the conservative IP method
resulted in the smallest errors and thus these errors have the smallest spread.

By incorporating different cell sizes into the algorithm the image pyra-
mid method avoids the cell-size trade-off, discussed in section 3.1.3, faced by
methods that rely on a single tessellation of the image.

There is one area that the standard deviation histogram algorithm has the
upper hand: it does not have the sensitivity to images containing saturated ar-
eas that the pyramid method has. Because it used information from the entire
image and not just from the areas with the least variance, the contrast stretch
applied to the images in Figure 3.4, did not affect it. Although remote sensing
images do not usually contain saturated areas, depending on the calibration
of the sensor, saturation can occur occasionally. Tt is most likely to happen
when imaging cloudy scenes: the intensely white clouds can cause saturation
at the upper limit of the sensor’s range.

However, it is preferable to have a method that sometimes underestimates
noise levels than one that often overestimates them.

3.4 Conclusion 86

3.4.2 The saturation problem

If, in the system where the algorithm is to be implemented, it is found that
saturation caused by clouds occurs often, the image pyramid method could be
adapted. It was recommended in [76| that the average intensity of the cells
used in the order statistics be checked and a warning given when it is too close
to the edges of the sensor’s dynamic range.

Alternatively it is possible to first discard cells with an intensity that is too
low or too high. If one considers the scattergram, this is equivalent to clipping
the top and bottom off the graph. So long as the remaining points are still
representative of the noise, i.e., the image contains unsaturated homogeneous
areas, the working of the algorithm should not be affected.

However, as cloud abundance increases, more of the points in the scatter-
gram will be concentrated near the top of the graph and it will become difficult
to find representative cells when the saturated cells have been discarded.

Luckily there are two mitigating factors. Firstly there is the ability of the
algorithm to assess its own estimation capability: if the signal noise separation
is too poor, Rules 8 and 4 detect that. Secondly, as will be discussed in
Chapter 5, cloud cover is weighed much more heavily in the final quality score
than noise. Therefore, when the amount of cloud cover has increased to such
a degree that it becomes difficult to find homogeneous cloud free cells, cloud
cover will dominate in the final quality score and the amount of noise is of
small account.

3.4.3 Use of multiple channels

In the final implementation, all the different channels in the satellite image will
have to be considered, since the noise in different channels of a colour image is
independent [47, p. 339]. Indeed, different parts of the detectable spectrum of-
ten have distinctly different noise characteristics; and hence, in remote sensing,
noise estimation algorithms are applied to each channel individually |42, 112].

3.4.4 Choice of SNR

Given the variety of available SNRs, discussed in section 3.1.1, which one
should be used? The most useful measure is the variance SNR, equation
(3.1.3). However, the fact that access to the uncorrupted image, f(x,y), and
therefore to the signal variance, 0]2@, is unavailable, eliminates the variance
SNR.

Using the average signal intensity, Z, as in (3.1.4), does not seem to add
any relevant information not in the PSNR. If images with higher z were in-
deed preferable to images with low z, then simply adding a constant offset to
the image intensity would be a common image enhancement or preprocessing
technique. It is not.

3.4 Conclusion 87

As mentioned in the introduction, PSNR is suitable since it does not re-
quire unavailable image information and has been proven to be a good quality
measure for white noise distortion. However, there is no useful extra informa-
tion in PSNR not contained in the noise variance, o2. Larger images should
not receive a higher quality score simply because of their size. While it is true
that they might contain more information, they will also take proportionately
longer to download from a satellite, negating any advantage. Furthermore, the
peak signal value adds no information useful for ranking images: all images
acquired by the same sensor will have the same maximum possible intensity.
Therefore, it is recommended that the noise variance estimate itself be used
as a feature.

Chapter 4

Defocus estimation

4.1 Introduction

An image captured by a sensor is not an exact reproduction of the scene
viewed. If a point of light is viewed, the optical system will blur or spread
the light to some degree, characterised by the point spread function (PSF).
In the mathematical model of the imaging system, the PSF is a weighting
function for spatial convolution [94, pp. 78-91|. It can be considered as the
spatial responsiveness of the imaging system. If the imaging system becomes
defocused, the PSF shape will be affected and the image will become blurry.

Estimation of image sharpness, focus or blur spans a variety of fields. Many
different techniques can be employed depending on the application.

Measurement of image sharpness is a crucial part of edge detection algo-
rithms [47, pp. 572-585]. These algorithms make no assumptions about the
image acquisition chain; they simply evaluate the sharpness of edges in an
image.

Estimation of optimal focus is an important problem with practical appli-
cation in autofocus algorithms for cameras [121, 115]. These algorithms rely
on a sequence of images from the same subject. Typically an image sharpness
measure is computed for each image in the sequence. The measure is com-
pared across all the images in the sequence. The sharpest image is assumed to
correspond to an in-focus imaging system. More advanced methods use focus
measures that are invariant to illumination changes [115]. Others estimate the
PSF of the imaging system so that the focus measure is invariant of the imaged
object [121].

Estimation of PSF is also required during restoration of blurred images
(called deconvolution). Sometimes it is possible to estimate the PSF by using

88

4.1 Introduction 89

knowledge of the imaged object [47, pp. 256-257] [17]. When the imaged
object is unknown, blind estimation of PSF is used. These techniques use only
a single potentially degraded image to estimate PSE and are discussed further
in section 4.2.1.

In the remainder of the introduction the degraded image model is explained
(section 4.1.1) and defocus estimation in the context of image quality assess-
ment is discussed (section 4.1.2). An overview of existing literature is presented
in section 4.2: section 4.2.1 introduces the field of blur estimation; section 4.2.2
discusses the theoretical base of the class of blur estimation algorithms used;
section 4.2.3 explains some of the shortcomings of the methods in existing lit-
erature. Angular spectral smoothing, a new technique based on the method
discussed in 4.2.2, is presented section in 4.3. The various experiments con-
ducted are described in section 4.4: different window functions are considered
in section 4.4.1; the PSF estimation methods from sections 4.2.2 and 4.3 are
compared in section 4.4.2; the effect of reduction in image dynamic range is
investigated in section 4.4.3 and the embedded implementation is discussed in
section 4.4.4. Finally, results are presented in section 4.5 and conclusions are
drawn in section 4.6.

4.1.1 Degraded image model

A linear model is commonly used to model image degradation:

9(z,y) = f(z,y) * h(z,y) + n(z,y), (4.1.1)

where f(z,y) is the original image, g(z,y) is the degraded image and h(z,y)
is the PSF. Additive noise is modelled by n(z,y) (see chapter 3). The two
dimensional convolution operator is *. If one expands the % operator, (4.1.1)
becomes:

goy) = 5 S flaB)h@ —a,y— B) +n(z,y).

a=—00 =—00

The PSF of an optical system can be decomposed into many parts. How-
ever, when the optical system becomes defocused, the blur PSF dominates.
This can be caused by temperature variations on board of a satellite. The
PSF of the defocused lens system with circular aperture can be approximated
by a uniform function with two-dimensional (2-D) circular support and radius

R [18]:
[0 Vi +y: >R
h,y) —{ xR, T T <R (4.1.2)

4.2 Literature 90

4.1.2 Defocus estimation in the context of image
quality assessment

The concept of measuring image blurriness as part of image quality assessment
is not new; edge sharpness has been used as a measure of image quality in the
past.

In [66] edge sharpness level is proposed as one of three objective measures
to aid in image quality assessment. The other two proposed measures were
random and structural noise. Although no such distinction is made in [66],
it is important to separate image degradation measures and image content
measures. Random and structural noise are degradation measures, whilst edge
sharpness level is a content measure. Degradation measures are generally more
objective than content measures: an image with low SNR is almost always
worse than an image with high SNR. The same cannot be said for content
measures: in remote sensing there is little reason to believe images containing
more sharp edges in the global structure are more useful than images containing
few or none. However, if the telescope becomes defocused, it will produce a
useless set of images that contain no sharp edges.

The problem is therefore to distinguish between images where the subject
has few or no sharp edges and images blurred by the imaging system. Such
images might achieve the same score using an edge sharpness level measure.
Indeed, this problem resulted in outliers in the image quality assessment exper-
iments in [75], where inappropriate use of an edge sharpness measure caused
some images to receive disproportionately bad scores.

Hence, it was decided to measure only degradation measures for image
quality assessment: the defocus blur extent of the PSF is chosen instead of edge
sharpness level. To the author’s knowledge, the fields of PSFE estimation and
quality assessment have not been combined before. The relationship between
defocus extent and image quality is discussed further in Chapter 5.

4.2 Literature

4.2.1 Point spread function estimation

Blind estimation of the PSF is a subset of the blind image deconvolution
problem, which, given the linear degradation model from (4.1.1), attempts to
recover the original image, f(x,y), and PSF, h(z,y), using only the degraded
image, g(x,y), and partial information about the imaging system. The prob-
lem is difficult. Firstly, it is ill-conditioned: small changes in input conditions
can cause large changes in results. Secondly, solutions may be non-unique
and, therefore, assumptions about the PSF and image structure are often nec-
essary. Because of these difficulties many approaches have been suggested.
These cover a broad range in terms of computational complexity and applica-

4.2 Literature 91

bility, with some tailored to specific scene types and others to specific PSFs.
An instructive overview can be found in [62, 63]. Although many techniques
are discussed, they follow one of two approaches:

1. Identify the PSF first and then use a classical technique such as Wiener
filtering to restore the image. This approach is called a priori or di-
rect blur identification. Algorithms in this category are computationally
simple, but sensitive to SNR.

2. Identify the PSF and true image simultaneously. An iterative process
is used that estimates the PSF, restores the image, evaluates the result
and then repeats. Many algorithms fall into this indirect category. They
are generally computationally complex and often have ill-convergence.

Some of the methods belonging to the second category include techniques
based on autoregressive moving average (ARMA), nonparametric determin-
istic image constraints restoration as well as higher order statistics. ARMA
techniques use a statistical autoregressive model for the image. They are less
sensitive to noise than direct techniques, but the model is not suitable for im-
ages containing sharp edges. Nonparametric deterministic image constraints
do not assume parametric models for either blur or image, but require that the
image have finite support, i.e., the image is an object against a uniform back-
ground. Higher order statistical models are suitable for images with ‘spike’-like
structure, such as astronomical images. Methods based on these models are
robust against noise, but are very computationally expensive. None of these
models are applicable to all remote sensing images.

In [19] edges in the image are identified and used to derive blur charac-
teristics. If no edges are present ARMA techniques are used. This is a good
compromise, but still retains the O(N?) computational complexity of ARMA
techniques. Another method that attempts to identify edges in the image and
use these for blur estimation is [37]. This method claims to be able to handle
spatially variant blurring. Neither of these methods make provision for images
that naturally contain blurry edges in the image structure.

Recent advances postdating [62]| include an autocorrelation based direct
method for motion blur identification capable of identifying both linear and
accelerated motion [116, 117, 118|. In [41] the difficulty of PSF estimation
and restoration is acknowledged. To sidestep it, image features that are in-
variant with respect to blur are identified and used to recognise objects in a
degraded scene. If access to multiple instances of the same image blurred by
substantially different PSFs is available, [44] can be used in either direct or
indirect configuration. An alternative approach to direct identification uses
vector quantisation to train a classification system to recognise various types
of PSF [80]. This would allow identification of Gaussian blur PSFs, which can
be used to model atmospheric turbulence. However, the method requires the
system be trained for specific images.

4.2 Literature 92

If the motion path is known, images degraded by complicated, non-linear
motion PSFs can be successfully deconvolved [93]. This is utilised in [13]:
the motion path is identified using two cameras to achieve high spatial and
temporal resolution. An iterative technique that imposes a piece-wise smooth-
ness constraint on the image is introduced in [119]. Although this technique
represents an improvement over previous techniques, its iterative nature, non-
unique solutions and especially its piece-wise smooth image structure make it
unsuitable for this application.

For the purposes of this application, the class of direct methods based
on spectral techniques was chosen [18; 21, 92]. Despite recent advances dis-
cussed above and in [62], these methods remain popular because they make
no assumptions about the true image structure and are computationally sim-
ple. These attributes make them suitable for an on-board implementation in
a remote sensing system, since earth images do not conform to a template and
processing of very high resolution images using limited memory and processing
power is required.

4.2.2 Blur identification based on spectral techniques

Since no constraints are placed upon the true image, assumptions about the
blur PSF shape are required to make the blind deconvolution problem solvable.

Two common blur types, linear motion blur and defocus lens blur, can
be represented by simple, spatially invariant, parametric models. For motion
blur a 1-D rectangular (also called boz-cart) PSF is used. For defocus blur
the model from equation (4.1.2) is used. Although blurring caused by space-
variant PSFs can be restored [103], it cannot be identified using direct blind
deconvolution. Fortunately the spatial-invariance assumption is valid in the
remote sensing context; since the objects imaged are approximately the same
distance from the sensor, defocus blur will be uniform throughout the image.

Even though the motion blur and defocus blur problems are often solved
using similar methods, the motion blur model is not applicable in a remote
sensing application with a linear push broom sensor. Since the sensor is not an
array, motion cannot cause smearing of scene content across multiple pixels in
the acquired image, unless the motion is exactly in the cross-track direction.
Therefore it was decided to concentrate only on defocus blur.

Power spectrum and power cepstrum

Cannon proposed the use of the power cepstrum for blur identification [18]. If
the power spectra are considered, (4.1.1) becomes:

P,(u,v) = Py(u,v) |H(u,v)|* + Py(u,v). (4.2.1)

The frequency response of the PSF, H(u,v), is of the form J;(Rr)/(Rr) where
R is the PSF radius, r = vu? + v? and J;(+) is the first-order Bessel function of

4.2 Literature 93

the first kind (which has nearly periodic, radial zero-crossings). The function
Ji(x)/x is also known as the jinc function, for its similarity to the function
sinc(x) = sin(x)/z, and is discussed in detail in [16, pp. 347-381]. Welch’s
method [108], which averages small sections to reduce the variance of the P,
estimation, is used:

N
Py(u,v) = % > 1Gi(u,). (4.2.2)
i=1
The image is subdivided into square sections. The size of the section must be
greater than the size of the PSF. Each section, g;(z,y), is windowed |84, pp. 623
~ 630] and the periodograms, |G;(u,v)|? (where G;(u,v) = F{g:(z,y)}), of all
sections are averaged to arrive at a power spectrum estimate, P,(u,v). The
radial zero-crossings of H(u,v) are zeros in |H(u,v)|* and local minima in
P,(u,v). Blur identification in the spectral domain proceeds by identifying
the first local minimum.

The type of window function to use was not specified in [18]. Various
options exist. An optimal window for image restoration is derived in [101].
However, this window function requires knowledge of the PSF, which is un-
available since estimation of the PSF is the goal of blur identification. Various
window functions are investigated in section 4.4.1.

If the power cepstrum is considered instead,

Cy(p, q) = F{log Py(u,v)}, (4.2.3)

where F~! is the inverse Fourier transform', the defocus blur radius is char-
acterised by a ring of large negative spikes at 2R from the origin in C,(p, q)
(as shown in Figure 4.3(a) on page 99). These are assumed to be the result
of periodic zeros in P,(u,v). During blur identification only the negative part
Cy(p, q) is considered. Using the cepstrum instead of the spectrum has some
advantages: it is algorithmically easier to identify a global negative maximum
rather than a first significant local minimum. Furthermore, since the ring of
spikes is the result of periodic minima in the spectrum, it is more robust to
noise than identification based on only one minimum.

Bispectrum and bicepstrum

In an attempt to increase the reliability of blur identification in the presence
of Gaussian noise, Chang et al. [21] turned to the bispectrum [77]. Just as
the Wiener-Khintchine theorem relates the power spectrum to the Fourier
transform of the autocorrelation (second-order moment sequence) [82], so the
bispectrum of a signal X (k) can be defined in terms of the third-order moment

'Some power cepstrum definitions use the forward transform instead [24]. They are
functionally equivalent.

4.2 Literature 94

sequence:

Z Z m3 7'1,7'2 e j(uTlerTQ) (424)

T1=—00 T2=—00

where mg(7y,70) = E[X(k)X(k + 71)X(k 4+ 72)] is the third order moment
sequence of X (k), a real, discrete, zero-mean, stationary process. Since the
third-order moment sequence is zero for a stationary, zero-mean Gaussian pro-
cess, the bispectrum is invariant to Gaussian noise.

The bispectrum of a one-dimensional (1-D) signal is 2-D. Similarly, the bis-
pectrum of a 2-D image is 4-D. Chang et al. suggests that for blur identifica-
tion it is sufficient to consider only the 2-D “central slice” or 1-D “central-line”,
which can be computed more efficiently than the full 4-D bispectrum. The
recommended direct 2-D estimator for the ith sub-segment is

ngi)(u, v;0,0) = Gi(u, v)Gi(0,0)G7 (u,v). (4.2.5)

The mean of the entire observed image has to be removed before it is seg-
mented. In a similar fashion to (4.2.2), averaging is used to reduce the vari-
ance:

By(u,v;0,0) = ZquO (4.2.6)

||Mz

Since defocus blur has circular symmetry, the local minima in B,(u,0;0,0), a
1-D function, give the same information as in the 2-D B,(u,v;0,0) and are
used for identification.

Savakis and Easton [92] rely for identification on negative peaks in the

bicepstrum:
D,(p,q) = F_l{log By(u,v;0,0)}. (4.2.7)

They argue that the use of bicepstrum over bispectrum holds the same advan-
tages as cepstrum over spectrum, but inherits robustness against noise from
the bispectrum.

Spectral subtraction and comb filtering

As an alternative to higher order spectra, Fabian and Malah [40] proposed
adding pre and postprocessing to the cepstral method to increase robustness
in the presence of noise. The preprocessing is based on a spectral subtraction
technique [67], which attempts to estimate the spectrum of the blurred, noise-
less image, A(u,v) = F(u,v)H(u,v), by subtracting a weighted estimate of
the noise power spectrum from the degraded image power spectrum:

€ otherwise

]A(u, 0| = { \/Pg(u,v) - oz]f’n(u, v) if Py(u,v) > ouf’n(u,v) (4.2.8)

LA(u,v) = ZG(u,v), (4.2.9)

4.2 Literature 95

where € is a small constant used to avoid numerical issues when taking the
logarithm and « is the weight given to the noise power spectrum estimate. This
approach rests upon the idea that, for white Gaussian noise, P, is a constant
offset proportional to the noise variance. This offset “obscures the zeros” [40):
when taking the cepstrum, it hinders the logarithm’s ability to accentuate local
minima in the power spectrum. Since the logarithm is non-linear, the degree
to which minima are accentuated is highly dependent on their proximity to
zero. A median-complement filtered image is used as an approximation of the
noise-image from which ﬁn(u,v) is computed. Fabian and Malah claim, and
this was confirmed by the author’s tests, that the method gives better results
if the image is not subdivided.

The cepstrum, C,(p,q), which has circular symmetry, is computed from
fl(u, v). Although this implies that using the most negative peak in C,(p,0)
is sufficient for blur identification, the variance caused by noise makes such
an approach unreliable. Instead, an angular average C,(r) is computed by
converting C,(p, q) to polar coordinates C,(r,) and averaging over 6.

Aside from the main pulse at 2R, C,(r) exhibits harmonics at values of r
approximately multiples of 2R. In the presence of noise there are also spurious
peaks at other values which may dominate the true peak at 2R. The postpro-
cessing step employs an adaptive comb-like filter that amplifies peaks which
have harmonics (like the true peak) and suppresses peaks which do not have
harmonics (like the spurious peaks). The filter is:

Ci(r) = [Ca(r)] (4.2.10)
Vi Tiea (Cald))?

for quefrency r, A, = {ili >roand i ¢ (kr —1,kr,kr+1),k=0,1,2...}.

The “disturbance set”, A,, is the set of quefrencies? where harmonics of r are
not expected. This set resembles a comb-filter with 3-point stop bands. The
total number of points in A, is M. To avoid an A, consisting only of stop
bands, which would be an empty set, the value of ry is selected as 3. The
output of the filter is therefore limited to values of r > 3.

4.2.3 Problems with methods in existing literature
Lack of comparative defocus tests

In spite of popularity of direct methods |62], little or no comparative literature
exists on the subject. Although [118] compares the cepstral method with their
method for images with a variety of PSF blur extents and SNRs, their method
is only applicable to motion blur. Reference [92] compares the methods of
[21] and [18] with their own and applies only the postprocessing from [4()]

2In a playful inversion of existing terminology, cepstral domain frequencies are referred
to as quefrencies. The word cepstrum is derived from spectrum in a similar manner.

4.2 Literature 96

(in the author’s experience it is the preprocessing that is responsible for most
of the method’s performance). Their comparison is based on degraded images
generated from a single test image and only motion blur identification is tested,
in spite of the fact that defocus blur is more difficult to identify [40)].

Ability to operate at low SNR is commonly used as a measure of algorithm
performance, with comparison to other methods often based on best achieved
variance SNR, equation (3.1.3) on page 59. It was found that, for this class of
methods, SNR is a poor indicator of performance. Although, for a given image,
the SNR is highly correlated with the identification capability (increasing noise
variance o2 or decreasing signal variance o2 have a detrimental effect), when
comparing different images o2 does not play as important a role as signal
frequency content. This is because, the more the high frequency content in
Pf(u,v), the better the periodic zeros at higher frequencies in |H (u,v)|* are
visible in P,(u,v). For example, blur could be correctly identified in a city
scene, Figure 4.1(c), which has dense spatial activity and good high frequency
content, up to SNR as low as 2.8 dB. Using a desert scene, 4.1(a), with sparse
spatial structure, 17 dB was the best that could be achieved. This confirms the
need for a comparative test across a variety of image types, since comparing
methods based on best reported SNR is of little use. The results of such a test
are presented in section 4.5.

Inappropriate generalisation from 1-D to 2-D

Both [21] and [92] use 1-D, 256 pixel strip image sections for the averaging in
(4.2.6). They only give results for motion blur, which, if sections are taken
along the blur direction, is a 1-D function. However, they suggest that 1-D
sections are equivalent to 2-D square image sections and it is implied that their
results are valid for defocus blur as well. Experiments conducted showed that
this is not the case. Define relative error distance as:
|R— R
€4="7 (4.2.11)
where R is the estimated defocus blur extent, i.e., the estimate of the R pa-
rameter from equation (4.1.2) on page 89. Using the five test images in Figure
4.1, defocus blur was added using blur extents R = {2,3,4,9, 15}, resulting in
25 blurred images. Since no noise was added, the cepstral method could be
used. 1-D sections of 256 pixels and 2-D sections of 128 x128 pixels were both
used and e; was compared, with results in Table 4.1. It is clear that when
identifying a 2-D PSF, using 2-D sections provides a significant advantage.
As mentioned in section 4.2.2, [40] uses a 3 x 1 median-complement filter to
estimate f’n(u, v) for spectral subtraction. However, it was found that the filter
imposes an unwanted structure on the power spectrum visible in Figure 4.2(b);
it does not estimate the Gaussian noise as white, but instead concentrates noise
energy at high frequencies. Therefore, it cannot “uncover the zeros” present in

4.2 Literature 97

(c) 1228 x 780 (d) 800 x 653

(e) 1554 x 1556

Figure 4.1: Base images used during experiment, with their resolutions.

Table 4.1: Comparison of defocus blur classification accuracy using 1D and 2D
image sections.

Sections Images with e; < 10%

1-D 13 (52%)
2-D 25 (100%)

4.2 Literature 98

noiseless, blurred power spectrum, 4.2(a), at low frequencies. If the pn(u, v)
estimate is averaged over all frequencies prior to subtraction, the location of the
first low-frequency zero can be uncovered 4.2(c), greatly improving estimation
accuracy.

(a) [A(u,v)[? (b) |A(u, v)|” (0) |A(u, 0)P?

Figure 4.2: Power spectra estimated by spectral subtraction. In (b), P, (u,v) is
estimated by median-complement filter. In (c) that estimate is averaged.

That power spectra similar to 4.2(c) can be used in cepstral blur identi-
fication is surprising, since the cepstral peak has been previously assumed to
result from radially periodic zeros of the Jy(Rr)/(Rr) function [18, 40, 92].
Although periodic zeros are a requirement for a cepstral peak when using 1-D
image strips, it was found that, when using the 2-D cepstrum, periodicity is
not a requirement. It does, however, increase the relative height and accuracy
of the peak. This was confirmed in an experiment on a blurred image where
the periodicity of the power spectrum was removed. First the angular average
of the first significant local radial minimum was computed. Then all power
spectrum content at radial frequencies greater than the first local minimum
was set equal to this average. Figure 4.3 shows the effect of this non-linear
low-pass-filter on the power spectrum. Taking the cepstrum of this filtered
power spectrum still allowed identification of the defocus blur extent in spite
of no periodicity in the spectral domain (Figure 4.3). The resulting peak was
however slightly shifted (10-15%).

This observation strengthens the case for using 2-D sections when identify-
ing defocus blur. Consequently, 2-D sections are used in the angular smoothing
method in section 4.3 as well as the comparison test in section 4.4.2.

4.3 Angular spectral smoothing 99

(a) Original (b) Filtered

Figure 4.3: Effect of removing radial periodicity in P;(u,v) on Cy(p,q). Note
that only the zero-clipped negative part of Cy(p,q) is shown: white indicates large
negative values and black indicates zero.

4.3 Angular spectral smoothing

4.3.1 Avoiding power spectrum distortion

The clipping element of the spectral subtraction technique is inherent in equa-
tion (4.2.8). However, this clipping of negative values to € effectively distorts
the shape of the power spectrum: the average of radial minima is increased
relative to the rest of the signal. This effect can be seen in Figure 4.4(a). This

xle+5

xle+5

— Original — Original
...... Noisy o Noisy
4 - Estimate arf: -+ Estimate
3 3
2 2
1 1
0 ——— 0 0 50 60 70
r r
(a) (b)

Figure 4.4: Clipping distortion in power spectra. (a) shows the distortion resulting
from clipping during spectral subtraction. (b) shows the effect of angular smoothing
prior to subtraction.

figure was made by converting P,(u,v) into polar coordinates P,(r, f) and av-
eraging over 6 to give Py(r). The original blurred, noiseless power spectrum
|A(r)|?, the noisy power spectrum P,(r), and the estimate by spectral subtrac-
tion |A(r)[?, are shown. The distortion at the first local minimum is clearly
visible.

By decreasing the subtraction extent to (min(P,;(u,v))—e¢), one could avoid
this distortion. However, even with the use of Welch’s method, the variance

4.3 Angular spectral smoothing 100

in Py(u,v) (attributed to variance in P,(u,v)) means that such a restriction
severely limits the amount of subtraction and, therefore, noise mitigation pos-
sible. This variance is quantified in section 4.3.3. Instead of limiting the
spectral subtraction extent, it is attempted to reduce the variance of P,(u,v)
further, prior to subtraction.

4.3.2 Smoothing procedure

To achieve this reduction in variance, the same Cartesian to polar conversion
used to generate the plots in Figure 4.4 is used as a starting point. First
P,(u,v) is estimated according to (4.2.2). It is converted to P,(r,§) using
bilinear interpolation [16, p. 248|. P,(r,0) is averaged to P,(r) to reduce
variance. The extent of the variance reduction is quantified in section 4.3.4.
P,(r) values for » > M /2, where M x M is the size in pixels of the sections
used, are set equal to the average of P,(M/2), P,(M/2—1) and P,(M/2 —2).
This is done because values beyond r = M /2 map to the corners of P,(u,v).
These values are therefore estimated over fewer angles, making the averaging
less reliable. The higher frequencies are also dominated by noise power, which
further increases their variance. Next, the 1-D P,(r) is used as a profile to
create a surface of revolution: the 1-D sequence is swept around the polar
origin, » = 0, of the 2-D space in the 6 direction. This process creates a 2-D
power spectrum I_Dg(r, 6), which is angular smoothed: all pixels at the same
radius, say r = k, have the same value, namely the value of the angular average
at radius r = k in P,(r,0). P,(r,0) is converted back to Cartesian P,(u,v),
using linear interpolation over r. The process is illustrated in Figure 4.5. While
the averaging to 1-D reduces variance, use of a surface of revolution enforces
circular symmetry on the power spectrum. The inherent circular symmetry
of the defocus blur power spectrum is therefore strengthened while features of
the image power spectrum Py(u,v) are further suppressed. This suppression
can be seen in Figure 4.5: the diagonal stripes visible in 4.5(a) are image
features and are not present in 4.5(b). The effect of the corners on values of
r > M/2 = 400 can be seen in figures 4.5(c) to (d). The averaging for values
of r > M/2 has not yet been applied in (c¢) and (d), to show its necessity.
Following angular smoothing, the spectral offset created by P,(u,v) can be
maximally removed in a manner similar to equation (4.2.8), but without the

clipping:
pa(u, v) = |A(u, v)|2 = ﬁg(u,v) — min{ﬁg(u, v)} + e (4.3.1)

Figure 4.4(b) shows the amount of distortionless spectral subtraction made
possible by this technique. Note also that no noise estimate Isn(u,v) is re-
quired. Although replacing the median filter, used to estimate Pn(u,v) in
the spectral subtraction technique, with a more sophisticated estimator (like
those discussed in Chapter 3) might also improve results, a comparative test

4.3 Angular spectral smoothing 101

(a) Py(u,v) (b) Py(u,v)

(c) Py(r,0)

Figure 4.5: Use of angular smoothing to reduce variance and enforce circular sym-
metry. Note that, for illustration purposes, Py(u,v) was estimated from the whole
image and not using Welch’s method. Furthermore in all images the log is taken to
aid visualisation, as is the norm when depicting 2-D power spectra.

4.3 Angular spectral smoothing 102

has shown that no noise estimator is capable of consistently accurate estimates
across a wide range of image types and noise levels (see section 3.1.6). Thus,
removing the need for noise estimation increases the robustness of the author’s
method.

The value of € should ideally be as small as possible to maximise noise mit-
igation. However, it was found that, especially for noiseless images, choosing ¢
too small disproportionately accentuates the regions of Fg(u, v) closest to zero
when taking the logarithm. These regions are typically at high frequencies
and are not the local minima that must be accentuated. It was found that
0.001 < € < 0.01 gives good results. This spectral offset can be interpreted as
the offset that would result from Gaussian noise with 0.001 < o2 < 0.01.

The cepstrum C,(p, q) is calculated from]f’a(u, v) and clipped so that only
negative values are considered. Except for quantisation effects, this exhibits
perfect circular symmetry. To get C,(r), therefore, a central slice can be used.
The postprocessing filter from (4.2.10) can be used on this 1-D sequence to
enhance the height of the desired peak. A simple peak picking algorithm
identifies the blur radius.

An unexpected advantage of this angular smoothing approach is that in-
focus images have a peak at r = 2 that can be detected prior to comb-filtering
C,(r) (as previously explained, the output of the filter is restricted to r > 3).
Since image power spectra are generally exponential in shape, the surface of
revolution created from a profile in which the corner frequencies are set equal
to a constant, is a circular shape with the first radial local minimum at the
edge of ?g(u, v). This reliably maps to a cepstral sequence similar to the one
in Figure 4.12 and is a boon in the context of blind image quality assessment,
since in-focus images can be easily identified.

4.3.3 The variance of a noise image’s power spectrum
estimate

The periodogram is used as an estimate for the power density spectrum dur-
ing blur estimation in equation (4.2.2). In this section results from [79]| are
generalised to two dimensions to show that there is significant variance in the
periodogram based power spectrum estimate. It is this variance that angular
spectral smoothing attempts to remove.

Consider a 2-D finite duration, discrete noise image n(x,y),0 < x < L —
1,0 < y < M — 1 obtained by sampling a single realisation of a continuous
random process 7(z., y.) at a constant rate in both the x. and y. directions. Let
n(z, y.) be a real, zero-mean, white process with Gaussian probability density
function. The additive noise in the degraded image model from equation (4.1.1)

4.3 Angular spectral smoothing 103

is modelled as n(x,y). The 2-D Fourier transform of n(z,y) is*

h

-1 M-
f{n(x ?J)} N U U n 6 j27TU3U6—j27rvy’

=0

,_.

8

Il

=)
<

or, using a radial frequency variables y = 27u and v = 27w for ease of notation:

The periodogram is then defined as:

1
Pn(:ua V) = W|N(M7 V)|2
L—1M-1L-1M-1 (4.3.2)

1 | |
T LM Z Z Z n(k,)n(z, y)e! WD e=iluetry),

The periodogram is an asymptotically unbiased estimate of the true power

density spectrum:
lim B[P, (u,v)] = In(p, v),

L,M—oo

where the true power density spectrum, I',,(u,), of the stationary random
process n(x,y) must be calculated by Wiener-Khintchine theorem:

Ln(p,v) =/ En(ze,ye), n(xe + 1, Yo + T2)|e M Fee™ e dz dyL,,

[e.9]

since n(z., y.) does not have finite energy and therefore does not have a Fourier
transform. The unbiased nature of the periodogram estimate is proven in |84,
pp. 902-905] for 1-D signals and is easily generalised for the 2-D case.

However, while unbiased, the periodogram is not a consistent estimate of
the true power density spectrum; the variance of the estimate does not converge
to zero:

ijlvljrgoo var| P, (u, v)] # 0.

Therefore the periodogram does not converge to the true power density spec-
trum.
To derive an expression for the variance,

var(Pa(p, v)] = B Pa(p, v)I*] = |E[Pa(p, V)] %, (4.3.3)

3The Fourier transform of an aperiodic function implies continuous frequency variables,
u, v, i and v.

4.3 Angular spectral smoothing 104

equation (4.3.2) is substituted into the first term of equation (4.3.3), using the
: L _ L L .
shortened notation b0 = > 0 Do -

1

B[|Pu(p,v)|?] = T2~

L—-1
> Z n(z, y)n(p, @)nlr, s)]eirb—s—prngivi-y=a+s) (43 4)

k,xz,p,r=0 l,y,q,s=0

For zero mean, jointly Gaussian random variables, X, X5, X3, X4 it can be
shown that

E[Xy, X, X3, Xy] = E[X1, Xo| B[X3, X4]+
E[Xl, Xg]E[Xg, X4] + E[Xl, X4]E[X2, Xg].

Therefore

Eln(k, On(z,y)n(p,)n(r, s)] = Eln(k,)n(z, y)|En(p, g)n(r, s)|+
Eln(k, Dn(p, ¢l E[n(z, y)n(r, s)] + Eln(k, n(r, s)| E[n(z, y)n(p, g)],
which, for white noise reduces to:

k=xzl=y,p=randqg=s

ol ork=pl=qgr=randy=s
E[n<k7 l)n(ac, y)”(pa Q)n(ra S)] -
ork=rl=s,x=pand y=q
0 otherwise.
(4.3.5)
Substituting equation (4.3.5) into (4.3.4) yields:
L—1 M-1 L-1 M-1
U R RS 3D ST WP T
z,r=0 y,s=0 p,r=0 q,s=0
L—1 M-1
Z Z eﬂu(r—p)eﬂV(S—Q)}
pr=0 a:5=0 (4.3.6)
‘73 27 72
= 0 2L M*+
L—1 L—1 M—1 M—1
[€—j2u P eﬂu T Z —]2'/ q Z eﬂu 8}
p=0 r=0 q=0 s=0

Using the geometric series expansion:

L—1 o —
af = ,
=0 la a,7£]_

hS]

4.3 Angular spectral smoothing 105

one can simplify the factors of the second term in equation (4.3.6):

L-1 L-1 s '
[e—jQu]p Z[ejzur _ 1 — e—J2ulL 1 — ei20L
0 1 —ei2u 1 — ei2n

r=0

3

9 — (e 2L 4 2L
2 — (e 721 + i)
2 —2cos(2uL)
T 2- 2 cos(2u)

which simplifies equation (4.3.6) to:

B[Py ()] = o {2+ (?Eﬁf(j?ﬁ?)) } (4.3.7)

Substituting equation (4.3.7) into equation (4.3.3) and using E[P,(u,v)] = o2

the expression for variance is:

var[P, (1, v)] = o {1 + (E‘;igg;ﬁ;]g)>> } (4.3.8)

From equation (4.3.8) one can see that the variance of the power density spec-
trum estimate is of order 2. Furthermore increasing the image size to infinity
does not reduce this variance to zero:

. 4

L,lellrgoo var| P, (u, v)] = o,,.
This result can be generalised for a nonwhite Gaussian process by approximat-
ing the nonwhite random sequence as the output of a linear system excited
by white noise. The squared magnitude of frequency response of the linear
system is selected to be equal to the power density spectrum of the random
process, ', (1, 7). An argument for the 1-D case is presented in [79] and is also
valid for the 2-D case. The variance of the periodogram is:

sin(uL) sin(v M))2} |

(4.3.9)

var[P, (. v)] = I} (1, v) {1 + (LM sin(p) sin(v)

which shows that in general, for the nonwhite case, the periodogram is still
not a consistent estimate of power spectrum density.

4.3 Angular spectral smoothing 106

4.3.4 Reducing the variance of the power spectrum
estimate

The power spectrum estimate, P,(u,v), of a discrete Gaussian white noise
image n(z,y) has a mean E[P,(u,v)] = 02 and a variance var|[P,(u,v)] ~ o2.
The effect of angular averaging on these values is investigated in this section.

Since the derivation in section 4.3.3 used the Fourier transform, a finite,
aperiodic, discrete n(x,y) implied a continuous (and periodic) P,(u,v). In
practice, the discrete Fourier transform is used, which results in a discrete
P,(u,v) (and a periodic n(z,y)). To emphasize the discrete nature of the pe-
riodogram, it is the convention of signal processing literature to use alternate
variables, such as P, (k,l) where the periodogram is sampled at discrete fre-
quencies u;, = k/L and v; = [/M and one period of n(z,y) has size L x M
as usual. However, the convention in this dissertation (section 1.4), which
is common to image processing literature, is to assume 2-D images are dis-
crete unless otherwise noted. Outside of section 4.3.3, v and v will continue
to refer to discrete variables. The choice of Fourier transform over discrete
Fourier transform for the derivation in section 4.3.3 is simply for notational
convenience.

Consider the discrete power spectrum estimate P,(u,v) of a square noise
image (L = M = n(x,y) is size M x M), which is converted to polar coordi-
nates P,(r,0),0 <r < M/2—-1,0< 6 < 359,60 € Z. Averaging over 6 can be
written as:

359

1
Pn - -~ Pn 702'
1 179
= Ton Pn(T7 92)7
180 £

1

(4.3.10)

since the power spectrum is symmetric with respect to the polar origin.
The expected value of the angular averaged periodogram is unaffected:

1 179
@ Z Pn(ﬁ 91)]

1 179
— — N E[P.(r,6;
5 D BR8]

179
1 2

180 £~ n

E[P,(r)] = E

(4.3.11)

2

=o0,.

If it is assumed for the moment that P, (r,6;) is uncorrelated with P,(r, 6;)

4.3 Angular spectral smoothing 107

for ¢ # j, then the variance of the angular averaged periodogram is:

179
1
Pn = Ton Pn 76i
var[P,(r)] var [180;) (r)]
LA

= 1502 Z var[P,(r, 6;)]

40 (4.3.12)
179

1 4
~ 1802 Z On,
0;=0

4

On

Thus the variance appears to be reduced by the number of discrete uncorre-
lated samples in the average, from o to o2 /180. In practice the P,(r,6;) and
P,(r,0;) are not uncorrelated since converting from Cartesian to polar coor-
dinates requires interpolation, which implies samples at neighbouring 6 values
contain shared information. This is most noticeable at small values of r since
few pixels close to the centre of the image (the origin of the polar coordinate
system) are used for many values of 6, as shown in Figure 4.6.

(a) Cartesian coordinates. (b) Polar coordinates.

Figure 4.6: Neighbouring pixels close to the origin r» = 0 of the polar coordinate
system are highly correlated.

Another way of thinking about the correlation is from a sampling perspec-
tive. Sampling occurs at regular intervals in Cartesian coordinates. On the
other hand, sampling in polar coordinates implies denser sample spacing closer

4.3 Angular spectral smoothing 108

to the polar origin. Since the samples are regularly spaced in Cartesian coor-
dinates, the extra samples needed in high density polar areas must be derived
by interpolation.

The true number of discrete uncorrelated samples used in the angular aver-
age varies with distance from the polar origin: at a certain radius r it is half of
the number of Cartesian samples touching a circle with radius r. Close to the
polar origin constant values of r describe small circles in Cartesian coordinates,
while further from the polar origin, larger values of r describe larger circles.
Only half the samples at radius r are uncorrelated because of the symmetry
of the power spectrum. The number of samples touching a circle of radius r is
approximately equal to the circumference of the circle:

(Cartesian samples at radius r) ~ 27r.

Replacing 180 in equation (4.3.12) with the approximate true number of un-

correlated samples yields:
4
o
P, ~ . 4.3.13
varl P, ()] = 22 (43.13)

The validity of equation (4.3.13) was tested by generating 100 unit variance
Gaussian noise images (each of size 100 x 100). The angular average of each
noise image’s periodogram was calculated. Finally the variance of the 100
angular averages was computed as a function of » and compared to the variance
predicted by equation (4.3.13). As Figure 4.7 shows, the results are similar.

0.25

— Estimated
<<<<<< Predicted

0.20

Variance
=
F
(6]
T

©

=

o
T

0.05F

0.00

Figure 4.7: Variance of angular averaged periodogram predicted by equation
(4.3.13) agrees with estimated variance.

4.3 Angular spectral smoothing 109

As described in equation (4.3.1), this reduction in variance allows spectral
subtraction to remove the offset caused by noise, E[P,(u,v)] = o2, without
distorting the power spectrum at local minima of P,(u,v). Angular spectral
smoothing can be categorised as a nonparametric method for power spectrum
estimation [47, pp. 908-920|, similar to Welch’s method, but with narrower
applicability. Welch’s method reduces the variance of the power spectrum
estimate at cost of resolution. Since the data must be divided into sections for
averaging, spectral resolution is lowered from the size of the data to the size of
the segment. Resolution is further limited by spectral leakage introduced by
windowing at the section-level. Angular spectral smoothing reduces variance
by discarding angular information, while maintaining radial resolution. Since
the power spectrum to be determined, namely P, (u,v) the power spectrum of
the blurring function, possesses circular symmetry, it is desirable to maintain
radial resolution while angular information is superfluous.

4.3.5 Estimate confidence

Any deconvolution technique will fail, given a low enough SNR, and concerns
have been expressed about the sensibility of using blind (and hence unreliable)
image quality assessment in a scientific environment [46]. Therefore, during
blur identification, it is useful to have an indication of the confidence in the
blur estimate; in a fully automated, scientific environment images should only
receive a bad score if it can be stated with certainty that they are out of focus.
Cyo(r) will always have some maximum. At low noise this maximum is at a
prominent peak 2R from the origin. However, as SNR decreases, spurious
peaks appear and eventually dominate C,(r). The concept of relative energy,
E,., is introduced to enable differentiation between true and spurious peaks:

E

B, = ek 4.3.14
Erest7 ()
Epar = 3 (Cali))
icP
P = {rlr,—1<r<r,+1},
r, = argmax|Cy(r)],
Erest = Z(Ca@))Q’
1€Q

Q = {rlr¢ PO<7r <7Tpna}

The relative energy in the peak of the cepstral sequence C,(r) is computed.
It can be tested against a threshold relative energy level and, if it is too low,
the identification is probably wrong and the results should not be trusted;
otherwise the defocus blur estimate is R = r,/2. For an image (Figure 4.1(a)
from page 97) blurred with R = 3 (r, = 6), Figure 4.8 shows the effect of
adding noise with an increasing standard deviation, o,, on E,. 4.8(b) and

4.4 Experiments 110

4.8(c) show C,(r): the prominent, correct peak in (b) results in high E,, while
spurious peaks in (c¢) result in low E,.

ﬁ " 10
0 206 . 08
1125
3 6.56
5 648 N
7 0.662 02 02
9 0349 | oy
w 0 1Eb)zoo_nao: §7 Er i 6%6 80 90 0 1(0C) zoo—n 3u: é(: _E?i :600.‘5:4930 EY

(a)

Figure 4.8: Spurious peaks dominate at higher o, and result in lower E,.

When using Cannon’s original cepstral method or the bicepstral method,
low FE, is also typical of images that have no blur. Distinguishing in-focus and
out-of-focus images is important for blind image quality assessment. This is
discussed further in section 4.5.

4.4 Experiments

4.4.1 Choice of windowing function

As mentioned in section 4.2.2, the specific window type was not specified in the
description of the cepstral method [18]. In addition to the rectangular window
(the effective window when data is sectioned and no other window applied),
Hamming and Hanning windows were also investigated [84, pp. 624-627|.

In the spatial domain, the rectangular window has abrupt discontinuities
that give its frequency response high sidelobes. These sidelobes commonly
result in undesirable ringing effects in the frequency domain when data is
sectioned with a (implicit) rectangular window. The classical solution is to
multiply the sectioned data with a windowing function that has less severe dis-
continuities prior to taking the Fourier transform. Commonly used windowing
function are the Hamming and Hanning windows. These functions result in
smaller frequency domain sidelobes, but the cost is an increased width of the
frequency domain main lobe. The windowing function’s increased main lobe
width can result in undesirable smoothing of data’s frequency response. Figure
4.4.1 shows the (spatial domain) 1D windows for a data segment of length M.

It was found that the spectral leakage, or ringing effect, introduced by the
high frequency domain sidelobes of the rectangular and Hamming windows
produce unwanted artefacts in the cepstrum that could obscure the observa-
tion of the negative cepstral peak. The low sidelobes of the Hanning window

4.4 Experiments 111

1.0
0.8 A AN
/
&)
0.6 / %
)t %
0.4r /| — Rectangular| -, 1
--- Hammin B
0.2 //_ 3 . g E ,\\ 7
L.~ Hanning EAN
0.0 ’
0 M-1

Figure 4.9: Different window types for data of length M.

(a) Rectangular, Py(u,v) (b) Hamming, Py(u,v) (c) Hanning, Py(u,v)

(d) Rectangular, Cy(p, q) (e) Hamming, Cy(p, q) (f) Hanning, Cy4(p, q)

Figure 4.10: The effect of window function on the power spectrum and cepstrum.(a)
to (b) show the spectral leakage in the power spectrum, which is not visible in (c).
(d) to (e) depicts the corresponding cepstra.

produced no such artefacts and this window was therefore selected. Figure
4.10 shows the effect of the different window functions on the frequency do-
main and the negative part of the cepstral domain. Note that, for illustration
proposes, the whole image is considered and the cepstral domain views are
zoomed.

The disadvantage of using the Hanning window is that its frequency re-

4.4 Experiments 112

sponse has a wider main lobe, resulting in a smoothed frequency domain re-
sponse. This will affect the observability of large blur PSFs: large R values
in the spatial domain decrease the period width of the J;(Rr)/(Rr) frequency
domain response, making it more susceptible to smoothing.

The solution is simply to choose the window size large enough, since this
decreases the width of the window function’s frequency domain main lobe.
Fortunately, there is ample data available and, therefore, the only disadvan-
tage of increased window size is an increased execution time. 128 x 128 pixel
windows were chosen. These are more than wide enough to observe severe
blurring such as occurs when R = 15.

4.4.2 Comparative experiment

The performances of the angular smoothing method and existing spectral
based, direct methods were evaluated in a comparative experiment on a range
of images. The five base images from Figure 4.1 were chosen, since they repre-
sent a wide variety of remote sensing image types. Figures (a), (b) and (d) have
low spatial detail and varying degrees of edge gradient levels, (e) has sharply
defined edges typical of coastal regions and (c) has high spatial detail typical
of city scenes. All images are 8-bit greyscale with resolutions shown in the
figure. These images where blurred with defocus radii R = {0,2,3,4,9,15}
and white, zero mean, Gaussian noise was added with standard deviations
o, ={0,1,3,5,7,9,20}, resulting in a total of 210 images.

The cepstral, bicepstral, spectral subtraction and angular smoothing meth-
ods were all used to identify the defocus blur radius. For the spectral subtrac-
tion method, P,(u,v) was estimated from the whole image and a = 1 was
used, as recommended in [40]. For the other methods, 128 x 128 pixel sec-
tions were averaged according to (4.2.2) and (4.2.6) to estimate P;(u,v) and
By (u,v;0,0) respectively. In all cases the resulting 2-D (bi)cepstral sequence
was averaged to 1-D, to facilitate peak picking. The comb-filter postprocess-
ing was applied in all cases except for the basic cepstral technique. After peak
picking, E,. thresholds for each method were varied from minimum to max-
imum using deciles (10 equally spaced E, indices were chosen from a sorted
list of output E, values). Based on these E, thresholds images were separated
into “classified” and “unclassified” groupings, illustrated in Figure 4.11 for the
angular smoothing method. The number of classified images is not zero for
maximum F,., because in-focus images were classified differently.

Images that were possibly in focus were classified using special rules, since
none of the methods (barring spectral subtraction, discussed below) gives r, =
0 for in-focus images. Since the comb-filtering technique zeros all values for
r < 4, identification of in-focus images was done prior to comb-filtering. Given
an in-focus image, cepstral sequences for the different methods are shown in
Figure 4.12. The bicepstrum typically gives results similar to the cepstrum
for in-focus images: neither method gives a peak at a characteristic location,

4.4 Experiments 113

250

— Classified
- - Unclassified

200

Number of images
-
w
o

-
o
]

50

4 " . " . .
?0’1 10° 10! 10? 10° 10* 10°
Relative Energy Threshold

Figure 4.11: Effect of varying E, on number of classification.

but the E, level is normally low. As already discussed, the angular smoothing
method results in a peak at r = 2. Images processed using the cepstral,
bicepstral and angular smoothing methods with r, < 2 were assumed to be
in focus, irrespective of E, level. In the author’s experience, the spectral
subtraction method has a large peak at r = 0 for all image types (both in-
focus and blurred). This can be explained by looking at Figure 4.2(c): clipping
a large part of the power spectrum to the same ¢ < 1 value results in a
large low frequency (quefrency) component in C,(p,q) that is negative, since
log(€) < 0. Therefore, identification by spectral subtraction could only be done
after comb-filtering, which restricts the range of the output cepstral sequence
to 4 < r < 1. Consequently, images processed with the spectral subtraction

1.0,

Cepstrum
- - Spectral subtraction
— Angular smoothing . :

0.8

50 60

Figure 4.12: Normalised cepstral sequences for an in-focus image prior to comb
filtering.

method were assumed in-focus if r, = 4.

4.4 Experiments 114

For each classification, the error distance was calculated according to (4.2.11)
and averaged across all classifications for a given method. If R = 0 and R # 0,
eq = 100%, which corresponds to an in-focus image, incorrectly classified as
out-of-focus. Since the number of classifications vary with £, threshold, meth-
ods are compared using average ey against number of classified images.

4.4.3 Effect of reduced dynamic range

As previously mentioned, sensor calibration and atmospheric effects often
cause remote sensing images to have reduced dynamic range. Since the al-
gorithm will likely be applied to images with reduced dynamic range, its effect
on the algorithm performance was observed.

Starting with an image with full dynamic range, the dynamic range was
reduced by subtracting the mean, multiplying the result with a fraction and
adding the mean again, as shown in Figure 4.13. The images were blurred
with PSF with extent R = 4, and cepstral response evaluated. The results are
discussed in section 4.5.2.

Figure 4.13: An image with successively reduced dynamic range.

4.4.4 FEmbedded evaluation

All algorithms were implemented using Python. The performance feasibility
of the angular smoothing method was evaluated by implementing it in C on

4.5 Results

250
“““ Cepstrum
* Bicepstrum
00l — — Spectral subtraction
— Angular smoothing

150

100

Average error distance [%

50 N

100

200

Number of classifications

Figure 4.14: Comparison between direct blur identification techniques.

)
g
o
=3
=

0.6 0.05
05
0.04
204 2
3 3
e 2 0.03
$03 3
o o
0.02
0.2
01 | 0.01
| 1
0.0§ 55 0.00

40 60 80 100
Error distance [%]

(a) Classified images

50 200 250

100 150
Error distance [%]

(b) Unclassified images

115

Figure 4.15: Average errors in an example classified-unclassified split based on F,.

the same embedded SH4 hardware used to test the noise algorithm in section
3.2.1. In addition to converting the existing code, the fast Fourier transform

had to be implemented.

Documentation is provided in Appendix C.

4.5 Results

4.5.1 Comparative results

Figure 4.14 shows the result of the comparative test. As discussed in section
4.4.2, for each method deciles were selected from its range of FE, values, and

4.5 Results 116

these values used to separate classified from unclassified images. Since differ-
ent F, values were applied to different methods, the horizontal axis in Figure
4.14 is “number of classifications” instead of “E,” to allow for direct compari-
son. For small number of classifications (the left hand side of Figure 4.14), the
strict E,. thresholds allowed all methods to classify only very low noise images.
Conversely, on the right hand side of the graph no images are rejected; all
methods had to attempt blur estimation on many images with high levels of
noise. The usefulness of the E, measure is clear from the fact that the classifi-
cation accuracy generally increases with decreasing number of classifications,
corresponding to decreasing noise levels. It is confirmed by the histograms in
Figure 4.15, that show the errors for an example classified-unclassified split of
the cepstral method. The unclassified images have greater errors. The trade-
off is that, to achieve higher accuracy, more images have to be rejected. A way
to select an appropriate level for E, is discussed in section 5.3.8 on page 158.

First consider the right side of the graph in Figure 4.14 where all 210
images are classified. The results confirm the high noise sensitivity of the
cepstral method to additive noise; the many noisy images present result in a
large average ey of 232%. The bicepstral method shows a big improvement with
average eg of 71%, while the spectral subtraction and angular smoothing give
eq = 36% and eg = 29% respectively. As the number of classifications decrease,
eq generally improves, except in the case of spectral subtraction. The increase
in this case is caused by the inability of the method to distinguish between
in-focus images and images blurred with R = 2 (r, = 4), which is not affected
by increasing the E,. threshold. Instead these incorrectly classified images with
eq = 100% just start to make up a bigger portion of the total classifications,
resulting in an increase in average e;. Many in-focus images were also classified
as having r, = 5, 6 or 7 and generally the method has lower accuracy when
used with small blur radii.

The significant area of the graph in Figure 4.14 is the right hand side,
as will be justified below. The bi-cepstrum, spectral subtraction and angular
smoothing methods are adaptations of the cepstral method aimed at improving
robustness against noise. Therefore:

e tests on the complete set, including noisy images (right hand side of the
graph), are required to differentiate between them.

e when no noisy images are present (left hand side of the graph), all meth-
ods should yield indistinguishable, correct results, as is the case in Figure
4.14.

Depending on the application, the rules for in-focus classification and the
use of R = 2 as one of the defocus blur radii might seem to tip the advantage
unfairly in the direction of angular averaging. As an additional test, all-in
focus images and images classified as in-focus were discarded and the same
plots generated. Figure 4.16 shows the results. The maximum number of

4.5 Results 117

100

<<<<<< Cepstrum
---- Bicepstrum
- - Spectral subtraction

L p— Angular smoothing

60

401

Error distance [%]

20t S

20 40 60 8 100 120 140 160
Number of classifications

Figure 4.16: Comparison results when in-focus images and classifications are dis-
carded.

classifications achieved with the spectral subtraction technique is in this case
fewer than the others, since more images had to be discarded. The angular
spectral smoothing technique still compares favourably.

These results confirm the usefulness of the angular smoothing technique,
especially in the context of blind image quality assessment.

4.5.2 Effect of reduced dynamic range

The cepstral sequences corresponding to images with reduced dynamic range,
Figure 4.13, are shown in Figure 4.17. While the accuracy of the estimate is
not affected, the relative energy in the peak is reduced. This increases the
susceptibility of the estimate to the effects of additive noise. The usefulness of
a defocus estimation algorithm that is robust against noise is emphasised.

4.5.3 Feasibility of embedded implementation

The embedded C implementation of the angular smoothing method was tested
on images of various sizes. For each image size the algorithm was repeated 10
times and the average execution time recorded. The results are shown in
Figure 4.18. The time taken for each of the 10 runs at a given size was almost
identical.

The slowest part of the algorithm is the computation of the fast Fourier
transform, which has O(nlogn) complexity. The 6 megapixel image had di-
mensions 2449 x 2449 and took 128,6 seconds. The slight bump in the graph at
2 megapixels is caused by the choice of section size. The images were divided

4.5 Results

Dynamic range 75%

118

20 . 30

Dynamic Range 25%

700 QOriginal_ 700
600} 6001
500 500}
400} 400}
300} 300}
200} 200}
100} /\ 100}
&) 10 20 . 30 40 50 % 10
i 0,
500 ‘ Dynamlc range 50% ‘ 300 ‘
400} 250
200}
3001
150F
200}
100f
100f sol
GO 10 20 30 40 50 G0 10

20 30

40 50

Figure 4.17: The effect of reducing the dynamic range on Cy(r).

Time [s]

140

120}

100t

80}

601

40|

20}

Figure 4.18: The execution
tion.

2

3

4

Image size [pixels]

6
xle+6

time of the embedded angular smoothing implementa-

4.6 Conclusion 119

into 128 x 128 pixel sections, but the images’ sizes were not integer multiples
of 128. The edges that remained were discarded. At 2 megapixels (image size
1414 x 1414) these edges were the smallest; therefore less image content was
discarded than for neighbouring images.

While the execution time is longer than the noise estimation algorithm’s,
it is still reasonable. Furthermore, the execution time can be limited, as is
discussed in the conclusion.

4.6 Conclusion

Across 210 test images, the angular smoothing method gave the best average
classification error of all the direct, spectral based, defocus blur identification
methods evaluated. The increased robustness of the method can be ascribed
to the fact that no noise estimate is needed, as well as the reinforcement of the
circular structure typical of defocus blur. The method’s characteristic response
to in-focus images represents a further improvement. This makes it especially
suitable for use in situations where examined images may be either in-focus or
out-of-focus, such as during blind image quality assessment. The usefulness of
the relative energy threshold was proven for situations where certainty about
the estimate accuracy is required.

If the images are subject to geometric distortion due to satellite instability,
it is likely that the method will fail. It relies on a spatially invariant, parametric
model (4.1.1), which will be invalidated when the linear sensor moves in a non-
uniform manner. If the satellite instability proves to be a greater problem than
sensor noise, it might be preferable to use a method that works when image
segments are 1-D strips instead of 2-D blocks. As discussed in section 4.2.3,
defocus blur identification benefits greatly from 2-D blocks, but if satellite
instability is a big problem, the advantages of increased performance accuracy
and robustness against noise will have to be weighed against potential inability
to estimate blur in conditions of non-uniform sensor motion.

The algorithm has been shown to be practically feasible for embedded use.
Since the blurring is spatially uniform, it is not necessary to evaluate the entire
image; a section of the image is sufficient. Increasing the size of this section
reduces the effect of the image structure on the variance of P,(u,v), because
the averaging of Welch’s method, equation (4.2.2), is carried out over more
subsections.

Although a square section was used in the experiment in section 4.4.4, this
is not recommended. Instead the entire sensor swath-width should be used and
the section size varied in the along track direction. Keeping the along track
section size small, for example using a 7800 x 256 section, where 7800 is the
swath-width, will minimise the effect of any non-uniform sensor motion that
might be present. This section size will still allow for 120 128 x 128 subsections
for the averaging in (4.2.2), which is sufficient [18]. Since this section is less

4.6 Conclusion 120

than 2 megapixels, the estimation algorithm will be executed speedily.

The PSF of a satellite’s optical system will vary from channel to chan-
nel. However, these variations are fixed according to the design of the optical
system. Furthermore, telescope defocus will affect all channels equally. It
is therefore recommended that a single representative channel be selected as
input.

A paper based on the work presented in this chapter has been published
in an international journal [72].

Chapter 5

Quality assessment model

5.1 Introduction

Given various degradation measures, the question arises: how does one com-
bine these features into a single quality score? While one could construct any
model, it is desirable to have a scientific justification for choices regarding how
much weight to assign to each variable. This is the domain of image quality
assessment (IQA).

In section 5.2 the literature study is presented: 5.2.1 discusses IQA in
general as well as specific examples of existing work; 5.2.2 examines model
fitting in general and touches on its previous application in IQA; in subsections
5.2.3 and 5.2.4 the two types of models evaluated in this chapter are introduced.
Section 5.3 describes the various experiments conducted during the acquiring
(5.3.2 - 5.3.3) and processing of the data (5.3.4), the fitting of the models
(5.3.5 - 5.3.6) and the interpretation of the results (5.3.7). The results of these
experiments are presented in section 5.4. Finally conclusions are drawn in
section H.5.

5.2 Literature

5.2.1 Image quality assessment

The machine evaluation of images is an important problem in image processing
that continues to be actively investigated. The goal of image quality assess-
ment is to enable a machine to make an objective judgement on the quality
of an image that corresponds to a subjective evaluation of the same image by
humans. A significant application, for example, is the efficient evaluation of

121

5.2 Literature 122

new compression algorithms; instead of having to conduct an expensive survey
to establish the perceived performance of a new algorithm, an IQA algorithm
can be used [105].

Frequently when a machine’s judgement is to match that of a human, sta-
tistical models are trained to mimic data collected in a subjective experiment.
Alternatively, a model can be constructed without making use of subjective
data. In this case a fixed, non-linear, monotonic mapping between the output
of the model and subjective data is allowed when testing the model against
subjective data.

Full-reference quality assessment

The majority of existing literature focuses on full-reference quality assessment
algorithms, where the original image, f(x,y), is assumed to be available for
comparison with the degraded image, g(x,y). Most full-reference IQA models
are constructed without training on subjective data. Instead, the algorithms
use objective mathematical models and therefore, as previously mentioned,
output can be modified by non-linear mappings to validate against subjective
data.

Many of the full reference algorithms use a sophisticated human visual sys-
tem (HVS) model. An HVS model attempts to take the way humans perceive
visual information into account when determining a quality score [96]. For
example, instead of merely quantifying noise in an SNR, which only considers
noise power, the HVS model incorporates the noise frequency as well as the
position of the noise in the image. Also modelled in the HVS model is the
tendency of humans to perceive contrast better at certain spatial frequencies:
a contrast sensitivity function [29], as well as the effects of luminance and
contrast masking [46].

In [105] the similarity between f(z,y) and g(x,y) is evaluated using fuzzy
set theory to combine neighbourhood-based and histogram-based similarity
measures. A comparison of existing full reference IQA algorithms is made in
[97].

The need for a reference image limits the application of these algorithms
and differentiates them from humans, who can easily determine the quality of
an image without a reference.

Blind image quality assessment

This has led to the formulation of the blind image quality assessment (also
called no-reference or univariant) problem, in which an attempt is made to
appraise the quality of an image without reference, i.e., using only g(zx,y).
Most blind IQA algorithms incorporate statistical models which are trained
on subjective data.

5.2 Literature 123

Applications discussed for blind image quality assessment include, among
others, intelligent memory management in digital cameras [66] and evaluation
of compression algorithms at the receiver [75]. In [43] the use of blind methods
is justified in the context of measuring the performance of contrast enhancing
algorithms. Existing full reference algorithms assume differences between the
reference image f(x,y) and the image in question g(x,y) are degradations.
This is not the case when g(x,y) was created by applying image enhancement
algorithms to f(z,y).

In [66] three quantities are proposed as objective measures to aid in blind
image quality assessment: edge sharpness level, random noise level and struc-
tural noise level. A fuzzy-logic model is trained on subjective data to give
meaningful quality scores when presented with these features [107]. Similarly,
specific attributes of known likely degradations are often used; in [104] the
statistical properties of compressed video is used in blind quality assessment
to estimate noise and subsequently compute the PSNR.

The problem of assessing contrast enhancing algorithms using blind TQA
was dealt with by selecting numerous features and training an ensemble of
neural networks [43]. Many features were compared using statistical analysis
and those that gave the best separation between the original and contrast
enhanced images were selected.

Outcome based quality assessment

Generally, the goal of IQA has been to match subjective human evaluation as
closely as possible. However, depending on the context, the concept of a good
quality image can differ. When images are meant for human consumption,
human appraisal is the final criterion. But when images are input to some
classification or recognition algorithm, the outcome of the algorithm should be
the criterion by which image quality is judged.

For example, in agriculture automated processes often rely on image pro-
cessing. In [74] the exposure levels during image acquisition must be adjusted
to ensure optimal image quality. The performance of three existing algorithms
(mushroom counting, pig-monitoring and weed identification) are measured.
The image quality model must map to the performance of the algorithms.

However, the environment in [74] is very controlled: the model selected
is a single measure, entropy, and is optimal when comparing various images
of the same subject. Emntropy has its origins in information theory and is
defined as H = Zfi% pilog(1/p;), where p; is the probability of intensity grey
level ¢ appearing in the image. These probabilities are equal to the normalised
histogram bin values. Entropy has been described as a measurement of average
global information content in terms of average bits per pixel. If an image has
a bit-depth of 8, an entropy approaching 8 indicates that pixel intensities
cover the full range and do so throughout the image [95, p. 26]. While it
measures information content when comparing images of the same subject,

5.2 Literature 124

when the imaged scene differs, the concept of information content becomes
too broad to capture in such a simple equation. For example, city scenes with
high variation in pixel content will always outperform desert scenes with low
variation, irrespective of the desirability of the scenes. In this sense, it is similar
to the simple focus measures discussed in Chapter 4. Furthermore, while the
feature corresponded to optimal performance for two of the algorithms in [74],
the third algorithm required that human knowledge of the specific problem be
incorporated.

In the field of medical imaging similar problems are encountered. When
evaluating image quality in medical images, the evaluation should ideally be
based on the diagnostic success rate [39]. However, this is a practical im-
possibility and, therefore, in [39] subjective preference experiments are used
instead. Many viewers compare images with varying degrees of degradation or
restoration and the results are used to evaluate image quality.

Conclusion

While a sophisticated HVS model is appropriate when images are meant for
human consumption, it is not required in a scientific application where the pe-
culiarities of human perception do not have to be compensated for. Although
any model that tries to match the output of a subjective experiment will in-
herently be influenced by human perception, it is undesirable to model human
perception explicitly. Moreover, an HVS model relies on the presence of the
reference image, f(z,y), which is not available in the proposed application.

Although proponents of full reference quality assessment disapprove of the
use of blind IQA in scientific applications [46], for the application presented
in this dissertation, there is no alternative. Since access to reference images
is unavailable, blind image quality assessment must be used. This is why
it is crucial for the feature extraction algorithms to be able to assess their
own estimation ability, a characteristic inherent in the chosen noise estimation
algorithm and introduced in the blur estimation algorithm with the relative
energy measure in equation (4.3.14).

Using a generalised approach to feature selection, of testing a myriad of
features and culling those which do not perform adequately [43, 30], is not
appropriate for this application. Rather, the more considered, but also more
common, method of decomposition of global image distortion into single effects
is followed [46]. By concentrating on single effects the model is more objective
and justifiable.

Whereas no distinction is made in [66] when proposing edge sharpness level,
random and structural noise levels as quality features, one must distinguish
between image degradation measures and image content measures. The mo-
tivation behind using degradation measures instead of content measures was
given in section 4.1.2: degradation measures are more objective. Hence, for
image quality assessment in this project only specific degradation measures

5.2 Literature 125

are considered: cloud cover, additive noise and defocus-extent.

Outcome based quality assessment would be ideal for this application: one
would want to base a remote sensing image quality model on the performance
of the algorithms to be applied to the images. However, in practice this is
very difficult. In |74] there were three pre-existing algorithms, one variable
(exposure) and one feature (entropy) that had to be justified in a machine
vision context. There are a myriad of algorithms that will potentially be
applied to Sumbandilasat images. Not only is it beyond the scope of this
dissertation to attempt to implement all the potential algorithms, but the
problem of how to combine the results from different algorithms is also not
trivial. In [74] the only question was whether the chosen feature generates
optimal exposure or not, where optimality is measured in an outcome based
manner. In this case the relative weights of three different features are called
in question.

Given the limitations discussed, it was decided to follow the same route as
[39] and use a large subjective experiment. In spite of the numerous different
algorithms that are applied to remote sensing images, the final analysis is
almost always done by a human. It is not unreasonable to assume human
judgement on image quality is a valid criterion in a remote sensing context.
To make a quality assessment model suitably general, it must be based on
the average opinion of many users. Ideally one would want to use remove
sensing analysts’ opinions, however, given the difficulty of finding more than
100 remote sensing analysts to take part in an experiment, members of the
public were used instead.

5.2.2 Model fitting

General notes on statistical learning

It is illuminating to phrase the problem in terms of commonly used terminol-
ogy. There are three measured variables, namely noise variance, cloud cover
and defocus extent, which are the inputs (also called features, predictors or
independent variables). These have some influence on the output (also called
response or dependent variable), image quality. The goal is to use the inputs
to predict the output. This is called supervised learning. [52, pp. 9-39]

The output variable is a quantitative measurement: image quality can be
compared, based on the value of the measurement and values close to each
other correspond to images with similar quality. It is also possible to have
qualitative output, where output values assume a finite set, for example if im-
ages were labelled either suitable or unsuitable. Based on the type of prediction
output, the prediction task is named differently: prediction of quantitative out-
puts is called regression, while prediction of qualitative outputs is referred to
as classification. Both these tasks can be viewed as function approximation
problems.

5.2 Literature 126

>
>

—— Train sample
----- Test sample

Prediction Error

Y

Model Complexity

Figure 5.1: General effect of model complexity on testing and training error.

The learning task can be stated as: given the value of an input vector X,
make a good prediction of the value of the output Y, denoted by Y. For the
= 3 inputs in question, the input vector will have 3 elements. Generally
the statistical prediction model is assumed to be of the form Y = f(X) + ¢,
X € RPis areal valued random input vector and Y € R is a real valued random
output variable. ¢ is a random error independent of X with expected value
E[e] = 0. It represents the deviation of the true input output relationship from
the deterministic function ¥ = f(X). The set of N data pairs, {z;,y;}, i =
1,..., N, needed to construct the prediction model, is known as the training
data.

In function approximation terminology, f(z) has a domain equal to the
p-dimensional input space. The model can be expressed as y; = f(x;) + &;.
The goal is to obtain a useful approximation f (x) for all x in some region of
P given the training data.

Model complexity and prediction error

The amount of data needed is determined by the model complexity, which is
often dependent on the input space dimension. Selection of model complexity
is related to the generality of the model. As model complexity is increased,
the model can fit the training data better. However, if model complexity is
increased too much, overfitting occurs: when presented with new input-output
pairs, called festing data, the estimation is poor. The model has adapted it-
self too closely to the training data and loses generality. On the other hand,
when the model is not complex enough, it will underfit and not be able to ap-
proximate the training data accurately enough. Figure 5.1 depicts the general
relationship between model complexity and prediction error for both training
and testing data.

Furthermore, as model complexity decreases (imposing more constraints
on the solution of the function approximation), the solution becomes more
sensitive to the specific choice of model: the error introduced by the model bias
becomes more significant. Since different models make different assumptions

5.2 Literature 127

1 2 3 4
Train| Train| Test | Train

Figure 5.2: Data divided into parts for 4 way cross-validation.

about which type of constraints are suitable, it is meaningful to test more than
one type of model.

As Figure 5.1 suggests, it is imperative to use different data for the training
and testing of a model. In practice three datasets are needed [52, p. 196]:

training set used in the training algorithm to minimise the prediction error,
i.e., used to fit the model,

validation set used to estimate the prediction error for model selection, i.e., the
model complexity is chosen so that prediction error on the validation set
is minimised,

testing set used to test the generalisation error of the final model.

If an abundance of data is available, data can be set aside for testing
purposes. However, in practice, data is often scarce. Because of the desire
to use the available data optimally, cross-validation is the most widely used
method for estimating prediction error |52, p. 214]. In K-fold cross-validation
the data is divided into K equal parts. One part is used for testing and the
other for training. In Figure 5.2 the k = 3 part has been selected for testing.
To complete the cross-validation procedure, k is set equal to 1, ..., K and the
resulting K prediction errors are averaged to get the final prediction error.

Previous databases used in the training and evaluation IQA algorithms
have differed in size. As already mentioned, the amount of training data
required depends on model complexity. However, using copious numbers of
images is also recommended during comparative tests: in [97] and [9]. The
importance of using many images when comparing IQA algorithms is empha-
sised. The more images used, the finer one is able to distinguish between
methods while retaining statistical significance. In [97] 779 images were used
to distinguish between 10 existing quality assessment algorithms (the biggest
study of its kind). In [46] 168 images were used for training and 176 for test-
ing a model with three input features. Recently, in [105] the performance of
a proposed IQA was tested on merely about 20 images; the only criterion was
that the ordering obtained from the algorithm should correspond to the correct
ordering, which was well-defined since the images differed markedly in quality.
In [107] the training and the test set for a fuzzy-logic IQA model of three input
features each consisted of 25 images. The IQA model in [43], having 32 input
features and consisting of an ensemble of four neural networks, each with 10
hidden neurons, was trained and tested using a dataset of 480 images.

5.2 Literature 128

Table 5.1: A simple full factorial experiment.
A B

= -0 O

0
1
0
1

Evaluating the entire model space

In the IQA algorithms encountered the performance of the algorithm is often
measured only in the presence of a single degradation type. Even if the model
has more than one input feature, only one is presented to the model at a time:
in [96] the “cross distortion performance” of various IQA models is compared,
but the performance of the models when presented with various degradation
types, one at a time, is measured. If one considers the model a function in p-
dimensional space, where p is the number of input distortion types, by testing
only one distortion type at a time while setting the others to zero, the function
is effectively being evaluated only in the planes corresponding to the axes of
the space. No cross-coupling effects are modelled.

For the author’s model, an attempt was made to model the complete feature
space (see section 5.3.2 from page 136). However, this is difficult since the so-
called ‘curse-of-dimensionality’ means that training and evaluating functions
in higher dimensional space requires exponentially more data [52, pp. 22-28|.

When attempting to measure the cross-coupling of input variables, one
cannot simply vary multiple inputs in any manner. Suppose we have two
input variables A and B each with only two levels, 0 and 1, for which we
are interested in the output. If we take one output measurement where both
inputs are low and one where both are high, it will not be possible to ascribe
the behaviour of the output to any one of the variables. In this example A has
been confounded or aliased with B: since the combined effect of two inputs
are measured, it is not possible to tell which input has caused the effect on the
output.

The simplest experimental design that avoids confounding and can model
the effect of cross-coupling of input variables, is a full factorial experiment [50].
This simply measures every possible combination of input variable levels. Con-
tinuing the example from the previous paragraph, a full factorial experiment is
shown in Table 5.1. The problem with full factorial experiments is that, as the
number of input variables or the number of levels for each variable increases,
the experiment size increases exponentially. For example an experiment with
4 variables each evaluated at 8 levels would require 8 = 4096 observations.
However, it is possible to design fractional factorial experiments in which the
confounding variables are chosen to be unimportant.

As the number of input variable increases above two, the order of possible

5.2 Literature 129

confounding interactions increases. For example, with three input variables,
A, B and C, each of the input variables can be confounded with one another,
but higher order interactions can also be confounded with one another or
with primary variables. For example, a two-factor interaction, AB, can be
confounded with a primary variable C'. This means that it is impossible to
discern the combined effect variables A and B from the effect of variable C.
Alternatively, two-factor interactions can confound one another, for example
AB and AC. The purpose of conducting an experiment with more than one
variable active at a time, is to determine which higher order interactions are
present. However, although higher order interactions can exist, ordinarily the
main effects and two-factor interactions provide the main information on the
effects of factors in a response. Fractional factorial experiment design utilises
this fact to allow smaller experiments in which higher order interactions may
be aliased with one another, but main effects and two-factor interactions may
not.

5.2.3 Piecewise polynomials and splines

Piecewise polynomials are a useful modelling tool [52, pp. 117-137]. While
normal polynomials are flexible, they are limited by their global nature: it can
be very difficult to find a polynomial that fits sufficiently well in all areas of
the training data. This problem is solved by piecewise polynomials. Different
polynomial functions are used to model different parts of f(X) in different
regions of the domain of X. The boundaries between the regions are known
as knots. Various continuity restrictions are placed at the knots, for example
the function must be continuous and have continuous first derivatives. These
continuity restrictions place linear constraints on the parameters of the poly-
nomial functions, effectively reducing the number of parameters (or degrees of
freedom or model complexity).

Splines are piecewise polynomial functions that obey specific constraints. A
commonly encountered spline is the cubic spline:piecewise cubic polynomials
that are continuous and have continuous first and second derivatives at the
knots. The total degrees of freedom in a spline function can be calculated
according to:

(degrees of freedom) = (number of regions) X (parameters per region)

— (number of knots) x (constraints per knot) (5.2.1)

Therefore increasing the number of regions or the order of the polynomial in
each region increases model complexity, while increasing the constraints per
knot decreases model complexity.

Generally an order-M spline with knots &;, j = 1,..., K is a piecewise-
polynomial of order M, and has continuous derivatives up to order M — 2.
Cubic splines (order 4) are claimed to be the lowest order splines for which the

5.2 Literature 130

human eye cannot perceive the knot discontinuity. The most commonly used
splines are orders M = 1,2 and 4.

In these splines the knots are fixed and one needs to select the order of
the spline, the number of knots, as well as their placement. These splines are
known as regression-splines. It is a common approach to choose the number of
knots and order of the spline, but let the position of the knots be determined
by the position of the observations z;, for example by dividing the area of
the domain X for which data z; is available into equal parts. Once the knots
sequence is fixed, the piecewise polynomial fits can be computed using least
squares approximation.

Another type of spline is the smoothing spline. Smoothing splines have
knots at every data point and a single parameter p that controls the effective
degrees of freedom of the model. By varying p between 0 and 1 the smoothing
spline’s behaviour changes from a normal linear regression across all data to
complete interpolation between each data point. While there are also other
types of splines in existence, basic regression splines can be used to construct
an adequate image quality model.

5.2.4 Neural networks
Structure and terminology

Neural networks are non-linear statistical models [52, pp. 348-367| [35]. Al-
though there are many variations, a basic configuration of the most widely
used one is sufficient for the image quality model and is briefly described here.
It is known as the single hidden layer, feed-forward, back-propagation neural
network. Figure 5.3 depicts a network diagramme of such a neural network!.

Although neural nets can be used for both regression and classification,
the schematic in Figure 5.3 is typical for regression since a single quantitative
response is modelled by one output node, Y;. Derived features, Z,, are formed
from linear combinations of the inputs X, and the output response is again a
linear combination of the Z,,:

T = 0(aom +alX), m=1,...,M,,
f(X) =06+ 06"Z, (5.2.2)

where Z = (Z1,Zs,...,Zy), {Qm;m = 1,..., M} are p-dimensional weight
vectors, (3 is a m-dimensional weight vector and o (v) is the activation function.
The activation function used is the hyperbolic tangent sigmoid: o(v) = 2/(1+
e~%Y) — 1, shown in Figure 5.4. Although it is also possible to have a different,
output function, a linear combination of Z,, is common in regression. Note
that if o is the identity function, the neural network collapses to a linear model

!The model was initially based on the human brain with each unit representing a neuron
and the connections representing synapses.

5.2 Literature 131

Figure 5.3: Schematic of a single hidden layer, feed-forward neural network with
one output.

Figure 5.4: The hyperbolic tangent sigmoid function. The scale parameter s in
o(sv) controls the activation rate.

of the inputs. In Figure 5.4 one can see that the rate of activation depends
on the norm of the weight vector, |,,|. Hence, when |a,,| is small the unit is
operating in the linear part of its activation function.

The network diagramme in Figure 5.3 is simplified and therefore the in-
tercepts, ag, and [y, are not depicted. They can be drawn as additional bias
inputs feeding into the hidden layer and the output.

The layer computing the derived features Z,, is called hidden since the
values of Z,, are not directly observable at the output. Neural networks can
have more than one hidden layer, but these are usually used where a hierar-
chical model of the inputs is appropriate, which is not the case for the quality
assessment model. Feed-forward refers to the fact that there are no feedback
paths in the network (typically used to model time dependent systems), while
back-propagation relates to the training algorithm used to derive the weights
from the training data.

A neural network is an example of universal approrimator: given enough
degrees of freedom the model can approximate any continuous function in RP

5.2 Literature 132

arbitrarily well. However, this generality comes at a price: interpretation of
the final model is difficult. Each input enters into the model in a complex
manner and its path through the network is opaque. Thus, while valuable for
prediction, neural networks are not so useful for building an understandable
model.

Working with neural networks

Unlike spline models, a least squares solution for neural network models does
not exist. Instead, the complete set of weights and biases, denoted by 6:

{aom, m;m =1,2,... . M},
{50, 8}, (5.2.3)

must be determined iteratively. Typically the weights are given random start-
ing values and adjusted after each iteration (or training epoch) to minimise the
error function, Q(8) = Y7, (i — f(x,))?, where n is the total number of data
points. Since the existing MATLAB® implementation of back-propagation
was used, its implementation is not presented here; see [52, pp. 353-355| for
more detail.

The training of neural networks is not straightforward. The training algo-
rithm is not guaranteed to converge at a global minimum of the error function
Q(0). When convergence at a local minimum far from the global minimum
occurs, the model is a bad fit. The outcome of the training is dependent on
the starting conditions. The simplest solution to this problem is to randomise
the starting values of the weights repeatedly, repeatedly train the network and
select the best solution from all training sessions.

Another problem is the tendency to overfit when the model complexity
is too high. Fortunately there are various methods available to combat this
problem. These methods are generally referred to as regularisation.

Firstly, one can choose a more than adequately complex model in conjunc-
tion with validation data and early stopping. During training the prediction
error on the training data decreases after every iteration while the prediction
on validation data decreases initially and then increases as overfitting occurs,
like in Figure 5.1. Although, in this case, model complexity stays the same,
the model becomes increasingly tailored to the training data with each epoch,
making it less general. Regularisation is achieved by stopping the training
process as soon as the model validation error starts to increase.

The second regularisation option is to add a penalty term based on the size
of the weights to the error function Q(f):

1 n
Qres(0) =7(QO) + (1 =7~ > 05, (5.2.4)
j=1
where {0;;7 = 1,...,n} are the individual vector elements for all the weights

as well as the biases. This penalty term inhibits the increase in weights’ val-

5.3 Experiments 133

ues during training and will ideally allow only those weights necessary for the
model to assume significant values. Validation data is used to determine the
optimum size of the penalty variable . This form of regularisation is recom-
mended in [52] and exists in MATLAB®, where 7 is called the performance
ratio.

A third option, automatic Bayesian regularisation [69], is available in MAT-
LAB®. This method assumes that the weights and biases are random variables
with specific distributions. No tuning of parameters or validation data is re-
quired. This is the regularisation method recommended in the MATLAB®
documentation. The algorithm provides a measure of how many of the net-
work parameters are effectively being used. If the algorithm works, this should
remain constant even as more units are added to the neural network.

The last regularisation option is to vary the number of hidden units (and
therefore model complexity) and use validation data to select a model. A
graph like the one in Figure 5.1 is used to aid the selection process.

It is recommended that the input and output data be normalised to have
zero mean and a standard deviation of 1. This ensures that all the inputs are
treated equally during the training process.

5.3 Experiments

5.3.1 Introduction

As discussed in section 5.2.1, it was decided to conduct a large subjective image
quality experiment. The collected data would enable a model to be formed,
mapping three measured features into a quality score.

Specifically, it was hoped that the experiment would provide insight into
the following aspects:

e The relationship between perceived image quality and varying amounts
of a single distortion type. Even when considering only one distortion
type it is unlikely that the image quality will be a linear function of
measured feature.

e The relative weights of the different types of distortion, when only one
is present at a time. It is unlikely that noise, clouds and blurring will
have an equal effect on the perceived image quality.

e The joint effect of two or three simultaneous distortion types on image
quality. It is unlikely that this will simply be an additive model. By
measuring the joint effect one can determine if a certain distortion type
dominates the others.

To ensure that the collected dataset is valid, the methods described in [97]
were closely followed during the design of the experiment and processing of

5.3 Experiments 134

Figure 5.5: A selection of the input images used.

the data. However, even though a web-based interface was used in [97], the
experiment in [97] was conducted in a test centre where all PCs were identical.
The data was collected over the course of two years. To enable rapid collection
of data the example of [43] was followed and the experiment conducted over
the internet. This allowed the data to be collected within about one month.

5.3.2 Image database
Input reference images

It is important to have a diverse range of input reference images that ade-
quately reflect the scope of remote sensing image types. Images from a variety
of locations and ranging from smooth to dense spatial activity were selected.
An important consideration was to use remote sensing images of approximately
the same GSI as Sumbandilasat. 30 images with 500 x 500 resolution and GSI
of 8m were acquired from Terraserver [4]. The relatively small size of the im-
ages allows an entire image to fit into the display area of a screen. Figure 5.5
shows a selection of the images used.

Degradation of images

The images were corrupted to varying degrees using the three degradation
types. To ensure the generality of the model, the levels of degradation were
varied to create images with a wide range of quality, from barely perceptible

5.3 Experiments 135

to highly degraded. White Gaussian noise with o, = {1, 2, 3, 4, 5, 6, 7, 8, 9,
11, 13, 15, 20, 25} intensity quantisation levels was added. Ten images were
generated at each of the 14 noise levels, so that a total of 140 noisy images was
generated. For each instance of each noisy image generated, the input image
was randomly selected from the 30 base images, to average out the influence
of underlying image structure.

Images were blurred through convolution with a circular disk of radii R =
{2, 3,4,5,6,7, 8 9,10, 11, 12, 13, 14, 15} pixels. Once again 10 images
were created at each radius using the same random selection policy. Thus 140
unfocused images were created.

To have similar control over the amount of cloud cover, an algorithm was
developed to add cloud cover to images. It is discussed in the next section. Us-
ing this algorithm 145 images with various levels of cloud cover and dispersion
were generated.

An additional set of 64 test images was created that combined different
distortion types in single images. This is discussed in more detail on page 136.

Adding clouds to images

It was desirable to be able to specify two input parameters for the cloud
generation algorithm: the amount of cloud cover (in total percentage of the
pixels) as well as the dispersion (discussed in Chapter 2). Dispersion was
controlled by specifying the number of clouds added and distributing the clouds
according to a uniform random variable. For example, by specifying 50% cloud
cover and two or three clouds the dispersion is less than when specifying the
same cover with 50 clouds. This allowed different cover scenarios to be tested,
with the hope of determining the effect of cloud cover as well as dispersion on
perceived image quality.

To determine the size of each cloud, imagine the total cover percentage as
a range, for example for 50% the range is {0,50}. This range is divided m — 1
times at random places, where m is the total number of clouds specified. For
example for three clouds the division could be {0,13,43,50}. The size of each
cloud is the range of each division. In the example, the cloud sizes would be
{13,30,7} %.

To generate the clouds, sample clouds were manually extracted from exist-
ing remote sensing images. These served as the input set. An example of the
input set images is presented in Figure 5.6. Images were randomly selected
from the input set, scaled, rotated and superimposed on the input image to sat-
isfy the cover and number of clouds specifications. To avoid excessive scaling,
which could result in unrealistic-looking clouds, images in the input set were
divided into large and small classes. To avoid artificial looking sharp cloud
edges, each cloud was blended into the background using a mask to specify
the cloud’s spatially varying transparency. Nevertheless, the resulting clouds
look slightly artificial since they do not cast shadows on the ground.

5.3 Experiments 136

Figure 5.6: Example input masks for the cloud generation algorithm. (a) and (b)
are large clouds while (c) and (d) are small.

Since clouds could overlap or be cut off by the edges, decreasing the cover
below the amount specified, the algorithm is repeated iteratively and more
clouds added until the total cover is within 10% of the specified cover.

In Figure 5.7 examples of the cloudy images generated with the algorithm
are shown. Using the algorithm a set of 140 cloudy images were generated
with cloud cover = {1, 2, 3, ..., 16 ,18, 20, 22.5, 25, 27.5, 30, 35, 40, 50, 60,
70, 90} and number of clouds = {1, 3, 7, 15, 50} at each cloud cover level.
A similar randomisation method to the noise and blur was used to select the
images.

Multiple distortion types in a single image

In [97] the various models’ performance were tested on one degradation type
at a time. It is possible that more than one degradation type can be present in
the same satellite image, although the coincidence of degradations is less likely
than a single degradation. This means that it becomes necessary to model the
possible cross-coupling interactions between the different inputs in the TQA
model. As discussed on page 128 under the heading Fvaluating the Entire
Model Space, this type of behaviour cannot be detected in a “one factor at at
time experiment”. Measuring cross-coupling requires the design of a factorial
experiment [50].

As previously mentioned, full factorial experiments rapidly grow in size as
the number of inputs or levels of inputs increase. However, there is a constraint
on the number of images that a subject can examine in a single session before
fatigue sets in. It is recommended that sessions be limited to 30 minutes [97],
which is enough time to evaluate approximately 170 images.

Two-level inputs, like those from Table 5.1 on page 128, allow only linear
responses to be evaluated. If quadratic or cubic responses of the inputs are
to be assessed, one must measure more than two levels. To ensure highest
possible resolution of the IQA model it is desirable to maximise the number
of levels used in the experiment of each of the three variables. Therefore
fractional factorial experimental design options were investigated in an attempt

5.3 Experiments 137

i - W o
(¢) 9% cover, 15 clouds (d) 82% cover, 50 clouds
Figure 5.7: Different cloudy images generated by the cloud-adding algorithm. No-

tice the difference in dispersion between (a) and (b), both with relatively similar
cloud cover.

5.3 Experiments 138

to maximise the number of levels used given a fixed ceiling to the number of
images. To use the experimental design procedure outlined in [50] the number
of levels must be a power of two. This allows the variable for which more
than two levels are to be modelled to be decomposed into multiple two-level
variables. This, in turn, allows the design procedures for two-level variables to
be applied (which are also available in MATLAB®).

It is possible to design a full factorial experiment with four levels for each
variable. The number of observations required would be 43 = 64. A quarter-
fractional factorial experiment, where each variable has eight levels, would
require % x 8% = 128 observations, which is also acceptable. However, by
following the method described in [50] it was determined that this would re-
sult in primary interactions aliasing with main effects, which is unacceptable.
Therefore, the data was generated for the full factorial experiment.

This experiment was conducted after the data for the single variable exper-
iments had been collected and analysed. Given that the modelling resolution
is limited by the fact that only four levels of each variable are allowed, it was
desirable to collect data in an area of the model that would conceivably be
used. To this end, the upper limits for the cloud cover and blur were lowered
to 50% and 10 pixels respectively. This is justified by the thought that images
with more than 50% cloud cover are unlikely to be of any use. Furthermore,
the blur response from the single variable experiment started to flatten after
reaching R = 10 pixels.

The final range of input degradations was: cloud cover = {10,23,37,50},
noise standard deviation = {5, 12,1825}, blur radius = {2,5,7,10}.

5.3.3 Test methodology

When designing a subjective image quality experiment, it can be either single-
or double-stimulus. In a single-stimulus experiment, the subject must give a
quality score to only one image at a time, while the double-stimulus case, a
reference and altered version of the same image presented in succession and
score must be given to both. There is a parallel to objective blind and full-
reference image quality assessment. While a double-stimulus experiment more
accurately captures the effect of the alteration on image quality, the experi-
ment typically requires 3-4 times more time per image than a single-stimulus
experiment.

Closely following the example of [97], a hybrid approach was followed.
Single-stimulus methodology was used, but the 30 reference images were in-
cluded in the same experimental session as the test images. This allows for
more images to be evaluated, while still permitting many images to be evalu-
ated within the 30 minutes time limit of each session.

5.3 Experiments 139

Table 5.2: Experimental sessions.

Session Images Subjects
Blur 170 20
Noise 170 20
Clouds 170 21
Alignment? 51 32
Cross-coupling 148 33

Double stimulus setup implies 204 images
viewed and 102 images evaluated.

Equipment and software

As previously mentioned, the data was collected through the internet. The
disadvantage of this approach is that there is no control over the type of
monitor or the ambient illumination in the subject’s room. However, given
a time constraint, the advantage is that data from a large group of subjects
can be collected, and that the group of subjects represent a better random
sample from the population. Additionally, subjects were instructed to adjust
the colour depth and resolution of their monitor to standard levels.

The web based interface consisted of various php [5] scripts to generate
the html pages to be displayed to the subject. The main php script had to
step through all the images in a specified directory on the server and display
them one after the other, in a random sequence, to the subjects. A javascript
based slider-applet [6] was adapted to allow the subjects to report their quality
evaluations by dragging the slider on a quality scale. As recommended in [9]
and [97] the quality scale is unmarked numerically. It is divided into five equal
portions labelled as “Bad”, “Poor” “Fair”,“Good” and “Excellent”. The position
of the quality slider is converted into a raw quality score: an integer in range 1-
100. The position of the slider resets after each evaluation. Figure 5.8 shows a
screenshot of the interface. The slider bar is important since it allows for faster
and more ‘instinctive’ evaluation than if the subjects were asked to assign a
number to each image.

The quality evaluations were recorded in a MySQL [7] database. Each
experimental session was stored in a different table. Python scripts were used
to generate SQL queries to extract difference scores from the tables (difference
scores will be discussed below). The difference scores were written to ASCII
text files for further processing in MATLAB®.

The experiments were conducted in five sessions: one each for the individual
degradation types, a realignment experiment and a cross-coupling experiment.
The full set of reference images were randomly placed among the degraded
images in each experiment. Table 5.2 shows the number of images in each
experiment, as well as the number of subjects.

5.3 Experiments 140

Figure 5.8: An example of the user interface to the experiment.

Single-variable sessions

A brief description about the goal of the experiment, as well as instructions,
and an explanation about the type of degradation present was given at the
onset of the experiment. The subjects were shown the approximate range of
quality that would be present in the experiment to ensure that they used the
entire quality scale. The example images were not contained in the experiment
itself. Each subject sees the images in a different random sequence to ensure
that the order of the images does not affect the average quality scores.

Realignment session

Ideally all the data would be collected in a single session. Since subject fatigue
makes this impossible, multiple sessions have to be used. However, when
using more than one session, the scales for the raw quality scores from the
different sessions will not be the same. This is due to the fact that different
distortion types are used in different sessions and that subjects’ expectations

5.3 Experiments 141

were ‘normalised’ at the start of each experiment as described in the previous
paragraph. To combine data from these different sessions into a single dataset,
realignment is necessary. This necessitates a re-alignment experiment where
data from all the different individual sessions is present.

After the completion of the three single experiments, 17 images covering the
entire quality spectrum were selected from each group. These 51 images, along
with their reference images, were presented using a double-stimulus setup. The
images were chosen so that all 30 reference images were used. The double-
stimulus, as well as increased number of subjects, ensures more accurate quality
measurements for realignment purposes. The images were presented using the
view A, view B, score A, score B method, where A and B were, randomly,
either the reference or the degraded image. Once again the order of the images
was randomised differently for each subject.

Cross-coupling session

Finally, a cross coupling-experiment was performed, using single-stimulus again.
As mentioned previously, data from the single experiments was analysed to de-
termine the range of input degradations for this experiment. In addition to
the 64 full factorial images, the 30 reference images and all 51 realignment
images were also included in the experiment. This is necessary to align the
quality scores from this experiment with the database of quality scores already
collected.
In total the number of subjective human judgements collected is:

(170 x 20) 4 (170 x 20) + (175 x 21) + (51 x 32)2 + (148 x 33) = 18623,

where the extra multiple of 2 in the realignment experiment accounts for the
double stimulus. The number of unique degraded images is:

140 4 140 + 140 + 64 = 484,

which is comparable with existing IQA literature.

5.3.4 Processing the raw data
Outlier detection and rejection

The outlier detection and rejection values from [97| were used. A raw difference
score for an image, calculated according to equation (5.3.1) defined in the
following section, was considered an outlier if it was outside an interval A
from the mean raw difference score (across all subjects) for that image. A =
2.33 X o;, the standard deviation for raw difference scores for that image. If,
for any sessions, more than 16 evaluations of a single subject were rejected, all
the evaluations for that subject were rejected. The outlier rejection procedure
was run twice. About 4.4% of all images were rejected. This is the same as in

5.3 Experiments 142

[97], suggesting that the use of Internet did not lead to some viewers having
radically different viewing environments. Two subjects were rejected.

Difference mean opinion scores

The first step in calculating difference mean opinion scores (DMOS) is to
compute the raw difference score:

dij = Ticet(j) — Tij (5.3.1)

where r;; is the raw quality score for the ith subject and the jth image, and

Tiret(j) denotes the raw quality score assigned by the ith subject to the reference

image corresponding to the jth distorted image. Subtracting the reference

image score ensures that only degradation effects are measured in the DMOS.

Note that a larger DMOS score corresponds to worse perceived image quality.
Z scores were computed from the raw difference scores according to :

Zij = (dlj — Ji)/O'i, (532)

where d; is the mean of the raw difference scores over all images ranked by
the subject ¢ and o; is the standard deviation. Computing Z scores effectively
normalises over subjects’ sensitivity; for example, if a subject used only half
of the scale, the range of his scores would be increased by dividing by o;. Or,
if a subject had a tendency to give higher than average quality scores, this
would be rectified by the subtraction of d;. The Z scores were averaged across
all subjects to yield z; for the jth image.

Z scores were mapped to DMOS using the results from the realignment
experiment. DMOS scores were first computed from the realignment data by
calculating difference scores according to (5.3.1) and then averaging across all
subjects to produce DMOS; for the jth realignment image. Figure 5.9 shows
the relationship between the Z scores derived from the individual sessions and
the DMOS scores from the realignment session. Each marker represents an
image.

To convert the Z scores from the individual sessions into DMOS scores for
a unified database, linear mappings were learned: DMOS(Z)= p;Z + pe. The
values for p; and p, were computed by doing a least squares linear regression
between DMOS(z;) and DMOS;. One mapping for each of the individual ses-
sions was learned. These mappings are shown in Figure 5.10. The exact same
process was applied to map the cross-coupling data from raw difference scores
to realigned DMOS, except that all 51 images, corresponding to realignment
data on each of the three axes in the input space, could be used in a single
mapping instead of only the 17 used in the single variable experiments.

5.3.5 Creating a spline model

Because of the sessioned nature in which the data was collected, the dataset
has different density of input observations in different areas of the input space

5.3 Experiments

143

90
+ noise
80F| 4 clouds °
blur A *
70+
A .
60 I
AN
50
8 +
S 40+ =+
2 >
30 . A ﬁ
A
20 Zi;A
A 4+
10r
+ 5
T+
o ey
_10 1 1 1 1 1 1 J
-2 -15 -1 -0.5 0 0.5 1 15
Z-scores

Figure 5.9: DMOS values and Z scores for images used in the realignment experi-

ment.

90
80
70
60

50

DMOS

10F

-10

A

noise
blur
clouds

1 1 1 J

0 1 2 3
Z-scores

Figure 5.10: The linear realignment mappings obtained for the individual variable

sessions.

5.3 Experiments 144

X € R3, where the input vector is of the form:
X = [X., X, X)), (5.3.3)

where X, is the noise variance in intensity levels, X, is the cloud cover per-
centage and X, is the defocus extent in pixels. Specifically the density in the
central area, where X,,, X, and X} > 0, corresponding to the data collected in
the cross-coupling experiment, is lower than on the axes of the input space.
The axes are those areas where only one of the elements is non-zero and cor-
respond to the data collected in the single variable experiments. Varying the
density in this manner is an appropriate use of resources (experimental collec-
tion time), since it is likely that most of the images encountered will have no
or only one degradation present. Therefore the model needs to be the most
accurate on the axes near the origin of the input space.

Spline models were used in a way that allowed varying degrees of freedom
in different parts of the model. This was achieved by using different two-
dimensional (line) spline models on each axis of the input space and a three-
dimensional (surface) spline model in central area. In the areas between the
different models interpolation is used, so that the resulting final model is a
continuous, smoothly varying function approximation f(z).

In the following sections the spline regularisation options available in MAT-
LAB® are first discussed. Then the model selection process for each of the
axes, as well as the central area, is described. Finally interpolation procedure
used to combine the different models is described.

Available regularisation options

MATLAB’s spline toolbox has two options available for varying the model
complexity. When using the basic piecewise polynomial regression splines dis-
cussed in section 5.2.3 on page 129, one can manually choose the number of
knots and order of the polynomials to vary the model complexity according to
equation (5.2.1).

Alternatively, smoothing splines can be used. This might seem easier since
the model complexity can be changed by altering a single parameter, p, be-
tween 0 and 1. However, smoothing splines have two disadvantages for this
application. Firstly, they are considerably more complex to implement in an
embedded system than regression splines. Secondly, it is in fact difficult to
evaluate various model complexities since the tuning parameter p affects the
model in a counter-intuitive manner. For example, the model will be insen-
sitive changing p from 0 to 0.9 and then suddenly change its behaviour at
p = 0.999. It was therefore decided to use regressions splines

Cloud axis

The DMOS data in the area of the input space where X = [X,,0,0]7 was
divided into four equal groups for cross validation purposes (recall section

5.3 Experiments 145

951

5 o

5]

c

o

k3]

2

o

o

S 85

o

a

>

o

(7]

c

<

Q

= 8t
—=©— Train sample
—A— Test sample

7.5 1 1 1 1 1 1

2 3 4 5 6 7

Number of knots

Figure 5.11: The effect of increasing the number of knots on testing and training
data.

5.2.2 and Figure 5.2). The four-way split was necessitated by the structure of
the data in the central area and requirements of one of the MATLAB® fitting
functions, as discussed in the Central Area section to follow on page 148. Since
data from this split had to be used for both model selection (validation) and
model evaluation (testing), it was decided that two of the splits, k = 1 and 2,
would be used for validation and the remaining two, k£ = 3 and 4, for testing.
The mean squared prediction error is calculated according to:

Ny

1 .
MSE, = — > (i — flon)?, k=1,2,34 (5.3.4)

kizh

where {yg;, xr; } are the Ny input-output testing data pairs for cross-validation
run k. Thus the model selection was done by considering 3(MSE, + MSE,).

Different order polynomials, as well as different number of knots, were ex-
perimented with. The testing and training errors behaved as expected, i.e., in
a manner consistent with Figure 5.1. Figure 5.11 shows an example of how
increasing the number of knots affects the training and testing mean squared
prediction error for a cubic spline. As expected, the training data prediction
error continues decreasing with increasing model complexity, while the test
prediction error shows that optimum model complexity is at 5 knots. Note
that the number of knots indicated here include the knots at the start and
end-points.

To compare different order polynomials the test graphs were combined in a
single plot as shown in Figure 5.12(a). Increasing model complexity generally

5.3 Experiments 146

leads to lower test error. What is interesting is that only in the cubic spline
case with 6 or 7 knots does the prediction error start to worsen. A different
view on the same data can be obtained by letting the horizontal axis be the
model degrees of freedom, according to equation (5.2.1) on page 129. The
result is shown in Figure 5.12(b). Here one can see that the higher order
polynomials have more degrees of freedom than the lower order ones.

If one were to consider only the test prediction error, it would seem that
the optimal spline to select is the cubic spline with 5 knots. However, other
factors must also be taken into account. Firstly, the scale of the vertical axis
is mean squared DMOS error; so differences of less than 1 unit are not very
significant. Secondly, the final fit must always be a non-decreasing function of
the degradation type; it is nonsensical to have decreasing DMOS (increasing
perceived quality) with increasing degradation. And lastly, the function must
preferably extrapolate well. This is not so important in the cloud cover case,
since there is a finite maximum cloud cover (100%) and the highest observed
datapoint is not too far from that maximum. However, in the blur and noise
cases, it is more important. Generally it is desirable to have the model’s degree
of freedom as low as possible while allowing adequate freedom to fit the data.

Therefore, by considering figure 5.12(a) one can see that the linear fit does
not improve markedly beyond 5 knots, while for the quadric fit the similar
point is 4 knots and, in the case of the cubic fit, it is 3, or even 2, knots.
Additionally, cubic fits of 3 and 4 knots extrapolated poorly, with the 3 knots
fit decreasing and the 4 knots fit increasing too sharply. The fits as well as
the test data for the first cross-correlation case, k = 1, for the linear 5-knot,
quadratic 4-knot, and cubic 2-knot cases are shown in Figure 5.13. Given that
the cubic 2-knot fit requires one less degree of freedom and gives a comparable
fit, it was selected as the model to be used. Since the only 2 knots are at the
end points, this is basically a single cubic polynomial fit.

Blur axis

For the blur axis, where X = [0, X3, 0]7, the comparative test prediction error
plot is shown in Figure 5.14. The linear 4-knot, quadratic 3-knot and cubic
2-knot fits all give approximately the same test error. This is not surprising
since these models have exactly the same degrees of freedom.

By considering the individual fits in Figure 5.15, the cubic fit, 5.15(a), is
eliminated since it extrapolates too poorly. While the quadratic fit (b), appears
adequate, the linear fit (c) was chosen since it is the safest option from an
extrapolation point of view; quadratic functions will grow unacceptably fast
once outside the range of the training data.

5.3 Experiments 147

17
—o— Linear
16} —*— Quadratic | |
—4— Cubic
« 15} 1
N
@
'5 14+ 1
k3]
8 13]
o
ks
E 12* 7
3
&
o 11 E
]
Q
= 10t 1
9r i
8 1 1 1 1
2 3 4 5 6 7
Knots
(a)
17 T
—o— Linear
161 —#— Quadratic | |
—4A— Cubic

12

11

Mean squared prediction error

101

of |
8 1 1
2 3 4 5 6 7 8 9
Degrees of freedom
(b)

Figure 5.12: The effect of altering the polynomial order on the test prediction error
of the spline cloud cover IQA model. By comparing (a) and (b) one can also see the
effect that increasing the polynomial order has on the degrees of freedom.

5.3 Experiments 148

100 T ; . ! 80

DMOS
DMOS

0 20 40 60 80 100 0 20 40 80 100

60
Cloud Cover [%] Cloud Cover [%]
(a) Cubic, 2 knots (b) Quadratic, 4 knots

80

DMOS

0 20 40 60 80 100
Cloud Cover [%]

(c) Linear, 5 knots

Figure 5.13: Different spline fits on cloud data. The datapoints shown are from
the test data, not training data. The dashed line on the end shows the extrapolation
of the spline.

Noise axis

The noise data has higher variance than the other datasets, a fact which will
be discussed further when the results are considered in section 5.4.2. However,
this made fitting a model with high degrees of freedom difficult and unwise,
as can be seen from the test prediction error plot in Figure 5.16. In this case
the model with the lowest degrees of freedom is clearly the best choice.
Examining individual fits also confirmed this, with higher complexity mod-
els behaving unacceptably. The resulting linear fit is shown in Figure 5.17.
Once again, only two knots are used so it becomes simple linear regression.

Central area

As will be discussed in section 5.4.2, the effect of noise in the central area of the
input space, where all the elements of the vector X are non-zero, was not very
significant. Additionally, the higher order spline fitting function in MATLAB®

5.3 Experiments 149

35 T T T
—©— Linear
—%— Quadratic
—&— Cubic
30
S
5]
c
RS
B 25f
i)
o
(o8
el
o
g
2 20¢
(2]
c
<
Q
=
151
10

Number of knots

Figure 5.14: The prediction error of various spline models fit to blur data.

required that the input data be gridded. If the full three-dimensional input
space were to be modelled, the 64 datapoints could not be divided into test and
training data randomly as this would break the grid. To keep the training data
gridded, the test data would have to come from specific planes, for example all
points for which X, = 7. However, this could considerably increase the testing
prediction error, since one would be testing an area of the model where no
training data points were nearby.

It was decided to ignore the effects of noise for the spline model of the
central area. As analysis of variance tests in section 5.4.2 will show, this is
not an unfounded idea. Furthermore, it enables proper separation of test and
training data for cross-validation. Since noise is not modelled at all, the central
area now consists of a data on a 4 x 4 grid with 4 datapoints (corresponding
to 4 noise levels) at each grid point. For each of the K = 4 cross validation
runs, a different point at each grid point can be selected. This preserves the
gridded nature of the training set while ensuring suitable randomness in the
selection of test data. Figure 5.18 shows one example division.

In addition, since it is desirable that the central area model blend smoothly
with the axis plane models, data from the single variable sessions was also
included into the training set for the central area. This data had to align with
the existing grid, i.e., have cloud cover levels {10, 23, 37, 50} and blur levels {2,
5, 7, 10}. Since the cloud adding algorithm does not give precise cloud levels,
data that was within 10% of the specified levels was accepted. Furthermore,
care was taken to avoid polluting the test data with training data, so that the
k = 3 and 4 cross validation sets could still be used to evaluate the performance

5.3 Experiments 150

200 i i i i 120

/ 100 -
150¢ S -

100} e
o

DMOS

501

0 5 10 15 20 25 0 5 10 15 20 25

Blur Radius Blur Radius
(a) Cubic, 2 knots (b) Quadratic, 3 knots

100

80r

601

DMOS

401

20,

0 5 10 15 20 25
Blur Radius

(c) Linear, 4 knots

Figure 5.15: Different spline fits on blur data. The datapoints shown are from the
test data, not training data. The dashed line on the end shows the extrapolation of
the spline.

of the final model.

By averaging over the training data at each grid point, one can get a better
idea of the shape of the curve being approximated, Figure 5.19. Undesirable
decreasing behaviour is visible in parts of the average training data graph. As
mentioned previously it is nonsensical to have decreasing DMOS with increas-
ing degradation. Therefore this behaviour is ascribed to high variance in the
collected data; if more samples could be collected at each point of the grid,
the surface would be smoothly increasing. Unfortunately “the curse of dimen-
sionality” means that it becomes increasingly difficult to collect enough data
as the dimension of the input space increases. Also notice that in Figure 5.19,
data from the single variable experiments has already been included into the
training set.

Therefore, the model that one attempts to fit to the central area must have
sufficient constraints, so that it remains monotonic.

Linear splines with 2 to 5 knots on each axis as well as quadratic splines

5.3 Experiments 151

69

68.5

68

67.5F

67

66.5

Mean squared prediction error

66

—©O©— Linear
—%— Quadratic

65.5 —A— Cubic

2 3 4 5
Number of knots

65

Figure 5.16: The prediction error of various spline models fit to noise data.

70
60t -

50+ ' B i

DMOS

-10 I I I
0 10 20 30 40

noise o

Figure 5.17: The linear regression noise fit. The dashed line on the end shows the
result of extrapolation.

5.3 Experiments 152

Train
A Test

100

80

60

DMOS

40

Blur radius 0 o Cloud Cover [%]

Figure 5.18: Division of the full factorial data into test and training sets for cross-
validation. The green markers are a projection of the black markers onto the blur-
cloud plane to aid in the spatial interpretation of the black markers.

100
80

60

DMOS

50

30

20

: 0
Blur radius 0 Cloud Cover [%]

Figure 5.19: Average across training data. Note the unwanted dips in the graph.

5.3 Experiments 153

n n
: :
2 3
40
20 20
Blur Radius 0o Cloud cover Blur Radius o0 Cloud cover
(a) Linear, 2 knots per axis (b) Linear, 3 knots per axis
(2] (%]
o} o}
s s
[a) [a)
20 20
Blur Radius 0 Cloud cover Blur Radius o Cloud cover
(c) Linear, 5 knots per axis (d) Quadratic, 2 knots per axis
D
%
74500
0, ABEEE
5% 5%
[%2] - [%2]
o} o}
= =
o o
20 20
Blur Radius oo Cloud cover Blur Radius oo Cloud cover
(e) Quadratic, 3 knots per axis (f) Cubic, 2 knots per axis

Figure 5.20: Different spline fits on central area data.

with 2 to 4 knots and cubic splines with 2 to 3 knots were evaluated. A selection
of these fits is shown in Figure 5.20. Unfortunately the linear splines with one
internal knot already show decreasing behaviour, 5.20(b). As the number of
internal knots increase, it becomes worse, (c¢). The quadratic 5.20(d)-(e) and
cubic splines, (f), show similar decreasing tendencies and it is clear that they
will also extrapolate poorly.

By considering figures 5.20(a) and 5.20(b), one can see that 5.20(b), the

5.3 Experiments 154

100
0
Q 50 R
= SRS
8
0
15
60
: 40
20
Blur Radius 0o Cloud cover

Figure 5.21: A spline model with unequal number of knots in the each axis. Note
that monotonic behaviour is retained.

65 :
—— Linear
—v— Quadratic
60¢ —6— Cubic i
< o Linear Unequal
@ 55+ 1
@ =
£ s}]
3
o
(2]
g 45F 1
(]
=
40t 1
35 L L L L

4 6 9 16 25
Degrees of freedom

Figure 5.22: Prediction errors for different splines models fitted to the central area.

spline with one internal knot, is monotonic in the blur axis, while 5.20(a) is
monotonic in the cloud axis. This led to the idea of a spline model with 3 knots
in the blur axis and 2 knots in the cloud axis. The resulting spline is shown
in Figure 5.21. It appears to be a good compromise: the extra freedom in the
blur axis is used to model the steep initial increase and subsequent flattening
of the blur data while the cloud data is more linear. Monotonic behaviour is
retained.

This model also performs relatively well when evaluating the prediction
error, as shown in Figure 5.22. Note that it has 6 degrees of freedom and has
better prediction results than the linear 2-knots per axis model and similar
results to the linear 3- and 4-knots per axis models, as well as the quadratic
2- and 3- and cubic 2-knots per axis models.

5.3 Experiments 155

The test error continues decreasing for the non-monotonic higher order
models. As mentioned previously, this is because the dataset itself is non-
monotonic due to insufficient number of observations. Given the data scarcity
the linear model is a good choice that is monotonic and will extrapolate well.

Combining individual models

There are now four individual models for different areas of the input space
that must be combined into a single model. Three two-dimensional mod-
els (fe(Xe), fo(Xs), fu(X,) for the cloud, blur and noise axes) and one three-
dimensional model (feenire(Xe, Xp) for the central area) must be combined
in the four-dimensional model space. Recall that the input space is three-
dimensional so the input—output model is four-dimensional. Furthermore it
is desirable to have a smoothly varying function between the different two-
dimensional parts and the three-dimensional area in the middle.

A weighed sum approach is followed with weights varying between 1, where
a model is fully active, and 0 where it is inactive. At every point z =
(21,72, 23]7 in the input space [X., X3, X,,] two intermediate weights are cal-
culated:

{1—% 0<l‘i<di
w; = v

0 xT; > di’
where d = [10,2,5]" (5.3.5)
and =1,2,3.

The vector representing the smallest observed input point from the full factorial
experiment is d. For points closer than d to the axes, interpolation must be
applied. Upon considering the definition of w; in equation (5.3.5) one can see
that w; has a range {0 — 1}. Specifically, w; is 1 for z; = 0 (the axis plane,
where one of the two-dimensional models will be active) and 0 for x = d (where
the three-dimensional model is to become active). These intermediate weights
are converted into final weights as follows:

f)/c = Wa,
Vn = Wy X Wa, (5.3.6)
T = Wi,

where 7. is the weight that decreases as the distance from the axis [X,, 0, 0],
where f.(X.) should be active, increases. Since feenre(Xe, Xp) is only a func-
tion of cloud cover and blur extent, only these two variables are used when
measuring distance from the axes. Thus distance from the axis [X,,0,0] is
determined only by x5, the value of a point in the X, direction. This value is
therefore converted into intermediate weight ws and finally a cloud axis weight

5.3 Experiments 156

Ye- These final weights are used to construct the final, combined function,
fspiine(X), in a cumulative manner:

A= fchc(Xc) + (1 - fYc)fcentre<X07 Xb) (537
B =%fy(Xp) + (1 —1)A (5.3.8

fspline(X) = maX(fn(Xn)ac) (5310

Equation (5.3.7) blends the cloud model with the central model, (5.3.8) blends
the result with the blur model and (5.3.9) blends the result of that with the
noise model. Finally (5.3.10) is necessary to ensure monotonic behaviour in
the centre of the graph when dealing with high noise values, since noise is not
modelled by feentre(Xe, Xp).

It is enlightening to investigate some example plots. This is done when
the results are discussed in section 5.4.3 on page 165. Furthermore, the two
remaining cross validation data divisions, £ = 3 and 4, were used to test
the prediction performance of the model. These results are also presented in
section 5.4.3.

)
)
)
)

5.3.6 Creating a neural network model

As mentioned in section 5.2.4 there are four common regularisation options
available to prevent overfitting. These are critically evaluated in appendix B.
The conclusion is that the most reliable way to prevent overfitting in neural
networks is manual selection of model complexity using validation data.

A single layer feed forward model, as discussed in section 5.2.4, is appro-
priate for the image quality assessment data. No time dependencies exist and,
therefore, feedback paths are unnecessary. Furthermore, there is no hierarchi-
cal ordering in the data that would benefit from using multiple layers.

The same cross-validation setup used for the spline fitting was used for the
neural networks: the £ = 1 and 2 splits are used for model selection and the
k = 3 and 4 splits for testing. Following the recommendations discussed in
section 5.2.4, the networks were trained 10 times for each new random starting
position of the weights. The input and output data was normalised prior to
training. The number of units in the hidden layer was varied to determine
the optimal model complexity. The resulting errors for the training data and
validation data are shown in Figure 5.23. While the training error decreases
and stabilises, the validation error reveals that considerable overfitting occurs
at a high number of hidden units. Based on the validation data, a network
with 5 hidden units was selected.

Visualisations of the model, as well as performance measurements are pre-
sented section 5.4.3.

Training Error

w » ol [=2] ~ 00 O
T T T T T T

12r

11r

5.3 Experiments

,Dé

éé%géé%é

SEooooo s

2 3 45 6 7 8 9 10 15 20 25 30 35 40 45 50

Hidden layer size

Validation Error

N
1
T

N
o
T

w
a
T

w
(=]
T

N
o1
T

N
o
T

[
o

[
(=]
T

o

157

+
T
|
|
+ + T
1

*é%%;é%éég

1

"

S i

+

éi

2 3 45 6 7 8 9 1015 20 25 30 35 40 45 50

Hidden layer size

Figure 5.23: Prediction errors encountered during neural network training.

5.3.7 Hypothesis tests

Model selection was based on the relative performance of the two models: the
models were provided with known true levels of the three input features and the
models’ ability to match the subjective quality scores compared. References
[97] and [9] recommend statistical hypotheses tests, similar to those described
in section 2.2.1 on page 26, be done when the results of the fitted models
are compared. Since the performance of image quality models are similar,
there is a chance that the difference in observed performance is just the result
of sampling error: given another experiment, the results might be reversed.
Hypotheses tests allow one to test whether a statement about a population
parameter is true, to a specified statistical significance |70)].
The hypotheses test, recommended in [9] and followed in [97], to discrim-

inate between model performances is based on the F-test.

The F-statistic,

a ratio of residual variances, is computed. The residuals for both models
f(x;)) across all the {x;,y;} validation data

are computed according to (y; —

observations. For each model, the variance of these residuals is computed.

F-statistic is the ratio these two variances.
To test whether differences between the two models are significant to a
specific level, the F-statistic must be greater than the relevant F-value for an
F-distribution curve with the correct degrees of freedom. The shape of the F-
distribution curve is determined by two degrees of freedom, the degree of free-
dom for the numerator and the degree of freedom for the denominator. Since
the £k = 3 and 4 cross validation test sets have 121 samples each, the residuals
were calculated at 242 observations for each model. The F-distribution curve

that must be used has degrees of freedom, df =

(242,242). The 5% statistical

significance F-values for selected F-distribution curves can be found in tables

commonly included in statistical texts [70)].

The F-value for 5% statistical

significance is the point x on the F-distribution curve where the area under

5.3 Experiments 158

0 X F

Figure 5.24: How the 5% F-value, x in the figure, is determined.

35

N - - -PDF
3r o — 1-CDF

2.5¢ fo

1.5¢ ! |

0.5r ! \

Figure 5.25: Probability density function and cumulative distribution functions for
the F-distribution with degrees of freedom df = (242, 242).

the curve, to the right of x is equal to 0.05, as shown for a general F-curve in
Figure 5.24.

MATLAB was used to compute the precise F-values. Figure 5.25 shows
a probability density function of an F-distribution with df = (242,242). To
aid with the area calculations, the graph for (1 — CDF) is also shown, where
CDF is the cumulative distribution function. Since the cumulative distribu-
tion function is the integral of the probability density function, the (1—CDF)
curve in Figure 5.25 represents the remaining area to the right of a point on
the PDF graph. The results of the hypotheses test are presented in section
5.3.7.

5.3.8 Testing the integrated system

After selecting a model based on its performance for known true levels of input
features, the different parts of the system were integrated and tested together
in a single test. The performance of the complete system was evaluated using
the 242 artificially degraded images from the test cross validation sets k = 3
and 4. Inputs for the spline model were computed by applying the three feature
estimation algorithms to these images.

Values for the two required feature estimation parameters (cloud threshold

5.4 Results 159

12r% - - - - —
\ o——e Median
0l A~ —4 Average ||
) 4
X \
o 8r
o \
c \
©
+ 6 A
% N
N\,
A
- N
o 4 o
- A= — A
1N] -
2} \
\
\

0 . . . I
100 10° 10" 102 _10° 10° 10°
Relative Energy Threshold

Figure 5.26: The effect of the relative energy threshold, E,, on classification error.

and the relative energy threshold, E,., from equation (4.3.14) on page 109)
were derived from the training cross validation sets £ = 1 and 2 to avoid
contamination of test data. Cloud thresholds were derived using methods
previously described in section 2.2.1. When adding clouds to the images (see
section 5.3.2 on page 135), precise cloud masks could be generated since the
absolute location of all cloudy pixels added was known. These masks were
used as the ground truth when training thresholds and measuring performance.
Since the spectral characteristics of the artificial clouds are not important and
the images contained only three visual channels, it was decided to simply use
the blue channel for cloud detection.

To select a single value for E,., its effect on the average classification error
was investigated, as shown in Figure 5.26. The average relative error initially
decreases rapidly with F, and starts to flatten out. Since the number of
rejected images steadily increases as FE, is increased (requiring more energy
in the true cepstral peak and becoming less tolerable of spurious peaks cause
by noise), the goal was to select an F, value as small as possible to reject the
least amount images but large enough to avoid the big estimation errors. Since
the average error starts to grow rapidly as E, is reduced to less than 1 (while
median error stays zero, which implies large errors occurring in a few images),
a value of £, = 1 was selected.

5.4 Results

5.4.1 Cloud dispersion

The clouds that were added to the test images possessed varying levels of dis-
persion, corresponding to the number of clouds specified in the cloud adding
algorithm. In section 2.2.3 on page 28 a cloud dispersion measure was moti-
vated. Using the subjective quality experiment, justification for this measure

5.4 Results 160

Z-scores
Z-scores

100

Number of clouds 00 10 20 30 40 50 60 70 80
Cloud cover [%)] Cloud cover [%]
(a) Two variables influencing Z-scores. (b) Rational fit on projection of data.
_ :
04 *
4t] 2 005
©
EN =
2 02f % : ! i 2
R o
h=] i 173
2 O0F: % *| < or
2 . ! 2
5 -02(% 4 i * El I\
3} * Eol
? . !
N 047 " & -0.05}
5 g
-0.6 <
-0.8 : : : : : -01 : : : : :
0 10 20 30 40 50 0 10 20 30 40 50
Number of clouds Number of clouds
(c¢) Residuals. (d) Averaged residuals.

Figure 5.27: The process followed in an attempt to observe the effect of cloud
dispersion on image quality.

was sought in perceived human image quality. By plotting the scores from the
cloud cover experiment as a function of both cloud cover and number of clouds,
a graph like the one in Figure 5.27(a) can be generated. The primary variable
determining quality score is clearly cloud cover. Note that these tests were
applied to the cloud data before it was mapped to realigned DMOS to allow
it to be combined with data from the other experiments. Since the mapping
form Z-scores to DMOS is linear, it does not affect the conclusions drawn here.

In an attempt to see if the number of clouds had any effect on the quality
score, it was desirable first to remove the effect of the cloud cover from the
output. This was done by fitting rational function, f(x) = (ax® + bx? + cx +
d)/(x + e), to what is effectively a projection of Figure 5.27(a) onto the cloud
cover plane as in Figure 5.27(b). By considering the residuals of this fit at the
different number of cloud levels, the graph in (c) is obtained. Any effect that
the number of clouds might have is still difficult to discern. By averaging the
data at each of these points, the effect of the number of clouds can be seen in

5.4 Results 161

Figure 5.27(d). Here there is a monotonic increase in the Z-score with number
of clouds, which translates to a monotonic decrease in perceived image quality
with increased dispersion.

However, the effect is at a very small scale relative to the effect of cloud
cover. The difference between the Z-scores at the extremes of dispersion is 25
times smaller than Z-scores at the extremes of cover. To test the significance
of a variable [50] recommends that an analysis of variance (ANOVA) be con-
ducted. Analysis of variance is a procedure that can be used to test the null
hypotheses that the means of two or more populations are equal [70]. MAT-
LAB’s anoval was used to analyse the Z-scores from the cloud experiment,
divided into four sets based on the number of clouds. The ANOVA results
confirm that it is not possible to distinguish between the sets, i.e., their means
are equal.

Based on these results is was decided not to model the effect of cloud
dispersion in the image quality assessment model.

5.4.2 DMOS scores

Individual variable sessions

Figure 5.28 shows the individual realigned DMOS scores obtained during the
three different single variable experiments. By investigating the data from the
individual sessions separately, one can discern non-linearities in the mapping
of degradation levels to perceived image quality and comment on the spread
of the data.

The noise scores show a great variance in the DMOS values for a specific
noise level g,,. At low o, up to as high as g, = 8 negative DMOS values can be
found. While this might seem to indicate that subjects perceived the degraded
image to be of a slightly better quality than the original, the average DMOS
values across all images at low noise levels are approximately zero. Therefore,
at low noise levels, noise is imperceptible. The relatively greater variance of
the noise DMOS values compared to those of other degradation types can
also be attributed to the fact that perception of noise is influenced by image
structure. Noise becomes less discernable in the presence of a busy spatial
signal structure; conversely it is more perceivable in images that contain large
homogeneous areas. This is the same characteristic used by noise estimation
algorithms and modelled by HVS models and, to a lesser extent, SNRs. Since
information on image structure is not estimated, it is good that several different
input images were used at each noise level, to ensure the generality of the
resulting noise model.

The blur data has the strongest non-linear behaviour of the three sets. It
indicates that the perception of the blur defocus radius increases sharply and
then flattens off. Therefore, after the knee of the graph has been reached, the
images are so blurred that it becomes difficult for observers to discern between

162

5.4 Results

Fx* x % % x % x 18
kK ok
<
Foo koot 15
ok ok
8 * ok ek K * ok ok 1Q N
Foo oeomolk %k 19
ORRE Kk
o
8 XL I]
F kK KRk Rk * ‘ﬁc —
@ * ook Kk
kK kk Rk ko)
o H * ok ok 1o
* % % * ok K z
b lo W R %
=1
W oKK RRRK K L 5 % lo
*k Kk oWKKX X
* ok ok domk Rk AW K
* Kk MK K
L % % kEEE 1S 5 * K Hk 1<
* ok Ak
- * oW W
* Mk K L ok MRk O
bk
O o © o o o o o o [=) [=) [=) [=) [=) [=)
© m ¥ ® « =1 <) I5S) =) re) < 15}

SOWA paubiesy

SOWQA paubiiesy

Defocus Radius

100

* K

60 80
Cloud cover [%)]

40

20

80

SOWQA paubiiesy

Figure 5.28: The results of the single variable sessions of subjective IQA experi-

ment.

5.4 Results 163

Table 5.3: The average zero mean (AZM) main effects of each of the single variables,
cloud cover, noise o, and defocus extent, R.

o, AZM Cloud AZM Blur R AZM
5 -0.55 10 -1.1 2 -18
12 -2.3 23 -4.1 5 0.36
18 1.2 37 0.48 7 3.9
25 1.6 50 4.8 10 14

different blur levels; all images are perceived as having approximately equal,
poor, image quality. In images with little spatial structure blurring should be
more difficult to perceive in principle (it is definitely more difficult to estimate
algorithmically), but, in practice, the variance of the graph is much less than
the noise graph. Image structure affects the perception of blur less than the
perception of noise.

The cloud data appears linear for high cloud cover levels, but has some non-
linearity at low cloud cover. The initial sharp increase might be attributed to
a sensitivity to the presence of any clouds. No flattening occurs as with blur;
higher levels of cloud cover are always proportionally worse than lower levels
of cover.

Full factorial experimental data

Two analysis methods were applied to the full factorial experimental data to
determine the significance of the different variables and primary interactions.

Firstly, the method described in [50] was used to analyse the effect of each
individual variable, one at a time. It consists of subtracting the global mean
from the data (making it zero mean) and then averaging the data across the
variables not being considered. The resulting spread of the output levels as
a function of the variable under consideration is contemplated. It gives an
indication of the relative importance of the input variable.

These averaged zero mean output levels as a function of input variable
are presented in Table 5.3. It is clear that blur input dominates the output
response with a strong monotonic increase. The relative effect of cloud cover
is approximately three times smaller than that of blur. The non-monotonic
behaviour here is undesirable and is due to the relatively small influence of
cloud cover. Hence, random changes in blur perception can affect the outcome
more than small changes in cloud cover. Lastly the effect of noise is the
smallest, approximately 10 times smaller than that of blur. Although the trend
is positive, the effects of more dominant variables have caused non-monotonic
behaviour.

Alternatively, N-way ANOVA can be used to analyse the relative effect
of N input variables. Its use for determining if there are significant primary
interactions between variables in a full factorial experiment is recommended

5.4 Results 164

Table 5.4: The results of a 3-way ANOVA.

Source p-Value
noise 0.3022
blur 1.02x10712
clouds 0.0047
noise x blur 0.1374

noise X clouds 0.0142
blur x clouds 0.0005

in [50]. Recall that the point of conducting a full factorial experiment is to
determine if there are significant primary interactions. The resulting p-value
for each variable (or primary interaction) can be interpreted as the probability
that the outputs for the different input levels of the variable under considera-
tion could be the result of taking random samples from the same population,
i.e., the probability that the input variable has no effect on the output. Ide-
ally p < 5% for the variable to be pronounced significant with 5% statistical
significance. The p-values from the 3-way ANOVA is presented in Table 5.4.
Neither the effect of the noise variable, nor the primary noise-blur interaction,
is statistically significant to the 5% level. The other two interactions are sig-
nificant. This confirms the usefulness of conducting a full factorial experiment
to model the central area of the input space: cross-coupling between variables
does occur.

Realignment of scores

To depict the result of the outlier rejection and realignment procedures on the
three single variable sessions, the mapping from raw input difference scores
to realigned DMOS is shown in Figure 5.29. The most noticeable is the rel-
ative shift in position of the blur data. This confirms the necessity of the
realignment; when participants’ judgements were calibrated to use the entire
scale, the best unfocused image had an average difference score of about 20.
However, in comparison to the other degradations from the realignment ex-
periment, the best out-of-focus image has a DMOS of 30. This shift is not
just confined to the bottom of the blur scale either; all blurred data is shifted
relative to the other two degradation types. The effect of the double stimulus
method must also be taken into account: when comparing the reference image
to the blurred image in a double-stimulus situation, the effect of the blurring
is more pronounced than in a single-stimulus experiment.

The same mapping for the full-factorial data is depicted in Figure 5.30.
One can see that the main effect of this mapping is that the low values have
been slightly lifted. This makes sense: even images with slight degradations
of all three types present will have worse perceived quality when compared to
images with only one degradation type present. What is more surprising, is the

5.4 Results 165

90 T

+ noise
..
80 blur R 1
A clouds e
o A

70+) 1;:‘.‘ - A _
60

50

Realigned DMOS
N
S
T

20

101

10 L L L L L
-20 0 20 40 60 80 100
Averaged raw difference scores

Figure 5.29: The relationship between raw difference scores and the realigned
DMOS values for the individual variable session.

lack of movement of the data at the top end of the scale. This can be ascribed
to the dominating effect of blurring, revealed in the previous section on page
163. In images with the maximum amount of blur from the full factorial
experiment, the blur had the greatest influence on the quality score. When
compared to images degraded only by severe blurring the relative quality score
is similar. However, one must remember that the greatest defocus extent in
the full factorial experiment is 10 pixels while in the blur experiment it is 15
pixels, it is therefore not unreasonable for these images to have similar values.

5.4.3 Comparison between models
Visual comparison

It is enlightening to attempt to visualise both the spline model fsplme(X) and
the neural network model, fm(X). Since the model space is four-dimensional
it is difficult to represent. The best approach is to keep one input variable
constant and generate surface plots in three dimensions. Some example plots
were generated.

Figure 5.31 shows a comparison between the training data and the resulting
composite spline model fsplme(X) when o,, = 0. Notice the smooth transitions
from the central area model to the models used in the axis planes. This
shows that the weighting method devised in section 5.3.5 from page 155 was

5.4 Results 166

80t e nit]

701 * b

Realigned DMOS

%
*

o
407 *]

30 40 50 60 70 80 90
Averaged raw difference scores

Figure 5.30: The relationship between raw difference scores and the realigned
DMOS values for the cross-coupling session.

DMOS
DMOS

100 100

10
50

Blur 00 Clouds Blur radius 00 Cloud cover[%]

Figure 5.31: A comparison between the training data and resulting surface. (a)
shows all the training data, bar that from the noise only session. In (b) the fspine(X)
surface for o, = 0 has been superimposed.

successful. However, the surface deviates slightly from the cloud data at low
levels of cover. This might be improved by altering the cumulative manner
in which the graphs are combined in equations (5.3.7) to (5.3.10). The good
extrapolation performance of the piecewise linear model used in the central
section is also evident.

By keeping the noise level constant and varying the cloud cover and blur
extent, the different surfaces in Figure 5.32 can be generated. These are in-
tuitively interpretable. As the noise levels are raised from Figure 5.32(a) to
(c), the best possible quality score an image can receive decreases. Further-
more, the area of the surface where that score is determined wholly by noise
increases.

5.4 Results 167

100 100

10 10

50 5 50

Blur radius 0o Cloud cover{%] Blur radius 00 Cloud cover[%]

(a) 0, =0 (b) 0, =15

10 100

50

5

Blur radius 00 Cloud cover[%)]

(c) op =25

Figure 5.32: Surfaces of fsplme(X) at fixed noise levels.

Similarly, Figure 5.33 shows the surfaces generated by keeping the cloud
cover constant at certain levels while varying blur and noise. When cloud
cover is at 0%, 5.33(a), the surface is a weighed combination of the two single
variable curves f,(X,) and f,(X,). However, as the cloud cover increases,
Figure 5.33(b) to (c), the surface used to model the area where X,, > 0 and
X, > 0 gradually changes shape to a slice of feepire(Xe, Xp) with X, at a
constant level. Also, as cloud cover increases, the DMOS floor lifts: the best
possible score an image can receive decreases. Eventually cloud cover begins
to dominate the effect of noise in a blur-free image, Figure 5.33(d).

Similar graphs can be generated for constant blur levels. However, due to
the strong relative weight of blur discussed in section 5.4.2, the effect of noise
is quickly dominated by the effect of blur, Figure 5.34.

For the neural network model the same approach is followed to generate
the surfaces: keep one input variable constant and vary the remaining two. In
Figure 5.35 the noise level is kept constant. The results are broadly similar to
Figure 5.32. In 5.35(a) one of the tansig activation functions models the non-
linearity in the blur axis particularly well. The more linear structure of the

5.4 Results

DMOS

10

10

Noise o 00 Blur radius

(a) Cloud cover = 0%

100

50

DMOS

15

20 10
10

Noise & 0o Blur radius

(c) Cloud cover — 10%

100

50

DMOS

100

50

DMOS

5
/,,,//,,//,,, 7

":,,,/' 5
i
555555 "/'

10
10

Noise o 00 Blur radius

(b) Cloud cover = 5%

20 10
10

Noise & 00 Blur radius

(d) Cloud cover — 40%

Figure 5.33: Surfaces of fspline(X) at fixed cloud cover levels.

Ytz
. ,'l/"ll:,,,l
’1 il
455 sy l 2y
,,',,';44'«,’:'04,, o
S5, ,,l,l,llll,llll ll/,,,,l
2 7
',,/:,,';/, ;;,,,,I’I,,”l,,,
,,,'l,,,,,«,,'o,
7%

S
L5

20 100
50

Noise o 00 Cloud cover[%)]

(a) Blur radius, R =0

20
50

Noise o 0o Cloud cover[%)]

(b) Blur radius, R = 2

Figure 5.34: Surfaces of fsplme(X) at fixed defocus extent levels.

168

15

15

100

5.4 Results 169

DMOS

100 10 100

50 5

10
50

5

Blur radius 0o Cloud cover[%)] Blur radius 00 Cloud cover[%]

(@) 0n =0 (b) o, =10

Figure 5.35: Surfaces of f,,(X) at fixed noise levels.

cloud axis data with its slightly sharp non-linear increase at cloud cover levels
is also visibly modelled. However, there is unwanted non-monotonic behaviour
at some of the ‘ridges’ in the surfaces. This is caused by the tansig activation
functions and is unavoidable.

When examining fnn(X) at fixed cloud cover levels, Figure 5.36, the results
are again similar to those for fsplme(X) from Figure 5.33. As the cloud cover
increases, the central area flattens and the effect of the noise variable decreases.
Once again there are unwanted non-monotonic areas, for example at about
o, = 10 on the noise axis of (c).

In the constant blur-level surfaces, Figure 5.37, the effect of noise is also
quickly dominated by that of blur in a manner similar to 5.34.

Care was taken during the construction of the spline model, fsplme(X)
to select the sub-models, f.(X.), fo(Xs), fu(Xy) and feenre(Xe, Xp), so that
they would extrapolate well. This is ensured by relying mostly on linear,
or piecewise linear, models. It is important since the training data covers a
finite region of the possible input space and one cannot guarantee (except for
cloud cover) that the input variables will stay in that space. Therefore the
extrapolation ability of the neural network model was investigated visually.
Since cloud cover will not have to be extrapolated beyond 100% a surface
of constant cloud cover is presented here (although other surfaces were also
investigated). Figure 5.38 shows the surface for zero cloud cover extrapolated
to noise levels o, = 80 and blur levels R = 50. The surface extrapolates well
with increasing blur levels, continuing to increase, but at a reduced rate. This
matches the behaviour of the collected data. However, in the noise axis the
surface behaves in a similar way although the noise data did not suggest such
a trend. Here, a linear model would have been more appropriate.

5.4 Results 170

100

8 3
= s %
[a) [a)
0
30
20 20 15
10
Noise o 0o Blur radius Noise o 0o Blur radius
(a) Cloud cover = 0% (b) Cloud cover = 10 %

100

15

20
10
10

Noise o 00 Blur radius

(c) Cloud cover = 40%

Figure 5.36: Surfaces of f,,(X) at fixed cloud cover levels.

DMOS

20 100 100
10 50 50
Noise o 00 Cloud cover[%)] Noise o 00 Cloud cover[%)]
(a) Blur radius, R = 0. (b) Blur radius, R = 2.

Figure 5.37: Surfaces of fnn(X) at fixed defocus extent levels.

5.4 Results 171

150

100

DMOS

50

40
20 20

Noise o 0o Blur radius

Figure 5.38: Extrapolation of the neural network model.

Table 5.5: A performance comparison between the models based on test data.

fspline (X) fnn (X)
RMSE? 7.10 10.1

STDP 7.06 10.1
LCCe 0.965 0.927

& Linear correlation coefficient.
b Standard deviation of error.
¢ Root mean squared error.

Test data comparison

The two models were tested using the two £ = 3 and 4 cross validation datasets.
The resulting mean absolute prediction error and linear correlation are pre-
sented in Table 5.5. The spline model slightly out-performs the neural network
model. Figure 5.39 shows the input output relationship across both the tests
sets. While both models clearly have a strong positive correlation, there are
definite outliers in the neural network model. The model fared poorly with
these images. This might be because the images mapped to areas in the input
space close to one of the undesirable ridges in the model surface.

The calculated F-statistic for the test is 2.05, while the 5% F-values ob-
tained from Figure 5.25 on page 158 is 1.24. Therefore the difference in per-
formance between the two models is statistically significant to the 5% level.

However, one of the requirements for using the F-test is that the data be
normally distributed. Although the residual errors used appear Gaussian, they
fail mathematical Gaussianity tests. In [97] the same problem was encountered.
Nevertheless, the authors claimed that, because of the large number of samples
used, the Central Limit Theorem comes into play and the distribution of the
variance estimates (on which the hypotheses tests are based) approximates

5.4 Results

Predicted DMOS

90

80
70¢
60
50
401
30

201

ot

Predicted DMOS

90

80}
70}
60|
50|
a0t
30}

20¢

10f v EE
o

Kol
[N

172

10 P _10 S
-10 0 10 20 30 40 50 60 70 80 90 -10 0 10 20 30 40 50 60 70 80 90
Test values Test values

(a) Spline model, foprine(X). (b) Neural network model, f,(X).

Figure 5.39: Correlation between expected output y; and model prediction gj; for
test data.

the Gaussian distribution. This claim was proved in [97] by running Monte
Carlo tests and changing the actual distribution of the residuals from Gaussian
to uniform. The effect on the results of the hypotheses tests was negligible
when a large number of samples were used (90), but noticeable when fewer
samples were used (10). Since our test has 242 sample points, the results of
the statistical significance test hold.

5.4.4 Testing the integrated system

The previous section gave the results when the known true degradation levels
are the inputs to the quality assessment model. In this section the estimated
degradation levels are used as inputs instead. Therefore the feature estima-
tion algorithms are combined with the quality assessment model to form the
integrated system.

Since the integrated system starts by estimating features and rejecting
difficult blind estimation cases, not all images made it to the quality estimation
stage. Of the 242 images, 93 images could not be evaluated due to features
estimation difficulty: 62 images were rejected by the noise estimation algorithm
(where distinction between image and noise variance was poor) and 49 by the
defocus estimation algorithm (where E, < 1) with an overlap of 18 images.
For the remaining 149 images DMOS was estimated with a root mean square
error of 12.1 and a linear correlation coeficcient of 0.888, which still indicates
a high degree of correlation between predicted and true DMOS values. The
correlation between true and predicted DMOS levels is depicted in Figure 5.40.

As expected, prediction performance decreases when estimating the three

5.5 Conclusion 173

90

80
-l ek
60+
501
a0p

301

Predicted DMOS

201

101

0 20 40 60 80
Test values

Figure 5.40: Correlation between true DMOS, y;, and DMOS predicted by model,
¥i, for input feature levels z; estimated from test images.

features in addition to the quality score. Because contrast optimisation had
been applied to the input images prior to artificial degradation, noise levels
were slightly underestimated and cloud levels overestimated, especially in cloud
free images. These two factors cause the increase in variance at low levels of
true DMOS visible when comparing Figure 5.40 to Figure 5.39. The three
outliers visible at (y;,9;) =~ (20, 50) originate from the same bright desert base
image, which caused considerable overestimation of cloud cover. The outlier at
(77,21) is the result of an out-of-focus image classified as in-focus in addition
to its cloud cover and noise levels being underestimated.

5.5 Conclusion

An image quality assessment model was constructed to combine the effect of
the three measured degradation types into a single quality score. A regression
model was used instead of a classification model to allow images to be ranked
according to quality level. The model is based on a large subjective experiment
to ensure generality.

The behaviour listed in section 5.3.1 was supported by the collected data:
non-linear relationships between the measured features and image quality was
supported; different relative weights for the different variables were supported
and modelling of variable cross-coupling was also supported.

Two possible models were compared, a neural network model and a spline
model ‘manually assembled’ from different component splines. In the con-
struction of the spline model care was taken to adjust the degrees of freedom
available to the model in different areas, based on the available data. In the
central area of the input space this concept led to disregarding the effect of
one of the input variables. The models were also selected to ensure monotonic

5.5 Conclusion 174

behaviour, which is appropriate for the IQA model.

The benefit of this approach over a more typical ‘black-box’ modelling
method like neural networks was proven by the test results; the spline model
outperformed the neural network model. Furthermore the spline model was
designed with extrapolation in mind and appears more suited for this than the
neural network, based on visual inspection.

Finally, tests applied to the entire system confirm its usefulness. The fea-
ture estimation algorithms circumvent blind estimation pitfalls by rejecting
difficult images. The quality estimates for the remaining images correlate well
with the subjective image quality scores from human participants.

Work regarding the creation of the quality assessment model was presented
at the 2008 IEEE International Geoscience and Remote Sensing Symposium
[73] in Boston, Massachusetts. An overview of the system including results of
the integrated system has been submitted for 7th IAA Symposium on Small
Satellites for Farth Observation in Berlin.

Chapter 6

Conclusion

Possible quality features were investigated and the use of degradation measures
over content measures was defended in Chapters 1 and 5. Each of the selected
features was justified in its corresponding chapter, Chapters 2 to 4.

For each feature existing estimation algorithms were investigated. The
algorithms that were most promising and appropriate for on-board implemen-
tation were implemented and compared. Where algorithms’ performance on
embedded architecture could be an issue, the selected algorithms were imple-
mented and tested on an embedded system similar to Sumbandilasat’s.

6.1 Summary of chapter conclusions

In Chapter 2 cloud cover estimation was investigated. It was found that down-
sampling can be used to fit the entire image into the limited memory of the
embedded system and that nearest neighbour down-sampling is preferable to
averaging. A region growing method, which had previously been used on-
board a micro-satellite for cloud cover estimation, was critically evaluated and
compared to thresholding, which is commonly used for cloud detection. The
simpler thresholding method was recommended. Dimension reducing image
transforms were investigated as a means of using information from multiple
image channels in a memory-scarce on-board environment. The novel ap-
plication of heteroscedastic discriminant analysis gave promising results and
outperformed comparable transforms from cloud detection literature.

Noise estimation was considered in Chapter 3. An existing remote sensing
noise estimation algorithm was compared to an estimation algorithm based on
image pyramids. The two methods had not been previously compared. Based
on the comparative experiment, the image pyramid method was recommended.

175

6.1 Summary of chapter conclusions 176

It has superior performance accuracy in estimating low levels of noise. It is
the only method that is able to assess its own estimation ability and give
warnings when it fails to discriminate between signal and noise, which is an
advantage in the context of blind, autonomous noise estimation. This aspect of
the algorithm was adapted to be more conservative, which resulted in better
performance on remote sensing images with high levels of detail. Since the
algorithm is more complex than the simple normalisation, thresholding and
down-sampling methods used in cloud estimation, its embedded feasibility was
evaluated. Its performance was acceptable.

In Chapter 4 algorithms for estimating the defocus extent of the PSF were
investigated. A novel angular spectral smoothing method for increasing the
robustness of spectral based direct blur identification was introduced. Its vari-
ance reducing properties were investigated mathematically and verified empir-
ically. A comparative test between three existing spectral based PSFE estima-
tion methods and the angular smoothing method was conducted. The three
existing methods had not previously been compared in a test of this scale.
The angular smoothing method performed favourably. A novel relative energy
measure was introduced and was able to separate images for which the PSF
cannot be accurately estimated from those where PSE estimation is possible.
The angular smoothing algorithm was implemented on the embedded system
and its feasibility demonstrated.

In Chapter 5 image quality assessment methods were investigated. Since
no models for blind estimation of satellite image quality existed, a subjec-
tive experiment was conducted to gather data. The experiment was suitably
large to allow the construction of a generally applicable model: 18623 human
judgements were collected and 484 unique degraded images evaluated. The
data supported non-linear relationships between the measured features and
image quality, different relative weights for the different variables as well as
modelling of variable cross-coupling. A spline model was constructed that
preserves monotonic behaviour and makes optimal use of available data by
varying the model complexity with data density. A neural network model
was also constructed. The two models were compared visually and based on
test data. The spline model’s performance was superior. Since evaluation of
the model is simply evaluation of a piecewise polynomial function of three
variables, execution time is negligible compared to that of feature estimation.

Finally, the feature estimation algorithms were integrated with the quality
assessment model and the entire system was tested. For images not rejected
due to blind estimation difficulty, quality was estimated successfully: there
was a high linear correlation coefficient between quality estimates and the
subjective image quality scores from human participants.

6.2 Recommendations 177

6.2 Recommendations

A list of recommendations is presented here and elaborated on in the following
paragraphs. To develop the system into an operational system, the following
is recommended:

e Develop a strategy for handling rejected images.

e Implement the cloud estimation and quality assessment model in embed-
ded code.

e Validate the system by testing it on board the satellite.
To improve upon the system the following is recommended:

e Train different transform and threshold parameters for different regions
and times to improve cloud detection.

e Compare the effects of resolution and multi-spectral use on cloud esti-
mation.

e Incorporate attitude determination and control system data to detect
geometric distortion owing to non-uniform satellite motion.

e Use the system in combination with an image acquisition scheduling
system.

When Sumbandilasat becomes operational, access to many multi-spectral
cloud-contaminated scenes from the same sensor will cease to be a problem.
To achieve satisfactory performance across various surface types, it is recom-
mended that different HDA parameters and thresholds be trained on region
and time specific cases. These region specific transforms can be trained off-
line on pooled, downloaded data and then used in a lookup table for on-board
implementation. Similar approaches have been successfully applied to less
flexible transforms for global threshold-based cloud detection [33, 114, 58]. Its
application to HDA remains the subject of future work.

The combined effect of resolution and multi-spectral use on cloud detec-
tion could be compared. By increasing the down-sampling factor (reducing
the resolution) it would be possible to fit more channels into RAM simulta-
neously (increasing multi-spectral use). An optimal combination of channels
and resolution could be identified, allowing the cloud detection to be tailored
to Sumbandilasat’s spectral capabilities and memory constraints.

Images which are rejected by the noise or PSF estimation algorithms (based
on estimation difficulty) could be kept in a separate list. A strategy for han-
dling rejected images must be selected. A possibility is to sort the rejected
images according to those remaining features that can be estimated. Finally,
the system should be validated by testing it on board the satellite.

6.3 Contribution 178

If geometric distortion owing to non-uniform satellite motion is sometimes
present, this could represent an additional degradation feature. However, with-
out a reference image it would be extremely difficult to autonomously estimate
geometric distortion from the captured image. It would be preferable if satellite
orientation information could be obtained from some other source, such as the
attitude determination and control system. Incorporating such information
will make the system dependent on the specific satellite.

In addition to the IQA system, an image acquisition scheduling system
could further improve the use of downlink time by avoiding acquisition in
cloudy conditions. Such a system was implemented for Landsat 7 [83].

6.3 Contribution

The main contributions of this dissertation to academic knowledge are:

e The novel angular smoothing blur identification algorithm, which in-
creases robustness against noise.

e The novel application of HDA to cloud detection, which allows optimal
threshold based cloud detection in in a memory scarce environment.

e The quality assessment model and integrated system, both of which are
novel in the remote sensing context.

The contributions listed above have been published or submitted for publica-
tion in international journals or conference proceedings, as highlighted in the
relevant chapters.

Appendices

179

Appendix A

Implementing the region-growing
algorithm

A.1 Languages, data structures and
optimisation

The language of the final implementation of all algorithms to be used on-
board must necessarily be embedded C. However, to evaluate algorithms an
environment more suited to rapid development is needed. Such an environment
should handle memory management and provide tools for visualisation and
image processing. The initial implementation of the region-growing algorithm
was done in MATLAB® | since the author had a good working knowledge and
it has a well-documented image processing toolbox.

During the early implementation no thought was given to execution speed.
The only data structures used were

image array an L x M unsigned integer array representing the grey-scale
intensity values of the L x M digital image f(x,y), as defined in equation
(1.4.1),

mask array an L X M boolean array b(x,y) where

i, §) {1 if f(i,7) belongs to the current region and
J) =

0 otherwise.
Using these structures a working implementation of the growing part of the
algorithm was devised. This included the calculation of average- and periph-

eral contrast, but not the implementation of stopping rules. The IB and CB

180

A.1 Languages, data structures and optimisation 181

were recomputed every iteration. The IB could be easily found using the
bwboundaries function of the MATLAB® image processing toolbox, but the
CB had to be computed using a custom function, get_cur_boundary, since
bwboundaries is capable only of detecting internal, connected boundaries. Not
only is the CB not internal, but if a cloud is located at the edge of the image,
the CB is not connected.

This initial implementation showed that the algorithm worked and that
the difference measures behaved as expected. Nevertheless, the execution time
was unpractically slow even for a test-bench application. The complexity is
O(N?), where N = L x M is the total number of pixels in the image, since
the IB and CB are recomputed at each iteration, necessitating scanning the
entire image twice for each pixel added. As will be discussed in section A.3,
the region-growing algorithm has to be applied to each seed point in the image
and, since the global maximum of the average contrast is used, each region has
to be grown to the full image size so that the global maximum can be found.
This means that

total execution time =

(time to grow region to image size) x (number of seed points).

To be able to test reasonable number of images, each containing a reasonable
number of clouds, the algorithm had to be fast. Also, since it was a candi-
date for on-board implementation, effort spent improving the performance was
thought to be worth while.

The first, obvious place where the initial implementation had been lacking
was in requiring the re-calculation of the IB and CB at each iteration. Since
only one pixel at a time is added to the region, it is possible to update the IB
and CB instead of re-calculating them. For this realisation of the algorithm,
two additional arrays are used:

IB array a 2 x k array where £ is the length of the 1B,
CB array a 2 x n array where n is the length of the CB.

Each array contained all the (z,y) coordinates of the pixels in the respective
boundary. At each iteration of the region-growing algorithm the following
steps must be taken to keep the IB and CB arrays updated:

1. search through the CB array for the brightest pixel, f(iy,),
2. remove (i, jp) from the CB array,

3. add (i, jp) to the IB array,

4. set b(ip, j») = 1,

5. consider {(i,7)|(¢,) € neighbouring pixels of f (i, jp)}:

A.1 Languages, data structures and optimisation 182

3000

2500+

2000

1500+

execution time [s]

1000+

5001

0 5000 10000 15000
number of pixels

Figure A.1: Execution speed with boundary updating algorithm.

e IF (b(i,7) = 0) AND ((z,7) ¢ CB array) THEN (add (i,5) to CB
array)

o IF (b(i,j) = 1) AND ((7,7) € IB array) AND ((7,) has no neigh-
bours (k,l) for which b(k,l) = 0) THEN (remove (i,5) from IB
array).

Although this implementation was faster than the previous one, it was still
exceedingly slow as shown in Figure A.1 for images of varying sizes. The
shape of the execution time curve resembles a quadratic function and makes
this realisation unsuitable for larger images.

The apparent O(N?) complexity was initially surprising here. However,
running the MATLAB® profiler revealed a fundamental problem with the
data structures used to store the boundaries. Most of the time was being
spent traversing the two boundary arrays. Considering the above description,
for each pixel added the CB and IB arrays are each searched multiple times:
first when finding the brightest pixel in the CB and again each time ((i,7) ¢
CB array) or ((4,j) € IB array) are evaluated.

It was possible to eliminate these last two searches by using a different data
structure. Instead of a mask array, IB array and CB array, an expanded mask
array is used:

expanded mask array an L x M unsigned short integer array e(z,y) where

1 if f(4,7) belongs to the current region but not to the IB,
2 if f(i,7) belongs to the CB,

3 if f(4,7) belongs to the IB and
0

otherwise.

e(i,j) =

By using the extended mask, one can immediately determine the class of
f(ip, J»)’s neighbouring pixels and update the CB and IB without searching

A.1 Languages, data structures and optimisation 183

35

execution time [s]
= = N N w
o e o ol o
: T : :

&
T

o

0 5000 10000 15000
number of pixels

Figure A.2: Execution speed with extended mask array.

the boundaries. This represents a trade-off of memory for speed that would
have to be reconsidered were it to be used in an on-board implementation.
The resulting speed increase is substantial as seen in Figure A.2. However, the
initial search for the brightest pixel in the CB at each iteration still remains.
This means the complexity is O(N x &), where 7 is the average CB length. 7
is dependent on the shape of the region being grown and could in the worst
case be a significant fraction of N, explaining the apparent quadratic shape of
the execution time curve in Figure A.2.

At this point it was decided to move the prototyping environment from
MATLAB® to Python [8]. This was done for two reasons:

e Python is faster at handling repeated element-wise operations on arrays.
MATLAB® arrays and operations are optimised for matrices and matrix
operations (it is the matrix laboratory). To work with specific elements
of an array in an efficient manner in MATLAB® logical indexing must
be used as opposed to nested for loops. This is not possible in the context
of the region-growing algorithm. The Python numpy module has different
data types for arrays and matrices with operations optimised for each

type.

e Python has more built in support for programming structures, for exam-
ple a binary heap implementation (the use of which is described below).

Furthermore Python still has the memory management, visualisation tools and
many of the image processing tools that made MATLAB® attractive. It is
also free.

To improve the performance of the algorithm further, a priority queue
abstract data type (ADT) [49] was used to store the CB, while the extended
mask array was left unchanged. This ADT is used for storing a collection of
prioritised elements and supports arbitrary insertion but removal in order of
priority. The priority of each element is also called the key. Apart from utility

A.2 Stopping rule complications 184

methods such as size (), isEmpty () and peekMin (), the two important access
methods of the priority queue ADT are:

insert(k,x) insert entry with value x and key £ into the queue,
removeMin() remove from the queue the entry with the smallest key.

When used to store the CB elements, brightness (more specifically its inverse)
is used as the key and the (z,y) coordinate pair is the value for each entry.

Since the priority queue is an ADT a specific implementation has to be con-
sidered. It can be implemented as a list, either sorted or unsorted, in which
case either insert(k,x) or removeMin() will take O(n) and the other O(1).
This does not represent an improvement over using only the extended mask
array. The other option is to use either a self balancing binary tree or a binary
heap. When using a tree both access methods would have O(log(n)) complex-
ity. However, for the CB the element being added to the tree typically has a
smaller intensity (greater key) than the all items in the tree, so the tree will
have to be re-balanced often. In a vector based binary heap implementation
both insert(k,x) and removeMin() also have worst case O(log(n)) time, but
amortised O(1) time [49]. In this case the fact that items added typically have
greater keys than those in the list means that execution time will lean towards
the O(1) limit. An existing module for Python, heapq, implements the priority
queue in using a vector based binary heap.

This implementation finally had acceptable performance making it possible
to test with multiple large images. Figure A.3 shows the result of tests on
images of various sizes. Since elements can be removed from CB in O(1)
amortised the algorithm’s performance is now O(N x 1) = O(N).

A.2 Stopping rule complications

To implement the stopping rule the last local maximum of the peripheral
contrast before the global maximum of the average contrast must be found.
One could argue that only the size of the cloud is important from a image
quality perspective. If this were the case, one could consider the peripheral and
average contrast graphs after execution and the index of the local maximum
would be sufficient information, since it is equal to the size of the region to be
segmented. However, when the region-growing algorithm is applied to multiple
seed points in an image, the regions originating from different seed points could
overlap. If one were to remember only the size of each region and sum these
sizes, the total cloud cover could be over estimated. This necessitates that the
shape of each region be stored. Taking the logical OR of the individual cloud
masks then gives the correct total cloud cover.

This implies that output of the region-growing algorithm must be a seg-
mented area. Whilst the same as described in [53], it results in complications

execution time [s]

16

141

12+

10+

A.2 Stopping rule complications 185

execution time [s]

0.0 2000 8000 12000 16000 .0 0.2 0.4 0.6 0.8
number of pixels number of pixels
(a) (b)

Figure A.3: Execution speed with extended mask array and priority queue. (a) is
on the same scale as figures A.2 and A.1 for comparison, while (b) shows the linear
performance extends to images of 1 megapixel.

not discussed there. The algorithm must return shape of the region, but the
region must be grown to an upper limit size greater than its final shape to get
the global average contrast maximum. Therefore, to return to a previous state
of the segmented area one of three options is available:

1. Grow the region to its upper limit, determine the index of the segmen-
tation point and re-grow the region to that size.

2. During region growing, store the last valid segmentation edge and fill the
area inside the edge to get the area mask.

3. During region growing, store the last valid segmentation mask.

Option 1 is processor intensive and memory light, option 3 is processor light
and memory intensive. It was decided to implement option 2 as it represents a
good compromise. Options 2 and 3 imply keeping track of segmentation data
corresponding to a recent local maximum of peripheral contrast during the
growing process.

It is useful to consider the mathematical definition of a local maximum:

a point 2’ is a local maximum of function f if there exists an ¢ > 0
such that f(z") > f(z) for all |x — 2/| < e.

Figure A.4 shows some valid local maxima. Since the goal is to segment at the
most recent local maximum of peripheral contrast prior to the current max-
imum average contrast, the boundaries corresponding to two maxima during
the growing process must be stored:

1.0
x1le6

A.2 Stopping rule complications 186

2 f(x)

Figure A.4: Valid local maxima. In the context of peripheral contrast defined over
a finite interval, point 3 is a valid local maximum.

1. the last local maximum of peripheral contrast prior to the current max-
imum of the average contrast

2. the most recent local maximum of peripheral contrast, given that it is
greater than the maximum from 1.

The second maximum mentioned above is necessary because the average con-
trast might exceed its previous maximum, in which case the segmentation will
boundary from 2 will be used instead of the one from 1. Since the peripheral
contrast graph is ‘growing’ in the z-axis direction as more pixels are added,
and since point 3 in Figure A.4 is a valid local maximum, the current point on
the peripheral contrast graph is the most recent local maximum if it is greater
than the previous € points, where ¢ is now a discrete number.

The size of ¢ determines the span of the local maximum. Choosing ¢ too
small may result in detection of suboptimal local maxima caused by ‘noise’ in
the peripheral contrast graph. Figure A.5, the difference measures for a 32 x 32
pixel Gaussian blob similar to 2.6(a) on page 23, shows an example of this.
In Figure A.5(a) it is clear that the trend for the peripheral contrast curve is
decreasing and that € = 1 makes the algorithm over sensitive when detecting
local maxima. Setting ¢ = 20 gave the desired local maximum in A.5(b).

What value of € results in a meaningful local maximum is clearly relative to
the size of the region being grown. However, since ¢ pixels have to be inspected
every iteration, it is undesirable to have it too large (a significant fraction of
N). Instead of increasing ¢, it was found that spurious local maxima could be
efficiently suppressed by allowing only integer values for peripheral contrast.
This flattens very small increases which could erroneously be classified as local
maxima.

After the segmentation boundary has been determined it is flood-filled to
generate a cloud mask. A custom function, fill_region.py, was written
to implement the filling. It is based on the concept of repeated morphological
dilation as described in [47, pp. 535-536], but modified to improve performance
speed. Instead of considering all the pixels in the image as candidates for
dilation, only the pixels at the boundary of the expanding fill are considered.

A.3 Using the algorithm for cloud detection 187

100 \ \
o — average contrast
; 80} = = peripheral contrast |
©
S 60]
8
c 40 b
ud
[}
& 20} 1
a ..
00 200 400 600 800 1000 1200
Number of Pixels
(a)
100 \ \
b — average contrast
; 80 - - peripheral contrast |
©
= 60 -
8
c 40 b
g
£ 20 |
5 \\
00 200 400 600 800 1000 1200

Number of Pixels

(b)

Figure A.5: The effect of € on the local maximum. The position of the final
segmentation boundary is marked with a 4. In (a) e =1, in (b) € = 20.

A.3 Using the algorithm for cloud detection

To detect all the clouds in image, the region-growing algorithm has to be
applied at all the seed points — one for each cloud. Details on generating
the seed points and handling multiple clouds are scarce in reference |54]. Also,
since the PoSat GSI is 2000m minutiae that could result in spurious seed points
have already been averaged out. The following algorithm was devised to apply
the region-growing algorithm to cloud detection with a smaller GSI:

1. Threshold the image to identify bright areas, forming a rough cloud
mask.

2. Identify and label the connected components in the rough mask.

3. Find the centre and size of each component, use the centre as a seed
point and a multiple of the size as an upper limit for the region-growing
algorithm.

A.3 Using the algorithm for cloud detection 188

4. Take the logical OR of the masks generated from the individual seed
points create to a single composite cloud mask.

The initial implementation of the connected component labelling was based
on [47, pp. 536-538|, but, while theoretically elegant, the solution proved very
slow. The algorithm described in [95, p. 139] was used instead. Practically,
the individual masks from each seed point need not be kept in memory while
the others are grown; each can be ORed with the initially 0 composite mask as
soon as it is completed and then discarded. Therefore a new cloud is added to
the composite cloud mask after each execution of the region-growing algorithm.

As discussed in section 2.3.2, the region-growing algorithm is dependent
on some upper limit. In point 4 above it was mentioned that a multiple of
the rough cloud mask size is used as an upper limit. Since the algorithm is
designed to be insensitive to the upper-limit, the exact value multiple should
not be crucial; a factor of 2 was used. However, the upper limit does play a
role when growing multiple seed points into regions. Since the upper limit is a
multiple of the rough cloud mask size, larger areas have more ‘growing room’
than smaller areas. This can result in large areas consuming (or swamping)
smaller, neighbouring areas during the region-growing process, i.e., the cloud
mask generated from a seed point in the centre of a small area becomes a
subset of the cloud mask generated from a seed point in the centre of a larger
area. While this does not negatively affect the final composite cloud mask,
it means processing time spent on growing the consumed region was wasted.
This was easily avoided by checking if a seed point had already been consumed
in the composite cloud mask before starting with region growing. However,
this led to situations where a small region might just manage to consume the
seed point of a neighbouring cloud and then reach the region-growing upper
limit before being able to expand and consume the whole cloud. The final
composite cloud mask would then be incorrect. This problem was solved by
sorting the labelled connected regions in the rough cloud mask based on size.
The seed points corresponding to larger areas are used first. These larger areas
have enough ‘growing room’ to completely consume smaller clouds if they are
close together. If they are not close together the stopping rule should keep the
larger area from growing into the smaller one.

Figure A.6(a) shows a rough cloud mask for the image from figure 2.25.
Morphological operations have been used to reduce the number of connected
areas and therefore seed points. If no attention is paid to the order in which
the regions are tackled, the cloud mask after eight iterations is depicted in
Figure A.6(b). During the ninth iteration the largest region is grown (Figure
A.6(c)) and consumes many of the previously grown regions, making that work
redundant. By tackling the areas in order of size the total number of calls to the
region-growing algorithm is reduced from nine to four with the same resulting
combined cloud mask, A.6(d).

A.3 Using the algorithm for cloud detection 189

(a) Rough cloud mask. (b) Combined mask after eight iterations.

(c) Region added during ninth iteration. (d) Final combined mask.

Figure A.6: Regions consumed because of lack of ordering.

Appendix B

Critical evaluation of MATLAB

neural network regularisation
options

As mentioned in section 5.2.4 there are four common regularisation options
available to prevent overfitting. To choose from these options a toy problem
was used to evaluate the different methods. Early stopping was not evaluated,
since it is the most basic and ineffective.

The data for the toy problem was a sinus curve evaluated every 0.2 in the
range {0 — 47}. The training data was corrupted by adding Gaussian noise
with o, = 0.2. The validation data is the uncorrupted sinus curve evaluated at
the same points. If overfitting occurs, the model will follow the training data
too closely and model the unwanted noise. This will result in poor validation
performance. On the other hand, if the regularisation method succeeds, the
model should have adequate complexity to model the sinus without modelling
the noise and the validation results should be good. Therefore, the toy problem
has the advantage of being easier to visualise, containing accurate validation
data and allowing more test runs than the collected experimental data. Figure
B.1 shows the training and test data as well as two fits from models with
different complexities.

As previously mentioned, training of neural networks is sensitive to the
starting conditions. The recommendation in section 5.2.4 was followed where-
by the model was trained 20 times for different random starting weights. The
validation error was also computed 20 times and the results are presented as
box-plots that show the distribution of the data across the 20 runs. Sufficient
training epochs were used for the training error to stabilise and the error goal
was set to zero, to ensure that early stopping does not occur.

190

APPENDIX B. CRITICAL EVALUATION OF MATLAB NEURAL NETWORK

REGULARISATION OPTIONS 191
15 T T T T T T
% X Training data
""""" Reference
1k 10 Neurons
— — — 20 Neurons

0.5

-0.5

-15 1 1 1 1 1 1

Figure B.1: The toy problem data and two example fits. The fits were generated
by the automatic Bayesian regularisation method. Notice how the 20 hidden unit
model overfits the data.

Manually varying the number of hidden nodes is algorithmically the sim-
plest method. The validation error in Figure B.2(a) behaves as expected. Tt is
initially large when the model does not have enough complexity to follow the
sine, reaches an optimum at 5 hidden units and then increases again as the
added complexity is used to model the noise.

To test the penalty term method (implemented in MATLAB® according
to equation (5.2.4)), 20 hidden units were used and v varied between 0 and 1.
The effect of varying the performance ratio, v, is visible in Figure B.2(b). It
also behaves in an explainable manner, as 7 increases, the penalty term loses
its weight and overfitting worsens. It is strange that the model can be trained
at v = 0, it is possible that the MATLAB® implementation substitutes some
finite minimum value. Although the penalty term does have an effect of the
validation error, manually varying the number of units is more effective. The
error here stays within the band of the 20 hidden units error from the previous
test.

Lastly, MATLAB’s automatic Bayesian regularisation was tested. It was
evaluated across a selection of models with the number of hidden units varying
similar to the manual method. If the method works as it is supposed to, the

APPENDIX B. CRITICAL EVALUATION OF MATLAB NEURAL NETWORK
REGULARISATION OPTIONS 192

0.5

I
~

Validation Error
o
w

o
)

0.1

++ 4

éé%%é'%'g;?

-1
Fl o+

AU

2 3 4 5 10 15 20 25 30 35 40 45 50
Hidden layer size

(a) Manually varying number of hidden units.

©

i

~
:

Validation error
o
=
w

0.12r

0.11r

0.1t

Validation Error
o o o
N w N

o©
o

-
L TF
F-—--4 [F--+
T+
T3
F---] F-
F- -l
F-[F -
F-1 T F-
R

0 0102 03040506 070809 1
Performance ratio

(b) Using a performance ratio, .

= =

*é%++

— éé%‘T* 4
T

1

—

=

be -]

2 3 4 5 10 15 20 25 30 35 40 45 50
Hidden layer size

(c) Using automatic Bayesian regularisation.

Figure B.2: A comparison between different regularisation options for neural net-

works.

APPENDIX B. CRITICAL EVALUATION OF MATLAB NEURAL NETWORK
REGULARISATION OPTIONS 193

validation error should remain constant once the optimum model complexity
has been reached. Figure B.2(c) shows the results. At 5 hidden units, the
method still limits the number of parameters in an unwanted manner, resulting
in high validation error. At 10 hidden units, the method successfully limits the
number of parameters so that the performance is similar to the 5 hidden unit
network from the manual test. However, as the number of units are manually
increased, so the validation error increases. Therefore, the method is not
successful in completely regularising model complexity. At 30 to 50 hidden
nodes there are also outliers caused by the method limiting the number of
active parameters too severely. While the resulting median errors are smaller
than similar sized models with no regularisation, the increase in validation
error with model size shows that, for this toy problem, the method cannot
regularise model complexity as well as optimal manual selection of model size.

Based on the results of this experiment, manual architecture selection was
used since it proves adequate protection against overfitting and is the simplest
method to implement.

Appendix C

Embedded implementation
documentation

This documentation was adapted from the TEX documentation generated by
Doxygen [3] to allow it to be incorporated as an appendix. Doxygen generates
documentation by scanning source files for specially formatted comments.

C.1 Embedded implementation data structure
documentation

C.1.1 ImageD struct reference

#include <imaux.h>

Data fields

e double xx img
e long nRow
e long nCol

Detailed description

Image structure containting memory for a double type image as well as infor-
mation about the image.
Definition at line 24 of file imaux.h.

194

C.1 Embedded implementation data structure documentation 195

Field documentation

doublexx ImageD::img

Pointer to two dimensional array.

Definition at line 25 of file imaux.h.

Referenced by allocateImageD(), angularAverage(), estimateNoise(), esti-
matePSF(), freelmageD(), getVarianceOrderStatistics(), printImageD(), and
smoothPS().

long ImageD::nRow

Number of rows in image.

Definition at line 26 of file imaux.h.

Referenced by allocateImageD(), angularAverage(), freelmageD(), printIm-
ageD(), and smoothPS().

long ImageD::nCol
Number of columns in image.
Definition at line 26 of file imaux.h.
Referenced by allocateImageD(), angularAverage(), and printImageD().
The documentation for this struct was generated from the following file:

e imaux.h

C.1.2 ImageF struct reference

#include <imaux.h>

Data fields

e float xx img
e long nRow
e long nCol

Detailed description

Image structure containting memory for a float type image as well as informa-
tion about the image.
Definition at line 34 of file imaux.h.

Field documentation

float+x ImageF::img
Pointer to two dimensional array.
Definition at line 35 of file imaux.h.
Referenced by allocateImageF (), and freelmageF ().

C.1 Embedded implementation data structure documentation 196

long ImageF::nRow
Number of rows in image.
Definition at line 36 of file imaux.h.
Referenced by allocateImageF (), and freelmageF ().

long ImageF::nCol
Number of columns in image.
Definition at line 36 of file imaux.h.
Referenced by allocateImageF ().
The documentation for this struct was generated from the following file:

e imaux.h

C.1.3 ImageUC struct reference

#include <imaux.h>

Data fields

e unsigned char **x img
e long nRow
e long nCol

Detailed description

Image structure containting memory for an unsigned char type image as well
as information about the image.
Definition at line 14 of file imaux.h.

Field documentation

unsigned charxx ImageUC::img

Pointer to two dimensional array.

Definition at line 15 of file imaux.h.

Referenced by allocateImageUC(), downSampleImageUC(), estimatePSF(),
freelmageUC(), get VarianceOrderStatistics(), loadbitmap(), and printImageUC().

long ImageUC::nRow

Number of rows in image.

Definition at line 16 of file imaux.h.

Referenced by allocatelmageUC(), estimateNoise(), estimatePSF(), freelmageUC(),
getVarianceOrderStatistics(), and printlmageUC().

C.2 Embedded implementation file documentation 197

long ImageUC::nCol

Number of columns in image.

Definition at line 16 of file imaux.h.

Referenced by allocatelmageUC(), estimateNoise(), estimatePSF(), get-
VarianceOrderStatistics(), and printImageUC().

The documentation for this struct was generated from the following file:

e imaux.h

C.2 Embedded implementation file
documentation

C.2.1 Dblur.c File reference

#include <error.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include "imaux.h"
#include "fft.h"
Include dependency graph for blur.c:

error.h math.h stdlib.h stdio.h

Defines
e #define BLOCKSIZE 128

Functions

e int maxPos (double xinput, int size)

e float getRelativeEnery (double xinput, int size, int peak)

e void adaptiveCombFilter (double xinput, int size)

e void angularAverage (ImageD xinlmage, double xavg, int avgSize)

e void smoothPS (ImageD xinlmage)

e void estimatePSF (ImageUC xinlmage, int xdefocusExtent, float
«relativeEnergy)

C.2 Embedded implementation file documentation 198

Detailed description

This file contains functions related to determining the defocus blur extent of
an image.
Definition in file blur.c.

Define documentation

#define BLOCKSIZE 128

Image is divided into BLOCKSIZExBLOCKSIZE blocks during PSF esti-
mation.

Definition at line 15 of file blur.c.

Referenced by estimatePSF().

Function documentation

void adaptiveCombFilter (double x input, int size)
An adaptive comb-like filter that amplifies peaks in input array which have
harmonics and suppresses peaks which do not have harmonics. The filter is:

[In(r)]

i1 2aiea, (In(i))?
for quefrency r, A, = {ili >roandi ¢ (kr — 1, kr,kr+1),k=0,1,2...}.

Out(r) =

A, is the "disturbance set”: the set of quefrencies where harmonics of r are
not expected. This set resembles a comb-filter with 3-point stop bands. M
is the total number of points in A,. ryp = 3 to avoid an A, consisting only of
stop bands, which would be an empty set. The output of the filter is therefore
limited to values of r > 3. Input is replaced with filtered output.

Parameters:

imput Input array.

stze Size of input array.

Definition at line 99 of file blur.c.
Referenced by estimatePSF().

void angularAverage (ImageD x inImage, double x avg, int avg-
Size)

The input image is converted into polar coordinates using bilinear inter-
polation, and then averaged over all angles. This creates a 1D array that is a
function of r, the distance from the origin in the input image.

C.2 Embedded implementation file documentation 199

Parameters:

inImage Pointer to the struct encapsulating the double image to be
smoothed. The input array must be square.

avg Pointer to one dimensional double array large enough to contain the
output.

avgSize The size of the avg array. Must be at least ceil(size/sqrt(2)),
where inTmage is (size x size). That is the output array must be large
enough to contain values of r equal tot the radius in the corners of
the image.

Definition at line 152 of file blur.c.

References allocateImageD(), freelmageD(), ImageD::img, M PI, ImageD::nCol,
and ImageD::nRow.

Referenced by estimatePSF(), and smoothPS().

Here is the call graph for this function:

allocatelmageD |—>| allocate2dArrayD |
| angularAverage
freelmageD
void estimatePSF (ImageUC x inImage, int * defocusExtent, float
x relativeEnergy)
Implements a variation on Cannon’s point spread function estimation algo-
rithm. ("Blind deconvolution of spatially invariant image blurs with phase",

IEEE Transactions on Acoustics, speech and Signal Processing, v24, nol, Feb
1976).

e Divide image into 128x128 squares.

e Compute power spectrum of each square and average power spectrum
over all squares.

e Reduce noise variance through angular smoothing using smoothPS()
(p.201).

e Subtract noise power.
e Take cepstrum.

e Do postprocessing with adaptiveCombPFilter() (p.198) to suppress
spurious cepstral peaks.

Spectral subtraction and postprocessing are additions to the algorithm added
by Fabian et.al. ("Robust Identification of motion and out-of-focus blur pa-
rameters from blurred noisy images:, CVGIP: Graphical models and Image
Processing, v 53, no 5, Sept, 1991). Angular smoothing is a new addition

C.2 Embedded implementation file documentation 200

to the algorithm. The additions are aimed at increase the robustness of the
method in presence of additive white gaussian noise.

Parameters:

inImage Struct encapsulating input image (8 bit greyscale).

defocusFExtent Pointer to value that will be modified to contain the
estimated diameter of the defocus blur. If inlmage is in focus this
will contain zero;

relativeEnergy Pointer to value that will be modified to contain the
relative energy in the peak. Can be used as a measure of certainty in
the defocus extent estimation. If the inlmage is classified as in focus
this value is meaningless.

Definition at line 305 of file blur.c.

References adaptiveCombFilter(), allocate2d ArrayD(), allocate2d ArrayUC(),
allocatelmageD(), angularAverage(), BLOCKSIZE, fft2d(), fft2dshift(), free2d ArrayD(),
free2d ArrayUC(), freelmageD(), getRelativeEnery(), HANN _WINDOW, Im-
ageD::img, ImageUC::img, maxPos(), ImageUC::nCol, ImageUC::nRow, powspec(),
and smoothPS().

Here is the call graph for this function:

adaptiveCombFilter

allocatelmageD |—‘| allocate2dArrayD

‘
P
I
/’ ™
Y/

\

\

|
"’
/

float getRelativeEnery (double % input, int size, int peak)
Computes the energy in the peak of a 1D signal relative to the energy in
the rest of the signal. The peak width is three indices.

C.2 Embedded implementation file documentation 201

Parameters:
input Pointer to the input signal array.
stze The size of the input array.

peak The index of the peak in the input.
Returns:
The relative energy.

Definition at line 47 of file blur.c.
Referenced by estimatePSF().

int maxPos (double x input, int size)
Get the index of the greatest element in an array.

Parameters:

input The input array.

size Size of the input array.
Returns:

The index of the greatest element in the input array.

Definition at line 23 of file blur.c.
Referenced by estimatePSF().

void smoothPS (ImageD x inImage)

Radially smoothes the power spectrum using angularAverage() (p. 198).
This 1D function is then swept around the origin of the polar coordinate system
(centre of the image) to create a surface of revolution in cartesian coordinates.
Linear interpolation is used for this last step.

Parameters:

inImage Pointer to the struct encapsulating the double image to be
smoothed. The input array must be square. Smoothed version re-
places input.

Definition at line 232 of file blur.c.

References angularAverage(), ImageD::img, and ImageD::nRow.
Referenced by estimatePSF().

Here is the call graph for this function:

allocatelmageD |—>| allocate2dArrayD |

freelmageD |—>| free2dArrayD |

| smoothPS |—>| angularAverage

C.2 Embedded implementation file documentation 202

C.2.2 blur.h File reference
This graph shows which files directly or indirectly include this file:

testblur.c

Detailed description

This file contains declarations for functions used to determine the defocus blur
extent of an image.
Definition in file blur.h.

C.2.3 fft.c File reference

#include <math.h>
#include <malloc.h>
#include <stdlib.h>
#include <error.h>
#include <stdio.h>
#include "fft.h"
#include "imaux.h"
Include dependency graph for fft.c:

math.h malloc.h stdlib.h error.h stdio.h

Defines
o #define M PI 3.14159265358979323846

Functions

e void window (double xximage, long nRow, long nCol, enum win-
dowOptions windowOpt)

e void fft (int npoints, double *real, double ximag, int inv)

e void fft2d (double xximgReal, double sximglmag, long nRow, long
nCol, short flag)

e void powspec (unsigned char xximgln, double xximgOut, long nRow,
long nCol, enum windowOptions windowOpt)

e void fft2dshift (double xxinlmg, double xxoutlmg, long nRow, long
nCol)

C.2 Embedded implementation file documentation 203

Detailed description

This file contains code for performing the Fourier transform and related tasks.
The implementation has been adapted from code supplied with "Practical
Algorithms for Image Analysis".

Definition in file fft.c.

Define documentation

#define M PT 3.14159265358979323846
Pi.
Definition at line 17 of file fft.c.
Referenced by angularAverage(), fft(), and window().

Function documentation

void fft (int npoints, double x real, double * imag, int inv)

Uses time decomposition with input bit reversal. The Cooley/Tookey For-
tran scheme for doing recursive odd/even decimation is used. The computation
is done in place, so the output replaces the input. The contents of the arrays
are changed from the input data to the FFT coefficients. (Adapted from Prac-
tical Algorithms for Image Analysis.)

Parameters:

npoints The number of points in the FFT. Must be a power of two.

real,smag Pointers to arrays of floats for input and output. Arrays must
be allocated my caller.

wnv 1 for inverse transform. -1 for forward transform.

Definition at line 41 of file fft.c.
References M PI.
Referenced by fft2d().

void fft2d (double xx ¢mgReal, double xx ¢mglmag, long nRow,
long nCol, short flag)

Performs two-dimensional FFT on square image. Places output in input
real and imagenary image arrays. (Adapted from Practical Algorithms for
Image Analysis).

Parameters:

imgReal,imgImag Pointer to real and imaginary arrays. Arrays must
be allocated by caller.

nRow,nCol Number of rows and columns for real and img arrays. Must
be a power of two.

C.2 Embedded implementation file documentation 204

flag -1 for forward transform, 1 for reverse transform.

Definition at line 114 of file fft.c.

References fft().

Referenced by estimatePSEF(), and powspec().
Here is the call graph for this function:

void fft2dshift (double *xx inImg, double xx outImg, long nRow,
long nCol)

Shifts the two dimensional FFT output so that the origin (zero frequency)
is in the centre of the image.

Parameters:

inImg The image array to be shifted.
outImg The shifted image array. Memory must be allocated by caller.

nRow,nCol The size of the image array.

Definition at line 293 of file fft.c.
Referenced by estimatePSF().

void powspec (unsigned char *x imgIn, double *x imgOut, long
nRow, long nCol, enum windowOptions windowOpt)

Calculates the two-dimensional power spectrum of image, optionally ap-
plying a window function first.

Parameters:
tmglIn Pointer to Image array - take note unsigned char implies 8bit
depth. This might be changed to accommodate greater bitdepths.

tmgQut Pointer to powerspectrum output array. Memory for arrays
must be allocated by the caller.

nRow,nCol Number of rows and columns for input and output arrays.
Must be a power of two.

windowOpt can be any one of the following:

e NO WINDOW
e HAMMING WINDOW
e HANN WINDOW

Definition at line 173 of file fft.c.
References allocate2d ArrayD(), fft2d(), free2d ArrayD(), log2, NO _ WINDOW,
and window().

C.2 Embedded implementation file documentation 205

Referenced by estimatePSF().
Here is the call graph for this function:

allocate2dArrayD

free2dArrayD
void window (double *x image, long nRow, long nCol, enum win-

dowOptions windowOpt)
Multiplies input array by smoothing window.

powspec

Parameters:

tmage Two dimensional array to be windowed.
nRow,nCol Size of image array.

windowOpt Type of window.

Definition at line 236 of file fIt.c.
References HAMMING WINDOW, HANN WINDOW, and M_ PIL
Referenced by powspec().

C.2.4 fft.h File reference
This graph shows which files directly or indirectly include this file:

[bure | [fe] [mmeadc | [testitte |

Enumerations

e enum windowOptions { NO_ WINDOW = 0, HAMMING -
WINDOW, HANN_WINDOW}

Detailed description

This file contains declarations of Fourier transform related functions. The im-
plementation has been adapted from code supplied with "Practical Algorithms

for Image Analysis".
Definition in file fft.h.

C.2 Embedded

implementation file documentation 206

Enumeration type documentation

enum windowOptions
Arguments for powspec() (p.204) and window() (p. 205) functions, used
to determine spectral window type.

Enumerator:

NO_ WINDOW Rectangular window.
HAMMING WINDOW Hamming window
HANN_ WINDOW Also known as raised cosine.

Definition at line 9 of file fft.h.

C.2.5 1imaux.c File reference

#include <malloc.h>

#include
#include
#include
#include
#include
#include

<error.h>
<stdlib.h>
<stdio.h>
<assert.h>
<math.h>
"imaux.h"

Include dependency graph for imaux.c:

Functions

malloc.h error.h stdlib.h stdio.h assert.h math.h

e double xx allocate2dArrayD (long nRow, long nCol)

e void free2dArrayD (long nRow, double xxArrayPtr)

e unsigned long long int *x allocate2d ArrayULLI (long nRow, long

nCol)

e void free2d ArrayULLI (long nRow, unsigned long long int xxArrayPtr)

o float *x*

allocate2d ArrayF (long nRow, long nCol)

e void free2dArrayF (long nRow, float sxArrayPtr)

e unsigned char xx allocate2dArrayUC (long nRow, long nCol)

e void free2dArrayUC (long nRow, unsigned char sxArrayPtr)

e ImageUC x allocatelmageUC (long nRow, long nCol)

e ImageD x allocateImageD (long nRow, long nCol)

e ImageF x allocateImageF (long nRow, long nCol)

e void freelmageUC (ImageUC xin)

C.2 Embedded implementation file documentation 207

e void freelmageD (ImageD xin)

e void freelmageF (ImageF xin)

e ImageUC x loadbitmap (char xfilename)

e void printImageUC (ImageUC xin, int flag)

e void printImageD (ImageD xin, int flag)

e void downSampleImageUC (ImageUC sxinput, int factor)

Detailed description

This file contains auxiliary image processing functions. These are memory
allocation and input/output functions.
Definition in file imaux.c.

Function documentation

doublexx allocate2dArrayD (long nRow, long nCol)
Allocates a two dimensional array containing doubles.

Parameters:

nRow,nCol The number of rows and columns in the array.

Definition at line 20 of file imaux.c.
Referenced by allocatelmageD(), estimatePSF(), getVarianceOrderStatis-
tics(), and powspec().

float*x allocate2dArrayF (long nRow, long nCol)
Allocates a two dimensional array containing floats.
Parameters:

nRow,nCol The number of rows and columns in the array.

Definition at line 86 of file imaux.c.
Referenced by allocateImageF ().

unsigned charxx allocate2d ArrayUC (long nRow, long nCol)
Allocates a two dimensional array containing unsigned chars.

Parameters:

nRow,nCol The number of rows and columns in the array.

Definition at line 120 of file imaux.c.
Referenced by allocateImageUC(), and estimatePSF().

C.2 Embedded implementation file documentation 208

unsigned long long int+* allocate2dArrayULLI (long nRow, long
nCol)
Allocates a two dimensional array containing unsigned long long ints.

Parameters:

nRow,nCol The number of rows and columns in the array.

Definition at line 53 of file imaux.c.
Referenced by getVarianceOrderStatistics().

ImageD=x allocateImageD (long nRow, long nCol)
Allocate the memory for an ImageD (p.194) structure.

Parameters:

nRow,nCol Size of array contained within the ImageD (p. 194) struc-
ture.

Definition at line 172 of file imaux.c.

References allocate2d ArrayD(), ImageD::img, ImageD::nCol, and ImageD::nRow.

Referenced by angularAverage(), estimatePSF(), and getVarianceOrder-
Statistics().

Here is the call graph for this function:

| allocatelmageD |—>| allocate2dArrayD |

ImageFx allocateImageF (long nRow, long nCol)
Allocate the memory for an ImageF (p.195) structure.

Parameters:

nRow,nCol Size of array contained within the ImageF (p.195) struc-
ture.

Definition at line 192 of file imaux.c.
References allocate2d ArrayF (), ImageF::img, ImageF::nCol, and ImageF::nRow.
Here is the call graph for this function:

| allocatelmageF |—>| allocate2dArrayF |

ImageUCx allocateImageUC (long nRow, long nCol)
Allocate the memory for an ImageUC (p. 196) structure.

Parameters:

nRow,nCol Size of array contained within the ImageUC (p. 196) struc-
ture.

C.2 Embedded implementation file documentation 209

Definition at line 153 of file imaux.c.

References allocate2d ArrayUC(), ImageUC::img, ImageUC::nCol, and ImageUC::nRow.
Referenced by downSamplelmageUC(), and loadbitmap().

Here is the call graph for this function:

| allocatelmageUC |—>| allocate2dArrayUC |

void downSampleImageUC (ImageUC *x input, int factor)

Downsamples the image by a constant integer factor. Memory footprint is
also reduced. This is achieved by assigning new memory for the output image
and freeing the old memory after subsampling is finished. To achieve this,
double dereferenced pointer is necessary.

Parameters:
input The input image.

factor The amount to downsample by. E.g. if this is 3, every third
pixel is preserved and image dimensions are approximately divided
by three.

Definition at line 395 of file imaux.c.
References allocatelmageUC(), and ImageUC::img.
Here is the call graph for this function:

| downSamplelmageUC |—>| allocatelmageUC |—>| allocate2dArrayUC |

void free2dArrayD (long nRow, double xx ArrayPtr)
Frees memory allocated with allocate2d ArrayD() (p.207).

Parameters:
nRow The number of rows in the array.

ArrayPtr Pointer to array to be freed.

Definition at line 39 of file imaux.c.
Referenced by estimatePSF(), freelmageD(), getVarianceOrderStatistics(),
and powspec().

void free2dArrayF (long nRow, float «x ArrayPtr)
Frees memory allocated with allocate2dArrayF() (p.207).
Parameters:

nRow The number of rows in the array.

ArrayPtr Pointer to array to be freed.

Definition at line 106 of file imaux.c.
Referenced by freelmageF ().

C.2 Embedded implementation file documentation 210

void free2d ArrayUC (long nRow, unsigned char xx ArrayPtr)
Frees memory allocated with allocate2d ArrayUC() (p.207).

Parameters:
nRow The number of rows in the array.
ArrayPtr Pointer to array to be freed.

Definition at line 139 of file imaux.c.
Referenced by estimatePSF(), and freelmageUC().

void free2dArrayULLI (long nRow, unsigned long long int #x Ar-

rayPtr)
Frees memory allocated with allocate2d ArrayULLI() (p. 208).

Parameters:

nRow The number of rows in the array.

ArrayPtr Pointer to array to be freed.

Definition at line 72 of file imaux.c.
Referenced by getVarianceOrderStatistics().

void freeImageD (ImageD * n)
Free all of the memory associated with an ImageD (p.194) structure.
Definition at line 220 of file imaux.c.
References free2d ArrayD(), ImageD::img, and ImageD::nRow.
Referenced by angularAverage(), estimateNoise(), and estimatePSF().
Here is the call graph for this function:

| freelmageD |—>| free2dArrayD |

void freeImageF (ImageF x in)
Free all of the memory associated with an ImageF (p. 195) structure.
Definition at line 229 of file imaux.c.
References free2dArrayF (), ImageF::img, and ImageF::nRow.
Here is the call graph for this function:

| freelmageF |—>| free2dArrayF |

void freeImageUC (ImageUC x 1in)
Free all of the memory associated with an ImageUC (p. 196) structure.
Definition at line 211 of file imaux.c.
References free2d ArrayUC(), ImageUC::img, and ImageUC::nRow.
Here is the call graph for this function:

| freelmageUC |—>| free2dArrayUC |

C.2 Embedded implementation file documentation 211

ImageUCx loadbitmap (char x filename)
Load a greyscale (8 bits per pixel) bitmap image form file.

Returns:

Pointer to a ImageUC (p. 196) struct containing the image. The caller
must free the memory using freeImageUC() (p. 210) when it is no longer
needed.

Definition at line 240 of file imaux.c.
References allocateImageUC(), and ImageUC::img.
Here is the call graph for this function:

| loadbitmap |—>| allocatelmageUC |—>| allocate2dArrayUC

void printImageD (ImageD * in, int flag)
Prints a ImageD (p.194) to std-out or file depending on the value of
flag.

Parameters:

in Pointer to ImageD (p.194) structure to print.
flag 0: Print to std out. 1: Print to file 'ImageD.txt’.

Definition at line 359 of file imaux.c.
References ImageD::img, ImageD::nCol, and ImageD::nRow.

void printImageUC (ImageUC x 1in, int flag)
Prints a ImageD (p.194) to std-out or file depending on the value of
flag.

Parameters:

in Pointer to ImageD (p. 194) structure to print.
flag 0: Print to std out. 1: Print to file 'ImageD.txt’.
Definition at line 325 of file imaux.c.

References ImageUC::img, ImageUC::nCol, and ImageUC::nRow.

C.2.6 imaux.h File reference

This graph shows which files directly or indirectly include this file:

| blur.c | |teslb|ur.c | | fft.c | |teslff1.c | |imaux.c | |testioAc | | noise.c | | testnoise.c

C.2 Embedded implementation file documentation 212

Data structures

e struct ImageUC
e struct ImageD
e struct ImageF

Defines

o 7+define log2(a) (log(a)/ 0.6931471805599)
e #define exp2(a) exp(a * 0.6931471805599)

Detailed description

This file contains declarations for auxiliary image processing functions. These
are memory allocation and input/output functions. Structures for encapsu-
lating two dimensional array information are also defined here. By including
extra information in a struct the parameters passed during function calls can
be reduced.

Definition in file imaux.h.

Define documentation

#define exp2(a) exp(a * 0.6931471805599)
Base two exponential. 2% = (") = ¢zIn(2)
Definition at line 41 of file imaux.h.
Referenced by estimateNoise().

=€

#define log2(a) (log(a)/ 0.6931471805599)
Base two logarithm. log2(x) = }Eg;
Definition at line 40 of file imaux.h.

Referenced by estimateNoise(), get VarianceOrderStatistics(), and powspec().

C.2.7 noise.c File reference

#include <math.h>
#include <malloc.h>
#include <stdio.h>
#include "imaux.h"
Include dependency graph for noise.c:

noise.c

math.h

malloc.h stdio.h

C.2 Embedded implementation file documentation

Functions

e ImageD x getVarianceOrderStatistics (ImageUC xinput)
e float estimateNoise (ImageUC xinput)

Detailed description

Contains functions related to determining the amount of additive gaussian

white noise present in an image.
Definition in file noise.c.

Function documentation

float estimateNoise (ImageUC x input)

Estimates the noise variance present in the image using the method of Meer
et.al. (A Fast Parallel Algorithm for Blind Estimation of Noise Variance’,
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 12. No

2. Feb 1990). The steps are:

e Sample variances are computed for square cells tessellating the image.

Several tessellation levels are applied with the size of the cells increasing
fourfold for consecutive tessellations. The four smallest variance values
for each tessellation are retained. This step is done by getVariance-
OrderStatistics() (p.214).

The variance values for each tessellation level are combined though an
outlier analysis to yield a variance estimate sequence consisting of a single
variance value for each level.

The noise variance is estimated by interpolation of two variance values
in this sequence.

Which two variance values are best suited depends on the dichotomy
between image and noise variance. Determining the dichotomy achieved
by analysing the deviation sequence:

_u(l—1)
(D)
where v([) is the variance estimate at tessellation level [and (1) is the

lower variance ratio bounds obtained for a uniform image corrupted with
additive gaussian noise. It is generated by the expression:

a(l) B(1), 1=3,4,....n

B(l) =1—(0.1)27"6,

The exact interpolation expressions used depends on which at tessellation
level the signal noise dichotomy occurs.

C.2 Embedded implementation file documentation 214

Parameters:
input The input image.
Returns:

The noise variance. Returns -1 if there was not a clear separation between
signal and noise.

Definition at line 224 of file noise.c.

References exp2, freelmageD(), get VarianceOrderStatistics(), ImageD::img,
log2, TmageUC::nCol, and ImageUC::nRow.

Here is the call graph for this function:

free2dArrayD
freelmageD
| getVarianceOrderStatistics
allocate2dArrayULLI | allocate2dArrayD

allocatelmageD
free2dArrayULLI

ImageDx* getVarianceOrderStatistics (ImageUC * input)
Calculate the variance order statics for the image at each level:

e Divide the image into 2! x 2! pixel blocks, where [is the current level.
e Calculate the variance for each block.
e Return the four smallest variances sorted in order.

Image pyramid levels range from [= 1 (2 x 2 pixel blocks) to [= N where
2NV % 2V is the largest square block that can be contained in the image. This
implementation prioritises speed over memory footprint. It stores the results
of level n so they can be used at level n+1. If the input image is Q bytes (1
byte per pixel), this will require an additional Q(0.5%0.5 + 0.25%0.25)%(4-+8)
= 3.75Q bytes during execution.

Parameters:

input Pointer to struct encapsulating the input image (greyscale 8 bit
depth image).

Returns:

Pointer to ImageD (p. 194) struct encapsulating a 2D array that contains
the variance order statistics. The rows indices correspond to levels in the
image pyramid while the columns contain variances. For example the
smallest variance at level "n" would be at output|n-1||0], while the fourth
smallest would be at output[n-1][3]. This struct must be freed by the
caller using freeImageD() (p.210).

C.2 Embedded implementation file documentation 215

Definition at line 35 of file noise.c.

References allocate2d ArrayD(), allocate2d ArrayULLI(), allocateImageD(),
free2d ArrayD(), free2d ArrayULLI(), ImageD::img, ImageUC::img, log2, ImageUC::nCol,
and ImageUC::nRow.

Referenced by estimateNoise().

Here is the call graph for this function:

| allocate2dArrayULLI | allocate2dArrayD

getVarianceOrderStatistics |—>| allocatelmageD
free2dArrayD
free2dArray ULLI

C.2.8 noise.h File reference

This graph shows which files directly or indirectly include this file:

noise.h

testnoise.c

Detailed description

This file contains declarations of noise estimation related functions.
Definition in file noise.h.

Bibliography

1]
2]

3]

4]
[5]
6]

7]
8]
9]

[10]

[11]

|Online|. Available: http://www.koffice.org/krita/ (Cited on page 24.)

[Online|. Available: http://www.pythonware.com/products/pil/ (Cited
on page 35.)

|Online|. Available: http://www.doxygen.org (Cited on pages 71
and 194.)

[Online|. Available: http://www.terraserver.com (Cited on page 134.)
[Online|. Available: http://www.php.net (Cited on page 139.)

|Online|. Available: http://developer.yahoo.com/yui/ (Cited on
page 139.)

[Online|. Available: http://www.mysql.com (Cited on page 139.)
[Online|. Available: http://www.python.org (Cited on page 183.)

“Final report from the video quality experts group on the validation of
objective models of video quality assessment, Phase I1,” Aug. 2003.
[Online|. Available: http://www.vqeg.org (Cited on pages 127, 139,
and 157.)

S. Andrefouet and J. Robinson, “The use of Space Shuttle images to
improve cloud detection in mapping of tropical coral reef
environments,” International Journal of Remote Sensing, vol. 24, no. 1,
pp. 143-149, 2003. [Online|. Available:
http://dx.doi.org/10.1080/01431160305007 (Cited on page 12.)

P. Atkinson, “On estimating measurement error in remotely-sensed
images with the variogram,” International Journal of Remote Sensing,
vol. 18, no. 14, pp. 3075-3084, 1997. [Online|. Available:
http://dx.doi.org/10.1080/014311697217224 (Cited on pages 58, 60,
and 61.)

216

http://www.koffice.org/krita/
http://www.pythonware.com/products/pil/
http://www.doxygen.org
http://www.terraserver.com
http://www.php.net
http://developer.yahoo.com/yui/
http://www.mysql.com
http://www.python.org
http://www.vqeg.org
http://dx.doi.org/10.1080/01431160305007
http://dx.doi.org/10.1080/014311697217224

BIBLIOGRAPHY 217

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

L. Beaudoin, J. Nicolas, F. Tupin, and M. Huckel, “Introducing spatial
information in k-means algorithm for clouds detection in optical
satellite images,” in Proceedings of the SPIE - The International Society
for Optical Engineering, vol. 4168. SPIE, 2001, pp. 67-77. [Online|.
Available: http://dx.doi.org/10.1117/12.413845 (Cited on page 18.)

M. Ben-Ezra and S. K. Nayar, “Motion-based motion deblurring,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 26, no. 6, pp. 689-698, Jun. 2004. (Cited on page 92.)

J. Bendix, R. Rollenbeck, and E. Palacios, “Cloud detection in the
tropics - A suitable tool for climate-ecological studies in the high
mountains of Ecuador,” International Journal of Remote Sensing,
vol. 25, no. 21, pp. 4521-4540, 2004. [Online]. Available:
http://dx.doi.org/10.1080/01431160410001709967 (Cited on pages 5
and 12.)

C. M. Bishop, Pattern recognition and machine learning, ser.
Information Science and Statistics. Springer, 2006. (Cited on pages 15
and 17.)

R. N. Bracewell, Two-dimensional imaging, ser. Prentice Hall Signal
Processing. Prentice Hall, 1995. (Cited on pages 93 and 100.)

M. Calvo, A. Manzanares, M. Chevalier, and V. Lakshminarayanan,
“Edge image quality assessment: A new formulation for degraded edge
imaging,” Image and Vision Computing, vol. 16, no. 14, pp. 1003-1017,
1998. [Online|. Available:

http: //dx.doi.org/10.1016 /S0262-8856(98)00072-9 (Cited on page 89.)

M. Cannon, “Blind deconvolution of spatially invariant image blurs
with phase,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. ASSP-24, no. 1, pp. 5863, Feb. 1976. (Cited on
pages 89, 92, 93, 95, 98, 110, and 119.)

B. Chalmond, “PSF estimation for image deblurring,” CVGIP:
Graphical Models and Image Processing, vol. 53, no. 4, pp. 364-372,
1991. (Cited on page 91.)

G. Chander and B. Markham, “Revised Landsat-5 TM radiometric
calibration procedures and postcalibration dynamic ranges,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 41, no. 11, pp.
2674-2677, November 2003. (Cited on page 24.)

M. M. Chang, A. M. Tekalp, and A. T. Erdem, “Blur identification
using the bispectrum,” IEEE Transactions on Signal Processing,

vol. 39, no. 10, pp. 2323-2325, Oct. 1991. (Cited on pages 92, 93, 95,
and 96.)

http://dx.doi.org/10.1117/12.413845
http://dx.doi.org/10.1080/01431160410001709967
http://dx.doi.org/10.1016/S0262-8856(98)00072-9

BIBLIOGRAPHY 218

22]

23]

[24]

[25]

[26]

27]

28]

29]

[30]

A. Chappell, J. Seaquist, and L. Eklundh, “Improving the estimation of
noise from NOAA AVHRR NDVT for Africa using geostatistics,”
International Journal of Remote Sensing, vol. 22, no. 6, pp. 1067-1080,
2001. [Online]. Available: http://dx.doi.org/10.1080/01431160120633
(Cited on page 60.)

P. Chen, R. Srinivasan, G. Fedosejevs, and B. Narasimhan, “An
automated cloud detection method for daily NOAA-14 AVHRR data
for Texas, USA,” International Journal of Remote Sensing, vol. 23,
no. 15, pp. 2939-2950, 2002. [Online|. Available:
http://dx.doi.org/10.1080/01431160110075631 (Cited on pages 5, 12,
and 14.)

D. Childers, D. Skinner, and R. Kemerait, “The cepstrum: a guide to
processing,” Proceedings of the IEEFE, vol. 65, no. 10, pp. 1428-1443,
Oct. 1977. (Cited on page 93.)

B. Corner, R. Narayanan, and S. Reichenbach, “Noise estimation in
remote sensing imagery using data masking,” International Journal of
Remote Sensing, vol. 24, no. 4, pp. 689-702, 2003. [Online]. Available:
http://dx.doi.org/10.1080,/01431160210164271 (Cited on pages 59
and 63.)

E. P. Crist and R. J. Kauth, “The tasseled cap de-mystified,”
Photogrammetric engineering and Remote Sensing, vol. 52, no. 1, pp.
81-86, January 1986. (Cited on page 14.)

P. J. Curran, “Semivariogram in remote sensing: An introduction,”
Remote Sensing of Environment, vol. 24, no. 3, pp. 493-507, 1988.
|Online|. Available: http://dx.doi.org/10.1016/0034-4257(88)90021-1
(Cited on page 60.)

P. J. Curran and J. L. Dungan, “Estimation of signal-to-noise: A new
procedure applied to AVIRIS data,” IEFE Transactions on Geoscience
and Remote Sensing, vol. 27, no. 5, pp. 620-628, 1989. [Online|.
Available: http://dx.doi.org/10.1109/TGRS.1989.35945 (Cited on
pages 58, 59, 60, 61, and 69.)

N. Damera-Venkata, T. Kite, W. Geisler, B. Evans, and A. Bovik,
“Image quality assessment based on a degradation model,” IEEE
Transactions on Image Processing, vol. 9, no. 4, pp. 636-650, Apr.
2000. (Cited on pages 59 and 122.)

P. A. Devijver and J. Kittler, Pattern recognition: a statistical
approach. Prentice-Hall International, 1982, p. 15. (Cited on
page 124.)

http://dx.doi.org/10.1080/01431160120633
http://dx.doi.org/10.1080/01431160110075631
http://dx.doi.org/10.1080/01431160210164271
http://dx.doi.org/10.1016/0034-4257(88)90021-1
http://dx.doi.org/10.1109/TGRS.1989.35945

BIBLIOGRAPHY 219

[31]

32]

33]

[34]

[35]

[36]

37]

[38]

[39]

L. Di Girolamo and R. Davies, “Image navigation cloud mask for the
Multiangle ITmaging SpectroRadiometer (MISR),” Journal of
Atmospheric and Oceanic Technology, vol. 12, no. 6, pp. 1215-1228,
1995. [Online|. Available: http:
//dx.doi.org/10.1175/1520-0426(1995)012<1215: TINCMF >2.0.CO;2
(Cited on pages 13, 26, and 37.)

D. J. Diner, J. C. Beckert, G. W. Bothwell, and J. I. Rodriguez,
“Performance of the MISR instrument during its first 20 months in
earth orbit,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 40, no. 7, pp. 1449-1466, July 2002. |Online|. Available:
http://dx.doi.org/10.1109/TGRS.2002.801584 (Cited on page 2.)

D. J. Diner, L. D. Girolamo, and E. E. Clothiaux, “Multi-angle imaging
spectro-radiometer: Level 1 cloud detection algorithm theoretical
basis,” Desember 1999, accessed October 2008. |Online|. Available:
http://eospso.gsfc.nasa.gov/eos homepage /for scientists/atbd/docs/
MISR /atbd-misr-06.pdf (Cited on page 177.)

J. A. Du Preez, “Efficient high-order hidden markov modelling,” Ph.D.
dissertation, University of Stellenbosch, 1998. (Cited on page 27.)

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification,
2nd ed. John Wiley & Sons, Inc., 2001, ch. 6, pp. 282-335. (Cited on
page 130.)

Eduard Kriegler, “An image compression system for LEO satellites,”
Master’s thesis, University of Stellenbosch, 2003. (Cited on page 2.)

J. H. Elder and S. W. Zucker, “Local scale control for edge detection
and blur estimation,” IEEFE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 7, pp. 699-716, 1998. (Cited on
page 91.)

C. F. England and G. E. Hunt, “Bispectral method for the automatic
determination of parameters for use in imaging satellite cloud

retrievals,” International Journal of Remote Sensing, vol. 6, no. 9, pp.
1545-1553, 1985. (Cited on pages 9 and 11.)

B. Escalante-Ramirez, J.-B. Martens, and H. de Ridder,
“Multidimensional characterization of the perceptual quality of
noise-reduced computed tomography images,” Journal of Visual
Communication and Image Representation, vol. 6, no. 4, pp. 317-334,
1995. [Online]. Available: http://dx.doi.org/10.1006/jvci.1995.1027
(Cited on pages 124 and 125.)

http://dx.doi.org/10.1175/1520-0426(1995)012<1215:TINCMF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1995)012<1215:TINCMF>2.0.CO;2
http://dx.doi.org/10.1109/TGRS.2002.801584
http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/MISR/atbd-misr-06.pdf
http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/MISR/atbd-misr-06.pdf
http://dx.doi.org/10.1006/jvci.1995.1027

BIBLIOGRAPHY 220

[40]

[41]

42]

[43]

|44]

[45]

|46]

[47]

48]

[49]

R. Fabian and D. Malah, “Robust identification of motion and
out-of-focus blur parameters from blurred and noisy images,” CVGIP:
Graphical Models and Image Processing, vol. 53, no. 5, pp. 403-412,
Sep. 1991. (Cited on pages 94, 95, 96, 98, and 112.)

J. Flusser and T. Suk, “Degraded image analysis: An invariant
approach,” IEEFE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, no. 6, pp. 590-603, 1998. [Online|. Available:
http://dx.doi.org/10.1109/34.683773 (Cited on page 91.)

B.-C. Gao, “Operational method for estimating signal to noise ratios
from data acquired with imaging spectrometers,” Remote Sensing of
Environment, vol. 43, no. 1, pp. 23-33, 1993. |Online|. Available:
http://dx.doi.org/10.1016,/0034-4257(93)90061-2 (Cited on pages 59,
62, 69, 71, 73, and 86.)

P. Gastaldo, R. Zunino, I. Heynderickx, and E. Vicario, “Objective
quality assessment of displayed images by using neural networks,”

Signal Processing: Image Communication, vol. 20, no. 7, pp. 643-661,
2005. (Cited on pages 123, 124, 127, and 134.)

G. B. Giannakis and R. W. J. Heath, “Blind identification of
multichannel fir blurs and perfect image restoration,” IEEFE
Transactions on Image Processing, vol. 9, no. 11, pp. 1877-1896, Nov.
2000. (Cited on page 91.)

L. Gillick and S. J. Cox, “Some statistical issues in the comparison of
speech recognition algorithms,” in IEEE International Conference on
Accoustics, Speech, and Signal Processing, vol. 1, 1989, pp. 532—535.
(Cited on page 27.)

G. Ginesu, F. Massidda, and D. D. Giusto, “A multi-factors approach
for image quality assessment based on a human visual system model,”

Signal Processing: Image Communication, vol. 21, no. 4, pp. 316 —333,
Apr. 2006. (Cited on pages 109, 122, 124, and 127.)

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed.
Prentice Hall, 2002. (Cited on pages 2, 4, 6, 8, 9, 18, 31, 58, 60, 86, 88,
89, 109, 186, and 188.)

A. H. Goodman and A. Henderson-Sellers, “Cloud detection and
analysis: A review of recent progress,” Atmospheric Research, vol. 21,
no. 2, pp. 203-228, 1988. (Cited on pages 24 and 54.)

M. T. Goodrich and R. Tamissa, Data structures and algorithms in
Java, 3rd ed. John Wiley & Sons, Inc., 2004, pp. 305-338. (Cited on
pages 183 and 184.)

http://dx.doi.org/10.1109/34.683773
http://dx.doi.org/10.1016/0034-4257(93)90061-2

BIBLIOGRAPHY 221

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

F. Gunst, Richard and R. L. Mason, How to construct fractional
factorial experiments, ser. Basic References in Quality Control:

Statistical Techniques. American Society for Quality Control Press,
1991, vol. 14. (Cited on pages 128, 136, 138, 161, 163, and 164.)

G. G. Gutman, “Satellite daytime image classification for global studies
of earth’s surface parameters from polar orbiters,” International
Journal of Remote Sensing, vol. 13, no. 2, pp. 209-234, 1992. (Cited on
pages 5, 6, 11, and 12.)

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, ser. Springer Series
in Statistics. Springer, 2001. (Cited on pages 16, 125, 127, 128, 129,
130, 132, and 133.)

S. Hojjatoleslami and J. Kittler, “Region growing: A new approach,”
IEEFE Transactions on Image Processing, vol. 7, no. 7, pp. 1079-1084,
1998. [Online|. Available: http://dx.doi.org/10.1109/83.701170 (Cited
on pages 21 and 184.)

P. Hou, M. Petrou, C. Underwood, and A. Hojjatoleslami, “Improving
JPEG performance in conjunction with cloud editing for remote
sensing applications,” IEFEE Transactions on Geoscience and Remote
Sensing, vol. 38, no. 1, pp. 515-524, Jan. 2000. [Online|. Available:
http://dx.doi.org/10.1109/36.823946 (Cited on pages 2, 19, 20, 21, 28,
56, 57, and 187.)

M.-F. Huang, S.-H. Liu, L. Li, and Q.-J. Zhu, “Study on data models of
image quality assessment for the Chinese-Brazil earth resources
satellite,” in Proceedings of the IEEFE International Geoscience and
Remote Sensing Symposium, vol. 6, 2004, pp. 3949-3952. (Cited on

page 2.)

B. Jahne, Practical handbook on image processing for scientific
technical applications. CRC Press, 2004, p. 293. (Cited on page 3.)

J.-D. Jang, A. A. Viau, F. Anctil, and E. Bartholome, “Neural network
application for cloud detection in SPOT vegetation images,”
International Journal of Remote Sensing, vol. 27, no. 4, pp. 719-736,
2006. [Online|. Available:
http://dx.doi.org/10.1080/01431160500106892 (Cited on page 19.)

G. Jedlovec, S. Haines, and F. LaFontaine, “Spatial and temporal
varying thresholds for cloud detection in GOES imagery,” IEEFE
Transactions on Geoscience and Remote Sensing, vol. 46, no. 6, pp.
1705-1717, June 2008. [Online|. Available:

http://dx.doi.org/10.1109/83.701170
http://dx.doi.org/10.1109/36.823946
http://dx.doi.org/10.1080/01431160500106892

BIBLIOGRAPHY 222

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

http://dx.doi.org/10.1109/TGRS.2008.916208 (Cited on pages 8
and 177.)

J. Kittler and D. Pairman, “Contextual pattern recognition applied to
cloud detection and identification,” IEEE Transactions on Geoscience
and Remote Sensing, vol. GE-23, no. 6, pp. 855-863, 1985. (Cited on
pages 17, 19, and 57.)

K. Krause, “Radiometric use of Quickbird imagery,” DigitalGlobe,
Longmont, Colorado, USA, Tech. Rep., 2005. (Cited on page 24.)

N. Kumar and A. G. Andreou, “Heteroscedastic discriminant analysis
and reduced rank HMMs for improved speech recognition,” Speech
Communication, vol. 26, no. 4, pp. 283-297, 1998. [Online|. Available:
http://dx.doi.org/10.1016 /S0167-6393(98)00061-2 (Cited on pages 16
and 17.)

D. Kundur and D. Hatzinakos, “Blind image deconvolution,” IFEE
Signal Processing Magazine, vol. 13, no. 3, pp. 43-64, May 1996. (Cited
on pages 91, 92, and 95.)

——, “Blind image deconvolution revisited,” IEEE Signal Processing
Magazine, vol. 13, no. 6, pp. 61-63, Nov. 1996. (Cited on page 91.)

J. Lee and K. Hoppel, “Noise modeling and estimation of
remotely-sensed images,” Digest - International Geoscience and Remote
Sensing Symposium (IGARSS), vol. 2, pp. 1005-1008, 1989. (Cited on
page 70.)

S. U. Lee, S. Y. Chung, and R. H. Park, “A comparative performance
study of several global thresholding techniques for segmentation,”
Computer Vision, Graphics, and Image Processing, vol. 52, pp.
171-190, 1990. (Cited on page 8.)

X. Li, “Blind image quality assessment,” in Proceedings 2002
International Conference on Image Processing, vol. 1, 2002, pp.
449-452. (Cited on pages 90, 123, and 124.)

J. Lim, “Image restoration by short space spectral subtraction,” IEFEE
Transactions on Acoustics, Speech, and Signal Processing, vol.
ASSP-28, no. 2, pp. 198-204, Apr. 1980. (Cited on page 94.)

E. Lorenz, W. Barwald, K. Briess, H. Kayal, M. Schneller, and
H. Wusten, “Resumes of the BIRD mission,” in Proceedings of the 45

Symposium: Small Satellites, Systems and Services, no. 571, 2004, pp.
249-259. (Cited on page 2.)

http://dx.doi.org/10.1109/TGRS.2008.916208
http://dx.doi.org/10.1016/S0167-6393(98)00061-2

BIBLIOGRAPHY 223

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

7]

78]

D. J. C. MacKay, “Bayesian interpolation,” Neural Computation, vol. 4,
no. 3, pp. 415-447, 1992. (Cited on page 133.)

P. S. Mann, Introductory Statistics, 5th ed. John Wiley & Sons, Inc.,
2004. (Cited on pages 27, 157, and 161.)

I. v. Z. Marais, J. A. du Preez, and W. H. Steyn, “An optimal image
transform for threshold-based cloud detection using heteroscedastic
discriminant analysis,” International Journal of Remote Sensing,
accepted pending minor changes Dec. 2008. (Cited on page 56.)

I. v. Z. Marais and W. H. Steyn, “Robust defocus blur identification in
the context of blind image quality assessment,” Signal Processing:
Image Communication, vol. 22, no. 7, pp. 833-844, Nov. 2007. [Online].
Available: http://dx.doi.org/10.1016/j.image.2007.06.003 (Cited on
page 120.)

I. v. Z. Marais, W. H. Steyn, and J. A. du Preez, “Construction of an
image quality assessment model for use on board an LEO satellite,” in
Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium, vol. 2. IEEE, 7 — 11July 2008, pp. 1068 — 1071. [Online].
Available: http://dx.doi.org/10.1109/IGARSS.2008.4779183 (Cited on
page 174.)

J. A. Marchant, “Testing a measure of image quality for acquisition
control,” Image and Vision Computing, vol. 20, no. 7, pp. 449458,
2002. [Online]. Available:

http://dx.doi.org/10.1016 /S0262-8856(01)00088-9 (Cited on pages 123,
124, and 125.)

P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, “Perceptual
blur and ringing metrics: Application to JPEG2000,” Signal
Processing: Image Communication, vol. 19, no. 2, pp. 163-172, Feb.
2004. (Cited on pages 90 and 123.)

P. Meer, J.-M. Jolion, and A. Rosenfeld, “Fast parallel algorithm for
blind estimation of noise variance,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 12, no. 2, pp. 216-223, 1990.
[Online|. Available: http://dx.doi.org/10.1109/34.44408 (Cited on
pages 63, 65, 82, and 86.)

C. Nikias and M. Raghuveer, “Bispectrum estimation: A digital signal
processing framework,” Proceedings of the IEEFE, vol. 75, no. 7, pp.
869-891, Jul. 1987. (Cited on page 93.)

S. Olsen, “Estimation of noise in images: An evaluation,” CVGIP:
Graphical Models and Image Processing, vol. 55, no. 4, pp. 319-323,
Jul. 1993. (Cited on pages 70 and 81.)

http://dx.doi.org/10.1016/j.image.2007.06.003
http://dx.doi.org/10.1109/IGARSS.2008.4779183
http://dx.doi.org/10.1016/S0262-8856(01)00088-9
http://dx.doi.org/10.1109/34.44408

BIBLIOGRAPHY 224

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

87]

[88]

[89]

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing.
Prentice Hall, 1975, ch. 11, pp. 543-548. (Cited on pages 102 and 105.)

K. Panchapakesan, D. Sheppard, M. Marcellin, and B. Hunt, “Blur
identification from vector quantizer encoder distortion,” IEEFE
Transactions on Image Processing, vol. 10, no. 3, pp. 465-470, Mar.
2001. (Cited on page 91.)

C. H. Park and H. Park, “A comparison of generalized linear
discriminant analysis algorithms,” Pattern Recognition, vol. 41, no. 3,
pp. 1083-1097, 2008. [Online|. Available:

http://dx.doi.org/10.1016 /j.patcog.2007.07.022 (Cited on page 16.)

P. Z. Peebles, Probability, Random Variables, and Random Signal
Principles, 4th ed., ser. McGraw-Hill Series in Electrical and Computer
Engineering. McGraw-Hill, 2001, pp. 227-230. (Cited on page 93.)

W. Potter and J. Gasch, “A photo album of earth: Scheduling Landsat
7 mission daily activities,” in Proceedings of the International
Symposium on Space Mission Operations and Ground Data Systems,
1998. [Online|. Available:
http://isd.gsfc.nasa.gov/Papers/DOC/WPms2b010.pdf (Cited on
page 178.)

J. G. Proakis and D. G. Manolakis, Digital signal processing:
principles, algorithms, and applications, 3rd ed. Prentice-Hall, 1996.
(Cited on pages 93, 103, and 110.)

R. Richter, “Spatially adaptive fast atmospheric correction algorithm,”
International Journal of Remote Sensing, vol. 17, no. 6, pp. 1201-1214,
1996. (Cited on pages 13 and 14.)

——, “Atmospheric/topographic correction for satellite imagery:
Atcor-2/3 user guide,” 2008, accessed March 2008. |Online|. Available:
www.rese.ch/pdf/atcor23 manual.pdf (Cited on pages 13 and 14.)

W. Rossow, “Measuring cloud properties from space: A review,”
Journal of Climate, vol. 2, pp. 201-213, 1989. (Cited on pages 9
and 13.)

P. K. Sahoo, S. Soltani, A. K. C. Wong, and Y. C. Chen, “Survey of
thresholding techniques,” Computer Vision, Graphics, and Image
Processing, vol. 41, no. 2, pp. 233-260, 1988. (Cited on page 8.)

G. Saon, M. Padmanabhan, R. Gopinath, and S. Chen, “Maximum
likelihood discriminant feature spaces,” in Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing,
vol. 2. IEEE, 11 — 15 July 2000, pp. 1129-1132. (Cited on page 16.)

http://dx.doi.org/10.1016/j.patcog.2007.07.022
http://isd.gsfc.nasa.gov/Papers/DOC/WPms2b010.pdf
www.rese.ch/pdf/atcor23_manual.pdf

BIBLIOGRAPHY 225

[90]

[91]

192]

(93]

[94]

[95]

196]

197]

98]

[99]

R. W. Saunders, “Automated scheme for the removal of cloud
contamination from AVHRR radiances over Western Europe,”
International Journal of Remote Sensing, vol. 7, no. 7, pp. 867886,
1986. (Cited on pages 5, 10, 12, and 13.)

R. W. Saunders and K. T. Kriebel, “Improved method for detecting
clear sky and cloudy radiances from AVHRR data,” International
Journal of Remote Sensing, vol. 9, no. 1, pp. 123-150, 1988. (Cited on
pages 5, 11, and 12.)

A. Savakis and J. Easton, R.L., “Blur identification based on higher
order spectral nulls,” in Proceedings of SPIE - The International
Society for Optical Engineering, vol. 2302, 1994, pp. 168-177. (Cited on
pages 92, 94, 95, 96, and 98.)

A. A. Sawchuk, “Space-variat image motion degradation and
restoration,” Proceedings of the IEEE, vol. 60, no. 7, pp. 854-861, Jul.
1972. (Cited on page 92.)

R. A. Schowengerdt, Remote Sensing, Models and Methods for Image
Processing, 2nd ed. Academic Press, 1997. (Cited on pages 3, 13, 14,
31, 58, 59, 60, and 88.)

M. Seul, L. O’Gorman, and M. J. Sammon, Practical Algorithms for
Image Analysis. Cambridge University Press, 2000. (Cited on
pages 123 and 188.)

H. R. Sheikh and A. C. Bovik, “Image information and visual quality,”
IEEFE Transactions on Image Processing, vol. 15, no. 2, pp. 430444,
Feb. 2006. (Cited on pages 122 and 128.)

H. Sheikh, M. Sabir, and A. Bovik, “A statistical evaluation of recent
full reference image quality assessment algorithms,” IEEE Transactions
on Image Processing, vol. 15, no. 11, pp. 3440-3451, Nov. 2006. (Cited
on pages 59, 122, 127, 133, 134, 136, 138, 139, 141, 142, 157, 171,

and 172.)

D. Shin, J. Pollard, and J.-P. Muller, “Cloud detection from thermal
infrared images using a segmentation technique,” International Journal
of Remote Sensing, vol. 17, no. 14, pp. 2845-2856, 1996. (Cited on
page 12.)

X. Song, Z. Liu, and Y. Zhao, “Cloud detection and analysis of MODIS
image,” in Proceedings of the IEEE International Geoscience and
Remote Sensing Symposium, vol. 4, 2004, pp. 2764-2767. (Cited on
page 19.)

BIBLIOGRAPHY 226

[100] C. Stubenrauch, W. Rossow, F. Cheruy, A. Chedin, and N. Scott,
“Clouds as seen by satellite sounders (3I) and imagers (ISCCP). Part I:
evaluation of cloud parameters,” Journal of Climate, vol. 12, no. 8 I,
pp. 2189-2213, 1999. (Cited on page 5.)

[101] K.-C. Tan, H. Lim, and B. Tan, “Windowing techniques for image
restoration,” CVGIP: Graphical Models and Image Processing, vol. 53,
no. 5, pp. 491-500, 1991. (Cited on page 93.)

[102] B. Tian, M. R. Azimi-Sadjadi, M. A. Shaikh, and T. Vonder-Haar,
“FFT-based algorithm for computation of gabor transform with its
application to cloud detection/classification,” in Proceedings of the
IEEFE International Geoscience and Remote Sensing Symposium, vol. 2,
1996, pp. 1108-1110. (Cited on page 19.)

[103] H. J. Trussell and B. R. Hunt, “Image restoration of space-variant blurs
by sectioned methods,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. ASSP-26, no. 6, pp. 608-609, 1978. [Online|.
Available: http://dx.doi.org/10.1109/TASSP.1978.1163161 (Cited on
page 92.)

[104] D. S. Turaga, Y. Chen, and J. Caviedes, “No reference PSNR
estimation for compressed pictures,” Signal Processing: Image
Communication, vol. 19, no. 2, pp. 173-184, 2004. [Online|. Available:
http://dx.doi.org/10.1016 /j.image.2003.09.001 (Cited on page 123.)

[105] D. Van der Weken, M. Nachtegael, and E. Kerre, “Combining
neighbourhood-based and histogram similarity measures for the design

of image quality measures,” Image and Vision Computing, vol. 25,
no. 2, pp. 184-195, 2007. (Cited on pages 122 and 127.)

[106] P. Walder and I. MacLaren, “Neural network based methods for cloud
classification on AVHRR images,” International Journal of Remote
Sensing, vol. 21, no. 8, pp. 1693-1708, 2000. |[Online|. Available:
http://dx.doi.org/110.1080/014311600209977 (Cited on page 19.)

[107] H. Wang, T.-Z. Shen, and Z.-H. Xie, “Blind image quality assessment
based on hybrid fuzzy-genetic technique,” Journal of Beijing Institute
of Technology (English Edition), vol. 12, no. 4, pp. 395-398, 2003.
(Cited on pages 123 and 127.)

[108] D. Welch, “The use of fast Fourier transform for the estimation of
power spectra: a method based on time averaging over short, modified
periodograms,” IEEE Transactions on Audio and Electroacoustics, vol.

AU-15, no. 2, pp. 70-73, Jun. 1967. (Cited on page 93.)

http://dx.doi.org/10.1109/TASSP.1978.1163161
http://dx.doi.org/10.1016/j.image.2003.09.001
http://dx.doi.org/110.1080/014311600209977

BIBLIOGRAPHY 227

109

[110]

[111]

[112]

[113]

114)

[115]

[116]

[117]

R. Welch, K. Kuo, and S. Sengupta, “Textural characteristics of cloud-
and ice-covered surfaces in polar regions,” in Proceedings of the IEEE
International Geoscience and Remote Sensing Symposium, vol. 5, 1989,
pp. 2773-2776. (Cited on pages 18 and 19.)

R. M. Welch, K.-S. Kuo, and S. K. Sengupta, “Cloud and surface
textural features in polar regions,” IEFE Transactions on Geoscience
and Remote Sensing, vol. 28, no. 4, pp. 520528, 1990. [Online|.
Available: http://dx.doi.org/10.1109/TGRS.1990.572939 (Cited on
page 19.)

J. Wertz and W. Larson, Space Mission Analysis and Design, 3rd ed.
Kluwer Academic Publishers, 1999, p. 6. (Cited on page 1.)

M. Wettle, V. E. Brando, and A. G. Dekker, “A methodology for
retrieval of environmental noise equivalent spectra applied to four
hyperion scenes of the same tropical coral reef,” Remote Sensing of
Environment, vol. 93, no. 1-2, pp. 188 —197, 2004. [Online|. Available:
http://dx.doi.org/10.1016 /j.rse.2004.07.014 (Cited on pages 69 and 86.)

B. A. Wielicki and L. Parker, “On the determination of cloud cover
from satellite sensors: The effect of sensor spatial resolution,” Journal
of Geophysical Research, vol. 97, no. D12, pp. 12799-12 823, August
1992. (Cited on page 54.)

Y. Yang, L. Di Girolamo, and D. Mazzoni, “Selection of the automated
thresholding algorithm for the multi-angle imaging spectroradiometer
radiometric camera-by-camera cloud mask over land,” Remote Sensing
of Environment, vol. 107, no. 1-2, pp. 159-171, 2007. [Online].
Available: http://dx.doi.org/10.1016/j.rse.2006.05.020 (Cited on

pages 8, 10, 13, 25, and 177.)

P. Yap and P. Raveendran, “Image focus measure based on Chebyshev
moments,” IEE Proceedings: Vision, Image and Signal Processing, vol.
151, no. 2, pp. 128-136, 2004. [Online|. Available:
http://dx.doi.org/10.1049 /ip-vis:20040395 (Cited on page 88.)

Y. Yitzhaky and N. Kopeika, “Identification of blur parameters from
motion blurred images,” Graphical Models and Image Processing,
vol. 59, no. 5, pp. 310-320, 1997. (Cited on page 91.)

Y. Yitzhaky, I. Mor, A. Lantzman, and N. Kopeika, “Direct method for
restoration of motion-blurred images,” Journal of the Optical Society of
America A: Optics and Image Science, and Vision, vol. 15, no. 6, pp.
1512-1519, 1998. (Cited on page 91.)

http://dx.doi.org/10.1109/TGRS.1990.572939
http://dx.doi.org/10.1016/j.rse.2004.07.014
http://dx.doi.org/10.1016/j.rse.2006.05.020
http://dx.doi.org/10.1049/ip-vis:20040395

BIBLIOGRAPHY 228

[118] Y. Yitzhaky, R. Milberg, S. Yohaev, and N. S. Kopeika, “Comparison of
direct blind deconvolution methods for motion-blurred images,” Applied
Optics, vol. 38, no. 20, pp. 4325-4332, 1999. (Cited on pages 91
and 95.)

[119] Y.-L. You and M. Kaveh, “Regularization approach to joint blur
identification and image restoration,” IEEE Transactions on Image
Processing, vol. 5, no. 3, pp. 416428, 1996. |Online|. Available:
http://dx.doi.org/10.1109/83.491316 (Cited on page 92.)

[120] Y. Zhang, B. Guindon, and J. Cihlar, “An image transform to
characterize and compensate for spatial variations in thin cloud
contamination of landsat images,” Remote Sensing of Environment,
vol. 82, no. 2, pp. 173-187, 2002. (Cited on pages 14 and 39.)

[121] Y. Zhang, Y. Zhang, and C. Wen, “New focus measure method using
moments,” Image and Vision Computing, vol. 18, no. 12, pp. 959-965,
2000. [Online]. Available:
http://dx.doi.org/10.1016 /S0262-8856(00)00038-X (Cited on page 88.)

http://dx.doi.org/10.1109/83.491316
http://dx.doi.org/10.1016/S0262-8856(00)00038-X

	Marais1,
	Declaration
	Abstract
	Opsomming
	Acknowledgements
	Table of contents
	List of figures
	List of tables
	List of Acronyms
	Introduction
	Motivation
	On-board processing in remote sensing

	Ranking images
	Good quality images
	Bad quality images

	Goals
	Fundamentals
	Structure

	Cloud estimation
	Literature
	Introduction
	Applicable image processing techniques
	Spectral methods
	Dimension reducing transforms

	An alternative dimension reducing transform: Heteroscedastic discriminant analysis
	Spatial methods
	A contextual classifier
	Texture features and neural networks
	Conclusion

	A promising region-growing based method
	Context
	Algorithm description

	Experiments
	Dimension reducing transforms
	Data
	Adaptive transform test
	Fixed transform test
	Statistical significance test

	Region growing
	Measuring cloud dispersion
	Justification
	Algorithm design
	Using the measure in an experiment: Introduction of thresholds

	Down-sampling options

	Results
	Dimension reducing transforms
	Illustration of the unsuitability of LDA
	Adaptive transform test
	Fixed transform test
	Statistical significance test

	Region growing
	Upper limit
	Comparative test

	Cloud dispersion
	Down-sampling

	Conclusion
	Dimension reducing transforms
	Region growing
	Cloud dispersion
	Down-sampling

	Noise estimation
	Literature
	Introduction
	The Semivariogram: Optimal manual noise estimation
	Methods based on a standard deviation histogram
	A method based on image pyramids and order statistics
	The noise variance estimator
	Estimating noise variance: The dichotomy between signal and noise
	A similar method applied to remote sensing

	Dark current
	Comparative literature survey

	Experiments and implementation
	Implementation
	Selected algorithms
	Embedded evaluation
	Details on image pyramid method's implementation

	Experiment

	Results
	Standard deviation histogram method
	Image pyramid method
	Dynamic range saturation
	Making the algorithm more conservative

	Feasibility of embedded implementation

	Conclusion
	Choice of method
	The saturation problem
	Use of multiple channels
	Choice of SNR

	Marais,2
	Marais, IvZ_Part 1.2
	Marais, IvZ_Part 2.1
	Marais, IvZ_Part 2

