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We address the problem of efficiently and informatively quantifying how multiplets of

variables carry information about the future of the dynamical system they belong to.

In particular we want to identify groups of variables carrying redundant or synergistic

information, and track how the size and the composition of these multiplets changes

as the collective behavior of the system evolves. In order to afford a parsimonious

expansion of shared information, and at the same time control for lagged interactions

and common effect, we develop a dynamical, conditioned version of the O-information,

a framework recently proposed to quantify high-order interdependencies via multivariate

extension of the mutual information. The dynamic O-information, here introduced, allows

to separate multiplets of variables which influence synergistically the future of the system

from redundant multiplets. We apply this framework to a dataset of spiking neurons

from a monkey performing a perceptual discrimination task. The method identifies

synergistic multiplets that include neurons previously categorized as containing little

relevant information individually.

Keywords: information theory, transfer entropy, dynamical systems, spiking neurons, partial information

decomposition

1. INTRODUCTION

High-order interdependencies are at the core of complex systems. In many biological systems,
pairwise interactions have been found to be insufficient for explaining the orchestrated activity
of multiple components (Crutchfield, 1994; Ohiorhenuan et al., 2010; Katz et al., 2011; Yu et al.,
2011; Daniels et al., 2016). This may be crucial also in relation with the important question of
how biological systems dynamically interact and collectively behave as a network to produce
health or disease, the core business of network physiology (Bashan et al., 2012; Lin et al., 2020).
The abundance of available data is pushing nowadays the development of effective algorithms for
the inference of higher order interactions from data (Bettencourt et al., 2008; Stramaglia et al.,
2012). When an information theoretical point of view is adopted, the problem of higher order
interactions becomes related with the decomposition of the information flow in redundant and
synergistic components, an issue which cannot be addressed within the Shannon framework unless
further assumptions aremade (Williams and Beer, 2010). Partial InformationDecomposition (PID)
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algorithms have been proposed (Bertschinger et al., 2014; Barrett,
2015; Lizier et al., 2018) based on the idea that synergies are
statistical relationships which can be seen only if the whole set of
driving variables is considered. Unfortunately, the practical use of
PID is greatly limited by the super-exponential growth of terms
for large systems, and many works limit the analysis to triplets of
variables (Marinazzo et al., 2019).

All the approaches described above assume that polyadic
relationships are important for the complex system under
consideration and they thus query the validity of complex
networks (taking into account only dyadic relationships) as a
theoretical model for large-scale systems, James et al. (2016).
For the estimate of information flow, the dyadic quantity which
is commonly used is the transfer entropy (Schreiber, 2000),
related to the concept of Granger causality (Barnett et al., 2009),
which has been proposed to distinguish effectively driving and
responding elements and to detect asymmetry in the interaction
of subsystems. With the appropriate conditioning of transition
probabilities this quantity has been shown to perform better than
time delayed mutual information to infer interactions, as delayed
correlations often fail to distinguish information that is actually
exchanged from shared information due to common history and
input signals (Bossomaier et al., 2016). Attempts to generalize the
notion of transfer entropy beyond the network description have
beenmade: the expansion of the transfer entropy from amultiplet
of variables to a given target has been developed in Stramaglia
et al. (2012) to highlight subgroups of variables which provide
redundant and synergistic information to the target. For triplets
of variables, the exact calculation of multiscale PID for Gaussian
processes has been presented in Faes (2017). Merging concepts
of PID and integrated information, the integrated decomposition
framework has been developed in Mediano et al. (2019).

In a recent paper (Rosas et al., 2019), a novel quantity has
been introduced to study statistical synergy, the O-information,
a metric capable of characterizing synergy- and redundancy-
dominated systems and whose computational complexity scales
gracefully with system size, making it suitable for practical data
analysis; the O-information has been used to study brain aging
in Gatica et al. (2020). We remark that the O-information uses
equal-time samples of variables, so its output depends only
on equal-time correlations in the data-set and is insensitive to
dynamic transfer of information; moreover the estimation of O-
information does not require a division between predictor and
target variables.

In this work we propose a dynamical generalization of the
O-information to handle multivariate time series which, apart
from equal-time correlations, takes into account also the lagged
correlations with a given variable which is assumed to be the
target. The proposed approach highlights informational circuits
which dynamically influence the target variable in a synergistic or
redundant fashion, with a much lighter computational burden,
for large systems, than those required by the exact expansion
of Stramaglia et al. (2012) or PID approaches in the spirit
of Williams and Beer (2010) or the dynamic frame PhiID
introduced in Mediano et al. (2019). We apply this quantity,
that will be denoted as dO-information, to study the neural
spiking dynamics recorded from a multielectrode array with 169

channels during a visual motion direction discrimination task,
which has been already considered in Daniels et al. (2017) in
the frame of Dual Coding Theory; here will analyze this data-
set with the aim of characterizing how the dynamic transfer of
information is shaped by redundant and synergistic multiplets of
variables. Our main result is that a class of neurons, not encoding
any information on the decision at the individual level, are
otherwise important in the construction of synergistic circuits.

2. METHODS

2.1. Dynamic O-Information
Given a collection of n random variables X = {X1, . . . ,Xn},
the O-information (shorthand for “information about
Organizational structure”) is defined as follows (Rosas et al.,
2019):

�n = (n− 2)H(X)+

n
∑

j=1

[

H(Xj)−H(X \ Xj)
]

, (1)

where H stands for the entropy, and X \ Xj is the complement
of Xj with respect to X. If �n > 0 the system is redundancy-
dominated, while if �n < 0 it is synergy-dominated. Let us
now add the stochastic variable Y to the set of X variables. The
O-information now reads

�n+1 = �n + 1n,

where

1n = (1− n)I(Y;X)+

n
∑

j=1

I(Y;X \ Xj), (2)

I denoting themutual information.1n is the variation of the total
O-information when the new variable Y is added, measuring the
informational character of the circuits which link Ywith variables
X: if1n is positive, then y receives mostly redundant information
from X variables, whilst a negative 1n means that the influence
of X on y is dominated by synergistic effects.

Let us now consider a multivariate set of n time series
{xk}k=1,...,n and a target series y. Choosing an orderm for the time
series, we consider as the random variables X the state vectors

Xk(t) =
(

xk(t) xk(t − 1) · · · xk(t −m+ 1)
)

;

where varying the time index t we get different samples of X. The
role of the variable Y is now played by the target time series, i.e.,
samples of Y are obtained as Y(t) = y(t + 1) varying the time
index t. With these definitions, 1n measures the character of the
information flow from the x variables to the target y. However,
in order to remove shared information due to common history
and input signals, one should condition on the state vector of the
target variable, thus leading to the definition of the dynamic O-
information from the group of variables {xk}k=1,...,n to the target
series y:

d�n = (1− n)I(Y;X|Y0)+

n
∑

j=1

I(Y;X \ Xj|Y0), (3)
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where Y0(t) =
(

y(t) y(t − 1) · · · y(t −m+ 1)
)

are the samples
of Y0.

Some properties of the dO-information are in order. In the
case of two driving variables, we have:

d�2 = I(y;X1|Y)+ I(y;X2|Y)− I(y;X1X2|Y), (4)

coinciding with the second order term of the expansion of the
transfer entropy developed in Stramaglia et al. (2012). Expression
(4) may be seen as a dynamical generalization of the interaction
information, a well-known information measure for sets of three
variables (McGill, 1954). Another property: let us suppose that
the variable xn is statistically independent of the others, i.e.,

p
(

y,Y ,X1,X2, . . . ,Xn

)

= p
(

y,Y ,X1,X2, . . . ,Xn−1

)

p (Xn) ,
(5)

then the dynamic O-information does not change under
inclusion of xn, i.e.,

d�n = d�n−1. (6)

Since d�1 = 0, the property above ensures that the dO-
information is not sensitive to pure pairwise interactions.

2.2. The Optimization Problem
We use the expression of the dO-information to define the
optimization problem of determining the set of k variables which
maximizes d�k, with k < n; this search leads to the most
redundant circuit of k+1 variables, assuming y as the target.
The value of the dO-information for the multiplet of k variables
maximizing d�k will be called redundancy.

Analogously, the search for the set of k variables which
minimizes d�k leads to the most synergistic circuit of k+1
variables. The opposite of value of the dO-information for the
multiplet of k variables minimizing d�k will be called synergy.

We remark that what we call redundancy and synergy here
refers to the dynamic (conditioned on the past) version of the
quantities defined in Rosas et al. (2019), and should thus contain
a d- prefix. For simplicity and in the spirit of what already
accepted in the Partial Information Decomposition field, we
decided to omit it.

As the extensive search for these motifs is unfeasible for large
k, we adopt a greedy search strategy, where the extensive search
is performed for k = 2, and larger k are handled adding one
variable at a time to the best multiplet of k-1 variables.

In order to define a criterion to stop the greedy search
for the redundant k variables motifs, one can estimate the
probability that the increment d�k − d�k−1 is lower than those
corresponding to the inclusion of a randomized time series
(obtained, e.g., by a random circular shift of the k-th selected
x time series). The k-th variables is thus added to the multiplet
when such probability is lower than a given threshold. A similar
criterion can be applied also to stop the search for synergistic k
variables motifs.

2.3. Toy Example
As a toy example, let consider a system of four binary variables
σi(t) such that σ1 σ2 and σ3 are 0 or 1 with equal probability at

each time, whilst P
(

σ4(t + 1)|σ1(t), σ2(t), σ3(t)
)

is given by the
following probabilities:

P(0|0, 0, 0) = 1− a+ b,

P(0|0, 1, 0) = a− b,

P(0|1, 1, 0) = 1− a+ b,

P(1|1, 1, 0) = a− b,

P(1|0, 1, 0) = 1− a+ b,

P(0|1, 0, 0) = a− b,

P(1|0, 0, 0) = a− b,

P(1|1, 0, 0) = 1− a+ b,

P(0|0, 0, 1) = a+ b,

P(0|0, 1, 1) = 1− a− b,

P(0|1, 1, 1) = a+ b,

P(1|1, 1, 1) = 1− a− b,

P(1|0, 1, 1) = a+ b,

P(0|1, 0, 1) = 1− a− b,

P(1|0, 0, 1) = 1− a− b,

P(1|1, 0, 1) = a+ b.

The conditional probabilities reported above have been chosen so
as to have two informational circuits in the system: the variable
σ4 receives dynamically synergistic information, by construction,
from the pair {σ1, σ2} and from the triplet {σ1, σ2, σ3}, depending,
respectively, on the parameters b and a.

Indeed, for b = 0, with probability a the variable σ4 at time t+1
is given by the majority rule applied to the three driving variables
at time t, unless the three variables are equal: if the three driving
variables are all equal, then σ4 becomes the opposite of them with
probability a. Therefore the information provided by {σ1, σ2, σ3}
is synergistic and all the three variables must be known in order
to improve the predictability of σ4.

On the other hand, for a = 0, σ4, with probability b, is
given by the XOR applied to {σ1, σ2}. When both a and b are
non vanishing, two synergistic circuits of three and two variables
influence the target σ4.

In Figure 1, we depict the d�3 from the triplet as well as
the d�2 from the pair of synergistic drivers, for a = 0.7 and
varying b. For b = 0, just the triplet {σ1, σ2, σ3} is correctly
recognized as driving the target. As b increases, also the pair
{σ1, σ2} is recognized as a synergistic driver. Note that also d�3

decreases with b: indeed the dynamic O-information d�n by
construction sums up the contributions from the informational
circuits corresponding to subsets of the n variables.

Crucially, in situations like this one, where the information
flow is dynamic, the O-information fails to provide a description
of the system, and a dynamical approach like d� is mandatory.

2.4. Further Comments on Methods
The dO-information is designed to probe higher-order lagged
influences, and provides a picture of a complex system
complementary to those provided by the information flow
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FIGURE 1 | For the toy model described in the text, consisting of four binary variables, we depict the dynamic O-Information from the pair of drivers and from the

triplet of synergistic drivers as a function of the parameter b; a is fixed at 0.7. At b = 0, only the multiplet of three drivers is recognized by the proposed approach; as b

increases, also the circuit of two drivers σ1-σ2 is recognized. The proposed method is thus capable to reveal the simultaneous presence of two informational circuits

influencing the target variable.

network as measured by the pairwise transfer entropy (Schreiber,
2000):

TE (xi → z) = I
(

y;Xi|Y
)

.

It is worth mentioning that the relation between dO-information
and transfer entropy is of the same nature as the one between
O-information and mutual information (the condition-on-the-
past operator is applied to both in the same way). In order to
assess the significance of the pairwise transfer entropy, for each
pair driver-target we consider surrogate interactions (obtained
by blockwise circular shift of the target time series) and accept
a non-zero value only if the probability that randomization of
the target leads to a value of the transfer entropy higher than the
measured one is < 0.05. Recently another estimator, based on a
theoretical framework for TE in continuous time and extended
to event based data, connected to a local permutation surrogate
generation strategy, was proposed (Shorten et al., 2020).

For the application considered in this work, we have
computed the conditioned mutual information terms,
composing the dO-informations, using the Gaussian Copulas
approach described in Ince et al. (2017).

It is worth stressing the conceptual difference between the
search for the most informative variables for a given target (i.e.,
the n variables X maximizing I(y;X|Y)), and the search for the
most synergistic multiplet (i.e., the variables Xminimizing d�n).
Suppose that, during the greedy search, one has already selected
n-1 variables and now has to look for the n-th variable. If the
new variable is selected so as to maximize the information about

the target, then the information gain due to its inclusion may be
due to synergistic interactions with the previously selected n-1
variables, or to unique information from the new variable, where
unique information means a contribution to the predictability of
the target that can be obtained from that variable even when it is
treated as the only driver. Inclusion of variables providing unique
information does not give us further insights about the system
beyond what we already knew from the pairwise description.
Minimization of d�n is instead tailored to take into account
only synergistic interactions, and thus to elicit informational
circuits of variables which influence the target: in other words,
minimizing d�n leads to discover (even small) improvements of
the predictability of the target which can be ascribed to the joint
action of groups of driving variables, thus allowing a picture of
the system beyond the pairwise description.

We like also to stress that our approach may be also seen
as a computationally light method for an exploratory search of
synergistic multiplets of variables, and in this sense it might
also be seen as a pre-processing stage for further processing of
the multiplet, e.g., by the approach PhiID described in Mediano
et al. (2019) to address issues like dynamical complexity or
integrated information.

3. DATASET

We use data from the Random Dot Motion discrimination task
(Shadlen and Newsome, 2001; Kiani and Shadlen, 2009; Kiani
et al., 2014, 2015), in which the subject must decide which
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FIGURE 2 | Top: The average pairwise transfer entropy toward H neurons is depicted vs. time, for three classes of driver: H neurons, M neurons, and L neurons.

Bottom: The global transfer entropy is depicted vs. time.

direction dots on a screen are moving. This dataset comes from
the sample T33 on the data sharing website https://www.cns.
nyu.edu/kianilab/Datasets.html and has been already analyzed in
an information theory framework in Daniels et al. (2017). We
analyze the activity of 169 neural channels in a macaque monkey
performing the task, across 1,778 trials. Data consist of spike
times measured at a resolution of 1/30 ms, subsequently binned
in intervals spaced 100 ms. In each trial, after the perceptual
stimulus, a go cue is given to the subject to prompt it to
indicate its decision. In Daniels et al. (2017) the analysis had
decision as the target, and neurons were divided in three groups
according to the information that their dynamics provide about
the decision: those in Class H encode information before the go
cue, those in Class M encode information after but not before
the go cue, and those in Class L never encode information.
Here, we will not take into account the decision as a variable,
retaining only the classification of neurons in the three classes
H, M, and L.

As an example application of the proposed method, we will
consider the internal dynamics of the neuronal system. For
each H neuron, taken as the target, we will study the higher
order interactions from the rest of the measured neurons,
concentrating on the most redundant circuits as well as the most
synergistic ones.

4. RESULTS

For the following analyses we used m = 1 as lag for
conditioning in the past, namely a bin one time step in the
past, because the temporal correlations in data rapidly decay

at lag 2, corresponding to 200 ms.. In Figure 2, we depict the
pairwise transfer entropy as a function of time, where the target
is an H neuron and the driver is a neuron belonging to one of
the three classes; the curves are averaged over the target neuron
and over the driver belonging to each of the three classes. We
observe that the information flow peaks around 300 ms after
the go cue, when the saccade has on average just happened, and
the information on the decision in the neurons H and M is
maximized, and that most of the effective influence arise from
the other H neurons and (to a lesser extent) from M neurons.
The pairwise transfer entropy from L neurons is negligible, hence
at the bivariate level L neurons seem to play no role in the
construction of the dynamical response of the system: indeed
by definition L neurons, differently from H and M neurons,
do not carry information about the decision. The lower panel
of the figure depicts the global transfer entropy (Barnett et al.,
2013) averaged over all the H neurons as targets; the global
transfer entropy measures the information flow about the target
when all the other variables are simultaneously taken as the
driving set.

Let us now turn to consider higher order interactions, and
start with the O-information, the approach introduced in Rosas
et al. (2019) which considers only equal time correlations. In
Figure 3, we depict, as a function of time, the O-information
of the three sets of neurons as well as the O-information of
the whole system of neurons. We note that H neurons (and M
neurons as well) increase their redundancy (as measured by O-
information) with a latency of 400 ms, where also the whole
system of neurons displays a clear peak. On the other hand the
system of L neurons do not show any reaction to the go cue at
the level of O-information. Hence Figure 3 shows that equal
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FIGURE 3 | The O-information is depicted vs. time for the three systems of neurons H, M, and L, as well as for the whole system of neurons.

FIGURE 4 | Top: the redundancy (d�k ) from the optimal k-multiplet to an H neuron, as found by greedy search, is depicted as a function of time for k ranging from 2

to 10; the plotted quantity is the average over all the H target neurons. Bottom: the synergy (−d�k ) from the optimal k-multiplet to an H neuron, as found by greedy

search, is depicted as a function of time for k ranging from 2 to 10; the plotted quantity is the average over all the H target neurons.

time higher order correlations are dominated by redundancy.
The peak at 400 ms is consistent with the peak of TE at 300ms,
indeed at time t TE measures the information flow from t to t+1.

Turning to consider take the dynamic transfer of information,
we apply the methodology described in section 2.1 and in
Figure 4 we depict the redundancy and the synergy, as a function
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FIGURE 5 | Each H neuron experiences a peak of the redundancy (synergy) whose latency can vary from neuron to neuron. In this figure, we consider the optimal

multiplet of 10 variables, plotting the distribution of latencies both for the redundant (left) and synergistic one (right). According to Cliff’s method to estimate difference

scores (Wilcox, 2016), the null hypothesis of no difference between the distributions could not be rejected (p = 0.23).

of time and for k (the cardinality of the multiplet) ranging from
2 to 10; this figure shows that the response to the stimulus is also
shaped by higher-order influences, both of the redundant and
synergistic types. Also higher-order influences peak at 300ms,
and the synergistic influences seem to show a slower decay after
the peak.

In Figure 5, we plot the distributions of latencies of maximal
redundancy and synergy in optimal multiplets of 10 variables,
suggesting that the synergistic response occurs, on average,
slightly later than the redundant response.

In Figure 6, we depict, as a function of the number of driving
variables k, the fraction of variables in the best redundant
multiplet belonging to the three classes. We observe that
redundant circuits are made of H and M neurons, L neurons
rarely appearing in the redundant circuits. On the other hand, we
see that L neurons can play a relevant role in synergistic circuits as
k becomes larger, and are more important than H andM neurons
in the construction of synergistic circuits.

In some instances one may be interested in a particular target
neuron and to assess the optimal size of the redundant and
synergistic multiplets acting on it. For example, in Figures 7,
8, we show how to do it, choosing as the target a randomly
selected H neuron. While adding a variable to the redundant
multiplet with the greedy search, we also evaluate the redundancy
that would be obtained using a randomized version of that
variable, and we accept that variable if the probability to get
an higher value of the redundancy, after randomization, is less

than 0.05 after Bonferroni correction. For the target neuron
under consideration we find that the multiplet with 7 driving
variables can be considered statistically significant, as the null
hypothesis can be rejected for k ≤ 8. Here we chose one
of the most conservative corrections for multiple comparisons,
but the partial dependence across variables could justify more
lenient approaches.

In Figure 8, we do the same for the synergy using the same
target neuron. Since the null hypothesis cannot be rejected at k
equal to six, we conclude that the synergistic circuit of five driving
variables influencing the target is the largest synergistic multiplet
that we can assess statistically.

Some of the figures were generated with Gramm (Morel,
2018).

5. DISCUSSION

We have proposed an approach to analyze higher-order
dynamical influences in multivariate time series, and to highlight
redundant and synergistic groups of variables influencing a given
target variable. Our method generalizes to the dynamic case a
recently introduced quantity, named O-information, which was
proposed to assess the informational character of equal-time
correlations in a set of random variables (Rosas et al., 2019).
Our conditioned approach has the main advantage of allowing
the distinction of information that is actually exchanged from
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FIGURE 6 | Left: As a function of the size of the optimal multiplet, we depict the typical fraction of H, M, and L neurons constituting the multiplet, both for redundancy

(left) and synergy (right).

FIGURE 7 | For a representative H neuron, the red line represents the redundancy as a function of the size of the optimal multiplet. Each violin plot represents 30.000

realizations of d�k obtained by a random circular shift of the k-th variable of the multiplet. We accept as truly redundant the multiplets with significance of 5% after

Bonferroni correction. Since the null hypothesis cannot be rejected at k = 8, we conclude that a redundant circuit of 7 driving variables exists influencing the

given H neuron.

shared information due to common history and input signals.
Compared with the expansion in Stramaglia et al. (2012) or
PID decompositions in the spirit of Williams and Beer (2010),

the proposed approach is computationally much more feasible.
However our approach focuses only on finding multiplets
that are synergy-dominated or redundancy-dominated, and the
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FIGURE 8 | For a typical H neuron, the red line represents d�k in the synergistic search, as a function of the size of the multiplet. Each violin plot represents 30.000

realizations of d�k obtained by a random circular shift of the k-th variable of the multiplet. We accept as truly synergistic the multiplets with significance of 5% after

Bonferroni correction. Since the null hypothesis cannot be rejected at k = 6, we conclude that a synergistic circuit of 5 driving variables exists influencing the given H

neuron.

corresponding values of synergy and redundancy do not come
from an exact decomposition of the information flow. For this
reason their magnitudes cannot be easily compared for varying
k, but in our opinion this is a reasonable price to pay in order to
have a fast algorithm that can handle big data sets.

We believe that our approach can have wide applicability
in physiology, in particular at the system level where higher-
order interactions may play a role in the collective regulation of
dynamical rhythms in the human body (Bartsch et al., 2015).

It is worth mentioning that the global transfer entropy of
a kinetic Ising model has been shown to have a maximum
in the disordered phase (Barnett et al., 2013). Successively
it has been shown (Marinazzo et al., 2019) that it is the
synergistic component of it that is responsible for this peak,
which can be considered as an early warning of a transition
toward order. Intuitively, learning processes (storage of new
memories by, e.g., Hebbian learning) may be seen as transitions
disorder→order, and in some sense the response to stimuli
described in this paper may be seen as a sequence of transitions
disorder→order→ disorder where the control parameter is part
of the dynamical process.

The relation between mutual information and synergistic
information processing in spiking neurons from organotypic
cultures of mouse neocortex was recently addressed in Sherrill
et al. (2020), and was found to depend on the timescale and the
degree of correlation in neuronal interactions. As an example of
application of dO-information, we have considered the response
of a neural system to an external stimulus. We have shown that,

in addition to higher order equal time interactions, which show
a peak for the redundancy (as probed by the O-information) 400
ms after the go cue, the system displays also significant dynamic
transfer of information consisting in synergistic and redundant
circuits peaking 300 ms after the go cue. A recent study on
computing TE between spiking neurons (Shorten et al., 2020)
presented some results on the dependency of the values of TE
on the firing rate. Based on these estimations, and given the
number target events in the present experiment we can expect
that the height of the peak of the TE in Figure 2 could be slightly
overestimated, given the increased firing rate in the same interval.
On the other hand the bias is stronger, and toward positive
values, with a reduced number of spikes, and the low values
before and after the peak are an indication that the TE peak
itself is meaningful. The results are further backed up by the
surrogate procedure.

Concerning the dynamics of H neurons,from the point of
view of pairwise influence, H neurons are the most important
drivers, M neurons are also relevant but to a lesser extent, whilst
L neurons do not play any role. Going beyond the pairwise
description, as far as the redundancy is concerned we find
the same relative contributions in terms of the composition
of redundant multiplets: the abundance of H neuron is higher
than those of M neurons whilst the contribution of L neurons
is negligible. On the other hand, considering the synergy the
relative importance of the three types of neurons is changed: for
large multiplets the abundance of L and M neurons is higher
than those of H neurons, thus suggesting that surprisingly also L
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neurons may play a role in shaping the dynamics of H neurons by
participating in synergistic groups of variables. We have shown
that synergy of multiplets of variables can take values up to 0.03
bits. It is worth stressing that dO is not derived from an exact
decomposition of transfer entropy and that this value cannot be
interpreted as a gain in predictability of the target; however it
suggests that the role played by synergistic circuits is small but not
negligible when compared with 0.25 bits which is the peak of the
global transfer entropy to H neurons, when all the other neurons
are simultaneously taken as the driving set. Further investigations
are certainly needed to confirm the role ofM and L neurons in the
higher order description of dynamics of H neurons; our analysis
shows that the proposed approach is capable of highlighting these
effects while requiring a reasonable computational effort.
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