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Abstract

Background: Humans produce heat through non-shivering thermogenesis, a metabolic process that occurs in
inducible beige adipocytes expressing uncoupling protein 1 (UCP1). UCP1 dissipates the proton gradient of the
mitochondrial inner membrane and converts that energy into heat. It is unclear whether cancer cells can exhibit
autonomous thermogenesis. Previously, we found that the knockdown of hypoxia-inducible fatty acid binding
protein 7 (FABP7) increased reactive oxygen species (ROS) in breast cancer cells. ROS are known to induce beige
adipocyte differentiation.

Methods: We investigated the association of tumor hypoxia, FABP7, and UCP1 across breast cancer patients using
METABRIC and TCGA data sets. Furthermore, using a breast cancer cell line, HCC1806, we tested the effect of FABP7
knockdown on cellular physiology including thermogenesis.

Results: We found a strong mutual exclusivity of FABP7 and UCP1 expression both in METABRIC and in TCGA,
indicating major metabolic phenotypic differences. FABP7 was preferentially distributed in poorly differentiated-,
estrogen receptor (ER) negative tumors. In contrast, UCP1 was highly expressed in normal ducts and well-
differentiated-, ER positive-, less hypoxic tumors. In the cell line-based experiments, UCP1 and its transcriptional
regulators were upregulated upon FABP7 knockdown. UCP1 was induced in about 20% of cancer cells, and the
effect was increased further in hypoxia. UCP1 depolarized mitochondrial membranes at the site of expression. UCP1
induction was associated with the increase in proton leak, glycolysis, and maximal respiration, mimicking the typical
energy profile of beige adipocytes. Most importantly, UCP1 induction elevated cancer cell temperature associated
with increased vulnerability to hypoxia and y-irradiation.
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Conclusions: We demonstrated that breast cancer cells can undergo thermogenesis through UCP1 induction.
Disrupting FABP7-mediated fatty acid metabolism can unlock UCP1-mediated thermogenesis, potentially making it
possible to develop therapies to target thermogenesis. Further study would be warranted to investigate the effect
of rise in temperature of cancer cells on patients’ outcomes and the relationship to other metabolic pathways.
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Background

Heat regulates multiple physiological processes by affect-
ing cellular metabolism. Metabolic alteration has been
noted as a key hallmark of cancer biology [1]. Despite
the fact that heat influences cellular metabolism, few
studies have investigated how heat production influences
cancer physiology. Classical studies on human breast
cancer suggested that elevated angiogenesis and in-
creased blood flow caused higher temperatures in cancer
tissue [2—4]. However, our recent study on colon cancer
cells described the tissue gradient of cellular temperature
in a tumor spheroid model: the cellular temperatures in
the hypoxic core of spheroids were higher than on the
surface, and this difference was not observed in 2D cul-
ture systems [5]. This study suggested that cancer cells
may have the ability to generate heat by themselves and
vary their temperature in response to oxygen or nutrient
availability.

Evolutionally, human beings faced the demand to in-
crease their body temperature to survive in harsh cold
environments. As a result, they gained two different
ways of thermogenesis: shivering and non-shivering
thermogenesis [6]. In shivering thermogenesis, energy
released from muscle contractions produces heat,
whereas in non-shivering thermogenesis, brown adipo-
cytes are the main source of heat production. Brown adi-
pocytes specifically express uncoupling protein 1
(UCP1). UCP1 is a mitochondrial carrier protein that
uncouples the association between complex V with the
electron transport chain (ETC), dissipating the proton
gradient across the inner mitochondrial membrane. This
uncoupling of complex V from ETC results in the gener-
ation of heat instead of ATP [7].

Although human neonates have abundant brown
fat, adults lose most of it. Instead, they appear to pos-
sess beige adipocytes, with morphological and func-
tional resemblance to brown adipocytes [8]. Beige
adipocytes appear in white fat as small deposits after
specific stimulation and generate heat through UCP1
induction. Unlike with brown adipocytes, beige adipo-
cytes require inducers for differentiation and activa-
tion [9]. Cold exposure generates beige adipocytes
through upregulating transcriptional regulators PR/
SET domain 16 (PRDM16), peroxisome proliferator-

activated receptor gamma coactivator 1-alpha
(PGCla), and their downstream targets including
UCP1. In addition, cold temperatures elevate cyclic
AMP (cAMP) to maximize UCP1 activity in beige ad-
ipocytes [10]. Reactive oxygen species (ROS) are also
key inducers of beige fat differentiation [11, 12]. Beige
adipocytes compensate for UCP1-mediated energy ex-
penditure through increasing mitochondrial respir-
ation, specifically elevating glycolysis and pyruvate
production [13].

Previously, we demonstrated that a protein involved in
fatty acid transport, fatty acid binding protein 7 (FABP7?)
experienced HIF1-dependent upregulation in hypoxic
breast cancer cells [14]. FABP7 preferentially binds to
polyunsaturated fatty acids (PUFAs), and its knockdown
led to increased ROS in cancer cells under hypoxia and
hypoxia-reoxygenation [14, 15], potentially due to loss of
its PUFA-scavenging function. In the current study, we
investigate whether FABP7 inhibition results in another
metabolic outcome in breast cancer. We show that
FABP7 knockdown upregulated the genes related to
beige fat differentiation in a breast cancer cell line. The
cancer cells with FABP7 knockdown expressed high level
of UCP1 and increased cellular temperature. These phe-
nomena were associated with decreased cell growth and
increased sensitivity to oxidative stress. Considering heat
can enhance tumor immunity through modulating cyto-
toxic activity and tissue penetration of immune cells [16,
17], FABP7 inhibition could be an attractive target for
cancer therapy with direct effects on tumor growth and
potentially with indirect effects on the tumor
temperature and immune response. Several inhibitors of
fatty acid transport and desaturation have been devel-
oped to combat metabolic diseases [18—20], and their ef-
fect for cancer should be investigated in combinations in
the future.

Methods

Cell culture

Cells were obtained from the American Type Culture
Collection and maintained in a humidified incubator at
5% CO, and 37°C. For hypoxic exposure, cells were
grown in an INVIVO, 400 hypoxic workstation (Baker
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Ruskinn) using a continuous flow of a humidified mix-
ture of 0.1% O,, 5% CO,, and 94.9% N,. Cells were
maintained in Dulbecco’s modified Eagle’s medium (10
mM glucose) (Gibco) supplemented with 10% fetal bo-
vine serum (FBS).

Gene silencing by RNA interference

The lentiviral transduction particles containing a
FABP7 shRNA expression cassette (Mission® shRNA,
TRCNO0000059744) or a non-targeting shRNA se-
quence (SHCO002U) were purchased from Sigma-
Aldrich. Cells were transduced with a MOI of 3, in
the presence of 6 pg/ml polybrene (Sigma Aldrich) for 24
h. Cells expressing the shRNA were selected in puromycin
(Invitrogen)-containing medium (2 pg/ml). After the se-
lection, cells were suspended in FBS containing 5% DMSO
(v/v) and stored at — 80°C. In a set of experiments, cells
were refreshed in every 1 month.

Lipid peroxidation assay

Cellular lipid peroxidation levels were measured using
Image-iT® Lipid Peroxidation Kit (Thermo Fisher) ac-
cording to the manufacturer’s instructions. Cells were
exposed to hypoxia for 24h or 4 Gy of ionizing radi-
ation. The fluorescence was measured with an Attune
NxT Flow Cytometer (Thermo Fisher) using two differ-
ent filter sets: the one at excitation/emission of 488/530
nm for detecting oxidized lipids and the other at excita-
tion/emission of 561/620 nm for detecting reduced
lipids. Lipid peroxidation levels were calculated as a ratio
of the intensity of green (530 nm) fluorescence to that of
red (620 nm) fluorescence.

Cell-cycle analysis

To evaluate cell-cycle distribution, cells were washed
with ice-cold PBS, resuspended in 1ml of PBS, and
stored after the dropwise addition of 3ml of ice-cold
70% ethanol at 4°C until analysis. Cells were washed
twice with ice-cold PBS and stained with a PI solution
(100 mg/ml) (Sigma Aldrich) containing DNase-free
RNase (12 mg/ml) and 1% of Triton X100. After over-
night incubation at 4 °C, cells were analyzed with Attune
NxT Flow Cytometer using a filter set at excitation/
emission of 488/590 nm.

Quantitative PCR

RNA was isolated using TRIZOL® Reagent (Invitrogen),
and complementary DNA was generated from the RNA
using High Capacity cDNA Reverse Transcription Kit
(Applied Biosystems), according to the manufacturers’
instructions. Real-time PCR was performed on a
7900HT Fast Real Time PCR System (Applied Biosys-
tems) using the SensiMix '™ SYBR No-Rox kit (Bioline).
The comparative threshold cycle method was used to
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present the relative gene expressions. Expression data
were normalized to the expression of the two control
genes: ACTB and HPRT1. Primer sequences were as fol-
lows: ACTB forward: ATTGGCAATGAGCGGTTC;
ACTB reverse: GGATGCCACAGGACTCCAT; HPRT1
forward: CCAGTCAACAGGGGACATAAA; HPRT1 re-
verse: CACAATCAAGACATTCTTTCCAGT; FABP7
forward: TGAAACCACTGCAGATGATAGAA; FABP7
reverse: TTTCTTTGCCATCCCATTTC; PRDM16 for-
ward: ATGGGAGCAAATACTGACGG; PRDMI16 re-
verse: CACGCAGAACTTCTCACTGCG; PGC-1a
forward: GCCAAACCAACAACTTTATCTCTTC; PGC-
la reverse: CACACTTAAGGTGCGTTCAATAGTCG;
UCP1 forward: TCTACGACACGGTCCAGG; UCP1 re-
verse: GTCTGACTTTCACGACCTCTG.

Western blots

Cell were lysed in RIPA buffer supplemented with
cOmplete® Protease Inhibitor Cocktail (Roche) and
PhosSTOP® Phosphatase Inhibitor Cocktail (Roche). The
lysates were centrifuged at 20,000g at 4°C for 15 min,
and the supernatants were incubated with DTT (100
mM) and NuPAGE® LDS Sample Buffer (Invitrogen) at
70°C for 10 min. Proteins were separated on Novex® 4—
12% Tris-Glycine Mini Gels (Invitrogen) and transferred
to a PVDF membrane. The membrane was incubated
with 5% skim milk at room temperature for 1hr and
subsequently with primary antibodies at 4°C for over-
night. For the detection of FABP7, the step of centrifu-
ging cell lysates was omitted, and 5% BSA was used as a
blocking solution. Primary antibodies were as follows
and used at 1:1000 dilution unless otherwise stated:
rabbit anti-FABP7 (#13347, Cell Signaling Technology),
rabbit anti-UCP1 (U6382, Sigma Aldrich), rabbit anti-
PGC-1a (1:200v/v) (sc-13067, Santa Cruz Biotechnol-
ogy), rabbit anti-PRDMI16 (1:500v/v) (abl106410,
Abcam), rabbit anti-CREB (#9197, Cell Signaling Tech-
nology), and rabbit anti-phospho-CREB (#9198, Cell Sig-
naling Technology). Appropriate secondary horseradish
peroxidase-linked antibodies were used (Dako, UK). Im-
munoreactivity was detected with ECL Prime Western
Blotting Detection Reagent (Amersham) and visualized
using ImageQuant LAS 4000 mini (GE Healthcare).

Immunofluorescence

Cells were grown on cover slips and fixed with 4% para-
formaldehyde at room temperature for 10 min. For the
visualization of polarized mitochondria, cells were incu-
bated with 150 nM of Mito Tracker® Red CMXRos (Mo-
lecular Probes) at 37 °C for 30 min prior to the fixation.
Cells were permeabilized with 0.1% Triton X-100 for 5
min and then blocked in 5% normal horse serum for 30
min. They were incubated with rabbit anti-UCP1 diluted
in blocking solution (1:500 v/v) (U6382, Sigma Aldrich)
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overnight at 4 °C, labeled with a secondary antibody con-
jugated with Alexa® 488 (Invitrogen) at room
temperature for 30 min, and mounted with ProLong’
Diamond Antifade Mountant with DAPI (Molecular
Probes). For calculating UCP1-positive cell proportion,
at least 6 images were acquired in each condition with a
Delta Vision Elite High Resolution Microscope (GE
Healthcare Life Science). For analyzing the colocalization
of UCP1 and Mito Tracker, images were acquired with a
Zeiss LSM 780 confocal microscope (Carl Zeiss) and
reconstituted with Image] 1.51 g (National Institutes of
Health).

Assessment of mitochondrial membrane potential
Mitochondrial membrane potential was analyzed with
BD™ MitoScreen Kit (BD Bioscience) according to the
manufacturer’s instructions. Cells were stained with JC-1
solution for 30 min and analyzed with an Attune NxT
Flow Cytometer using two different filter sets: the one at
excitation/emission of 488/530 nm for detecting polar-
ized mitochondria and the other at excitation/emission
of 561/585 nm for detecting depolarized mitochondria.

Assessment of mitochondrial respiration and cellular
glycolytic function

Seahorse Cell Mito Stress Test Kit (Agilent) and Sea-
horse Glycolysis Stress Test Kit (Agilent) were used
to assess mitochondrial respiration and cellular
glycolytic function, respectively. Cells were plated in
a 96-well Seahorse XF Cell Culture Microplate (40,
000 cells/well) 1day prior to the assay with normal
growth media. For Mito Stress Test, the growth
media was replaced to Seahorse Base Media (Agilent)
supplemented with 10 mM glucose, 4 mM glutamine,
and 1mM sodium pyruvate (pH7.4 at 37°C), and
the cells were transferred to non-CO, incubator
(37°C) 1hr prior to the assay. In the assay, 0.5uM
oligomycin, 1 uM FCCP, and 0.5 pM rotenone/anti-
mycin A were sequentially injected, and oxygen con-
sumption rate (OCR) was monitored using Seahorse
XF96 Extracellular Flux Analyzer (Seahorse Bio-
science). For Glycolysis Stress Test, the growth
media was replaced to Seahorse Base Media (Agilent)
supplemented with 4 mM glutamine and 1 mM so-
dium pyruvate (pH7.35 at 37°C) for the precondi-
tioning. In the assay, 10mM glucose, 1uM
oligomycin, and 50 mM 2-deoxy-glucose were se-
quentially injected, and extra cellular acidification
rate (ECAR) was monitored. After the assays, the
OCR and ECAR were normalized with the relative
fluorescent intensities from CyQUANT® Cell Prolif-
eration Assay Kit. All the parameters were generated
and analyzed on a Seahorse XF report generator.
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Measurement of cellular temperature

For the measurement of cellular temperature, the
temperature-sensitive fluorescent nanoprobe (T probe)
was used as previously described [5]. Cells were grown
in p-Slide 8 Well Glass Bottom (ibidi) and then incu-
bated with the growth media containing 1.5 pg/ml of T
probe for 16 h. After washing twice with growth media,
fluorescence lifetime imaging microscopy (FLIM) was
performed on Leica SP8X Inverted Confocal/Gated
STED microscope (Leica microsystems) equipped with a
thermal control chamber and an objective lens (HC PL
APO 63 x /1.20 W with Motorized Correction Collar,
Leica microsystems) under the continuous flow of 5%
CO,. T probe was excited with a tunable pulsed white
laser (561 nm, 40 Hz), and its emission was collected at
570-620 nm with 50 times of repetitions. Fluorescence
lifetimes were calculated by monoexponential decay fit-
ting (2.5-15 ns). Calibration curve of T probe was gener-
ated by collecting fluorescence lifetimes of stained cells
at 3 different incubator temperatures: 32 °C, 37 °C, and
42°C. After generating the calibration curve, fluores-
cence lifetimes in cells with/without the specific knock-
down were collected at 37 °C of incubator temperature.
Cells were equilibrated for at least 30 min at desired
temperatures prior to measurements.

Cell proliferation assay

Cells were seeded in 96-well plate at a density of 1000
cells/well and exposed to hypoxia or ionizing radiation.
Cell number was determined using CyQUANT® Cell
Proliferation Assay Kit (Molecular Probes) according to
the manufacturer's instructions. Fluorescence was mea-
sured with a SpectraMax microplate reader (Molecular
Devices) with excitation at 485 nm and emission detec-
tion at 530 nm.

Clonogenic assay

Cells were seeded in 100-mm dish at a density of 125
cells/dish, and, 24 h later, they were exposed to hypoxia
or ionizing radiation. For hypoxia experiments, cells
were cultured under hypoxia for 72h and then placed
back to normoxia. Cells were allowed to grow for 14—15
days until colonies became visible and clear. Colonies
were fixed with acetic acid/methanol solution (1:7v/v)
for 5 min, stained with 0.5% crystal violet solution for 2
h, and rinsed with tap water. Size and number of col-
onies were measured using a ColCount automated col-
ony counter (Optronix). Plating efficacy (PE) and
surviving fraction (SF) were calculated from the follow-
ing equations: (PE) = (number of colonies formed/num-
ber of cells seeded) x 100 (%) and (SF) = (number of
colonies formed after irradiation)/(number of cells
seeded x PE) [21]. For radiation experiments, cells were
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irradiated 24 h after seeding with the IBL 637 Cesium-
137 y-ray machine (The dose rate was 0.0485 Gy/s).

Immunohistochemistry

Breast cancer primary tumor and the paired normal
mammary glands were collected through partial or total
mastectomy at the Department of Breast Surgery, Kyoto
University Hospital. Written informed consent was ob-
tained from all patients prior to sample collection. The
study protocol was approved by the Ethics Committee
for Clinical Research, Kyoto University Hospital
(authorization number G424). The sections were incu-
bated with citrate buffer at 120 °C for 5 min and with 3%
hydrogen peroxide/methanol solution for 30 min and
then blocked in PBS containing 5% normal goat serum
and 1% bovine serum albumin for 10 min. They were in-
cubated with rabbit anti-UCP1 diluted in blocking solu-
tion (1:500v/v) (U6382, Sigma Aldrich) overnight at
4°C. Staining was performed using ENVISION+HRP
(DAKO) and DAB+ (DAKO) according to the manufac-
turer’s instructions. Sections were counterstained with
Mayer’s hematoxylin solution and imaged using an op-
tical microscope (BZ-9000, Keyence, Osaka, Japan).
UCP1 expression was scored as “negative/weak,” “mod-
erate,” and “strong” by 2 independent evaluators. The as-
sociation between UCP1 expression and
clinicopathological features was assessed using x-square
test.

Gene expression analysis and survival analysis using
breast cancer cohorts

Gene expression and clinical data for both Molecular
Taxonomy of Breast Cancer International Consortium
(METABRIC) [22] and The Cancer Genome Atlas
(TCGA) [23] breast studies were downloaded from the
cBioPortal for cancer genomics at https://www.cbiopor-
tal.org. We considered microarray data for METABRIC
and RNA Seq V2 RSEM normalized gene expression
data for TCGA. Genes with NA values in more than half
of the samples were filtered out as a pre-processing step.
Likewise, we removed samples with NA values in more
than half of the genes. Sequencing data was then man-
aged by the transformation log, (x + 1), where x stands
for the original expression value. The gene signature as
defined previously was used to investigate the extent of
hypoxia of METABRIC and TCGA samples [24]. The
analysis was performed by using the R software (https://
www.r-project.org/). In particular, we used the sigQC R
package [25] to understand if the properties of such pre-
viously identified gene signature were conserved on the
above-mentioned datasets. After confirming that we
could use the signature, we focused on two measures of
signature summary provided by sigQC (i.e., the median
score and the gene set enrichment score computed via
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the single-sample Gene Set Enrichment Analysis
(ssGSEA) algorithm) for further elaboration. The correl-
ation between the hypoxia scores and the genes of inter-
est (UCP1 and FABP7) was computed as Spearman’s
rank correlation and reported on scatterplots (ggpubr
package). To investigate the association between the pa-
tients’ survival time and different covariates (i.e., hyp-
oxia, UCP1, and FABP7 expressions), we used the Cox
proportional-hazards model (survival package [26]). We
then took advantage of the Kaplan-Meier (KM) method
to estimate the survival probability from observed sur-
vival times (survival package). Since we wanted to dis-
play how estimated survival depends upon the UCP1
and FABP7 values (low/high), we divided the samples in
groups by using two different methods, i.e., the median
and then k-means, k = 2 (stats package). In this paper,
we show the result using k-means as a representative
since we found that both methods showed similar
results.

Statistical analyses

Statistical analysis of numerical data and generation of
graphs was carried out on Prism 6.0 (GraphPad) using
unpaired Student’s ¢ tests. All results are represented
with means + SD unless otherwise stated. Significance of
difference is represented by *p < 0.05, **p < 0.01, ***p <
0.001, and ****p < 0.001.

Results

Mutual exclusivity between FABP7 and UCP1 in human
breast cancers

We found a strong mutual exclusivity between FABP7
and UCP1 expression in the METABRIC and TCGA
breast cancer cohorts (Fig. 1a). High FABP7 expression
was limited to hypoxic estrogen receptor (ER) negative
tumous, whereas UCP1 expression was preferentially
observed in the less-hypoxic ER positive tumors (Fig.
la and Sla). As a result, FABP7 and UCP1 expression
exhibited mutually exclusive distribution across the pa-
tients. Similarly, a negative correlation between UCP1
expression and tumor hypoxia was confirmed in the
analyses using two different scores (refer to the “Mate-
rials and Methods” section for details) (Fig. 1b and
S1b). In contrast, the effect of hypoxia on FABP7 ex-
pression was reciprocal between two scores (Fig. 1b
and S1b).

By immunohistochemistry (IHC), we found that
UCP1 was highly expressed in normal mammary duct
epithelium compared to the paired invasive cancer
cells (Fig. 2a, b). In the comparison across the inva-
sive cancer cells, higher-grade tumors had signifi-
cantly lower UCP1 expression (Fig. 2c). In addition,
UCP1 expression tended to be lower in large-sized
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UCP1 expression

and ER negative tumors although it was not statisti-
cally significant (Fig. 2c).

The gene expression analyses and IHC findings sug-
gested that there were major phenotypic differences

between FABP7 high- and UCP1 high-tumors,
namely, UCP1 high-tumors were less hypoxic, ER
positive, and well-differentiated compared to FABP7
high-tumors.
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FABP7 knockdown induced UCP1 expression

The mutually exclusive relationship between FABP7 and
UCP1 expression suggested that FABP7 could negatively
regulate UCP1-mediated thermogenesis in breast cancer.
Therefore, we tested whether FABP7 knockdown could
affect the differentiation status of breast cancer cells and
UCP1-mediated thermogenesis. FABP7 knockdown in-
creased transcription and translation of UCP1 and its
master regulators (PRDM16 and PGCla) under nor-
moxia (Fig. 3a, b). Hypoxic exposure (0.1% O,, 48 h) up-
regulated UCP1 transcription. However, we found no
difference in UCPI1 transcription between FABP7-
knockdown cells and controls in hypoxia (Fig. 3a). In-
stead,, the dimeric, presumably active form of UCP1 in-
creased in FABP7-knockdown cells under hypoxia,
indicating that the combination of FABP7 knockdown
and low-oxygen conditions maximized the protein’s ac-
tivity (Fig. 3b). Hypoxia upregulated PRDM16 and
PGCla transcription (Fig. 3a), but this did not result in

any proportionate change in protein (Fig. 3b). Instead,
we observed an increase in phosphorylated cAMP re-
sponsive element binding protein (pCREB), a protein in-
volved in increasing UCP1 activity in beige adipocytes,
in hypoxic FABP7-knockdown cells (Fig. 3b). Thus,
pCREB may have contributed for the further activation
of UCP1 in hypoxia.

IHC revealed that UCP1 protein expressed in a
HCC1806 subpopulation (Fig. 3c). Among FABP7-
knockdown cells, 21 + 5% expressed UCP1, whereas
only 4 + 1.7% expressed UCP1 among control cells
(p = 0.004) (Fig. 3d). Hypoxic exposure induced UCP1
expression in 15 = 3.5% of control cells, whereas it in-
duced UCP1 in 29 + 1.2% of FABP7-knockdown cells
(» 0.002) (Fig. 3d). To exclude the non-specific
bindings of the anti-UCP1 antibody, we verified its
specificity using recombinant UCP1 peptide (ab24282,
Abcam). The UCP1 staining has completely disap-
peared after the treatment of the recombinant peptide,
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Fig. 3 FABP7 knockdown (FABP7-Kd) and hypoxic exposure induced UCP1 expression in cancer cells. a FABP7, PRDM16, PGC-1a, and UCP1
expression in controls (Ctrl) and FABP7-Kd after 48 h normoxia or hypoxia (0.1% O,). b Representative western blots of FABP7, UCP1, PRDM16,
PGC-1a, phosphorylated CREB (pCREB), and CREB after 48 h normoxia or hypoxia (0.1% O,). UCP1 bands appeared at 32 kD (monomer) and 64 kD
(dimer). Four different PRDM16 isoforms were detected. ¢ UCP1 expression (green) in cells cultured under normoxia or hypoxia (0.1% O,) for 48 h.
Nuclei were stained with DAPI (blue). Scale bars; 20 um. d Proportion of UCP1-expressing cells in Ctrl and FABP7-Kd after 48 h normoxia or
hypoxia (0.1% O,). Error bars, SD; *p < 0.05, **p < 0.01, ***p < 0.001; n = 3

which confirmed the specificity of the antibody (Fig. inducing beige fat-like differentiation under normoxia.
S2a for western blot and Fig S2b for IHC). Collect- In addition, FABP7 knockdown maximized UCP1 in-
ively, these results show that FABP7 knockdown upre-  duction under hypoxia presumably through the in-
gulates UCP1 in the breast cancer cells presumably by crease of pCREB.
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FABP7 knockdown enhanced mitochondrial proton leak reduced coupling efficacy with mitochondrial ETC
and metabolic rate of cancer cells without affecting ATP production (Fig. 4b). Glycolytic
UCP1 function causes increased proton leak at the assay showed that FABP7 knockdown increased gly-
inner mitochondrial membrane, resulting in increased  colysis, glycolytic capacity, and extracellular acidifica-
mitochondrial respiration rate and glycolysis to com- tion (Fig. 4c, d). In contrast, FABP7 knockdown did
pensate energy expenditure [12, 13, 27, 28]. Flux ana- not affect the fatty acid oxidation initiated either by
lysis showed that FABP7 knockdown increased the endogenous fatty acid storage or by the exogen-
mitochondrial basal respiration and maximal respir- ously administrated palmitic acids (Fig. S3). Taken to-
ation (Fig. 4a, b). Most importantly, FABP7 knock- gether, these results show that FABP7 knockdown
down increased proton leak from mitochondria and results in similar metabolic profiles to beige fat with
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Fig. 4 FABP7 knockdown (FABP7-Kd) increased oxygen consumption, proton leak, and glycolysis. a Oxygen consumption rate (OCR) curve of
controls (Ctrl) and FABP7-Kd cells. Oligomycin (Oligo), FCCP, and rotenone/antimycin A (Rot/AA) were added sequentially. b Estimated
mitochondrial basal respiration (upper left), maximal respiration (upper right), proton leak (lower left), and coupling efficacy (lower right) of Ctrl
and FABP7-Kd. ¢ Extracellular acidification rate (ECAR) curve of Ctrl and FABP7-Kd. Glucose (Glu), oligo, and 2-deoxy-glucose (2-DG) were added
sequentially. d Estimated glycolysis and glycolytic capacity of Ctrl and FABP7-Kd. Error bars, SD; *p < 0.05, ***p < 0.001, ****p < 0.0001; n = 3. Each
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increased mitochondrial respiration and glycolysis to
compensate the increased proton leak caused by
UCP1.

FABP7-knockdown-induced UCP1 depolarized
mitochondrial membrane potential

To test further that the UCP1 was physiologically func-
tional, we assessed the correlation of the spatial distribu-
tion of UCP1 with the focal depolarization of the
mitochondrial membrane. For this purpose, we focused
on the principle that Mito Tracker Red could preferen-
tially label well-polarized mitochondria. In cells not ex-
pressing UCP1, polarized mitochondria (labeled with
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Mito Tracker Red) exhibited linear-like spatial distribu-
tion in the cytoplasm (Fig. 5a, lower panels). Conversely,
in UCP1-expressing cells, polarized mitochondria exhib-
ited fragmented distribution while UCP1 exhibited
linear-like distribution (Fig. 5a, lower panels). Notably,
UCP1 did not co-localize with the Mito Tracker
positive-polarized part of mitochondria, and they exhib-
ited a complementary distribution (Fig. 5a, upper
panels). The co-staining using the higher concentration
of Mito Tracker Red which was sufficient to visualize
the whole structure of mitochondria ruled out the possi-
bility of the ectopic UCP1 expression (Fig. S4).

UCP1

Mito tracker

!
: 98.725%
10
* %
i 120 _—
3 % %k % %k
10 ISO——
100 — —
10
10 80
o 1 10 10 10 10 10
10
B ; 99.078%
< 10
i
& 20
10
10 0
Ctrl
10
w10 10 w10 10

[
2
c|E
218
Al a
%]
()
—
Q.
x
(V)
—i
a|¥
o=
+—
Ol ®©
oY)
Q
=z
A
o Ctrluntreated . Ctrl+FCCP
—~ | I i
-c a a
) 0
[
—
(%]
]
21 .
o] ” FABP7-Kd untreated , FABP7-Kd + FCCP
u
% 10°
© |5
\ &
- 1
10 1
FITC-A FITC-A

Ountreated B+ FCCP

Depolarised cells (%)
(=]
o

FABP7-Kd

>

J-monomers (green)

=6

Fig. 5 UCP1 caused focal depolarization of mitochondria. a Representative confocal microscopic images of UCP1-expressing cells (upper panels)
and UCP1-negative cells (lower panels) acquired from FABP7 knockdowns (FABP7-Kd). UCP1 expression, polarized mitochondria (Mito Tracker),
and nuclei are indicated in green, magenta, and blue, respectively. Scale bars; 10 um. b Representative scatterplots of JC-1 assay. X and y axes
show green (JC-1 monomer) and red (J-aggregate) fluorescence, respectively. The gate named depolarized was used for calculating the
proportion of depolarized cells. ¢ Proportion of depolarized cells in Ctrl and FABP7-Kd calculated through JC-1 assay. Error bars, SD; **p < 0.01, n
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This complementary pattern between UCP1 and polar-
ized mitochondria suggested that UCP1 caused focal
depolarization within the mitochondrial membrane. We
then quantified the proportion of cells containing depo-
larized mitochondria using JC-1 mitochondrial dye. JC-1
trapped in mitochondria will lose red fluorescence in re-
sponse to the depolarization of the mitochondrial mem-
brane. The proportion of the depolarized cells which
appeared in the segment of Green™&"/Red™ signifi-
cantly increased among FABP7 knockdowns (Fig. 5),
demonstrating that active dissipation of the ETC-
generated proton gradient underlies focal depolarization
of mitochondrial membrane when FABP7 function is
disrupted.

FABP7 knockdown sensitized cancer cells to hypoxia and
y-irradiation

The effect of the FABP7 knockdown on the viability of
cancer cells was tested. FABP7 knockdown increased
peroxidized lipid accumulation, with no further increase
after hypoxia or y-irradiation (Fig. S5a). In cell-cycle
analysis, FABP7 knockdown increased the proportion of
cells in sub-G1 phase (Fig. S5a, b) without affecting
overall distribution of G0/G1, S, and G2/M phases (Fig.
S5c). Since the increase in sub-G1 phase is known to re-
flect the accumulation of fragmented DNAs [29], it was
likely that elevated lipid peroxidation increased DNA
damage and cell death. Consistently, under both nor-
moxia and hypoxia, FABP7 knockdown inhibited cell
proliferation (Fig. 6a). Clonogenic assays showed more
clearly that FABP7 knockdown significantly inhibited
cell growth with a reduction in average colony size in
normoxia and after exposure to hypoxia (0.1% O,, 72 h)
(Fig. 6b, c). The knockdown of FABP7 also significantly
reduced colony number under normoxia and hypoxia
(Fig. 6d). Because FABP7-knockdown cells exhibited in-
creased lipid peroxidation, we tested their sensitivity to
y-irradiation. At all tested y-irradiation doses (2 Gy, 4
Gy, and 6 Gy), FABP7-knockdown cells had lower col-
ony forming ability (Fig. 6e, f).

In contrast to these in vitro experimental results, we
found no substantial correlation of FABP7 and UCP1 ex-
pression on patient survival in the METABRIC and
TCGA breast cancer cohorts. Univariate and multivari-
ate analysis using the METABRIC and TCGA breast
cancer cohorts identified only hypoxia score as a signifi-
cant prognostic factor (Table 1). UCP1 did not have a
significant impact on patient prognosis (Table 1). Higher
FABP7 expression was associated with better
progression-free survival in ER-positive patients in
TCGA cohort, but this result was not reproduced in
METABRIC cohort (Table 1 and S1). Survival curves
confirmed that UCP1 expression in breast tumors was
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not associated with overall survival either in ER-positive
or ER-negative patients (Fig. S6).

UCP1 increased cellular temperature

Finally, we measured the difference of cellular
temperature by using the thermosensitve probe (T
probe) that shortens its fluorescence lifetime as cellular
temperature increased [5]. We observed the expected in-
verse linear correlation between the fluorescent lifetime
of our T probe and control-cell temperatures (Fig. 7a),
indicating that the probe is appropriate for use in our
experiment.

The shorter fluorescence lifetime of FABP7-
knockdown cells indicated a higher temperature com-
pared with control cells (37 °C) (Fig. 7b). We estimated
the temperature in FABP7-knockdown cells to be
39.5°C (difference from control was 2.47 + 0.42°C, Fig.
7c). Elevated temperature in FABP7-knockdown cells
was also confirmed using fluorescence life-time imaging
(indicated as brighter color in Fig. 7d). Furthermore, the
distribution of warm cells was coincided with the pattern
of UCP1-expressing cells (Fig. 7d). Thus, FABP7-
knockdown-induced UCP1 activated autonomous heat
production in breast cancer cells.

Discussion

Here, we described a new metabolic feature in breast
cancer, namely, that blocking hypoxia-inducible FABP7
triggers UCP1-mediated thermogenesis. We confirmed
the existence of autonomous thermogenesis in breast
cancer cells using a novel thermosensitive fluorescent
probe.

In beige adipocytes, transcriptional regulator PRDM16
and co-factor PGCla regulate differentiation and con-
tribute to basal UCP1 expression [30]. In addition, in-
creasing cAMP levels maximizes UCP1 induction [10].
We observed that FABP7 knockdown led to the upregu-
lation of PRDM16 and PGCla under normoxia and ele-
vated pCREB levels under hypoxia. FABP7 functions not
only as a fatty acid transporter but also as a regulator of
differentiation in brain tissue. Thus, an effect of FABP7
on differentiation in the cancer cells is plausible. Oxi-
dized fatty acids and their derivatives epigenetically in-
duced beige fat differentiation through DNA or histone
modification [31]. Similarly, oxidized fatty acids and de-
rivatives directly interact with transcriptional factors that
upregulate UCP1 transcription, such as peroxisome
proliferator-activated receptor [32—35]. Hence, our find-
ings suggested that the increased fatty acid peroxidation
upon FABP7 knockdown might contribute to the induc-
tion of UCP1, although the precise mechanism should
be further investigated. Given that FABP7 is a fatty acid
transporter, identifying the fatty acid derivatives which
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could directly regulate UCP1-mediated thermogenesis
would be also important.

Generally, UCP1 is considered to be expressed exclu-
sively in adult brown or beige adipocytes. Therefore, it is
widely used as a specific marker for brown and beige ad-
ipocytes. Although several studies have reported ectopic
UCP1 expression in multiple cancers, including breast

cancer [36—41], the functionality of UCP1 has never
been elucidated. In the present study, we observed the
depolarization of mitochondrial membrane potential, a
phenomenon associated with the uncoupling by UCP1.
In addition, we observed the increase in glucose catabol-
ism, mitochondrial respiration, and mitochondrial pro-
ton leak that were key metabolic features of beige
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Table 1 Prognostic impact of hypoxia score, UCP1, and FABP7

Univariate Multivariate
HR p-value  HR p-value
METABRIC
All cases (N = 1904)
Hypoxia- 1.30 (1.10- < 143 (1.21- <
score 1.50) 0.001***  1.68) 0.001***
UCP1 0.94 (0.84- 0.27 0.96 (0.86- 0.515
1.10) 1.08)
FABP7 0.99 (0.94- 0.504 0.95 (0.90- 0.02*
1.00) 0.99)
ER+ (N = 1445)
Hypoxia- 140 (120 < 147 (118 <
score 1.80) 0.001***  1.80) 0.001***
UCP1 0.99 (0.88- 0.908 1.01 (0.90- 0.875
1.10) 1.10)
FABP7 0.97 (0.89- 0.558 0.94 (0.85- 0.214
1.10) 1.00)
ER- (N = 429)
Hypoxia- 1.20 (0.88- 0.246 1.24 (0.89- 0.201
score 1.60) 1.70)
UCP1 0.62 (0.28- 0.241 0.64 (0.29- 0.278
1.40) 1.40)
FABP7 0.95 (0.90- 0.114 0.94 (0.88- 0.053
1.00) 1.00)
TCGA
All cases (N = 960)
hypoxia- 1.50 (1.00- 0.028* 2.19 (1.46- <
score 2.10) 3.28) 0.001%***
UCP1 1.00 (0.92- 0.763 1.04 (0.95- 0403
1.10) 1.14)
FABP7 0.92 (0.87- 0.003** 0.89 (0.84- <
0.97) 0.94) 0.001%**
ER+ (N = 708)
hypoxia- 1.40 (0.80- 0.246 1.50 (0.80- 0.216
score 2.40) 2.64)
UCP1 1.00 (0.94- 0403 1.10 (0.96- 0.244
1.20) 1.16)
FABP7 0.80 (0.71- < 0.80 (0.72- <
0.89) 0.001***  0.89) 0.001***
ER- (N = 208)
hypoxia- 1.20 (0.57-26) 0601 159 (0.71- 0.255
score 3.50)
UCP1 1.00 (0.58- 0.944 1.08 (0.60- 0.799
1.80) 1.90)
FABP7 0.93 (0.86- 0.092 0.92 (0.84- 0.053
1.00) 1.00)

*p < 0.05, **p < 0.01, and ***p < 0.001

adipocytes. Furthermore, we confirmed that the anti-
UCP1 antibody we used specifically recognized UCP1
protein by using a blocking peptide although the anti-
body is well accepted in detecting human UCP1 [42].
Most importantly, we observed a rise in cellular
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temperature upon UCP1 induction. An earlier study ex-
plained that the higher temperature of breast tumors
was due to increased blood flow compared to normal
tissue [3]. Our study demonstrated that heat generated
by cancer cells could also contribute to an increase in
tissue temperature, although it would be difficult to
deconvolute the relative effects in vivo.

Beside the role in thermogenesis, UCP1 has been gen-
erally considered to protect the cells from ROS injury by
diminishing the proton flux of mitochondrial complex V
[11]. However, FABP7-knockdown cells exhibited slower
growth and became more vulnerable to oxidative
stresses (e.g., hypoxia-reoxygenation and ionizing radi-
ation) despite the putative protective role of UCP1
against ROS damage. This suggested that FABP7 might
be more effective in protecting cancer cells from ROS
damage than UCP1. Consistently, strong UCP1 expres-
sion was observed in both normal mammary glands and
well-differentiated tumors, whereas strong FABP7 ex-
pression was observed in poorly differentiated and se-
verely hypoxic tumors. There is also a striking
correlation of expression of each gene with specific types
of breast cancer, ER positive to UCP1, and ER negative
to FABP7. This confounds the associations with out-
come, as there are well-reported differences in outcome
of these types of breast cancer [43—45]. In the survival
analysis using METABRIC and TCGA cohort, there was
no difference in outcome depending on the expression
of UCP1 and FABP7. Although it should be noted that
the number of either FABP7 high or UCP1 high cases
we defined was so small, these findings suggest that up-
regulating FABP7 may be protective for the more ag-
gressive subtype (Fig. S7), whereas UCP1 is associated
with a different mitochondrial metabolism in slower
growing tumors. In a study using a mouse xenograft
model, UCP1 expression was essential for tumorigenic
ability, and its expression decreased in accordance with
tumor progression [40]. Since there are greater demands
for ATP in rapidly proliferating poorly differentiated tu-
mors, there would be a disadvantage in uncoupling be-
tween ETC and mitochondrial complex V.

From the immunological point of view, heat has been
well recognized as a major modifier of systemic immune
responses [16]. For example, a recent study showed that
a thermal sensory pathway, HSP90-a4-integrin axis, pro-
moted T lymphocyte trafficking and enhanced immune
surveillance during infection [17]. Therefore, the effect
of heat on tumor immune responses potentially links
thermogenesis and the outcome of immune therapy in-
cluding immune checkpoint inhibition (ICI). Intri-
guingly, we recently found that the expression of FABP7
and other genes related to PUFA transport was associ-
ated with the enrichment of molecular pathways related
to ICI in breast cancer tissues [46]. Therefore, it is of
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interest to investigate whether UCP1-mediated thermo-
genesis could enhance the benefit of ICI by functioning
as “endogenous hyperthermia.”

Curiously, UCP1 was only expressed in approximately
20-30% of cancer cells even at the highest induction
rates. Beige adipocytes could also appear in patchy pat-
tern within white adipose tissue upon the stimulation
such as cold-induced sympathetic nerve activation. The
reason that they do not completely replace white adipo-
cytes is not well understood. The cancer cells seemed to
mimic this typical distribution pattern of beige adipo-
cytes, reflecting the complexity of metabolic adaptation
in cancer cells. FABP7 is also known to exhibit
heterogenous expression in brain tissue: its expression is

limited to neural stem cells or progenitor cells [47].
Therefore, we could posit that there are subsets of cells
undergoing metabolic adaptation through different
quantitative/qualitative regulation of transcription. The
more precise mechanism underlying this phenomenon
could be addressed by single cell-based assays in future
experiments. This raises the possibility that there could
be a co-operative effect on tumor growth by having dif-
ferent metabolic populations.

Conclusions

We observed that FABP7 knockdown induced UCPI1-
mediated thermogenesis in a breast cancer cell line.
FABP7 knockdown increased the susceptibility to
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hypoxia and y-irradiation, providing a potential thera-
peutic window for breast cancer. Since heat can also
affect tumor immunity, it would be of interest to exam-
ine how the thermogenesis by cancer cells affects the re-
sponse to immune therapy. This is particularly the case
as ER negative tumors which tend to express high
FABP7 are the ones in which anti-PD1 therapy seems to
be more effective. Although more studies are needed to
elucidate the molecular mechanisms linking FABP7-
related fatty acid metabolism and UCP1 induction, our
findings illustrate a new metabolic adaption of cancer
cells that involves heat production similar to that used
by beige adipocytes. Taken together, FABP7 could be a
potential target for cancer therapy that affects the sensi-
tivity to oxidative stress and y-irradiation although its
prognostic impact remains to be further investigated.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/540170-020-00219-4.

Additional file 1: Figure S1. a Association of FABP7, UCP1, and
hypoxia ssGSEA quartile in the Metabric (n = 1904, upper panels) and
TCGA (n = 960, lower panels) breast cancer cohorts. The scatter plots of
all samples (left), ER+ tumors (middle) and ER negative tumors (right) are
shown. X and y axes show UCP1 and FABP7 mRNA expression,
respectively. Hypoxia ssGSEA quartiles were indicated using different
colors (orange, green, blue and purple). b Correlation analyses of hypoxia
ssGSEA with FABP7 (upper panels) and UCP1 expression (lower panels).

Additional file 2: Figure S2. Blocking peptide confirmed specificity of
the anti-UCP1 antibody. a Western blot using the anti-UCP1 antibody
with (left) and without addition of UCP1 peptide (right). b Immunofluor-
escence of FABP7 knockdown cells with (left) and without addition of
UCP1 peptide (right). UCP1 and nuclei were stained with green and blue,
respectively. Scale bars; 20 um.

Additional file 3: Figure S3. Exogenous fatty acid oxidation (FAO) and
endogenous FAO estimated by Seahorse XFe96. Left: Exogenous FAO is
estimated as the difference between the oxygen consumption rate (OCR)
with and without palmitate supplementation [FAO induced by
exogenously supplied palmitate]. Right: endogenous FAO was estimated
as the difference between the OCR with and without etmoxir (specific
inhibitor of mitochondrial CPT-1) supplementation [FAO induced by en-
dogenously supplied FAs].The growth media was replaced to the
substrate-limited media (DMEM without sodium pyruvate supplemented
with 0.5mM glucose, TmM glutamine, 0.5mM L-carnitine and 1%FBS (pH
74 at 37 °C) 16hr prior to the assay. The substrate-limited media was re-
placed to FAO assay media: KHB (111mM NaCl, 4.7mM KCl, 1.25mM
CaCl2, 2mM MgSO4, 1.2mM NaH2PO4) supplemented with 2.5mM glu-
cose, 0.5 mM carnitine, and 5 mM HEPES and the cells were transferred
to non-CO2 incubator (37 °C) 45 min prior to the assay. 40pM etomoxir
was added 15 min prior to the assay and XF Palmitate-BSA FAO substrate
or BSA were added just prior to the assay.

Additional file 4: Figure S4. Immunofluorescent image of UCP1
positive cells. To increase the sensitivity of Mito tracker, mitochondoria
were stained with higher concentration of Mito tracker. Co-localization of
UCP1 (green) and Mito tracker (magenta) was recognized as white signals
(indicated by white arrows).

Additional file 5: Figure S5. FABP7-knockdown (FABP7-Kd) induced
lipid peroxidation and led to the increase of sub-G1 phase in cell-cycle
analysis. a Comparison of lipid peroxidation levels between control (Ctrl)
and FABP7-Kd under normoxia, hypoxia (0.1% O2, 24 hr), and 24 hr after
jonizing radiation (4Gy). b, ¢, d Cell-cycle analysis of Ctrl and FABP7-Kd. b

Representative cell-cycle distribution. c Difference of the proportion of
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sub-G1 population. d Cell-cycle distribution without sub-G1 phase. Error
bars, SD; *p < 0.05, **p < 0.01; n = 3.

Additional file 6: Figure S6. a Association of UCPT mRNA expression
in tumors with overall survival assessed through the METABRIC breast
cancer cohort. Kaplan meier estimates using all cases (left), ER-positive
cases (middle), ER-negative (right) were shown. UCP1-high and low were
defined by k-means clustering (k=2). b the same analyses through the
TCGA breast cancer cohort.

Additional file 7: Figure S7. Working hypothesis generated from this
studly.

Additional file 8: Table S1. Prognostic impact of hypoxia ssGSEA, UCP1
and FABP7
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