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Summary 

 

Host susceptibility to human immunodeficiency virus-1 (HIV-1) infection and 

disease progression to acquired immunodeficiency syndrome (AIDS) varies 

widely amongst individuals.  This observation led to the identification of host 

genetic factors playing a vital role in HIV-1 pathogenesis.  Previous studies 

mainly focusing on Caucasian-based populations have indicated possible 

associations between genetic variants and host susceptibility to HIV-1/AIDS.  

The limited studies performed on African-based populations have emphasised 

the need for extensive investigation of both previously reported and particularly 

novel genetic variants within the older and genetically diverse Sub-Saharan 

African populations. 

 

In this study, the case-control samples were represented by African individuals 

of Xhosa descent, all residing in the Western Cape Province of South Africa.  

This included 257 HIV-1 seropositive patients and 110 population-matched   

HIV-1 seronegative controls.  Mutational screening was performed in a subset 

of individuals for the entire coding regions of the CC chemokine receptor 5 

(CCR5) and CC chemokine receptor 2 (CCR2) genes, and the 3’ untranslated 

region of the CXC chemokine ligand (CXCL12) gene, as previously reported 

(Petersen, 2002).  Further analysis of these genes in a larger study sample 

involved the genotyping of previously identified mutations and single nucleotide 

polymorphisms (SNPs), which forms part of the present study. In addition, 

mutational screening was performed for the entire coding region of the          

CXC chemokine receptor 4 (CXCR4) gene, partial coding region of the 
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mannose binding lectin (MBL) gene, and the promoter regions of interleukin 4 

(IL4), interleukin 10 (IL10) and the solute carrier 11A1 (SLC11A1) genes.      

This was followed by genotyping of SNPs occurring in CCR5, CCR2, CXCL12, 

MBL, IL4, IL10, CX3C chemokine receptor 1 (CX3CR1), CC chemokine ligand 5 

(CCL5) and tumour necrosis factor alpha (TNFα) genes. Significant 

associations were observed with HIV-1 susceptibility in the Xhosa population of 

South Africa. These included the CCR5-2733A>G, CX3CR1V249I,               

IL10-819C>T and IL10-592C>A SNPs being associated with a reduced risk for 

HIV-1 infection, while the CCR5-2135C>T and SDF1-3’G>A (CXCL12-3’G>A) 

SNPs were associated with increased susceptibility to HIV-1 infection.  

Furthermore, certain haplotypes for IL4 and IL10 showed association with 

reduced risk for HIV-1 infection.  This included the identification of a novel IL4 

haplotype restricted to the HIV-1 seronegative control group.  

     

This study emphasises the importance of considering genetic diversity across 

all populations, as certain HIV-1/AIDS associations appear to be restricted to 

specific ethnic groups.  These findings have also provided an understanding for 

further elucidating the functional roles of genetic variants in determining         

HIV-1/AIDS susceptibility.  Ultimately, such genetic association studies will 

contribute to establishing HIV-1/AIDS risk profiles for African-based populations 

from pandemic-stricken Sub-Saharan Africa. 
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Opsomming 

 

Die vatbaarheid van gashere vir menslike immuniteitsgebrek virus (MIV-1) 

infeksie en siekteprogressie na verworwe immuniteitsgebreksindroom (VIGS) 

varieer baie in individue.  Hierdie waarneming het gelei tot die identifikasie van 

genetiese faktore in gashere wat ŉ belangrike rol speel in die patogenese van 

MIV-1.  Vorige studies, wat meestal gefokus het op Kaukasier-gebaseerde 

populasies, het moontlike assosiasies getoon tussen genetiese faktore en 

gasheervatbaarheid vir MIV-1/VIGS.  Die beperkte studies wat gedoen is op 

Afrikaan-gebaseerde populasies het die behoefte beklemtoon vir omvattende 

navorsing van reeds geidentifiseerde en veral nuwe genetiese variante wat in 

die ouer en geneties diverse populasies van Sub-Sahara Afrika voorkom.     

 

In hierdie studie is alle monsters afkomstig van Afrikane van Xhosa afkoms wat 

almal in die Wes-Kaap Provinsie van Suid-Afrika woon.  Dit sluit 257 MIV-1 

seropositiewe pasiënte en 110 MIV-1 seronegatiewe kontroles van dieselfde 

populasie in.  In ŉ vorige studie is mutasie sifting gedoen in ŉ groep individue 

vir die volledige koderende areas van die CC chemokien reseptor 5 (CCR5) en 

CC chemokien reseptor 2 (CCR2) gene, en die 3’ streek van die CXC 

chemokien ligand 12 (CXCL12) geen waar translasie nie plaasgevind nie 

(Petersen, 2002).  Verdere analise van hierdie gene in ŉ groter studiegroep 

vorm deel van die huidige studie en het die genotipering van reeds 

geidentifiseerde mutasies en enkel nukleotied polimorfisme (SNP) setels 

ingesluit.  Addisioneel is mutasie sifting gedoen vir die volledige koderende area 

van die CXC chemokien reseptor 4 (CXCR4) geen, die gedeeltelike koderende 
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area van die mannose bindingslektien (MBL) geen, en die promotor areas van 

die interleukien 4 (IL4), interleukien 10 (IL10) en oplosbare draer 11A1 

(SLC11A1) gene.  Dit is gevolg deur genotipering van SNPs wat in die CCR5, 

CCR2, CX3C chemokien reseptor 1 (CX3CR1), CXCL12, CC chemokien ligand 

5 (CCL5) en tumor nekrose faktor alfa (TNFα) gene voorkom.  Betekenisvolle 

assosiasies met MIV-1 vatbaarheid het in die Xhosa populasie van Suid-Afrika 

voorgekom.  Dit sluit in CCR5-2733A>G, CX3CR1V249I, IL10-819C>T en   

IL10-592C>A SNPs wat geassosieer word met ŉ verlaagde risiko vir MIV-1 

infeksie, terwyl die CCR5-2135C>T en SDF1-3’G>A (CXCL12-3’G>A) SNPs 

geassosieer word met ŉ verhoogde vatbaarheid vir MIV-1 infeksie.  Verder kon 

sekere haplotipes van IL4 en IL10 geassosieer word met ‘n verlaagde risiko vir 

MIV-1 infeksie.  Dit sluit in die identifikasie van ŉ nuwe IL4 haplotipe wat 

uitsluitlik by MIV-1 seronegatiewe kontroles voorgekom het.     

 

Hierdie studie beklemtoon die belangrikheid om genetiese diversiteit in alle 

populasies in aanmerking te neem omdat dit blyk dat sekere MIV-1/VIGS 

assosiasies slegs in spesifieke etniese groepe voorkom.  Die bevindings het 

ook die weg gebaan vir die verdere ondersoek van die funksionele rolle van 

genetiese variante in die bepaling van vatbaarheid vir MIV-1/VIGS.  Sulke 

studies sal uiteindelik bydra tot die daarstelling van risikoprofiele vir       

Afrikaan-gebaseerde populasies van Sub-Sahara Afrika waar die pandemie 

heers.   

           

 

 

 vi



Acknowledgements 
 

I wish to extend my sincere thanks to the following people and institutions: 
 
 
Dr Vanessa Hayes, my study supervisor and co-promoter, for being an 

exceptional role model and mentor during the past few years.  I have and 

continue to learn from your teaching and guidance. Your encouragement, 

assistance and support is truly appreciated. This includes the invaluable training 

I received whilst performing research in your lab at the Garvan Institute for 

Medical Research, Australia.  Mostly, your faith in me as a student has given 

me the confidence and motivation to pursue any future research projects.       

 
Dr Richard Glashoff, my promoter, for your willingness to supervise the 

research project within the Department of Medical Virology, University of 

Stellenbosch and offer advice whenever needed.  Your encouraging words and 

continuous support is always appreciated. 

 
Dr Michael Dean, my co-promoter, for the opportunity to perform research in 

your laboratory at the National Cancer Institute, USA. I received invaluable 

training and my highly productive experience largely contributed to successfully 

achieving all my research goals. Your continued interest, support and 

willingness to always offer advice is much appreciated.       

 
Prof. Estrelita Janse van Rensburg, my co-promoter, for supervision of the 

research project during your time at the Department of Medical Virology, 

University of Stellenbosch. Your continued willingness to offer guidance and 

encouragement is always appreciated.     

 

 vii



The study participants, clinicians and nursing staff from the HIV clinics and 

blood transfusion services of the Western Cape, South Africa.  

 
Lehana Breytenbach for sample collection and maintenance of the HIV 

database.   

 
Heather Money of the Western Province Blood Transfusion Service for the      

co-ordination of HIV seronegative blood samples. 

 
Dr Sadeep Shrestha, Julie Bergeron, Dr Bert Gold, Annette Laten, Mariska 

Botha, Emma Padilla and Elizabeth Tindall for your teaching patience, 

technical assistance and willingness to offer advice and suggestions.  The 

interest and support is much appreciated. 

 
Annette Laten for assisting with the translation of the Afrikaans summary for 

this dissertation. 

 
My colleagues and friends at the Departments of Medical Virology and 

Urology, University of Stellenbosch; the Laboratory of Genomic Diversity, 

National Cancer Institute; the Garvan Institute of Medical Research, Cancer 

Research Program; for your administrative assistance, encouraging words of 

support, scientific discussions and creating an inspiring and pleasant working 

environment.  

 
The South African AIDS Vaccine Initiative (SAAVI), the Medical Research 

Council (MRC), the Poliomyelitis Research Foundation, the Southern 

African Fogarty AIDS Training Programme, Cecil John Adams        

 viii



Memorial Trust, Unistel Medical Laboratories and the National Cancer 

Institute who supported the studies presented in this dissertation. 

    
Alec and Ruby Petersen, my parents, for your never-ending care and support.  

Your unconditional love and guidance has inspired me to become the person I 

am and has encouraged me to achieve my goals in life.  Cheslyn Petersen, my 

brother, for your support and interest in my studies.   

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For my Mother and Father  

 ix



List of abbreviations 

 

AIDS                                      acquired immunodeficiency syndrome 

AIM                                        ancestral informative marker 

Ala (A)                                    alanine 

Arg (R)                                   arginine 

Asn (N)                                  asparagine 

Asp (D)                                  aspartic acid 

bp                                          base pair 

CCL                                       CC chemokine ligand 

CCR                                      CC chemokine receptor 

CXCL                                     CXC chemokine ligand  

CXCR                                    CXC chemokine receptor 

CX3CL                                   CX3C chemokine ligand 

CX3CR                                  CX3C chemokine receptor 

Cys (C)                                  cysteine 

DGGE                                    denaturing gradient gel electrophoresis 

DNA                                       deoxyribonucleic acid 

env                                         envelope 

GC-clamp                              guanine and cytosine clamp  

Gln (Q)                                   glutamine 

 x



Glu (E)                                   glutamic acid 

Gly (G)                                   glycine 

gp                                          glycoprotein 

His (H)                                   histidine 

HIV                                        human immunodeficiency virus    

HIV –                                     HIV seronegative 

HIV +                                     HIV seropositive 

HLA                                       human leukocyte antigen 

HWE                                      Hardy-Weinberg equilibrium 

IL                                            interleukin 

Ile (I)                                      isoleucine 

kb                                           kilobase 

Leu (L)                                   leucine 

LD                                          linkage disequilibrium 

LTNP                                     long-term non-progressor 

Lys (K)                                   lysine 

MBL                                       mannose binding lectin 

MCP                                      monocyte chemotactic protein 

Met (M)                                  methionine 

MIM#                                     OMIM database reference  

MIP                                        macrophage inflammatory protein 

 xi



M-tropic                                 macrophage tropic 

NRAMP1                               natural resistance-associated macrophage 

                                              protein 1 

NSI                                        non-syncytium inducing 

ORF                                      open reading frame 

PCR                                      polymerase chain reaction 

Phe (F)                                  phenylalanine 

Pro (P)                                   proline 

RANTES                                regulated on activation normal T cell expressed   

                                              and secreted 

RNA                                       ribonucleic acid 

SDF1                                     stromal derived factor 1 

Ser (S)                                   serine 

SI                                           syncytium inducing 

SLC11A1                               solute carrier 11A1 

SNP                                       single nucleotide polymorphism 

TDT                                        transmission disequilibrium test 

Th                                          T helper 

Thr (T)                                    threonine 

T lymphocytes                        thymus-derived lymphocytes 

Trp (W)                                   tryptophan 

 xii



T-tropic                                  T cell line tropic 

Tyr (Y)                                    tyrosine 

UF                                          urea/formamide 

UTR                                       untranslated region 

Valine (V)                               valine 

 

                                 

                                                        

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 xiii



 
Contents 

 
 
Summary                                                                                                            iii 
 
Opsomming                                                                                                        v 
 

Acknowledgements                                                                                         vii 

 

List of abbreviations                                                                                         x 

 

Chapter 1: Introduction                                                                           1 

 

1.1.      Host genetic susceptibility to HIV-1/AIDS                                       2 
 

1.1.1.      Chemokine and chemokine receptors                                                 3 

1.1.1.1.    CC chemokine receptor 5 (CCR5)                                                       7 

1.1.1.2.    CC chemokine receptor 2 (CCR2)                                                       9 

1.1.1.3.    CX3C chemokine receptor 1 (CX3CR1)                                            11 

1.1.1.4.    CXC chemokine receptor 4 (CXCR4)                                                13 

1.1.1.5.    CC chemokine ligand 5 (CCL5)                                                         14 

1.1.1.6.    CXC chemokine ligand 12 (CXCL12)                                                16 

 

1.1.2.        Th1 and Th2 cytokines                                                                     19 

1.1.2.1. Tumour necrosis factor alpha (TNFα)                                              22 

1.1.2.2. Interleukin 4 (IL4)                                                                             24   

1.1.2.3. Interleukin 10 (IL10)                                                                         25 

 xiv



1.1.3.         Immunoregulatory proteins                                                             27 

1.1.3.1.      Mannose binding lectin (MBL)                                                        28 

1.1.3.2.      Solute Carrier 11A1 (SLC11A1)                                                     30 

 

1.2.        Genetic association studies                                                        32 
 

1.2.1 Candidate gene approach                                                              33 

 

1.2.2 Single nucleotide polymorphisms (SNPs)                                      35 

 

1.2.3 Family-based versus population-based association studies          36 

1.2.3.1. Confounding factors of population-based association studies       38 

1.2.3.2. Linkage disequlibrium                                                                     41                            

1.2.3.3. Haplotype analysis                                                                         43 

1.2.3.4. Computational programs for statistical analysis                             46 

1.2.3.5. Reproducibility of population-based association studies                48 

 

1.2.4. HIV-1 infection and AIDS in South Africa                                       51 

1.2.4.1 Study sample                                                                                  53 

 

 

1.3. Methodologies                                                                              55 
 

1.3.1. Denaturing gradient gel electrophoresis (DGGE)                         56 

1.3.2. TaqMan allelic discrimination method                                           62 

 

1.4.             References                                                                                   67 
 

 xv



Chapter 2: Chemokine and chemokine receptors 

 

117 2.1. The effect of CCR5, CCR2, CX3CR1 and CCL5 (RANTES) 

SNPs on susceptibility to HIV-1 infection in an African 

population 

 

2.2. Risk for HIV-1 infection associated with a common CXCL12 

(SDF1) polymorphism and CXCR4 variation in an African 

population.   J Acquir Immune Defic Syndr 2005; 40:521-526.  

 

139 

Chapter 3: Th1 and Th2 cytokines  

 

3.1. Lack of association with TNFα promoter SNPs and 

susceptibility to HIV-1 infection in an African population 

(Submitted) 

162 

 

3.2. The influence of IL4 and IL10 promoter SNPs and haplotypes           

on HIV-1 infection risk in Sub-Saharan Africans 

176 

 

Chapter 4: Immunoregulatory proteins  

 

4.1. Common MBL dimorphic markers associated with             

population-based HIV-1 susceptibility 

190 

 

211 Chapter 5:  Discussion                                                     

 xvi



Appendix A 

Petersen DC, Kotze MJ, Zeier MD, Grimwood A, Pretorius D,      

Vardas E, Janse van Rensburg E and Hayes V.  Novel mutations 

identified using a comprehensive CCR5-denaturing gradient gel 

electrophoresis assay.  AIDS 2001; 15:171-177. 

221 

 

Appendix B 

Hayes VM, Petersen DC, Scriba TJ, Zeier M, Grimwood A and     

Janse van Rensburg E.  African-based CCR5 single-nucleotide 

polymorphism associated with HIV-1 disease progression.             

AIDS 2002; 16:2229 -2231. 

229 

 

Appendix C 

233 Petersen DC, Laten A, Zeier MD, Grimwood A, Janse van Rensburg E 

and Hayes VM.  Novel mutations and SNPs identified in CCR2 using a 

new comprehensive denaturing gradient gel electrophoresis assay.  

Hum Mut 2002; 20:253-259.   

 

Appendix D 

Donninger H, Cashmore TJ, Scriba T, Petersen DC,                    

Janse van Rensburg E and Hayes VM.  Functional analysis of novel 

SLC11A1 (NRAMP1) promoter variants in susceptibility to HIV-1.                           

J Med Genet 2004; 41:e49.  

241 

 

 

 xvii



 

 

 

 

 

 

Chapter 1 

 
 

Introduction 
 

 

 

 

 

 

 

 1



1.1. Host genetic susceptibility to HIV-1/AIDS 

Individual susceptibility to HIV-1 infection and disease progression to AIDS 

varies extensively.  Most people are susceptible to HIV-1 infection, although 

there are uninfected groups who have experienced high-risk or repeated 

exposure.  Presently, these exposed uninfected groups are mainly defined by 

unprotected sexual encounters (commercial sex workers and discordant 

couples), intravenous drug usage, contact with contaminated blood or blood 

products, and the absence of perinatal transmission.  Furthermore, those 

individuals who do become infected display diverse clinical outcomes and have 

different rates of disease progression.  The median interval from the time of 

HIV-1 seroconversion to the development of AIDS is approximately eight to ten 

years, but long-term non-progressors (remain healthy for periods longer than 10 

years) and rapid progressors (develop AIDS within five years) have been 

observed.  It is well-established that host susceptibility to HIV-1 infection and 

the disease course to AIDS is determined by the complex interaction of certain 

parameters, including viral characteristics, socio-economic/environmental 

aspects, host immunological and host genetic factors.  Many studies have 

focused on the role of host genetic factors as gene variants, including SNPs 

(occur at allele frequencies greater than 0.01 or 1%), influencing HIV-1/AIDS 

susceptibility have been identified.  HIV-1/AIDS risk profiles for individuals from 

various populations are therefore being established.  The candidate genes are 

mainly selected based on the known or hypothesised function of their gene 

product (protein) in the presence of HIV-1.  This chapter subsection will provide 

a comprehensive understanding of host genetic factors that contribute to 

elucidating the complexity of HIV-1/AIDS pathogenesis.     

 2



1.1.1.   Chemokine and chemokine receptors 

Chemokines are chemoattractant cytokines that act via G-protein-coupled 

chemokine receptors. The direct ligand-receptor interaction between chemokine 

and chemokine receptors is vital for the regulation and maintenance of a 

functional host immune system [Reviewed in Dong et al., 2003].  The discovery 

of chemokines playing a role in HIV-1 infection originated from a study showing 

that CC chemokines, secreted by CD8+ cells (cytotoxic T-lymphocytes), act as 

potent inhibitors preventing HIV-1 infection by macrophage-tropic (M-tropic) or 

non-syncytium inducing (NSI) viruses (mainly infect macrophages, monocytes 

and T-lymphocytes) [Cocchi et al., 1995].  These chemokines included CCL5 

(RANTES), CCL3 (MIP-1α) and CCL4 (MIP-1β), which are the natural ligands 

for the CC chemokine receptor, CCR5 [Samson et al., 1996a].  Further studies 

indicated that a CXC chemokine, CXCL12 (SDF1), acts as an inhibitor of T-cell 

tropic (T-tropic) or syncytium inducing (SI) viruses (mainly infect T-lymphocytes) 

and also potentially influences HIV-1 replication.  CXCL12 serves as the only 

known natural ligand for the CXC chemokine receptor, CXCR4, previously 

referred to as ‘fusin’ [Bleul et al., 1996a; Oberlin et al., 1996]. 

 

The CD4 molecule on the host cell surface was initially identified as the primary 

co-receptor for HIV-1 [Dalgeish et al., 1984; Klatzman et al., 1984], but 

subsequent studies found specific chemokine receptors to serve as additional 

cellular host co-receptors for virus entry [Alkhatib et al., 1996; Choe et al., 1996; 

Deng et al., 1996; Doranz et al., 1996; Dragic et al., 1996; Feng et al., 1996; 

Rucker et al., 1997; Combadiere et al., 1998].  HIV-1 infection is therefore 

facilitated by the binding of viral env glycoprotein (gp) 120 to the CD4 molecule, 
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which results in the formation of a CD4-gp120 complex [Dalgeish et al., 1984; 

Klatzman et al., 1984; Maddon et al., 1986; Lasky et al., 1987].  This is followed 

by a conformational change within the viral envelope that enables the gp120 to 

bind to the chemokine receptor [Trkola et al., 1996; Wu et al., 1996; Speck et 

al., 1997; Kwong et al., 1998; Rizzuto et al., 1998], resulting in the exposure of 

the viral env gp41 peptide for ultimate virus-host cell fusion [Moore et al., 1993; 

Sattentau et al., 1995; Lapham et al., 1996] (see Figure 1).   

 

 

Host target 
cellHIV-1

Chemokine receptor

CD4 molecule

OR

Chemokine

Host genetic factors and HIV/AIDS

OR

gp 41 gp 120

HIV-1 envelope

 

 

 

Figure 1.  HIV-1 entry into the host target cell.  HIV-1 infection is facilitated by the 

interaction of the virion envelope glycoproteins, gp120 and gp41, with two cellular 

host receptors, of which one is a CD4 molecule and the other, a chemokine 

receptor, whose natural ligands are specific chemokines. 
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The unravelling of the HIV-1 entry process accentuated the importance of 

investigating the exact role of chemokines in the presence of HIV.  Chemokines 

were found to suppress and/or prevent HIV-1 infection by directly competing 

with the virus for binding to chemokine receptors or by down-modulation of 

chemokine receptor expression [Bleul et al., 1996a; Combadiere et al., 1996; 

Oberlin et al., 1996; Samson et al., 1996a; Raport et al., 1996; Amara et al., 

1997, Combadiere et al., 1998]  (see Figure 1).  This was followed by elevated 

levels of chemokines being observed in ‘exposed yet uninfected’ individuals and 

associated with delayed progression to AIDS [Paxton et al., 1996; Paxton et al., 

1998; Ullum et al., 1998, Paxton et al., 1999; Paxton et al., 2001].  

 

A model for specific co-receptor usage by different HIV-1 strains does exist.    

M-tropic/NSI viruses preferentially utilise CCR5 or “less efficient” co-receptors 

such as CCR2, CX3CR1 and are therefore termed R5 strains [Alkhatib et al., 

1996, Choe et al., 1996, Deng et al., 1996; Dragic et al., 1996; Combadiere et 

al., 1998]. T-tropic/SI viruses utilise primarily CXCR4 as co-receptors for entry 

and are therefore termed X4 strains [Feng et al., 1996].  There are however 

dual tropic viruses utilising both CXCR4 and CCR5, but also additional co-

receptors such as CCR2 and CX3CR1 for entry, and are therefore termed R5X4 

strains. [Choe et al., 1996; Doranz et al., 1996; Simmons et al., 1996; Berger et 

al., 1998; Combadiere et al, 1998].  R5 viruses are normally present during 

transmission and the early asymptomatic stages, while the more cytopathic X4 

viruses are generally present during the later symptomatic stages. Most HIV-1 

infected individuals with the onset of rapid disease progression and 

approximately 50% of all individuals progressing to AIDS experience a shift in 
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viral tropism that results in the conversion of NSI to SI phenotype [Tersmette et 

al., 1988; Tersmette et al., 1989; Roos et al., 1992; Schuitemaker et al., 1992; 

Connor et al., 1993, Zhu et al., 1993; Jansson et al., 1999] (see Figure 2).   

 

CCR5 CCR5/CXCR4

Early HIV-1 disease Late HIV-1 disease

NSI 
virus

SI 
virus

Other chemokine receptors
CCR2, CX3CR1

CXCL12 (SDF1) is the 
natural ligand for CXCR4

Target 
cell

Target 
cell

CCL5 (RANTES) is the 
natural ligand for CCR5 Chemokine

CD4 molecule CD4 molecule

 

 

Figure 2.  Schematic illustration of the model for co-receptor usage by different 

viruses in the presence of chemokine ligands. 

The utilisation of specific chemokine receptors by different virus strains at 

various stages of HIV-1 infection, together with the inhibitory roles of their 

chemokine ligands, could therefore be affected by the presence of variants in 

the encoding genes (see Figure 2). These genetic variants could alter protein 

cell surface expression or its biological function, further influencing susceptibility 

to HIV-1/AIDS.  Numerous studies have identified and investigated the role of 

chemokine and chemokine receptor gene variants of several candidates 

including, CCR5, CCR2, CXCR4, CX3CR1, CCL5 and CXCL12, in HIV-1 

susceptibility and/or disease progression to AIDS.     
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1.1.1.1. CC chemokine receptor 5 (CCR5) 

CCR5 (MIM# 601373) serves as the principle co-receptor for NSI/R5 strains of 

HIV-1 [Alkhatib et al., 1996; Choe et al., 1996; Deng et al., 1996; Dragic et al., 

1996]. Several studies have shown that multiple domains of CCR5 and its 

amino terminus play a vital role in mediating co-receptor activity [Atchison et al., 

1996; Rucker et al., 1996; Alkhatib et al., 1997; Bieniasz et al., 1997; Doranz et 

al., 1997; Picard et al., 1997; Wang et al., 1999].  The natural ligands for CCR5 

are CCL5 (RANTES), CCL3 (MIP-1α) and CCL4 (MIP-1β) [Samson et al., 

1996a], which were found to block cell fusion mediated by the virion envelope 

glycoprotein and thereby inhibit HIV-1 infection [Deng et al., 1996].   

 

The CCR5 gene, located at chromosomal position 3p21 [Liu et al., 1996], 

comprises four exons and two introns, with exon 4 containing the entire coding 

region.  The CCR5 protein consists of 352 amino acids [Mummidi et al., 1997].  

CCR5 has dual promoter usage with the presence of a weak promoter 

upstream of exon 1 and a strong downstream promoter, which includes the 

intronic region between exon 1 and 3 [Mummidi et al., 1997].   

 

The most commonly studied CCR5 variant is a well-documented 32bp deletion 

mutation (CCR5Δ32) [Dean et al., 1996; Liu et al., 1996; Samson et al., 1996b].  

This mutation results in the formation of a truncated protein that is not 

expressed at the cell surface.  The HIV-1 virus is therefore unable to bind and 

infect host target cells.  The CCR5Δ32 comprises nucleotides 794 to 825 of the 

coding region, resulting in a frameshift after amino acid 174 and a premature 

stop codon at 182 [Liu et al., 1996].  Individuals homozygous for CCR5Δ32 are 
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highly protective against HIV-1 infection [Dean et al., 1996; Huang et al., 1996; 

Liu et al., 1996; Samson et al., 1996b; Zimmerman et al., 1997], although a few 

exceptions to the rule have been observed.  These include individuals who have 

been infected with virus strains that utilise additional or other co-receptors 

[Balotta et al., 1997; Biti et al., 1997; O’Brien et al., 1997; Theodorou et al., 

1997].  Heterozygosisty for CCR5Δ32 has not been markedly associated with 

protection against HIV-1 infection, but does offer delayed progression to AIDS 

by two to four years [Dean et al., 1996; Huang et al., 1996; Liu et al., 1996; 

Samson et al., 1996b; Zimmerman et al., 1997].  CCR5Δ32 is however largely 

confined to the Caucasian population (allele frequencies are 12% -14% in 

Northern Europeans and 4%-6% in Southern Europeans) and rarely observed 

or completely absent in Africans [Martinson et al., 1997; Libert et al., 1998; 

Stephens et al., 1998; Petersen et al., 2001; Dean et al., 2002] (see Chapter 2.1 

and Appendix A). 

 

Additional CCR5 variants occurring in both the coding [Dean et al., 1996; 

Ansari-Lari et al. 1997; Carrington et al., 1997; Quillent et al., 1998; Carrington 

et al., 1999; Petersen et al., 2001; Hayes et al., 2002] and strong downstream 

promoter regions [Mummidi S et al., 1997; Kostrikis et al., 1998; Martin M et al., 

1998a; McDermottt DH et al., 1998; Mummidi et al., 1998] have been identified 

in various population groups.  A few of these variants occur as polymorphisms 

or as part of extended haplotypes (P1 to P10 or HHA to HHG) that are 

associated with influencing susceptibility to HIV-1/AIDS [Martin M et al., 1998a; 

Carrington et al., 1999; Gonzalez et al., 1999; An et al., 2000; Ramaley et al., 

2002] (see Chapter 2.1, Appendix A and B).  Functional studies conducted have 
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shown that a few of the coding variants are associated with disrupted              

co-receptor activity and altered ligand binding affinities or expression [Howard 

et al., 1999; Blanpain et al., 2000], while some of the promoter variants 

influenced promoter activity and differential nuclear factor binding [Mummidi et 

al., 1997; Bream et al., 1999].  Due to inconsistent functional findings for CCR5 

mutations, ongoing research is required for confirming the underlying effects to 

provide a clear understanding of observed HIV-1/AIDS associations. 

 

1.1.1.2. CC chemokine receptor 2 (CCR2) 

CCR2 (MIM# 601267) is recognised as an additional co-receptor for a minority 

of dual-tropic/R5X4 HIV-1 strains, but has a lower efficiency compared to CCR5 

and CXCR4 [Doranz et al., 1996].  The amino terminus of CCR2 is considered 

essential for co-receptor function [Rucker et al., 1996; Frade et al., 1997].  

Natural ligands for CCR2 include CCL2 (MCP-1), CCL8 (MCP-2),                

CCL7 (MCP-3), CCL13 (MCP-4), and CCL12 (MCP-5).  These chemokines 

have been found to inhibit HIV-1 replication of both NSI/R5 and SI/X4 viruses 

[Kalinkovich et al., 1999; Lee and Montaner, 1999].   

 

Two isoforms exist for CCR2 (CCR2A, CCR2B) [Charo et al., 1994], which is 

the result of alternative splicing a single gene [Wong et al., 1997] localised to 

chromosome 3p21 [Daugherty and Springer, 1997].  The gene consists of three 

exons and two introns with the coding region for CCR2A found in exon 2 and 

part of exon 3, while exon 2 contains the coding region for CCR2B.  CCR2A, 

consisting of 374 amino acids, is mainly found in the cytoplasm due to retention 
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signals, while the predominant CCR2B, consisting of 360 amino acids, is 

expressed in the cytoplasm and at the cell surface [Wong et al., 1997].  

 

A polymorphism identified in the coding region of CCR2 is characterised by a 

conservative amino acid change from valine to isoleucine at codon 64 

(CCR2V64I G>A) [Smith et al., 1997a].  The CCR2V64I SNP (rs1799864) in 

both the homozygous and heterozygous state delayed the onset of AIDS by two 

to four years, although no decreased susceptibility risk for HIV-1 infection was 

conferred [Smith et al., 1997a; Smith et al., 1997b; Anzala et al., 1998; Kostrikis 

et al., 1998; Rizzardi et al., 1998].  The influence of CCR2V64I on disease 

progression seemed more apparent in Africans compared to Caucasians 

[Anzala et al., 1998; Mummidi et al., 1998, O’Brien and Moore, 2000].  

However, the reported effect has not been confirmed in all studies [Michael et 

al., 1997; Eugen-Olsen et al., 1998; Ioannidis et al., 1998; Petersen et al., 2002; 

Ramaley et al., 2002].  Allele frequencies for CCR2V64I range from 10 to 25% 

in different population groups, including African, Caucasian, Asian and admixed 

ethnic groups [Michael et al., 1997; Smith et al., 1997a; Mummidi et al., 1998; 

Kostrikis et al., 1998; Williamson et al., 2000; Petersen et al., 2002; Ramaley et 

al., 2002] (see Chapter 2.1 and Appendix C).  A significant functional effect for 

CCR2V64I was recently reported and involves a change in CCR2A isoform 

stability, which results in increased down-modulation of CCR5, a principle HIV-1 

co-receptor [Nakayama et al., 2004].           

 

The CCR5 and CCR2 genes, which display high sequence homology and are in 

close proximity (approximately 10kb apart), show a high degree of linkage 
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disequilibrium (LD) [Smith et al., 1997b].  It was initially suggested that 

CCR2V64I is in LD with CCR5Δ32, but it was shown that the CCR2V64I SNP 

occurs invariably with the wildtype CCR5 allele [Smith et al., 1997b; Kostrikis et 

al., 1998].  The CCR2V64I SNP is however in strong LD with a CCR5 promoter 

variant, CCR5-1835C>T (rs1800024) [Kostrikis et al., 1998; Mummidi et al., 

1998].  Previously described haplotypes comprising the CCR2V64I and CCR5 

polymorphisms are associated with either various risks for HIV-1/AIDS or 

having no influence within specific population groups (see Chapter 2.1).  Other 

CCR2 gene variants have also been reported, although to date none of these 

have indicated significant associations with susceptibility for HIV-1/AIDS 

[Petersen et al., 2001, Petersen et al., 2002] (see Appendix A and C).  

 

1.1.1.3. CX3C chemokine receptor 1 (CX3CR1)

CX3CR1 (MIM# 601470) is considered a minor HIV-1 co-receptor for a limited 

number of dual-tropic/R5X4 viruses, having a lower fusion activity compared to 

CCR5 and CXCR4 [Rucker et al., 1997; Combadiere et al., 1998].                 

The amino-terminal domain of CX3CR1 was found to play a crucial role in 

determining co-receptor activity [Garin et al., 2003].  CX3CL1 (fractalkine) is the 

natural ligand for CX3CR1 and can effectively block its ability to serve as a   

HIV-1 co-receptor [Combadiere et al., 1998].   

 

The CX3CR1 gene, localised to chromosome 3p21.3 [Maho et al., 1999], 

consists of four exons and three introns with its coding region contained within 

exon 4 and encoding a protein of 355 amino acids [Raport et al., 1995; Garin et 

al., 2002].  Three gene transcripts are however produced by the splicing of 
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three untranslated exons   (1 – 3) with exon 4.  The predominant gene transcript 

corresponds to the splicing of exon 2 with exon 4.  Three different functional 

promoter regions therefore control the expression of the individual gene 

transcripts, which only differ by their untranslated regions [Garin et al., 2002]. 

 

Previous studies investigating the possibility of CX3CR1 variants influencing 

susceptibility to HIV-1/AIDS have identified two coding region SNPs, 

CX3CR1V249I (rs3732379) and CX3CR1T280M (rs3732378).  The first SNP 

occurring at codon 249 (G>A) is characterised by a conservative amino acid 

change from valine to isoleucine, while the second SNP at codon 280 (C>T) 

involves a non-conservative amino acid change from threonine to methionine.  

CX3CR1T280M has been associated with inconsistent effects on disease 

progression [Faure et al., 2000; McDermott et al., 2000a; Hendel et al., 2001, 

Faure et al., 2003; Kwa et al., 2003a] (see Chapter 2.1), while  CX3CR1V249I 

showed an association with reduced susceptibility for HIV-1 infection (see 

Chapter 2.1).  The allele frequencies reported indicate a higher occurrence of 

CX3CR1V249I compared to CX3CR1T280M in various populations [Faure et 

al., 2000; Faure et al., 2003; Kwa et al., 2003a; Singh et al., 2005] (see Chapter 

2.1).  Functional studies have shown reduced ligand binding affinity and 

impaired HIV-1 co-receptor activity when considering CX3CR1V249I and 

CX3CR1T280M occurring together [Faure et al., 2000; McDermott et al., 2000a].          

 

The CX3CR1 gene is located in close proximity to the CCR5 and CCR2 genes 

[Maho et al., 1999].  No linkage disequilibrium was however observed when 

analysing the distribution of CX3CR1V249I and CX3CR1T280 in the presence 
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of CCR2V64I, CCR5Δ32 and the CCR5 promoter variants.  This finding further 

ensured that the functional effects being observed were not attributed to any of 

the known neighbouring gene variants, but rather the CX3CR1 SNPs 

themselves [Faure et al., 2000], which requires ongoing investigation. 

 

1.1.1.4. CXC chemokine receptor 4 (CXCR4) 

CXCR4, (MIM# 162643) is utilised as a HIV-1 co-receptor by SI/X4 strains to 

facilitate virus entry [Bleul et al., 1996a, Oberlin et al., 1996].  The CXCR4 

amino-terminal domain together with its extracellular loop 2 was found to be 

important for co-receptor activity [Brelot et al., 2000].  CXCL12 (SDF1) is the 

natural ligand for this co-receptor and suppresses HIV-1 infection by             

down-regulation of CXCR4 surface expression [Amara et al., 1997; Signoret et 

al., 1997].   

 

The CXCR4 gene is located at position 2q21 [Federsppiel et al., 1993; Herzog 

et al., 1993] and consists of a single intron and two exons.  Both Exon 1 and 2 

contain parts of the coding region that encodes for a protein of 352 amino acids 

[Feng et al., 1996; Caruz et al., 1998; Wegner et al., 1998].   

 

Investigations aimed at determining the role of CXCR4 gene variants in 

susceptibility to HIV-1/AIDS in different population groups have resulted in no 

significant findings [Cohen et al., 1998; Alvarez et al., 1998; Martin et al., 

1998b].  This is mainly due to the fact that CXCR4 is a highly conserved gene 

[Moriuchi et al., 1997] and therefore the presence and effect of a few rare 

mutations remains questionable.  Previously reported CXCR4 variants occurring 
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at low allele frequencies include two silent mutations, CXCR4-I261I (C>T) 

[Martin et al., 1998b] and CXCR4-K68K (A>G), and a non-conservative 

mutation, CXCR4-F93S (T>C), involving an amino acid change from 

phenylalanine to serine [Cohen et al., 1998].  All of these mutations have 

displayed insignificant functional effects [Cohen et al., 1998].  A more recent 

study confirmed that CXCR4 is conserved in a genetically older African ethnic 

group and furthermore the absence of HIV-1/AIDS associations (see Chapter 

2.2). 

 

1.1.1.5. CC chemokine ligand 5 (CCL5)

CCL5 (MIM# 187011), more commonly known as RANTES, is a natural ligand 

for the principle HIV-1 co-receptor, CCR5 [Samson et al., 1996a].  CCL5 has 

been found to suppress HIV-1 infection of NSI/R5 strains by directly competing 

with the virion envelope gp120 for binding to CCR5 or by down-regulation of 

CCR5, which limits its cell surface expression [Cocchi et al., 1995; Arenzana-

Seisdedos et al., 1996; Deng et al., 1996; Mack et al., 1998; Abdelwahab et al., 

2003; Pastore et al., 2003].  Elevated levels of CCL5 have been observed in 

‘exposed yet uninfected’ individuals [Paxton et al., 1996; Paxton et al., 1998; 

Zagury et al., 1998; Garzino-Demo et al., 1999; Paxton et al., 1999].  CCL5 

production and circulating levels have also been inversely correlated with rates 

of disease progression to AIDS [Aukrust et al., 1998; Paxton et al., 2001].  

Some studies have found no significant change in CCL5 production in the 

presence of HIV-1 [McKenzie et al., 1996; Moriuchi et al., 1996; Mazzoli et al., 

1997]. Other studies have suggested that CCL5 may actually up-regulate virus 

replication [Schmidtmayerova et al., 1996a; Schmidtmayerova et al., 1996b; 
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Gordon et al., 1999].  These inconsistent results could be attributed to a more 

recent finding where the antiviral activity of CCL5 at initial infection was the 

same in macrophages and lymphocytes, but it appeared that these cells 

differentially modulated the inhibitory ability of CCL5 during virus replication 

[Gross et al., 2003] 

 

The CCL5 gene found at chromosome position 17q11.2-q12 [Donlon et al., 

1990] comprises three exons and two introns.  All three exons contain partial 

coding regions that encode for 91 amino acids, including a signal peptide of 23 

amino acids (Exon 1) and a mature protein of 68 amino acids (Exon1, 2, and 3) 

[Nelson et al., 1993; Nomiyama et al., 1999]. 

 

There are four previously identified CCL5 SNPs that have been associated with 

influencing susceptibility to HIV-1/AIDS.  These include two promoter variants at 

positions -403G>A (rs2107538) and -28C>G (rs2280788) (relative to the 

transcription start site) [Liu et al., 1999a] and a variant in both the first intron, 

designated In1.1T>C (rs2280789) and 3’ untranslated region, designated 

3’222T>C [An et al., 2002].  Initial studies showed the CCL5-28C>G SNP to be 

associated with delayed progression to AIDS in Japanese [Liu et al., 1999a], 

while the CCL5-403G>A SNP was found to offer an increased risk for HIV-1 

infection, but also faster progression to AIDS in Caucasians [McDermott et al., 

2000b].  Using reporter assays, both promoter CCL5 variants have been found 

to upregulate gene transcription [Liu et al. 1999a; Nickel et al., 2000].  The 

CCL5 SNPs, -403G>A (5’UTR-403G>A), In1.1T>C (IVS1+307T>C) and 

3’222T>C (3’UTR+222T>C, relative to stop codon) in various populations are 
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associated with increased risk for HIV-1 infection, while the CCL5 In1.1T>C also 

accounts for a more rapid disease progression to AIDS [An et al., 2002].  The 

CCL5 In1.1T>C SNP lies within an enhancing regulatory element and was 

found to down-regulate gene transcription [An et al., 2002].   

 

The four CCL5 SNPs are in strong linkage disequilibrium and form four common 

haplotypes, R1 to R4 [An et al., 2002].  Therefore these SNPs individually or as 

part of derived haplotypes have been analysed in different populations for 

confirming or establishing associations with HIV-1/AIDS susceptibility [Liu et al., 

1999b; Gonzalez et al., 2001; An et al., 2002] (see Chapter 2.1).  More recently, 

it was suggested that CCL5 variants may down-regulate gene expression and 

thereby increase initial HIV-1 plasma levels [Duggal et al., 2005].   

 

1.1.1.6. CXC chemokine ligand 12 (CXCL12)     

CXCL12 (MIM# 600835), previously called SDF1, is an extremely efficacious 

chemokine and the only known natural ligand for CXCR4, a major HIV-1        

co-receptor [Bleul et al., 1996a; Bleul et al., 1996b; Oberlin et al., 1996].  

CXCL12 was found to suppress HIV-1 infection of SI/X4 strains by down-

regulation of CXCR4 surface expression and thereby interfering with virus 

fusion and entry [Bleul et al., 1996a; Oberlin et al., 1996; Amara et al., 1997; 

Signoret et al., 1997].  Reduced levels of CXCL12 were observed in persons 

infected with SI/X4 viruses compared to those infected with NSI/R5 viruses.  

Increased CXCL12 expression could therefore explain why the more cytopathic 

SI/X4 viruses do not appear in certain individuals [Llano et al., 2001].  A direct 

correlation between CXCL12 level and CD4+ cell count has also been reported 
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[Derdeyn et al., 1999], which suggested an association between lower CXCL12 

levels and progression to AIDS as found in another study [Soriano et al., 2002].  

This finding was however in contrast to other studies where higher CXCL12 

levels were found in HIV-1 infected individuals compared to their uninfected 

counterparts and an inverse correlation was observed with the CD4+ cell count 

[Ikegawa et al., 2001; Shalekoff and Tiemessen, 2003].   

 

The CXCL12 gene, located at position 10q11.1, consists of four exons and 

three introns [Shirozu et al., 1995]. CXCL12 encodes 2 isoforms, CXCL12α (89 

amino acids) and CXCL12β (93 amino acids) [Tashiro et al., 1993; Nagasawa et 

al., 1994; Shirozu et al., 1995] due to alternative splicing of a single gene. The 

first 21 amino acids of both CXCL12α and CXCL12β form a signal peptide 

[Bleul et al., 1996b].  The coding regions for CXCL12α and CXCL12β are found 

within exons 1 to 3 and exons 1 to 4, respectively [Shirozu et al., 1995].  

 

A CXCL12β polymorphism, designated SDF1-3’A (rs1801157), has been 

identified in the 3’ untranslated region at position +801 (relative to the start 

codon) and involves a G to A transition [Winkler et al., 1998].  Initially it was 

found that the recessive state of SDF1-3’A is associated with slower disease 

progression to AIDS [Hendel et al., 1998; Martin et al., 1998a; Winkler et al., 

1998] and hypothesised that the SNP up-regulates CXCL12 biosynthesis, which 

blocks infection of T-tropic/SI viruses that utilise CXCR4 as a HIV-1 co-receptor 

[Winkler et al., 1998].  Other studies have however shown inconsistent findings 

including, association with faster progression to death [Mummidi et al., 1998; 

van Rij et al., 1998]; prolonged [van Rij et al., 1998] or decreased [Brambilla et 
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al., 2000] survival after AIDS is diagnosed; low CD4+ cell counts [Balotta et al., 

2000]; or no effect on disease progression [Meyer et al., 1999; Mangano et al., 

2000; Ioannidis et al., 2001a].  Dominant effects of the SDF1-3’A SNP have 

also been reported where association with increased vertical transmission from 

mother to child in an African study [John et al., 2000]; rapid disease progression 

in HIV-1 infected children born to seropositive mothers [Tresoldi et al., 2002]; 

and resistance to HIV-1 infection in seronegative high-risk individuals 

[Tiensiwakul, 2004] or the absence thereof [Liu et al., 2004].  The SDF1-3’A 

SNP has been identified in various population groups, but occurs more 

commonly in Caucasians compared to Africans.  Based on the findings to date, 

the HIV-1/AIDS associations observed with SDF1-3’A appear to be population 

specific (see Chapter 2.2).   

 

Furthermore, plasma levels of CXCL12 in relation to SDF1-3’A genotypes have 

been considered in HIV-1 seropositive patients, exposed high-risk HIV-1 

seronegative individuals and healthy HIV-1 seronegative controls [Llano et al., 

2001; Soriano et al., 2002; Tiensiwakul, 2004] (see Chapter 2.2).  However, 

inconsistent results were found including the SDF1-3’A homozygous genotype 

being associated with higher [Tiensiwakul, 2004] and lower [Soriano et al., 

2002] CXCL12 levels in exposed uninfected individuals.  In a recent study, it 

was shown that other polymorphisms in linkage disequilibrium with the       

SDF1-3’A SNP are responsible for altered gene transcription, rather than   

SDF1-3’A itself [Kimura et al., 2005].  This emphasises the need for 

investigating derived CXCL12 haplotypes in various population groups for 

determining associations with susceptibility to HIV-1/AIDS.      
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1.1.2.   Th1 and Th2 cytokines 

Cytokines are a large group of small proteins that mediate immune responses 

by forming a signaling network between host cells.  CD4+ T lymphocytes can be 

classified into T-helper (Th) cell subsets (Th1 and Th2) based on the cytokines 

they secrete.  Th1 cells produce cytokines such as INFγ, IL2 and IL12 that are 

important for driving cell-mediated immunity by stimulating cytotoxic T cell 

development.  Th2 cells produce cytokines such as IL4, IL5 and IL13 that 

activate the humoral immune response by promoting antibody production.  

Additionally there are cytokines such as TNFα and IL10 that are secreted by T 

cells, but more predominantly by other cell types (e.g. macrophages).  Many 

researchers have however combined inflammatory cytokines such as TNFα with 

the characteristic Th1 cytokines, while IL10 is considered to be a Th2 cytokine 

[Reviewed in Kidd et al., 2003]. 

 

A hypothesis by Clerici and Shearer in 1993 suggested that an imbalance in 

Th1-type and Th2-type responses occurs during HIV-1 infection resulting in 

immune dysregulation.  It was further proposed that resistance to HIV-1 

infection and disease progression to AIDS is largely dependant on a Th1>Th2 

dominance (see Figure 3).  This ‘Th1 to Th2 switch’ model was based on 

findings that HIV-1 exposed uninfected individuals generate strong Th1-type 

responses to HIV-1 antigens and that those individuals who progressed to AIDS 

showed reduced IL2 and INFγ production together with an increase in IL4 and 

IL10 levels [Clerici et al., 1993; Clerici and Shearer, 1994; Clerici et al., 1997].  

Additional studies have shown a significant decrease in Th1 cytokines IL12 and 

INFγ and a significant increase in Th2 cytokines IL4, IL5 and IL10 during HIV-1 
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infection [Maggi et al., 1994; Autran et al., 1995; Barker et al., 1995; Meroni et 

al., 1996; Klein et al., 1997; Wasik et al., 1997].      

 

 

TH 1 TH 2
NSI 

virus
SI 

virus

Early HIV-1 disease Late HIV-1 disease

SWITCH

Cytokines Cytokines

TNFαIFNγ IL4 IL10

IL2 IL13IL5IL12

 

 

Figure 3.  Schematic illustration of the ‘Th1 to Th2 switch’ model and phenotypic 

conversion from NSI to SI in the presence of specific cytokines. 

 

There are however studies in disagreement with the ‘Th1 to Th2 switch’ model.  

These include the suggestion that HIV-1 replication preferentially occurs in     

Th2-type cells rather than a switch from a Th1 to Th2 cytokine profile [Maggi et 

al., 1994; Romagnani et al., 1994].  Other findings were the nearly undetectable 

expression levels of IL2 and IL4 irrespective of disease stage; CD8+ cells 

expressing large and stable levels of IFNγ and IL10 [Graziosi et al., 1994]; and 
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a direct correlation between decreasing IL2 producing cells and reduced CD4+ 

counts [Tanaka et al., 1999].    

 

It has been proposed that the phenotypic conversion from NSI to SI is also 

associated with a switch in Th1 to Th2 cytokine profile (see Figure 3).  A study 

of HIV-1 infected individuals who converted to the SI virus phenotype showed 

baseline significant lower levels of IL2 and higher levels of IL4 when compared 

to those infected persons who did not acquire SI variants of HIV-1.  Shortly after          

SI-conversion, the HIV-1 infected individuals were characterised by significantly 

high levels of IL4 and low levels of IFNγ [Torres et al., 1998].  Additional studies 

have further investigated the presence of specific cytokines being linked to the 

emergence of HIV-1 virus strains with distinct tropisms [Suzuki et al., 1999; Galli 

et al., 2001].    

 

It is evident that cytokine production during HIV-1 exposure serves as a 

mediator of virus-host interactions and influences the rates of disease 

progression to AIDS in those individuals who do become infected.  The effects 

of cytokines on HIV-1 infection in cells of the macrophage lineage have also 

now been classified as being suppressive (e.g. IL10), stimulatory (e.g. TNFα) or 

bifunctional, i.e. both suppressive and stimulatory (e.g. IL4) [Reviewed in 

Kedzierska et al., 2003].  Therefore based on previous findings it is apparent 

why the genes encoding specific cytokines, such as TNFα, IL10 and IL4, have 

been selected as candidates for determining genetic variants that may influence 

HIV-1/AIDS susceptibility.   
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1.1.2.1.   Tumour necrosis factor alpha (TNFα) 

TNFα (MIM# 191160) is a multifunctional pro-inflammatory cytokine also serving 

as a potent inducer of HIV-1 replication.  It activates a cellular transcription 

factor, NF-κB, that enhances virus expression by binding to the HIV-1 long 

terminal repeat within the viral promoter [Nabel and Baltimore, 1987; Duh et al., 

1989; Folks et al., 1989; Osborn et al., 1989; Matsuyma et al., 1991; Mellors et 

al., 1991].  Recently, the signal transduction pathway for the TNFα and NF-κB 

interacting protein components was mapped [Bouwmeester et al., 2004].  

Increased levels of TNFα have been reported in persons who had progressed to 

AIDS [Brinkman et al., 1997].  It has been suggested that differences among 

HIV-1 strains in their ability to activate secretion of TNFα could be related to 

different rates of disease progression [Khanna et al., 2000].  Elevated TNFα 

activation by HIV-1 subtype C found in Southern Africa was associated with the 

presence of at least three NF-κB sites.  This number of NF-κB sites is more 

than for other subtypes having only one or two.  The significance of this finding 

on HIV-1 pathogenesis requires further study [Montano et al., 2000].   

 

The TNFα gene lies within the highly polymorphic major histocompatibility 

complex (MHC) region at chromosomal position 6p21.3 [Nedwin et al., 1985; 

Spies et al., 1986].  It comprises four exons and three introns with a coding 

region encoding 233 amino acids.  This includes a putative signal peptide of 76 

amino acids (within Exon 1 and 2) and a mature protein of 157 amino acids 

(within Exon 2, 3 and 4) [Nedwin et al., 1985].  
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Many polymorphisms have been identified in the promoter region of the TNFα 

gene.  These include two G-A transitions at positions –308 (rs1800629) and      

–238 (rs361525) relative to the transcription start site [Wilson et al., 1992; 

D’Alfonso et al., 1994; Hamann et al., 1995].  Both these SNPs have been 

analysed in HIV-1/AIDS association studies [Brinkman et al., 1997; Knuchel et 

al., 1998; Smolnikova and Konenkov, 2002] (see Chapter 3.1).  Previous 

significant findings in Caucasian-based studies include a weak recessive effect 

of the TNFα-308G>A SNP associated with long-term non-progression [Knuchel 

et al., 1998] and the TNFα-308G/A heterozygous genotype associated with 

rapid progression to AIDS [Smolnikova and Konenkov, 2002]. The              

TNFα-308G>A SNP is more commonly observed than the TNFα-238G>A in 

different populations [McGuire et al., 1994; Conway et al., 1997; Baena et al., 

2002] (see Chapter 3.1).  The functional significance of both TNFα-308G>A and 

TNFα-238G>A is not clearly understood due to inconsistent findings regarding 

its influence on gene transcription and protein production [Reviewed in Reynard 

et al., 2000 and Hajeer et al., 2001].  

 

The close proximity of the TNFα gene to the human leukocyte antigen (HLA) 

genes has resulted in the analysis of derived TNFα–HLA haplotypes for 

association with HIV-1/AIDS susceptibility [Wilson et al., 1993].  HLA alleles 

have been previously found to influence risk for HIV-1 infection and disease 

progression to AIDS [Reviewed in Carrington and O’Brien, 2003]. Furthermore, 

a few HLA haplotypes containing specific alleles have been associated with 

varying levels of TNFα production [Bendtzen et al., 1988; Jacob et al., 1990; 

Abraham et al., 1993]. 
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1.1.2.2.   Interleukin 4 (IL4) 

IL4 (MIM# 147780) is a pleiotropic cytokine responsible for differentially 

regulating CC chemokine receptor 5 (CCR5) and CXC chemokine receptor 4 

(CXCR4), two major HIV-1 co-receptors.  This involves down-regulation of 

CCR5 with inhibition of early stage NSI/R5 virus replication in macrophages and 

T lymphocytes [Valentin et al., 1998; Wang et al., 1998a, Jinquan et al., 2000] 

and up-regulation of the CXCR4 with enhanced replication of the later emerging 

SI/X4 viruses in T lymphocytes [Valentin et al., 1998; Wang et al., 1998b].  It 

has been suggested that resistance to HIV-1 infection among African 

commercial sex workers is associated with reduced IL4 HIV-1 specific 

responses, independent of changes in other Th2 cytokines [Trivedi et al., 2001]   

 

The IL4 gene, located at position 5q31.1 [Sutherland et al., 1988; Le Beau et 

al., 1993], consists of four exons and three introns [Arai et al., 1989].  The 

coding region encodes for 153 amino acids, including a putative signal peptide 

of 24 amino acids (Exon 1) and a mature protein of 129 amino acids (Exon 

1,2,3 and 4) [Yokota et al., 1986]. 

   

Two IL4 promoter SNPs, IL4-589C>T (rs2243250) [Rosenwasser et al., 1995] 

and IL4-33C>T (rs2070874) [Takabayashi et al., 1999] (positions relative to the 

translation start site), and their derived haplotypes have been associated with 

influencing susceptibility to HIV-1/AIDS [Nakayama et al., 2000; Vasilescu et al., 

2003; Wang et al., 2004] (see Chapter 3.2).  The IL4-589C>T SNP, which is in 

complete linkage disequilibrium with the IL4-33C>T SNP in Japanese, was 

associated with decreased susceptibility to HIV-1 infection.  However, the      
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IL4-589C>T SNP in its homozygous state was correlated with a more rapid 

emergence of SI/X4 virus strains and possibly faster disease progression to 

AIDS [Nakayama et al., 2000].  In contrast, the IL4-589C>T SNP was 

associated with delayed acquisition of SI/X4 virus strains in Caucasians, but no 

overall effect on disease progression was observed [Kwa et al., 2003b].  

Another Caucasian-based study found the IL4-589C>T SNP offers slower 

progression to AIDS and death [Nakayama et al., 2002].  This finding was 

confirmed in an additional study where a specific haplotype associated with 

delayed disease progression carries the IL4-589 T allele [Vasilescu et al., 2003].  

In an African-based population, homozygosity for the IL4-589C>T and            

IL4-33C>T SNPs has been associated with slower disease progression and 

increased risk for HIV-1 infection, respectively [Wang et al., 2004].  

 

Functional studies have shown significant findings for IL4-589C>T, including 

increased promoter activity and transcription, suggesting that increased IL4 

levels are expressed in the presence of the SNP [Rosenwaser et al., 1995; 

Song et al., 1996].  Previous HIV-1/AIDS associations observed with the IL4 

promoter variants and derived haplotypes do however appear to differ between 

populations (see Chapter 3.2).       

 

1.1.2.3.   Interleukin 10 (IL10)

IL10 (MIM# 124092) is a vital regulatory cytokine that inhibits HIV-1 replication 

in macrophages. [Kollmann et al., 1996; Schols and De Clercq, 1996]  This 

control of virus proliferation is presumably due to restricting the amount of 

macrophages available for HIV-1 replication [Edelman et al., 1996; Pataraca et 
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al., 1996; Than et al., 1997; Muller et al., 1998].  IL10 was previously found to 

block secretion of pro-inflammatory cytokines such as TNFα and IL6, thus 

further inhibiting HIV-1 replication [Weissman et al., 1994].  IL10 has also been 

reported to differentially regulate CCR5 and CXCR4 expression in various cell 

types, which is another indication of its important role in susceptibility to HIV-1 

infection [Houle et al., 1999; Patterson et al., 1999; Jinquan et al., 2000, Torres 

et al., 2001, Wang et al., 2002]     

 

The IL10 gene was localised to the chromosomal position 1q31-q32 [Kim et al., 

1992; Eksdale et al., 1997].  The gene is comprised of four exons and three 

introns with a coding region encoding 178 amino acids.  This includes a putative 

signal peptide of 18 amino acids (Exon 1) and a mature protein of 160 amino 

acids (Exon 1, 2, 3, and 4) [Vieira et al., 1991]. 

 

Polymorphisms in the IL10 promoter region that have been associated with 

influencing susceptibility to HIV-1/AIDS individually or as part of extended 

haplotypes are located at positions -1082A>G (rs1800896), -819C>T 

(rs1800871) and -592C>A (rs1800872) relative to transcription start site [Turner 

et al., 1997; Shin et al., 2000; Vasilescu et al., 2003; Wang et al., 2004] (see 

Chapter 3.2).  In a Caucasian-based study it was found that IL10-592C>A, in 

complete linkage disequilibrium with IL10-819C>T and in strong linkage 

disequilibrium with IL10-1082A>G, is associated with accelerated disease 

progression to AIDS, particularly during the late disease stage [Shin et al., 

2000].  Another study involving Caucasians however showed a haplotype that 

contains the IL10-592C allele to be associated with faster disease progression 
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[Vasilescu et al., 2003]. The homozygous IL10-1082A/A genotype in Hispanics 

and an IL10 haplotype comprised of 5 alleles, including -592C, -819C and          

-1082G, in an African-based population was also associated with a higher risk 

for HIV-1 infection [Wang et al., 2004].  

 

The IL10-592C>A SNP is functionally significant by reducing gene transcription 

and decreasing IL10 production [Rosenwasser et al., 1997; Crawley et al., 

1999; Shin et al., 2000], while the functional effect of IL10-1082A>G remains 

debatable [Hoffman et al., 2001; Rees et al., 2002].  The associations between 

IL10 promoter SNPs and haplotypes with HIV-1/AIDS susceptibility have been 

observed in distinct population groups and further research is required for 

confirmation of previous findings (see Chapter 3.2). 

 

1.1.3. Immunoregulatory proteins 

Additional immunoregulatory proteins that play a functional role in providing 

effective immune responses have been discovered.  These include MBL and 

SLC11A1 (NRAMP1), which are both essential proteins acting during           

host-pathogen interactions.  MBL is vital in immune defence, particularly during 

the stage of primary contact with microorganisms [Reviewed in Turner, 2003; 

Klein, 2005].  SLC11A1 is responsible for the transport of iron into bacterium-

containing phagosomes and thereby regulates intracellular pathogen 

proliferation and macrophage inflammatory responses [Reviewed in Forbes and 

Gros, 2001; Blackwell et al., 2003].  Identifying genetic variants in both the MBL 

and SLC11A1 genes for possible associations further advanced the study of 

host genetic factors influencing HIV-1/AIDS pathogenesis. 
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1.1.3.1. Mannose binding lectin (MBL) 

MBL (MIM# 154545) is a calcium dependent serum protein produced by the 

liver [Kawasaki et al., 1983] as an acute phase response [Thiel et al., 1992] and 

binds to pathogens, including HIV-1 [Ezekowitz et al., 1989; Haurum et al., 

1993; Saifuddin et al., 2000].  The importance of MBL in innate immunity 

therefore involves binding to the carbohydrate-rich domains on pathogens for 

destruction by either opsonophagocytosis [Kuhlman et al., 1989] or activation of 

the lectin complement pathway [Matsushita and Fujita, 2001].  It remains 

debatable as to whether MBL-binding results in virus neutralisation or enhances 

infection by providing another mode for virus entry [Sölder et al., 1989; 

Holmskov et al., 1994; Thielens et al., 2002].  Inconsistent associations also 

exist between MBL levels and susceptibility to HIV-1/AIDS [Senaldi et al., 1995; 

Prohászka et al., 1997] (see Chapter 4). 

 

The MBL gene located at 10q11.2-21 [Sastry et al., 1989; Schuffenecker et al., 

1991] consists of four exons and three introns [Taylor et al., 1989].  The coding 

region encodes 248 amino acids, including a putative signal peptide of 20 

amino acids (Exon 1) and mature protein of 228 amino acids (Exon 1, 2, 3, 4) 

[Ezekowitz et al., 1988; Taylor et al., 1989]              

                                                                                       

Three MBL SNPs occurring in the coding region at codons C52R (C>T) 

(rs5030737) [Madsen et al., 1994], D54G (G>A) (rs1800450) [Sumiya et al., 

1991] and E57G (G>A) (rs1800451) [Lipscombe et al., 1992] have been 

previously implicated in HIV-1/AIDS pathogenesis [Garred et al., 1997; Maas et 

al., 1998; Pastinen et al., 1998; Mombo et al., 2003] (see Chapter 4).  These 

 28



SNPs are also known as the D (MBLC52R), B (MBLD54G) and C (MBLE57G) 

alleles with A being the wild-type allele.  The SNPs represent non-conservative 

amino acid changes that disrupt oligomerisation and result in impaired protein 

function [Sumiya et al., 1991; Wallis and Cheng, 1999] and have also been 

linked to reduced MBL levels [Garred et al., 1992a; Garred et al., 1992b; 

Lipscombe et al., 1992; Madsen et al., 1994; Turner, 1996].  Previous 

Caucasian-based findings include homozygosity for any combination of MBL 

SNPs associated with increased susceptibility to HIV-1 infection [Garred et al., 

1997; Pastinen et al., 1998] and MBL variants resulting in slower disease 

progression [Maas et al., 1998] and shorter survival after AIDS diagnosis 

[Garred et al., 1997].  MBLE57G in both the homozygous and compound 

heterozygous state was associated with higher risk for HIV-1 infection in an 

African population, while individuals heterozygous for the SNP were less 

susceptible than those homozygous for the wild-type allele [Mombo et al., 

2003]. 

 

The MBL SNPs are associated with reduced serum MBL levels [Garred et al., 

1992a; Garred et al., 1992b; Lipscombe et al., 1992; Madsen et al., 1994; 

Turner, 1996] that could result in opsonisation impairment [Super et al., 1989] 

and failure to defend against HIV-1 infection.  The effect of functional MBL 

SNPs and their derived genotypes on susceptibility to HIV-1/AIDS therefore 

requires further investigation to fully elucidate the population-based 

associations that have been previously observed (see Chapter 4).  
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1.1.3.2. Solute Carrier 11A1 (SLC11A1)  

SLC11A1 (MIM# 600266), more commonly known as NRAMP1, is a divalent 

cation transporter that plays an important role in iron metabolism and recycling, 

thereby regulating susceptibility to infectious and autoimmune disease 

[Reviewed in Blackwell et al., 2003].  The monocyte/macrophage cell lineage 

has a key function during HIV-1 infection and the macrophage-expressed 

SLC11A1 protein was therefore considered for possibly modulating individual 

risk for HIV-1/AIDS [Marquet et al., 1999].   

 

The SLC11A1 gene is localised to chromosome position 2q35 [Blackwell et al., 

1995; Liu et al., 1995; Marquet et al., 2000] and comprises 15 exons separated 

by 14 introns.  The coding region is contained within Exons 1 to 15 and encodes 

for 550 amino acids [Cellier et al., 1994; Blackwell et al., 1995]. 

 

Two previous studies have analysed the influence of SLC11A1 variants on 

susceptibility to HIV-1/AIDS [Marquet et al., 1999; Donninger et al., 2004] (see 

Appendix D).  The genotypes of four markers, including a GT repeat sequence 

in the SLC11A1 promoter region [Liu et al., 1995; Blackwell et al., 1995] has 

been associated with altered risk of HIV-1 infection in a Caucasian-based 

population [Marquet et al., 1999].  The length of the GT repeat was shown to 

have a functional effect on SLC11A1 promoter activity and expression levels 

[Searle and Blackwell, 1999; Blackwell et al., 2003] (see Appendix D).  A recent 

African-based study further investigated the presence of SLC11A1 promoter 

variants and although no association was observed for previously reported 

markers or three novel mutations and susceptibility to HIV-1 infection, gene 
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expression studies showed enhanced promoter activity for both a previously 

reported SNP and two novel mutations [Donninger et al., 2004] (see Appendix 

D).     

 

Limited studies have focused on the role of SLC11A1 in determining risks for 

HIV-1/AIDS.  Establishing the functional significance of known SLC11A1 

variants has provided an explanation for how SLC11A1 variants could possibly 

influence susceptibility to HIV-1/AIDS.  The functional findings will also 

contribute to further identifying and confirming associations between SLC11A1 

and HIV-1/AIDS in distinct population groups.   
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1.2. Genetic association studies 

Complex traits such as host genetic susceptibility to HIV-1/AIDS are likely to 

display genetic heterogeneity (different mutations in numerous genes resulting 

in the same effect) or have a polygenic nature (combination of mutations in 

multiple genes acting collectively) when determining infection/disease risk 

profiles.  A number of associations implicating various candidate genes in     

HIV-1/AIDS have therefore been observed.  Genetic association studies can be 

performed on families or the general population depending on the specific 

outcome being analysed. Family-based studies can involve either a 

multigenerational pedigree for locating candidate genes using linkage analysis 

or the case-control design where relatives of the cases are used as the controls.  

It is relatively difficult to collect large informative families and this is particularly 

true for determining HIV-1/AIDS susceptibility where the number of infected 

cases within a family is either low or generally unknown due to the stigma and 

discrimination that may result from the disclosure of HIV-1 status amongst 

relatives.  The population-based analysis therefore serves as a more feasible 

approach for HIV-1/AIDS association studies. It includes the testing of a genetic 

variant for 1) an increased occurrence in either the cases or their unrelated 

population-matched controls (risk for HIV-1 infection) and 2) correlation with a 

defined phenotype within a study cohort (rates of disease progression to AIDS). 

The candidate gene approach, SNPs, family-based versus population-based 

association studies, criteria for ensuring successful population-based 

association studies, together with the sample group presented in this 

dissertation (see Chapters 2 to 4), are discussed in this chapter subsection.  
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1.2.1. Candidate gene approach 

It is evident that a genetic component exists for many complex traits, but often 

the underlying mechanisms of these genetic factors remain unknown.  Various 

strategies for identifying genes with a distinct contribution to a complex trait 

have shown only a certain degree of success.  This is mainly due to the fact that 

several genes each with relatively weak effects and strongly interacting with 

both other genes and the environment are often involved in determining a 

specific trait outcome.  A candidate gene is defined by evidence of its possible 

role in the trait that is being investigated.  The candidate gene approach is 

therefore either 1) based on the location of the gene within a previously 

determined region of linkage or 2) focuses on genes selected for their protein 

product having a plausible function in a biological pathway or in an interaction 

appropriate for the trait of interest [Lander and Schork, 1994; Taylor et al., 2001; 

Hirschhorn and Daly, 2005; Suh and Vijg, 2005].  Although the latter does rely 

on limited existing knowledge of candidate genes with hypothesised functional 

variants, it has formed the basis of many successful HIV-1/AIDS association 

studies [Reviewed in Carrington et al., 2001; Hogan and Hammer, 2001; Dean 

et al., 2002; Anastassopoulou and Kostrikis, 2003; O’Brien and Nelson, 2004; 

Winkler et al., 2004; Kaslow et al., 2005] (see Chapters 2, 3 and 4).   

 

Although the most comprehensive analysis of a candidate gene is obtained by 

resequencing of the entire gene in cases and controls and searching for genetic 

variants with heterogeneity between the two groups, this process is laborious 

and costly.  Association studies focusing on commonly occurring genetic 

variants therefore offer a simpler and more cost-effective strategy to elucidate 
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complex traits [Hirschhorn and Daly, 2005].  The functional genetic variants 

selected for genotyping could occur in exons, introns, untranslated regions and 

promoter regions.  They can therefore be classified as being either coding 

variants resulting in amino acid changes (non-synonymous) and thereby 

altering the structure and reducing optimal functioning of the resulting protein 

product or as regulatory variants in non-coding regions, that modulate gene 

expression and influence RNA stability and splicing by altering regulatory 

elements [Rebbeck et al., 2004; Hirschhorn and Daly, 2005; Knight 2005; 

Newton-Cheh and Hirschhorn, 2005].   

 

Single nucleotide non-synonymous missense genetic variants in the coding 

region are either conservative (replacement of an amino acid by another with 

similar chemical properties) or non-conservative (replacement of an amino acid 

by another with different chemical properties) with the non-conservative 

changes usually having a more potent effect on altering the protein product.  

There are also other non-synonymous genetic variants (insertions, deletions 

and nonsense mutations involving premature stop codons) and 

dynamic/unstable mutations (repeat nucleotides) that occur in the coding region 

and that could possibly result in nucleotide reading frameshifts [Mueller and 

Young, 1998; Hirschhorn and Daly, 2005].  Regulatory genetic variants (single 

nucleotide, insertions, deletions and repeat nucleotides) can be classified as 

being either cis-acting (variant located either in or close to the gene that it 

affects) or trans-acting (variant in one gene affecting another gene) with 

presently only potential cis-acting variation being considered for complex trait 

studies [Mueller and Young, 1998; Knight, 2005]. 
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There are synonymous mutations occurring in the coding regions that do not 

result in amino acid changes, but were also shown to be regulatory variants 

[D’Souza et al., 1999; Lorson et al., 1999].  This further emphasises the 

importance of additional functional studies for determining the role of all 

significant trait-associated genetic variants before assuming that it may only act 

as a marker for another known or yet unidentified functional genetic variant in 

the same or a closely lying gene.     

 

1.2.2. Single nucleotide polymorphisms (SNPs) 

The completion of the human genome project [Lander et al., 2001; Venter et al., 

2001], the distribution of SNPs throughout the human genome deposited into 

public databases (e.g. dbSNP, SNP Consortium, SNPper) [Sachidanandam et 

al., 2001], and the more recent initiation of the HapMap Project [Gibbs et al., 

2003] has largely contributed to the designing of genetic association studies.  

The SNP has been identified as the most common genetic variant and together 

with other sequence variation (e.g. insertions, deletions and repeat nucleotide 

polymorphisms) offers the possibility of identifying the genes that directly 

influence complex trait outcomes [Gray et al., 2000; Sachidanandam et al., 

2001; Taylor et al., 2001; Venter et al., 2001].   

 

A SNP is a substitution of a single nucleotide base that occurs at a frequency of 

more than 0.01 or 1%.  The two alleles for each individual SNP are designated 

as “major” and “minor” based on their observed frequency in the general 

population.  These diallelic SNPs have a low rate of recurrent mutation and are 

therefore stable compared to other more mutable multiallelic variants such as 
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short tandem di, tri or tetranucleotide repeats (microsatellites).  On average 

SNPs occur every 1000 – 2000 bases of genomic sequence and are present in 

high density for applying extensive genetic measures (linkage disequilibrium 

and haplotype analysis).  The SNP densities do however differ among specific 

chromosomal regions and within genes for various population groups.  In 

comparison to SNPs, other types of genetic variants are relatively sparse, 

making SNPs the ideal genetic markers appropriate for large-scale association 

studies of complex traits using high-throughput SNP genotyping methods [Gray 

et al., 2000; Kwok, 2001; Sachidanandam et al., 2001; Taylor et al., 2001; 

Crawford and Nickerson, 2005; Hirschhorn and Daly, 2005; Suh and Vijg, 2005].  

  

1.2.3. Family-based versus population-based association studies 

Family-based linkage studies involve multigenerational pedigrees (diagram 

showing ancestral relationships and transmission of genetic traits in a family) as 

models to define the physical link between genetic variants and thereby identify 

the location of a trait-causing gene.  These studies are particularly useful for 

simple Mendelian recessive or dominant traits involving rare highly penetrant 

alleles (all those with the predisposing allele will manifest the trait), but are 

confounded by incomplete penetrance (those with the predisposing allele may 

not manifest the trait) and by phenocopy (those without the predisposing allele 

still manifest the trait due to environmental factors).  It is therefore difficult to 

identify large families to efficiently apply linkage analysis to complex traits 

where common low penetrant alleles with moderate effects and possibly 

interacting with the environment will not provide a suitable model explaining a 

definite pattern of inheritance [Lander and Schork, 1994; Taylor et al., 2001].     
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Association studies of complex traits using the family-based case-control design 

have been attempted.  This involves the use of parents, siblings and cousins of 

the cases as controls to avoid the effect of ethnic confounding due to population 

stratification. Family members with common environments are also particularly 

useful when considering gene-environment interactions.  The design is however 

restricted by the availability of parents and siblings and often the difficulty in 

recruiting extended family members, who must belong to the same ethnic 

group.  Statistical power is also reduced as the cases and their relatives are 

more likely to have the same genotype compared to the cases and the 

unrelated controls used in population-based association studies [Schaid and 

Rowland, 1998; Gauderman et al., 1999]   

 

The family-based case-control design using pseudosibling controls is another 

approach where no actual controls are selected but rather genotypes of the 

parents are considered when comparing the genotype of the case to the three 

genotypes (pseudosiblings) that were not transmitted to the case.  The 

transmission disequilibrium test (TDT) can be used to determine association 

with a specific allele or genotype occurring more commonly in cases than in 

their pseudosiblings by testing many cases and their parents.  Although this 

design also protects against population stratification, the genotype data needs 

to be available for both parents to prevent bias in the TDT and a sufficient 

number of families are needed for extensive analysis of complex traits [Lander 

and Schork, 1994; Gauderman et al., 1999; Witte et al., 1999] 
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Population-based case-control and cohort study designs are widely used and 

due to the size limitations of family-based study designs, they have been the 

preferred option for investigating associations between variants in candidate 

genes and complex traits.  The case-control approach involves affected cases 

directly compared to their population-matched unaffected controls, while the 

study cohort approach involves defined groups of affected cases followed over 

time for comparison of outcomes [Lander and Schork, 1994; Taylor et al., 2001; 

Hirschhorn and Daly, 2005; Wang et al., 2005].  

 

Therefore in HIV-1/AIDS population-based association studies, it is essential 

that all individuals (cases and controls) are drawn from the same well-defined 

population to avoid spurious findings arising from population stratification.          

A successful HIV-1/AIDS association study investigating allele and genotype 

distributions in a specific population is also dependant on, various other 

confounding factors; extended measures (linkage disequilibrium and 

haplotypes); computational software for statistical analysis and reproducibility of 

findings in matching ethnic groups [O’Brien et al. 2000; Huber et al., 2003; Clark 

and Dean, 2004], which are further discussed in 1.2.3.1. to 1.2.3.5. 

 

1.2.3.1. Confounding factors of population-based association studies 

A well-designed population-based study is characterised by its ability to 

overcome all confounding factors for the correct interpretation of results and 

valid association findings.  These factors include size of study sample, ensuring 

no selection bias by obtaining study samples in a random and blinded manner, 

choice of genetic variants, genotyping methods used for screening and the 
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statistical tests selected for data analysis [Ioannidis et al., 2001b; Corfield and 

Brink, 2002; Thomas and Witte, 2002; Ioannidis et al., 2003a; Ioannidis 2003b; 

Rebbeck et al., 2004; Newton-Cheh and Hirschhorn, 2005; Suh and Vijg, 2005].  

Population stratification is an additional factor that is of widespread concern for 

causing spurious associations in case-control studies of admixed populations.  

Population stratification refers to heterogeneity of allele frequencies observed 

between cases and controls that are from a population containing a number of 

genetically diverse subpopulations where the prevalence of a specific trait may 

differ [Lander and Schork, 1994; Thomas and Witte, 2002; Cardon and Palmer, 

2003].  The likelihood for population stratification increases with larger sample 

sizes, but presently there are various methods to detect and adjust for this 

confounding factor [Pritchard and Rosenberg, 1999; Pritchard et al., 2000; 

Pritchard and Donnelly, 2001; Falush et al., 2003; Hoggart et al., 2003; 

Freedman et al., 2004; Hinds et al., 2004; Marchini et al., 2004]. 

 

Association studies have however been performed using admixture mapping 

where genetic markers informative for ancestry form the basis of this approach.  

It involves the use of samples from recently admixed populations (e.g. African 

Americans) to identify susceptibility gene regions as some trait-influencing 

alleles have different frequencies amongst ancestral populations that have 

contributed to the admixture.  The admixed populations should have an 

increased probability of inheriting the alleles from the ethnic group with the 

increased number of trait-influencing alleles. This approach is therefore 

particularly suitable for traits that largely differ in incidence between the ethnic 

groups contributing to the admixture [Patterson et al., 2004; Smith et al., 2004; 
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Montana and Pritchard, 2004; McKeigue 2005].  The Cape Coloured population 

from South Africa is of recent admixed descent, including San, Khoi, African 

Negro, Madagascan, Javanese and Caucasian [Hayes, 2003] and could also 

therefore be considered for identifying ancestral informative markers (AIMs). 

 

The comparison of allele and genotype distributions in cases versus controls 

during association studies is important when considering consistency with 

Hardy-Weinberg equilibrium (HWE) expectations.  Deviations from the HWE in 

unaffected controls from the general population could be indicative of           

non-random mating, unbalanced mutation rates, selection bias, small population 

sizes, gene flow, population stratification or even problematic genotyping 

methods [Schaid and Jacobson, 1999; Salanti et al., 2005; Wigginton et al., 

2005].  Differences between the observed and HWE expected genotype 

frequencies could also be used to identify alleles that are more likely to be 

functionally associated with influencing a specific trait outcome.  An example is 

deviation from the HWE in cases where the alleles and genotypes that are trait-

causative would be over-represented when compared to the controls [Schaid 

and Jacobson, 1999; Wigginton et al., 2005].  This was observed in an African 

population from South Africa for a SNP occurring in the IL4 promoter region, 

IL4-589C>T. The heterozygous genotype (CT) was over-represented in the 

HIV-1 infected cases and therefore showed deviation from the HWE (P = 

0.0305) (see Chapter 3.2).  It is recommended that HWE should only be tested 

in controls.  An approach that corrects for HWE deviations in the general 

population and thereby decreases the chance of false-positive association has 

been reported [Schaid and Jacobson, 1999]. 
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1.2.3.2. Linkage disequilibrium (LD) 

LD is the tendency of alleles at linked loci to occur together on the same 

chromosome more often than expected by chance and is the result of factors 

that disturb HWE.  The extent of LD between susceptibility and marker alleles 

disperses as future generations of the population originate and recombination 

occurs.  The absence of population association with alleles at two or more loci 

is therefore referred to as linkage equilibrium and is dependant on new 

generations since the trait allele arose and the genetic distance between the 

trait and marker alleles [Huttley et al., 1999; Olson et al., 1999]. The extent of 

LD varies across populations and ethnic groups (see Figure 4). 

 

Several LD measures have been developed, including pairwise LD analysis 

based on Lewontins D’ [Lewontin, 1964] and the r2 coefficient [Hill and 

Robertson, 1968] where a value of 1 for both measures indicates complete LD 

(see Figure 4).  D’ equals 1 in the presence of two or three out of the four 

possible allele combinations and will therefore be less than 1 if four allele 

combinations are present, while r2 equals 1 in the presence of two out of four 

allele combinations and will therefore be less than 1 if three or four allele 

combinations are present. D’ is directly related to the frequency of 

recombination (exchange of alleles between parent chromosomes during 

meiosis) indicating the physical extent of LD over time, while r2 is more 

informative in association studies as it is inversely related to the sample size 

required for determining significance.  Although both D’ and r2 are subjected to 

biases in small sample sizes and with rare genetic variants, r2 has more reliable 

properties in such instances [Reviewed in Jorde 2000; Wang et al., 2005].   
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CCR2-CCR5 region (chromosome 3p21) 
 
 

 1                                                                             2    3         4  5      6      
 
 
 
 
 CCR5-1835CCR5-2086 CCR5-2135CCR5-2733 CCR5-2554CCR2V64I

 
 
African 
 1 2 3 4 5 6 

1  0.08 0.29 0.46 0.17 0.91 
2 0.66  0.17 0.26 0.10 0.05 
3 1.00 1.00  0.65 0.60 0.33 
4 1.00 1.00 1.00  0.39 0.51 
5 1.00 1.00 1.00 1.00  0.19 
6 1.00 0.36 1.00 1.00 1.00  

r2

 
D’  

 
 
Cape Coloured 
 1 2 3 4 5 6 

1  0.06 0.24 0.37 0.21 0.94 
2 0.62  0.19 0.28 0.17 0.01 
3 0.87 1.00  0.70 0.89 0.28 
4 0.93 1.00 1.00  0.62 0.40 
5 0.87 1.00 1.00 1.00  0.24 
6 0.94 0.15 1.00 1.00 1.00  

r2

 
D’ 

 
 

Caucasian 

 1 2 3 4 5 6 
1  0.01 0.23 0.13 0.22 0.94 
2 0.18  0.19 0.22 0.18 0.01 
3 1.00 1.00  0.85 0.96 0.25 
4 0.47 1.00 1.00  0.80 0.17 
5 1.00 1.00 1.00 1.00  0.24 
6 1.00 0.15 1.00 0.56 1.00  

r2

 
D’ 

 
 
 
 
 

Figure 4.  The extent of pairwise linkage disequilibrium for the CCR2-CCR5 region shown 

for control samples representative of various South African populations that were studied 

by our research group.  The values in bold indicate strong linkage disequlibrium.  
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LD extends over shorter distances in older populations and is more apparent in 

younger isolated populations [Lander and Schork, 1994]. The older African 

populations therefore have higher levels of genetic diversity and less LD 

compared to other younger non-African populations [Tishkoff and Williams, 

2002; Kittles and Weiss, 2003; Tishkoff and Verrelli, 2003; Bamshad et al., 

2004; Sawyer et al., 2005].  This was evident when measuring LD in various 

South African population groups where the African population displayed less LD 

than the Caucasian population for SNPs occurring within the CCR2-CCR5 

region.  Although D’ appears to show stronger LD in the Africans compared to 

the Caucasians, r2 is considered more reliable when taking into account the 

sample sizes. The Cape Coloured population of admixed descent, including 

African and Caucasian, displayed varying LD values (see Figure 4).   

 

Population-based association studies involving genes occurring in regions of 

high LD are cost effective as it is unnecessary to genotype SNPs in strong LD 

with others, but rather analyse subsets of tag SNPs reflecting most of the allelic 

variation [Hirschhorn and Daly, 2005; Wang et al., 2005]. The identification of 

significant associations would however rely on identifying the underlying LD 

patterns in the specific population being studied [Tishkoff and Williams, 2002].     

 

1.2.3.3. Haplotype analysis 

The significance of LD in a population is shown using chromosomal haplotype 

analysis.  A haplotype is therefore a combination of alleles at different loci along 

the same chromosome that are inherited as a unit. Haplotypes provide 

information regarding recombination and are important for locating trait-causing 

 43



alleles [Clark et al., 2004; Crawford and Nickerson, 2005].  Both molecular and 

automated methods are available for constructing haplotypes in         

population-based studies. The molecular methods (allele-specific polymerase 

chain reaction and somatic cell hybrids) are however costly and time-consuming 

and therefore the automated method using statistical inference software 

programs are generally used.  These programs are classified into groups 

depending on the use of specific algorithms (Clark algorithm, expectation-

maximization algorithms and Bayesian algorithms) for determining haplotypes 

[Reviewed in Crawford and Nickerson, 2005].  

 

In an African population from South Africa, the haplotype analysis of two SNPs 

located in the promoter region of the IL4 gene (IL4-589C>T and IL4-33C>T) 

showed a different number of allele combinations in HIV-1 infected cases when 

compared to their population-matched uninfected controls. Using the 

expectation-maximization algorithm, which allows for assignment of all alleles to 

haplotypes with high probability, it was estimated that the cases had three 

haplotypes (CC, TC, and TT) versus the four haplotypes (CC, TC, TT and CT) 

of the controls.  The fourth haplotype (CT) occurred exclusively in the controls 

and indicated statistical significance for an association with a decreased risk for 

HIV-1 infection (see Figure 5).  To date, this fourth haplotype occurring in an 

older African population group has not been previously reported for any other 

populations (see Chapter 3.2).    

 

It has been shown that the human haplotype structure for various populations 

can be defined as haplotype blocks.  These are large regions with little evidence 
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for recombination and therefore only a few common haplotypes are observed.  

The advantage of haplotype blocks is the genotyping of a small number of 

tagSNPs to represent haplotypes for population-based association studies 

[Gabriel et al., 2002].  These findings resulted in the initiation of the International 

HapMap project aimed at describing the common patterns of human variation in 

different populations by identifying chromosomal regions with haplotypes and 

the tagSNPs that represent them for future genome-wide association studies 

[Gibbs et al., 2003; Wang et al., 2005; Hirschhorn and Daly, 2005]. 
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Figure 5.  The various allele combinations for two IL-4 promoter SNPs are shown for 

an African population from South Africa.  One haplotype (CT) occurs exclusively in 

HIV-1 uninfected controls and indicates an association with decreased HIV-1 risk 

having a significant P value of 0.0013 (see Chapter 3.2). 



1.2.3.4. Computational programs for statistical analysis  

The validity of genetic association studies is largely dependant on statistical 

analysis, which involves the assembling, presentation and interpretation of the 

sample data.  The increasing availability of information on genetic variation 

being used for extensive association studies has prompted the development of 

reliable computational programs (e.g. SAS/Genetics, Stata, GraphPad InStat, 

PS and R).  These programs include the application of various statistical tests 

for comprehensive analysis of population-based case-control data [Fallin et al., 

2001; Tsai et al., 2003].  The statistical analysis performed for the studies 

presented in this dissertation included the calculation of allele and genotype 

distributions and estimations of linkage disequilibrium (LD) and haplotype 

measures for genetic variants in HIV-1 seropositive cases versus HIV-1 

seronegative controls.  These analyses were mainly achieved using the 

SAS/Genetics (SAS Institute Inc. software, Cary, North Carolina) and GraphPad 

InStat (GraphPad Software Inc, San Diego, California) computational programs 

and the threshold set for statistically significant P values was less than 0.05 

(see Chapters 2 to 4).    

 

The SAS/Genetics program provides optimal advanced statistical testing for the 

data obtained from large sample numbers.  It creates data sets and controls 

analysis with certain procedures. The ALLELE procedure is used for preliminary 

analysis of the study sample and genetic variants.  It includes the calculation of 

allele and genotype frequencies by determining the proportion of samples 

carrying a particular allele or genotype when considering the allele and 

genotype distributions for the entire sample group.  Genotype distributions are 
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also tested for consistency with Hardy Weinberg equilibrium (HWE) using the 

chi-square goodness-of-fit test.  The extent of LD among alleles at paired loci is 

estimated using Lewontins D’ and the r2 coefficient measures. The 

CASECONTROL procedure is designed to compare the allele and genotype 

frequencies between case and control samples in populations of unrelated 

individuals.  The allele frequencies are compared using the chi-square test for 

2x2 contingency tables, while genotype comparison is based on the chi-square 

test using 2x3 contingency tables. A significant difference in heterogeneity for 

allele and/or genotype distribution indicates association with the presence or 

absence of a trait.  The HAPLOTYPE procedure estimates the multilocus 

haplotype frequencies with the highest probability based on the analysis of 

observed sample genotypes under the assumption of HWE using the 

expectation-maximization algorithm.  It also allows for association testing with a 

large number of haplotypes for trait outcomes by using data available for     

case-control studies.  The P value is calculated by permutation testing which 

empirically assesses the probability of significance arising by chance 

(www.sas.com) 

 

The GraphPad InStat program is designed to perform standard statistical 

analysis.  This includes the Fisher exact test for 2x2 contingency tables that is 

used for determining significant heterogeneity in allele frequencies between 

cases and controls.  The P value calculated for the Fisher exact test is more 

accurate for the study sample sizes presented in this dissertation (Chapters 2 to 

4) and was therefore chosen above the chi-square test, which is more suitable 

for larger study sizes with thousands of samples (www.graphpad.com). 
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The PS computational program for power and sample size calculations can 

determine the level of significance detected with a given power and specified 

sample size [Dupont and Plummer, 1990].  In a case-control study consisting of 

257 HIV-1 seropositive patients and 113 HIV-1 seronegative controls, as 

presented in this dissertation, there is sufficient power (80% or higher at 0.05 

significance level) to detect a protective association of Odds Ratio (OR) = 0.5 or 

a susceptible association of OR = 1.9 with common variants (assuming an allele 

frequency of 45%), and a protective association of OR = 0.2 or susceptible 

association of OR = 2.6 with less common variants  (assuming an allele 

frequency of 10%).  

 

Adjustments of statistical significance when performing multiple testing (e.g., the 

Bonferroni adjustment) in exploratory studies are considered unnecessary as 

data are collected with an objective rather than a predefined hypothesis.  

Multiple testing is however essential in confirmatory studies where the aim is to 

prove a predefined hypothesis and the results from the multiple statistical tests 

are combined for determining the final outcome [Perneger et al., 1998; Bender 

and Lange, 2001].  The description of the analysis performed and the reasons 

given for selecting specific statistical tests are therefore sufficient for the 

exploratory studies presented in this dissertation (Chapters 2 to 4).  

 

1.2.3.5. Reproducibility of population-based association studies  

The inconsistencies in results generated between different studies investigating 

the same trait are not always indicative of biases as genetic associations may 

show various levels of significance in different populations [Ioannidis et al., 
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2003a].  Although the frequencies of the genetic variants associated with a trait 

could vary between populations, the effect on the trait outcome is suggested to 

be generally consistent amongst different population groups [Ioannidis et al., 

2004].  Significant associations could arise from: 1) functional effect of the 

variant on gene expression; 2) confounding factors; and 3) the variant being in 

LD with the causative allele located nearby [Cardon and Palmer, 2003].   

 

Testing for reproducibility has been achieved using a meta-analysis approach 

[Ioannidis et al., 2001b; Lohmueller et al., 2003].  One of these meta-analyses 

involved a total of 370 studies investigating 36 various genetic associations for 

different disease outcomes and showed that significant differences are 

frequently observed between studies for the same trait.  It was found that the 

findings for the first study performed correlated only moderately with further 

research of the same association.  The first study also often suggested a 

stronger genetic effect.  It was suggested that this could be due to the fact that 

the earlier studies may have included more bias and subpopulation diversity 

that resulted in an overestimation of association with a genetic variant [Ioannidis 

et al., 2001b].  A second meta-analysis of 301 studies investigating 25 different 

reported associations showed the reproducibility of the first report to be 

statistically significant for less than half of these associations.  It was suggested 

that false negative and underpowered studies contribute to inconsistent 

association findings.  They also concluded that definite effects of common 

variants would be confirmed in studies using large study samples [Lohmueller et 

al., 2003].  
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Another review of associations between genetic variants and complex genetic 

traits indicated that most previously reported associations are not robust.  It was 

found that for 166 associations studied three or more times, only 6 have been 

consistently reproducible (>75% of the studies were positive).  This further 

suggested that caution should be taken when considering single previous 

reports of an association between a genetic variant and trait outcome 

[Hirschhorn et al., 2002].   

 

There has been major concern and debate over the failure to reproduce 

previously observed associations [Thomas and Clayton, 2004], particularly in 

population-based studies for complex traits [Witte et al., 1999; Ioannidis et al., 

2001; Thomas and Witte, 2002].  The possible reasons for lack of reproducibility 

has been reported extensively and are mainly due to: 1) a false-positive 

association being correctly not reproducible; 2) valid associations not 

reproduced in follow-up studies of inadequate statistical power or when the 

initial report of association is due to non-stringent statistical analysis used; and 

3) heterogeneity caused by genetic or environmental factors that results in the 

presence of an association in one population, but lack of reproducibility in 

another population [Cardon and Palmer, 2003; Newton-Cheh and Hirschhorn, 

2005].  The more rapid publication of statistically significant findings compared 

to non-significant findings could also provide a misrepresentation for 

reproducibility of studies [Ioannidis et al., 2001b].   

 

Future population-based association studies should therefore be designed 

using, relatively large sample sizes collected randomly with no prior knowledge 
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of genetic variation for both cases and controls; genetic variants with preferably 

known functional consequences; reliable screening methods to ensure         

high-sensitivity mutation detection; appropriate analysis of genetic marker 

measures for determining significance; and relatively homogenous populations 

or adjustment for population stratification in admixed ethnic groups.      

 

1.2.4. HIV-1 infection and AIDS in South Africa 

The estimated number of people globally living with HIV/AIDS at the end of 

2004 was 39.4 million.  This includes 25.4 million individuals from regions of 

Sub-Saharan Africa, which accounts for more than 60% of all infections 

[UNAIDS/WHO, December 2004 (www.unaids.org)].  The HIV/AIDS epidemic in 

South Africa continues to grow with an estimated 6.5 million infected people in 

2004, the highest for any one country in the world, and a sharp increase from 

the previous 2003 estimate of 5.6 million.  The latest figure reflects that 

approximately 13.8% of a total 47 million South Africans have HIV/AIDS 

[Department of Health, South Africa, 2005].   

 

The Department of Health survey for women attending antenatal clinics across 

South Africa form the main basis for both regional and national HIV/AIDS 

estimates.  The overall HIV/AIDS prevalence among pregnant women was 

27.9% in 2003 and increased to 29.5% in 2004.  The 2004 survey also indicated 

that different geographical regions (provinces) of South Africa show significant 

variation in HIV/AIDS prevalence for pregnant women. The highest prevalence 

of 40.7% is for the Kwazulu Natal Province, while the Western Cape Province 
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has the lowest prevalence of 15.4% (see Figure 6) [Department of Health, 

South Africa, 2005].        

 

Western Cape 
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South Africa

Africa

Subtype C

15.4%
40

.7
%

HIV-1

Kwazulu Natal 
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Figure 6.  HIV/AIDS subtype C prevalence in South Africa based on the survey of 

women attending antenatal clinics. The HIV/AIDS prevalence rate varies for 

specific geographical regions of South Africa, with the highest in the Kwazulu Natal 

Province and the lowest in the Western Cape Province [Department of Health, 

South Africa, 2005].  The HIV-1 Subtype C is the most commonly found subtype in 

all the nine provinces (represented by different colours) of South Africa. 

Two independent and distinct HIV-1 epidemics exist for South Africa.  The first 

originated in the early 1980’s and has remained mainly restricted to homosexual 

males (HIV-1 subtypes B and D).  The more predominant epidemic started in 

the late 1980’s and spread rapidly among heterosexuals with still no signs of a 
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decline (HIV-1 subtype C) [Engelbrecht et al., 1995; Williamson et al., 1995; van 

Harmelen et al., 1997; Moodley et al., 1998].  The expansion of HIV-1 subtypes 

and their distribution for Africa and the world indicates extensive genetic 

diversity [Papathanasopoulos et al., 2003; Wainberg, 2004].  Although there is 

evidence for diversity of HIV-1 subtypes in South Africa, subtype C is most 

commonly found in all the different provinces (see Figure 6) [Engelbrecht et al., 

1995; Engelbrecht et al., 1998; Moodley et al., 1998; Engelbrecht et al., 1999; 

van Harmelen et al., 1999; Bredell et al., 2000; Gordon et al., 2003; van 

Harmelen et al., 2003; Bessong et al., 2005; Loxton et al., 2005].   

 

In South Africa, the main mode of HIV-1 transmission is via heterosexual 

intercourse [van Harmelen et al., 1997].  There are however distinct factors that 

contribute to the rampant epidemic, including the large migrant labor workforce, 

high incidence of sexually transmitted diseases, thriving commercial sex worker 

industry and poverty in particularly the rural regions [Bredell et al., 1998; 

Moodley et al., 1998; van Harmelen et al., 1999; Williams et al., 2003; Dunkle et 

al., 2004; Bessong et al., 2005, Ramjee et al., 2005; Zuma et al., 2005].     

 

1.2.4.1. Study sample  

South Africa represents a complex and rich diversity of ethnic backgrounds with 

11 official languages and additional regional dialects.  According to the most 

recent census in 2001, the South African population is classified as being 79% 

African, 9.6% Caucasian, 8.9% Cape Coloured and 2.5% Indian/Asian.  

Although the major part of the population is African, this does not refer to a 

culturally or linguistically homogenous group.  The African population is divided 

 53



into four main ethnic groups, namely Nguni, Sotho, Shangaan-Tsonga and 

Venda.  There are numerous subgroups of which the Xhosa and Zulu, both 

subgroups of the Nguni, are the largest.  The Xhosa ethnic group forms 

approximately 22.3% of the total African population.  African individuals form 

26.7% of the population in the Western Cape Province with at least 23.7% 

belonging to the Xhosa ethnic group [Statistics South Africa 

(www.statssa.gov.za)].       

 

The population-based case-control study sample presented in Chapters 2 to 4 

of this dissertation are represented by Africans residing in the Western Cape 

Province of South Africa.  These individuals are predominantly of Xhosa ethnic 

descent and therefore represent a relatively homogenous group. The HIV-1 

seropositive individuals are patients of Tygerberg Hospital, Woodstock Chapel 

Street Community Health Clinic or the Langa Clinic, all in the Western Cape 

Province.  The population-matched HIV-1 seronegative control individuals are 

healthy blood donors from the Western Province Blood Transfusion Service.  

The study sample also consisted of an additional group of South African 

Caucasians.  These individuals mainly of German, Dutch, French or British 

descent were included in the study for the confirmation of African-based genetic 

variants and HIV-1/AIDS associations occurring exclusively in the Xhosa 

population (see Chapters 2 to 4).    
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1.3. Methodologies 

Mutation detection forms a major part of all genetic association studies and the 

selection of appropriate genotyping methodologies can largely contribute to the 

success of a study.  In addition to direct automated sequencing, a variety of 

methodologies do exist, including sequence non-specific or indirect                 

pre-screening methods (e.g. cleavage, electrophoretic mobility shift and liquid 

chromatography assays) and sequence specific or direct screening methods 

(e.g. allelic discrimination assays involving hybridization, nucleotide 

incorporation, oligonucleotide ligation and invasive cleavage).  These mutation 

detection methods differ in many ways with regards to their simplicity and 

reliability to detect genetic variants.  An ideal mutation detection method should 

address the following aspects: 1) assays that are easily designed; 2) reagents 

and equipment that are cost-effective; 3) not require time-consuming or 

intensive manual labour; 4) have 100% sensitivity for detection of genetic 

variants and have high specificity for eliminating false positives or negatives;   

5) yield reproducible results to ensure reliability; and 6) allow for easy 

visualisation for interpretation of results and accurate data analysis.  It is 

however difficult to identify a single mutation detection method as being ideal 

and the final choice made is therefore largely based on the approach taken to 

ensure that all the necessary requirements of a particular study aim are met.  

The reasons for selecting certain methodologies for the detection of previously 

reported or novel mutations (denaturing gradient gel electrophoresis) and     

high-throughput SNP genotyping (TaqMan allelic discrimination method) in the 

studies presented in Chapters 2, 3 and 4 of this dissertation are discussed in 

this chapter subsection.                        
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1.3.1. Denaturing gradient gel electrophoresis (DGGE) 
 
DGGE, developed by Fischer and Lerman in 1983, is a pre-screening mutation 

detection method with a theoretical framework explaining the principles of the 

technique (see Figure 7).  It involves the differential melting behaviour of 

double-stranded (ds) DNA molecules in an increasing concentration gradient of 

denaturants (urea and formamide, UF) at a fixed elevated temperature.  The 

melting behaviour is highly sequence dependant and determined by the 

composition and order of nucleotide base pairs within a DNA fragment.  As the 

dsDNA fragment passes through the denaturing gel it melts and undergoes a 

conformational change resulting in reduced electrophoretic mobility.  This is 

shown in the schematic representation of a DGGE time-travel gel, which is 

loaded with the same amplified product at hourly intervals (see Figure 7B).  The 

addition of a guanine and cytosine (GC)-rich fragment, known as a GC-clamp, 

to the 5’ end of either the forward or reverse primers prevents complete strand 

dissociation during fragment amplification [Myers et al., 1985a].  The GC-clamp 

increases the mutation detection sensitivity to theoretically 100%, including the 

detection of single nucleotide bases [Sheffield et al., 1989; Abrams et al., 1990].  

An additional heteroduplexing step, involving denaturation and renaturation of 

the wild-type and mutant DNA and the formation of mismatched 

heteroduplexes, further contributes to the high mutation detection sensitivity 

[Myers et al., 1985b] (see Figure 7A).  The lower stability of the mismatched 

heteroduplexes causes it to melt earlier than the corresponding homoduplexes 

within the denaturing gel. Heterozygous mutations are therefore visualized as 

four bands (two heteroduplexes and two homoduplexes), while homozygous 

mutations are represented by a single “shifted” DGGE band (see Figure 7C).       
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Figure 7.  A.  PCR amplification of DNA fragments for DGGE using a GC-clamped primer, 
followed by a heteroduplexing step, which involves denaturation and reannealing to form a 
wild-type homoduplex, a mutant homoduplex and heteroduplexes.  B.  The principles of DGGE 
are depicted as a time-travel DGGE-gel (Myers et al., 1987).  C.  The detection of mutations by 
electrophoresis through an increasing denaturing gradient (urea and formamide, UF), where 
the wild-type and mutant DNA have different melting profiles: 1) wild-type, 2) homozygous 
mutant, 3) heterozygous mutant (Adapted from Hayes, 1999). 
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DGGE is a PCR-based method allowing for optimal mutation detection of 

fragments up to 500bp in length [Hayes, 1999].  A successful DGGE-assay is 

dependant on the melting profile of the DNA and the choice of appropriate 

primers (see Figure 8).  The melt 87 computer program [Lerman and 

Silverstein, 1987] is used to design DGGE primers and identify a single melting 

domain for the DNA fragment.  There are however instances where the single 

melting domain can only be achieved by considering alternative fragment 

selection, changing the position of the GC-clamp or certain primer modifications 

such as the addition of T/A or G/C tails [Wu et al., 1998].  

DGGE

NN = wildtype

N

Melt curves: primer selection

PCR                      
& heteroduplexing

 

 

 

 

 

M

MM

= heterzygous mutant

= homozygous mutant

NN      NN N NN      N NNMM M M

Direct sequencing

SNP identification

Figure 8.  The DGGE methodology is depicted. An optimal DGGE assay is based 
on the melting profile of the DNA, the GC-clamped primer pair used for amplification 
and an additional heteroduplexing step.  These all contribute to the detection of 
mutations identified by their specific banding pattern on a denaturing gel.  
Heterozygous mutations are visualised as four bands while homozygous mutations 
are visualised as a single shifted band compared to the wildtype. Samples showing 
aberrant banding patterns are subjected to direct sequencing and verification of 
commonly occurring mutations are achieved by the identification of the same 
banding pattern on a denaturing gel. (Partially adapted from Wu et al., 1998; Hayes 
et al., 2003; Hayes and Gardiner-Garden 2003).  
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A formula: %UF = [(melting temperature – buffer temperature) x 100 / 32] is 

used to calculate the amount of denaturant required for optimal melting of the 

DNA fragment.  Although factors including the buffer composition, buffer 

concentration and electrophoretic voltage are not considered when applying the 

formula, they may additionally influence the melting behaviour of the DNA 

fragment.  Furthermore, the use of a specific gel system (see Figure 8) and a 

single set of experimental conditions (gel composition, temperature and 

voltage), based on conditions previously described for improving broad-range 

mutation detection analysis, contributes to the reliability of the DGGE assay.  

These conditions include the use of 9% polyacrylamide with a denaturing 

gradient of 30 to 50% between the lowest and highest concentration of UF 

denaturant, and 0.5 X TAE buffer for electrophoresis at a voltage between 100 

and 200 volts [Hayes, 1999; Hayes et al., 1999].  Adaptations of the DGGE 

method do exist, including constant denaturing gel electrophoresis (CDGE) 

[Børresen et al., 1991; Smith-Sørensen et al., 1993], temperature gradient gel 

electrophoresis (TGGE) [Sliutz et al., 1997] and two-dimensional (2-D) DNA 

electrophoresis [Rines et al., 1998].    

 

The heteroduplexing step is vital for detecting single base deletions or 

insertions and C/G to G/C transversions as the homoduplexes may have a 

similar melting behaviour resulting in the same banding pattern being 

visualised, which means that mutations are undetected [Myers et al., 1985b].  

The various mutations are therefore identified by a specific banding pattern (see 

Figure 8).  Verification of commonly occurring mutations is achieved by the 

mixture of samples with similar banding patterns followed by heteroduplexing 
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and electrophoresis on a denaturing gel.  Only samples showing additional 

heteroduplex bands are subjected to sequencing [Guldberg and Guttler, 1993].  

Repeated automated direct sequencing of the same mutation is therefore 

eliminated, which reduces cost and is a huge advantage for SNP analysis within 

a large study sample (see Figure 8).    

 

The designing of DGGE primers may be time-consuming and more costly with 

the GC-clamps attached to the primers. There are also cleavage-based         

pre-screening methods allowing for the detection of mutations in DNA 

fragments more than 1kb.  The use of specific gel systems together with 

expertise for optimal standardisation of DGGE assays is an additional 

requirement for successfully mastering the technique.  These disadvantages 

are however outweighed by the theoretical concept of high mutation sensitivity 

achieved using an optimised experimental condition, which allows for rapid 

mutation detection and easy visualisation of both novel and commonly occurring 

mutations.  It has been recently reported that certain aspects of DGGE to some 

extent are regarded as being more sensitive for detecting mutations than 

electrophoresis based sequencing, which shows difficulty detecting 

heterozygotes unambiguously and is not 100% accurate for a specific base due 

to compression in GC rich regions [Edwards et al., 2005].  Considering the 

advantages above other pre-screening and direct gel-based mutation detection 

methods, DGGE was an appropriate method chosen for wide-range genetic 

variant analysis in the studies presented in Chapters 2, 3 and 4 of this 

dissertation (see Figure 9).  
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C X C R 4  + 3 4 A > T  
C X C R 4 + 2 9 G > A

S D F 1 + 8 0 1 G > A

M B L C 5 2 R
M B L D 5 4 G
M B L E 5 7 G

IL 1 0 -1 0 8 2 A > G

IL 1 0 -5 9 2 C > A ,

IL 1 0  -8 1 9 C > T

IL 4 -1 1 2 G > A

IL 4 -3 3 C > T

Figure 9.  DGGE banding patterns are shown for a few mutations identified in the CXCR4, CXCL12 (SDF1), IL10, IL4 and 

MBL genes (see Chapters 2 to 4).  Previously reported mutations are indicated in blue and the novel mutations are indicated 

in red, according to the order in which they occur on the gel from left to right.  The single bands represent wild-type control 

samples.   



1.3.2. TaqMan allelic discrimination method 

TaqMan allelic discrimination is a high-throughput genotyping method for 

previously identified SNPs and combines PCR amplification and mutation 

detection into a single step by using fluorogenic oligonucleotide probes in the   

5’ nuclease assay [Livak et al., 1995a; Livak et al., 1999] (see Figure 10).  The   

5’ nuclease assay is based on the exonuclease activity of the Taq DNA 

polymerase and the use of a probe in the PCR reaction together with forward 

and reverse primers.  If the target sequence of the probe is present during 

amplification, the probe will hybridise to the target during the 

annealing/extension PCR cycling step.  The Taq DNA polymerase acts upon 

the template surface by removing obstacles downstream of the growing 

amplified product.  Therefore when the Taq DNA polymerase encounters the 

hybrised probe, the probe is displaced and cleaved.  Cleavage is however 

dependant on the hybridisation of the probe to its specific target sequence 

[Holland et al., 1991] (see Figure 10).  The use of fluorogenic probes allows for 

cleavage to be detected without post-PCR processing and the need for 

electrophoresis.  The fluorescent probe consists of a high-energy reporter dye 

at the 5’ end and a low-energy quencher dye at the 3’ end.  When the probe is 

intact, the proximity of the quencher to the reporter reduces the fluorescent 

signal observed from the reporter dye.  Cleavage by the Taq DNA polymerase 

results in increased fluorescence of the reporter dye as it is separated from the 

quencher dye. An increase in the reporter dye’s characteristic fluorescence is 

therefore indicative of amplification for the probe-specific target sequence and 

nonspecific amplification is undetected [Lee et al., 1993; Livak et al., 1995b] 

(see Figure 10).       
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Figure 10.  Schematic representation of the polymerisation-associated 5’ nuclease 
activity of Taq DNA polymerase acting on a fluorogenic probe during amplification.   
A fluorescent reporter dye and a quencher dye are attached to probe at the 5’ and 3’, 
ends, respectively.  When the probe is intact, the reporter’s emission is quenched.  
During each PCR extension cycle, the Taq DNA polymerase cleaves the reporter from 
the probe.  Once separated from the quencher, the reporter emits its characteristic 
fluorescence (Adapted from Livak et al., 1999).           

 63



The allelic discrimination method involves the designing of two fluorogenic 

probes, for the 5’ nuclease assay.  These probes are allele-specific with one 

matching the wildtype sequence and the other the mutant sequence.  Each 

probe is distinguished by being labeled with different fluorescent reporter dyes 

(usually FAM and VIC) at the 5’ end and a quencher dye at the 3’ end 

(TAMRA).  A mismatch between the probe and target sequence largely reduces 

the efficiency of probe hybridisation and cleavage.  The probes therefore only 

emit fluorescence in the presence of their respective complementary target 

sequence.  An increase in fluorescence from only one probe indicates 

homozygosity for either the wildtype or mutant allele, while an increase in 

fluorescence from both probes indicates heterozygosity [Livak et al., 1995a, 

Livak et al., 1999] (see Figure 11). 

 

Primers and probes are designed using the Primer Express program (Applied 

Biosystems, Foster City, California).  The guidelines for assay design for both 

primers and probes include a GC content ranging between 30 to 80% and no 

runs of more than three consecutive G’s.  The melting temperature (Tm) for the 

primers should be 58 to 600C and the Tm of the probes should be 70C higher 

than that of the primer. The probe lengths should be adjusted to have the same 

Tm.  The five nucleotides at the 3’ end of the primer should have only one to 

two G’s and C’s.  The strand that gives the probe more C’s than G’s should be 

selected and there must not be a G on the 5’ end of the probe. The primers 

should be placed as close as possible to the probes, but not overlapping.  

Amplicons ranging between 75 and 150bp provide consistent results as larger 

amplicons might require extensive optimisation. The limitations set for amplicon 
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design allows for all reactions to use a single buffer referred to as the TaqMan 

Universal PCR Master Mix.  This PCR master mix contains all the necessary 

reaction components, except the primers and probes, to perform the fluorogenic 

5’ nuclease assay.  The AmpliTaq Gold enzyme is a thermal stable DNA 

polymerase and also forms part of the PCR master mix.  The enzyme is active 

only after incubation at elevated temperatures and the use of this enzyme 

introduces an invisible Hot Start to any amplification reaction, which reduces   

primer dimer formation and further improves amplification of specific target 

sequences [Livak et al., 1995b; Livak et al., 1999]. 

   

 

Allelic discrimination assay design

PCR

7900HT system

SNP detection

Homozygous allele 1

Heterozygous allele 1& 2

Homozygous allele 2

 

 

 

 

Figure 11.  The allelic discrimination methodology is depicted.  The method 
requires two allele-specific fluorogenic probes in a 5’ nuclease assay.  Genotyping 
involves a PCR step followed by end-point fluorescence measured on a sequence 
detection system. The results are obtained using the data analysis software. The 
allelic discrimination viewer shows three different clusters representing the three 
different genotypes that can be observed, while the crosses indicate either blank 
controls or samples, which did not amplify. (Partially adapted from Applied 
Biosystems: www.appliedbiosystems.com)  
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Once the allelic discrimination assay is designed, genotyping is performed using 

a PCR step followed by end-point fluorescence being measured on a sequence 

detection system such as the 7900 high-throughput system (Applied 

Biosystems, Foster City, California) offering 384 well plate compatibility and 

robotic loading.  The sequence detection software automatically processes 

fluorescence data and provides the genotype calls in an allelic discrimination 

viewer.  Each sample is represented by a single point and the various cluster 

colours indicate the different genotypes.  The presence of crosses indicates 

either blanc template controls or samples that were not amplified [Livak et al., 

1999; Ranade et al., 2001; Sevall et al., 2001] (see Figure 11).   

 

Although the fluorogenic probes are costly, the cost per sample is low when 

large sample numbers are genotyped.  The allelic discrimination method 

therefore allows for higher throughout compared to the pre-screening mutation 

detection methods for the same time period and is still more cost-effective     

than automated direct sequencing.  The presence of closely lying SNPs may 

have an influence on the genotyping of a specific SNP.  This is clearly visible 

with the distortion of the three clusters representing the different genotypes or 

the presence of additional sub-clusters where one cluster appears to be split in 

two.  This finding is seldom observed with the accuracy of this genotyping 

method generally being estimated at an error rate of less than 1 in 2000 

genotypes [Ranade et al., 2001].  The allelic discrimination method therefore 

provides reliable and reproducible results that are rapidly generated and was 

the chosen method for large-scale SNP genotyping in the studies presented in 

Chapters 2 and 3 of this dissertation.  
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ABSTRACT 

 
Mutations in genes that encode chemokines and chemokine receptors have 

been implicated in host susceptibility to human immunodeficiency virus-1     

(HIV-1) infection, and subsequent progression to acquired immunodeficiency 

syndrome (AIDS). More recently, the associations between these genetic 

variants and HIV-1/AIDS pathogenesis have emerged as being           

population-specific.  Limited research exists on the effects of previously 

reported HIV-1/AIDS-associated polymorphisms in African-based ethnic groups, 

particularly those residing in the pandemic-stricken regions of the world.  This 

prompted our case-control study of Sub-Saharan Africans of Xhosa descent, 

consisting of 215 HIV-1 seropositive and 113 HIV-1 seronegative individuals.  

We screened CCR5, CCR2, CX3CR1 and CCL5 (RANTES), with significance 

being observed for three single nucleotide polymorphisms (SNPs), including       

CCR5-2733A>G, CCR5-2135C>T and CX3CR1V249I (G>A).  The CCR5-2733 

G allele (P = 0.0409) together with the heterozygous genotype, CCR5-2733 AG 

(P = 0.0270), was associated with a reduced risk for HIV-1 infection. The 

CX3CR1249I allele (P = 0.0479) was also associated with reduced risk to HIV-1 

infection.  The opposite was observed for the CCR5-2135 T allele (P = 0.0024) 

and homozygosity for CCR5-2135 TT (P = 0.0096), which were associated with 

increased susceptibility to HIV-1 infection. All these associations with 

susceptibility to HIV-1 infection appear to be unique to the Xhosa ethnic group. 

This result emphasises the importance of elucidating the specific effect of 

known HIV-1/AIDS candidate gene variants in understudied populations. 
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INTRODUCTION 
 
Host susceptibility for human immunodeficiency virus-1 (HIV-1) infection and 

rates of disease progression to acquired immunodeficiency syndrome (AIDS) 

varies widely amongst individuals.  This observation was advanced by the 

discovery of HIV suppressive chemokines.  These chemokines modulate the 

efficiency of HIV-1 infections by serving as the natural ligands for specific 

chemokine receptors, which together with the CD4+ molecule act as                

co-receptors for HIV-1 cell entry.  Elevated levels of chemokines and low 

expression of chemokine receptors have been associated with relative 

resistance to HIV-1 infection in exposed high-risk individuals, and delayed 

disease progression to AIDS [Reviewed in Hogan and Hammer, 2001; 

Anastassopoulou and Kostrikis, 2003; O’Brien and Nelson, 2004; Winkler et al., 

2004; Kaslow et al., 2005].  

 

The study of host genetic factors interacting with other parameters (viral, 

environmental/socio-economic and host immunological factors) in determining 

susceptibility to HIV-1/AIDS pathogenesis was therefore accentuated by the 

identification of mutations in genes encoding specific chemokines and 

chemokine receptors.  CC chemokine receptor 5 (CCR5) (MIM# 601373),       

CC chemokine receptor 2 (CCR2) (MIM# 601267) and CX3C chemokine 

receptor 1 (CX3CR1) (MIM# 601470) have all been identified as co-receptors 

for HIV-1 infection.  CC chemokine ligand 5 (CCL5)/RANTES (MIM# 187011), a 

natural ligand for CCR5, can directly compete with the virus for receptor 

binding.  A large number of polymorphisms and/or haplotypes influencing host 

susceptibility to HIV-1 infection and/or disease progression to AIDS have been 

 119



identified in the CCR5, CCR2, CX3CR1 and CCL5 genes [Reviewed in 

Carrington et al., 2001; Hogan and Hammer, 2001; Dean et al., 2002; 

Anastassopoulou and Kostrikis, 2003; O’Brien and Nelson, 2004; Winkler et al., 

2004; Kaslow et al., 2005].  These previously reported studies however provide 

evidence that certain HIV-1/AIDS associations with specific genetic 

polymorphisms are population-based and thus restricted to certain ethnic 

groups.  This emphasises the need for further investigation, in particularly of the 

understudied African populations.  

 

Our study focused on the screening and analysis of genetic variants in a Xhosa 

ethnic group from Sub-Saharan Africa where the HIV-1/AIDS pandemic is most 

pronounced.  We performed genotyping for single nucleotide polymorphisms 

(SNPs) in the promoter region of CCR5 (positions -2733A>G, -2554G>T,            

-2135C>T, -2086A>G, and -1835C>T, relative to the translation start site) 

[Mummidi et al., 1997; Martin et al., 1998; McDermottt et al., 1998; Mummidi et 

al., 1998], the coding regions of CCR2 (CCR2V64I G>A) [Smith et al., 1997] 

and CX3CR1 (CX3CR1V249I G>A and CX3CR1T280M C>T) [Faure et al., 

2000], and the promoter and intronic region of CCL5 (positions -403G>A, 

relative to the transcription start site and IVS1+307T>C, previously designated 

In1.1T>C) [Liu et al., 1999a; An et al., 2002].  Furthermore, we assessed allele, 

genotype and haplotype distributions within our case-control sample group for 

associations with HIV-1 susceptibility. 
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MATERIALS AND METHODS 
 
Sample group 
 
Our Sub-Saharan African sample group was represented by 328 individuals of 

Xhosa descent who are all residents of the same geographical region within 

South Africa.  The 215 HIV-1 seropositive individuals were patients at 

Tygerberg Hospital, Woodstock Chapel Street Community Health Clinic or the 

Langa Clinic, all in the Western Cape Province of South Africa. The 113 

population-matched HIV-1 seronegative controls were healthy blood donors 

from the Western Province Blood Transfusion Service of South Africa.  Clinical 

information regarding disease staging of HIV-1 seropositive patients is limited 

and thus rates of progression to AIDS remain largely unknown.  Informed 

consent was obtained from all the study participants and the Ethics Review 

Committee of the University of Stellenbosch approved the study protocol 

(#98/158). 

 
Genotyping 

The 5’ nuclease or TaqMan allelic discrimination method [Livak et al., 1999] 

allowed for the complete screening of SNPs using the probes and primers as 

listed in Table 1.  The TaqMan Universal PCR Master Mix (Applied Biosystems, 

Foster City, California) was used for amplification and each PCR reaction 

contained 5 ng of DNA (detailed PCR reaction mix protocol available on 

request).  Cycling conditions included an initial denaturation of 95oC for 10 

minutes, followed by 50 cycles of denaturation at 95oC for 15 seconds and 

annealing for 1 minute (annealing temperatures shown in Table 1).  The 

ABI7900 high throughput sequence detection system (Applied Biosystems, 
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Foster City, California) was used to measure end-point fluorescence and 

generate data for allelic discrimination and genotype determination. 

 

Statistical analysis  
 
Allele and genotype distributions were calculated and tested for consistency 

with Hardy Weinberg equilibrium expectations.  The Fisher’s exact or             

chi-square (χ2  ) tests for 2x2 contingency tables were used for determining 

significant heterogeneity in allele frequencies between cases and controls.  The 

significance of genotype frequencies was also considered using the χ2 test for 

independence.  Pairwise linkage disequlibrium (LD) analysis was based on the 

Lewontins D’ (D’ = 1 in the presence of two or three haplotypes) and/or              

r2 coefficient (r2 = 1 in the presence of two haplotypes) measures.  Haplotypes 

were estimated using the expectation-maximization (E-M) algorithm (GraphPad 

Software Inc, San Diego, California and SAS Institute Inc. software, Cary, North 

Carolina). 

 
 

RESULTS 
 

 
CCR5 and CCR2 SNPs 
 
Allele and genotype frequencies for the CCR5 promoter variants (-2733A>G,     

-2554G>T, -2135C>T, -2086A>G and -1835C>T) and CCR2V64I (G>A) 

polymorphism in the cases versus controls are shown in Table 2.  Significant 

heterogeneity was present for the allele and genotype frequencies of two CCR5 

promoter SNPs, CCR5-2733A>G and CCR5-2135C>T.  The CCR5-2733 G 

allele occurred at a higher frequency in the HIV-1 seronegative controls 

compared to the HIV-1 seropositive patients (OR = 2.269, 95% CI = 1.060 - 
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4.858, P = 0.0409).  The genotype distribution was also significant, with the 

CCR5-2733 AG heterozygous genotype being more prevalent in the HIV-1 

uninfected group (P = 0.0270).  Analysis of the CCR5-2135C>T SNP showed 

that the CCR5-2135 T allele occurs at a higher frequency in the HIV-1 

seropositive patients when compared to the HIV-1 seronegative controls (OR = 

0.5985, 95% CI = 0.4303 – 0.8324, P = 0.0024). This significance in allele 

frequency distribution is driven by the increase of the CCR5-2135 TT 

homozygous genotype in the HIV-1 infected group (P = 0.0096).  No 

significance was observed for the CCR2V64I SNP when comparing both the 

allele and genotype frequencies in the cases versus the controls.  Pairwise D’ 

measures indicated strong LD, D’ = 1, for the majority of the closely lying CCR2 

and CCR5 SNPs.  The exceptions include CCR2V64I with CCR5-2733A>G      

(D’ = 0.66) and CCR5-2733A>G with CCR5-1835C>T (D’ = 0.36). The more 

stringent r2 coefficient measures, where complete pairwise LD is indicated by   

r2 = 1, suggested strong LD for CCR2V64I and CCR5-1835C>T exclusively      

(r2 = 0.91). Pairwise LD based on D’ measures are presented in Figure 1, as 

determined by the Haploview software [Barrett et al., 2005].  Estimated 

haplotype analysis (data not shown) for specific CCR2 and CCR5 allele 

combinations and susceptibility to HIV-1 infection were not significant.  

 

CX3CR1 SNPs 

The frequencies of allele and genotype distributions for the CX3CR1V249I 

(G>A) and CX3CR1T280M (C>T) SNPs are shown in Table 2.  The increased 

occurrence of the CX3CR1249I allele in the HIV-1 seronegative controls when 

compared to the HIV-1 seropositive patients was significant (OR = 1.630, 95% 

 123



CI = 1.023 – 2.595, P = 0.0479).  Overall, the CX3CR1V249I SNP (0.138) 

occurred more commonly than the CX3CR1T280M SNP (0.024).  The r2 

coefficient measure provided no support for strong pairwise LD between 

CX3CR1 alleles (r2 = 0.37).  No further associations with HIV-1 susceptibility 

were observed, as no significance was present for genotype frequencies and 

haplotype estimations (data not shown) of the CX3CR1V249I and 

CX3CR1T280M SNPs.   

  

CCL5 SNPs 

The CCL5 SNPs (-403G>A and IVS1+307T>C) together with their observed 

allele and genotype frequencies are shown in Table 2.  No significant 

heterogeneity was identified between the allele distribution of the                

CCL5-403G>A and CCL5 IVS1+307T>C SNPs in the HIV-1 seropositive 

patients versus the HIV-1 seronegative controls.  CCL5-403G>A (0.409) did, 

however, generally occur at a higher allele frequency compared to CCL5 

IVS1+307T>C (0.222).  Pairwise LD analysis based on the r2 coefficient 

measure suggested no LD between the CCL5 alleles (r2 = 0.43). Independent 

genotype analysis and estimated haplotypes (data not shown) also showed no 

significant association with HIV-1 susceptibility.   

 

DISCUSSION 

Various studies have indicated that the influence of many gene variants on host 

susceptibility to HIV-1 infection and disease progression to AIDS may be 

population-specific [Reviewed in O’Brien and Nelson, 2004; Winkler et al., 2004; 

Kaslow et al., 2005].  This encouraged the validation of known HIV-1/AIDS 
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candidate gene polymorphisms in a Sub-Saharan African ethnic group 

consisting of individuals of Xhosa descent.  We have previously established that 

the commonly studied Caucasian-based HIV-1/AIDS resistance-associated 

variant, CCR5Δ32, is not present in this Xhosa sample group [Petersen et al., 

2001].  In this study, we therefore continued with the screening of previously 

reported SNPs occurring in the promoter or coding regions of the CCR5, CCR2, 

CX3CR1 and CCL5 genes using the TaqMan allele discrimination method.     

No significant deviations from the Hardy-Weinberg equilibrium estimations were 

observed for both the cases and controls. Since the majority of HIV-1 

seropositive individuals have no clinical staging (3 slow, 34 normal, 11 fast and 

167 unknown progressors), associations with disease progression to AIDS were 

not considered. 

  

Allele frequencies reported here and previously observed for CCR5 promoter 

variants in different African-based populations [John et al., 2001; Dean et al., 

2002; Ramaley et al., 2002] have not been directly comparable for all SNPs.  

This further suggests that the influence of host genetic diversity on susceptibility 

to HIV-1/AIDS is distinct for specific African subpopulations.  There have been 

studies suggesting a significant role for CCR5 SNPs, individually and as part of 

haplotypes, in determining HIV-1/AIDS risks for various population groups.  

These included the CCR5-2459A>G SNP associated with influencing disease 

progression to AIDS in Caucasians [McDermott et al., 1998, Clegg et al., 2000, 

Knudsen et al., 2001].  In addition a haplotype referred to as CCR5P1, which is 

in complete LD with the CCR5-2459 A allele, is associated with rapid disease 

progression, although the effect is recessive in Caucasians and dominant in 
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African Americans [Martin et al., 1998; Carrington et al., 1999; An et al., 2000].  

Other CCR5 haplotype associations with progression to AIDS have also been 

reported for African Americans [Gonzalez et al., 1999].  A case-control study of 

Africans from Uganda has shown that CCR5 promoter SNPs and derived 

haplotypes are not associated with HIV-1/AIDS pathogenesis [Ramaley et al., 

2002].  In the Xhosa ethnic group, we found the CCR5-2733 G allele (P = 

0.0409) and the CCR5-2733 AG heterozygous genotype (P = 0.0270) to be 

associated with decreased risk for HIV-1 infection.  In contrast, the CCR5-2135 

T allele (P = 0.0024) and CCR5-2135 TT homozygous genotype (P = 0.0096) 

were associated with an increased risk for HIV-1 infection. It has been reported 

that CCR5-2135C>T is in strong LD with the CCR5-2459A>G influential AIDS 

SNP [Gonzalez et al., 1999], however no previously identified disease 

associations could be confirmed in our study sample.  The CCR2V64I SNP 

frequency (0.156) in our study was consistent with previously reported     

African-based studies [Smith et al., 1997; Kostrikis et al., 1998; Mummidi et al., 

1998; Ramaley et al 2002].  We found the CCR2V64I SNP to be in strong LD 

with CCR5-1835C>T, as observed previously [Kostrikis et al., 1998; Mummidi et 

al., 1998].  There are studies indicating significance for the CCR2V64I and      

CCR5-1835 T alleles with slower disease progression in African Americans 

[Mummidi et al., 1998, Gonzalez et al., 1999] and Kenyan Africans [Anzala et 

al., 1998]. This was not confirmed in other African ethnic groups [Petersen et 

al., 2002; Ramaley et al., 2002]. Our findings for the CCR2-CCR5 derived 

haplotypes and association with HIV-1 infection risk lack significance, but are in 

agreement with the Ugandan study [Ramaley et al., 2002].  It has been 

suggested that the effects of CCR5 and CCR2 genetic variants are most 
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pronounced during early HIV-1 pathogenesis [Mulherin et al., 2003; Winkler et 

al., 2004].  Functional analysis has found a lower promoter activity for the 

CCR5-2459 G allele compared to the CCR5-2459 A allele [Mummidi et al., 

1997] and differences in nuclear factor binding for the two alleles representing 

CCR5-2554G>T [Bream et al., 1999]. The functional effect reported for 

CCR2V64I involves an influence on CCR2A isoform stability and the resulting 

increased down-modulation of CCR5 by CCR2A [Nakayama et al., 2004]. 

 

The allele frequencies for the CX3CR1V249I (0.138) and CX3CR1T280M 

(0.024) SNPs are relatively low and similar to values reported for African 

Americans [Singh et al., 2005].  Caucasian-based studies have indicated that 

homozygosity for CX3CR1280M is associated with more rapid disease 

progression to AIDS [Faure et al., 2000; Faure et al., 2003].  Another study 

involving Caucasians however, showed conflicting findings as the 

CX3CR1280TM heterozygous genotype was associated with a delay in the rate 

of progression to AIDS, while the CX3CR1280M homozygous genotype had no 

effect [McDermott et al., 2000a]. Two additional studies did not confirm a 

significant association with the CX3CR1T280M SNP and rate of disease 

progression [Hendel et al., 2001; Kwa et al., 2003].  We identified an 

association with the CX3CR1249I allele and decreased risk for HIV-1 infection 

in the Xhosa (P = 0.0479).  No other associations were present for both the 

genotype and haplotype analysis. Functional analysis of these SNPs showed a 

combined association with reduced ligand binding affinity and impaired HIV-1 

co-receptor activity [Faure et al., 2000; McDermott et al., 2000a].    
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The CCL5-403G>A (0.409) and CCL5 IVS1+307T>C (0.222) SNP frequencies 

were comparable with previous reports for African Americans [An et al., 2002; 

Fernandez et al., 2003].  A known association with the CCL5-403 A allele 

includes an increased risk for HIV-1 infection [McDermott et al., 2000b; An et 

al., 2002], while another study showed resistance to AIDS in various 

populations [McDermott et al., 2000b].  The CCL5 IVS1+307 C allele has been 

associated with adversely influencing HIV-1 susceptibility and also disease 

progression to AIDS, particularly in African-Americans [An et al. 2002, Wang et 

al., 2004].  Several studies in different population groups have also investigated 

and identified HIV-1/AIDS associations with the presence of specific CCL5 SNP 

genotypes or haplotypes [Liu et al., 1999a, Liu et al., 1999b; McDermott et al., 

2000b; Gonzalez et al., 2001; An et al., 2002; Duggal et al., 2005]. Functional 

effects reported for CCL5 variants include the up and down-regulation of 

transcription by the CCL5-403 A allele and CCL5 IVS1+307 C allele, 

respectively [Liu et al., 1999a; Nickel et al., 2000; An et al., 2002].  No 

significant associations with both CCL5 SNPs and HIV-1 susceptibility were 

observed when considering the allele, genotype and haplotype distributions in 

the Xhosa ethnic group.  

 

Based on previous HIV-1/AIDS association studies and our findings for CCR5, 

CCR2, CX3CR1, CCL5 SNPs it has become evident that the distribution and 

effects of these genetic variants are specific for well-defined populations.  The 

ongoing investigation of large case-control studies for many diverse ethnic 

groups is aimed at establishing HIV-1/AIDS risk profiles for individuals, 

particularly those living in regions of the world where the pandemic continues to 
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grow.  Our study findings for the Xhosa from pandemic-stricken Sub-Saharan 

Africa therefore contribute to the quest for clarifying the effects of all known   

HIV-1/AIDS candidate gene variants in understudied African populations. 
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Table 1.  Primers and probes for the TaqMan allelic discrimination assays 
 

0Gene – SNP NCBI ID Primers (5’- 3’) Probes (5’- 3’) T  ( C) M

TCATGTGGAAAATTTCTCATAGCTTCAGA AGTGAAGAATCCTGCC CCR5-2733 (A/G) rs2856758 59 
TCACACTATGCCAGATACGTAGGT AGTGAAGGATCCTGCC 

CCGTGAGCCCATAGTTAAAACTCTT ACAACAGGTTTTTTCCGT CCR5-2554 (G/T) rs2734648 59 
CACAGATGCTCACCACCCAATATTA CAACAGGTTGTTTCCGT 

GGGATGAGCAGAGAACAAAAACAAA CCCGTAAATAAACCTT CCR5-2135 (T/C) rs1799988 59 
TGTATTGAAGGCGAAAAGAATCAGAGA CCCGTAAATAAACTTT 

GGGATGAGCAGAGAACAAAAACAAA CAACTTAAAAGGAAGAAC CCR5-2086 (A/G) rs1800023 59 
TGTATTGAAGGCGAAAAGAATCAGAGA CTCAACTTAAAAAGAAGAAC 

CCTGTTAGTTAGCTTCTGAGATGAGTAAA TTTGCCAAATATCTTCT CCR5-1835 (C/T) rs1800024 59 
CCAAACTGTGACCCTTTCCTTATCT TTTGCCAAATGTCTTCT 

CCGCTCTACTCGCTGGTGTT CAACATGCTGGTCGTCCTCATCTTAATAA CCR2V64I (G/A) rs1799864 59 
AAATGTCAGTCAAGCACTTCAGCT CAACATGCTGGTCATCCTCATCTTAATAAACT 

CX3CR1V249I(G/A) rs3732379 TGGTCATCGTGTTTTTCCTCTT ACACCCTACAACGTTATGATTTTCC  60 
GGGAAAGAAGTCATAGAGCTTAAGC ACACCCTACAACATTATGATTTTCCT  

CX3CR1T280M(C/T) rs3732378 CCCAGCAAATGCATAGATGA TAAATGCAACCGTCTCAGTCACACT  60 
TCCCAGTTGTGACATGAGGA TAAATGCAACCATCTCAGTCACACTG  

CCL5-403(A/G) rs2107538 TCCAGAGGACCCTCCTCAATAA AAAGGAGGTAAGATCTGTAAT 60 
CTGAGTCACTGAGTCTTCAAAGTTCC AAAGGAGATAAGATCTGTAATG 

CCL5 IVS1+307(T/C) rs2280789 TGCTTCATGGCAGGGATCTC CTGTCTTCAAGGTCTAC 59 
GTGAACACCTGTAGGCCTTGAG TTTTTCTGTCTTTAAGGTCTAC 
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Table 2.  Allelic and genotypic distribution of CCR5, CCR2, CX3CR1 and CCL5 SNPs in cases versus controls 

Genea

SNP 

 

NCBI ID 

 
Minor Allele Frequency _ 

  HIV+             HIV-              P  

Genotype Frequency b

                -/-                                   +/-                                 +/ +            +            

    HIV+           HIV-             HIV+           HIV-            HIV+          HIV-                P 

CCR5            

-2733 (A/G) rs2856758 0.031 0.067 0.0409* 0 0 0.061 0.134 0.939 0.866 0.0270* 

-2554 (G/T) rs2734648 0.329 0.292 0.3743 0.120 0.115 0.418 0.354 0.462 0.531 0.4706 

-2135 (T/C) rs1799988 0.374 0.500 0.0024* 0.150 0.243 0.449 0.514 0.401 0.243 0.0096* 

-2086 (A/G) rs1800023 0.174 0.131 0.1747 0.028 0.027 0.291 0.207 0.681 0.766 0.2588 

-1835 (C/T) rs1800024 0.162 0.203 0.2284 0.039 0.036 0.245 0.333 0.716 0.631 0.2461 

CCR2            

V64I (G/A) rs1799864 0.140 0.173 0.2963 0.024 0.036 0.232 0.273 0.744 0.691 0.5551 

CX3CR1            

V249I(G/A) rs3732379 0.109 0.167 0.0479* 0.009 0.018 0.200 0.297 0.791 0.685 0.1045 

T280M(C/T) rs3732378 0.021 0.027 0.5930 0 0 0.0421 0.055 0.958 0.946 0.6124 

CCL5            

-403(A/G) rs2107538 0.412 0.405 0.8641 0.190 0.133 0.446 0.543 0.365 0.324 0.2203 

IVS1+307(T/C) rs2280789 0.221 0.223 1 0.056 0.055 0.329 0.336 0.615 0.609 0.9894 
 
HIV+, seropositive; HIV -, seronegative 
aThe second base pair indicates the minor allele 
b(-/-), (+/-) and (+/+) represents the minor allele homozygotes, heterozygotes and major allele homozygotes, respectively. 
* Indicates significant P values   



 
 

 
 

 
 

 

 

 

Figure 1.  Pairwise linkage disequilibrium based on D’ measures for the SNPs 

in the CCR2-CCR5 region created using Haploview.  Red: D’ = 1 (LOD ≥ 2); 

Blue: D’ = 1 (LOD < 2); White: D' < 1 (LOD < 2). 
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ABSTRACT 

 

CXC chemokine ligand 12 (CXCL12), or stromal cell-derived factor 1 (SDF1), is 

the only known natural ligand for the human immunodeficiency virus-1 (HIV-1) 

co-receptor, CXC chemokine receptor 4 (CXCR4). A single nucleotide 

polymorphism (SNP) in the CXCL12 gene (SDF1-3’A) has been associated with 

disease progression to acquired immune deficiency syndrome (AIDS) in some 

studies, but not others.  Mutations in the CXCR4 gene are generally rare and 

have not been implicated in HIV-1/AIDS pathogenesis.  In this study, we 

analysed the SDF1-3’A SNP and performed mutation screening for polymorphic 

markers in the CXCR4 gene to determine the presence/absence of significant 

associations with susceptibility to HIV-1 infection. Our study consisted of 257 

HIV-1 seropositive patients and 113 HIV-1 seronegative controls representing a 

Sub-Saharan African population belonging to the Xhosa ethnic group of South 

Africa. The SDF1-3’A SNP was associated with an increased risk for HIV-1 

infection (P = 0.0319) while no significant association between the occurrence 

of the SDF1-3’A SNP and increased/decreased plasma levels of CXCL12 was 

observed.  Comprehensive mutation analysis of the CXCR4 gene confirmed a 

high degree of genetic conservation within the coding region of this ancient 

population.  

 

Keywords:  CXC chemokine ligand 12 (CXCL12); CXC chemokine receptor 4 

(CXCR4); SDF1-3’A SNP; HIV-1 infection risk; African population. 
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INTRODUCTION 
 
 

The role of specific chemokines acting as inhibitors of human immunodeficiency 

virus-1 (HIV-1) infection and also possibly influencing viral replication1 was 

highlighted by the discovery that chemokines are natural ligands for chemokine 

receptors.  These chemokine receptors, together with the CD4 molecule, serve 

as necessary co-factors for HIV-1 entry.2-5 The CXC chemokine ligand 12 

(CXCL12), known more commonly as stromal cell-derived factor 1 (SDF1), 

inhibits infection of T cell line tropic (T-tropic) or syncytium-inducing (SI) viruses 

normally found during late-stage HIV disease6,7 by down-regulating the surface 

expression of the HIV-1 co-receptor, CXC chemokine receptor 4 (CXCR4).8-9  

The demonstration that mice, deficient for either CXCL12 or CXCR4, die 

perinatally 10 further promoted the understanding of this ligand-receptor 

interaction, which appears to be vital in physiological processes. 

 

It has been found that the CXCL12 gene, previously known as SDF1 or PBSF 

(MIM# 600835), is located at band q11 on chromosome 10 and encodes for two 

isoforms, CXCL12α and CXCL12β, which are the result of alternative splicing of 

a single gene.11-13 The coding regions for CXCL12α and CXCL12β are 

composed of three and four exons, respectively. The CXCL12β gene transcript 

has an extra exon, which encodes for four additional amino acids.13 The CXCR4 

gene, also known as NPY3R, FUSIN and LESTR (MIM# 162643), is located at 

band q21 on chromosome 214,15 and consists of an intron separating 2 exons in 

which lies the open reading frame (ORF).16-17
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A single nucleotide polymorphism (SNP), designated SDF1-3’UTR-801G>A and 

abbreviated SDF1-3’A (rs1801157), was identified in the 3’ untranslated region 

(3’UTR) of the CXCL12β gene transcript and involves a G to A transition at 

nucleotide position +801 relative to the start codon.18 Although the SNP in the 

recessive state was initially associated with delayed onset of AIDS,18,19 other 

studies suggested an association with accelerated progression to death; 20,21 

prolonged21 or decreased22 survival after AIDS diagnosis; or no effect on 

disease progression.23-25  Another study showed an association between the 

SNP in the heterozygous state and increased vertical transmission from mother 

to child in an African study,26 while an association with rapid disease 

progression and the SNP occurring heterozygously was observed in HIV-1 

infected children born to seropositive mothers.27 More recently, the SNP has 

been found to play a role in resistance to HIV-1 infection in seronegative high-

risk individuals,28 although this association was absent in a study involving 

repeatedly exposed HIV-1 seronegatives.29 Studies investigating plasma 

CXCL12 protein levels in HIV-1 seropositive patients; exposed high-risk HIV-1 

seronegative individuals and healthy HIV-1 seronegative controls28,30-34 with 

consideration of SDF1-3’A genotypes32,33 have also reported inconsistent 

associations. 

 

Previous studies investigating the role of CXCR4 in host susceptibility to HIV-

1/AIDS in Caucasian-based and African American populations have shown a 

relatively low occurrence of CXCR4 mutations and therefore their significance is 

unclear.35-37 The CXCR4 genetic variants reported include silent mutations 

CXCR4-I261I35 and CXCR4-K68K; and a non-conservative mutation, CXCR4-
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F93S.36 Both the CXCR4-K68K and CXCR4-F93S mutations were further 

considered for their possible influence on HIV-1 entry, with the results being 

comparable to what was found for wildtype CXCR4.36  More recently, mutations 

in the cytoplasmic tail domain of CXCR4 were identified as being causative for 

WHIM syndrome, an immunodeficiency disorder characterised by warts, 

hypogammaglobulinemia, infections and myelokathexis.38  These mutations are 

however familial and rare.   

 

Controversy with regards to the role of CXCL12 (SDF1-3’A SNP) and CXCR4 

mutations in HIV-1/AIDS pathogenesis has accentuated the need for additional 

studies within ethnically distinct populations.  In this study we genotyped the 

SDF1-3’A SNP and performed comprehensive mutational analysis of the 

CXCR4 coding region. Plasma CXCL12 levels were measured to assess 

possible functional correlation between the SDF1-3’A SNP and protein levels.  

Our results indicate the importance of investigating the genetic basis for HIV-

1/AIDS within specific ethnic groups, particularly populations from understudied 

pandemic-stricken Sub-Saharan Africa.  

 

MATERIALS AND METHODS 

 

Study population 

The population group represented in this study are Sub-Saharan Africans 

defined as individuals of Xhosa descent all residing in the Western Cape 

Province of South Africa.  According to recent consensus, the South African 

population is 79% African, with the Xhosa ethnic group forming approximately 
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22% of the total African population and 90% of the African population residing in 

the Western Cape (Statistics South Africa, 2001; www.statssa.gov.za).  The 

Xhosa are from the early clan of the Nguni, the most southern group of Bantu 

migrants from central Africa. The HIV-1 seropositive (HIV+) individuals were 

patients of Tygerberg Hospital, Woodstock Chapel Street Community Health 

Clinic or the Langa Clinic, which at the time of DNA extraction totalled 1035 

ethnically diverse patients, as previously described.39 Individuals were included 

in this study if they were from Xhosa descent and blood was available for DNA 

extraction. The HIV-1 seronegative (HIV-) controls were population-matched 

blood donors from the Western Province Blood Transfusion Service.  The only 

criteria for exclusion, was a positive HIV-1 status.  Disease progression for most 

of the HIV+ patients remains unknown and was therefore not assessed in this 

study. Informed consent was obtained from all the study participants and the 

Ethics Review Committee of the University of Stellenbosch approved the study 

protocol (#98/158).  The sample size for genotyping the SDF1-3’A SNP 

consisted of 257 HIV+ (66% female, 34% male) and 113 HIV- (62% female, 

38% male) individuals.  CXCL12 protein levels were determined for samples 

where plasma was available (131 HIV+, 63 HIV-).  Comprehensive mutational 

analysis of the entire coding region of CXCR4 gene was performed on 57 HIV+ 

and 39 HIV- Xhosas.  An additional 30 HIV+ and 22 HIV- samples were further 

screened to determine allele frequencies of identified mutations.  

 

Genetic analysis 

Genotyping: Genomic DNA was extracted from whole blood and genotyped in 

a blinded manner.  Two methods were used to genotype the SDF1-3’A SNP 
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due to availability of technologies at the time.  To confirm genotyping specificity 

of the two methods, 155 samples were genotyped using both methods.  The 

first utilised denaturing gradient gel electrophoresis (DGGE).40 A single DGGE 

primer set, including a GC-clamp (GC-rich fragment) on the 5’end of the reverse 

primer, was designed for partial analysis of the 3’UTR of the CXCL12β gene 

transcript: 5’-GTGAAGGCTTCTCTCTGTGG-3’ and 5’-[40GC]GTGGACACACA 

TGATGATGG-3’. Amplification and heteroduplexing was performed as 

described below (mutation detection) using an annealing temperature of 560C. 

Amplified PCR products were electrophoresed in a 9% polyacrylamide gel with 

a denaturing gradient of 45% to 85% urea and formamide (100% UF = 7mol/L 

urea per 40% deionised formamide), at 60oC for 110 volts overnight, using the 

Ingeny phorU-2 system (INGENY, Goes, The Netherlands, www.ingeny.com).  

The 5’ nuclease or TaqMan allelic discrimination method41 was also used for 

genotyping the SDF1-3’A SNP using the following primers: 5’-

CAAAGCCTAGTGAAGGCTTCTCTC-3’ and 5’-TCAGGGTAGCCCTGCTGC-3’; 

and probes: 5’-FAM-TGGGAGCCGGGTCTGC CTCT-TAMRA-3’ and 5’-VIC-

ACATGGGAGCCAGGTCTGCCTCTT-TAMRA-3’. PCR reactions each 

containing 5 ng of DNA and TaqMan Universal PCR Master Mix (Applied 

Biosysytems) were used for amplification (detailed PCR reaction mix protocol 

available on request) with the cycling conditions including a initial denaturation 

of 95oC for 10 minutes, followed by 50 cycles of denaturation at 95oC for 15 

seconds and annealing at 58oC for 1 minute.  Allele discrimination and 

genotype determination was based on the end-point fluorescence measured by 

the ABI7900 high throughput sequence detection system (Applied 
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Biosysytems).  A total of 199 and 215 samples were genotyped using DGGE 

and TaqMan allelic discrimination, respectively. 

 

Mutation Detection: DGGE primers were designed for the entire coding region, 

including the intron/exon boundaries of the CXCR4 gene.  The CXCR4 coding 

region within exon 1 (codons 1 to 5) and exon 2 (codons 6 to 352) was divided 

into seven overlapping amplicons (A – G) (Table 1).  Each PCR reaction 

contained 50 ng of DNA (detailed PCR reaction mixture protocol available on 

request) and amplification was performed using a 9600 thermocycyler (Applied 

Biosysytems).  PCR cycling conditions included: an initial denaturation at 96oC 

for 3 minutes, followed by 32 cycles of denaturation at 96oC for 45 seconds, 

annealing for 1 minute (annealing temperatures are shown in Table 1) and 

elongation at 72oC for 1 minute 20 seconds.  Following the last cycle was an 

additional extension step of 72oC for 7 minutes.  For heteroduplex formation, 

the PCR products were subjected to denaturation at 96oC for 10 minutes, 

followed by renaturation for 45 minutes at 56oC.  Electrophoresis was used to 

check the amplified products, where 10% of each sample was resolved on 2% 

agarose gel.  Optimal DGGE analysis was achieved using previously described 

conditions for broad-range mutation detection by DGGE.42 Amplified PCR 

products were electrophoresed in a 9% polyacrylamide gel with a denaturing 

gradient of 30% to 75% UF, at 60oC for 110 volts overnight.  The seven 

amplicons for CXCR4 were electrophoresed in five lanes (Fragments B and E; 

Fragments C and G were pooled) and allowed for the complete analysis of 6 

patients per denaturing gel.  The gels were stained with ethidium bromide and 

photographed under an UV transilluminator.  Samples showing aberrant DGGE 

 146



banding patterns were purified using the high pure PCR product purification kit 

of Roche (Roche Diagnostics, Mannheim, Germany) and subjected to 

automated sequencing using the non-GC-clamped primer and the dye 

terminator sequencing kit (Applied Biosystems, Foster City, U.S.A., 

www.appliedbiosystems.com).   

 

Determining plasma CXCL12 protein levels by ELISA 

Plasma was isolated by centrifugation of EDTA-anticoagulated blood samples 

at 2000 rpm for 10 minutes.  Plasma samples were stored at –80oC before 

being thawed for analysis.  A CXCL12 enzyme-linked immunosorbent assay 

(ELISA) was developed using commercial monoclonal antibodies (R&D 

systems, Minneapolis, Minnesota, USA) according to manufacturer’s 

recommendations. Flat-bottom 96-well microtiter plates with high-binding 

capacity (Nunc Maxisorp, Nunc, Denmark) were coated with capture antibody 

(mouse anti-human CXCL12) prior to the addition of plasma samples. 

Biotinylated mouse anti-human CXCL12β was used as detection antibody. 

Recombinant human CXCL12β was included as a standard. Each sample was 

run in duplicate and the mean concentration (pg/ml) of plasma CXCL12 protein 

was determined from the standard curve using ELISA software (Bio-Tek KC4, 

Bio-Tek Instruments, Winooski, Vermont, USA).  

 

Statistical analysis  

The allele and genotype distributions, including Hardy Weinberg equilibrium 

estimations were calculated. Testing of HIV-1 seropositives versus HIV-1 

seronegatives for significance of heterogeneity in allele and genotype 
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frequencies was based on the two-sided Fisher’s exact test for 2x2 contingency 

tables and the chi-squared (x2) test for independence, respectively. The Mann 

Whitney U test was used to compare mean plasma CXCL12 protein levels 

between the case and control groups (GraphPad Software Inc, San Diego, and 

SAS Institute Inc., Cary, North Carolina, U.S.A.). 

 

RESULTS 

 

Analysis of the SDF1-3’A SNP  

The commonly reported SDF1-3’A SNP was detected using gel-based DGGE 

and a TaqMan allelic discrimination assay (Table 2). The 100% concordance 

observed for 155 samples screened with both methods reflects the reliability of 

the two SDF1-3’A SNP assays for generating valid and reproducible results.  

The presence of the SNP in the Xhosa population was observed at a 

significantly higher allelic frequency in the HIV-1 seropositive patients (0.037; 

19/514) compared to their uninfected counterparts (0.009; 2/226) with a P value 

of 0.0319.  No significance was found for the independent genotype analysis (P 

= 0.1191), however, a significant association between the presence of the A 

allele (AA and GA) and HIV-1 infection was observed (P = 0.0454).  There was 

no significant deviation from the expected Hardy-Weinberg equilibrium in either 

the cases or controls. There was no significant associations between specific 

CXCL12 plasma levels between SDF1-3’A genotype among cases and controls. 
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Analysis of CXCR4 and identification of mutations  

We identified one previously known and three novel mutations in CXCR4 gene.  

The previously found silent mutation occurs in the coding region at codon 138 

(rs2228014).  The CXCR4-I138I mutation was detected using the amplicon C 

primers set and was observed in one HIV-1 seropositive patient and one HIV-1 

seronegative control.  The three novel mutations found in the 3’UTR at 

nucleotide positions +29 (G-A), +34 (A-T) and +46 (deletion T), relative to the 

stop codon, were all identified using the primer set for amplicon G.  Further 

screening in additional samples resulted in the novel mutations occurring at 

allele frequencies ranging from 0.008 to 0.011 in the Xhosa population. No 

associations with susceptibility to HIV-1 infection or disease progression to 

AIDS were found.  

 

DISCUSSION 
 
 

Our study focused on the analysis of the SDF1-3’A SNP and the CXCR4 gene 

within the Xhosa ethnic group from South Africa. The importance of determining 

population-specific genetic variants influencing HIV-1 susceptibility in the 

understudied African populations is evident.43 A previous study by Ramaley et 

al., 2003 suggested that caution should be taken when considering an 

association observed in one population to be present in another and showed 

that the CCR5 alleles previously identified and significantly associated with 

influencing susceptibility to HIV-1/AIDS in Caucasian populations did not have 

the same effect in Africans.44 We have previously screened for the well-

documented CCR5-Δ32 HIV-1/AIDS resistance-associated mutation and found 

it to be completely absent in the Xhosa population.45 Although genetic markers 
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may vary in frequency across populations, a recent study has suggested that 

their biological impact on the risk for the disease may usually be consistent 

across traditional “racial” boundaries.46  In the ancient Xhosa population, these 

functional genetic markers may as yet, not have been identified in the majority 

of studies that have focused on younger populations. 

 

Although the allele frequency observed for the SDF1-3’A SNP in our Xhosa 

group (0.028) is within the range previously reported for African populations, 

18,20,47,48 it is slightly higher than that reported for another South African study 

(0.010).47 The study participants reported in Williamson et al., resided in the 

Free State Province of South Africa and are predominantly of Sotho ethnic 

descent, which could explain this bias in allele frequencies. 

 

The SDF1-3’A SNP analysis resulted in an association being observed between 

the presence of the A allele and an increased rate of infection both at the level 

of allele frequency (P = 0.0319) and A allele carriage frequency (P = 0.0454), 

although significance was not found for independent genotype analysis.  

Previous studies, focusing on predominantly Caucasian-based populations 

have not reported similar findings, but rather found associations with disease 

progression to AIDS. An association with the SDF1-3’A SNP occurring 

heterozygously and increased vertical transmission from mother to child was 

however previously reported in Africans.26 Controversies in genetic association 

studies have been significantly addressed in the literature, with the most 

compelling short-coming of this study being the relatively small study numbers 
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which could result in possible bias.  Therefore, these findings require 

independent elucidation. 

 

Plasma CXCL12 protein levels were not significantly different between the wild-

type and the SDF1-3’A SNP within cases and controls.  Due to the relatively 

small sample number (as well as lack of homozygous individuals), in the study 

population, we determined the CXCL12 protein levels in an additional 48 HIV 

seronegative (27 wild-type, 15 heterozygous and 6 AA homozygous) Caucasian 

samples (data not shown), but this also resulted in no significant association.  

Our findings require further investigation in larger sample numbers and 

replication in other cohorts supporting the effect of the SNP in ligand 

expression.  This may however be limited by the low occurrence of 

homozygotes in the Xhosa population. An advantage of our study was the 

utilisation of the recombinant human CXCL12β for the ELISA assay as opposed 

to recombinant human CXCL12α used in other studies where associations were 

reported.  The latter studies included low plasma CXCL12 levels found in 

uninfected persons homozygous for the SDF1-3’A SNPP

33 and a significant 

increase in CXCL12 levels being observed in the HIV-1 seropositive individuals 

when compared to the HIV-1 seronegative control group.34

 

The identification of three novel genetic variants within the 3’ UTR of CXCR4, a 

potential regulatory region, could have an effect on the expression or 

functioning of the protein.  CXCR4 serves as the co-receptor for T-tropic or SI 

viruses normally emerging during late-stage HIV disease5 and thus a possible 

effect of mutations occurring in CXCR4 is more likely to be seen if they 
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influence disease progression rather than susceptibility to HIV-1 infection.  We 

screened an additional 51 Caucasian controls (data not shown) which excluded 

the presence of the three novel CXCR4 mutations. Therefore, although no 

associations could be made, these novel variants being undetected in the 

Caucasian population suggests that these mutations may be African-based.  

 

Controversy exists in the literature between the association of the SDF1-3’A 

SNP and HIV-1 infection and/or disease progression to AIDS.  It was recently 

reported that other polymorphisms in linkage disequilibrium with the SDF1-3’A 

SNP, rather than the SNP itself, are responsible for altered levels of SDF1 

transcripts.  The inconsistent findings for the SDF1-3’A SNP amongst various 

populations may therefore be attributed to different haplotype structures, 

including or excluding functional variants, for specific ethnic groups.49 In this 

study, we found an association between the presence of the SDF1-3’A SNP 

and risk to HIV-1 infection in a Sub-Saharan African population.  Our results 

emphasise the need for investigating HIV-1/AIDS candidate genes in many 

diverse ethnic groups, and particularly in the populations most affected by the 

HIV-1/AIDS pandemic.  Although this study only focused on a relatively small 

number of individuals, its findings contribute to the growing evidence that the 

presence and effects of genetic variants in the understudied African populations 

are important when predicting host susceptibility to HIV-1/AIDS within Sub-

Saharan Africa. 
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Table 1: CXCR4 primers sets and experimental conditions for PCR  
amplification and DGGE. 
 
 

                                                                                                                                  Temperature (oC) 

   Fragment                            Amplimers, 5’-3’                                Size (bp)            Melting          Annealing    

A CTCCAGTAGCCACCGCATCT 

[40GC]GCTGCGCTCTAAGTTCAAACG 

154 73 62 

B [40GC]GAATGTCCATTCCTTTGCCTCT 

GCCTGTACTTGTCCGTCATGC 

286 73 60 

C [40GC]CCACCATCTACTCCATCATC 

AGACGCCAACATAGACCAC 

397 66 55 

D CACGCCACCAACAGTCAGA 

[40GC]AGCAGGACAGGATGACAATACC 

278 71 60 

E [40GC]CAGTTTCAGCACATCATGGT 

AGGATGAGGATGACTGTGGT 

180 66 55 

F CATCTCCAAGCTGTCACACT 

[40GC]TTACATCTGTGTTAGCTGGAGT 

445 66 54 

G TCCACTGAGTCTGAGTCTTCAA 

[40GC]TCCTGCCTAGACACACATCA 

282 67 54 

 

bp, base pair 
GC-clamp used was as follows: [40GC] CGCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCGCCCG 
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Table 2: Allele and genotype distribution of the SDF1-3’G>A SNP in 257 HIV-1 
infected cases versus 113 HIV-1 seronegative controls from the Xhosa 
population. 
 
SNP    HIV+ (%)  HIV- (%)  P value#

    (n = 257)*  (n = 113)*

 
SDF1-3’G>A  

 
95 (96.3)  224 (99.1)  0.0319 

 

GG   239 (93)  111 (98.2)  0.1191 

PHWE = 0.26δ  PHWE = 0.92δ  
 

   
G   4
A     19 (3.7)      2 (0.9) 

 
 
 GA     17 (6.6)      2 (1.8) 
 AA       1 (0.4)      0 
 

H
* 

IV+, HIV-1 seropositive; HIV-, HIV-1 seronegative 
n = 514) and HIV- (2n = 226) 

significance 
n, number of individuals. Number of alleles, HIV+ (2

2# Two-sided Fisher’s exact or chi-squared (x ). P < 0.05 was required for statistical 
and is presented in bold. 
δ Test for Hardy-Weinberg equilibrium. 
 
 
 

 161



 

 

Chapter 3.1. 

 

Lack of association with TNFα promoter SNPs and 

susceptibility to HIV-1 infection in                                   

an African population 

 

Desiree C. Petersen1, Sadeep Shrestha2,3, Julie Bergeron3,     

Bert Gold2, Vanessa M. Hayes4,5 and Michael Dean2 

 

Department of Medical Virology1, University of Stellenbosch, Tygerberg Medical 

School, South Africa; Laboratory of Genomic Diversity2, National Cancer 

Institute, Frederick, Maryland, USA; SAIC3, Frederick, Maryland, USA; Cancer 

Research Program4, Garvan Institute of Medical Research, Darlinghurst, 

Sydney, NSW, Australia; University of New South Wales 5, Sydney, Australia. 

 

(Submitted) 

(Short Communication) 

 

(References cited in the format of the journal to which this manuscript is submitted) 

 

 162



ABSTRACT 

 
Tumor necrosis factor α (TNFα) is a pro-inflammatory cytokine functioning 

as a mediator of host response to pathogens and is considered to be the 

most potent of the human immunodeficiency virus-1 (HIV-1) inducing 

cytokines. Previous studies investigating the effect of TNFα promoter single 

nucleotide polymorphisms (SNPs) on disease progression to acquired 

immunodeficiency syndrome (AIDS) have resulted in inconsistent findings.  

Our study included the genotyping of two TNFα promoter SNPs, both 

involving guanine (G) to adenosine (A) transitions, at positions –308 and       

–238, to determine association with HIV-1 susceptibility in an African 

population.  The study cohort, originating from South Africa, consisted of 215 

HIV-1 seropositive individuals and 113 HIV-1 seronegative controls 

representing Africans belonging to the Xhosa ethnic group.  Statistical 

testing, including allele, genotype and haplotype analysis, of the TNFα 

promoter SNPs in cases versus controls revealed no significant associations 

with risk for HIV-1 infection (all P values > 0.05).  This study resulted in a 

lack of association with TNFα promoter SNPs directly influencing host 

susceptibility to HIV-1 infection in the Xhosa.  However, the possibility that 

these SNPs in combination with other closely linked alleles could influence 

HIV-1/AIDS pathogenesis in African populations still exists. 

 

INTRODUCTION 
 

Cytokines are part of a complex network of proteins that mediate inflammatory 

and immune responses.  Their stimulatory and inhibitory effects were found to 

influence human immunodeficiency virus-1 (HIV-1) replication.1 Tumor necrosis 
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factor α (TNFα), a pro-inflammatory cytokine, is an important and potent inducer 

of HIV-1 replication.  It activates a cellular transcription factor, NF-κB, which 

enhances virus expression.2-4 The TNFα gene (MIM# 191160) is located within 

the highly polymorphic major histocompatibility complex (MHC) region on 

chromosome 6p21.3.5,6  Genetic variants occurring within the promoter region 

of TNFα have been suggested to alter the production and regulation of this 

cytokine.  A number of TNFα promoter single nucleotide polymorphisms 

(SNPs), including two G-A transitions at positions –308 (rs1800629) and –238 

(rs361525) relative to the transcription start site, have been identified.7-9 Allele 

frequencies previously reported in African populations for the TNFα-308G>A 

and TNFα-238G>A and SNPs range from 0.08 – 0.16 and 0 – 0.11, 

respectively.10-12 TNFα-308G>A is the most commonly studied SNP in the TNFα 

promoter, although its functional significance remains questionable.  Its 

influence on gene transcription and/or TNFα production differs between studies.  

Conflicting findings have also been reported for the effect of TNFα-238G>A on 

TNFα production.13, 14 TNFα is a well-documented candidate gene for many 

diseases, with inconsistent findings between the presence of TNFα-308G>A 

and/or TNFα-238G>A and HIV-1 disease susceptibility in Caucasians.15-17 

These include a weak association with homozygosity for TNFα-308A and long-

term non-progression16; and an association with the TNFα-308G/A 

heterozygous genotype and faster disease progression to acquired 

immunodeficiency syndrome (AIDS).17 A third study indicated no significant 

associations with any of the TNFα promoter SNPs and rate of disease 

progression, however elevated levels of TNFα were observed in HIV-1 

seropositive individuals who had developed AIDS.15  The TNFα-308G>A and 

 164



TNFα-238G>A SNPs have also been associated with influencing the 

development of HIV-related dementia18 and lipodystrophy19,20, respectively.  

 

MATERIALS AND METHODS 
 

It is important to evaluate HIV-1/AIDS candidate gene SNPs with possible 

functional consequences in diverse ethnic groups to assess disease 

associations in specific populations.  Our study aimed at determining the role of 

TNFα-308G>A and TNFα-238G>A SNPs in host susceptibility to HIV-1 infection 

within the understudied Africans who belong to the Xhosa ethnic group.  The 

215 HIV-1 seropositive patients were from three locations, Tygerberg Hospital; 

Woodstock Chapel Street Community Health Clinic; and the Langa Clinic, all in 

the Western Cape Province of South Africa.  Disease progression for the many 

of these individuals is unknown as insufficient clinical information is available 

due to infrequent follow-up.  The control group consisted of 113 HIV-1 

seronegative population-matched samples from the Western Cape Province 

Blood Transfusion Service of South Africa.  Informed consent was obtained 

from all the study participants and the Ethics Review Committee of the 

University of Stellenbosch approved the study protocol (98/158).  Genotyping of 

both TNFα SNPs was performed using the 5’ nuclease or TaqMan allelic 

discrimination method.21 The assay primers and probes for TNFα-308G-A were: 

5’-CCTGCATCCTGTCTGGAAGTTAGAAG-3 and 5’-TGGGCCACTGACTGATT 

TGTGTGT-3’, 5’-FAM-AACCCCGTCCTCATGCCCCTCAA-TAMRA-3’ and      

5’-VIC-AACCCCGTCCCCATGCCCCTC-TAMRA-3’ and for TNFα-238G-A 

were: 5’-CAGTGGCCCAGAAGACCC-3’ and 5’-AGCATCAAGGATACCCCTC 

AC-3’, 5’-FAM-AATCAGAGCAGGGAGGATGGGGA-TAMRA-3’ and 5’-VIC-AA 
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TCGGAGCAGGGAGGATGGG-TAMRA-3’. The TaqMan Universal PCR Master 

Mix (Applied Biosysytems, Foster City, California) was used for amplification 

(detailed PCR reaction mix protocol available on request) with the cycling 

conditions including a initial denaturation of 95oC for 10 minutes, followed by 50 

cycles of denaturation at 95oC for 15 seconds and annealing at 58oC for 1 

minute.  Measurement of end-point fluorescence for allelic discrimination and 

genotype determination was performed on the 7900 high throughput sequence 

detection system (Applied Biosysytems, Foster City, California).  The 

comparison of allele frequencies in HIV-1 seropositives versus HIV-1 

seronegatives and testing for significance of heterogeneity was achieved using 

the two-sided Fisher’s exact test for 2x2 contingency tables (GraphPad 

Software Inc, San Diego, California).  Allele and genotype distributions, 

including consistency of the genotypes observed with Hardy Weinberg 

equilibrium, were determined for the different population groups.  Genotype 

frequencies between cases and controls were also compared for significance 

using the chi-squared (x2) test for independence.   Haplotypes were estimated 

using the expectation-maximization (E-M) algorithm and the frequencies 

between cases and controls were assessed. (SAS Institute Inc. software, Cary, 

North Carolina).  

 

RESULTS AND DISCUSSION 

Using the TNFα-308G>A and TNFα-238G>A SNP allelic discrimination assays 

we determined the allele, genotype and haplotype frequencies.  We further 

tested for significant associations between the presence of the two polymorphic 
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markers (individually and combined), and susceptibility to HIV-1 infection in our 

Xhosa sample group (Tables 1 and 2).  

 

Genotyping was successful for 319 (207 HIV+, 112 HIV-) and 325 (213 HIV+, 

112 HIV-) samples for the TNFα-308G>A and TNFα-238G>A SNPs, 

respectively.  The TNFα promoter SNPs in the case and control groups 

displayed expected genotype distributions for the Hardy Weinberg equilibrium 

(all P values > 0.25).  No significance was observed between allele frequencies 

in the HIV-1 seropositives versus the HIV-1 seronegatives for both the TNFα-

308G>A and TNFα-238G>A SNPs (Table 1). The TNFα-308G>A SNP (14.26%) 

did however occur at an overall higher allele frequency compared to the TNFα-

238G>A SNP (5.54%), which is in agreement with findings previously reported 

for African populations.10-12 Pairwise linkage disequlibrium (LD) analysis based 

on the r2 coefficient measure (data not shown) provided no strong LD, which is 

similar to previous reports.9 Furthermore, the independent genotype (Table 1) 

and estimated haplotype (Table 2) analysis showed no significant association 

with susceptibility to HIV-1 infection.   Since the majority of HIV seropositive 

individuals have no clinical staging (3 slow, 34 normal, 11 fast and 167 

unknown progressors), associations with disease progression to AIDS were not 

considered. 

 

Previous findings for TNFα promoter SNPs and disease progression to AIDS 

emerge as being generally inconsistent15-17, but the role of other genetic 

variants at neighbouring loci has also been investigated. This includes a 

lymphotoxin alpha (LTα, previously called TNF-beta) microsatellite 
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polymorphism designated TNFc2 allele, which has been associated with slower 

disease progression to AIDS among Caucasians22, but when occurring 

homozygously in Africans, was found to offer a decreased risk for HIV-1 

infection.23 It has also been shown that the TNFα-308A allele is part of an 

extended Caucasian human leukocyte antigen (HLA) haplotype, HLA-A1-B8-

DR324, which has been associated with increased TNFα production25,26 and 

faster disease progression to AIDS.27   All these findings thus suggest ethnic-

based differences in association to HIV-1 disease. 

 

This study indicates that the commonly studied TNFα-308G>A and TNFα-

238G>A SNPs do not directly influence host susceptibility to HIV-1 infection in 

our Xhosa ethnic group.  The crucial promoter region for TNFα transcriptional 

control has been characterised and it was found that both TNFα-308G>A and 

TNFα-238G>A are not within an important regulatory region.28-30 These TNFα 

promoter SNPs may therefore together with other TNFα variants or alleles of 

the neighbouring LTα gene have an effect on HIV/AIDS outcomes in Africans.  

Furthermore these TNFα promoter SNPs in combination with the closely located 

HLA alleles, which have been previously implicated in African-based HIV/AIDS 

pathogenesis31, could form specific haplotypes that determine risks for HIV-1 

infection in the understudied African populations.  Our unique study of a Xhosa 

ethnic group from pandemic stricken Sub-Sahara accentuates the importance 

for ongoing population-based HIV/AIDS association studies in large well-defined 

sample groups.  
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Table 1.  Allele and genotype distributions of the TNFα promoter SNPs in cases versus controls 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
                    HIV+, seropositive; HIV -, seronegative 
                               aThe second base pair indicates the minor allele 
                               b(-/-), (+/-) and (+/+) represents the minor allele homozygotes, heterozygotes and major allele homozygotes, respectively. 

                              Genotype Frequency  (%) b                           
          -/-                          +/-        _            +/ +_____                     

NCBI ID 

 
Minor Allele Frequency (%)  

   HIV+          HIV-             P 

  
Genea 

SNP HIV+       HIV-        HIV+      HIV-       HIV+       HIV-           P 

TNFα        
-308 (G/A) rs 1800629    13.77        15.18 0.637  2.42        3.57 22.71       23.21 74.88      73.21 0.827 
-238 (G/A) rs 361525     4.93           6.70 0.370    0           0.89  9.86        11.61 90.14      87.50 0.337 

        

 
 

 
 
 
 
 
 



 
 
Table 2.  Haplotype analysis of the TNFα promoter SNPs in cases 
versus controls 
 
   Frequency (%)  
 
 

 
Gene Haplotype 

-308G>A and -238G>A 
HIV+ HIV- P 

    
 
 

 
TNFα A – A 0.01 0.19 0.646 
 G – A 4.93 6.49 0.438 
 A – G 13.78  14.99 0.709 
 G – G 81.28  78.33 0.409 
      

 
           HIV+, seropositive; HIV -, seronegative 
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ABSTRACT 
 

The cytokines Interleukin-4 (IL4) and Interleukin-10 (IL10) both influence HIV-1 

replication.  Previous studies determining the role of IL4 and IL10 promoter 

variants in HIV-1 pathogenesis have resulted in an array of associations for 

diverse populations.  We analysed the influence of IL4 and IL10 promoter SNPs 

and extended haplotypes on HIV-1 infection risk within Sub-Saharan Africans of 

Xhosa descent.  Significance was observed for two linked IL10 SNPs (-819C>T 

and -592C>A) and specific haplotypes for IL4 and IL10 (all P < 0.02).  This 

includes a novel IL4 haplotype being associated with a decreased risk for HIV-1 

infection. 

 
INTRODUCTION 

 
Cytokines such as Interleukin-4 (IL4) and Interleukin-10 (IL10) play a vital role in 

modulating host immune responses with both having been found to influence 

human immunodeficiency virus-1 (HIV-1) replication.  IL4 is responsible for 

down-regulation of CC chemokine receptor 5 (CCR5), with inhibition of early 

stage R5 virus replication, and up-regulation of the CXC chemokine receptor 4 

(CXCR4), with enhanced replication of the later emerging X4 viruses 

[Nakayama et al., 2000].  IL10 has been found to inhibit HIV-1 replication and it 

is believed that this control of virus proliferation is due to restriction of the 

amount of macrophages available for replication [Reviewed in Carrington et al., 

2001]. 

 

Previously identified single nucleotide polymorphisms (SNPs) are well 

documented for the promoter regions of IL4 (MIM# 147780) and IL10 (MIM# 

147780) and have been associated with functional consequences that influence 
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gene expression and protein production [Reviewed in Anastassopoulou and 

Kostrikis, 2003].  Commonly occurring promoter variants include two IL4 SNPs, 

-589C>T (rs2243250) [Rosenwasser et al., 1995] and -33C>T (rs2070874) 

[Takabayashi et al., 1999] (relative to the translation start site), and three IL10 

SNPs, -1082A>G (rs1800896), -819C>T (rs1800871) and -592A>C (rs1800872) 

(relative to transcription start site) [Turner et al., 1997].  These SNPs form three 

major haplotypes for both IL4 (CC, TC, TT) and IL10 (ATA, ACC, GCC) in most 

populations, including African-based ethnic groups [Shin et al., 2000; Meenagh 

et al., 2002; Vasilescu et al., 2003; Basehore et al., 2004; Wang et al., 2004]. 

  

IL4 and IL10 promoter SNPs and extended haplotypes have previously been 

implicated in HIV-1/AIDS pathogenesis.  In Japanese individuals, IL4-589C>T is 

in complete linkage disequlibrium with IL4-33C>T and has been associated with 

decreased risk for HIV-1 infection. However, the IL4-589 TT homozygous 

genotype was correlated with possibly faster progression to AIDS due to the 

more rapid emergence of X4 variants during late disease [Nakayama et al., 

2000].  Different findings were reported for Dutch Caucasians where the effect 

of the IL4-589C>T SNP involved delayed acquisition of X4 variants and no 

overall influence on disease progression [Kwa et al., 2003].  A French 

Caucasian-based study, where IL4-589 TT was rare, indicated that the          

IL4-589C>T SNP is protective against disease progression to AIDS and death 

by reducing viral load [Nakayama et al., 2002].  This protective effect in French 

Caucasians was confirmed in another study where a specific haplotype that 

carries the IL4-589 T allele was associated with slower disease progression 

[Vasilescu et al., 2003].  More recently, a study of African American individuals 
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showed that IL4-589 TT is associated with delaying disease progression to 

AIDS, while IL4-33 CC is associated in increased risk for HIV-1 infection [Wang 

et al., 2004].  In North American Caucasians, IL10-592C>A, which is in 

complete linkage disequilibrium with IL10-819C>T and strong linkage 

disequilibrium with IL10-1082A>G, has been associated with dominantly 

increasing risk for HIV-1 infection and faster disease progression to AIDS, 

particularly evident during late stages of infection [Shin et al., 2000]. Another 

French Caucasian-based study did not yield similar findings, but was indicative 

of a haplotype, including the IL10-592 C allele, being associated with rapid 

disease progression [Vasilescu et al., 2003].  A recent study showed 

association between the IL10-1082 AA genotype and increased susceptibility to 

HIV-1 infection in Hispanics.  An IL10 haplotype comprised of 5 alleles, 

including -1082G, -819C, -592C, and was also associated with increased risk 

for HIV-1 infection in African Americans [Wang et al., 2004]. 

 

These various HIV-1/AIDS associations observed within specific ethnic groups 

emphasise the importance of determining the potential role of IL4 and IL10 

promoter SNPs and haplotypes within well-defined understudied African 

populations.  We investigated the promoter regions of IL4 and IL10 for variants 

and determined the role of IL4-589C>T, IL4-33C>T, IL10-1082A>G,            

IL10-819C>T and IL10-592C>A in susceptibility to HIV-1 infection within 

Africans from pandemic stricken Sub-Saharan Africa. 
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SUBJECTS AND METHODS 
 

Our study sample consisted of 310 African individuals of Xhosa descent who all 

reside in the Western Cape Province of South Africa.  The Xhosa are from the 

early clan of the Nguni, the most southern group of Bantu migrants from central 

Africa.  In the Western Cape the Xhosa form 90% of the African population 

(Statistics South Africa, 2001; www.statssa.gov.za). The 197 HIV-1 

seropositives (69% females, 31% males) are all patients of Tygerberg Hospital, 

Woodstock Chapel Street Community Health Clinic or the Langa Clinic.  Due to 

the lack of updated clinical information, the disease progression for most of 

these patients remains unknown.  Blood donors for the Western Province Blood 

Transfusion Service of South Africa represented our 113 HIV-1 seronegative 

(62% females, 38% males) population-matched controls Informed consent was 

obtained from all the study participants and the Ethics Review Committee of the 

University of Stellenbosch approved the study protocol (#98/158).   

 

Assays based on DGGE were utilised for the mutation screening of IL4 and 

IL10 promoter SNPs in a blinded manner.  Two DGGE PCR primer sets, 

including a GC-clamp (GC-rich fragment) on the 5’end of either the forward or 

reverse primer, were designed for each of the partial promoter regions of IL4 

(nucleotide (nt) -549 to -640 and codon 8 to nt -169) and IL10 (nt -878 to -1113 

and nt -569 to -860) (Table 1). Detailed PCR reaction mix protocols and 

amplification conditions are available on request.  The two amplicons for both 

IL4 (pooled P1 and P2) and IL10 (pooled P1 and P2) were electrophoresed in a 

single lane of a 9% polyacrylamide gel containing a 30% to 70% urea and 

formamide (UF) denaturing gradient (100% UF = 7mol/L urea per 40% 
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deionised formamide), at 60oC for 110 volts overnight.  Gels were stained with 

ethidium bromide before being photographed for mutation analysis.  This was 

followed by sequencing of samples that showed aberrant banding patterns. 

Testing for significance of heterogeneity in cases versus controls was achieved 

using the Fischer’s exact or chi-square (x2) test for 2x2 contingency tables.  The 

Hardy-Weinberg equilibrium (HWE) principle was applied to measure the 

distribution of allele and genotype frequencies within the sample group. Using 

the x2 test for independence, significance of genotype frequencies between 

cases and controls were determined.  Haplotype analysis was performed using 

the expectation-maximization (E-M) algorithm. (GraphPad Software Inc, San 

Diego, California and SAS Institute Inc. software, Cary, North Carolina). 

 

RESULTS 
 

The IL4 and IL10 DGGE assays were specifically designed for the partial 

analysis of the promoter regions of these genes.  This resulted in the 

identification three novel variants within the IL4 promoter region at nucleotide 

positions -594A>C, -142A>G and -112G>A (relative to the translation start site), 

as well as the identification of the five previously reported IL4 and IL10 promoter 

SNPs.   Allele frequencies of the novel variants (0.005 to 0.021) did not warrant 

further analysis in this study.  Genotyping the known promoter variants showed 

distributions in accordance to the HWE principle for all SNPs, except              

IL4-589C>T in the HIV-1 seropositives (P = 0.03).  The IL10-819C>T and    

IL10-592C>A SNPs were in complete linkage disequlibrium as reflected by the 

allele and genotype frequencies shown in Table 1.  No significance was found 

for allele frequency comparison between HIV-1 seropositives and HIV-1 
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seronegatives for both the IL4 and IL10 SNPs (Table 1).  The allele carriage 

frequency analysis did however indicate significance for the IL10-819 T allele 

(CT and TT) and IL10-592 A allele (CA and AA) occurring more commonly in 

the uninfected controls when compared to the HIV-1 infected patients               

(P = 0.02).  Furthermore, the independent genotype analysis resulted in a 

significant association being observed for IL10-819C>T and IL10-592C>A in the 

cases versus the controls (P = 0.02) (Table 1).  The haplotype analysis for the 

IL4-589T>C and IL4-33T>C SNPs resulted in an uncommon allele combination, 

namely CT, being present exclusively in the uninfected controls (P = 0.0013) 

(Table 2).  Haplotype analysis for the IL10-1082A>G, IL10-819C>T and      

IL10-592C>A SNPs also showed marginal significance for the ACC allele 

combination occurring more commonly in the HIV-1 seronegatives (P = 0.04) 

(Table 2).  No associations were considered regarding progression to AIDS due 

to the large number of HIV-1 infected patients with unknown disease status. 

     

DISCUSSION 

The aim of our study was to determine the significance of IL4 and IL10 promoter 

variants in HIV-1 susceptibility for a well-defined Sub-Saharan African 

population, represented by Xhosa individuals. Previous inconsistent             

HIV-1/AIDS associations with IL4 and IL10 SNPs and haplotypes across 

various ethnic groups [Nakayama et al., 2000; Nakayama et al., 2002; Shin et 

al., 2000; Kwa et al., 2003; Vasilescu et al., 2003; Wang et al., 2004] have 

emphasised the importance of further investigating the role of these genes, 

particularly in a population severely infected by this devastating pandemic.        

It has been shown that not all candidate gene variants and haplotypes 
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previously implicated in HIV-1/AIDS are either present or have the same effect 

in the understudied African-based populations [Petersen et al., 2001; Ramaley 

et al., 2002].  Allele frequencies for the known IL4 and IL10 promoter SNPs in 

our Xhosa sample group were similar to those previously reported for African-

based populations [Shin et al., 2000; Meenagh et al., 2002; Basehore et al., 

2004; Wang et al., 2004].   

 

The HIV-1 infected patients showed deviation from the expected HWE genotype 

distributions for the IL4-589C>T SNP due to over representation of the 

heterozygous genotype (IL4-589 CT), which could be indicative of an 

association with increased susceptibility to HIV-1 infection (P = 0.03) (data not 

shown).  Further analysis showed that an uncommon haplotype consisting of 

the IL4 -589 C  and IL4 -33 T alleles (CT) is associated with decreased risk for 

HIV-1 infection as it was observed exclusively in 3.4% of the HIV-1 

seronegatives (P = 0.0013) (Table 2).  The CT haplotype has not been 

previously reported in disease association studies, including those for      

African-based populations where the IL4-589C>T and IL4-33C>T promoter 

SNPs form only three haplotypes (CC, TC, TT) [Basehore et al., 2004; Wang et 

al., 2004], as observed in the HIV-1 seropositives. 

 

A significant association was found with the presence of the T (CT and TT) and 

A (CA and AA) alleles of the IL10-819C>T and IL10-592C>A linked SNPs, 

respectively, and decreased risk for HIV-1 infection (P = 0.02) (data not shown).  

The IL10-819 CT and IL10-592 CA heterozygous genotypes were found at an 

increased frequency in the HIV-1 seronegatives (56%) versus the HIV-1 
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seropositives (39%) (P = 0.02) (Table 1).  This further supports an association 

between the presence of IL10-819 T and IL10-592 A alleles and reduced 

susceptibility to HIV-1 infection.  A marginal significance was observed for a 

haplotype consisting of the IL10-1082 A, IL10-819 C and IL10-592 C alleles 

(ACC) occurring at a higher frequency in the uninfected controls compared to 

the HIV-1 infected patients (P = 0.04) (Table 2).  It is therefore only suggestive 

of a possible association with decreased risk for HIV-1 infection  The presence 

of only three allele combinations (ATA, ACC, GCC) in both the cases and 

controls indicates strong linkage disequilibrium, which is in agreement with 

previous African-based studies [Shin et al., 2000; Meenagh et al., 2002]. 

 

The three novel mutations identified in the IL4 promoter region, IL4-594A>C,      

-IL4142A>G and IL4-112G>A could possibly have a functional significance by 

influencing regulation of gene transcription and/or protein expression. Due to 

the rare occurrence of these genetic variants and lack of clinical information for 

HIV-1 seropositive patients, no HIV-1/AIDS associations could be made. 

Further screening of 43 Caucasian control individuals did however provide 

confirmation of these mutations being exclusive to the Xhosa ethnic group.   

 

Previous studies of the IL4 and IL10 promoter variants and HIV-1/AIDS have 

resulted in an array of inconsistent findings.  A major strength of our study is the 

assessment of these markers in a population most affected by HIV-1/AIDS.  Our 

study indicates associations with HIV-1 susceptibility that are specific for the 

Xhosa ethnic group, in particular a novel IL4 promoter haplotype being 

significantly associated with resistance to HIV-1 infection.  Although the        
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IL4-589C>T SNP has been associated with increased gene transcription 

[Rosenwasser et al., 1995], further investigation is needed for determining the 

functional relevance of the IL4-33C>T SNP and more specifically the newly 

identified African-based IL4 haplotype.  Future studies with larger sample 

numbers from understudied Sub-Saharan African populations are also required.       
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Table 1.  Allelic and genotypic distribution of IL4 and IL10 promoter SNPs in cases versus controls 
 
 

 
 
HIV+, seropositive; HIV -, seronegative 
aThe second base pair indicates the minor allele 
b(-/-), (+/-) and (+/+) represents the minor allele homozygotes, heterozygotes and major allele homozygotes, respectively. 
#IL10-819C>T and IL10-592C>A SNPs are in complete linkage disequilibrium 
* Indicates significant P value less than 0.05.  
IL4P1: 5’-[40GC] [10AT] ACCTGATACGACCTGTCCTT-3’ and 5’-GGCAGAATAACAGGCAGACT-3' 
IL4P2: 5’-[40GC] [10AT] CCAAGTGACTGACAATCTGGT-3’ and 5’-AGCAGTTGGGAGGTGAGAC-3’ 
IL10P1: 5’-CCAAGACAACACTACTAAGGCT-3’ and 5’-[40GC] ACTGTACACCATCTCCAGCA-3’ 
IL10P2:  5’-[40GC] TTCTCAGTTGGCACTGGTGT-3’ and 5’-TTCCAGAGACTGGCTTCCTA-3’ 
GC-clamp used was as follows: [40GC] CGCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCGCCCG  
AT-stretch used was as follows [10AT] TATAATATTA

 
 

DGGE 
AMPLICON 

 
Minor Allele Frequency (%)_ 

 HIV+         HIV-              P NCBI ID 

 
 

 
Genea 

SNP HIV+        HIV-         HIV+        HIV-          HIV+        HIV-         P 

IL4         
-589 (T/C) rs2243250 IL4P1   28             30 0.52    5            11    46           39     49           50 0.09 
-33 (T/C) rs2070874 IL4P2   46             43 0.65   21           20    50           47     29           33 0.83 

        

IL10         
-1082(A/G) rs1800896 IL10P1    30            31 0.61    9             8    42           47     49           45 0.67 

-819(C/T)# rs1800871 IL10P2    32            37 0.14   12           10    39           56     49           34  0.02* 

-592(C/A)# rs1800872 IL10P2    32            37 0.14   12           10    39           56     49           34  0.02* 

         

 



 
                                                       

Table 2.  Haplotype analysis of IL4 and IL10 promoter SNPs in cases 
versus controls 
 
 
   Frequency (%)  

Gene Haplotype  HIV+ HIV- P 
IL4 C – C   26.1 24.3 0.53 
 T – C  19.5 21.4 0.57 
 C – T   0 3.4 0.0013* 
 T – T  54.3 50.9 0.35 
      
IL10 A – T – A   37.6 31.4 0.12 
 A – C – C   31.0 39.2   0.04* 
 G – C – C   31.4 29.4 0.58 

      
 
 
 

HIV+, seropositive; HIV -, seronegative 
IL4 haplotypes are for the IL4-589C>T, IL4-33C>T SNPs 
IL10 haplotypes are for the IL10-1082A>G, IL10-819C>T and IL10-592C>A SNPs 
*Indicates significant P value 
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ABSTRACT 

 
Mannose-binding lectin (MBL), a calcium dependant serum protein synthesised 

by the liver, plays an important role in innate immunity and binds to the gp120 

envelope protein of HIV-1.  Three single nucleotide polymorphisms (SNPs) 

identified in the coding region of the MBL gene (C52R, D54G, E57G) have been 

associated with lower serum MBL levels, as well as influencing susceptibility to 

HIV-1 infection, disease progression to AIDS and AIDS free survival.  In this 

study, we genotyped these functional SNPs within two diverse populations from 

South Africa, including Africans (Xhosa ethnic group) and Caucasians, to 

assess for association with HIV-1 susceptibility in 135 HIV-1 seropositive cases 

(114 Africans; 21 Caucasians) versus 109 HIV-1 seronegative controls (60 

Africans; 49 Caucasians).  In our study, no significant association between the 

presence of one or more of the functional MBL SNPs and HIV-1 susceptibility 

was observed in Africans or Caucasians.  A meta-analysis showed a marginally 

significant association between HIV-1 seropositivity and the presence of the 

MBLD54G mutant allele (pooled OR = 1.4, 95% CI = 1.0 – 2.0) in Caucasians, 

while this significance increased when considering homozygote/compound 

heterozygote association (pooled OR = 6.5, 95% CI = 2.1 – 20.1).    In 

conclusion, the role of the common functional MBL SNPs in conferring risk to 

HIV-1 infection may only be true for Caucasian-based populations. 

 

Keywords: Mannose binding lectin (MBL); HIV-1 susceptibility; meta-analysis; 

polymorphisms; diverse populations. 
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INTRODUCTION 

The study of host genetics and its role in human immunodeficiency virus-1   

(HIV-1) infection and progression to acquired immunodeficiency syndrome 

(AIDS) has been advanced by the identification of genetic variants in candidate 

genes encoding for proteins that have a functional role in the maintenance of an 

effective immune response.  Mannose-binding lectin (MBL), also known as 

mannose-binding or mannan-binding protein, is a calcium dependant serum 

lectin synthesised by the liver [Kawasaki et al., 1983] as part of the acute phase 

response following the primary invasion of various microorganisms [Thiel et al., 

1992].  The specific role of MBL in the innate immune response involves binding 

to the carbohydrate-rich domains on pathogens for destruction by either 

opsonisation (recognition by phagocytic cells) [Kuhlman et al., 1989] or 

activation of the lectin complement pathway (evolutionary precursor to the 

classical pathway) [Matsushita and Fujita, 2001].  

 

The human MBL gene, also known as MBL2, MBP1 and COLEC1 (MIM# 

154545) is located on the long arm of chromosome 10 at band position      

q11.2-21 and is represented by four exons and three introns.  The exons code 

for distinct protein domains, with exon 1 coding for the signal peptide and the 

NH2 terminal cysteine-rich, collagen-like domain [Sastry et al., 1989; Taylor et 

al., 1989].  Exon 1 MBL single nucleotide polymorphisms (SNPs), namely 

MBLC52R (rs5030737) [Madsen et al., 1994], MBLD54G (rs1800450) [Sumiya 

et al., 1991] and MBLE57G (rs1800451) [Lipscombe et al., 1992], also referred 

to as the D, B and C alleles, respectively, with A representing the wild-type 

allele, result in non-conservative amino acid changes disrupting oligomerisation 
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and resulting in impaired protein function [Sumiya et al., 1991; Wallis and 

Cheng, 1999].  They are believed to contribute to MBL deficiency in various 

populations [Madsen et al., 1994; Turner, 1996]. The population-specific allele 

frequencies for the three functional MBL SNPs are summarised in Table 1.    

 
Associations have been found with low serum MBL levels and increased 

susceptibility to a number of infectious diseases, including HIV-1/AIDS [Turner, 

2003; Eisen and Minchinton, 2003].  MBL has been found to bind the gp120 

envelope protein of HIV-1 and inhibit entry of the virus into cells in vitro 

[Ezekowitz et al., 1989].  Controversy does however exist as to whether       

MBL-binding leads to viral lysis or promotes infection by supplying the virus with 

an additional mode of entry [Sölder et al., 1989; Holmskov et al., 1994].  A 

range of findings has also been reported for association between MBL and 

susceptibility to HIV-1/AIDS.  One study showed the prevalence of MBL 

deficiency in HIV-1 seropositives to be similar to that of the normal population 

and the serum MBL levels in HIV-1 infected individuals were elevated at all 

stages of disease [Senaldi et al., 1995].  In contrast, a more recent study found 

that HIV-1 seropositives had significantly lower serum MBL levels when 

compared to HIV-1 seronegative controls, with MBL levels being linked to 

disease progression [Prohászka et al., 1997].  Individuals homozygous for the 

MBL SNPs were at increased risk for HIV-1 infection [Garred et al., 1997; 

Pastinen et al., 1998] and shorter AIDS-free survival [Garred et al., 1997].  

Furthermore the variant MBL alleles were also associated with slower disease 

progression to AIDS [Maas et al., 1998].  A recent study in a Gabonese 

population found homozygosity for MBLE57G, as well as compound 
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heterozygosity for MBLE57G (MBLE57G was found together with either 

MBLC52R or MBLD54G) to be associated with increased susceptibility to HIV-1 

infection.  The observation that persons heterozygous for this variant appeared 

to be less susceptible when compared to wildtype and mutant homozygous 

individuals could be suggestive of heterozygous advantage [Mombo et al., 

2003]. 

 

Current investigations are therefore not consistent with regards to the 

contribution of functional MBL SNPs influencing HIV-1/AIDS.  In this study the 

MBL SNPs were genotyped in diverse populations from South Africa and 

assessed for ethnic-specific association with HIV-1 susceptibility.  Meta-analysis 

was performed to increase the power of this study.  Therefore we aimed to 

quantify population-based differences in the role of MBL functional SNPs in 

HIV-1 susceptibility. 

 

MATERIALS AND METHODS 

Study population 

Bloods were obtained from 135 HIV-1 seropositive patients who attended 

Tygerberg Hospital, Woodstock Chapel Street Community Health Clinic or the 

Langa Clinic in the Western Cape Province of South Africa.  The clinical 

information for these individuals is limited and therefore disease progression is 

mostly unknown.  The Western Province Blood Transfusion Service of South 

Africa provided blood samples of 109 HIV-1 seronegative controls that are 

donors. The two diverse population groups in this study are represented by 

Africans, predominantly of Xhosa descent, and Caucasians, defined as being of 
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Dutch, French, German or British origin.  The various South African populations 

have been previously described [Hayes, 2003]. 

 

Genotyping  

A single denaturing gradient gel electrophoresis (DGGE) amplicon for the 

detection of the MBL SNPs was designed for partial analysis of exon 1 of the 

MBL gene. The primers used were 5’-GTGATTGCCTGTAGCTCTC-3’ and                   

5’-GACATCAGTCTCCTCATATCC-3’ with a 40bp GC-rich-fragment (GC-clamp,     

(5’-CGCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCGCCCG-3’)added 

to the 5’ end of the reverse primer, thus preventing complete strand 

dissociation.  Genomic DNA was extracted using the QiAmp extraction kit 

(Qiagen).  Each PCR reaction had a final volume of 50μl and contained 50ng of 

genomic DNA, 0.1mM of each deoxyribonucleoside triphosphate (dNTP), 

40pmol of each primer, 2.5mM of a 10x Mg2+ reaction buffer and 1 unit of DNA 

Taq polymerase (Boehringer Mannheim).  Amplification was performed using a 

9600 thermocycyler (Applied Biosysytems) and the following PCR cycling 

conditions; an initial denaturation at 960C for 3 minutes, followed by 32 cycles of 

denaturation at 960C for 45 seconds, annealing at 500C for 1 minute and 

elongation at 720C for 1 minute 20 seconds.  The final cycle was followed by an 

additional extension step of 720C for 7 minutes.  Prior to electrophoresis, 

heteroduplexing was performed via denaturation at 960C for 10 minutes, 

followed by renaturation for 45 minutes at 500C. The 204 base pair fragment 

was electrophoresed in a 9% polyacrylamide gel containing a 30% to 70% urea 

and formamide (UF) denaturing gradient (100% UF = 7mol/L urea per 40% 

deionised formamide), at 60oC for 110 volts overnight, using the Ingeny phorU-2 
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system (www.ingeny.com).  DGGE gels were stained with ethidium bromide 

and visualised using a UV transilluminator.  The MBL SNPs, including a 

previously reported MBLN44 SNP [Gabolde et al., 1999], were visualised as 

differing banding patterns.  All SNPs were confirmed via automated sequencing 

using the dye terminator sequencing kit (Applied Biosystems, 

www.appliedbiosystems.com).   

 

Studies for Meta-analysis 

All studies that examined the association of the MBLC52R, MBLD54G and 

MBLE57G SNPs with HIV-1 susceptibility were included in the meta-analysis.  

The search strategy was based on combinations of the following key words, 

“MBL”, “HIV susceptibility”, “allele frequency” and “polymorphism” using 

MEDLINE and EMBASE.  The studies were eligible if the aim was to identify 

HIV-1/AIDS disease risk associations within a specific population group.  

Studies were characterised by ethnic origin into African or Caucasian. 

 

Statistical Analysis  

Estimates and comparisons of allele frequencies were carried out using 

standard procedures based on the two-sided Fisher’s exact test.  Comparisons 

of genotype and allelic distribution were performed using unconditional logistic 

regression, including population groups and HIV-1 status and their interaction 

as covariates.  For the meta-analysis, pooled odds ratios (OR) and 

heterogeneity in the associations across the different studies were calculated 

using fixed effect models.  Heterogeneity in the estimates of allelic frequency 

was tested using logistic regression models with allele as outcome and study as 
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covariate.  The statistical analysis was performed using the statistical program 

“R” (www.insighful.com) including its package “rmeta” for the meta-analysis. 

 

RESULTS 

A single step DGGE assay was designed for the identification of all three 

functional MBL SNPs (C52R, D54G and E57G) and a previously reported silent 

polymorphism, MBLN44 [Gabolde et al., 1999].  Using this assay we 

determined the allele frequencies within two diverse populations from South 

Africa to determine the role of these markers in susceptibility to HIV-1.  Allele 

and genotype frequencies are presented in Table 2 and 3, respectively.  

 

South African Population 

The distribution of MBL variant alleles in both the HIV-1 infected and control 

group were in Hardy-Weinberg equilibrium across population groups (all P > 

0.05). The silent MBLN44 SNP was rare in both populations with allele 

frequencies below 2%.  MBLC52R was observed in the Caucasians at a 

frequency of 5%, but was absent in the Africans. The distribution of these two 

rare SNPs did not differ by HIV-1 status (all P > 0.4). The allelic frequency of 

MBLD54G varied across the two population groups (P < 0.0001), being higher 

amongst the Caucasians (15%) compared to the Africans (<2%). The allelic 

frequency did not differ by HIV-1 status in any of the population groups (all P > 

0.1).  MBLE57G was rare in the Caucasian population while the allelic 

frequency was 18% in the Africans.  No significant difference in allelic frequency 

by HIV-1 status was observed in Caucasians and Africans (both P > 0.7).  
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Homozygosity was observed for MBLD54G in one HIV-1 seronegative 

Caucasian and for MBLE57G in four HIV-1 seropositive and two HIV-1 

seronegative Africans.  No individual homozygous for MBLC52R was detected.  

Compound heterozygotes included only MBLD54G/MBLE57G observed in two 

HIV-1 seropositive Africans.   Analysis for the combined functional MBL variants 

and the presence of homozygous/compound heterozygous alleles revealed no 

significant associations in both population groups studied (all P values> 0.05).  

Linkage disequilibrium and haplotype measures were not calculated for the 

three SNPs as the occurrence of compound heterozygotes was generally rare. 

 

Meta-analysis 

A meta-analysis of studies (including our own) reporting the three functional 

MBL markers in relation to HIV-1 susceptibility was performed.  These studies 

are described in Table 4 and have been grouped according to ethnic 

background into Caucasian (three studies with a total of 228 HIV+ and 366 HIV) 

or African (two studies with a total of 182 HIV+ and 180 HIV-).  In these studies, 

HIV-1 seropositivity was identified by CD4+ T cell counts or western blotting, 

while all HIV-1 seronegative controls were blood donors tested for their HIV-1 

status.  As the study of Maas et al., 1998 included only HIV-1 seropositive 

individuals to determine association with progression to AIDS, it was not 

included in the meta-analysis.  Genotyping was performed using restriction 

fragment length polymorphism analysis, allele-specific oligonucleotide 

hybridisation, site-directed mutagenesis, DGGE and automated sequencing. 
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No evidence for heterogeneity in the distribution of the alleles across the 

populations grouped was found (all P > 0.2).  In the African populations (our 

study combined with the Gabonese study) no significant associations were 

found for either MBLD54G (pooled OR = 2.3, 95% CI = 0.6 - 9.1) or MBLE57G 

(pooled OR = 1.3, 95% CI = 0.9 -1.9).  A marginally increased frequency of 

MBLD54G was found in HIV-1 seropositives in the pooled Caucasian population 

(pooled OR = 1.4, 95% CI = 1.0 - 2.0, P = 0.05).  This pattern was even more 

evident when combining the MBL variants and considering homozygotes and 

compound heterozygotes (pooled OR = 6.5, 95% CI = 2.1-20.1). 

 

DISCUSSION 

In this study, we examined three well-characterised functional polymorphisms of 

the MBL gene and their relationship to HIV-1 susceptibility in two diverse 

populations from South Africa.  A meta-analysis was performed to determine 

population-based associations. 

 

Allele frequencies for all MBL dimorphic markers within the South African 

Caucasian population were highly comparable with previous reports.  Although 

the allele frequencies of these markers were comparable to most of the African 

studies reported, allele frequencies within the African (Xhosa) population from 

South Africa most closely resembled those reported in the Gabonese study 

determining association with HIV-1 susceptibility [Mombo et al., 2003].  A South 

to North/North-West trend of increased allele frequency for the MBLE57G SNP 

within Africa was observed.   
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No significant associations with disease progression were observed for 

MBLC52R, MBLD54G and MBLE57G in the two populations represented in our 

South African study.  We did however, find four out of five Caucasian HIV-1 

seropositives who are heterozygous for MBLD54G to display slow progression, 

which should be taken into account considering the majority of our HIV-1 

infected individuals have unknown disease status.  This would support the 

findings by Maas et al. in 1998, where variant MBL alleles have been 

associated with slower progression to AIDS.  A meta-analysis of the Caucasian 

populations however revealed a trend towards association with the MBLD54G 

variant and increased susceptibility to HIV-1 infection.  MBLD54G is the most 

common of the three functional variants occurring in Caucasians and the lack of 

previous associations specifically with this SNP may be due to low sample 

numbers used for individual studies. 

 

No significant association was observed with the MBLE57G SNP and risk for 

HIV-1 infection in the African and extended African population meta-analysis, 

although the latter only consisted of two studies.  The previous Gabonese study 

showed that homozygosity or compound heterozygosity for MBLE57G is 

associated with increased risk for HIV-1 infection, while heterozygosity is linked 

to protection [Mombo et al., 2003].  When we assessed for MBLE57G 

homozygotes and heterozygotes, no significant associations with either 

increased or decreased susceptibility for HIV-1 infection or disease progression 

were observed.  It has been shown that MBLE57G results in lower serum MBL 

concentrations that could lead to impairment of opsonisation [Super et al., 1989] 

and therefore an inability to destroy pathogens, including HIV-1.  Our findings 
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thus suggest a hypothesis for selection against the MBLE57G variant, as lower 

allele frequencies are being observed for African populations of Sub-Saharan 

Africa where the HIV-1/AIDS pandemic is most severe.     

 

All previously reported studies investigating the role of variant MBL alleles and 

HIV-1/AIDS susceptibility involved the combined analysis of the three functional 

variants to determine association.  When considering the combined effect of 

MBL SNPs within our two diverse populations, no significant associations were 

observed.  The meta-analysis of the combined dimorphic markers showed no 

effect in the pooled African population, but a significant association was 

observed in the collective Caucasian population for an increased risk for HIV-1 

infection, in agreement with two previous studies [Garred et al., 1997; Pastinen 

et al., 1998].   

 

The controversy that exists in determining the exact role of these functional 

MBL SNPs in HIV-1 susceptibility may be explained by the small study 

numbers, which may result in spurious findings [Ioannidis et al., 2003].  

Therefore the multigenetic nature of the association requires large study 

numbers to clarify relatively small ORs. Obtaining such well-defined            

case-control studies in Africa has proved difficult to date [Hayes et al., 2002] 

and therefore additional studies are required to combine data from populations 

with the same or similar ethnic heritage.  In doing this, one cannot exclude the 

population divergence that occurs even within closely related populations, as 

seen throughout Africa.  It is also important to note that other polymorphisms 

within the MBL gene, for example the previously reported promoter variants at 
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positions –550 (H/L variant) and –221 (X/Y variant) [Madsen et al., 1995], could 

together with the coding functional variants, collectively determine an 

individual’s susceptibility for HIV-1/AIDS.  The exact interaction between MBL 

and HIV-1 is still largely unknown and thus further studies are required to verify 

the associations observed across well-defined populations.   

 

In this study we have implicated a strong population influence with regards to 

the role of the functional MBL dimorphic markers in HIV-1 susceptibility.  We 

demonstrated a trend towards increasing HIV-1 susceptibility in Caucasian 

population groups, while no association with susceptibility was observed in 

Africans even from the same geographical location.  These findings emphasise 

the need for large-scale studies across diverse ethnic groups to determine 

population-specific association with HIV-1 susceptibility.   
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Table 1.  Minor allele frequencies of MBL SNPs within various populations. 
 

Population Sample   
size 

C52R D54G E57G Reference 

Caucasian  
Danish* 123 0.049 0.130 0.020 Garred et al., 1992a,               

Madsen et al., 1994 
Danish a * 255 0.045 0.143 0.022 Garred et al., 1997 

Danish 9245 0.076 0.145 0.017 Dahl et al., 2004 
British 98 0.020 0.168 0 Lipscombe et al., 1992; 1996 
British 302 0.066 0.144 0.015  Mead et al., 1997 

Finnish a 305 0.026 0.121 0.015 Pastinen et al., 1998 
Dutch a 131 0.069 0.145 0.008 Maas et al., 1998 

Australians 236 0.076 0.144 0.030 Minchinton et al., 2002 
 Caucasian a 

(South Africa) 70 0.050 0.150 0.014 This study 

African  
Kenyans** 56 - 0.009 -  Garred et al., 1992b 
Kenyans** 66 0.045 0.030 0.235 Madsen et al., 1994 
Gambians 99 Babies 

100 Adults 
- 

0.010 
0.005 

0 
0.232 
0.288 Lipscombe et al., 1992; 1996 

San (Namibia) 58 0 0.034 0.069 Lipscombe et al., 1996 
Gabonese a *** 188 0 0.016 0.157 Mombo et al., 2003 
Gabonese*** 214 0 0.026 0.187 Mombo et al., 2003 

Central Africans*** 266 0 0.007 0.202 Mombo et al., 2003 
West Africans 311 0 0.024 0.307 Mombo et al., 2003 

Southeast Africans   
(Mozambique) 154 0 0 0.240 Madsen et al., 1998 

Xhosa (South Africa) 45 0 0 0.267 Lipscombe et al., 1996 
Xhosaa (South Africa) 174 0 0.017 0.175 This study 

Other  

Eskimos 73 0 0.130 0 Garred et al., 1992b,              
Madsen et al., 1994 

Chinese 123 0.010 0.114 0 Lipscombe et al., 1996 
Papua New Guinea      

(SW Pacific) 49 0 0.071 0 Lipscombe et al., 1996 

Vanuatu (SW Pacific)  112 0 0.013 0 Lipscombe et al., 1996 
Chiniguanos Indians 

(South America) 43 0 0.420 0.010 Madsen et al., 1998 

Mapuche Indians 
(South America) 25 0 0.460 0.010 Madsen et al., 1998 

Cape Coloured 
(South Africa) 101 0.020 0.110 0.060 Hoal-Van Helden et al., 1999 

Walpiri Australians 190 0.003 0 0 Turner et al., 2000 
Central Desert 

Australians 103 0.005 0 0 Turner et al., 2000 

Columbian 278 0.036 0.120 0.036 Malik et al., 2003 
 

a Indicates studies for the screening of MBL SNPs to determine association with HIV-1/AIDS.           

 */**/*** Indicates that the same individuals may have been included for both studies. 
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Table 2.  Allele frequencies of MBL variants among 135 HIV-1 seropositive 

and 109 HIV-1 seronegative individuals from two South African population 

groups ordered according to the codon at which they occurred. 

 Africans Caucasians 

MBL SNP 
HIV +                     HIV - HIV +                    HIV - 

(n = 228)               (n = 120) (n = 42)                (n = 98) 

N44 2 (0.009) 2 (0.017) 0 1 (0.010) 

C52R 0 0 3 (0.071) 4 (0.041) 

D54G 6 (0.026) 0 7(0.167) 14 (0.143) 

E57G 42 (0.184) 19 (0.158) 0 2 (0.020) 
 

 n, number of alleles;  HIV+, HIV-1 seropositive; HIV-, HIV-1 seronegative  

 

 

 
 
 

Table 3.  Distribution of MBL genotypes among 135 HIV-1 seropositve and  

109 HIV-1 seronegative individuals from two South African population groups. 

 
 
 

Genotype                    
No. of individuals             

 

 
HIV-1 seropositive 

 
     Africans          Caucasians 
        114                     21 

 
HIV-1 seronegative 

 
    Africans          Caucasians 
         60                      49 

Homozygous normal 

(52C/C, 54G/G, 57G/G) 

72 11 43 30 

Heterozygous mutant 

52C/T 

54G/A 

57G/A 

36 

0 

4 

32 

10 

3 

7 

0 

15 

0 

0 

15 

18 

4 

12 

2 

Homozygous mutant  

54A/54A 

57A/57A 

4 

0 

4 

0 

0 

0 

2 

0 

2 

1 

1 

0 

Compound heterozygous 

54A/57A 
2 

2 

0 

0 

0 

0 

0 

0 
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Table 4.  Characteristics of studies included in testing for heterogeneity of allele 

frequencies and the meta-analysis grouped according to population background. 

 

Country Eligible 
subjects 

 HIV+     HIV - 

Association  Reference 

Caucasian     

Denmark 96 123 Homozygosity for MBL variant alleles 
associated with increased risk of 
HIV-1 infection.  The MBL variant 
alleles in both the heterozygous and 
homozygous state is also associated 
with shorter survival time after the 
diagnosis of AIDS.  

Lipscombe et al., 1996 

Finland 111 194 Homozygosity for MBL variant alleles 
was significantly increased in the 
HIV-1 infected groups. 

Pastinen et al., 1998 

South Africa 21 49 NONE This study  

TOTAL 228 366 Significant association for combined MBL variant alleles 
associated with increased risk for HIV-1 infection. 
Specifically a significant association with homozygosity for 
MBL variants and increased risk for HIV-1 infection.  Also a 
trend towards significance specifically for MBLD54G and 
increased risk to HIV-1 infection. 

African     

Gabon  68 120 Homozygosity and/or compound 
heterozygosity for the MBLE57G 
allele is associated with an 
increased risk of HIV-1 infection. 

Mombo et al., 2003 

South Africa 114 60 NONE  This study 

TOTAL 182 180 NONE 
 

HIV+, HIV-1 seropositive; HIV-, HIV-1 seronegative 
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Discussion 
 
Two theories for the manner in which genetic variants influence common traits 

have been proposed.  The first is known as the common disease/common 

variant hypothesis based on the idea that common susceptibility alleles for 

common traits arose before the differentiation of populations.  Alleles at a few 

loci will therefore occur at high frequency across diverse ethnic groups and be 

useful when determining genetic associations that are identical for various 

populations.  However, when the common disease/common variant hypothesis 

does not hold, it’s possible that less frequent or rather population-based alleles 

influence susceptibility to complex traits.  This could be the case in particularly 

the older understudied African populations who display higher levels of genetic 

diversity [Goldstein and Chikhi, 2002; Tishkoff and Williams, 2002; Tishkoff and 

Verrelli, 2003; Foster and Sharp, 2004].   

  

The importance of host genetic factors in determining susceptibility to HIV-1 

infection and progression to AIDS has been advanced by population-based 

association studies investigating the roles of various candidate genes.  These 

case-control studies involve the comparison of unrelated HIV-1 seropositives to 

population-matched HIV-1 seronegatives and have resulted in the identification 

of genetic variants associated with influencing individual risks for HIV-1/AIDS.  

Previous studies were generally restricted to Caucasian-based populations and 

only more recently have been extended to African-Americans and other 

admixed populations [Reviewed in Carrington et al., 2001; Hogan and Hammer, 

2001; Dean et al., 2002; Anastassopoulou and Kostrikis, 2003; O’Brien and 

Nelson, 2004; Winkler et al., 2004; Kaslow et al., 2005].  The study of host 
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genetic factors and HIV-1/AIDS in populations of Sub-Saharan Africa where the 

rampant pandemic accounts for 60% of all worldwide infections has however 

been largely limited.  

 

The case-control study sample presented in this dissertation consisted of 

individuals belonging to an African population of Xhosa descent from          

South Africa (see Chapter 1.2). The study approach involved identifying and 

determining the distribution of previously reported and novel mutations for 

known candidate genes in this relatively homogenous ethnic group (see 

Chapter 2 to 4 and Appendix A to D).  Genetic variants occurring in the Xhosa 

ethnic group were screened for in additional South African Caucasian 

individuals of European descent.  It has been suggested that caution should be 

taken in extrapolating genetic associations from one population to another.  This 

includes when studying various South African populations [Corfield and Brink, 

2002] and when considering genetic factors influencing HIV-1/AIDS 

susceptibility [Ramaley et al., 2002] (see Chapters 2 to 4 and Appendix A to D). 

 

The studies in this dissertation mainly focused on HIV-1 infection risk rather 

than disease progression to AIDS.  This was due to insufficient information 

available regarding the date of seroconversion and clinical staging of the HIV-1 

infected individuals.  Most of these persons were tested for HIV-1 at time points 

after they had already presented with AIDS-related symptoms.  Their inclusion 

in the study sample was therefore only based on their HIV-1 seropositive status 

and no additional information regarding possible dates of HIV-1 seroconversion 

was required.  The population-matched HIV-1 uninfected controls are blood 
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donors and were recruited for the study by considering their HIV-1 seronegative 

status.  It is unknown whether any of these HIV-1 seronegative controls have 

been previously exposed to HIV-1 and due to confidentiality, information 

regarding their health status and age was not requested.   

 

DGGE assays were designed for the screening of both previously reported and 

novel genetic variants, while the TaqMan allelic discrimination assays provided 

high-throughput genotyping for SNPs previously implicated in HIV-1/AIDS 

pathogenesis (see Chapter 1.3).  Both these methodologies offered reliable and 

reproducible mutation detection results, provided that the assays were optimally 

standardised.  Comprehensive statistical analysis of the study sample was 

achieved using computational programs (see Chapter 1.2) to determine 

heterogeneity between the cases and controls and possible significance for 

establishing HIV-1/AIDS associations (see Chapters 2 to 4).  

 

The study sample size is an important factor to consider when deciding on the 

validity of a genetic association.  Although the sample numbers for studies in 

Chapters 2 to 4 are not high enough for classification as a large-scale 

investigation, novel African-based genetic variants were observed.  The 

Caucasian-based CCR5Δ32 HIV-1/AIDS restriction mutation was completely 

absent in the Xhosa ethnic group.  Therefore, the possibility of an African-based 

single variant or more likely a number of polymorphic sites that are collectively 

associated with susceptibility to HIV-1/AIDS needs to be explored extensively in 

diverse African ethnic groups. 
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Future prospects 

A model quantifying the rate at which AIDS restriction variants delaying disease 

progression will undergo natural selection in South Africa has been proposed 

[Schliekelman et al., 2001].  South Africa has the highest HIV prevalence in the 

world and the model projections under HIV-1 induced selection suggest that 

within 100 years resistant genotype frequencies will increase from 40 to 53% 

and causative genotype frequencies will decrease from 20 to 10%, resulting in 

an increased average time to AIDS onset from 7.8 to 8.8 years.  This model is 

however based on CCR5 variants influencing HIV-1/AIDS susceptibility in 

African Americans and it is now known that the same associations cannot be 

assumed for African-based populations from Sub-Saharan Africa.  A large study 

of an Ugandan population found that CCR5 variants were not associated with 

determining HIV-1/AIDS risk profiles and therefore suggested that the CCR5 

gene may not be subjected to rapid evolutionary change in an African setting 

[Ramaley et al., 2002].  Novel associations were identified between CCR5 

promoter variants and HIV-1 infection risks for the Xhosa population from South 

Africa (see Chapter 2.1), but larger study samples with known disease 

progression for HIV-1 seropositives are required before further considering 

projected models for HIV-1 induced selection. 

 

The genetic variants identified and analysed in the Xhosa ethnic group provide 

a strong basis for further investigation of large informative African-based study 

samples.  Future studies should however not only consider associations with 

HIV-1 infection risks, but also establish possible significance with disease 

progression to AIDS.  The latter has been proven difficult, but could eventually 
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be overcome by the recent improvement of HIV/AIDS awareness programs and 

the access to service centers that offer not only free HIV-1 testing, but also the 

support and care for those individuals who are HIV-1 seropositive.  Future 

collaborations with healthcare workers who are specifically trained in the 

management of those persons living with HIV/AIDS, together with the HIV-1 

seropositive individual’s informed consent, could provide a study sample that 

overcomes the present limitations for AIDS progression association studies.                  

 

The studies presented in this dissertation (Chapter 2 to 4) showed association 

between HIV-1 infection risk and a few SNPs, including CCR5-2733A>G,           

CCR5-2135C>T, CX3CR1V249I (Chapter 2.1), SDF1-3’G>A (Chapter 2.2), 

IL10-819C>T, IL10-592C>A (Chapter 3.2) and MBLD54G (Chapter 4), and 

specific haplotypes for IL4 and IL10 (Chapter 3.2).  The possibility exists that 

these SNPs and haplotypes may be in LD with other previously reported or 

unknown genetic variants.  Functional studies based on the existing knowledge 

of those genetic variants associated with influencing HIV-1/AIDS susceptibility 

could however refine the search for the causative or resistance genetic variants.  

Future research would therefore be required for determining the underlying 

functional effects of all common genetic variants and their extended haplotypes.  

An example would be determining the functional consequence of the novel IL4 

haplotype (comprising IL4-589 C and IL4-33 T alleles) associated with 

increased risk for HIV-1 infection in the Xhosa ethnic group (see Chapter 3.2).         

 

There is an additional approach for determining genetic associations that will be 

performed in the near future.  It is referred to as genome-wide association 
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studies, which involves the genotyping of a dense set of SNPs across the entire 

genome to identify common genetic variation playing a role in determining 

common trait susceptibility.  The choice of SNPs for these studies is dependent 

on the frequency of all common variation in the specific population studied.  

Many SNPs have alleles that are in strong linkage disequilibrium with other 

closely lying SNP alleles and therefore comprehensive genome-wide 

association studies can be based on a selection of evenly spaced tagSNPs 

representing variation across relatively large regions.  A higher density of 

variants would need to be genotyped for comprehensive analysis of regions that 

show low LD.  A larger number of tagSNPs are therefore required in         

African populations with more variation and less LD.  Identifying these tagSNPs 

for different populations is a main goal of the HapMap project which is due for 

completion within the next two years [Hirschhorn and Daly, 2005; Wang et al., 

2005].     

 

The genome-wide association studies could provide a more cost-effective 

means to determine common genetic variation compared to the candidate gene 

approach.  Although the candidate gene studies have had a considerable 

amount of success, only a limited number of genes have been investigated.  

The feasibility of genome-wide analysis of common SNPs will however depend 

on variant identification in multiple genes with distinct influences on 

susceptibility to complex traits.  Complete genome sequencing for many case 

and control individuals could provide a comprehensive overview of the genetic 

host factors underlying common traits. This would include the screening of both 

coding and non-coding variants and the identification of both rare and common 
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variants with functional roles.  Presently, this approach is not practical, 

particularly due to the high costs involved in automated sequence technology 

[Hirschhorn and Daly, 2005; Wang et al., 2005].   

 

To date, the discovery of functional genetic variants have resulted in an 

improved understanding of host response to HIV-1 and raises the prospects of 

therapeutic intervention by targeting and disrupting complex interactions 

between HIV-1 and host proteins during virus exposure and post virus entry 

[Nolan et al., 2004; O’Brien and Nelson, 2004].  The knowledge of host genetic 

factors for establishing HIV-1/AIDS risk profiles specific for African populations 

of Sub-Saharan Africa could contribute to optimising future approaches for 

preventing HIV-1 infection (vaccine development) and particularly long-term HIV 

management (therapies administered are based on patient’s genetic makeup) in 

pandemic-stricken countries such as South Africa.   
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Novel mutations identi®ed using a comprehensive
CCR5-denaturing gradient gel electrophoresis assay

Desiree C. Petersena, Maritha J. Kotzea, Michele D. Zeierb,

Ashraf Grimwoodc, Deon Pretoriusd, Eftyhia Vardase,

Estrelita Janse van Rensburgd and Vanessa M. Hayesd,f

Background: Most mutations detected for the gene for CC chemokine receptor 5
(CCR5) are either relatively speci®c to different population groups or rarely observed
in Africans.

Objectives: To develop a comprehensive mutation detection assay for the entire
coding region of CCR5 and to identify novel mutations that may play a role in genetic
susceptibility to HIV-1 infection, within the diverse South African population.

Design: The study cohort consisted of 103 HIV-seropositive patients and 146 HIV-
seronegative controls of predominantly African descent.

Methods: A mutation detection assay for the entire coding region of CCR5 was
designed; this included ampli®cation of part of the coding region of CCR2. The assay
was based on denaturing gradient gel electrophoresis (DGGE) and allowed the
complete analysis of samples from 10 individuals per denaturing gel.

Results: The use of the CCR5-DGGE assay led to the identi®cation of seven novel and
six previously reported mutations. All novel mutations, including a common poly-
morphism at codon 35, occurred exclusively in non-Caucasians, indicating possible
African origin.

Conclusion: A comprehensive DGGE mutation detection assay has been developed
for the entire coding region of CCR5. Application of this assay resulted in the
identi®cation of novel CCR5 mutations, which may have a signi®cant effect on the
normal functioning of CCR5 and thus contribute to host variability and susceptibility
to HIV-1 infection and/or progression to AIDS within this population.

& 2001 Lippincott Williams & Wilkins

AIDS 2001, 15:171±177

Keywords: CCR5, denaturing gradient gel electrophoresis (DGGE), novel
mutations, HIV-1 susceptibility, South Africa

Introduction

Various chemokine receptors have been identi®ed as
co-receptors necessary for cellular infection by HIV
[1±4]. The CC chemokine receptor 5 (CCR5) is a
seven transmembrane G-coupled protein consisting of
352 amino acid residues; it binds the â-chemokines
RANTES and macrophage in¯ammatory protein 1á
and 1â [5]. It is also recognised as the principle co-

receptor for the macrophage-tropic (M-tropic) strains
or non-syncytium-inducing (NSI) strains of HIV-1 and
facilitates fusion of the viral envelope protein with
CD4� cells during the asymptomatic phase of infection
[1,2,6,7]. The expression of CCR5 at the cell surface
may, therefore, have a direct in¯uence on the indivi-
dual variability and susceptibility to HIV-1 infection.

CCR5 is located at band p21 of chromosome 3 [8] and
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comprises four exons and two introns, of which exon 4
contains the entire open reading frame [9]. The most
widely studied CCR5 mutation is a 32 base pair (bp)
deletion (CCR5Ä32) within the coding region, which
results in premature termination of translation and the
formation of a truncated protein [8,10]. Individuals
homozygous for CCR5Ä32 have been shown to have
some protection against HIV-1 infection, although this
protection is not absolute. Heterozygous carriers display
partial protection against HIV-1 infection, and evi-
dence exists that a single deletion mutant in HIV-
seropositive individuals may slow progression to AIDS
[8,10±13]. Population surveys have shown that
CCR5Ä32 is largely con®ned to Caucasians (allele
frequency of 0.092) and is extremely rare in Africans
[10,12,14]. This suggests the presence of other possibly
protective/causative mutations in the African popula-
tions and underscores the importance of comprehensive
CCR5 mutation analysis in the diverse South African
populations. Several other genetic variants in the
CCR5 coding region have been described. However,
their role in HIV-1 infection or progression to AIDS
could not be deduced because of the low allelic
frequencies of these mutations in the population groups
studied [11,15±18].

In this study, we describe a comprehensive CCR5
mutation detection assay for the entire coding region of
the gene, using denaturing gradient gel electrophoresis
(DGGE). This method was developed by Fischer and
Lerman in 1983 [19]. It a polymerase chain reaction
(PCR)-based method and is believed to be the most
powerful of the pre-screening methods of mutation
detection currently available. The technique involves
the differential melting of double-stranded DNA mole-
cules in a gradient with an increasing concentration of
urea and formamide. The addition of a guanine and
cytosine (GC)-rich fragment (GC-clamp), introduced
during fragment ampli®cation, prevents total strand
dissociation and allows for the detection of single base
mutations, making DGGE virtually 100% sensitive
[20,21].

Using this assay, 103 HIV-seropositive patients and 146
healthy controls were screened for mutations in the
coding region of CCR5. Our results obtained in the
unique South African population are presented in this
study.

Methods

Sample population
Blood samples were drawn from 103 HIV-seropositive
patients (35 male and 68 female) residing in the
Western Cape of South Africa (Tygerberg Hospital and
Woodstock Chapel Street Community Health Clinic).

Disease progression of the majority of these individuals
was unknown. Blood samples from 146 HIV-seronega-
tive controls (56 male and 91 female) were obtained
from the Western Province Blood Transfusion Service,
South Africa. The study cohort consisted of Africans,
predominantly Xhosa (70 HIV positive and 64 HIV
negative), Coloureds (26 HIV positive and 72 HIV
negative), Caucasians (seven HIV positive and two
HIV negative) and Asians (eight HIV negative). An
additional nine samples from seronegative `high-risk'
commercial sex workers of Zulu descent were obtained
from KwaZulu-Natal, South Africa. In this study,
`African' refers to South Africans of central African
descent; `Coloured' refers to individuals of mixed
ancestral descent, including San, Khoi, African Negro,
Madagascan, Javanese and European origin; and `Cau-
casian' refers to South Africans of European descent,
mainly Dutch, French, German and British origin.
Informed consent for the study was obtained from all
participants. The Ethics Review Committee of the
University of Stellenbosch approved the study proto-
col.

Primer design
DGGE PCR primers (Table 1) were designed for the
entire coding region, including the donor/acceptor
splice site of intron 3/exon 4, of CCR5, using the melt
87 computer program [22] and conditions described by
Wu et al. [23]. The region to be analysed was divided
into six overlapping PCR fragments (A±F). In order to
prevent complete strand dissociation during ampli®ca-
tion, a GC-clamp was added to the 59 end of one of
the primers in each primer set. An additional stretch of
10 GC or AT (adenine, thyamine) nucleotides were
added to the 59 end of the non-clamped primer
(fragment B) or between the GC-clamp and the primer
(fragments C and D), respectively, to ensure a single
melting domain and thus optimal mutation detection of
the fragments.

DNA ampli®cation
Genomic DNA was extracted using conventional
methods and ampli®ed using the DGGE primer sets.
Each PCR reaction mixture of 50 ìl in total volume
contained 100 ng genomic DNA, 0.1 mmol/l of each
deoxyribonucleoside triphosphate (dNTP), 20 pmol of
each primer, 2.5 mmol/l 103 Mg2� reaction buffer
and 0.5 units DNA Taq polymerase (Boehringer
Mannheim, Mannheim, Germany). Ampli®cation was
performed using the following cycling conditions; an
initial denaturation at 968C for 3 min, followed by 32
cycles of denaturation at 968C for 45 s, annealing for 1
min, and elongation at 728C for 1 min. The last cycle
was followed by an additional extension step of 728C
for 10 min. Amplicons to be subjected to DGGE
analysis required an additional heteroduplexing step,
which involves denaturation at 968C for 10 min,
followed by renaturation for 45 min at the annealing
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temperature of the ampli®cation. The ampli®ed pro-
ducts were checked by electrophoresis of 5 ìl (10%) of
each sample in a 2% agarose gel.

Denaturing gradient gel electrophoresis
The DGGE conditions were optimized using condi-
tions previously described for broad-range DGGE
analysis [24]. The six amplicons were pooled into three
groups (group 1: fragments A, D and C; group 2:
fragments E and B, and group 3: fragment F) and
electrophoresed in a 9% polyacrylamide gel containing
a 30±70% urea and formamide denaturing gradient
(100% is 7 mol/l urea in 40% deionized formamide) at
598C and 110 V overnight. Gels were stained with
ethidium bromide and photographed under an ultra-
violet transilluminator. The optimally designed CCR5-
DGGE assay allows for the complete analysis of 10
patients per denaturing gel (Fig. 1).

DNA sequencing and mutation con®rmation
Ampli®ed products showing aberrant DGGE banding
patterns were subjected to automated sequencing using
a non-GC-clamped primer and the dye terminator
sequencing kit of Applied Biosystems (www.applied-
biosystems.com). Con®rmation of commonly occurring
polymorphisms were performed by mixing samples
showing similar DGGE banding patterns, followed by a
heteroduplexing step before electrophoresis on a dena-
turing gel [25]. Samples showing additional heterodu-
plex bands were subjected to sequencing.

Statistical analysis
Allele frequencies were determined by allele counting.
Testing for signi®cance of heterogeneity in mutation
frequencies among HIV-seropositive and HIV-sero-
negative subjects was based on both the chi-square and

Fisher's exact tests. Yates' corrections were applied to
improve the approximation of the chi-square test.

Results

The DGGE PCR primer sets and annealing tempera-
tures are shown in Table 1. Application of the CCR5-
DGGE assay identi®ed seven novel point mutations
and six previously reported mutations, which are listed
in Table 2 according to the codon in which they
occur.

Of the seven novel mutations detected in this study,
four may ultimately result in structural changes in the
CCR5 protein. The ®rst, a nonsense mutation at
codon 225 (CGA-TGA), results directly in the forma-
tion of a truncated protein through conversion of the
amino acid Arg to a premature stop codon. Both codon
2 (GAT-GTT) and codon 225 (CGA-CAA) mutations
result in a non-conservative amino acid change (repla-
cement of one amino acid by another with different
chemical properties) from Asp to Val and from Arg to
Glu, respectively. The fourth mutation at codon 107
(CTC-TTC), although resulting in a conservative
amino acid change (Leu to Phe), involves the inclusion
of an aromatic side chain, which may have structural
and/or functional implications. All the individuals who
presented with the codon 107 (CTC-TTC) mutation
also presented with the codon 225 (CGA-TGA) muta-
tion; no individual was found to have only one of these
two mutations. The remaining three novel mutations
were all silent mutations, occurring at codons 35, 89
and 162, respectively. A high allelic frequency for the
codon 35 (CCG-CCA) polymorphism was detected in
both the HIV-seropositive and HIV-seronegative in-

Table 1. CCR5 primer sets and experimental conditions for polymerase chain reaction ampli®ca-
tion and DGGE.

Temperature (8C)

Fragment Amplimers 59±39 Size (bp) Melting Annealing

A [40GC]TGGAGGGCAACTAAATACAT
CGATTTGCTTCACATTGATT

196 67 54

B [10GC]ATTATACATCGGAGCCCTGC
[40GC]AGCATAGTGAGCCCAGAAGG

280 74 60

C [40GC][10AT]CTGGCCATCTCTGACCTGTT
GATGATTCCTGGGAGAGACG

332 73 60

D [40GC][10AT]ACTTGGGTGGTGGCTGTGTT
CATTTCGACACCGAAGCAGA

276 72 60

E TCATGGTCATCTGCTAGTCG
[40GC]GGTGTTCAGGAGAAGGACAA

192 72 58

F [40GC]TTCTCTTCTGGGCTCCCTAC
GTCACCAGCCCACTTGAGTC

390 74 60

bp, base pair.
GC-clamps used were: [40GC], CGCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCGCCCG;

[10GC], CGCCGCCGCG
AT-stretch used was [10AT], TATAATATTA.
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dividuals from African and Coloured descent (Fig. 1)
and occurred in a homozygous state in a single HIV-
seropositive Coloured female. This novel polymorph-
ism was totally absent in Caucasians. Because of the
low numbers of Caucasian individuals in the study
cohort, further screening of 28 Caucasians for codon
35 polymorphism con®rmed the absence of this muta-
tion in this population group. All the above mentioned
novel mutations were found exclusively in individuals
from African or Coloured ethnic background.

The six previously reported mutations observed in this
study include the most commonly studied, CCR5Ä32
at codon 185. This deletion mutation was observed
heterozygously in one HIV-seropositive Coloured and
one Caucasian and in ®ve HIV-seronegative Colour-
eds, while it was absent in the Africans studied. Three
non-conservative mutations at codons 55 (Leu to Glu),
223 (Arg to Glu) and 339 (Tyr to Phe), all previously
reported by Ansari-Lari et al. [15], were observed in
one HIV-seropositive Caucasian, one HIV-seronega-
tive Coloured and one HIV-seronegative African,
respectively. The silent mutation at codon 75, pre-
viously reported by Carrington et al. [16], was found to
be present in one HIV-seropositive African. The codon
335 polymorphism, involving an amino acid change
from Ala to Val, has also been previously reported by
Ansari-Lari et al. [15]. In our study, we detected this
polymorphism in four HIV-seropositive and four HIV-
seronegative individuals of African and Coloured des-
cent (Fig. 1).

All HIV-seropositive and HIV-seronegative individuals
presented with additional DGGE bands in fragment E,
lower (L) and/or upper (U), in combination with the
normal (N) CCR5 band (Fig. 2a). Heteroduplex bands
at a low percentage of urea and formamide were also
noted. Excision of these aberrant bands from the gel,
followed by direct sequencing, revealed 11 nucleotide
variations occurring in the lower band and an addi-
tional twelfth variation was included in the upper band.
Blasting the mutant sequence, using the Genbank
database (www.ncbi.nlm.nih.gov), revealed that this
sequence forms part of the gene for chemokine
receptor 2 (CCR2), including codons 217±267 (Fig.
2b). The polymorphism at codon 260 (AAC to AAT)

Table 2. CCR5 mutations detected in 103 HIV-seropositive patients and 146 HIV-seronegative controls, ordered according to the codon in which
they occurred.

Allele frequencya

Africans Coloureds Caucasians
Base

Mutation change Fragment HIV�(n � 140) HIV±(n � 128) HIV�(n � 52) HIV± (n �144) HIV� (n � 14) HIV± (n � 4)

D2Vb GAT-GTT A 1 (0.007) 0 0 1 (0.007) 0 0
P35b CCG-CCA B 6 (0.043) 9 (0.070) 9 (0.173) 10 (0.069) 0 0
L55Q CTG-CAG B 0 0 0 0 1 (0.071) 0
S75 TCT-TCC B 1 (0.007) 0 0 0 0 0
Y89b TAT-TAC C 0 0 0 1 (0.007) 0 0
L107Fb,c CTC-TTC C 1 (0.007) 2 (0.016) 1 (0.019) 0 0 0
P162b CCA-CCG D 1 (0.007) 0 0 0 0 0
Ä32 (185) ± D 0 0 1 (0.019) 5 (0.035) 1 (0.071) 0
R223Q CGG-CAG E 0 0 0 1 (0.007) 0 0
R225Xb,c CGA-TGA E 1 (0.007) 2 (0.016) 1 (0.019) 0 0 0
R225Qb CGA-CAA E 0 0 0 1 (0.007) 0 0
A335V GCA-CTA F 4 (0.029) 2 (0.016) 1 (0.019) 2 (0.014) 0 0
Y339F TAC-TTC F 0 1 (0.008) 0 0 0 0

aNo mutations detected in eight Asian HIV seronegative controls.
bNovel mutation identi®ed in this study.
cMutations occurring together in patients.

Fig. 1. Denaturing gradient gel electrophoresis banding pat-
tern covering the entire coding region of the gene for the CC
chemokine receptor 5 (CCR5) from six pooled amplicons of
10 patients; for details see the text. Lanes 1±10 contain group
1 (fragments A, D and C); lanes 11±20, group 2 (fragments E
and B) and lanes 21±30, group 3 (fragment F). The multiple
bands depicted for fragment E are explained in further detail
in Fig. 2a. Individuals in lanes 13 and 19 are heterozygous
for the codon 35 polymorphism (fragment B), and the indivi-
dual in lane 24 is heterozygous for the codon 335 poly-
morphism (fragment F).
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of CCR2 showed an allelic frequency of 0.62 for T
and 0.38 for C within our population group. All
mutations occurring within fragment E were con®rmed
as being CCR5 mutations by recognition of the DGGE
band intensities and con®rmation by excision of addi-
tional heteroduplex bands from the gel followed by
direct sequencing.

Discussion

In this study, we describe a comprehensive and
ef®cient mutation detection assay for the entire coding
region of CCR5. This assay, based on DGGE with its

virtual 100% sensitivity, allows for the complete analysis
of 10 patients per denaturing gel. The assay was used to
screen for possible novel CCR5 sequence variants in a
predominantly African and Coloured HIV-seropositive
and HIV-seronegative cohort from South Africa. Most
studies to date have restricted their analysis to the
CCR5Ä32 mutation, which, although fairly common
in Caucasians, is extremely rare in the African popula-
tions. Comprehensive analysis of CCR5 is, therefore,
of vital importance in the diverse South African popu-
lation.

Seven novel CCR5 mutations were identi®ed in the
African and Coloured populations. No novel mutations
were identi®ed in the Caucasian or Asian populations,
although numbers were small. Novel mutations at
codons 107 and 225 (CGA-TGA), which occur simul-
taneously, and at codons 2 and 225 (CGA-CAA) may
affect the functioning of CCR5 and thus provide
possible protection against HIV infection and/or pro-
gression to AIDS. One cannot, however, exclude the
possibility that the three novel `silent' mutations (co-
dons 35, 89 and 162) detected in this study affect
disease progression by altering regulatory elements that
affect RNA splicing [26,27]. The novel codon 35
polymorphism (CCG to CCA) occurred at an allelic
frequency of 0.06 and 0.1 in the African and Coloured
populations, respectively, and was absent in Caucasians,
indicating that it has a de®nite African origin. Although
numbers are small, a signi®cantly higher allelic fre-
quency (Fisher exact P � 0.017; ÷2 � 5.02, 1 df, P �
0.025) was observed in the Coloured HIV-seropositive
individuals compared with the HIV-seronegative con-
trols, while frequency was similar in the African HIV-
infected and control groups. The signi®cance of this
®nding warrants further investigation. The Coloured
female homozygous for the polymorphism showed
normal disease progression (progression to AIDS within
8 to 10 years after HIV infection). Because of the lack
of clinical information regarding disease progression of
majority of the HIV-seropositive patients, the potential
consequences of the different novel mutations could
not be evaluated and no signi®cant associations could
be made. It is, therefore, necessary to obtain updated
reports on the disease progression of all the HIV-
seropositive patients.

The CCR5Ä32 mutation, generally restricted to Cau-
casians, was found to be absent in the 134 Africans
studied, while it occurred at an allelic frequency of
0.03 in the Coloured population. The presence of this
deletion mutation in the Coloured population may be
a re¯ection of admixture with people of Caucasian
descent [14]. The presence of CCR5Ä32 in Coloureds
also provides evidence that no genetic incompatibility
between ethnic groups exists for this mutation [28].
One of the two HIV-seropositive individuals who were
heterozygous for CCR5Ä32 was a Coloured male

Fig. 2. Fragment E of CC chemokine receptor 5 (CCR5) gene.
(a) Denaturing gradient gel electrophoresis (DGGE) banding
pattern of fragment E in combination with codons 217±267
of CCR2. All samples (lanes 1±3) are homozygous normal (N
band) for CCR5. Samples were either homozygous or hetero-
zygous for the CCR2 codon 260 polymorphism. Lane 1,
homozygous 260-T (U band); lane 2, homozygous 260-C (L
band); lane 3, heterozygous 260-C/T (U and L homoduplex
and heteroduplex bands). Additional CCR5/CCR2 heterodu-
plex bands melt at a low percentage of denaturant in the
DGGE gel because of the high number of nucleotide mis-
matches. (b) CCR5 and CCR2 sequences ampli®ed using
DGGE fragment E primer set (arrows). The codon 260 (AAC/
AAT) polymorphism of CCR2 is in indicated in bold.

(b)
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asymptomatic 7 years after infection; the other was an
asymptomatic Caucasian male with long-term non-
progression (15 years since date of infection). The
polymorphism at codon 335 was only observed in
Africans (allelic frequency 0.02) and Coloureds (allelic
frequency 0.02). This supports previous studies which
suggested that the polymorphism has an African origin
with an allelic frequency of approximately 0.03 and is
rarely observed in Caucasian populations [15,16,18].
The mutations at codons 55, 75, 223 and 339 were
found at low allelic frequencies.

Within the nine `high-risk' seronegative commercial
sex workers of Zulu descent, no possibly protective
mutations were found within the coding region of
CCR5. As this assay does not include the promoter
region, the remaining 59 and 39 end untranslated
regions and the intronic sequences, we cannot exclude
the possibility that some signi®cant mutations occurring
in these regions may have been missed. Although this
study cohort is small, our ®ndings suggest that other
factors (including the possibility of alternative gene
involvement) may provide protection against HIV
infection within this population group.

Because of the high degree of sequence homology
between CCR5 and CCR2, part of CCR2 was
simultaneously ampli®ed using the CCR5 fragment E
primer set. Therefore, this assay also allows for compre-
hensive analysis of codons 217±267 of CCR2. In our
study, the T allele of codon 260 (AAC-AAT) was
found to occur more frequently (0.62) than the
commonly reported C allele (0.38). No statistically
signi®cant differences in allelic frequencies for this
polymorphism were observed and no additional CCR2
sequence variants were detected.

The relatively high frequency of novel mutations ob-
served in the African and Coloured patients demon-
strates the effectiveness of the CCR5-DGGE assay and
the importance of comprehensive CCR5 gene analysis
in populations where the CCR5Ä32 mutation is rare.
The recently admixed Coloured population of South
Africa may, therefore, represent a valuable candidate
population for the identi®cation of genes/mutations
underlying susceptibility to HIV/AIDS within the
African context. Future analysis on the effect of the
novel mutations on the functioning of CCR5 will
result in a better understanding of this chemokine
receptor and may contribute to the development of
HIV therapeutic and preventative measures that focus
on the interaction of HIV with the host proteins.
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African-based CCR5 single-nucleotide polymorphism associated with HIV-1 disease progression

The CC chemokine receptor 5 (CCR5), a seven
transmembrane G-coupled protein, is one of the major
co-receptors on CD4 T lymphocytes used for cell entry
during HIV-1 infection [1–3]. A 32 base pair (bp)
deletion (CCR5˜32), resulting in a defective CCR5
protein, was identified as reducing the risk of HIV-1
infection in the homozygous state, while offering
partial resistance to infection or reducing the rate of
disease progression to AIDS and death in the hetero-
zygous state [4–7]. This polymorphism has been
reported to occur at allelic frequencies of 0.092 in
Caucasians, and is extremely rare in populations of
African ethnic origin [4,7,8]. In a previous study [9],
we found CCR5˜32 to be absent (0/268 alleles) in
our African population (predominantly Xhosa from
central African descent) and present at an allele
frequency of 0.03 (6/196 alleles) in our coloured
population (mixed ancestral descent, including San,
Khoi, African negro, Madagascan, Javanese and Eur-
opean origin) from South Africa.

A number of mutations have been identified in the
promoter and coding regions of CCR5, which may
influence gene regulation or protein function. Two
African-based single nucleotide polymorphisms (SNP)
in the coding region of CCR5 have been identified by
ourselves and others, namely P35 [9] and A335V [10].
Although a recent study of a large Ugandan population
showed no association between these polymorphic sites
and either HIV-1 infection or the rate of disease
progression (P35 occurred at an allelic frequency less
than 0.01 within this population) [11], African-based
studies have been limited to date. We used these SNPs
to identify possible disease association in two African-
based populations residing in the Western Cape of
South Africa.

In an African setting, where clinic attendance is ham-
pered by factors such as vast distances, economic
burdens and a lack of patient education, it is very
difficult to classify patients accurately into appropriate
groups according to disease progression. Out of a study
cohort of 1035 HIV-seropositive individuals, 76 (7%)
could be classified into 35 normal (22 African, nine
coloured, four Caucasian), 22 slow (seven African,
eight coloured, seven Caucasian) and 19 fast progressors
(11 African, five coloured, three Caucasian). Normal
progressors were defined as individuals with a progres-
sive loss in CD4 cell counts, who developed AIDS-
related symptoms and co-infections within 10 years

after HIV-1 infection. All received clinical monitoring
for a minimum period of 5 years. Approximately 5% of
HIV-1-infected individuals remain asymptomatic for
more than 10 years after seroconversion with stable
CD4 cell counts, and are known as long-term non-
progressors (LTNP) [12,13], whereas others, namely
the fast progressors, develop AIDS within 2–5 years
after seroconversion. The criteria used to determine
slow and fast progression in this study is based primarily
on the length of time the patient remained asympto-
matic after seroconversion, as defined in Table 1. Only
17% (13/76) had received some form of antiretroviral
treatment.

All individuals were screened for the P35 and A335V
polymorphisms using the CCR5-denaturing gradient
gel electrophoresis (DGGE) assay previously described
by our group for fragments B and F, respectively. In
addition, all slow progressors were screened for the
CCR5˜32 using CCR5–DGGE fragment D primer
set and conditions [9]. Manual allele counting was used
for calculating allele frequencies, and statistical signifi-
cance was determined using Fisher’s exact test for
2 3 2 contingency tables (InStat version 3.0). None of
the 14 Caucasians analysed were found to have either
P35 or A335V and therefore, because of the African
origin of the markers, were excluded from further
calculations.

We first described the SNP occurring at codon 35 and
resulting in a silent mutation as an African-based
polymorphism, occurring at a significantly increased
allelic frequency in coloured HIV-seropositive indivi-
duals compared with HIV-seronegative controls,
whereas similar frequencies were observed within
infected versus non-infected Africans [9]. Increasing
our study population we found no statistically sig-
nificant differences between infected (17/164 alleles,
0.104) and non-infected (13/196 alleles, 0.066)
coloured individuals (P ¼ 0.2511). In addition, no
statistically significant differences were found when
comparing slow versus fast and slow versus normal
progressors.

When comparing allelic frequencies of the codon 335
polymorphism, which results in a conservative amino
acid change from an alanine to a valine, statistically
significant differences were observed between both
slow (4/30 alleles) versus fast (0/32 alleles) progressors
(P ¼ 0.0491) and slow versus normal (1/62 alleles)

ISSN 0269-9370 & 2002 Lippincott Williams & Wilkins 2229



progressors (P ¼ 0.0374) within the African-based
population groups (African and coloured). The CCR5-
A335V SNP was found to occur homozygously in a
single African woman who, remaining asymptomatic 7
years after infection, was classified as a ‘possible’ LTNP
with a CD4 cell count of 450 cells/mm3 and recent
(past year) antiretroviral treatment. Two slow progres-
sors, one ‘true’ LTNP coloured man (asymptomatic 14
years after infection; CD4 cell count 610 cells/mm3)
and one ‘possible’ LTNP coloured woman (asympto-
matic 6 years after infection, CD4 cell count 914 cells/
mm3), were heterozygous for this SNP, neither having
received any previous antiretroviral treatment. All slow
progressors were screened for the CCR5˜32 mutation
so as to exclude its effect on disease progression. Two
of the 15, one coloured woman remaining asymtomatic
10 years after infection (CD4 cell count 728 cells/
mm3) and one coloured man remaining asymtomatic 8
years after infection (CD4 cell count 1171 cells/mm3),
were heterozygous for the CCR5˜32 mutation.
Neither presented with the CCR5-A335V SNP.

In this study, we show a statistically significant associa-
tion between the CCR5-A335V SNP and decreased
disease progression from HIV infection to AIDS within
individuals of African ethnic origin residing in the
Western Cape of South Africa. The variable penetrance
observed for this protective association, together with
previous findings that this polymorphic marker results
in a functional response similar to that of wild-type
CCR5 [14], suggests that A335V does not contribute
directly in slowing disease progression. We therefore
hypothesize that this genetic marker, in combination
with other weaker genetic events, collectively acts in
slowing disease progression and may ultimately con-
tribute to providing an individual HIV susceptibility
risk profile for sub-Saharan Africans.
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Interleukin 7 production by bone marrow-derived stromal cells in HIV-1-infected patients during highly
active antiretroviral therapy

Haematopoiesis is supported by a complex network of
cell types, including non-haematopoietic (fibroblasts,
adypocytes and endothelial cells) and haematopoietic
cells [1]. Haematopoietic cells proliferate and differenti-
ate in the interstices of this network, being in close
contact with long cytoplasmic processes of stromal cells
[2]. One major function of stromal cells is the produc-
tion of IL-7 [3], which acts as a master regulator of T
cell homeostasis, expanding naive and peripheral T cell
populations [4,5]. In HIV-1-infected individuals, an
inverse correlation has been observed between the
levels of circulating IL-7 and the peripheral CD4 T
cells [6], as the production of other cytokines di-
minishes [7]. It may be hypothesized that in advanced
HIV-1 disease, stromal cells produce higher levels of
IL-7 as a compensatory mechanism to the decline in
the CD4 T cell count. At present, no data are available
regarding either IL-7 production by bone marrow
stromal cells in HIV-1-infected patients and the effects
exerted by antiretroviral therapy on this cytokine. In
this study we analysed stromal IL-7 production in bone
marrow cultures before and during highly active anti-
retroviral therapy (HAART) in a group of HIV-1-
infected patients.

Bone marrow mononuclear cells were collected from a
breastbone aspirate in six HIV-1-infected patients,
naive for HAART, with CD4 T cell counts between
100 and 300 cells/�l and plasma HIV-1 viral loads
greater than 10 000 copies/ml. A second bone marrow
evaluation was performed after 3 months of HAART.
Three seronegative individuals were studied as controls.
All subjects, who underwent bone marrow aspirates for
peripheral blood haematological abnormalities, gave
their written informed consent for the breastbone
aspiration, according to the Ethical Committee proce-
dures at our Institute. Bone marrow mononuclear cells
were cultured in 24-well plates in Iscove’s modified
Dulbecco’s medium (Gibco BRL, Life Technology
Italia srl, Milan, Italy), supplemented with 10% fetal
calf serum, 10% horse serum, 100 IU/ml penicillin–
streptomycin and 100 IU/ml glutamine, until stromal

confluence (3–4 weeks). Supernatants were collected
after 24 h of culture and measurements of IL-7 were
performed using enzyme-linked immunosorbent assay
with an ultrasensitive kit (R&D System, Minneapolis,
MN, USA). Non-parametric statistics were used (Wil-
coxon test) for comparisons between the parameters
analysed before and during therapy. Compared with
seronegative subjects, stromal cells from HIV-1-in-
fected individuals spontaneously produced higher levels
of IL-7 before starting HAART (0.17 � 0.10 versus
0.32 � 0.12 pg/ml, respectively). In Fig. 1 IL-7 pro-
duction is depicted for each patient before and during
therapy. The levels of stromal IL-7 production signifi-
cantly decreased in all patients during therapy, reaching
values comparable to those observed in control subjects
(0.19 � 0.06 pg/ml, P ¼ 0.02 versus baseline). This
finding was associated with a significantly increased
number of CD4 T cells (mean values from 188 � 81 to
288 � 54 cells/�l after 3 months of therapy, P ¼ 0.04)
and a significant decrease in HIV-1-RNA plasma levels
(from 5 � 0.6 to 1.4 � 0.8 log10/ml, P ¼ 0.02).

Furthermore, an inverse relationship has been observed
between bone marrow stromal IL-7 production and
peripheral CD4 T cell counts (r ¼ �0.767; P ¼ 0.003).
IL-7 is well recognized as a crucial cytokine for the
early development of T and B lymphocyte subpopula-
tions. Thymic epithelial cells and bone marrow stromal
cells are the primary sources of circulating IL-7 [8].

In this study we have shown that the decreased CD4 T
cell count is associated with increased stromal IL-7
production. During HAART, the control of viral
replication and the recovery of CD4 T cell numbers
reverse bone marrow stromal IL-7 production, which
reaches values comparable with those observed in
control subjects. This contrasts with our observation
that other cytokines (IL-2, IFN-ª, IL-4, IL-10) in-
crease after immunological reconstitution during
HAART [9].

The mechanisms responsible for the feedback between
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bone marrow stromal cells and T cells remain un-
known. It may be hypothesized that constitutively
produced soluble factors by T cells may control the
stromal cell production of IL-7 [8]. The depletion of T
cells in the bone marrow, with the decreased produc-
tion of such soluble factors, would lead to increased
levels of IL-7, and vice versa. A possible candidate that
exerts this action is transforming growth factor beta,
which is known to be produced by T cells and to
regulate the production of IL-7 by bone marrow
stroma [10].
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Nodal marginal zone lymphoma in AIDS patients: a casual association?

Four clinical categories of non-Hodgkin’s lymphoma
(NHL) in HIV-positive patients (HIV+) have been
recognized [1]: systemic NHL, primary central
nervous system lymphoma, primary effusion lymph-
oma, and plasmablastic lymphoma of the oral
cavity.

The most frequent systemic types are diffuse large B
cell and Burkitt’s-like lymphoma (54% of all NHL-
HIV+) [2]. However, ‘low-grade lymphomas’ [3] are
increasingly being recognized, especially follicular and
small lymphocytic lymphoma. Extranodal marginal
zone B cell lymphomas have also been reported [4],
but nodal marginal zone lymphomas (NMZL) have
rarely been described. To our knowledge, only two
previous patients have been reported [5,6]. We describe
two new cases of a group of 14 NHL-HIV+ from a
registry of 190 NHL patients consecutively seen be-
tween 1997 and 2001.

Case 1

An HIV-positive (bisexual risk behaviour) 53-year-old
man, not receiving highly active antiretroviral ther-
apy, was referred because of enlarged nodes and
sweats. An inguinal node biopsy was compatible with
NMZL (Fig. 1). His blood count was normal,
�2microglobulin was 3.9 mg/l (0.6–2.4), proteins
were 95 g/l and gammaglobulins were 36 g/l (poly-
clonal pattern). CD4 lymphocytes were 0.261 3 109/
l. A gastroscopy was normal, but intertrabecullar
lymphoid infiltrates were observed in the bone
marrow biopsy. A diagnosis of NMZL (stage IVB)
was made and he started chemotherapy (cyclophos-
phamide, adriamycin, vincristine and prednisone),
achieving a complete remission after six courses. Eight
months later he relapsed and received salvage chemo-
therapy (fludarabine, cyclophosphamide and mitoxan-
trone) in four courses.
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Fig. 1. IL-7 levels in supernatants of stromal cell cultures
from HIV-1-infected patients before and during highly ac-
tive antiretroviral therapy. h Before highly active antiretrovir-
al therapy (HAART); j during HAART.
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In-situ hybridization studies for Epstein–Barr virus
(EBV) were negative and the Ki-67 proliferation rate
was low (15%). No immunoglobulin heavy chain
gene (IgH) (CDRIII region) rearrangement was
demonstrated using the polymerase chain reaction
method.

Case 2

A 40-year-old man presented with a right cervical
lymphadenopathy. He was diagnosed with HIV and
hepatitis C virus infections (parenteral drug abuse).
He refused highly active antiretroviral therapy. He
described a weight loss of 8 kg. His blood count and
lactate dehydrogenase level were normal, �2

microglobulin was 4 mg/l (0.6–2.4), and CD4 cell
counts were 0.360 3 109/l. An IgM kappa monoclonal
component was detected on protein electrophoresis.

The histology from the cervical lymph node revealed
NMZL. Clinical staging including bone marrow
biopsy, and fibergastroscopy was IB. The patient
rejected therapy and was lost to follow-up.

Neoplastic monocytoid cells were positive for EBV by
in-situ hybridization. The Ki-67 proliferation rate was
low (25%). Clonal rearrangement of the IgH (CDRIII
region) was demonstrated.

Marginal zone lymphoma is a clinicopathological entity
in the WHO classification [7], and includes three
subtypes: extranodal mucosa-associated lymphoid tissue
lymphoma, splenic marginal zone lymphoma with or
without villous lymphocytes, and NMZL with or
without monocytoid B cells.

NMZL was initially reported by Sheibani et al. [8] as
nodal monocytoid B cell lymphoma. This term defines
cases that are primarily adenopathic and excludes cases

Fig. 1. Nodal marginal zone lymphoma (case 1). Pale zone corresponding to marginal zone around a germinal center.
(H&E 3 100).
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with previous involvement of an extranodal site other
than bone marrow, liver or spleen.

Clinically, NMZL mainly affects women in middle age
and has an indolent course.

NMZL is extremely rare in HIV patients. According to
a MEDLINE search, only two cases have previously
been reported. In the first case, Sheibani et al. [5]
presented a monocytoid B cell lymphoma in a patient
who remained stable and asymptomatic during 3 years
without therapy. The authors were able to demonstrate
by polymerase chain reaction an HIV genome in DNA
extracted from the node tissue. In the second case,
Charton-Bain et al. [6] described an HIV patient with a
monocytoid B cell lymphoma with bone marrow
involvement who received monochemotherapy and
was asymptomatic after a follow-up of 18 months.

NMZL must be carefully differentiated in the setting of
HIV infection from secondary monocytoid B cell
proliferation caused by toxoplasma, cytomegalovirus,
EBV and hepatitis C infection. An IgH clonal rearran-
gement allows the demonstration of clonality in
tumour lymphocytes.

EBV may be present in AIDS-related lymphomas,
especially in primary brain lymphomas and Hodgkin’s
disease, in 70–80% of systemic large cell and primary
effusion lymphomas, and is less frequently detected in
other subtypes, such as Burkitt’s lymphoma (30%) [9].
EBV was not detected in the case reported by Char-
ton-Bain et al. [6].

As stated above, a careful review of case reports and
clinical NMZL series has shown the rarity of the
association between NMZL and HIV infection. Berger
et al. [10] reviewed 124 patients with non-mucosa-
associated lymhoid tissue marginal zone lymphoma.
They failed to detect HIV infection in their patients.
Other recent reviews and clinical series of NHL-HIV+
did not reveal identifiable cases of NMZL [11,12].

As a result of the small number of our NHL-HIV+
patients, we are aware that a casual association can not
be excluded. However, we suggest that the true

incidence of NMZL in HIV patients might be under-
estimated.
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The CD4 cell count 3 months after acute retroviral syndrome is associated with the presence of AIDS in the
source individual

A source individual with AIDS was associated with a
higher rate of HIV transmission [1], but the impact of
the HIV stage of the source individual on the early
events in the recipient individual is unclear. Whereas
the CD4 cell count remains a valid prognostic marker
independently of the HIV viral load [2,3], we explored

the relationship between the presence of AIDS in the
source individual at the time of transmission and the
CD4 cell count 3 months after a documented acute
retroviral syndrome (ARS) in a recipient individual. A
low level of CD4 cells might signify transmission of a
virus with an increased virulence as shown with SIV [4].
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A total of 19 pairs of source individuals and recipient
individuals were analysed. Each of these recipient
individuals was enrolled at the time of ARS in three
prospective cohorts (Geneva, Switzerland, Montreal,
Canada and Sydney, Australia) for studying the rate of
HIV disease progression [5,6]. Data collection forms
and follow-up were similar in the three centres [5,6].
At enrolment, the symptoms of ARS were recorded,
and completed by biological data. The recipient in-
dividuals were invited to provide information on the
most likely source individual [7]. The following anon-
ymous information on the source individual were
recorded: (i) HIV status of the source individual; (ii) if
HIV positive, the presence or absence of AIDS at the
time of transmission; and (iii) if the source individual
was known to receive antiretroviral drugs at the time
of HIV transmission to the recipient individual. A
multiple linear regression was used to identify the
variables associated with the CD4 cell level (in absolute
numbers and in percentages) 3 months after the onset
of ARS in the recipient individual.

The population consisted of 17 men (90%), and the
routes of infection were homosexual intercourse for 16
patients and heterosexual intercourse for 3 patients.
The CD4 cell count was measured at 3 months after
onset (88.2 � 11.0 days on average) and the average
cell count was 603.7 cells/ml (� 240.2) . A total of
eight recipient individuals (42%) received antiretroviral
treatment at ARS on average 40 days (� 49) after
onset. The results of the linear regression with CD4
cells in absolute numbers or as a percentage of total
lymphocytes, as dependent variables are reported in
Table 1. The presence of AIDS in the source individual
was an independent predictor of the CD4 cell level 3
months after ARS in the source individual.

Carre et al. [8] and Ashton et al. [9] found a faster
progression to AIDS in recipient individuals after

infection by sex and by contaminated blood products
when the source individuals progressed faster to AIDS.
Our findings show that a difference in progression is
already apparent 3 months after acute infection. Ad-
vanced HIV disease in the source individual correlates
with immunodepression in the recipient individual
soon after infection. That can intuitively be related to
the quantity (i.e. size of inoculum or a high viral load)
or the virulence (i.e. phenotype) of HIV transmitted.

In summary, a low CD4 cell count shortly after acute
HIV infection through the sexual route might depend
on the HIV stage of the source individual at transmis-
sion. That completes viral investigations showing that
HIV strains became more virulent with time in the
host [4] and then could influence early events in
individuals newly infected with such HIV strains.

The members of the Swiss HIV Cohort Study are M.
Bateguay (Co-chair of the Scientific Board), E. Bernas-
coni, Ph. Bürgisser, M. Egger, P. Erb (Chairman of the
‘Laboratories’ Group), W. Fierz, M. Flepp (Chairman
of the ‘Clinics’ Group), P. Francioli (President of
SHCS, Centre Hospitalier Universitaire Vaudois, CH-
1011 Lausanne), H.J. Furrer, P. Grob, B. Hirschel
(Co-chair of the Scientific Board), L. Kaiser, B.
Ledergerber, R. Lüthy, R. Malinverni, L. Matter, M.
Opravil, F. Paccaud, G. Pantaleo, L. Perrin, W.
Pichler, J-C. Piffaretti, M. Rickenbach, P. Sudre, J.
Schupbach, A. Telenti, P. Vernazza.
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Table 1. Variables associated with the CD4 cell count in the absolute number or percentage 3 months after acute retroviral syndrome using
multiple linear regression.

Regression coefficient
univariate model

Regression coefficent
multivariate model

Regression coefficient
univariate model

Regression coefficent
multivariate model

CD4 cell count (absolute number) CD4 cell count (%)

Variables �
Standard
error P �

Standard
error P �

Standard
error P �

Standard
error P

Characteristics of the recipient individual
Age (per 1 year increase) �0.6 7.7 0.93 – – 0.3 0.35 0.39 – –
Male sex 19.3 184.7 0.92 – – 4.3 8.5 0.62 – –
Antiretroviral treatment at ARS 59.1 114.0 0.61 – – 8.1 4.9 0.12 11.1 3.9 0.01
Characteristics of the source individual
AIDS at transmission (n ¼ 3) �287.8 139.0 0.05 �319.9 141.9 0.04 �15.8 6.1 0.02 �19.1 5.2 0.002
Antiretroviral treatment at transmission
(n ¼ 6)

�33.4 121.7 0.61 – – 3.4 5.6 0.56 – –

ARS, Acute retroviral syndrome.
The final model was based on a stepwise regression with variables entered into the model if the probability of its score statistics was 0.15 and
variables removed from the model if the probability of its score statistics was 0.20.
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Trends in hepatitis C and HIV infection among inmates entering prisons in California, 1994 versus 1999

The prevalences of hepatitis C virus (HCV) and HIV
are much higher among incarcerated populations than
the general public. For example, the incidence of HCV
in the United States has been estimated at 1.8% [1],
and more recently at 2.5% from a population-based
sample of young women living in poorer neighbor-
hoods in California [2]. However, 41.2% of California
inmates were anti-HCV positive in 1994 [3]. In 1999,
2.1% of state and federal prison inmates were known to
be HIV positive [4]. Whereas rates of HCV and HIV
are higher among men within the general population,
greater proportions of female inmates have been found
to be infected with HCV and HIV. Among female
inmates entering the California correctional system in
1994, 63.5% were anti-HCV positive compared with
39.4% of male inmates [3]. The prevalence of HIV was
greater among female than male inmates (3.1 versus
2.5%) of the California prison system [3], and at nine
out of 10 correctional systems across the United States
[5].

Between 1995 and 2001, the incarcerated population
in the United States grew an average of 4.0% annually
[6]. The importance of monitoring HCV and HIV
within this growing and mobile population was the
reason to replicate a 1994 cross-sectional survey of
inmates entering the California correctional system.

The California Department of Corrections has 13

reception centers in which male and female inmates are
processed separately for entrance into the prison system.
Four of the 10 male centers and two of the three
female centers were selected for inclusion in the
surveys. The same centers were selected in 1994 and
1999. A sample from each prison was selected based on
the proportion of inmates processed at the center on a
weekly basis. All incoming inmates to the California
Department of Corrections receive a physical examina-
tion shortly after arrival at a reception center. During
the physical examination, a blood sample is obtained
for syphilis serology. Inmates cannot refuse to provide a
blood sample; leftover blood was used for blinded
testing of HCV and HIV antibodies. Blood specimens
were collected between August and September 1994
(men) and August and October 1994 (women). Sam-
ples for 1999 were collected between January and
March for both men and women. The same laboratory
methods were used in 1994 and 1999. HCV antibodies
were detected using the hepatitis C virus encoded
antigen (recombinant c 100-3, HC-31 and HC-34)
Abbott HCV enzyme-linked immunosorbent assay
(EIA) 2.0 (Abbott Laboratories, North Chicago, IL,
USA). Sera were tested for HIV antibodies using the
Abbott EIA. Those specimens repeatedly reactive to
EIA were confirmed by immunofluorescence assay, and
any discrepancy was resolved using Western blot.
Unlinked survey data were used to estimate the
seroprevalence of HCV and HIV antibodies; each
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correctional facility provided demographic information.
The California Health and Welfare Agency Committee
for the Protection of Human Subjects approved the
study protocols for both the 1994 and 1999 studies.

A total of 4140 male and 624 female inmates were
tested in 1994, and a total of 4876 male and 719 female
inmates were tested in 1999. Less than 3% of the
samples in both surveys (n ¼ 137 in 1994 and n ¼ 135
in 1999) could not be tested, either because no blood
was drawn, the quantity of the sample was too small,
or the specimen was not saved.

In 1999, men entering California prisons were more
likely to be infected with HCV than were women;
HCV seroprevalence rates were 34.2 for male inmates
and 25.3 for female inmates (Table 1). HCV antibody
seroprevalence declined 13% from 1994 to 1999 among
male inmates overall. However, a 16% increase was
found for HCV positivity among African American
men. Among female inmates, a decrease of 54% was
found for HCV from 1994 to 1999.

HIV seroprevalence decreased from 1994 to 1999 by
42% for men and 47% for women. Compared with
white and Latino inmates, African American male and
female inmates were more likely to be infected with
HIV in 1999.

The decline in HCV and HIV prevalences demonstrate
a possible reduction in injection drug use or an increase
in safer injecting practices within California. Whereas
total admissions to publicly funded drug and alcohol
treatment programs in California increased from 1995
to 1999, the number of injection drug use admissions
decreased 13.4% during that time [7]. Likewise, felony
drugs arrests among adults in California dropped 15.6%
from 1994 to 1999; arrests for narcotic drugs declined

among men and women (21.8 and 5.5%, respectively)
as did arrests for ‘dangerous drugs’ (including metham-
phetamines) during this period (men, �19.1%; women,
�13.7%) [8]. Finally, perhaps changes in injection risk
behaviors, decreases in needle sharing and increases in
the use of syringe exchange programs, seen in New
York City from 1990–1994 to 1995–1999 also took
place in California during this decade [9].

Although rates of HCV and HIV among California
prison inmates declined from 1994 to 1999, the
approximately one in three male and one in four
female inmates infected with HCV represents a serious
public health concern. Control of HIV and HCV
requires primary and secondary harm-reduction inter-
ventions targeted at correctional populations effectively
to reduce risk behaviors during incarceration and after
release. Our findings for African American inmates (i.e.
the highest HIV prevalence in 1999 among both men
and women; the highest HCV prevalence in 1999
among women, and the increase in HCV prevalence
from 1994 to 1999 among men) strongly suggest that
culturally appropriate interventions must be developed
specifically for African American prisoners.
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Table 1. Prevalence and percentage change for HIV and hepatitis C virus by sex and race, among California inmates, 1994
and 1999.

%HIV positive % HCV positive
1994 1999 % % %

(%) (%) change 1994 1999 change 1994 1999 change

Men n ¼ 4140 n ¼ 4876
White 29.8 23.1 �26� 2.2 1.3 �41� 49.1 36.3 �26�
African American 31.4 27.4 �17� 3.8 2.3 �39� 29.2 33.8 +16�
Latino 34.4 34.3 �4 1.5 0.6 �60� 40.2 36.0 �10�
All others 4.4 15.2 +245� 1.1 1.5 +36 24.6 27.5 +12
Total 100 100 2.4 1.4 �42� 39.4 34.2 �13�

Women n ¼ 624 n ¼ 719
White 36.4 31.3 �19 1.3 0.4 �69 58.1 26.2 �55�
African Americrican 34.3 34.9 �5 4.2 2.8 �33 37.7 29.1 �23�
Latina 23.7 25.2 �2 4.7 1.1 �77� 69.7 23.8 �66�
All others 5.6 8.6 +59 2.8 3.2 +14 80.0 11.3 �86�
Total 100 100 3.2 1.7 �47� 54.5 25.3 �54�

HCV, Hepatitis C virus.
�P , 0.05, one-tailed test for difference of proportions.
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Novel Mutations and SNPs Identified in CCR2
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Communicated by Georgia Chenevix-Trench

A single nucleotide polymorphism (SNP) at codon 64 in the CC chemokine receptor 2 gene (CCR2
V64I) has been associated with a dominant effect of delaying disease progression from human
immunodeficiency virus-1 (HIV-1) infection to acquired immunodeficiency syndrome (AIDS). The
objective of our study was to design a comprehensive mutation detection assay for the entire coding
region of the CCR2A and CCR2B gene transcripts, including all relevant splice site junctions and to
identify novel mutations and SNPs within our predominantly African-based population, which could
influence an individual’s susceptibility to HIV-1 infection and/or progression to AIDS. The mutation
detection assay, based on denaturing gradient gel electrophoresis (DGGE), allowed for the complete
analysis of five individuals per denaturing gel. Our study cohort consisted of 102 HIV seropositive
patients and 144 HIV seronegative controls from the diverse South African population. Application of
the CCR2-DGGE assay resulted in the detection of two previously reported CCR2 polymorphisms,
namely CCR2 V64I and CCR2 N260N, and 11 novel mutations, including seven SNPs occurring at high
allelic frequencies within specific population groups of South Africa. The large number of novel
mutations/SNPs identified, using the CCR2-DGGE assay, indicates the importance for comprehensive
analysis of all candidate genes in host susceptibility to HIV-1 infection, specifically in the under-studied
African-based populations. Hum Mutat 20:253–259, 2002. r 2002 Wiley-Liss, Inc.

KEY WORDS: AIDS; CCR2; mutation detection; SNP; DGGE; HIV-1 susceptibility; African

DATABASES:

CCR2–OMIM: 601267; GenBank: NM_000647 (CCR2A); NM_000648 (CCR2B)
www.ncbi.nlm.nih.gov/SNP (NCBI SNP database)

INTRODUCTION

Both isoforms of the seven transmembrane G-
coupled CC-chemokine receptor 2 protein, CCR2A
and CCR2B [Charo et al., 1994], bind the b-
chemokine monocyte chemoattractant proteins 1 to
5 (MCP-1 to 5) [reviewed in Kalinkovich et al.,
1999]. CCR2 has also been shown to act as an
additional co-receptor during cellular infection of a
few human immunodeficiency virus-1 (HIV-1) strains
[Doranz et al., 1996]. Mutations in the CCR2 gene
(MIM# 601267), located at band p21 of chromosome
3 [Daugherty and Springer, 1997], may therefore
be associated with susceptibility to HIV-1 infection
and/or progression to acquired immune deficiency
syndrome (AIDS).

There is a worldwide trend among geneticists away
from the monogenic disorders and toward the analysis

of the more common complex multifactorial diseases,
where rather than a single gene defect, a combination
of weaker genetic events may lead collectively to
an individual’s inherited disease susceptibility. This,
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together with the completion of the first draft of the
Human Genome Project, has resulted in an explosion
in the identification of single nucleotide polymorph-
isms (SNPs) for use in association studies of complex
diseases (NCBI’s SNP database, www.ncbi.nlm.nih.
gov/SNP).

A common SNP has previously been reported in
the first transmembrane region of CCR2 and involves
a G-A transition at codon 64, resulting in a
conservative amino acid change from valine to
isoleucine [Smith et al., 1997a]. Population surveys
indicate that the CCR2 V64I SNP occurs at an allelic
frequency of 0.10 to 0.25 within specific ethnic groups
[Smith et al., 1997a; Michael et al., 1997]. In both the
heterozygous and homozygous state the CCR2 V64I
does not offer resistance to HIV-1 infection, but is
associated with delaying progression to AIDS by two
to four years [Smith et al., 1997a; Smith et al., 1997b;
Michael et al., 1997; Kostrikis et al., 1998; Ioannidis
et al., 2001], with its effect being more apparent in
Africans than in Caucasians [Mummidi et al., 1998].
Studies indicate that CCR2 V64I does not affect
CCR2 and CCR5 expression or co-receptor activity
[Lee et al., 1998; Mariani et al., 1999]. Although it
has been linked to a specific CCR5 promoter variant
(59653-T) [Kostrikis et al., 1998], the exact mechan-
ism by which this SNP influences disease progression
still needs to be elucidated. The CCR2 V64I SNP
has also been associated with insulin-dependant
diabetes mellitus [Szalai et al., 1999], sarcoidosis
[Hizawa et al., 1999], and coronary artery disease
[Szalai et al., 2001].

This study involved the design of a comprehensive
mutation detection assay for the entire coding region
of both CCR2 gene transcripts (CCR2A and CCR2B),
based on denaturing gradient gel electrophoresis
(DGGE). DGGE is believed to be the most powerful
of the polymerase chain reaction (PCR), gel-based
mutation detection assays currently available. The use
of the CCR2-assay led to the identification of novel
mutations and SNPs in 102 HIV seropositive patients
and 144 HIV seronegative controls of predominantly
African ethnicity from South Africa.

METHODS
Patients

The study cohort consisted of 102 HIV seropositive patients
(34 male; 68 female) of whom most are presently residents in
the Western Cape of South Africa (Tygerberg Hospital and
Woodstock Chapel Street Community Health Clinic). Due to
lack of clinical information, precipitated by social and
economical factors, the disease status was unknown for the
majority of these patients. Also forming part of the study
cohort, were 144 HIV seronegative healthy controls (56 male;
88 female) who are all blood donors for the Western Province
Blood Transfusion Service and residing in the same geographi-
cal area as the HIV infected patients. The individuals

participating in this study included Africans, predominantly
Xhosa (central African descent; 69 HIVþ and 62 HIV�), and
Coloureds (mixed ancestral descent; 26 HIVþ and 72 HIV�),
and to a lesser degree Caucasians (European descent; seven
HIVþ and two HIV�) and Asians (eight HIV�). As
described in Petersen et al. [2001], the term ‘‘African’’ refers
to South Africans of central African descent; ‘‘Coloured’’ refers
to individuals of mixed ancestral descent (including San, Khoi,
African Negro, Madagascan, Javanese, and European origin);
and ‘‘Caucasian’’ refers to South Africans of European descent
(mainly of Dutch, French, German, and British origin).
Informed consent for the study was obtained from all
participants. The Ethics Review Committee of the University
of Stellenbosch approved the study protocol.

Primer Design

Using the melt 87 computer program [Lerman and
Silverstein, 1987] and conditions for selecting optimal PCR
fragments and primers [Wu et al., 1998], DGGE primers (Table 1)
were designed for the entire coding region, including the
intron/exon boundaries, of both transcripts of the CCR2 gene.
The coding region of CCR2B (codons 1 to 361) and most of
the coding region of CCR2A (codons 1 to 313), contained in
exon 2, were divided into six (A–F) overlapping amplicons. An
additional amplicon ‘‘G’’ was designed to include the remaining
coding region (exon 3) of CCR2A (codons 314 to 375). The
addition of a GC-rich-fragment to the 50 end of one of the
primers in each primer set prevents complete strand dissocia-
tion during amplification. Additional stretches of GC or AT
nucleotides were added to either the 50 end of
the non-clamped primer (fragments B, C, and E) or between
the GC-clamp and the primer (fragment D), to ensure a single
melting domain for optimal detection of all mutations (Table 1).

DNA Ampli¢cation

Genomic DNA was isolated from peripheral blood leuko-
cytes using conventional methods and amplified using DGGE
primer sets, specific for each amplicon (A–G) (Table 1). With a
total volume of 50ml, each PCR reaction mixture contained
100 ng of genomic DNA, 0.1 mM of each deoxyribonucleoside
triphosphate (dNTP), 20 pmol of each primer (except for
fragment B, which required only 10 pmol of each primer), 2.5
mM of a 10�Mg2þ reaction buffer, and 0.5 units of DNA Taq
polymerase (Boehringer Mannheim, Mannheim, Germany).
Amplification was performed using a Perkin Elmer 9600
thermocycler (PE Applied Biosystems, www.appliedbiosystems.
com) and the PCR cycling conditions were as follows: an initial
denaturation at 961C for 3 min, followed by 32 cycles of
denaturation at 961C for 45 sec, annealing for 1min (annealing
temperatures shown in Table 1), and elongation at 721C for
1min 20 sec. The last cycle was followed by an additional
extension step of 721C for 7 min. For optimal DGGE analysis,
amplification was followed by a heteroduplexing step, which
involves denaturation at 961C for 10 min, followed by
renaturation for 45 min at the annealing temperature of the
amplification. The amplified products were checked using
electrophoresis, where 5 ml (10%) of each sample was resolved
on 2% agarose gel.

Denaturing Gradient Gel Electrophoresis (DGGE)

Optimized DGGE conditions were achieved by considering
the conditions previously described for the improvements of
broad-range DGGE analysis [Hayes et al., 1999]. DGGE was
performed using the Ingeny phorU-2 system (www.ingeny.com).
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The seven amplicons were electrophoresed in six lanes
(fragments C and D were pooled) of a 9% polyacrylamide gel
containing a 30% to 70% urea and formamide (UF) denaturing
gradient (100% UF=7mol/L urea per 40% deionized for-
mamide) at 59.51C for 110 volts overnight. The gels were
stained with ethidium bromide and photographed under an UV
transilluminator. Thus the CCR2-DGGE allows for the
complete analysis of five individuals per denaturing gel.

DNA Sequencing andVariant Con¢rmation

Automated sequencing of amplified samples showing
aberrant DGGE banding patterns was performed using a non-
GC-clamped primer and the Applied Biosystems (www.ap-
pliedbiosystems.com) dye terminator sequencing kit. The
commonly occurring SNPs were verified by mixing samples
showing similar DGGE banding patterns, followed by a
heteroduplexing step before electrophoresis on a denaturing
gel [Guldberg and Guttler, 1993]. Samples showing additional
heteroduplex bands were subjected to sequencing for the exact
determination of the sequence variants.

Statistical Analysis

Manual allele counting was used for calculating allele
frequencies. Tests for significance of heterogeneity in the
frequencies among HIV seropositive patients and seronegative
controls for both the mutations and SNPs were performed by
means of Fischer’s exact test for 2� 2 contingency tables.

RESULTS

The CCR2 primer sets and experimental conditions
for PCR amplification and DGGE analysis are shown
in Table 1. Using our CCR2-DGGE assay, we
identified two previously reported mutations and 11
novel mutations as shown in Figure 1 and listed in
Table 2, according to the intron/codon in which they
occur.

Previously ReportedCCR2 SNPs

The commonly occurring SNP at codon 64 (GTC–
ATC) results in a conservative amino acid change
from Valine to Isoleucine [Smith et al., 1997a]. The
CCR2 V64I SNP was observed homozygously in
four HIV seronegative controls (one African, two
Coloureds, and one Asian) and heterozygously in
both the HIV seropositive patients and HIV serone-
gative controls of all the different South African
population groups. A second CCR2 SNP occurring at
codon 260 (AAC-AAT) and resulting in a silent
mutation (CCR2 N260) has been reported in the
Genbank database (www.ncbi.nlm.nih.gov). As
previously reported [Petersen et al., 2001], we found
the T allele to occur more frequency than the
commonly reported C allele within the entire South
African study cohort.

Novel Rare CCR2 Variants

Of the 11 novel mutations, two silent mutations at
codons 52 and 223 were found in two Coloureds (one
HIV+ and one HIV-) and one HIV seronegative
Coloured, respectively. Two non-conservative (repla-
cement of an amino acid by another with different
chemical properties) mutations at codon 233 (CGA–
CAA) and codon 355 of CCR2A (GGA–GAA), were
observed heterozygously in one HIV seronegative
Coloured and in three Africans (two HIVþ and one
HIV�), respectively. The mutation at codon 223
involves an amino acid change from arginine to
glutatmine, while the codon 355 (CCR2A) mutation,
results in an amino acid change from glycine to
glutamic acid. The disease progression for both HIV

TABLE 1.CCR2 Primer Sets and Experimental Conditions for PCR Ampli¢cation andDGGE

Temperature

Fragment Amplimers,50-30 Size (bp) Melting Annealing

A [40GC]TGCTTATGTGGTGCCAGACT 335 72 58
TGAACACCAGCGAGTAGAGC

B [6GC]TGATTATGATTACGGTGCTCC 384 72 58
[40GC]CGATTGTCAGGAGGATGATG

C [40GC]GCTGTATCACATCGGTTATT 268 73 55
[8GC]GCCACAGACATAAACAGAAT

D [40GC][10AT]TGGCTGTGTTTGCTTCTGT 220 70 55
CGAGTAGCAGATGACCATGA

E [5GC]CCACACAATA ATGAGGAACA 284 73 55
[40GC]TGGTGCTTTCACAGTTACTC

F ACCTTCCAGGAATTCTTCG 346 74 55
[40GC]ACAATCAAACTGCTCCTCGT

G TGTCTGGATCTGAGCTGGTT 333 73 58
[40GC]TCCAAAGCAGAGATCTGTCAT

bp, base pair. GC-clamps used were as follows: [40GC], CGCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCGCCCG; [8GC],

CGCCGCCG; [6GC], CGCCGC; [5GC], CGCCG; AT-stretch used was as follows: [10AT], TATAATATTA.
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seropositive patients heterozygous for the CCR2
G355E mutation is unknown.

NovelCCR2 SNPs

The remaining seven novel mutations occur at an
allelic frequency of greater than or equal to 0.01 and
thus may be regarded as SNPs within the different
South African populations studied (Table 3). Of these
seven SNPs, two are found within intron 1 and in-
volve an A to G nucleotide change at position�57 base
pairs (bp) and a G to A change at position �43 bp
downstream from the acceptor splice site, respectively.
Four of the SNPs are silent mutations and are

observed at codons 63, 283, 339 (CCR2A), and 348
(CCR2B), while another SNP at codon 287 (ACG–
ATG) involves a non-conservative amino acid change
from threonine to methionine. Except for the SNP at
codon 63, which was observed in all the different
population groups, and the SNP at codon 348
(CCR2B), which was present in the Coloured and
Caucasian population groups, the remaining five SNPs
were found exclusively in Africans and/or Coloureds.
Considering the low number of Caucasian individuals
forming part of the study cohort, an additional 40 HIV
seronegative Caucasians were screened for the novel
SNPs identified. An absence of the IVS1-57A4G,
IVS1-43G>A, L283, T287M, and P339 CCR2 SNPs

FIGURE 1. Aberrant DGGE banding patterns for all 13 CCR2 gene mutations identi¢ed and listed inTable 2, according to the
fragment (Frag) inwhich theywere found. Nomutationswere identi¢ed in Frags C andD. Lane1of all the fragments represents
theDGGEbanding pattern of a normal control. Mutants are depicted as follows: Frag A: lanes 2, heterozygous forCCR2 IVS1-
57A4G; and lane 3, heterozygous forCCR2 IVS1-43G4A. Frag B: lane 2, heterozygous forCCR 2V64I; lane 3, heterozygous
for CCR2 V63V; and lane 4, heterozygous for CCR2 V52V. Frag E: lane 2, heterozygous for CCR2 R233Q; lane 3, heterozy-
gous forCCR2 S223; lane 4, heterozygous forCCR2N260N; and lane 5, homozygous forCCR2N260N. Frag F: lane 2, hetero-
zygous for CCR2 L283L; lane 3, heterozygous for CCR2 T287M; and lane 4, heterozygous for CCR2 T348T. Frag G: lane 2,
heterozygous forCCR2 P339P; and lane 3, heterozygous forCCR2 G355E.

TABLE 2.CCR2 Mutations Detected in102 HIVSeropositive Patients and144 HIVSeronegativeControls,OrderedAccording to
the Intron/Codon inWhichTheyOccurred

Allele frequency

Africans Coloureds Caucasians Asians
DGGE HIVþ HIV� HIVþ HIV� HIVþ HIV� HIV�

Mutation Base change fragment (n=138) (n=124) (n=52) (n=144) (n=14) (n=4) (n=16)

IVS1-57A4Ga,b,c A^G A 14 (0.101) 13 (0.105) 3 (0.058) 10 (0.069) 0 0 0
IVS1-43G4Aa,b,c G^A A 3 (0.022) 5 (0.040) 3 (0.058) 3 (0.021) 0 0 0
V52Va,b,c GTG^GTT B 0 0 1 (0.019) 1 (0.007) 0 0 0
V63Va,b,c GTC^GTT B 1 (0.007) 1 (0.008) 5 (0.096) 5 (0.035) 2 (0.143) 0 1 (0.063)
V641b,c GTC^ATC B 18 (0.130) 21 (0.169) 1 (0.019) 25 (0.174) 0 1 (0.250) 2 (0.125)
S223Sa,b,c TCG^TCA E 0 0 0 1 (0.007) 0 0 0
R233Qa,b,c CGA^CAA E 0 0 0 2 (0.014) 0 0 0
N260Nb,c AAC^AAT E 75 (0.543) 79 (0.637) 30 (0.577) 97 (0.674) 10 (0.714) 2 (0.500) 11 (0.688)
L283La,b,c CTG^CTT F 6 (0.043) 3 (0.024) 1 (0.019) 4 (0.028) 0 0 0
T287Ma,b,c ACG^ATG F 0 4 (0.032) 1 (0.019) 0 0 0 0
P339Pa,b CCA^CCG G 21 (0.152) 18 (0.145) 2 (0.038) 5 (0.035) 0 0 0
T348Ta,c ACG^ACA F 0 0 1 (0.019) 6 (0.042) 1 (0.071) 0 0
G355Ea,b GGA^GAA G 2 (0.014) 1 (0.008) 0 0 0 0 0

aNovel mutation in this study.
bMutation identified in CCR2A.
cMutation identified in CCR2B.
n, number of alleles; HIVþ, seropositive; HIV�, seronegative.
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and an allelic frequency of 0.075 (6/80) for the T348
CCR2 SNP were observed and included in the total
population allelic frequencies indicated in Table 3.

DISCUSSION

This study involved the design and use of a
comprehensive mutation detection assay for the entire
coding region of both gene transcripts of CCR2
(CCR2A and CCR2B), for the identification of novel
and previously reported mutations and SNPs in both
HIV seropositive and HIV seronegative individuals in
a predominantly African-based population from South
Africa. The assay, based on DGGE, allows for the
complete analysis of five patients per denaturing gel
using a single set of experimental conditions. Previous
studies have been restricted to the analysis of the
CCR2V64I SNP in different population groups and
thus comprehensive analysis of CCR2 is important
and ideal in our diverse South African study cohort.

The commonly reported CCR2V64I SNP, which
has an allelic frequency ranging from 0.10 to 0.25
within specific populations [Smith et al., 1997a;
Michael et al., 1997], was observed in all the South
African population groups (non high-risk HIV ser-
onegatives only) with allelic frequencies of 0.169 (21/
124) in the Africans; 0.174 (25/144) in the Coloureds;
and 0.095 (8/84) in the Caucasians. The presence of
the CCR2V64I SNP has been dominantly associated
with delaying disease progression to AIDS, provided
that the patient’s date of HIV-1 infection is more or
less known [Smith et al., 1997a; Smith et al., 1997b;
Michael et al., 1997; Kostrikis et al., 1998; Ioannidis
et al., 2001]. The majority of the HIV seropositive
patients forming part of our study cohort do not have
known dates of HIV-1 infection. This, together with
poor clinic attendance and therefore limited patient
information, resulted in no associations with disease
susceptibility being made. However, in the Coloured
population, a statistically significant decrease in the
frequency of the mutant allele was noted in the HIV

seropositives, when compared to the HIV seronega-
tive control group (P=0.0034). Although analysis of
the Africans does not yield a significant p value, the
combination of the African and Coloured populations
(P=0.0409) does. The possible significance of this
decrease, with regards to resistance to HIV infection
within the Coloured population of mixed ancestral
descent (including San, Khoi, African Negro, Mada-
gascan, Javanese, and European origin), requires
further investigation in studies that include a high-
risk seronegative cohort.
Association studies with HIV-1 infection or disease

progression have never been performed for the
previously reported codon 260 polymorphism, which
may be contributed to its lack in amino acid change.
The observation that the T allele of the CCR2N260
SNP occurs at higher frequencies within all the
population groups in this study, confirms our previous
data [Petersen et al., 2001]. This is contrary to recent
data, which suggests that the C allele occurs more
frequently in Caucasians, Africans, and Hispanics
residing in America [Clark et al., 2001]. Statistical
analysis of the African-associated populations (Afri-
can and Coloured) taken together, showed the mutant
T allele to occur at a significantly lower frequency
in the HIV seropositive group compared with the
seronegative controls (P=0.0255), although no
statistically significant differences were noted for
either the African or Coloured populations separately.
Novel mutations and SNPs were identified in all

the different population groups represented in this
study. The novel mutations at codons 233 and 355
(CCR2A) and the novel SNP at codon 287 all
result in non-conservative amino acid changes,
which may change the structure of the CCR2 protein
and thus affect its functioning. The novel silent
mutations (codons 52, 223) and SNPs (63, 283, 339
(CCR2A), and 348 (CCR2B)), as well as the two
novel intronic SNPs (IVS1-57A4G and IVS1-
43G4A) could all possibly influence gene expression
and/or RNA splicing by altering regulatory elements

TABLE 3.TheDistribution ofNovel CCR2 SNPsWithin theAfrican,Coloured, andCaucasianPopulationGroups

Total populationa

Africans Coloureds Caucasians
SNP (n=262) (n=262) (n=98)

IVS1-57A4Gb,c 27 (0.131) 13 (0.066) 0
IVS1-43G4Ab,c 8 (0.031) 6 (0.031) 0
V63Vb,c 2 (0.008) 10 (0.051) 3 (0.031)
L283Lb,c 9 (0.034) 5 (0.026) 0
T287Mb,c 4 (0.015) 1 (0.005) 0
P339Pb 39 (0.149) 7 (0.036) 0
T348Tc 0 7 (0.036) 7 (0.071)

aTotal population includes all HIV seropositive patients and HIV seronegative controls for each population group and including the

additional 40 Caucasians.
bMutation identified in CCR2A.
cMutation identified in CCR2B.
n, number of alleles.
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[D’Souza et al., 1999; Lorson et al., 1999]. Although
CCR2 does not play a major role during HIV infection
[Doranz et al., 1996], the significance of these muta-
tions on the functioning of CCR2 is worthy of further
study.

An additional 40 Caucasian seronegative control
individuals were screened for all novel SNPs identified
(Table 3) to determine whether these polymorphic
sites have an African or Caucasian ethnic origin. SNPs
occurring in the Coloured population may be either
African or Caucasian in origin due to the relatively
recent admixture of this group. The SNP at codon 63
was detected in all the population groups, while the
SNP at codon 348 (CCR2B) appears to have a
Caucasian origin, being found only in the Coloureds
and Caucasians. The IVS1–57A4G, IVS1–43G4A,
L283L, T287M, and P339P CCR2 SNPs were found
exclusively in the African and Coloured populations,
suggesting an African-based origin. No significant
associations with the novel SNPs and HIV-1 suscept-
ibility and/or rates of disease progression to AIDS
could be made due to insufficient information regard-
ing the clinical status of the HIV seropositive patients.

Although expression of the CCR2A isoform is
mostly restricted to the cytoplasm [Wong et al., 1997],
we included the CCR2A transcript in our analysis.
The possibility of identifying novel African-related
SNPs within CCR2A, which although it does not
alone lead to susceptibility may, in combination with
other weaker genetic events, lead collectively to
determining disease status. The commonly occurring
African-associated SNP identified at codon 339 of the
CCR2A transcript is currently under investigation by
our group in a large cohort of patients with known
disease status to determine the significance of this
SNP in combination with other identified African-
associated SNPs.

The large number of novel mutations identified in
our South African study cohort is an indication of the
efficiency of the described CCR2-DGGE assay and
also emphasizes the importance of total gene screen-
ing for yet unidentified SNPs particularly in the under
studied African ethnic populations. Further studies
are required to determine the underlying mechanisms
of the CCR2 novel mutations and SNPs identified, so
that its possible effects on influencing host suscept-
ibility to HIV-1 infection and/or developing AIDS can
be understood more clearly. More importantly, these
novel SNPs may prove beneficial for inclusion in
association studies of complex diseases, in particular
haplotype studies of closely linked genetic markers
specific to the HIV pandemic in sub-Saharan Africa.
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Functional analysis of novel SLC11A1 (NRAMP1) promoter
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T
he divalent cation transporter is the natural resistance
associated macrophage protein 1 (formerly NRAMP1 and
now named SLC11A1) for solute carrier 11A1 (OMIM

accession number 600266). The gene that codes for this
transporter has been studied intensively for its role in
conferring susceptibility to infectious diseases such as
tuberculosis, leprosy, meningococcal meningitis, visceral
leishmaniasis, and HIV infection, as well as to autoimmune
diseases such as rheumatoid arthritis, diabetes, sarcoidosis,
inflammatory bowel disease,1 and, more recently, Kawasaki
disease.2 Most studies have investigated a functional GT
repeat sequence in the promoter region of this gene3 and have
identified two commonly occurring repeat alleles and four
rare repeat alleles.4 5 The common alleles are T(GT)5-
AC(GT)5AC(GT)10 (allele 2) and T(GT)5AC(GT)5AC(GT)9

(allele 3; GenBank accession number AF229163, 5768 to
5808). Allele 2, which decreases gene expression, has been
associated with susceptibility to infectious diseases; the more
common allele 3 enhances gene expression to protect against
infectious diseases while enhancing susceptibility to auto-
immune diseases. Although HIV is classified as an infectious
disease, it affects the autoimmune system, which may
explain why allele 3 is associated with susceptibility to
HIV-1.6 7 This study aimed to screen the promoter region of
SLC11A1 for novel sequence variations in people from sub-
Saharan Africa infected with HIV-1 compared with un-
infected people and to determine the effect of novel variants
on normal promoter function.

MATERIALS AND METHODS
Participants
We studied 84 HIV-1 seropositive people (60 African and
24 of mixed African–European descent) and 133 HIV-1 sero-
negative people (64 African, 62 of mixed African–European
descent, and seven Asian) who lived in the Western Cape of
South Africa and who attended one of the HIV-1 clinics in
Tygerberg or Langa or the blood transfusion services of the
Western Cape. In this study, we use ‘‘African’’ to define
people of predominantly Xhosa descent, while the mixed
African–European population (known as ‘‘Coloured’’ in
South Africa) consists of a well defined population with
origins from an initial population mixture about 300 years
ago. This study population is defined in a recent publication.8

The ethics review committee of the University of Stellenbosch
gave ethical approval, and informed consent was obtained
from all study participants. We took blood from the patients
and volunteers, and we extracted DNA with the Qiagen
Extraction Kit (Qiagen, Valencia, CA, USA), as per the
manufacturer’s instructions.

Mutation detection
Two sets of denaturing gradient gel electrophoresis primers
were designed to cover the upstream promoter region from
the GT repeat sequence (from nucleotide 2715 to nucleotide
2488 from translation start site) and downstream promoter

region (from nucleotide 2415 to nucleotide 2132). The
upstream primer pairs were forward 59-AACAACTCTGA
GAAGGGACA-39 and reverse 59-TCTTTGATCTGGAGTT
CCAA-39, and the downstream primers were forward
59-GGGTGTGGTCATGGGGTATT and reverse 59-TGCCCTGCC
TCTTACATCAA-39. Both forward primers were designed with
a 40 base pair (bp) GC-clamp (CGCCCGCCGCGCCCC
GCGCCCGGCCCGCCGCCCCCGCCCG) attached to the
59-end to prevent total strand dissociation during electro-
phoresis through a denaturing gradient. A 7 bp (GCCGCCG)
GC stretch and a 10 bp (GCCGCCGCCG) GC stretch were
added to the 59-end of the upstream and downstream reverse
primers, respectively; the latter created a single melting
domain for optimal mutation detection, as previously
described.9 The repeat allele configuration was determined
by direct sequencing of the amplified product created with
forward primer 59-AAGACTCGCATTAGGCCAAC-39 and
reverse primer 59-GCCTCCCAAGTTAGCTCTGA-39.

We performed DNA amplification in a 50 ml reaction
mixture that contained 100 ng genomic DNA, 0.1 mmol/l of
each deoxyribonucleoside triphosphate, 20 pmol of each

Key points

N In contrast with previous studies, this study showed that
polymorphic GT repeats in the promoter region of the
SLC11A1 (NRAMP1) gene were not associated with
altered risk for HIV-1 infection in African and African–
European people from sub-Saharan Africa.

N This study aimed to identify new mutations in the
promoter region of this gene that might be associated
with susceptibility to infection with HIV-1 within African
based populations.

N Denaturing gradient gel electrophoresis was used to
assay the upstream and downstream regions of the
promoter GT repeat and to screen for variants in 84
HIV-1 seropositive and 133 HIV-1 seronegative
people.

N Three novel mutations and a previously reported single
nucleotide polymorphism (g.332C.T) were identified.
No significant associations were made between the
single nucleotide polymorphism and susceptibility to
HIV-1, but one of the novel mutations (g.43G.C)
occurred in two HIV-1 seropositive people of African
descent.

N Gene expression studies showed that the g.43G.C
and g.75T.C variants enhanced promoter activity by
1.4-fold and 1.6-fold, respectively. The promoter
single nucleotide polymorphism also enhanced activity
1.6-fold, but the g.561G.A variant had no effect on
promoter activity.
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primer, 2.5 mmol/l 106magnesium ion reaction buffer, and
0.5 units DNA Taq polymerase (Boehringer Mannheim,
Mannheim, Germany). We performed amplification under
the following conditions: initial denaturation at 96 C̊ for
3 minutes, 35 cycles of denaturation at 96 C̊ for 45 seconds,
annealing at 60 C̊ for upstream amplicon and repeat region or
65 C̊ for downstream amplicon for 1 minute, and elongation
at 72 C̊ for 1 minute 15 seconds. After cycling, we performed
an additional elongation step for 10 minutes, at 72 C̊,
followed by denaturation at 96 C̊ for 10 minutes, and
heteroduplexing for 45 minutes at the optimal annealing
temperatures (the latter two steps were applicable only for
the denaturing gradient gel electrophoresis primers). We
electrophoresed upstream and downstream amplicons
through a 9% polyacrylamide gel that contained a 40–80%
urea and formamide denaturing gradient (100% urea and
formamide contained 7 M urea and 40% deionised form-
amide) at 59 C̊ and 110 V overnight (phorU2 system; Ingeny,
Leiden, Netherlands). We subjected the repeat region
amplicon and samples that showed novel denaturing
gradient gel electrophoresis banding patterns to automated
sequencing after product purification with a high purity
polymerase chain reaction (PCR) product purification kit
(Roche Diagnostics, Mannheim, Germany).

We determined allele frequencies by allele counting. We
used Fisher’s exact test, which included calculation of odds
ratios by InStat software, to assess significance of association
between HIV-1 status (seropositive v seronegative) and
genotype for the previously reported repeat alleles, as well
as the g.332C.T (GenBank accession number AY363243)
promoter single nucleotide polymorphism.10

Gene expression studies
We analysed variant sequences with MatInspector
(version 2.2; German Research Center for Biotechnology,
Braunschweig, Germany) to establish possible loss or gain of
transcription factor binding sites to determine the effect of
novel promoter variants on promoter function (fig 1). To
determine whether these novel mutations had any true effect
on promoter activity, we cloned the various mutant promo-
ters, together with the wild type promoter, upstream of the
luciferase gene, and we transiently transfected the resulting
constructs into 293 cells (ATCC: CRL-1573). We measured
transactivation activity relative to Renilla luciferase in three
independent experiments and determined means and stan-
dard deviations. All clones were sequenced to confirm the
configuration of the repeat allele and promoter single
nucleotide polymorphism.

RESULTS
Analysis of the 217 participants identified three of the
previously reported repeat alleles (alleles 1, 2, and 3) and four
single nucleotide variants (the previously reported g.332C.T
polymorphism and three novel rare variants). All poly-

morphic alleles were in Hardy-Weinberg equilibrium in the
HIV seropositive and seronegative participants for both
populations. The repeat allele 3 was most common in the
African and African–European admixed populations, with
allele frequencies of 0.84 (101/120) and 0.73 (35/48) in
participants infected with HIV and 0.81 (103/128) and 0.80
(99/124) in uninfected participants, respectively. We saw no
significant associations between the presence of allele 3 in
infected compared with uninfected African participants
(p = 0.5073, odds ratio 1.290) and the mixed African–
European population (p = 0.4124; odds ratio 0.6799) or in
the homozygous states (Africans: p = 0.3406; African–
European: p = 0.4715) or heterozygous states (African:
p = 0.2426; African–European: p = 0.8079). Allele 2, pre-
viously associated with protection from HIV-1 infection in
the homozygous state,6 was not associated with altered risk
of HIV infection in our study. Three of the seven ‘‘slow
progressors’’ (three African and four African–European
participants who were asymptomatic 10 years after becoming
infected with HIV-1 and had not taken antiretroviral
treatment) were heterozygous for allele 2, while all five ‘‘fast
progressors’’ (three African and two African–European
participants who progressed to AIDS within five years of
infection with HIV-1) were homozygous for allele 3. Of the
three slow progressors who were heterozygous for allele 2 (all
African–European admixed), one was heterozygous for the
CCR5-D32 bp deletion, which has been shown to be
associated with slower progression of disease. Allele frequen-
cies for the g.332C.T single nucleotide polymorphism in the
African and African-European admixed populations infected
with HIV-1 were 0.075 (9/120) and 0.02 (1/48), respectively;
the frequencies for the uninfected participants were 0.05
(6/128) and 0.072 (9/124), respectively. The promoter
single nucleotide polymorphism was associated with repeat
allele 3 in both populations. We saw no significant associa-
tions between HIV-1 infected and non-infected African
participants (p = 0.4136; odds ratio 1.706) and admixed
African–European participants (p = 0.2560, odds ratio
0.2560).

The three novel sequence variants included a G to A base
substitution at position 561 (g.561G.A), a T to C substitu-
tion at position 75 (g.75T.C), and a G to C transition at
position 43 (g.43G.C) (GenBank accession number
AY363243) at 2156, 2642, and 2674 nucleotides from the
initiator codon, respectively. The first two mutations were
identified in HIV-1 seronegative participants of African and
Asian descent, respectively; the g.43G.C mutation occurred
in two unrelated HIV-1 seropositive patients of African
descent. Promoter analysis showed that the G to C mutation
at position 43 created a TCF11 transcription factor binding
site. This mutation also interfered with a Nkx2–5 binding
site, although it did not disrupt the site entirely. The single
nucleotide polymorphism at position 332 introduced an
OCT-1 binding site, and the transition at 561 altered, but
did not destroy, a FoxD3 binding site. The 75 mutation did
not create or alter any transcription factor binding sites.

We cloned these variants in a luciferase reporter system to
determine their effect on promoter activity. Sequencing of the
clones showed that all had the allele 3 repeat configuration
and that all contained the C allele configuration for the
g.332C.T polymorphism. Promoter analysis showed that the
g.43G.C and g.75T.C mutations enhanced the activity of
the SLC11A1 promoter 1.4 (SD 0.14)-fold and 1.6 (0.25)-fold,
respectively, compared with the wild type sequence. The
increase in activity for the g.75T.C mutation was significant
(p,0.05), whereas the increase in activity for the g.43G.C
mutation was not. The g.332C.T polymorphism also
enhanced significantly the activity of the SLC11A1 promoter
1.6 (0.19)-fold (p,0.05), whereas the g.561G.A mutation

Figure 1 Schematic representation of the SLC11A1 promoter region
(Genbank accession number AY363243), depicting the position of the
novel mutations and known single nucleotide polymorphisms (shown
below the sequence) and the various affected transcription factor binding
sites (boxed regions). The core binding site for each transcription factor
is highlighted in bold.
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had no effect on promoter activity compared with the wild
type sequence (fig 2).

DISCUSSION
The z-DNA forming polymorphic repeat in the SLC11A1
promoter acts as a functional polymorphism and influences
gene expression, with allele 3 having the strongest promoter
activity.4 Allele 3 has been associated with hyperactivation of
macrophages and may be functionally linked to susceptibility
to HIV-1.11 In this study, although we did find a possible
association with the presence of allele 2 and delayed disease
progression, numbers were small, and this observation was
not significant (p = 0.2045). In contrast with the literature,
no associations were found with respect to the repeat
polymorphism and risk of HIV infection within our popula-
tion. In addition, the previously reported g.332C.T single
nucleotide polymorphism was not associated with suscept-
ibility to HIV. We used a comprehensive approach to screen
the promoter region of SLC11A1 and identified three novel
sequence variants in combination with allele 3 of the
polymorphic repeat. Although the g.75T.C mutation showed
an increase in promoter activity, it was not associated directly
with the introduction of a transcription factor binding site or
with susceptibility to HIV-1; it occurred in 1/8 HIV-1
seronegative Asian participants. The lack of HIV-1 sero-
positive Asians in this study, however, warrants further
investigation of this mutation in the Asian population. The
g.43G.C novel mutation, which presented in 2/64 HIV-1
seropositive Africans but was absent in the 63 uninfected
Africans, was shown to increase the promoter activity of
SLC11A1, although this increase was not significant. The
possibility that this functional mutation, which creates an
additional transcription factor binding site, may lead to
enhanced susceptibility to pathogen infection within the
African population needs further investigation. As the exact
mechanism of SLC11A1 function in HIV-1 infection is
unknown at present, the identification of novel population
specific variants in the promoter region of this gene, which
affects protein expression, may play a pivotal role in
predicting susceptibility to HIV-1, particularly in populations
from HIV stricken sub-Saharan Africa.
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