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1 Introduction

Johann Radon first introduced the Radon transform as an integral transform over a line, see
[11, 18]. The Radon transform is widely used in pure mathematics e.g. partial differential
equations as well as applied mathematics e.g. tomography and X-ray transforms, e.g. [9, 24].
Therefore, it is an essential tool in technologies in medicine and engineering. The transform
has also been generalized into higher-dimensional Euclidean spaces and provided some new
insights in domains such as geometry and functional analysis, see e.g. [5, 14].
In this paper, we further investigate the Radon transform in the Clifford analysis setting.
Some initial results can be found in [19, 20, 23]. More recently, other associated transforms
such as the Segal-Bargmann, the Szegö-Radon and the Bargmann-Radon transforms have
been investigated, see e.g. [7, 8, 17].
In our work, we continue the study of the Bargmann-Radon transform. This transform is de-
fined as the projection of the real Bargmann module (of monogenic square integrable functions
with Gaussian density) on the closed submodule of monogenic plane waves 〈x, τ〉`τ , where
τ = t + is, t ⊥ s. A complete characterization of this projection in the general monogenic
setting can be found in [8].
Our main goal is to study the action of the Bargmann-Radon transform on a specific type
of monogenic functions, namely axially monogenic functions. These are null solutions of the
Dirac operator with an additional axial symmetry, modelled by a Vekua-type system, e.g.
[10, 12, 15, 22, 25]. This theory is closely related to holomorphic functions of a single com-
plex variable and the plane elliptic system, see [6, 21]. Some preliminary work has already
been done in [7] where the authors obtained the Cauchy-Kowalewski extension and inversion
formula for of axially monogenic functions.
This paper is organized as follows. In Section 2, we introduce preliminary results related to
Clifford analysis, in particular to Bargmann-Radon transform. In Section 3, we introduce
a certain type of monogenic functions called axially monogenic functions. We compute the

∗Corresponding author Ren Hu (E-mail: Ren.Hu@UGent.be) is supported by China Scholarship Council.

1



Bargmann-Radon transform for axially monogenic functions by using the Funk-Hecke The-
orem [13]. We also give an explicit formula for the transform in terms of hypergeometric
functions [2, 16]. In Section 4, we introduce the Cauchy-Kowalewski extension [4, 10] and
give an explicit formula for the general C-K extension. Finally we make use of the C-K
extension in an example of the Bargmann-Radon transform for axially monogenic functions.

2 Preliminary results

The real Clifford algebra Rm is generated by the standard basis {e1, e2, . . . , em} of Rm where
the multiplication is defined by the relations eiej + ejei = −2δij . A general element of Rm
can be written as a =

∑
A eAaA, where A = {i1, . . . , ir} ⊂ {1, 2, . . . ,m}, i1 < . . . < ir is a

multi-index, eA = ei1ei2 . . . eir and e∅ = 1, aA ∈ R. In particular, vectors in Rm are of the
form x =

∑m
i=1 eixi which are equipped with the inner product 〈x, y〉 =

∑m
i=1 xiyi and the

norm |x| = (
∑m

i=1 x
2
i )

1/2.
We can also define the complex Clifford algebra by Cm = C⊗ Rm whose elements are of the
form c =

∑
A eAcA, where cA ∈ C. Moreover, the Hermitian conjugation is then defined as

(λµ)† = µ†λ†, (µAeA)† = µcAe
†
A, e†j = −ej , j = 1, . . . ,m, λ, µ ∈ Cm

where µcA stands for the complex conjugate of the complex number µA.

Definition 1 (Monogenic function). A function f(x) is called (left-)monogenic on an open
subset of Rm if it is differentiable and

∂xf(x) = 0,

where ∂x =
∑m

i=1 ei∂xi is the Dirac operator.

Definition 2 (Harmonic functions). Any function f : Rm → Rm that satisfies the relation

∆xf(x) = 0

is called a harmonic function, where ∆x is the Laplacian operator ∆x = −∂2
x =

∑m
j=1 ∂

2
xj .

Remark 1. A polynomial Mk(x) is called inner spherical monogenics of degree k if

∂xMk(x) = 0, EMk(x) = kMk(x)

where E =
∑m

j=1 xj∂xj is the Euler operator. Similarly, a polynomial Hk(x) is called spherical
harmonics of degree k if

∆xHk(x) = 0, EHk(x) = kHk(x).

Let B(0, 1) be the unit ball {x ∈ Rm : |x| ≤ 1} in Rm and Sm−1 be its boundary, the unit
sphere.

Definition 3. LetML2(B(0, 1)) be the right Cm-module of monogenic functions, f : B(0, 1)→
Cm for which the restriction to unit sphere is square integrable, i.e.[∫

Sm−1

f †(ω)f(ω)dS(ω)

]
0

<∞.

The projection operator [. ]0 maps an element a ∈ Cm to its scalar-valued part which in this
case is a positive real number.
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To study the Bargmann-Radon transform, it is necessary to introduce the real and the
complex monogenic Bargmann module. Denote by L2(Rm) the space of Clifford-valued square
integrable functions on Rm.

Definition 4 (Monogenic Bargmann module). Denote the monogenic Bargmann module by
MB(Rm) which consists of monogenic functions f on Rm such that

f(x)e−|x|
2/4 ∈ L2(Rm).

This module is equipped with the Cm-valued inner product

〈f, g〉MB =
1

(2π)m/2

∫
Rm

e−|x|
2/2f †(x)g(x)dx. (1)

Remark 2. These concepts are usually introduced in the setting of several complex variables.
Let z = x + iy where x, y ∈ Rm, i.e. z =

∑m
j=1 ejzj, where zj = xj + iyj ∈ C. Denote

by M(Cm) the right module of entire holomorphic functions f(z) on Cm which are complex
monogenic, i.e. ∂zf(z) = 0, where ∂z =

∑m
j=1 ej∂zj , ∂zj = 1

2(∂xj − i∂yj ).
The Segal-Bargmann-Fock space B(Cm) is the Hilbert module of Cm-valued holomorphic

entire functions in Cm which are square-integrable with respect to the 2m-dimensional Gaus-
sian density, i.e.

1

πm

∫
Cm

e−|z|
2

|f(z)|2 dxdy <∞.

This space is equipped with the inner product

〈f, g〉B =
1

πm

∫
Cm

e−|z|
2

f †(z)g(z)dxdy. (2)

Thus we can define the monogenic Bargmann module MB(Cm) =M(Cm) ∩ B(Cm) which is
equipped with the same inner product as in (2).

Definition 5. For any given τ = t + is, t, s ∈ Rm, where |t| = |s| = 1 and t ⊥ s, denote by
MB(τ) the closure of the right Cm-module which consists of all finite linear combinations of
〈x, τ〉`τ , ` ∈ N, where 〈x, τ〉 = 〈x, t〉+ i〈x, s〉.

In the following, we introduce the Bargmann-Radon kernel and the Bargmann-Radon
transform, more details can be found in [7, 8].

Definition 6 (Bargmann-Radon kernel associated with τ). Let x, y ∈ Rm. For any given
τ = t + is, t, s ∈ Rm, where |t| = |s| = 1 and t ⊥ s, the Bargmann-Radon kernel Bτ (x, y) is
defined as

Bτ (x, y) =
τ τ †

4
e−

1
2
〈x,τ〉〈y,τ†〉 (3)

or

Bτ (x, y) =

∞∑
`=0

γ`〈x, τ〉`τ τ †〈y, τ †〉` (4)

where γ` = (−1)`

`!·2`+2 .

Remark 3. The Bargmann-Radon kernel Bτ (x, y) is a reproducing kernel for the Cm-module

MB(τ), i.e. f(y) = 〈Bτ (x, y), f(x)〉MB and it is Hermitian, i.e. Bτ (y, x) = Bτ (x, y)†.

Definition 7 (Bargmann-Radon transform). The Bargmann-Radon transform is a projection
operator from MB(Rm) to MB(τ), which can be written as the integral

Rτ [f ](x) =
1

(2π)m/2

∫
Rm

e−|y|
2
/2Bτ (x, y)f(y)dy. (5)
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Funk-Hecke theorem is essential for our computation. By using the previous notations,
the theorem can be stated as follows (see [1, 13]).

Theorem 1 (Funk-Hecke theorem). Let ξ, η ∈ Sm−1 and let ψ be a real-valued function whose
domain contains [−1, 1]. Let Hk(ξ) be a spherical harmonic polynomial of degree k. Then we
have ∫

Sm−1

ψ(〈ξ, η〉)Hk(η)dS(η) =
k!Am−1

(m− 2)k
Hk(ξ)

∫ 1

−1
ψ(t)C

m
2
−1

k (t)(1− t2)(m−3)/2dt. (6)

where dS(η) is the scalar element of surface area on Sm−1. Cαk (t) is a Gegenbauer polynomial,

Am = 2πm/2

Γ(m
2

) is the area of the unit sphere in Rm and (a)k = a(a + 1) · · · (a + k − 1) is the

Pochhammer symbol.

To be able to calculate the integral on the right hand side of (6), we need the following
lemma (see [16]).

Lemma 1. Let Cαk (t) be a Gegenbauer polynomial, then we have∫ 1

−1
tjCαk (t)(1− t2)α−

1
2dt = L(k, α, j) (7)

where

L(k, α, j) = ((−1)j+k + 1)
π2−2α−jΓ(k + 2α)Γ(j + 1)

k!Γ(α)Γ(1 + k
2 + α+ j

2)Γ(1 + j
2 −

k
2 )

(8)

for all j ∈ N ∪ {0}.

3 Bargmann-Radon transform for axially monogenic functions

In this section we first introduce axially monogenic functions. Then we compute the Bargmann-
Radon transform for axially monogenic functions and give explicit formulas for the transform.

Let Ω be an open subset of Rm which is invariant under SO(m−1). According to [21, 22],
any left monogenic function f(x) in Ω can be written as

f(x) =

∞∑
k=0

Πkf(x),

where Πkf(x) is a so-called axial monogenic function of degree k. Let (x1, ρ, η) ∈ R×R+×Sm−2

be cylindrical coordinates such that x = x1e1 + ρη. Then for a fixed pair (x1, ρ), the function
Πkf(x) has the form

Πkf(x) =
(
A(x1, ρ)e1 + ηB(x1, ρ)

)
Mk(η), (9)

or equivalently
Πkf(x) =

(
A(x1, ρ) + e1ηB(x1, ρ)

)
Mk(η), (10)

where Mk(η) is inner spherical monogenic polynomial of degree k on Sm−2. Moreover, the
functions A and B satisfy the Vekua-type system (see [22]),{

∂
∂x1

A(x1, ρ)− ∂
∂ρB(x1, ρ) = k+m−2

ρ B(x1, ρ),
∂
∂x1

B(x1, ρ) + ∂
∂ρA(x1, ρ) = k

ρA(x1, ρ).

Functions of the form (9) and (10) are called axially monogenic functions, see e.g. [10, 12,
15, 22, 25]. For the sake of simplicity, we will project axially monogenic function of the form
(9) on the submodule MB(τ) with t = e1 and s ∈ Sm−2. The other case can be obtained in
a similar way.
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Theorem 2. The Bargmann-Radon transform of an axially monogenic function f(y) of the
form (9) can be written as

Rτ [f ](x) = τ τ † (E(〈x, τ〉)e1 + F (〈x, τ〉)s)Mk(s)

where E and F are holomorphic functions of the variable 〈x, τ〉, Mk is spherical monogenic
of degree k.

Proof. Let (y1, ρ, η) ∈ R × R+ × Sm−2 be cylindrical coordinates such that y = y1e1 + ρη.
Since τ = t+ is, t = e1, s ∈ Sm−2, t ⊥ s, we have

〈y, τ †〉 = 〈y1e1 + ρη,−t+ is〉 = −y1 + iρ〈η, s〉.

Therefore Bargmann-Radon kernel (3) can be written as

Bτ (x, y) =
τ τ †

4
e−

1
2
〈x,τ〉(−y1+iρ〈η,s〉) = τ τ †B(〈x, τ〉,−y1 + iρ〈η, s〉),

where B(〈x, τ〉,−y1 + iρ〈η, s〉) = 1
4e
− 1

2
〈x,τ〉(−y1+iρ〈η,s〉). By using cylindrical coordinates, the

Bargmann-Radon transform (5) can be expressed as

Rτ [f ](x) =
1

(2π)m/2

∫
R

∫ +∞

0

∫
Sm−2

e−
y21+ρ

2

2 Bτ (x, y1e1 + ρη)f(y1, ρ, η)ρm−2dS(η)dρdy1.

In order to further compute the transform, we substitute the function f by its axially mono-
genic form (9). Then we obtain

Rτ [f ](x) =
τ τ †

(2π)m/2

∫
R

∫ +∞

0

∫
Sm−2

e−
y21+ρ

2

2 B(〈x, τ〉,−y1 + iρ〈η, s〉)

×
(
A(y1, ρ)e1 +B(y1, ρ)η

)
Mk(η)ρm−2dS(η)dρdy1.

We first consider the spherical integral in Rτ [f ](x), i.e.

I =

∫
Sm−2

e−
y21+ρ

2

2 B(〈x, τ〉,−y1 + iρ〈η, s〉)
(
A(y1, ρ)e1 +B(y1, ρ)η

)
Mk(η)dS(η).

It is natural to split the above integral into two parts

I1 =

∫
Sm−2

e−
y21+ρ

2

2 B(〈x, τ〉,−y1 + iρ〈η, s〉)A(y1, ρ)e1Mk(η)dS(η)

and

I2 =

∫
Sm−2

e−
y21+ρ

2

2 B(〈x, τ〉,−y1 + iρ〈η, s〉)B(y1, ρ)ηMk(η)dS(η).

Applying Funk-Hecke theorem on I1 results in

I1 =
k!Am−2

(m− 3)k

∫ 1

−1
B(〈x, τ〉,−y1 + iρt)C

m−3
2

k (1− t2)
m−4

2 dt

(
e−

y21+ρ
2

2 A(y1, ρ)e1Mk(s)

)
. (11)

Similarly, we obtain

I2 =
(k + 1)!Am−2

(m− 3)k+1

∫ 1

−1
B(〈x, τ〉,−y1 + iρt)C

m−3
2

k+1 (1− t2)
m−4

2 dt

(
e−

y21+ρ
2

2 B(y1, ρ)sMk(s)

)
.

(12)
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Therefore, the transform can be written as

Rτ [f ](x) = τ τ † (E(〈x, τ〉)e1 + F (〈x, τ〉)s)Mk(s)

in which

E(〈x, τ〉) = φk

∫
R

∫ +∞

0

∫ 1

−1
e−

y21+ρ
2

2 B(〈x, τ〉,−y1 + iρt)C
m−3

2
k (1− t2)

m−4
2 A(y1, ρ)ρm−2dtdρdy1,

and

F (〈x, τ〉) = φk+1

∫
R

∫ +∞

0

∫ 1

−1
e−

y21+ρ
2

2 B(〈x, τ〉,−y1 + iρt)C
m−3

2
k+1 (1− t2)

m−4
2 B(y1, ρ)ρm−2dtdρdy1

where φk = k!
πΓ(m−2

2 )(m−3)k
is a scalar coefficient. Since the Bargmann-Radon kernel Bτ (x, y)

is holomorphic, therefore functions E and F are also holomorphic of the variable 〈x, τ〉.

In the following, we investigate the explicit form of the Bargmann-Radon transform for
axially monogenic functions. We first compute the integrals (11) and (12). Then we try to
present the result in a concrete form.

Similar to [8], the Bargmann-Radon kernel can also be written as in (4), then we have

B(〈x, τ〉,−y1 + iρ〈η, s〉) =
∞∑
`=0

γ`〈x, τ〉`(−y1 + iρ〈η, s〉)`. (13)

First we consider I1 again in (11). Replacing the kernel in I1 results in

I1 =
k!Am−2

(m− 3)k

∫ 1

−1

∞∑
`=0

γ`〈x, τ〉`(−y1 + iρt)`C
m−3

2
k (1− t2)

m−4
2 dt

(
e−

y21+ρ
2

2 A(y1, ρ)e1Mk(s)

)
Using the binomial formula to compute (−y1 + iρt)` gives

I1 =
∞∑
`=0

∑̀
j=0

γ`〈x, τ〉`
k!Am−2

(m− 3)k

(
`

j

)
(−y1)`−j(iρ)j

∫ 1

−1
tjC

m−3
2

k (1− t2)
m−4

2 dt

(
e−

y21+ρ
2

2 A(y1, ρ)e1Mk(s)

)
.

Making use of formula (7) to compute the integral results in

I1 =

∞∑
j=0

∞∑
`=0

γ`+j〈x, τ〉`+j
k!Am−2

(m− 3)k

(
`+ j

j

)
(−y1)`(iρ)jL

(
k,
m− 3

2
, j

)
e−

y21+ρ
2

2 A(y1, ρ)e1Mk(s)

where L(n, α, j) is defined in (8). Denote λ = 〈x, τ〉, I1 can be written as

I1 =
π
m−1

2

16

(
4
(
(−1)k + 1

)
Γ(2−k

2 )Γ(k+m−1
2 )

1F2

(
1;

2− k
2

,
k +m− 1

2
;−ρ

2λ2

16

)

+i

(
(−1)k − 1

)
ρλ

Γ(3−k
2 )Γ(k+m

2 )
1F2

(
1;

3− k
2

,
k +m

2
;−ρ

2λ2

16

))
e−

y21+ρ
2−y1λ
2 A(y1, ρ)e1Mk(s),

where 1F2 (a1; b1, b2; z) is the hypergeometric function defined in e.g. [16]. Let us consider
the scalar function

Cm,k(λ, u, v) =
1

8

π
m−1

2

Γ(u)Γ(v)
e−

y21+ρ
2−y1λ
2 1F2

(
1;u, v;−ρ

2λ2

16

)
,
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then I1 can be written as

I1 =

{
−iρλCm,k(λ, 3−k

2 , m+k
2 )A(y1, ρ)e1Mk(s) k is odd,

4Cm,k(λ,
2−k

2 , m+k−1
2 )A(y1, ρ)e1Mk(s) k is even.

Following a similar procedure, we can have

I2 =

{
4Cm,k(λ,

1−k
2 , m+k

2 )B(y1, ρ)sMk(s) k is odd,

iρλCm,k(λ,
2−k

2 , m+k+1
2 )B(y1, ρ)sMk(s) k is even.

Therefore we obtain the following theorem.

Theorem 3. The Bargmann-Radon transform for axially monogenic functions can be written
in the form

Rτ [f ](x) =



τ τ†

(2π)m/2

∫
R

∫ +∞

0

(
−iρm−1λCm,k(λ,

3−k
2 , m+k

2 )A(y1, ρ)e1

+4ρm−2Cm,k(λ,
1−k

2 , m+k
2 )B(y1, ρ)s

)
Mk(s)dρdy1, k is odd,

τ τ†

(2π)m/2

∫
R

∫ +∞

0

(
4ρm−2Cm,k(λ,

2−k
2 , m+k−1

2 )A(y1, ρ)e1

+iρm−1λCm,k(λ,
2−k

2 , m+k+1
2 )B(y1, ρ)s

)
Mk(s)dρdy1, k is even.

where k is the degree of homogeneity of monogenic homogeneous polynomial Mk(s).

4 Bargmann-Radon transform for the C-K extension

In this section, we compute the Bargmann-Radon transform of the C-K extension of analytic
function g(ρη) defined in a radially symmetric domain. In addition, we apply these results to
the case when g(ρη) = (ρη)sMk(ρη).

In general, every monogenic function f(x) is determined by its restriction f(0, v) to the
hyperplane x1 = 0, where x = x1e1 + v, v ∈ Rm−1. Conversely, any given real analytic
function g(v) has a monogenic extension, which is the so-called C-K extension and reads as

f(x) = CK(g)(x) = e−x1ē1∂vg(v)

where g(v) = f(x)|x1=0, see more in [10, 22]. Therefore, we have

CK(g)(x) =

∞∑
`=0

(x1e1∂v)
`

`!
g(v). (14)

In the following, we compute the Bargmann-Radon transform for axially monogenic functions
which are obtained via the C-K extension of the function

g(v) = (a(|v|2)e1 + vb(|v|2))Mk(v) (15)

where the polynomial Mk(v) is monogenic and homogeneous of degree k.

Remark 4. Any real analytic function in a radially symmetric domain can be decomposed
into a series of functions of the form (15). Therefore, it is sufficient for us to consider g(v)
in the following computation.

Theorem 4. The C-K extension of g(v) of the form (15) can be written as

f(x) =
(
A(x1, |v|2)e1 +B(x1, |v|2)v

)
Mk(v) (16)

where A and B are scalar-valued functions.
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In order to find the explicit form of the functions A and B in (16), we substitute g(v) of
the form (15) in the C-K extension (14), i.e.

CK(g)(x) =

∞∑
`=0

(x1e1∂v)
`

`!

(
e1a(|v|2)Mk(v)

)
+

∞∑
`=0

(x1e1∂v)
`

`!

(
vb(|v|2)Mk(v)

)
.

To compute the C-K extension, we need to investigate the actions ∂`v(a(|v|2)Mk(v)) and

∂`v(vb(|v|
2)Mk(v)). To this end, we require the following lemmas.

Lemma 2. Let n ∈ N, x ∈ Rm, then

∂xx
n =

{
−nxn−1 + xn∂x if n is even,
−(m+ n− 1)xn−1 − xn∂x − 2xn−1E if n is odd .

Lemma 3. For any given real-valued function f(|x|2), we have

∂xx
nf(|x|2) =

{
−nxn−1f(|x|2) + 2xn+1f ′(|x|2) + xnf(|x|2)∂x if n is even,

−(m+ n− 1)xn−1f(|x|2) + 2xn+1f ′(|x|2)− xnf(|x|2)∂x − 2xn−1f(|x|2)E if n is odd.

Proof. Denote by P (x) any Clifford-valued polynomial. Consider even and odd cases sepa-
rately with respect to n.

1. When n is odd, we apply Lemma 2 and obtain

∂xx
nf(|x|2)P (x) =(−(m+ n− 1)xn−1 − xn∂x − 2xn−1E)f(|x|2)P (x).

By further computation of the Dirac operator ∂x and the Euler operator E on the

function f(|x|2), we thus obtain

∂xx
nf(|x|2)P (x) =

(
−(m+ n− 1)xn−1f(|x|2) + 2xn+1f ′(|x|2)− xnf(|x|2)∂x − 2xn−1f(|x|2)E

)
P (x).

2. When n is even, we apply Lemma 2 again

∂xx
nf(|x|2)P (x) =− nxn−1f(|x|2)P (x) + xn∂xf(|x|2)P (x)

=(−nxn−1f(|x|2) + 2xn+1f ′(|x|2) + xnf(|x|2)∂x)P (x).

This proves the lemma.

Remark 5. Since x = x1e1 + v, with v =
∑m

i=2 eixi. Let ∂v =
∑m

i=2 ei∂xi be the Dirac
operator corresponding to v. It is clear that e1 is orthogonal to v, i.e. e1v = −v e1 and
e1∂v = −∂v e1.

Now we consider the action of the operator e1∂v on e1a(|v|2)Mk(v). We thus have the
following lemma.

Lemma 4. Let s = m+ 2k, u = |v|2. Let Mk(v) be a monogenic homogeneous polynomial of
degree k, then we have

(e1∂v)
`e1a(u)Mk(v) =

{
22j+1

∑j
n=0 α2j+1,nv

2n+1a(n+j+1)(u)Mk(v) ` = 2j + 1,

22je1

∑j
n=0 α2j,nv

2na(n+j)(u)Mk(v) ` = 2j,

j = 0, 1, 2, . . ., where α2j+1,n =
(−1)j+n( j

j−n)Γ(j+ s+1
2 )

Γ(n+ s+1
2 )

and α2j,n =
(−1)j+n( j

j−n)Γ(j+ s−1
2 )

Γ(n+ s−1
2 )

.
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Proof. We prove the Lemma by using induction on `.

1. For ` = 1, we easily compute

(e1∂v)e1a(u)Mk(v) =2a′(u)vMk(v).

2. For ` = 2, we obtain from the previous case that

(e1∂v)
2e1a(u)Mk(v) =2e1(−(s− 1)a′(u) + 2v2a′′(u))Mk(v).

3. Suppose cases when ` < 2p are true. For ` = 2p, using the induction hypothesis results
in

(e1∂v)
2pe1a(u)Mk(v) =e1∂v

(
22p−1

p−1∑
n=0

(−1)p+n−1
(
p−1

p−n−1

)
Γ
(
p+ s−1

2

)
Γ
(
n+ s+1

2

) v2n+1a(n+p)(u)Mk(v)

)
.

By using Lemma 3 and the fact that Mk(v) is monogenic, we have

(e1∂v)
2pe1a(u)Mk(v) =22pe1

p∑
n=0

(−1)p+n
(
p

p−n
)
Γ
(
p+ s−1

2

)
Γ
(
n+ s−1

2

) v2na(n+p)(u)Mk(v)

which proves the result for ` = 2p.

4. When ` = 2p+ 1, we use the induction hypothesis again and obtain

(e1∂v)
2p+1e1a(u)Mk(v) =e1∂v

(
22pe1

p∑
n=0

(−1)p+n
(
p

p−n
)
Γ
(
p+ s−1

2

)
Γ
(
n+ s−1

2

) v2na(n+p)(u)Mk(v)

)
.

Similarly, by Lemma 3 we get

(e1∂v)
2p+1e1a(u)Mk(v) =22p+1

p∑
n=0

(−1)p+n
(
p

p−n
)
Γ
(
p+ s+1

2

)
Γ
(
n+ s+1

2

) v2n+1a(n+p+1)(u)Mk(v),

which proves the result for ` = 2p+ 1.

Remark 6. The coefficients α2j+1,n and α2j,n in the lemma have recurrence relations which
are {

α2j+1,n = −(n+ 1)α2j,n+1 + α2j,n,
2α2j,n = −(m+ 2k + 2n− 1)α2j−1,n + 2α2j−1,n−1,

(17)

where n = 0, 1, 2, . . . , j − 1.

Using the same method, we can obtain the following Lemma.

Lemma 5. For any given function b(u), we have

(e1∂v)
`vb(u)Mk(v) =

{
22j+1e1

∑j+1
n=0 β2j+1,nv

2nb(n+j)(u)Mk(v) ` = 2j + 1,

22j
∑j

n=0 β2j,nv
2n+1b(n+j)(u)Mk(v) ` = 2j,

j = 0, 1, 2, . . ., where β2j+1,n =
(−1)j+n+1( j+1

j−n+1)Γ(j+ s+1
2 )

Γ(n+ s−1
2 )

and β2j,n =
(−1)j+n( j

j−n)Γ(j+ s+1
2 )

Γ(n+ s+1
2 )

.
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Remark 7. The coefficients β2j+1,n and β2j,n also satisfy the recurrence relations{
2β2j+1,n = −(s+ 2n+ 1)β2j,n + 2β2j,n−1,
β2j,n = −(n+ 1)β2j−1,n+1 + β2j−1,n,

(18)

where n = 0, 1, 2, . . . , j − 1.

Now we can compute the explicit formula of the general C-K extension

CK(g)(x) =
∞∑
`=0

(x1e1∂v)
`

`!
(e1a(u)Mk(v)) +

∞∑
`=0

(x1e1∂v)
`

`!
(vb(u)Mk(v)) .

Denote the right-hand side of the above formula by

I1 =
∞∑
`=0

(x1e1∂v)
`

`!
(e1a(u)Mk(v)) ,

and

I2 =
∞∑
`=0

(x1e1∂v)
`

`!
(vb(u)Mk(v)) .

Firstly, we compute I1. Making use of Lemma 4 gives

I1 =
∞∑
j=0

x2j+1
1

(2j + 1)!
(e1∂v)

2j+1 (e1a(u)Mk(v)) +
∞∑
j=0

x2j
1

(2j)!
(e1∂v)

2j (e1a(u)Mk(v)) .

=

∞∑
j=0

x2j+1
1

(2j + 1)!

(
22j+1

j∑
n=0

(−1)j+n
(
j

j−n
)
Γ
(
j + s+1

2

)
Γ
(
n+ s+1

2

) v2n+1a(n+j+1)(u)Mk(v)

)

+

∞∑
j=0

x2j
1

(2j)!

(
22je1

j∑
n=0

(−1)j+n
(
j

j−n
)
Γ
(
j + s−1

2

)
Γ
(
n+ s−1

2

) v2na(n+j)(u)Mk(v)

)
.

Rearranging the summation above yields

I1 =

∞∑
n=0

(−1)n22n+1

Γ
(
n+ s

2 + 1
2

)vunx2n+1
1 a(2n+1)(u)

∞∑
j=0

(−1)j22j
(
j+n
j

)
Γ
(
j + n+ s+1

2

)
Γ(2j + 2n+ 2)

x2j
1 a

(j)(u)Mk(v)

+

∞∑
n=0

(−1)n22n

Γ
(
n+ s

2 −
1
2

)e1u
nx2n

1 a(2n)(u)
∞∑
j=0

(−1)j22j
(
j+n
j

)
Γ
(
j + n+ s−1

2

)
Γ(2j + 2n+ 1)

x2j
1 a

(j)(u)Mk(v).

Denote

Φα,β,κ (x1, ∂u) [f(u)] =
2κxκ1∂

κ
u

(−1)ακ!
1F1

(
α+

s+ 1

2
;β +

1

2
;−x2

1∂u

)
f(u)

where 1F1(a; b; z) =
∑∞

k=0
(a)k
(b)k

zk

k! is the hypergeometric function. Then I1 can be written as

I1 =

∞∑
n=0

vunΦn,n+1,2n+1 (x1, ∂u) [a(u)]Mk(v)−
∞∑
n=0

e1u
nΦn−1,n,2n (x1, ∂u) [a(u)]Mk(v).

Similarly, we can obtain I2 in terms of Φ, which gives us the following result.

10



Theorem 5. Let x = x1e1 + v where v ∈ Rm−1,u = |v|2. Any function g(v) of the form (15)
has an axially monogenic extension f(x) of the form (16) in which the function A(x1, u) can
be written as

A(x1, u) =− (s− 1)x1Φ0,1,0 (x1, ∂u) [b(u)]−
∞∑
n=0

(
unΦn−1,n,2n (x1, ∂u) [a(u)]

+
1

n+ 1
un+1Φn,n+1,2n+1 (x1, ∂u) [b(u)] +

2n+ 1

2n+ 2
un+1Φn,n,2n+1 (x1, ∂u) [b(u)]

)
,

and the function B(x1, u) can be written as

B(x1, u) =
∞∑
n=0

(unΦn,n+1,2n+1 (x1, ∂u) [a(u)] + unΦn,n,2n (x1, ∂u) [b(u)]) ,

where s = m+ 2k.

Remark 8. It is easy to check that the C-K extension f(x) we obtained in Theorem 5 is
monogenic and satisfies the restriction condition.

Remark 9. In the case when g(v) = (a(|v|2) + e1vb(|v|
2))Mk(v), the C-K extension f(x) in

Theorem 4 can be written as

f(x) =
(
A(x1, |v|2) +B(x1, |v|2)e1v

)
Mk(v). (19)

Theorem 6. Let y = y1e1 + ρη, η ∈ Sm−2, f(y1, ρη) = CK((ρη)sMk(ρη)). Then the
Bargmann-Radon transform for the C-K extension f(y1, ρη) can be written as

Rτ [f ](x) =

{
σk,2n(x1 + i〈x, s〉)2n+kτ τ †Mk(s), s = 2n,
σk,2n+1(x1 + i〈x, s〉)2n+k+1τMk(s), s = 2n+ 1.

where σk,· is constant.

Proof. Recalling the Bargmann-Radon transform (5), we rewrite it as

Rτ [f ](x) =
1

(2π)m/2

∞∑
`=0

γ`〈x, τ〉`τ τ †
∫
Rm

e−|y|
2
/2〈y, τ †〉`f(y)dy.

We first consider the integral, denoted by I, in the above formula. Let y = rω, ω ∈ Sm−1,

then
∣∣y∣∣2 = r2 and the integral can be written as

I =

∫ +∞

0

∫
Sm−1

e−r
2/2r〈ω, τ †〉`f(rω)rm−1dS(ω)dr.

We recall that f is a spherical monogenic function to the variable y of degree k+ s. Then for

fixed r > 0, f(rω) = rk+sf(ω) and

I =

∫ +∞

0
e−r

2/2rm+k+sdr

∫
Sm−1

〈ω, τ †〉k+sf(ω)dS(ω).

Due to the orthogonality of spherical monogenics, only the case of ` = k + s remains in the
transform. Therefore, using cylindrical coordinates, we have

Rτ [f ](x) =
1

(2π)m/2
γk+s〈x, τ〉k+sτ τ †

∫
Rm

e−|y|
2
/2〈y, τ †〉k+sf(y)dy

=
1

(2π)m/2
γk+s〈x, τ〉k+sτ τ †

∫
R

∫ +∞

0

∫
Sm−2

e−
y21+ρ

2

2 (−y1 + iρ〈η, s〉)k+sf(y1, ρη)dS(η)dρdy1.
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Similar to Theorem 2, we can obtain the Bargmann-Radon transform via the Funk-Hecke
Theorem. Making use of the two forms (16) and (19) of the C-K extension f(y1, ρη), the
transform can be written as

Rτ [f ](x) =〈x, τ〉k+sτ τ †(Tk,se1 + Sk,ss)Mk(s),

or

Rτ [f ](x) =〈x, τ〉k+sτ τ †(Tk,s + Sk,se1s)Mk(s),

where Tk,s and Sk,s are constants. Furthermore, we have the relations

τ τ †e1 s = −iτ τ †, τ τ †e1 = iτ τ †s = 2τ .

Making use of the relations above results in

Rτ [f ](x) =

{
σk,2n(x1 + i〈x, s〉)2n+kτ τ †Mk(s), s = 2n,
σk,2n+1(x1 + i〈x, s〉)2n+k+1τMk(s), s = 2n+ 1,

which is the Bargmann-Radon transform for the C-K extension of the polynomial (ρη)sMk(η).
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[18] J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwertelängs gewisser
Mannigfaltigkeiten, 69, 1917, 262-277.

[19] F. Sommen, Radon and X-ray transforms in clifford analysis, Complex Variables, Theory
and Application: An International Journal, 11, 1989, 49–70.

[20] F. Sommen, An extension of the radon transform to clifford analysis, Complex Variables,
Theory and Application: An International Journal, 8, 1987, 243–266.

[21] F. Sommen, Plane elliptic systems and monogenic functions in symmetric domains, Pro-
ceedings of the 12th Winter School on Abstract Analysis, 1984, 259–269.

[22] F. Sommen, Special functions in Clifford analysis and axial symmetry, Journal of Math-
ematical Analysis and Applications, 130, 1988, 110–133.

[23] F. Sommen, Clifford Analysis and Integral Geometry, Springer Netherlands, Dordrecht,
Fundamental Theories of Physics, 1992, 293–311.

[24] L. A. Shepp, Computed tomography, American Mathematical Society, Providence, R.I,
Proceedings of symposia in applied mathematics, 1983

[25] I. N. Vekua, Generalized analytic functions, Pergamon Press, London-Paris-Frankfurt;
Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962
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