
DESIGN OF LI-CONTAINING LAYERS WITH LIHMDS 

Lithium-containing layers 

Several lithium-containing materials have been deposited with ALD over the past years. Lithium hexamethyl disilazide (LiHMDS) is one of the most promising precursors to deposit li-

thium-containing films. However, this precursor is known to exhibit dual-source behavior: in some cases, significant amounts of silicon are incorporated in the film due to the silyl 

groups. On the other hand, sometimes only the lithium component is deposited. For future application of this precursor and its use in ternary and quaternary processes it is important 

to understand what triggers the dual source behavior of LiHMDS. 

 

Single-source vs. dual-source behavior 

We developed a new, simple ALD process to deposit lithium silicate with LiHMDS and O2* (plasma). Lithium and silicon are both present in the deposited films, so this is an example of 

DUAL-SOURCE BEHAVIOR. Earlier, a similar process was developed with ozone [1, 2].  In contrast, when LiHMDS is combined with trimethylphosphate (TMP), Li3PO4 is formed [3]. Here 

LiHMDS exhibits SINGLE SOURCE BEHAVIOR. 

To study the mechanisms leading to silicon incorporation, we intermixed the LiHMDS-O2* process with TMP in an ABC/ACB way. The growth and process chemistry were characterized 

with in situ ellipsometry and in situ time-resolved full range mass spectrometry, whilst the stoichiometry of the films was obtained from elastic recoil detection (ERD) and x-ray pho-

toelectron spectroscopy (XPS) measurements. 
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Mass spectrometry  

By combining data from different ALD cycles, we are able to construct a time-resolved spectrum for the full 

m/z range [4]. By taking horizontal (see above) or vertical slices of these spectra, a full picture of the gas mix 

in the reactor can be obtained.  

We conducted time-resolved, full-range mass spectrometry for all processes.. The LiHMDS-TMP process is 

enabled solely by a dipole-driven, self-saturation physisorption mechanism and features no dissociative 

component. The LiHMDS-O2* process features both. This becomes clear by studying the LiHMDS-TMP-O2* pro-

cess, where the TMP molecule removes the HMDS groups (and hence the silicon) of the physisorbed LiHMDS. 

Conclusions 

By careful study and comparing mixed processes, we were able to distinguish the mechanisms governing LiHMDS adsorption.  

The first driver for silicon incorporation is the presence of hydroxyl groups: they react with LiHMDS creating HMDS as a reaction 

product. This HMDS will react as well with the hydroxyl groups and acts as a source of silicon.  

Secondly, whenever lithium-containing films are deposited, a blanket of physisorbed LiHMDS will be present after the LiHMDS 

pulse. If the next precursor pulse fails to remove the HMDS, silicon will be incorporated in the film.   

Composition and GPC

 
 

 The thermal process grows slower than the plasma processes 

 LiHMDS-TMP-O2* grows slower than other plasma processes 

 Very little contamination in plasma-enhanced processes 

 P contribution from TMP in mixed processes seems negligible, but 

PO4 units should be considered. 

Process T (°C) nm GPC (nm) Si (%) O (%) Li (%) H (%) P (%) C (%) 

LiHMDS-O2* 150 116.18 0.23 23 53.9 22.6 0.5 - - 

LiHMDS-O2* 300 122.24 0.24 24.2 54.7 20.4 0.72 - - 

LiHMDS-O2*-TMP 300 134.33 0.27 22 58.5 17.3 0.2 2.11 - 

LiHMDS-TMP-O2* 300 78.6 0.16 19.2 58.4 18.2 0.53 3.65 - 

LiHMDS-TMP 325 49.9 0.08 1.22 47.8 28.8 7.11 10.8 4.18 

All identified mechanisms are present in LiHMDS-TMP-O2*   

Fig. 1 (above) slices of the time-resolved mass spectra of the oxygen plas-

ma in different processes. Typical combustion products are observed. The 

shape of the combustion peaks is different because TMP is combusted in 

the bottom graph. The oxygen plasma creates a mixed OH/O-Li surface.  

Fig. 3 (above) We identified seve-

ral mechanisms in the deposition 

processes. These are all present 

in the LiHMDS-TMP-O2* process, 

which is therefore presented 

here.  

 

Fig. 2 (right) full-range, time-

resolved mass spectrum for the 

LiHMDS-TMP-O2* process 

In the LiHMDS pulse, several processes happen at 

the same time. At the O-Li surface sites, LiHMDS 

reacts through self-limited, dipole-driven physi-

sorption. At OH surface sites, the molecule disso-

ciates. The newly created O-Li site is available for 

another LiHMDS molecule to physisorb on. 

 

During the TMP pulse, the physisorbed LiHMDS is 

removed. This explains the lower growth for this 

plasma-enhanced process. 

Plasma step results in OH/O-Li surface 

A. Werbrouck1, F. Mattelaer1, M. Minjauw1, F. Munnik2, J. Julin2, J. Dendooven1, C. Detavernier1
 

1 Cocoon, Department of Solid State Sciences, Ghent University  2 Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden–Rossendorf  


