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ARITHMETICAL RANK OF THE CYCLIC AND BICYCLIC

GRAPHS

MARGHERITA BARILE, DARIUSH KIANI, FATEMEH MOHAMMADI,
AND SIAMAK YASSEMI

Abstract. We show that for the edge ideals of the graphs consisting of one
cycle or two cycles of any length connected through a vertex or a path, the
arithmetical rank equals the projective dimension.

1. Introduction

For any homogeneous ideal I of a polynomial ring R = K[x1, . . . , xn] there exists
a graded minimal finite free resolution

0 →
⊕

j

R(−j)βpj → . . . →
⊕

j

R(−j)β1j → R → R/I → 0

of R/I, in which R(−j) denotes the graded free module obtained by shifting the
degrees of elements in R by j. The numbers βij , which we shall refer to as the
ith Betti numbers of degree j of R/I, are independent of the choice of the graded
minimal finite free resolution. We also define the ith Betti number of I as βi :=
∑

βij .
Given a polynomial ring R over a field, and a graph G having the set of indeter-

minates as its vertex set V (G) and the set of edges E(G), one can associate with
G a monomial ideal of R: this ideal is generated by the products of the vertices of
each edge in E(G), and is hence generated by squarefree quadratic monomials. It
is called the edge ideal I(G) of G, and has been intensively studied by Simis, Vas-
concelos and Villarreal in [17]. The arithmetical rank (ara), i.e., the least number
of elements of R which generate a given monomial ideal up to radical, is in general
bounded below by its projective dimension (pd), i.e., by the length of every mini-
mal free resolution of the quotient of R with respect to the ideal. The simplicial
complex ∆G of a graph G is defined by

∆G = {A ⊆ V (G)|A is an independent set in G},
where A is an independent set in G if none of its elements are adjacent. Note that
∆G is precisely the Stanley-Reisner simplicial complex of I(G).
For any simplicial complex ∆ on the vertex set V (∆), the Alexander dual of ∆ is
the simplicial complex defined by

∆∗ := {F ⊆ V (∆)| V (∆) \ F /∈ ∆}.
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The link of a face F ∈ ∆ is defined as the simplicial complex

Link∆F := {G ∈ ∆|G ∪ F ∈ ∆ and G ∩ F = ∅}.
In recent times, the projective dimension has been determined for large classes of
edge ideals, where it is independent of the ground field: in Jacques’ thesis it was
computed for acyclic graphs (see also [12]), but also for the graphs Cn, consisting of
one cycle of length n. Jacques, in [11, Theorem 6.1.8], using Hochster’s formula [9],
showed that for a graph G, the Betti numbers are

(*) βi,d(G) =
∑

H⊂G,|V (H)|=d dimkH̃i−2(ε(H);K).

Then he used (*) for providing formulas for the graded Betti numbers of spe-
cial classes of graphs including lines, cycles and complete graphs. He proved the
following theorems.
Theorem A [11, Lemma 8.2.7] The reduced homology of the disjoint union of the
cyclic graph Cn and any non empty graph G may be expressed as follows:

H̃i(ε(Cn ∪G);K) =

{

H̃i− 2n+1
3

(ε(G);K), if n ≡ 1 mod 3

H̃i− 2n−1
3

(ε(G);K), if n ≡ 2 mod 3.

Theorem B [11, Corollary 7.6.30] The non zero Betti numbers in degree n and
the projective dimension of Cn in degree n are the following:

β 2n
3 ,n = 2, and pd I(Cn) =

2n
3 , if n ≡ 0 mod 3,

β 2n+1
3 ,n = 1, and pd I(Cn) =

2n+1
3 , if n ≡ 1 mod 3,

β 2n−1
3 ,n = 1, and pd I(Cn) =

2n−1
3 , if n ≡ 2 mod 3.

Theorem C [11, Lemma 8.1.3] The reduced homology of the disjoint union of the
line graph Ln and any non empty graph G may be expressed as follows:

H̃i(ε(Ln ∪G);K) =











H̃i− 2n
3
(ε(G);K), if n ≡ 0 mod 3

0, if n ≡ 1 mod 3

H̃i− 2n−1
3

(ε(G);K), if n ≡ 2 mod 3.

From the proof of [11, Corollary 7.7.35] one can derive the following result.

Theorem D [11, Corollary 7.7.35] The projective dimension of the line graph is
independent of the characteristic of the chosen field and is

pd I(Ln) =







2n
3 if n ≡ 0 mod 3

2n−2
3 if n ≡ 1 mod 3

2n−1
3 if n ≡ 2 mod 3.

All Betti numbers of Ln in degree n are zero if n ≡ 1 mod 3. Otherwise the non
zero Betti numbers of degree n of Ln are

β 2n
3 ,n I(Ln) = 1, if n ≡ 0 mod 3,

β 2n−1
3 ,n I(Ln) = 1, if n ≡ 2 mod 3.

In [6] an explicit formula is given for the Betti numbers of a special kind of bipartite
graphs, the so-called Ferrers graphs. In [2] it is shown that the arithmetical rank
equals the projective dimension for a special class of acyclic graphs, in [3] that
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this is also true for all Ferrers graphs. In the present paper we prove that the
same equality holds for all cyclic and bicyclic graphs. By bicyclic graph we mean a
graph which consists of two cycles that have exactly one vertex in common or are
connected by a path. In particular, we will see that the projective dimension of
the edge ideals of these graphs does not depend on the characteristic of the ground
field.

2. The arithmetical rank of cyclic graphs

Let K be a field, and consider the polynomial ring R = K[x1, . . . , xn], where
n ≥ 3. Let Cn be the graph on the vertex set {x1, . . . , xn} whose set of edges is
{{x1, x2}, {x2, x3}, . . . , {xn−1, xn}, {x1, xn}}. Then its edge ideal is the following
ideal of R:

I(Cn) = (x1x2, x2x3, . . . , xn−1xn, x1xn).

We will show that for all n, pd I(Cn) = ara I(Cn). In general, for any ideal I of R
we have that cd I ≤ ara I, where cd denotes the local cohomological dimension (see
[8], Example 2, p. 414) and, whenever I is a monomial ideal, pd I = cd I (see [14],
Theorem 1). Hence it will suffice to show that, for all n, ara I(Cn) ≤ pd I(Cn),
i.e., to produce pd I(Cn) elements of R generating I(Cn), up to radical. Among
the available tools, we have, on the one hand, Jacques’ result providing explicit
formulas for the projective dimension of I(Cn).

On the other hand, we know that a finite set of elements of R which generate
a given ideal up to radical can be constructed according to the following criterion,
which is due to Schmitt and Vogel.

Lemma 2.1. ([16], p. 249) Let P be a finite subset of elements of R. Let P0, . . . , Pr

be subsets of P such that

(i)
⋃r

i=0 Pi = P ;
(ii) P0 has exactly one element;
(iii) if p and p′ are different elements of Pi (0 < i ≤ r) there is an integer
i′ with 0 ≤ i′ < i and an element in Pi′ which divides pp′.

We set qi =
∑

p∈Pi
pe(p), where e(p) ≥ 1 are arbitrary integers. We will write (P )

for the ideal of R generated by the elements of P . Then we get
√

(P ) =
√

(q0, . . . , qr).

We have to distinguish between three cases, depending on the residue of n modulo
3. The cases n ≡ 0, 1 mod 3 can be settled by a direct application of Lemma 2.1.
The case n ≡ 2 mod 3 is more interesting, since it needs some additional non trivial
computations on the generators.

Proposition 2.2. Suppose that n = 3m, for some integer m. Set q0 = x1x2,
q1 = x1x3m + x2x3, and, for 1 ≤ i ≤ m− 1, set

q2i = x3i+1x3i+2

q2i+1 = x3ix3i+1 + x3i+2x3i+3.

Then

I(Cn) =
√

(q0, . . . , q2m−1).

In particular, ara I(Cn) ≤ 2m.
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Proof. For all i = 0, . . . ,m − 1, the monomial q2i divides the product of the two
summands of q2i+1. By Lemma 2.1 it follows that

(x3ix3i+1, x3i+1x3i+2, x3i+2x3i+3) =
√

(q2i, q2i+1).

This implies the claim. �

Using the same arguments as in the proof of Proposition 2.2, from Lemma 2.1
we can deduce the next result.

Proposition 2.3. Suppose that n = 3m+ 1, for some integer m. Set q0 = x1x2,
q1 = x1x3m+1 + x2x3, and, for 1 ≤ i ≤ m− 1, set

q2i = x3i+1x3i+2

q2i+1 = x3ix3i+1 + x3i+2x3i+3,

and, finally, q2m = x3mx3m+1. Then

I(Cn) =
√

(q0, . . . , q2m).

In particular, ara I(Cn) ≤ 2m+ 1.

Proposition 2.4. Suppose that n = 3m+ 2, for some integer m. Set q0 = x1x2,
q1 = x2x3 + x4x5, and, for 1 ≤ i ≤ m− 1, set

q2i = x3ix3i+1 + x3i+2x3i+3

q2i+1 = x3i+2x3i+3 + x3i+4x3i+5,

and, finally, q2m = x1x3m+2 + x3mx3m+1. Then

I(Cn) =
√

(q0, . . . , q2m).

In particular, ara I(Cn) ≤ 2m+ 1.

Proof. The claim for m = 1 was proven in [2], Example 1. So let m ≥ 2. Set
Jm = (q0, . . . , q2m). It suffices to show that I(Cn) ⊂ √

Jm. In this proof, for all
f, g ∈ R, by abuse of notation we will write f ≡ g whenever f − g or f + g belongs
to Jm, and, f ≡qi g whenever f − g or f + g is divisible by qi. In this way, f ≡ g
or f ≡qi g assures that f ∈ Jm occurs if and only if g ∈ Jm. We first show that

(2.1) x2m

1 x2m+1

3m+2 ∈ Jm.

Set

um = x2m−1

1 x2m

3m+2,

vm = x3x4x5

m
∏

i=2

x3·2i−2

3i ,

wm = (x3mx3m+1x3m+2)
2m−1

.

We prove that

(2.2) um ≡ vm ≡ wm.

Note that x1x3m+2vm is a multiple of x1x3m+2x4x5, and

x1x3m+2x4x5 ≡q0 x1x3m+2(x2x3 + x4x5) ∈ Jm,

whence we deduce that x1x3m+2vm ∈ Jm. Thus (2.2) will imply that

x2m

1 x2m+1

3m+2 = x1x3m+2um ∈ Jm,
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as claimed in (2.1). We prove (2.2) by induction on m ≥ 2. First take m = 2. We
have q2 = x3x4 + x5x6, q3 = x5x6 + x7x8 and q4 = x1x8 + x6x7, so that

v2 = x3x4x5x
3
6 ≡q2 x2

5x
2
6x

2
6 ≡q3 x2

6x
2
7x

2
8 = w2 ≡q4 x2

1x
4
8 = u2,

which shows (2.2) for m = 2. Now suppose that m > 2 and that the claim is true
for m− 1. We have:

vm = vm−1x
3·2m−2

3m ≡ wm−1x
3·2m−2

3m

= (x3m−3x3m−2x3m−1)
2m−2

x3·2m−2

3m = (x3m−3x3m−2)
2m−2

x2m−2

3m−1x
3·2m−2

3m

≡q2m−2 (x3m−1x3m)2
m−2

x2m−2

3m−1x
3·2m−2

3m = (x3m−1x3m)2
m−1

x2·2m−2

3m

≡q2m−1 (x3m+1x3m+2)
2m−1

x2m−1

3m = (x3mx3m+1)
2m−1

x2m−1

3m+2 = wm

≡q2m (x1x3m+2)
2m−1

x2m−1

3m+2 = x2m−1

1 x2m

3m+2 = um.

This completes the proof of (2.2) and of (2.1). We have thus shown that

(2.3) x1x3m+2 ∈
√

Jm.

But then

(2.4) x3mx3m+1 = q2m − x1x3m+2 ∈
√

Jm.

In general, whenever, for some i ∈ {2, . . . ,m},

(2.5) x3ix3i+1 ∈
√

Jm,

from the fact that x3ix3i+1 divides x3i−1x3i · x3i+1x3i+2, i.e., the product of the
summands of q2i−1, by Lemma 2.1 one deduces that

(2.6) x3i−1x3i ∈
√

Jm.

Since x3i−3x3i−2 = q2i−2 − x3i−1x3i, this in turn implies that

(2.7) x3i−3x3i−2 ∈
√

Jm.

Finally, since x3i−3x3i−2 divides x3i−4x3i−3 · x3i−2x3i−1, i.e., the product of the
summands of q2i−3, by Lemma 2.1 we again conclude that

(2.8) x3i−2x3i−1 ∈
√

Jm.

Therefore, since (2.5) implies (2.6), (2.7) and (2.8), for all i = 2, . . . ,m, from
(2.4) one can derive by descending induction on h, that xhxh+1 ∈ √

Jm for all
h = 3, . . . , 3m + 1. In particular we have that x3x4 ∈ √

Jm, which, together with
q1 ∈ Jm, yields x2x3 ∈ √

Jm by Lemma 2.1. This, together with (2.4) and q0 ∈ Jm,
shows that I(Cn) ⊂

√
Jm, as claimed. �

Theorem B and Propositions 2.2, 2.3, 2.4 imply our main result.
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Theorem 2.5. Let n ≥ 3 be an integer. Then

ara I(Cn) = pd I(Cn) =























2n
3 if n ≡ 0 mod 3

2n+1
3 if n ≡ 1 mod 3

2n−1
3 if n ≡ 2 mod 3.

Every ideal I(Cn) is of pure height ⌈n
2 ⌉, where ⌈a⌉ denotes the least integer not

less than a. Recall that an ideal is called a set-theoretic complete intersection if
its arithmetical rank equals its height. In view of Theorem 2.5 we thus have the
following.

Corollary 2.6. I(Cn) is a set-theoretic complete intersection only for n = 3 and
n = 5.

3. The arithmetical rank of bicyclic graphs

In this section by ≡, we mean ≡ (mod 3) and all equivalence relations will
be considered modulo 3. Let a1, . . . , as be subsets of the finite set V . Define
ε(a1, . . . , as;V ) to be the simplicial complex which has vertex set

⋃s

i=1(V \ ai) and
maximal faces V \a1, . . . , V \as. Let ∆ = ∆G, and let F ∈ ∆∗ and e1, . . . , er be all
the edges of G which are disjoint from F . Then Link∆∗F = ε(e1, . . . , er;V (G) \F )
by [12, Proposition 3.3]. According to [11, Proposition 6.1.6], associating F with
the induced subgraph H of G on the vertex set V (G)\F defines a bijection between
the faces of ∆∗ and the set of induced subgraphs of G which have at least one edge.
Let H be an induced subgraph of the graph G. If H is associated with the face
F of ∆∗ as described above, we write ε(H) for ε(e1, . . . , es;V ), where e1, . . . , es
are the edges of H and V is the vertex set V (G) \ F (or equivalently the vertex
set of H). In this section, using (*), we find explicit descriptions of the projective
dimension of all bicyclic graphs. For every vertex u of a graph G we denote by
NG(u) the set of vertices adjacent to u. In the proof of our main results we will
use the Mayer-Vietoris sequence for the reduced homology of simplicial complexes,
which, for any pair ∆1, ∆2 of simplicial complexes, has the following form (see [11,
Remark 6.2.13]):

. . . → H̃i(∆1 ∩∆2;K) → H̃i(∆1;K)⊕ H̃i(∆2;K) → H̃i(∆1 ∪∆2;K) →
H̃i−1(∆1 ∩∆2;K) → . . . .

Lemma 3.1. For a graph G with an edge {u, v} such that deg(v) = 1, we have

H̃i(ε(G);K) = 0, if some vertex in NG(u) has an adjacent vertex of degree one

in G. Otherwise, H̃i(ε(G);K) = H̃i−t(ε(H);K), where t = |NG(u)| and H is the
induced subgraph on V (G) \ ({u} ∪NG(u)), provided H is non empty.

Proof. In this and in the following proofs we will omit the coefficient field in
the homology groups. We set V = V (G). Let NG(u) = {v, u1, . . . , ut−1} and
{u, v}, {u, u1}, . . . , {u, ut−1}, e1, . . . , er be the edges of G. We can write ε(G) =
E1 ∪E2, where E1 = ε({u, u1}, . . . , {u, ut−1}, e1, . . . , er;V ) and E2 = ε({u, v};V ).
The intersection of these simplicial complexes is:
E1 ∩E2 = ε({u, v, u1}, . . . , {u, v, ut−1}, {u, v} ∪ e1, . . . , {u, v} ∪ er;V )
= ε({u1}, . . . , {ut−1}, e1, . . . , er;V \ ({u, v})) (see [12, Lemma 3.4]).
If there exists a vertex vi of degree one such that {ui, vi} ∈ E(G), then without loss
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of generality we can assume that e1 = {ui, vi}. Then E1∩E2 = ε({u1}, . . . , {ut−1},
{ui, vi}, e2, . . . , er;V \({u, v})) = ε({u1}, . . . , {ut−1}, e2, . . . , er;V \({u, v})), whose
reduced homology is identically zero, since vi ∈ V \ ({u, v}) and vi belongs to

all faces of E1 ∩ E2. Otherwise, by [12, Lemma 3.5] we have H̃i(E1 ∩ E2) =

H̃i−t+1(ε(H)), for all i, where H is the induced subgraph on V \ ({u} ∪ NG(u)).

Since E2 is a simplex, H̃i(E2) = 0 for all i. Also, H̃i(E1) = 0 for all i, since v
belongs to all faces of E1. Using the Mayer-Vietoris sequence (for ∆i = Ei) we

deduce that H̃i(ε(G)) = H̃i−1(E1 ∩E2), which completes the proof. �

The next result can be deduced from Lemma 3.1 by a trivial inductive argument.

Corollary 3.2. Let n ≡ 0. Suppose that Ln intersects graph G only at one of its
endpoints. Then, for all i, we have H̃i(ε(G ∪ Ln)) = H̃i− 2n

3
(ε(G \ Ln)).

Theorem 3.3. Let G be the graph which is a joint of two cycles Cn and Cm in a
common vertex. Then the following hold:

(a) If |V (G)| ≡ 1, then pd I(G) = ara I(G) = 2|V (G)|+1
3 .

(b) If |V (G)| ≡ 0, then pd I(G) = ara I(G) = 2|V (G)|
3 .

(c) If |V (G)| ≡ 2, then pd I(G) = ara I(G) = 2|V (G)|+2
3 , for m ≡ 0, whereas

pd I(G) = ara I(G) = 2|V (G)|−1
3 otherwise.

Proof. We will prove the claim by showing that the desired number is, on the one
hand, a lower bound for pd I(G), on the other hand, an upper bound for ara I(G).

Let V = V (G). Consider the labeling for V such that V (Cn) = {y1, y2, . . . , yn},
and V (Cm) = {x1, x2, . . . , xm}, where x1 = y1. Up to exchanging m and n we have
the following cases.

Case 1. |V | ≡ 0 or 1.
First let n = 3. Then m ≡ 1 or m ≡ 2. In view of (*) the ith Betti number of degree

|V | is βi,|V |(G) = dimkH̃i−2(ε(G);K). So we compute the reduced homology ofG of
degree |V |. We can write ε(G) = ε({x1, x2}, . . . , {xm, x1}, {x1, y2}, {y2, y3}, {y3, x1};
V ) = E1 ∪ E2, where E1 = ε({x1, x2}, . . . , {xm, x1}, {x1, y2}, {y3, x1};V ) and
E2 = ε({y2, y3};V ).
By [12, Lemma 3.4], the intersection of these simplicial complexes is:

E1 ∩ E2 = ε({x1, x2, y2, y3}, . . . , {x1, xm, y2, y3}, {x1, y2, y3};V )

= ε({x1}, {x2, x3}, . . . , {xm−1, xm};V \ {y2, y3}).
By [12, Lemma 3.5], H̃i(E1∩E2) = H̃i−1(ε(Lm−1)), for all i. Since E2 is a simplex,

H̃i(E2) = 0 for all i. Applying Lemma 3.1 to E1 for v = y2 (and u = x1, so that

N(u) = {x2, xm, y2, y3}), we obtain H̃i(E1) = H̃i−4(ε(Lm−3)), for all i.

If m ≡ 1, then H̃i(E1) = 0 for all i by Theorem D and (*) (since m − 3 ≡ 1). By

the Mayer-Vietoris sequence we deduce that, for all i, H̃i(ε(G)) = H̃i−1(E1 ∩ E2).

Theorem D and (*) then show that H̃i−2(ε(Lm−1)) 6= 0 (i.e., H̃i(ε(G)) 6= 0) if and

only if i− 2+ 2 = 2(m−1)
3 , if and only if i = 2|V |

3 − 2. In view of (*) we deduce that

pd I(G) ≥ 2|V |
3 .

Ifm ≡ 2, then H̃i(E1∩E2) = 0 for all i by Theorem D and (*) (since m−1 ≡ 1). By

the Mayer-Vietoris sequence we deduce that H̃i(ε(G)) = H̃i(E1) for all i. Theorem

D and (*) show that H̃i(ε(G)) 6= 0 if and only if i = 2|V |+1
3 − 2. In view of (*) we
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deduce that pd I(G) ≥ 2|V |+1
3 .

So we can assume that n ≥ 4. Moreover, since n and m cannot be both divisible
by 3, we may assume that m ≡ 1 or m ≡ 2. In view of (*) we compute the reduced
homology of G of degree |V |. We can write
ε(G) = ε({x1, x2}, . . . , {xm, x1}, {x1, y2}, {y2, y3}, . . . , {yn−1, yn}, {yn, x1};V ) =
E1 ∪E2, where E1 = ε({x2, x3}, . . . , {xm, x1}, {x1, y2}, . . . , {yn−1, yn}, {yn, x1};V )
and E2 = ε({x1, x2};V ). We have that E1 = ε(Lm∪Cn), where Lm : x2x3 . . . xmx1.
The intersection of these simplicial complexes is E1∩E2 =ε({x1, x2, x3}, {x1, x2, x3,
x4}, . . . , {x1, x2, xm−1, xm}, {xm, x1, x2}, {x1, y2, x2}, . . . , {yn−1, yn, x1, x2}, {yn, x1,
x2};V ) = ε({x3}, {xm}, {y2}, {yn}, {x4, x5}, . . . , {xm−2, xm−1}, {y3, y4}, . . . , {yn−2,
yn−1};V \ {x1, x2}) (see [12, Lemma 3.4]).

By [12, Lemma 3.5], H̃i(E1∩E2) = H̃i−4(ε(H)) for all i, whereH is the induced sub-

graph on V \{x1, x2, x3, xm, y2, yn}. We have H̃i(E1∩E2) = H̃i−4(ε(Lm−4∪Ln−3))

for all i. Since E2 is a simplex, H̃i(E2) = 0 for all i.

Case 1.1. Let m ≡ 2.
By Theorem C, H̃i(E1∩E2) = 0 for any i, since m− 4 ≡ 1. Applying Corollary 3.2

to the path Lm−2 : x2x3 . . . xm−1, we get that, for all i, H̃i(E1) = H̃
i− 2(m−2)

3

(ε(L2∪
Cn)), where L2 : x1xm. If we apply Lemma 3.1 once again for v = xm (and u = x1,

so that N(u) = {xm, y2, yn}), we then obtain H̃i(E1) = H̃
i− 2(m−2)

3 −3
(ε(Ln−3)), for

all i, where Ln−3 : y3 . . . yn−1. In part (a), we have n ≡ 0. Theorem D and (*)

show that H̃i(E1) 6= 0 if and only if i = 2|V |+1
3 − 2. The Mayer-Vietoris sequence

implies that H̃i(ε(G)) 6= 0 if and only if i = 2|V |+1
3 − 2. By (*) it follows that

pd I(G) ≥ 2|V |+1
3 , as claimed. In part (b), we have n ≡ 2. Theorem D and (*) show

that H̃i(E1) 6= 0 if and only if i = 2|V |
3 − 2. As above, it follows that H̃i(ε(G)) 6= 0

if and only if i = 2|V |
3 −2. In view of (*) we deduce that pd I(G) ≥ 2|V |

3 , as claimed.

Case 1.2. Let m ≡ 1.
By Theorem C, H̃i(E1 ∩ E2) = H̃

i−4−
2(m−4)

3

(ε(Ln−3)) for any i. Moreover, apply-

ing Corollary 3.2 to the path Lm−1 : x2x3 . . . xm, we get that, for all i, H̃i(E1) =

H̃
i−

2(m−1)
3

(ε(Cn)). In part (a), we have n ≡ 1. Hence, by Theorem C, H̃i(E1∩E2) =

0 for any i, since n − 3 ≡ 1. On the other hand, Theorem B and (*) show that

H̃i(E1) 6= 0 if and only if i = 2|V |+1
3 − 2. We deduce that H̃i(ε(G)) 6= 0 if and only

if i = 2|V |+1
3 − 2. By (*) it follows that pd I(G) ≥ 2|V |+1

3 , as claimed. In part (b),

we have n ≡ 0. By Theorem D and (*) it follows that H̃i(E1 ∩E2) 6= 0 if and only

if i = 2|V |
3 − 2, in which case the ith homology module is equal to K. Theorem B

and (*) show that H̃i(E1) 6= 0 if and only if i = 2|V |
3 − 2 in which case it is equal to

K2. Thus the Mayer-Vietoris sequence implies that H̃i(ε(G)) 6= 0 for i = 2|V |
3 − 2.

In view of (*) we deduce that pd I(G) ≥ 2|V |
3 , as claimed.

Case 2. Let |V | ≡ 2.
Case 2.1. m ≡ 0.
We have n ≡ 0. First assume that n = m = 3. We first show that in this
case pd I(G) ≥ 4. We use the fact that pd I(G) = cd I(G), (see [15, Theorem
1]), where cd denotes the local cohomological dimension, i.e., for any ideal I of
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R, cd I is the maximum index i for which the local cohomology module Hi
I(R)

(of R with respect to I) does not vanish. We have that I(G) = I ∩ J , where
I = (x1, x2x3, y2y3) and J = (x2, x3, y2, y3). It is well-known that, whenever an
ideal is a complete intersection, its height is the only index for which the cohomology
module of R with respect to this ideal does not vanish (see [10, Proposition 3.8]
together with [10, Theorem 4.4], or together with [8, Example 2, p. 414]). Since
I + J = (x1, x2, x3, y2, y3) we thus have that Hi

I+J(R) 6= 0 if and only if i = 5. We
also have that cd J = 4. In the Mayer-Vietoris sequence for local cohomology (see
[10], Section 3)

. . . → H4
I+J(R) → H4

I (R)⊕H4
J (R) → H4

I∩J(R) → . . . ,

the left term is zero, whereas the middle term is not. It follows that the right term
is non zero, too. This implies that pd I(G) = cd I(G) ≥ 4. On the other hand, by
Lemma 2.1, the elements x1x2, x2x3 + x1x3, x1y2, x1y3 + y2y3 generate I(G), up to
radical, which shows that ara I(G) ≤ 4. It follows that pd I(G) = ara I(G) = 4,
which proves the claim in this case.
Without loss of generality we can thus assume that m ≥ 6. We can write ε(G) =
E1 ∪ E2, where E1 = ε({x1, x2}, {x3, x4}, . . . , {xm, x1}, {x1, y2}, . . . , {yn, x1};V )
and E2 = ε({x2, x3};V ). We have that E1 ∩ E2 = ε({x1}, {x4}, {x5, x6}, . . . ,
{xm−1, xm}, {y2, y3}, . . . , {yn−1, yn}). By [12, Lemma 3.5]) it follows that H̃i(E1 ∩
E2) = H̃i−2(ε(Lm−4 ∪ Ln−1)), for all i. We also have that E1 = ε(H1), where H1

is the union of Cn and the paths x3 . . . xmx1 and x1x2. Applying Lemma 3.1 for
v = x2 (and u = x1, so that N(u) = {x2, xm, y2, yn}, we obtain that, for all i,

H̃i(E1) = H̃i−4(ε(Lm−3 ∪ Ln−3)). Thus, by Theorem C, we deduce that, for all i,

H̃i(E1) = H̃
i−4−

2(n−3)
3

(ε(Lm−3)). According to Theorem D and (*) it is non zero

if and only if i = 2|V |+2
3 − 2. Applying Theorem C, Theorem D and (*) we also get

that H̃i(E1 ∩E2) 6= 0 if and only if i = 2|V |+2
3 − 4. By the Mayer-Vietoris sequence

we conclude that H̃i(ε(G)) 6= 0 for i = 2|V |+2
3 − 2. In view of (*) we deduce that

pd I(G) ≥ 2|V |+2
3 , as claimed.

Case 2.2. Let m ≡ 1.
We have n ≡ 2. Consider the induced subgraph H ′ on V \ {y2}. Then H ′ is the
union of Cm and the path Ln−1 : y3 . . . yny1. Applying Corollary 3.2 to the path

Ln−2 : y3 . . . yn, we obtain H̃i(ε(H
′)) = H̃

i− 2(n−2)
3

(ε(Cm)), for all i. By Theorem

B and (*) it is non zero if and only if i = 2|V |−1
3 − 2. In view of (*) we deduce that

pd I(G) ≥ 2|V |−1
3 , as claimed.

Now we find an upper bound for the arithmetical rank in each case. In the rest
of the proof, we will refer to the polynomials qi introduced in Propositions 2.2,
2.3 and 2.4; in each case, the polynomial q′i will be the one obtained from qi by
replacing each variable xj with yj.

In part (a), for m ≡ 2, by Proposition 2.4 the sequence Am : q0, . . . , q 2(m−2)
3

, gener-

ates I(Cm), up to radical and by Proposition 2.2 the sequence An : q′0, . . . , q
′
2n
3 −1

,

generates I(Cn), up to radical. Since I(G) = I(Cm)+I(Cn), the following sequence
generates I(G), up to radical: B : q0, . . . , q 2(m−2)

3
, q′0, . . . , q

′
2n
3 −1

. This implies that
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ara I(G) ≤ 2|V |+1
3 .

If m ≡ 1, then, by Proposition 2.3 the sequence Am : q0, . . . , q 2(m−1)
3

gener-

ates I(Cm), up to radical and the sequence An : q′0, . . . , q
′
2(n−1)

3

generates I(Cn),

up to radical. The summand x1xm of q1 divides the product of the monomials
q 2(m−1)

3

= xm−1xm and q′0 = y1y2 = x1y2. Thus by Lemma 2.1 the sequence

B : q0, q1, q 2(m−1)
3

+ q′0, q2, . . . , q 2(m−1)
3 −1

, q′1, . . . , q
′
2(n−1)

3

of length 2|V |+1
3 generates

I(G) up to radical. This implies that ara I(G) ≤ 2|V |+1
3 .

In part (b), form ≡ 2, according to Proposition 2.4, the sequenceAm : q0, . . . , q 2(m−2)
3

,

generates I(Cm), up to radical and the sequence An : q′0, . . . , q
′
2(n−2)

3

, generates

I(Cn), up to radical. The sequence B formed by the union of these two sequences

generates I(G), up to radical. This implies that ara I(G) ≤ 2|V |
3 .

If m ≡ 1, then, by Proposition 2.3 the sequence Am : q0, . . . , q 2(m−1)
3

generates

I(Cm), up to radical and by Proposition 2.2 the sequence An : q′0, . . . , q
′
2n
3 −1

gen-

erates I(Cn), up to radical. Thus by Lemma 2.1 the sequence B : q0, q1, q 2(m−1)
3

+

q′0, q2, . . . , q 2(m−1)
3 −1

, q′1, . . . , q
′
2n
3 −1

of length 2|V |
3 , generates I(G), up to radical. So

ara I(G) ≤ 2|V |
3 .

In part (c), if m ≡ 0, then consider the sequence B : q0, . . . , q 2m
3 −1, q

′
0, . . . , q

′
2n
3 −1

,

where Am : q0, . . . , q 2m
3 −1 generates I(Cm) and An : q′0, . . . , q

′
2n
3 −1

generates I(Cn),

up to radical, by Proposition 2.2. This implies that ara I(G) ≤ 2|V |+2
3 .

If m ≡ 1, then, by Proposition 2.3, the sequence Am : q0, . . . , q 2(m−1)
3

, generates

I(Cm), up to radical. By Proposition 2.4, the sequence An : q′0, . . . , q
′
2(n−2)

3

, gen-

erates I(Cn), up to radical. Thus by Lemma 2.1 the sequence B : q0, q1, q 2(m−1)
3

+

q′0, q2, . . . , q 2(m−1)
3 −1

, q′1, . . . , q
′
2(n−2)

3

, generates I(G), up to radical. This implies that

ara I(G) ≤ 2|V |−1
3 . �

Theorem 3.4. Let G be the graph formed by two cycles Cn and Cm with a path
joining a vertex of Cn to a vertex of Cm. Then the following hold:

(a) If |V (G)| ≡ 1, then pd I(G) = ara I(G) = 2|V (G)|−2
3 , whenever m ≡ 2, n ≡ 2.

Otherwise, pd I(G) = ara I(G) = 2|V (G)|+1
3 .

(b) If |V (G)| ≡ 0, then pd I(G) = ara I(G) = 2|V (G)|
3 .

(c) If |V (G)| ≡ 2 and m,n ≡ 0 or 1, then pd I(G) = ara I(G) = 2|V (G)|+2
3 .

Otherwise, pd I(G) = ara I(G) = 2|V (G)|−1
3 .

Proof. Let V = V (G). Consider the labeling for V such that V (Cn) = {y1, y2, . . . ,
yn}, V (Cm) = {x1, x2, . . . , xm} and let P : z0z1 . . . zkzk+1 be the path in G, where
z0 = x1 and zk+1 = y1. We compute the reduced homology of G of degree |V |. Up
to exchanging m and n, we have the following cases.
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Case 1. Let k ≡ 2.
We can write ε(G) = ε({x1, x2}, . . . , {xm, x1}, {y1, y2}, . . . , {yn, y1}, {x1, z1}, {z1, z2},
. . . , {zk−1, zk}, {zk, y1};V ) = E1 ∪ E2, where
E1 = ε({x1, x2}, . . . , {xm, x1}, {y1, y2}, . . . , {yn, y1}, {x1, z1}, {z1, z2}, . . . , {zk−1, zk};
V ) and E2 = ε({zk, y1};V ). The intersection of these simplicial complexes is
E1 ∩E2 = ε({y2}, {yn}, {zk−1}, {x1, x2}, . . . , {xm, x1}, {y3, y4}, . . . , {yn−2, yn−1},
{x1, z1}, {z1, z2}, . . . , {zk−3, zk−2};V ) (see [12, Lemma 3.4]).
By [12, Lemma 3.5] it follows that

H̃i(E1 ∩ E2) = H̃i−3(ε(H1 ∪ Ln−3)),

for all i, where H1 is the induced subgraph on V \ (V (Cn) ∪ {zk−1, zk}). Applying
Corollary 3.2 to the path Lk−2 : z1 . . . zk−2, we have

H̃i(E1 ∩ E2) = H̃
i− 2(k−2)

3 −3
(ε(Cm ∪ Ln−3)),

for all i. Since E2 is a simplex, H̃i(E2) = 0 for all i.
Applying Corollary 3.2 to the path Lk+1 : z0 . . . zk, we have that, for all i,

H̃i(E1) = H̃
i− 2(k+1)

3
(ε(Lm−1 ∪ Cn)).

Case 1.1 Let n ≡ 1.
By Theorem C, since n− 3 ≡ 1, we have that

H̃i(E1 ∩E2) = 0

for all i. The Mayer-Vietoris sequence then implies that H̃i(ε(G)) = H̃i(E1) for all
i. Moreover, in view of Proposition 2.3, I(Cn) is generated, up to radical, by the
sequence An : q′0, . . . , q

′
2(n−1)

3

.

Case 1.1.1 Let m ≡ 1 or m ≡ 0.
First suppose that m ≡ 1. Then |V | ≡ 1. From Theorem C we have that, for all i,

H̃i(E1) = H̃
i− 2(k+1)

3 − 2(m−1)
3

(ε(Cn)). In view of Theorem B and (*) it follows that

H̃i(E1) 6= 0 if and only if i = 2|V |+1
3 − 2. Thus H̃i(ε(G)) 6= 0 for i = 2|V |+1

3 − 2,

which, by (*), implies that pd I(G) ≥ 2|V |+1
3 .

By Lemma 2.1, the sequenceB : q0, q1, q 2(m−1)
3

+x1z1, q2, . . . , q 2(m−1)
3 −1

, zky1, zk−1zk

+ q′0, q
′
1, . . . , q

′
2(n−1)

3

, z2z3, z1z2 + z3z4, . . . , zk−3zk−2, zk−4zk−3 + zk−2zk−1 of length

2|V |+1
3 , generates I(G), up to radical, where Am : q0, . . . , q 2(m−1)

3
generates I(Cm),

up to radical by Proposition 2.3. Thus ara I(G) ≤ 2|V |+1
3 .

Now suppose that m ≡ 0. Then |V | ≡ 0. From Theorem C, Theorem B and (*)

we deduce that H̃i(E1) 6= 0 if and only if i = 2|V |
3 − 2. Thus H̃i(ε(G)) 6= 0 for

i = 2|V |
3 − 2, which, by (*), implies that pd I(G) ≥ 2|V |

3 .
By Lemma 2.1, the sequence B : q′0, q

′
1, q

′
2(n−1)

3

+y1zk, q
′
2, . . . , q

′
2(n−1)

3 −1
, z1x1, z1z2+

q0, q1, . . . , q 2m
3 −1, z3z4, z2z3 + z4z5, . . . , zk−2zk−1, zk−3zk−2 + zk−1zk of length 2|V |

3 ,

generates I(G), up to radical, where Am : q0, . . . , q 2m
3

generates I(Cm), up to

radical by Proposition 2.2. Therefore, we have pd I(G) = ara I(G) = 2|V |
3 .

Case 1.1.2 Let m ≡ 2.
In this case |V | ≡ 2. Consider the induced subgraph H2 on V \ {zk}. We have
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H2 = H ′∪Cn, whereH
′ is the induced subgraph on V \(V (Cn)∪{zk}). By Theorem

A we have that, for all i, H̃i(ε(H2)) = H̃i− 2n+1
3

(ε(H ′)). If we apply Corollary 3.2

along the path Lk−2 : z2 . . . zk−1, and then Lemma 3.1 for v = z1, we further get,

for all i, H̃i(ε(Cn ∪H ′)) = H̃
i− 2n+1

3 − 2(k−2)
3 −3

(ε(Lm−3)), which, by Theorem D and

(*), is non zero in i = 2|V |−1
3 − 2. By (*) this implies pd I(G) ≥ 2|V |−1

3 .
By Lemma 2.1, the sequenceB : z1x1, z1z2+q0, q1, . . . , q 2(m−2)

3

, z3z4, z2z3+z4z5, . . . , zk−2zk−1, zk−3zk−2+

zk−1zk, q
′
0, q

′
1, zky1 + q′2(n−1)

3

, q′2, . . . , q
′
2(n−1)

3 −1
of length 2|V |−1

3 generates I(G), up

to radical, where the sequence An : q′0, . . . , q
′
2(n−1)

3

generates I(Cn), up to radical,

by Proposition 2.3. This shows that ara I(G) ≤ 2|V |−1
3 .

Case 1.2 Let n ≡ 2.
By Theorem C, since n− 3 ≡ 2, we have that

H̃i(E1 ∩ E2) = H̃
i− 2(k−2)

3 −3− 2(n−3)−1
3

(ε(Cm))

for all i. Moreover, by Theorem A,

H̃i(E1) = H̃
i− 2(k+1)

3 − 2n−1
3

(ε(Lm−1)),

for all i. Moreover, in view of Proposition 2.4, I(Cn) is generated, up to radical,
by the sequence An : q′0, . . . , q

′
2(n−2)

3

.

Case 1.2.1 Let m ≡ 0.
In this case |V | ≡ 1. In view of Theorem B and (*) we have that H̃i(E1∩E2) 6= 0 if

and only if i = 2|V |+1
3 −3, in which case the homology group isK2, and, according to

Theorem D and (*), we have that H̃i(E1) 6= 0 if and only if i = 2|V |+1
3 −3, in which

case the homology group is K. From the Mayer-Vietoris sequence it then follows

that H̃i(ε(G)) 6= 0 for i = 2|V |+1
3 − 2, which, by (*), implies that pd I(G) ≥ 2|V |+1

3 .
The sequenceB : q′0, . . . , q

′
2(n−2)

3

, q0, . . . , q 2m
3 −1, z1z2, z0z1+z2z3, . . . , zk−1zk, zk−2zk−1

+ zkzk+1 of length 2|V |+1
3 generates I(G), up to radical, by Lemma 2.1, where the

sequence Am : q0, . . . , q 2m
3 −1 generates I(Cm), up to radical, by Proposition 2.2.

This implies that ara I(G) ≤ 2|V |+1
3 .

Case 1.2.2 Let m ≡ 2.
In this case |V | ≡ 0. In view of Theorem B and (*) we have that H̃i(E1 ∩ E2) 6= 0

if and only if i = 2|V |
3 − 3, and, according to Theorem C, since m− 1 ≡ 1, we have

that H̃i(E1) = 0 for all i. From the Mayer-Vietoris sequence it then follows that

H̃i(ε(G)) 6= 0 for i = 2|V |
3 − 2, which, by (*), implies that pd I(G) ≥ 2|V |

3 .
By Lemma 2.1, the sequenceB : q0, . . . , q 2(m−2)

3

, q′0, . . . , q
′
2(n−2)

3

, z1z2, z0z1+z2z3, . . . ,

zk−1zk, zk−2zk−1 + zkzk+1 of length 2|V |
3 generates I(G), up to radical, where the

sequence Am : q0, . . . , q 2(m−2)
3

generates I(Cm), up to radical, by Proposition 2.4.

This implies that ara I(G) ≤ 2|V |
3 .

Case 1.3 Let n ≡ m ≡ 0.



ARITHMETICAL RANK OF THE CYCLIC AND BICYCLIC GRAPHS 13

In this case |V | ≡ 2. In view of Theorem C, since n− 3 ≡ 0, we have that, for all i,

H̃i(E1 ∩ E2) = H̃
i−

2(k−2)
3 −3−

2(n−3)
3

(ε(Cm)),

and by Theorem A, for all i,

H̃i(E1) = H̃
i− 2(k+1)

3
− 2n

3

(ε(Lm−1)).

According to Theorem B and (*) it follows that H̃i(E1 ∩ E2) 6= 0 if and only if

i = 2|V |+2
3 − 3, in which case it is equal to K2, and, in view of Theorem D and

(*), H̃i(E1) 6= 0 if and only if i = 2|V |+2
3 − 3, in which case it is equal to K. From

the Mayer-Vietoris sequence it then follows that H̃i(ε(G)) 6= 0 for i = 2|V |+2
3 − 2,

which, by (*), implies that pd I(G) ≥ 2|V |+2
3 .

The sequenceB : q′0, . . . , q
′
2n
3 −1

, q0, . . . , q 2m
3 −1, z1z2, x1z1+z2z3, . . . , zk−1zk, zk−2zk−1

+ zky1, generates I(G), up to radical, by Lemma 2.1, where Am : q0, . . . , q 2m
3 −1

generates I(Cm), up to radical, and An : q′0, . . . , q
′
2n
3 −1

generates I(Cn), up to

radical, by Proposition 2.2. Therefore, we have ara I(G) ≤ 2|V |+2
3 .

Case 2 Let k ≡ 0.
As in Case 1, we can write ε(G) = ε({x1, x2}, . . . , {xm, x1}, {y1, y2}, . . . , {yn, y1},
{x1, z1}, {z1, z2}, . . . , {zk−1, zk}, {zk, y1};V ) = E1 ∪ E2, where
E1 = ε({x1, x2}, . . . , {x1, xm}, {y1, y2}, . . . , {y1, yn}, {x1, z1}, . . . , {zk−1, zk}) and
E2 = ε({zk, y1}).
If k = 0, then E1 ∩ E2 = ε({x2}, {xm}, {y2}, {yn}, {x3, x4}, . . . , {xm−2, xm−1},
{y3, y4}, . . . , {yn−2, yn−1};V \ {x1, y1}), so that, by [11, Lemma 3.5],

H̃i(E1 ∩ E2) = H̃i−4(ε(Lm−3 ∪ Ln−3)),

for all i. If k ≥ 3, then E1∩E2 = ε({zk−1}, {y2}, {yn}, {x1, x2}, . . . , {xm, x1}, {y3, y4},
. . . , {yn−2, yn−1}, {x1, z1}, {z1, z2}, . . . {zk−3, zk−2};V \ {zk, y1}), so that, by [11,

Lemma 3.5], H̃i(E1∩E2) = H̃i−3(ε(H
′′∪Ln−3)), for all i, where H

′′ is the induced
subgraph on V \ (V (Cn) ∪ {zk−1, zk}), i.e., it is the union of Cm and the path
Lk−1 : x1z1 . . . zk−2. If we apply Corollary 3.2 along the path Lk−3 : z2 . . . zk−2

and then Lemma 3.1 for v = z1, we deduce that, for all i,

H̃i(E1 ∩ E2) = H̃
i−6− 2(k−3)

3

(ε(Lm−3 ∪ Ln−3)),

which is evidently also true for k = 0. If k = 0, we have that E1 = ε(Cm ∪ Cn),
otherwise, if we apply Corollary 3.2 along the path Lk : z1 . . . zk, we obtain that,
for all i,

H̃i(E1) = H̃i− 2k
3
(Cm ∪ Cn).

This equality is evidently also true for k = 0. Since E2 is a simplex, we also have
that H̃i(E2) = 0 for all i.

Case 2.1 Let n ≡ 1.
In view of Theorem D (for m = 3) and of Theorem C (for m ≥ 4), since n− 3 ≡ 1,

we have that H̃i(E1 ∩E2) = 0 for all i, so that H̃i(ε(G)) = H̃i(E1) for all i. More-

over, in view of Theorem A, for all i, H̃i(E1) = H̃i− 2k
3 − 2n+1

3
(ε(Cm)).

By Proposition 2.3, the sequence An : q′0, q
′
1, . . . , q 2(n−1)

3

generates I(Cn), up to

radical.
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Let m ≡ 1. Then |V | ≡ 2. In view of Theorem B and (*), H̃i(E1) 6= 0 if and only if

i = 2|V |+2
3 − 2. Hence H̃i(ε(G)) 6= 0 for i = 2|V |+2

3 − 2, which, by (*), implies that

pd I(G) ≥ 2|V |+2
3 .

If k = 0, then the sequence q0, q1, q 2(m−1)
3

+ x1y1, q2, . . . , q 2(m−1)
3 −1

, q′0, . . . , q
′
2(n−1)

3

of length 2|V |+2
3 , generates I(G), up to radical, by Lemma 2.1, where the sequence

Am : q0, . . . , q 2(m−1)
3

generates I(Cm), up to radical, by Proposition 2.3.

If k ≥ 3, then the sequence B : q0, q1, q 2(m−1)
3

+ x1z1, q2, . . . , q 2(m−1)
3 −1

, z2z3, z1z2 +

z3z4, . . . , zk−1zk, zk−2zk−1 + zky1, q
′
0, . . . , q

′
2(n−1)

3

of length 2|V |+2
3 , generates I(G),

up to radical. Hence we have ara I(G) ≤ 2|V |+2
3 .

Let m ≡ 2. Then |V | ≡ 0. In view of Theorem B and (*), H̃i(E1) 6= 0 if and only

if i = 2|V |
3 − 2. Hence H̃i(ε(G)) 6= 0 for i = 2|V |

3 − 2, which, by (*), implies that

pd I(G) ≥ 2|V |
3 .

If k = 0, then by Lemma 2.1, the sequenceB : q′0, q
′
1, q

′
2(n−1)

3

+x1y1, q
′
2, . . . , q

′
2(n−1)

3 −1
,

q0, . . . , q 2(m−2)
3

, of length 2|V |
3 , generates I(G) up to radical, where the sequence

Am : q0, . . . , q 2(m−2)
3

generates I(Cm), up to radical, by Proposition 2.4.

If k ≥ 3, then the sequence B : q′0, q
′
1, q

′
2(n−1)

3

+ y1zk, q
′
2, . . . , q

′
2(n−1)

3 −1
, z1z2, x1z1 +

z2z3, . . . , zk−2zk−1, zk−3zk−2+zk−1zk, q0, . . . , q 2(m−2)
3

, of length 2|V |
3 , generates I(G)

up to radical. This implies that ara I(G) ≤ 2|V |
3 .

Let m ≡ 0. Then |V | ≡ 1. In view of Theorem B and (*), H̃i(E1) 6= 0 if and only if

i = 2|V |+1
3 − 2. Hence H̃i(ε(G)) 6= 0 for i = 2|V |+1

3 − 2, which, by (*), implies that

pd I(G) ≥ 2|V |+1
3 .

If k = 0, then the sequence B : q′0, q
′
1, q

′
2(n−1)

3

+x1y1, q
′
2, . . . , q

′
2(n−1)

3 −1
, q0, . . . , q 2m

3 −1

of length 2|V |+1
3 , generates I(G), up to radical, by Lemma 2.1, where the sequence

Am : q0, . . . , q 2m
3 −1 generates I(Cm), up to radical, by Proposition 2.2.

If k ≥ 3, then the sequence B : q′0, q
′
1, q

′
2(n−1)

3

+ y1zk, q
′
2, . . . , q

′
2(n−1)

3 −1
, z1z2, x1z1 +

z2z3, . . . , zk−2zk−1, zk−3zk−2 + zk−1zk, q0, . . . , q 2m
3 −1 of length 2|V |+1

3 , generates

I(G), up to radical, by Lemma 2.1. This shows that ara I(G) ≤ 2|V |+1
3 .

Case 2.2 Let n ≡ 2 and m ≡ 0.
In this case |V | ≡ 2. In view of Theorem C, Theorem D and (*), H̃i(E1 ∩ E2) 6= 0

if and only if i = 2|V |−1
3 − 2, in which case the homology group is K. Moreover,

in view of Theorem A, H̃i(E1) = H̃i− 2k
3 − 2m

3
(ε(Cn)), for all i. In view of Theorem

B and (*), H̃i(E1) 6= 0 if and only if i = 2|V |−1
3 − 2, in which case the homology

group is K2. Hence H̃i(ε(G)) 6= 0 for i = 2|V |−1
3 − 2, which, by (*), implies that

pd I(G) ≥ 2|V |−1
3 .

Let k = 0. The sequence B : x1y1, q0 + q′0, q1, . . . , q 2m
3 −1, q

′
1, . . . , q

′
2(n−2)

3

of length

2|V |−1
3 generates I(G), up to radical, by Lemma 2.1, where the sequence Am :

q0, q1, . . . , q 2m
3 −1 generates I(Cm), up to radical, by Proposition 2.2.
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Let k ≥ 3. The sequence B : x1z1, q0 + z1z2, q1, . . . , q 2m
3 −1, z3z4, z2z3 + z4z5, . . . ,

zk−3zk−2, zk−4zk−3 + zk−2zk−1, zky1, zk−1zk + q′0, q
′
1, . . . , q

′
2(n−2)

3

of length 2|V |−1
3

generates I(G), up to radical. Hence, in view of (*), we conclude that ara I(G) ≤
2|V |−1

3 .

Case 2.3 Let n ≡ m ≡ 2.
In this case |V | ≡ 1. Consider the induced subgraph H3 on V \ {x2}. Applying
Corollary 3.2 to the path Lm+k−2 : x3x4 . . . x1z1 . . . zk−1 (Lm−2 : x3x4 . . . x1, if

k = 0) and Lemma 3.1 for v = zk (u = y1), we obtain that, for all i, H̃i(ε(H3)) =

H̃
i− 2(m+k−2)

3 −3
(ε(Ln−3)), which, by TheoremD and (*), is non zero in i = 2|V |−2

3 −2.

So H̃ 2|V |−2
3 −2

(ε(G)) 6= 0 and by (*) we have pd I(G) ≥ 2|V |−2
3 .

If k = 0, then, by Lemma 2.1, the sequence B : x1y1, q0+q′0, q1, . . . , q 2(m−2)
3

, q′1, . . . ,

q′2(n−2)
3

generates I(G), up to radical, where the sequence Am : q0, . . . , q 2(m−2)
3

gen-

erates I(Cm), up to radical, and the sequence An : q′0, . . . , q
′
2(n−2)

3

generates I(Cn),

up to radical, by Proposition 2.4.
If k ≥ 3, then, by Lemma 2.1, the sequenceB : zky1, zk−1zk+q′0, q

′
1, . . . , q

′
2(n−2)

3

, z0z1,

z1z2 + q0, q1, . . . , q 2(m−2)
3

, z3z4, z2z3 + z4z5, . . . , zk−3zk−2, zk−4zk−3 + zk−2zk−1 gen-

erates I(G), up to radical. Hence we have ara I(G) ≤ 2|V |−2
3 .

Case 2.4 Let n ≡ m ≡ 0.
In this case |V | ≡ 0. First assume that n = m = 3. We have that I(G) = I ∩ J ,
where I = I(G)+(x1y1z3z6 . . . zk) and J = (x2, x3, y2, y3, z1, z2, z4, z5, . . . , zk−5, zk−4,
zk−2, zk−1). Since J is a complete intersection ideal, we have that cd J = 4 + 2k

3 .
Moreover, I+J = (x1y1z3z6 . . . zk, x2, x3, y2, y3, z1, z2, z4, z5, . . . , zk−5, zk−4, zk−2, zk−1).
Since I + J has grade equal to 5+ 2k

3 , by [5, Theorem 6.2.7] we have Hi
I+J(R) 6= 0

in i = 5+ 2k
3 and Hi

I+J (R) = 0 for any i < 5 + 2k
3 . In the Mayer-Vietoris sequence

for local cohomology (see [10], Section 3)

. . . → H
4+ 2k

3

I+J (R) → H
4+ 2k

3

I (R)⊕H
4+ 2k

3

J (R) → H
4+ 2k

3

I∩J (R) → . . . ,

the left term is zero, whereas the middle term is not. It follows that the right term

is non zero, too. This implies that pd I(G) = cd I(G) ≥ 4 + 2k
3 = 2|V |

3 .
So without loss of generality we may assume that n > 3. Then from Theorem C,
since m − 3 ≡ 0, we have that H̃i(E1 ∩ E2) = H̃

i−6− 2(k−3)
3 − 2(m−3)

3

(ε(Ln−3)), for

all i. Hence, in view of Theorem D and (*), we have that H̃i(E1 ∩ E2) 6= 0 only

if i = 2|V |
3 − 2, in which case this homology group is K. In view of Theorem A,

Theorem B and (*) we also have that H̃i(E1) 6= 0 only if i = 2|V |
3 −2, in which case

this homology group is K2. The Mayer-Vietoris sequence shows that H̃i(ε(G)) 6= 0

in i = 2|V |
3 − 2. Thus in view of (*) we deduce that pd I(G) ≥ 2|V |

3 .
If k = 0, then, by Lemma 2.1, the sequence B : x1y1, q0+ q′0, q1, . . . , q 2m

3 −1, q
′
1, . . . ,

q′2n
3 −1

of length 2|V |
3 generates I(G), up to radical, where the sequence Am :

q0, . . . , q 2m
3 −1 generates I(Cm), up to radical, and the sequence An : q′0, . . . , q

′
2n
3 −1

generates I(Cn), up to radical, by Proposition 2.2.
If k ≥ 3, then, by Lemma 2.1 the sequence B : z1x1, z1z2 + q0, q1, . . . , q 2m

3 −1, z3z4,
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z2z3 + z4z5, . . . , zk−3zk−2, zk−4zk−3 + zk−2zk−1, zky1, zk−1zk + q′0, q
′
1, . . . , q

′
2n
3 −1

of

length 2|V |
3 generates I(G), up to radical. We thus have ara I(G) ≤ 2|V |

3 .

Case 3 Let k ≡ 1.
We can write ε(G) = ε({x1, x2}, . . . , {xm, x1}, {y1, y2}, . . . , {yn, y1}, {x1, z1}, {z1, z2},
. . . , {zk−1, zk}, {zk, y1};V ) = E1 ∪ E2, where
E1 = ε({x2, x3}, . . . , {xm, x1}, {y1, y2}, . . . , {yn, y1}, {x1, z1}, {z1, z2}, . . . , {zk−1, zk},
{zk, y1};V ) and E2 = ε({x1, x2};V ). We have that E1 = ε(Lm+k ∪ Cn), where
Lm+k : x2 . . . xmx1z1 . . . zk.
If m = 3, then, by [12, Lemma 3.4], E1 ∩ E2 = ε({x3}, {z1}, {z2, z3}, . . . , {zk, y1},
{y1, y2}, . . . , {yn, y1};V ), so that, by [12, Lemma 3.5],

H̃i(E1 ∩ E2) = H̃i−2(ε(H4)),

for all i, where H4 is the induced subgraph on V \ (V (Cm)∪{z1}), i.e., the union of
Cn and the path Lk : z2 . . . y1. Ifm ≥ 4, then E1∩E2 = ε({x3}, {xm}, {z1}, {x4, x5},
. . . , {xm−2, xm−1}, {z2, z3}, . . . , {zk, y1}, {y1, y2}, . . . , {yn, y1};V ), so that, by [12,
Lemma 3.5],

H̃i(E1 ∩E2) = H̃i−3(ε(Lm−4 ∪H4),

for all i. Since E2 is a simplex, H̃i(E2) = 0 for all i.

Case 3.1 Let n ≡ 1.
The sequenceAn : q′0, . . . , q

′
2(n−1)

3

generates I(Cn), up to radical, by Proposition 2.2.

Case 3.1.1 Let m ≡ 0 or m ≡ 2.
First let m ≡ 0. Then |V | ≡ 2. If we apply Corollary 3.2 to the path Lm+k−1 :

x2 . . . xmx1 . . . zk−1, and then Lemma 3.1 for v = zk we get, that, for all i, H̃i(E1) =

H̃
i− 2(m+k−1)

3 −3
(ε(Ln−3)), which is zero for all i by Theorem D and (*). If m ≥ 6,

applying Theorem C (m − 4 ≡ 2) and Corollary 3.2 to E1 ∩ E2 along the path
Lk−1 : z2 . . . zk, we deduce that, for all i,

H̃i(E1 ∩ E2) = H̃
i− 2(m−4)−1

3 − 2(k−1)
3 −3

(ε(Cn)),

which is also true for m = 3.
By Theorem B and (*), H̃ 2|V |+2

3 −3
(E1∩E2) 6= 0. So by the Mayer-Vietoris sequence

H̃ 2|V |+2
3 −2

(ε(G)) 6= 0 and in view of (*) we conclude that pd I(G) ≥ 2|V |+2
3 .

By Lemma 2.1, B : q′0, . . . , q
′
2(n−1)

3

, x1z1, z1z2 + q0, q1, . . . , q 2m
3 −1, z3z4, z2z3 + z4z5,

. . . , zk−1zk, zk−2zk−1 + zky1 of length 2|V |+2
3 generates I(G), up to radical, where

sequence Am : q0, . . . , q 2m
3 −1 generates I(Cm), up to radical, by Proposition 2.2.

Therefore, we have ara I(G) ≤ 2|V |+2
3 .

Now let m ≡ 2. In this case |V | ≡ 1, and m + k ≡ 0. Moreover, by Theorem C,

since m− 4 ≡ 1, we have that H̃i(E1 ∩E2) = 0 for all i. Hence H̃i(ε(G)) = H̃i(E1)
for all i. Applying Corollary 3.2 to the path Lm+k : x2x3 . . . x1z1 . . . zk we obtain

that, for all i, H̃i(E1) = H̃
i− 2(m+k)

3
(ε(Cn)). By Theorem B and (*), H̃i(E1) 6= 0 in

i = 2|V |+1
3 − 2. Thus by (*) we have pd I(G) ≥ 2|V |+1

3 .
By Lemma 2.1, the sequenceB : x1z1, q0+z1z2, q1, . . . , q 2(m−2)

3

, z3z4, z2z3+z4z5, . . . , zk−1zk, zk−2zk−1+
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zky1, q
′
0, . . . , q

′
2(n−1)

3

of length 2|V |+1
3 generates I(G), up to radical, where the se-

quence Am : q′0, . . . , q
′
2(m−2)

3

generates I(Cm), up to radical, by Proposition 2.4.

Thus ara I(G) ≤ 2|V |+1
3 .

Case 3.1.2 Let m ≡ 1.
In this case |V | ≡ 0. Consider the induced subgraph H5 on V \ {zk}. We have,

for all i, H̃i(ε(H5)) = H̃i(H
′′′ ∪ Cn), where H ′′′ is the induced subgraph on

V \ (V (Cn) ∪ {zk}), i.e., the union of Cm and the path Lk : x1z1 . . . zk−1. Ap-
plying Theorem A and then Corollary 3.2 to H ′′′ along the path Lk−1 : z1 . . . zk−1

we have H̃i(ε(H5)) = H̃
i− 2n+1

3 − 2(k−1)
3

(Cm), for all i, and this homology group, by

Theorem B and (*), is non zero in i = 2|V |
3 − 2. So H̃ 2|V |

3 −2
(ε(H5)) 6= 0. In view of

(*) we deduce that pd I(G) ≥ 2|V |
3 .

The sequence B : q0, q1, q 2(m−1)
3

+ z1x1, . . . , q 2(m−1)
3 −1

, , q′0, q
′
1, q

′
2(n−1)

3

+ zky1, . . . ,

q′2(n−1)
3 −1

, z2z3, z1z2 + z3z4, . . . , zk−2zk−1, zk−3zk−2 + zk−1zk of length 2|V |
3 , gener-

ates I(G), up to radical, by Lemma 2.1, where the sequence Am : q0, . . . , q 2(m−1)
3

generates I(Cm), up to radical, by Proposition 2.3. Therefore, we have that

ara I(G) ≤ 2|V |
3 .

Case 3.2 Let m ≡ 2, and n ≡ 0 or 2.
In this casem+k ≡ 0. Applying Corollary 3.2 to the path Lm+k : x2x3 . . . x1z1 . . . zk
we obtain that, for all i, H̃i(E1) = H̃

i− 2(m+k)
3

(ε(Cn)).

Moreover, the sequence Am : q0, . . . , q 2(m−2)
3

generates I(Cm), up to radical, by

Proposition 2.4.
First let n ≡ 0. Then |V | ≡ 0 and, by Theorem B and (*), H̃i(E1) 6= 0 in

i = 2|V |
3 − 2. Thus by (*) we have pd I(G) ≥ 2|V |

3 .
By Lemma 2.1, the sequenceB : x1z1, q0+z1z2, q1, . . . , q 2(m−2)

3
, z3z4, z2z3+z4z5, . . . , zk−1zk, zk−2zk−1+

zky1, q
′
0, q

′
1, . . . , q

′
2n
3 −1

of length 2|V |
3 generates I(G), up to radical, where the se-

quence An : q′0, . . . , q
′
2n
3 −1

generates I(Cn), up to radical by Proposition 2.2. Thus

ara I(G) ≤ 2|V |
3 .

If n ≡ 2, then |V | ≡ 2 and, by Theorem B and (*), H̃i(E1) 6= 0 in i = 2|V |−1
3 − 2.

Thus by (*) we have pd I(G) ≥ 2|V |−1
3 .

By Lemma 2.1, the sequence B : q0, . . . , q 2(m−2)
3

, zky1, zk−1zk + q′0, q
′
1, . . . , q

′
2(n−2)

3

,

z1z2, x1z1+z2z3, . . . , zk−3zk−2, zk−4zk−3+zk−2zk−1 of length
2|V |−1

3 generates I(G),
up to radical, where the sequence An : q′0, . . . , q

′
2(n−2)

3

generates I(Cn), up to radi-

cal by Proposition 2.4. Thus ara I(G) ≤ 2|V |−1
3 .

Case 3.3 Let n ≡ m ≡ 0.
In this case |V | ≡ 1. As in Case 1, we can write ε(G) = E1 ∪ E2, where E1 =
ε({x1, x2}, . . . , {xm, x1}, {y1, y2}, . . . , {yn, y1}, {x1, z1}, {z1, z2}, . . . , {zk−1, zk};V ) and
E2 = ε({zk, y1};V ).
Applying Corollary 3.2 to the path Lk−1 : x1z1 . . . zk−2, we have that, for all i,
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H̃i(E1 ∩ E2) = H̃
i− 2(k−1)

3 −3
(ε(Lm−1 ∪ Ln−3)). Theorem C (m − 1 ≡ 2), Theo-

rem D and (*) show that H̃i(E1 ∩ E2) 6= 0 only if i = 2|V |+1
3 − 3. Since E2 is

a simplex, H̃i(E2) = 0 for all i. Applying Corollary 3.2 to E1 along the path
Lk−1 : z2 . . . zk, and once again Lemma 3.1 for v = z1, we obtain that, for all

i, H̃i(E1) = H̃
i− 2(k−1)

3 −3
(ε(Lm−3 ∪ Cn)), which by Theorem C, Theorem B and

(*), is non zero only in i = 2|V |+1
3 − 2. The Mayer- Vietoris sequence shows that

H̃i(ε(G)) 6= 0 in i = 2|V |+1
3 −2. Thus, in view of (*), we have that pd I(G) ≥ 2|V |+1

3 .
By Lemma 2.1, the sequence B : x1z1, z1z2+q0, q1, . . . , q 2m

3 −1, z3z4, z2z3+z4z5, . . . ,

zk−1zk, zk−2zk−1 + zky1, q
′
0, . . . , q

′
2n
3 −1

, generates I(G), up to radical, where the

sequence Am : q0, . . . , q 2m
3 −1 generates I(Cm), up to radical, and the sequence

An : q′0, . . . , q
′
2n
3 −1

generates I(Cn), up to radical, by Proposition 2.2. This implies

that pd I(G) = ara I(G) = 2|V |+1
3 in this case. This completes the proof. �

From Theorem 3.3 and Theorem 3.4 we deduce the following corollary.

Corollary 3.5. Let G be a bicyclic graph, then ara I(Cn) = pd I(Cn).
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