

PREDICTING ENERGY YIELD OF OUTDOOR SI-BASED PV **INSTALLATIONS FOR BELGIUM AND VIETNAM REGIONS AT ARBITRARY TILT AND ORIENTATION** Nguyen Dang Phuc Nguyen, Johan Lauwaert

Outline

- 1. Introduction
- 2. Proposed methodology
- 3. Results
- 4. Conclusion

PV efficiency and technology

Best Research-Cell Efficiencies

Model's Objectives

- Calculating energy yield of outdoor PV systems based on local weather conditions.
- Easy to transfer to other locations.
- Available for Si-based PV technologies.
- Flexibility in applying.

- 1. Introduction
- 2. Proposed methodology
- 3. Results
- 4. Conclusion

Methodology

Commercial PV panel

Tandem solar cell

under clear and cloudy skies: Measurements and a semiempirical model. J. Appl. Meteorol. 1991, 30, 447-462

Solar Irradiation on horizontal surface

GHI = DNI + DHI

Methodology

Commercial PV panel

clear and cloudy skies: Measurements and a semiempirical model. J. Appl. Meteorol. 1991, 30, 447-462

Tandem solar cell

Modelling solar spectrum

Soteris A. Kalogirou Solar energy engineering: processes and systems; *Elsevier Inc.*, 2009; ISBN 9780123745019

$$\cos(\theta) = \sin(\alpha_s)\cos(\beta) + \cos(\alpha_s)\sin(\beta)\cos(\gamma_s - \gamma)$$

$$I_{b} = I_{DNI} \cos(\theta)$$
$$I_{d} = I_{DHI} \frac{\iint_{\Omega} \cos(\vartheta) d\omega}{\iint_{2\pi} \cos(\vartheta) d\omega}$$

$$I_{total} = I_b + I_d$$

Nann, S.; Riordan, C. Solar spectral irradiance under clear and cloudy skies: Measurements and a semiempirical model. *J. Appl. Meteorol.* 1991, 30, 447–462

Methodology

Commercial PV panel

clear and cloudy skies: Measurements and a semiempirical model. J. Appl. Meteorol. 1991, 30, 447-462

Outline

- 1. Introduction
- 2. Proposed methodology
- 3. Results
- 4. Conclusion

Calculating for Flanders, Belgium

System	Frank Debo	osere	T_36_Brugge					
Power	4.35 kW	р	5.28 kWp					
Orientation	Tilt = 45 ⁰ , Azimuth =	22.5 ⁰ (SSE)	Tilt = 45 ⁰ , Azimuth = 22.5 ⁰ (SW)					
	Average Annual Yield (kWh/year)	Deviation (%)	Average Annual Yield (kWh/year)	Deviation (%)				
Actual yield	4123		4869					
This work	3972	3.67	5042	3.55				
PVGIS-CMSAF***	4323	4.85	5846	20.07				
PVGIS-SARAH***	4415	7.08	5858	20.31				
PVGIS-ERA5***	4678	13.46	6587	35.28				
PVGIS-COSMO***	4512	9.43	5619	15.40				

*: <u>https://www.frankdeboosere.be</u> **: <u>https://pvoutput.org/</u>

***: https://re.jrc.ec.europa.eu

Calculating for Vietnam regions

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Tri An Latitude = 11	This work	149	154	174	162	156	141	138	135	132	141	139	140	1760
	PVGIS- SARAH*	140	145	160	149	146	134	138	144	126	133	131	134	1680
	PVWATTS**	147	143	165	166	128	115	113	118	114	134	139	141	1622
Da Nang Latitude = 16	This work	88	97	132	152	173	172	169	150	120	100	81	79	1513
	PVGIS- SARAH	83	108	134	148	162	151	148	145	126	107	86	67	1466
	PVWATTS	86	82	102	120	135	125	133	129	117	107	94	80	1308
Ha Noi Latitude = 21	This work	70	70	93	109	131	138	146	138	118	103	81	72	1269
	PVGIS- SARAH	75	82	111	125	153	152	157	152	135	120	98	85	1445
	PVWATTS	62	52	72	104	142	139	143	132	135	118	102	88	1288

Unit: kWh/kWp

*: <u>https://re.jrc.ec.europa.eu</u>

**: <u>https://pvwatts.nrel.gov/index.php</u>

Calculating for tandem solar cells

	Tri An	Da Nang	Ha Noi	Flanders
Si	304.3	260.3	260.1	219.6
2-T-GalnP/Si	506.7	430.1	429.9	346.2
4-T-GalnP/Si	551.7	476.8	476.1	372.2
2-T-GaAs/Si	187.6	155.4	115.3	155.7
4-T-GaAs/Si	507.3	435.1	358.9	355.7

Unit: kWh/m^2

- 1. Introduction
- 2. Proposed methodology
- 3. Results
- 4. Conclusion

Conclusion

- Average daily, monthly and annual energy yield can be calculated accurately.
- Be able to transfer to other locations.
- Evaluating potential benefit of outdoor PV systems.
- Operating temperture and other PV technologies need to be taken into account.

Nguyen, D.P.N.; Lauwaert, J. Calculating the Energy Yield of Si-Based Solar Cells for Belgium and Vietnam Regions at Arbitrary Tilt and Orientation under Actual Weather Conditions. *Energies* **2020**, *13*, 3180.

