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Abstract

The paper is devoted to study multidimensional van der Corput-type
estimates for the intergrals involving Mittag-Leffler functions. The general-
isation is that we replace the exponential function with the Mittag-Leffler-
type function, to study multidimensional oscillatory integrals appearing in
the analysis of time-fractional evolution equations. More specifically, we
study two types of integrals with functions E, g (iA¢(z)), 2 € RY and
E,p5(i%\¢(x)), x € RY for the various range of a and 3. Several gener-
alisations of the van der Corput-type estimates are proved. As an appli-
cation of the above results, the Cauchy problem for the multidimensional
time-fractional Klein-Gordon and time-fractional Schrodinger equations are
considered.
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1. Introduction

One of the most important estimates in the theory of harmonic analysis
is the van der Corput lemma, which is a decay estimate of the oscillatory in-
tegrals. This estimate was obtained by the Dutch mathematician Johannes
Gaultherus van der Corput [19] and named in his honour. Let us state the
well-known classical van der Corput’s lemma:

e van der Corput lemma. Let ¢ be a real valued differentiable
function such that the ¢’ is monotonic and |¢/(z)| > 1, k > 1, for
all z € (a,b), then

b
/eiA¢(w)1[)(:r)d:r <COX L N> oo, (1.1)
where C' does not depend on A.

A multidimensional version of van der Corput’s results would be of great
value, but presents many difficulties. Let us consider an integral operator
called an oscillatory integral defined by

I\ = / @) (z)d, (1.2)
RN
where ¢(x) and v(x) are two functions that map R™ to R and are called
the phase and the amplitude, respectively, and A is a positive real number
that can vary. It is well known that, if [V¢| > 1 on the support of 1, then
the following estimate is true
[T(\)] < Ox 7L (1.3)
The decay rate here is sharp, but the constant C' may depend on phase and
the van der Corput’s estimate does not scale well. Again, such an estimate
is closely related to the problem of multilinear sublevel set estimates [10],
one of the fundamental problems of harmonic analysis. Certain parame-
ter dependent sublevel set estimates were obtained and used by Kamotski
and Ruzhansky [7] in the analysis of elliptic and hyperbolic systems with
multiplicities, to yield Sobolev space estimates for relevant classes of oscil-
latory integrals and for the solutions of the hyperbolic systems of equations.
There are various versions of the van der Corput estimate but most with
one-dimensional rate of decay. Furthermore, Carbery, Christ and Wright
[2] and Ruzhansky [12] proposed multidimensional versions of the van der
Corput lemma, in formulations where also the constant in the estimate is
independent of the phase function.
Recently, the attention of many mathematicians has been attracted
by various generalizations of Van der Corput-type estimates for integrals
involving special functions [3] [13], 14} 20} 211 22].
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The main goal of the present paper is to obtain multidimensional van
der Corput-type estimates for the integrals defined by

A = / Eap (iA6(2)) () dz, (1.4)
RN

and

12,0 = / Fop (°A(2)) w(x)d, (1.5)

where 0 < a, 8 € R, ¢ is a phase and 1 is an amplitude, and A is a positive
real number that can vary. Here E, g (2) is the Mittag-Leffler function
defined as (see e.g. [8,15])

R 1.
kZZOFakJrﬂ a>0, BER, (1.6)

for which we note that
E171 (Z) =€~ (17)

This present paper is a continuation of [I3] [I4], where a variety of van
der Corput type lemmas were obtained for the integrals (L4) and (L5 in
the case N = 1.

Such integrals as in (L4) and (L3]) arise in the study of decay estimates
of solutions of the time-fractional Schrédinger and the time-fractional wave
equations (for example see [4} 6l 9, [16], 17, [18]). In Section Ml we will give
several immediate applications of the obtained estimates to time-fractional
Schrodinger and time-fractional Klein-Gordon equations.

As the Mittag-Leffler functions have a very rich analytic structure, and,
philosophically, give a generalisation of the usual exponent, the obtained
estimate will also involve the dependence on the parameters v and £5.

1.1. Preliminaries. We will often make use of the following estimate.

ProrosiTION 1.1 ([I1]). If0 < o < 2, 8 is an arbitrary real number,
w Is such that wa/2 < p < min{m, wa}, then there is C1,Cy > 0, such that
we have

[Eap(2)] < , 2€C, p<arg(z)] <, (1.8)

1+ |7
and

|Eap(2)] < Ci(1+ |Z\)(1_6)/°‘ exp(Re(zl/o‘))

Cy

2 C < (1.9
1+‘Z|,z6 , larg(2)] < p. (1.9)
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ProprosITION 1.2 ([I]). The following optimal estimates are valid for
the real-valued Mittag-Leffler function

1
< Eyi(—2) <

, >0, 0<a<]; 1.10
1+l - )z — _1+ﬁx v “ (1-10)

1

(1+ /Fa)’

<T'(a)Eya(—x)

— )

1

(1 + %x)?

>0, 0<a<1; (1.11)

1
———— < [(B)Eas(—2)
1+ F%B_a)x ’
@)
1
< #20,0<a<1, f>a (112)
L+ raray®

ProproSITION 1.3. ([13]) Let o, 8 > 0 and ¢ : RY — C. Then for all
A € C we have

Eo,3 (iA$()) = Baa,p (X0 (2)) +iA(2) Eza pra (-N¢%(x)) . (1.13)

2. Van der Corput-type estimates for the integral I} 5(A)

In this section we consider the integral operator defined by
150 = [ Ba (06(@) dlad
RN

where 0 < o < 1,8 > 0, ¢ is a phase and v is an amplitude, and A is
a positive real number that can vary. We are interested in particular in
the behavior of I é ,3()‘) when A is large, as for small )\ the integral is just
bounded.

THEOREM 2.1. Let ¢ : RN — R be a measurable function and let
Y e LYRYN). If0<a<1,8>0, and m = essinf, gy |¢p(x)| > 0, then we
have the estimate
M[Y| L1 mwy
I ()| € ———=——2
150 < et
where M does not depend on ¢, 1) and .

A0, (2.1)
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P roof. Asfor small A the integral (I4]) is just bounded, we give the
proof for A > 1. Let ¢ : RV — R be a measurable function and ¢ € L (RY).
Then

1L (V)] = / Fop (iA(2)) $(z)da

< / (B (IAS(2)| () da
RN

Using formula (LI3)) and estimate (I]:QD we have that
|Bap (IAG(@))] < | Baa,p (=20 (1) | + M(@)] | Boaatp (=27 (2))

C CA|¢(z)] L+ A(=)]
<T@ T = TR

(2.2)
As ¢ and v do not depend on A, and m = essinf cpn |¢(z)| > 0, then from

[22) we have

14+ A
124 |</|Eam¢< D (e C/Jv@ L))
1+>\|¢ |¢(a:)| MY 1@y
20/ T+ ol QW >"“’£“/m‘“£w~
RN
The proof is complete. o

Now we find upper and lower bounds in estimates for
7Q y
L50) = [ Bap 00(2) (2, (23)
where Q ¢ RY is a bounded domain, 0 < o < % and 5 > 2a.

THEOREM 2.2. Let 0 < a < 1/2, 8 > 2a. Let ¢ € L*°(Q) be a
real-valued function and let 1 € L>(2).

Suppose that my = inf |p(x)| > 0 and my = inf |¢p(z)| > 0. Then we
€ e

have

1+ Moo
IS OV < KAl o) g, A2 0

2.4
1—1—16‘1)\27’)1% R ( )

where Q| is a Lebesgue measure of (),

K, :max{ﬁ’ﬁ}

_f T(B  T+h
kl‘mln{r(2a+5)’r(3a+ﬁ)}’

and
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We also have

ma|Q| Amy

Do+ 8) 1+ (23 NI0)2 e

Q
125 ] >

Ifmy = in?2 |o(z)] =0 and mg = in£2 |tp(x)| > 0. Then we have
TE €

m2\§2| 1
L(B) 1+ MEZ2ON26]2 0

IO >

5 A > 0. (2.6)

P r oo f. First, we prove estimate (24). Let ¢ € L*(Q) and ¢ €
L>(Q). Then

1220 < / |Ea g (iAG())]| [$()] da
Q

Using formula (LI3)) and estimate (L.9]) we have that

| Ba,p (iA6(2))| < Baa,p (~A*¢°(2)) + N(@) | Bagars (—X°0%(x)) . (2.7)

The properties of functions ¢ and v, and the use of estimate (L12)) lead to
the result

X200 < / (Bayp (iAS(@))] [4(2)] da
Q

< / (Ezap (~326%(2)) + N(@)| Eroar s (~AN262(2))) [(z)] da

Q

[40]] oo 1
d
= ') Q/1+ T8 )\2¢2( ) v

T(2a+5)
1Yl @) Alg(z)]
+
I'(a+p) 9/14_5((3‘11% ) \2¢2 ()

1 1
< Il max{m Twm} .

1 . Ag(@)| .
- {/H L A202(x )d +!1+ N2 ( )d]

F( T(3a+p)
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1 | Aol
< |ollll~ max{ | }
LB T@+B) ) | 14 pmidsd2mi 14 0 A2m?

1 1 L+ A[[@]l
<0 oo ’
> ‘ |”¢HL max{r(ﬂ)’ F(a—l—,@)} 1 —l—min{ T'(B) I'(a+B) })\2771%

T'(2a+p)’ I'(3a+p)
Now, we prove the lower bound estimate ([2.6]). As |z +iy| > |z|, we obtain
|Ea,p (iAd(2))| = Eaa g (A% (x)) . (2.8)

Hence, by estimate (L.12), it follows that

|f§’,2(A)I > m2/E2a,6 (=\?*¢*(2)) dz
Q

mo 1

d

ZF(B)/H L2262 (a) *
m2|Q| 1

- T(B) 1+ F(ﬁ(;a >\2||¢||LOO(Q

Now, we prove the lower bound estimate (Z35]). As |z +iy| > |y|, we obtain
|Bap (1IM(@))] = A |6(2)| Baaars (—X*6%(2)) - (29)

Hence, by estimate (LI12), it follows

IS0 2 ma [ 1060 Brarss (~X6 (@) d
Q

ma\ |¢(2)]
dx
F(a+5)!1+£§§+ﬁ L X202 (z)
m2|Q| )\ml

Lot 8) 1+ (&I N110)2 e )

>

The proof is complete. o

THEOREM 2.3. Let 0 < a < 1/2, 8 = 2a. Let ¢ € L*°(Q) be a
real-valued function and let 1 € L>(2).
Let my = ing\qb(xﬂ > 0 and my = iné\zﬁ(azﬂ > 0, then we have the
re Tre

following estimates
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115 (V)] < K199 o (0

a,2a

L+ Mol (14 /R X216]2 g
X © ( [a) ) A>0, (2.10)
. T 3a I'1+2«
(1 + min { Fgm 1/ FE1+4ag } )\2m1>
and
M2 ()] > 2l Al A>0 (21

I'la
F(3a) L+ F((3a)) >‘2||¢||2oo(g)
where K = max{ﬁ, ﬁ} .
Ifmy = inf |p(x)] = 0 and my = 12£ |t(x)| > 0, then we have
m2|Q| 1

['(2a) T(1—2a)
(14 FB N lI612 )

135V > 5, A> 0. (2.12)

P roof. First, we prove the estimate (2.I0). Let ¢ € L°*°(f2) and
Y € L>®(Q2). Then

52 ()] < / |Ea 20 (IAG(2)] [4(2)] da
Q

Using formula (LI3]), we have that

|Ea20 (iA0(2))| < Eaapa (—A¢%(2)) + Ao (2)| Ban,3a (—A2¢%(2)) . (2.13)
The properties of functions ¢ and 1, using estimates (LII) and (LI2)),
imply

A8 )] < / B o (i) [4(2)] d
Q
< / (Bsoze (—A202(2)) + Mb(0)| Baaa (—N26%())) [i(2)]
Q
191l oo () 1
< dx
F(@e) J (1+ TSR @)

19| oo () Alo(z)|
d
"I / L+ FedA262(x) )
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1
< ||¢||L°°(Q K sdx
/ (1+/Hi e (@)
)\
+ 1Yl oo () K/ ‘(;5 )\;|¢2( )
K|Q||W)HL°°(Q

(1R eme)

A6l zoe ) (1+ B A1 o )

(=R (- 1 o)

1+A||¢||Loo ) (14 R P9l )
(14 min {F2 /2T s

WhereK:maX{ﬁ,ﬁ}.

Now, we prove estimate (2.12]). We have

| Ea20 (iIA$(2))] > Eaa2a (—A*¢%(2)) . (2.14)
Hence, by estimate (L)), it follows that

501 = ma [ Ban e (-X262(@)) ds

+ K[Q[[|[9] Lo ()

< K|Ql4] o o)

9

> 2 / ! dx
—I'(2 “2a 2
(14 i)
ma|Q2| 1
>

~ I'(2e) T(1—2a) 2
(14 /T 20l )

The estimate (ZI1]) can be proved similarly as estimate (Z3]) by replacing
B = 2«. In fact,

1501 = mad [ 16(0)| Baaso (~N°6 (@) da
Q
my) ol
ZF(?)Oé)/lJr ( ()d

ma|Q2| )\ml
T IBa) 1 4 %)\2%”2@(9)
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The proof is complete. O

3. Van der Corput-type estimates for the integral IS/B()\).

In this section we consider 102[7 5 defined by (L4)), that is,

12 4(0) = / Eop (°A0(2)) w(x)d.

RN
As for small A the integral (I.4]) is just bounded, we consider the case A > 1.

THEOREM 3.1. Let ¢ : RY — R be a measurable function and let ¢ €
LYRY). Suppose that 0 < a < 2, 8 > 1, and m = essinf, cpn |¢(x)| > 0,
then

(i): for0 < o <2 and B> a+ 1 we have

M

2 1

12,5001 < Tl ey, A2 1, (3.1)
where My does not depend on ¢, ¥ and X;

(ii): for0<a<2and 1< B < a+ 1 we have
2
\Io%,ﬁ()\)\ <

M-
7(1 +)\ )ﬁ—l [l mny, A > 1, (3.2)
m) a

where M, does not depend on ¢, ¥ and X;
(iii): for « =2 and 1 < § < 3 we have

M
|I§,B()‘)| < R +7)u [l @ry, A1, (3.3)
m) 2

where M3 does not depend on ¢, ¢ and .

Proof. Let ¢:RY — R be a measurable function and 1 € L'(RY).

As
T

Jarg(iA¢(a))] =
and

Re(iA!/*(¢(z))"/*) =0,
then using estimate (IL9) we have that

2 500 < / |Ea s (1A6(2))| [9(2)]| d
RN

<o / (1 4+ Ao(@)) =0 |o(2)] da
RN
()|
+a [

RN
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As ¢ and v do not depend on A, and m = essinf g~ [¢(z)| > 0, then
for B > a+ 1 we have

112 5 |</|Eag i*A(2)| [ ()] da

|9 (x)

|
R

S max{C’l, 02} /
RN

M,
< —
~1+Mm

In the case 1 < 8 < o+ 1 we have that

12 ,,00] < / |Ea s (1A6(2))| [1(2)] d
RN

)|
max{C1, Cs s dT
= et }/ 1+A|<z>< )

11l L (mvy.-

M,
< —— ¥l @ny-
(1+Am) =
The cases (i) and (ii) are proved.
Now we will prove the case (iii). Applying the asymptotic estimate (see
[8, page 43])

E2,/3’( ) = Z1-P)/2 ( vz +e \/Z_m(l—b’)sign(argz)>

1
2
N
1
ZF _Qk (m), |Z|—>OO7 |arg(z)| STF,
k=1

we have

12 5(0)] < / By p (~ ()| [¢(2)] da
RN

< MNP / 16(2)| VP2 |g() | da

RN
< Mym(1-9)/2\(1-8)/2 / b (z)]| dz
RN
M3 || Ly @y

= A+ mA D2
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Here M3 is a constant that does not depend on A. The proof is complete.
O

4. Applications

In this section we give some applications of multidimensional van der
Corput-type estimates involving Mittag-Leffler function.

4.1. Decay estimates for the time-fractional Schrodinger equation.
Consider the time-fractional Schrédinger equation
iD8+,tu(t7m) - AI'LL(t,IL’) + /L'LL(t,{L’) = 07 t> 07 WS RN? (41)
with Cauchy data
U(O,i‘) = 1[)(1‘)7 T € RNa (42)
where A\, > 0 and ,

Dgy qul(t,x) = ﬁ / (t —s) %us(s,x)ds

0
is the Caputo fractional derivative of order 0 < o < 1.
By using the direct and inverse Fourier and Laplace transforms, we can
obtain a solution to problem (4.I))-(4.2) in the form

u(t.o) = [ € Eas (16 + i) die)de, (43)
RN
where ?[3(5) = WR{V e~ Wep(y)dy. Suppose that 1 € L'(RY) and V€
L'(RN). As
inf (|¢]? > 0,
gé%N(\il + 1)
then using Theorem [2Z.T] we obtain the dispersive estimate
[u(t, ) Loo@nvy < C(1 + t)_aH?/AJHLl(RN), t>0.

4.2. Decay estimates for the time-fractional Klein-Gordon equa-
tion. Consider the time-fractional Klein-Gordon equation

Dgy u(t, =) +i*Agu(t, z) — i%pu(t,r) =0, t>0, z € RY, (4.4)

with initial data
I57%u(0,2) =0, z € RY, (4.5)

05 Gu(0,2) = (), z € RY,
where ¢ > 0, and

¢
1
Ig; yu(t, o) :F—/t—s (s, x)ds
0
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and
t

Dy, u(t,z 8 (t—s) “u(s,z)ds
§an(t.) = sy [ )
0

is the Riemann-Liouville fractional integral and derivative of order 1 < o <
2.

If o = 2, then from (£.4)) we obtain a classical Klein-Gordon equation.

Applying the Fourier transform F to problem (4.4)-(4.6]) with respect
to space variable x yields

DGy gt (8,€) — i (|E° + p)a(8,€) =0, t >0, £ €RY, (4.7)
I5:5u(0,6) =0, € €RY, (4.8)
8t 2+ot[ﬁ/t (075) = ¢(€), { € RN? (49)

due to F {Azu(t,z)} = —|&|?a(t, £). The general solution of equation (7))
can be represented as

@ (t,€) = C1()* Bayo (((IE]° + p)t*) +Ca(€)t* ™ Ea,amr (1% (1€ + p)t?)
where C1(€) and C5(€) are unknown coefficients. Then by initial conditions

(48)-(9) we have )
@ (t,€) = p(E)t  Ega (1*(€]7 + p)t*) .

By applying the inverse Fourier transform F~! we have

u(t.o) = [ T B (0P ) SO (410)
RN
where 9(6) = e [ e 0y
Suppose that 1) E Ll(RN) and ¢ € L*(RYN). As inf;v(|£|2—|-,u) > 0, then
£eER
using Theorem [3.1] (ii) we obtain the dispersive estimate
a— ay =2 1
[u(t, ) poo @y < CtOHA+1%) = (|9l 12 @y
<Ot L+ 1)l gy, >0
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