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Abstract

Human activity recognition (HAR) is a wide research topic in a field of computer science. Improving HAR can lead to massive
breakthrough in humanoid robotics, robots used in medicine and in the field of autonomous vehicles. The system that is able
to recognise human and its activity without any errors and anomalies would lead to safer and more empathetic autonomous
systems. During this research work, multiple neural networks models, with different complexity, are being investigated.
Each model is re-trained on the proposed unique data set, gathered on automated guided vehicle (AGV) with the latest and
the modest sensors used commonly on autonomous vehicles. The best model is picked out based on the final accuracy for
action recognition. Best models pipeline is fused with YOLOV3, to enhance the human detection. In addition to pipeline
improvement, multiple action direction estimation methods are proposed.

Keywords Neural networks - Self-driving car - Object detection - Human detection - Human action detection - Path planning

1 Introduction

Human activity recognition (HAR) is a wide field of study
dedicated on identifying the specific movement or action of a
person based on acquired data. Data can be gathered by mul-
tiple different sensors, depending on field of usage for HAR
[1]. Most common activities that are tracked are walking,
standing and sitting. Actions can be more specific if model
needs to be used in more narrow field, for example, medicine.
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This research work contributes on finding the best model
of HAR for self-driving cars and improving them with state-
of-an-art techniques. Second part of the research work is
validating a new data set gathered by the most modern sensors
in the field of self-driving car. Third part of the research
work is adding new features to the researched models as well
as proposing various methods estimating humans movement
direction in videos.

Autonomous cars can be allowed into public areas only
when they are completely safe to humans. As the resources
on the self-driving cars are limited, the procedure cannot be
computationally expensive, while at the same time it has to
run fast and maintain the high accuracy. HAR has a huge
impact on the safety of autonomous vehicles [2,3].

Main objective of this research work is to find the fastest
and most accurate open source HAR model for self-driving
cars. Each model under view is re-trained on the proposed
data set and hyper parameters fine-tuned accordingly to
achieve the best performance. For better accuracy of human
prediction, the best models pipeline is fused with YOLOv3
network. The rest of this paper is organised as follows: Sect. 2
describes the related works. Section 3 presents the proposed
method. Section 4 shows the obtained experimental results,
and Sect. 5 concludes the paper.
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2 Related works

HAR has a huge role in many emerging applications [4]
such as autonomous vehicles, business analytics and personal
assistant robots [5-7].

2.1 Human activity recognition in human-robot
interaction

Robots are becoming more common in human prosaic life
as, for example, domestic robots are starting to get irre-
placeable in our rushy lifestyle. To make robots compatible
with new situations without causing any damage to envi-
ronment, human activity recognition is inevitable. Coming
to self-driving car, HAR is unavoidable. Only when the car
understands where are the humans and what is their activity,
it is able to safely navigate through populated areas without
having any external guidance. Researcher in [8] introduced
convolutional neural network to classify 3D human activities
for mobile robots. Developed model was trained on Vicon
Physical Action data set [9]. The modal was tested on new
data to validate its performance in new circumstances and
environment.

In hazardous environments or tasks where high precision
is required, robots outperform humans. HAR is used to make
the robot move based on the human action or for mimicking
humans. Research in Galatasaray University [10] proposed
a method how to control a robot based on a HAR. During
the experiment the human action was tracked by wearable
sensors. Special neural network was conducted to classify
the action from the sensor data. Based on the network output
and task-based function, robot movement was performed.

2.2 Classification of human activity recognition
approaches

Human activity recognition can be classified into multiple
research branches. Most popular branches are sensor and
vision based. HAR based on sensor data can be separated into
three sub-branches regarding sensor’s deployment: based on
wearable sensors, object tagged and dense sensing [11].

2.2.1 Sensor-based HAR

HAR based on wearable sensors is very attractive research
topic mainly because of its application areas. Named method
is widely tested in healthcare and smart environments. Main
sensors that are being used to gather data are accelerometer,
gyroscope and magnetometer. Sensors are being attached on
the test object or person to log the data, while certain activ-
ities are being done. Further on, different neural network
approaches are used to classify the action [12].
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2.2.2 Vision-based HAR

The most popular HAR method is based on the camera
footage. The reason for that lies behind the amount of data
available and small cost of the sensors needed. There are a
lot of open-source data that can be used for human action
classification [13,14]. However, those named data sets have
to be pre-processed in order to label the action for example.

Vision-based HAR can be applied using different meth-
ods on different input data. Research has been done [15] on
applying HAR with uni-modal and multi-modal methods.
Uni-modal methods use data from single modality, where
human activities are represented as a set of visual features
extracted from a video. Multi-modal approaches use input
from different sources. Event of an action can be described
by different types of features or even fusion of multiple fea-
tures.

3 Proposed method

This section will validate different algorithms and approaches
for HAR implementation on proposed data set. For that three
different models, with different computational complexities,
are being viewed and tested. Models were retrained on pro-
posed data set. Data were divided into three sets: training
(60%), validation (30%), and test (10%) set. Goal is to test
different methods and approaches to find the model with the
best performance for HAR in autonomous vehicles.

3.1 Uni-modal approach

First model under consideration would be rather simple neu-
ral network [16]. This model was tested because the author
reported that he got the prediction accuracy of 91.27% on
the UFC-101 data set [17]. In order to evaluate HAR, video
frames are feed into LSTM model as an input. Network input
image size needed to be resized to 512 pixels. LSTM model
had one hidden layer of size 1024 followed by batch normali-
sation with appropriate linear transformations. For activation
ReLU function followed by Softmax activation function was
used. The output of the model was probability of each action
class.

3.2 Uni-modal approach with skeleton detection

For the second model [18,19], more complicated pipeline
is used. First part of the model is human pose estimation.
The human pose is based on rather simple pose estimation
algorithm [19] . The model is ideal for application where
low latency is required, especially on self-driving cars where
every millisecond of latency can be fatal for a living being.
Model extracts eighteen features from human pose : left eye,
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nose, right eye, left ear, right ear, left shoulder, right shoulder,
left elbow, right elbow, left wrist, right wrist, left hip, right
hip, left knee, right knee, left ankle, right ankle and neck.
Network extracting the features is based on ResNet [20],
which is one of the most common backbone residual neu-
ral networks for image feature extraction. Transfer learning
techniques are used for deconvolutional layers and are added
to the last convolutional layers in the ResNet. All in all three
deconvolutional layers with batch normalisation and ReLLU
activation are used. Each layer has 256 filters with 4 x 4 ker-
nel with stride two. For loss, mean squared error (MSE) is
used and for optimisation Adam function with learning rate
of 107°.

Next part of the pipeline uses the output of the previ-
ous step as an input to a classifier, where the action is
estimated. The author used [18] used logistic regression clas-
sifier. After retraining the model with proposed data set, the
initial classifier performed poorly. Two other classifiers were
tested: multi-layer perceptron classifier and stochastic gradi-
ent descent (SGD) classifier, where SGD outcome proved to
suit the best for proposed data set.

3.3 Multi-modal approach

Third model that was researched [21] was trained on videos
taken inside a room with a camera. The recorded material was
with resolution of 640 x 480 pixels and with a frame rate of
10 (fps). Action classification was made between 9 different
actions: waving, standing, punching, kicking, squatting, sit-
ting, walking, running, jumping. The videos were from 0.8 s
to 2 min long.

3.3.1 Getting the pose of the human

Algorithm to classify human action consists of multiply
sub-algorithms. For the first step, algorithm detects human
skeleton with OpenPose algorithm. Skeleton of the person
is visualised by coordinates, where a right order of coordi-
nates forms a specific joint. Thus, not all combinations of
coordinates form a joint. The combination, that will form
a specific joint, is defined by the user. Bottom-up approach
detects first all human parts on the image and then groups
joints belonging to individual person and estimates the pose.
Top-down approach detects first all the humans on the image,
followed by finding joints on each separated human and then
estimating the pose for each skeleton. Top-down approach is
normally easier to use, because adding person detection takes
less effort than adding grouping algorithm. Performance-
wise these two methods are equal [22].

As this work is focusing mostly on self-driving cars, multi-
person algorithms are taken under consideration. OpenPose
is one of the most popular bottom-up methods. Algorithm
first detects the joints associated to all persons on the image,

(1,1)

Fig.1 OpenPose predicted skeleton parts [23]

subsequently joining joints to unique person. The video file or
camera feed is given as an input into the system. Camera feed
means that this algorithm can be used in real time, for exam-
ple, on a self-driving car. OpenPose first extracts features
from an image using the first layers (VGG-19). Repeating
the procedure will lead to more coordinate points and will
improve the accuracy of the predictions made by each branch.
Using the part confidence maps, bipartite graphs are formed
among pairs of parts. Using the part affinity fields (PAFs) val-
ues, weaker links in the bipartite graphs are neglected. From
all the above steps, human pose skeletons can be estimated
and assigned to every person in the image. In OpenPose algo-
rithm, each human skeleton has 18 joints, shown in Fig. 1.

3.3.2 Feature verification

OpenPose algorithm detects in total 18 features (shown in
Fig. 1), where five of the features represent the human head
area. In total, 13 features are left: neck, left shoulder, left
elbow, left hand palm (last three form a left hand), right shoul-
der, right elbow, right hand palm (last three form aright hand),
left knee, left ankle (last two form a left leg), right knee, right
ankle (last two form a right leg), left thigh and a right thigh.

From the human skeleton, body velocity, joint velocity
and normalised joint position are extracted. Every point has
x and y value, but OpenPose outputs them with a different
unit. In order to work with them, coordinates are scaled to be
the same unit. After the previous steps have been completed,
the algorithm now verifies whether the detected skeleton has
a neck and at least one thigh. If one of these components is
missing, given frame becomes incompetent and no prediction
is made on particular frame.

@ Springer
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In addition for the action classification, other joints must
be checked as well. If OpenPose could not predict all the
joints for the current frame, missing joints have to be filled.
This is necessary for the feature classification, where the
input has to be fixed-size feature vector. To find the miss-
ing joints, the previous frame is taken under consideration.
Algorithm compares the skeleton on the current frame to a
skeleton on a previous frame. The comparison is made based
on the coordinates of the neck. The missing joints can be
carried forward from the previous frame, if the position dif-
ference of the neck in the consecutive frames is less than a
set threshold.

3.3.3 Tracking each person

With self-driving cars, we are interested in videos or consec-
utive images, where the human pose must be detected and
the action tracked. In order to track a human pose in con-
secutive frames, Euclidean distance is used. The distance is
calculated between the coordinates of two skeletons from
a previous and current frame. If the distance between two
skeleton is lower than the threshold defined, human identi-
fier from the previous frame is transferred to current frame.
A new identifier is being set to a human skeleton when there
is no match found between the skeleton coordinates in the
two consecutive frames. This means that a new person has
entered a frame. Numeration of the skeleton is initially given
based on the human position on the image. The lowest num-
ber is acquired to the skeleton which is closest to the centre.
The centre is defined by midpoint of the frame. This is import
in order to be able to track the most dangerous situation for
the car. The most dangerous situations are when human are
just in front of the car.

3.3.4 Feature extraction for action classification

Previous body part positions are used in order to extract
custom features that are used for action classification. The
algorithm takes in consecutive five frames and concatenates
them. This means for the first 4 frames of the video, no action
is detected. Thus, if the video frame rate is ten frames per
second, it takes around half a second before the action can
be estimated.

Skeleton joint positions is the first feature for the action
classification.

Very important feature for this model is human height.
Human height is calculated from the skeleton neck position
to skeleton thigh position. Height is used in order to normalise
the extracted features.

The velocity of the body, as the next feature, is derived
based on the skeleton neck. Skeleton neck velocity is nor-
malised by diving the values by the height of the human.
Third feature that is extracted is joint velocity. During testing,
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this feature is shown to have the biggest impact. Each point
velocity is calculated by the normalised coordinate values.
Velocity is derived between two consecutive frames. There
were more custom feature extracted like joint angles and
length of each body part. These featured did not affect the
final precision of action classification, so they were left out.
Moreover as the body velocity appeared as a very good fea-
ture for action classification, its weight was increased ten
times. These three features are converted to one feature vec-
tor. After concatenation of all three features used, the feature
vector has dimensions of 238. In order to reduce the fea-
ture vector size, principal component analysis (PCA) is used.
After the feature reduction, the vector has dimension of 50.

3.3.5 Action classification

Last part of the model is estimating the action of the human.
Reduced feature vector derived from three actions is fed
into multi-layer perceptron (MLP) classifier. The classifier’s
parameters are updated iteratively at each time step based on
the partial derivatives of the loss function with respect to the
model parameters.

Used MLP classifier has three hidden layers. Layers size
is, respectively, 20, 30 and 40. For activation function ReLLU
and for optimisation function, Adam is used. Learning rate
during classification is constant at 0.001. The output of the
classifier is a probability of an action. Special threshold is
used as hyper parameter to define whether the action proba-
bility is suitable and will be estimated.

4 Results and discussion
4.1 LboroHAR data set
4.1.1 Data acquisition

During this work, an unique data set, LboroHAR [1], is used
for training, validating and testing on different models of
neural networks. The data were gathered in Loughborough
University London. Fact that makes this particular data spe-
cial is that it was recorded on the autonomous ground vehicle
test bed (shown in Fig. 2) with three different sensors: RGB-D
camera, LiDAR and 360-degree camera. The data represent
the actual footage that today’s automated guided vehicles
(AVGQ) are capable of recording. Most of today’s AGVs have
either a LIDAR or RGB camera to detect humans. So this
data set can give us opportunity for further research. In order
to enhance proposed neural network models accuracy, differ-
ent data types can be fused together, representing the same
outer condition.

The proposed LboroHAR data set has sixteen different
participants, doing nine different activities. All of the activi-
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Fig.2 Loughborough University London Autonomous driving sensor
test bed

ties take place indoors. Each person carries out at least four
different activities, with the maximum video length of 3 min.
Each scene starts with a person coming to the centre of the
frame and raising his or her hands. Then, the person who is
being recorded performs one of the nine activities and finally
every scene ends with a person coming back to the centre
of the frame and raising his or her hands. The initial nine
activities gathered are: sitting on the office chair, standing
and texting on the mobile phone, sitting on the stool, lying
on the couch, walking, walking and texting on the mobile
phone, carrying different objects, pulling different objects,
running.

4.1.2 Data pre-processing

This research is focused on the 360-degree camera footage.
The raw data consisted of dual fisheye video files. In total,
there are 133 videos recorded over the two days.

Main objective of the research is to detect person and clas-
sify their action; therefore, only the front view of the data is
taken under consideration. In order to transform 360-degree
dual fisheye camera video footage to 2D video, the rear view
has to be cut out. For that FFmpeg [24] software is being
used. Setback of doing the process was that the resolution
dropped after the conversion.

For applying the conversion for all of the 133 initial videos,
a special script was conducted that looped for a folder con-
taining raw-videos and outputting to result folder. Dfisheye
command was used to decompose the dual-fisheye frame
with padding of 1%. To enhance the output frame quality,
the chroma and luminance values were fused. To make the
output more sharp and smooth, cubic interpolation was used.

In order to retrain machine learning models, the data
needed to be labelled. The nine initial classes would be too
narrow for action classification. Instead, new more general

Table 1 Presented models average accuracy

Model Average (%)
accuracy
Multi-modal approach 70.91
Uni-modal approach with skeleton detection 63.02
Uni-modal approach 2.4

classes were created, which are walking, standing, sitting,
running and lying.

All the data needed to be labelled manually. The labelling
process for this research meant giving a label to each frame. In
order to do that a special script was done that would separate
all the frames from 133 raw 2D videos. In the end, total of
136,710 frames were gained. Output image size was 1080 x
1920 pixels.

From the last column of the table 3.1, it can be seen that
the classes are not distributed equally. This fact can make a
big impact on the accuracy of correct action classification.
Neural network models can perform poorly on classes that
are under represented because it will not have enough data
to learn specific features of that particular class. For research
purposes, all those classes are maintained to see the actual
outcome on different machine learning models with given
data set and classes.

4.2 Results

Each model was evaluated based on its accuracy of action
prediction with the proposed data set. The accuracy was
calculated over the test data set, which was 10% of all the
provided data. Table 1 shows each models accuracy.

Frames where the skeleton was not predicted and the
action was not estimated were counted as false positives.
False positives were not taken into account while calculating
the accuracy.

The most accurate class was standing, having average
accuracy of 81.75% in the network where multiple neural net-
works were used. Class run had the lowest accuracy among
five classes. The reason behind this is purely the data distri-
bution, as the standing had the most samples among training
and run had the least samples.

Figure 3 describes the training and validation loss of the
first approach, uni-modal approach. From the graph, it can
be seen that the validation loss is very high and does not
follow the training loss, as it should be for the ideal case.
After changing the following hyperparameters: hidden layer
size, hidden layer dimension, batch and epoch size, the result
did not change much.

Figure 4 describes the training score and validation score
of the uni-modal approach with skeleton detection. Cross-
validation is used with split parameter of 5. The result is

@ Springer



Signal, Image and Video Processing

Uni-Modal Approach of Training and Validation Loss
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Fig.3 Uni-modal approach plot of training and validation loss

Uni-Modal Approach with Skeleton Detection
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Fig.4 Uni-modal approach with skeleton detection plot of training and
validation loss

good as the training and validation scores are getting close to
each other towards the final epochs. Overall accuracy could
be improved with better quality of input data and more data
samples. Having more data samples provides better data dis-
tribution, and the network would become more sensitive.
After having better data distribution, network could require
new parameter tuning, to improve the accuracy.

Third method, multi-modal approach, had similar learn-
ing curve as uni-modal approach with skeleton detection but
with higher overall accuracy. The final accuracy could be
improved by re-training the modal with larger data set and
with equal data distribution. From Fig. 5, it can be seen that
the classes that had the most samples (stand) had the best
accuracy and the classes that had the least samples (run) had
the worst accuracy. It can be observed from the image that
the walking and standing classes had the most false-positives.
Running was often miss-classified with walking. From a sin-
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Multi-Modal Approach Confusion Matrix
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Fig.5 Multi-modal approach confusion matrix

gle image, it can be hard to classify whether the person is
running or walking.

4.3 Further development

Model using multiple neural networks in its pipeline showed
the best performance for this particular research and for self-
driving car concept. The data were most similar to proposed
data set, with similar data distribution.

4.3.1 Human action direction estimation

None of analysed models had any information about the
movement direction of the human. For autonomous vehi-
cles, this is a crucial aspect. Having the information about the
humans action without a direction will not help to improve
the autonomy. Humans movement prediction can be very
useful factor while planning self-driving car path. In order to
predict the humans movement direction, multiply methods
were experimented.

First approach was implementing optical flow on the
whole detected human skeleton from OpenPose algorithm.
The centre point of the human was tracked with the optical
flow. Centre of the human was calculated by minimum and
maximum coordinates acquired from the skeleton joints.

Drawback that occurred while validating given method
was that human limbs make this approach unstable. While
human walks or stands (waving her/his hands for example),
the midpoint of the skeleton shifts heavily. Shift is tracked
by the optical flow and will cause the system to predict that
the person is moving.

To overcome this problem, instead of tracking the whole
skeleton, only one certain point is tracked. The main joint
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of the skeleton for the action detection is neck, and if the
OpenPose algorithm cannot detect the human neck, the whole
skeleton will not be predicted on the given frame. That gives
us one check for false negatives, as the movement would not
be detected if the skeleton has not been detected. Considering
that aspect for the second method, human neck is tracked
with optical flow. The proposed approach worked perfectly
on consecutive frames where the pose was estimated. The
problems accrued when the pose was not being estimated due
to OpenPose algorithm. Not having the skeleton, means that
optical flow does not have the neck coordinates and direction
estimation cannot be computed.

Next method introduces a new optical flow algorithm that
follows YOLOvV3 human prediction. A Shi-Tomasi corner
detector and good features to track algorithm are used that
detects strong corners from an image. Instead of following
one point, the neck, now multiple points are being tracked.
The points that are being determined are all in the YOLOv3
human region. Points detected go to optical flow function,
using the Lucas—Kanade method. Function tracks where the
points have shifted between consecutive frames. Points pre-
dicted by the optical flow are iteratively tracked, and the
mean shift of all the points is computed. Then, the direction
can be estimated when the mean shift goes above or below a
predefined threshold.

To deal with optical flow detection noise, a back-tracking
method is introduced, where the detected points are fed back
into the optical flow function to find the original points. If the
error between the two predictions is too high (usually due to
a level of noise), those predicted points are ignored for the
tracks.

Figure 6 shows the output after applying the new method
of optical flow. On the first three images (Fig. 6a—c) the points
and tracks are shown. Blue points correspond to the oldest
tracks that are memorised, and the red points correspond to
the newest shifted points. Tracks are drawn in green show-
ing the path how the oldest and newest point has shifted.
The movement direction is shown upon the human predic-
tion bounding box. The last image (Fig. 6d) shows the output
without the predicted point and tracks.

4.3.2 Anomalies

During the validation of the most successful model, some
problems occurred. Namely OpenPose algorithm was detect-
ing anomalies that false the whole direction estimation
approach proposed in this work. Detected anomalies can be
seen in Fig. 7. OpenPose detects human in the region of an
image, where there is actually no human.

Anomalies keep appearing for different reasons. After
proper investigation, two reasons can be brought out: the poor
quality of training data and not enough data during training.

(a) Optical flow tracks
1/5. 2/5.

(c) Optical flow tracks (d) Frame with out the
3/5. tracks.

Fig.6 Result of mean optical flow

Fig.7 Anomalies on video frames

The poor quality was caused after converting the raw 360-
degree footage to 2D.

First method to overcome anomalies was to pre-process
the input data going to the action estimation model. Initial
video is passed through the YOLOv3 network, where human
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is detected. On each frame, the human is masked out. Mask
is made 5 pixels wider and higher than the original YOLOv3
prediction. Enlarging the YOLOvV3 mask will confirm that
new mask covers the whole human on the frame. Mask is
finally fed into action recognition network.

The outcome of the experiment was not successful. More
anomalies were detected throughout the whole video. After
analysing, it was found that the mask size of the human dif-
fers throughout the frames. It is caused by the human body
movement. While the human is facing sideways, the mask
is smaller and while she/he is facing the camera with hands
stretched out wide, mask is bigger. Additionally, while the
human walks or runs, her or his hands and legs move, which
will affect the mask size. Neural network algorithm needs a
fixed-size image as an input; thus, resizing is done.

5 Conclusion

This paper focused on applying the HAR on 360-degree cam-
era footage. It compared multiply neural networks models.
Each model was retrained with the LboroHAR data set, and
respective hyperparameters were fine-tuned, to achieve a bet-
ter performance. The best model, multi-modal approach, was
enhanced with more accurate human detection by fusing
YOLOV3 human prediction. As the path planning is very
crucial aspect on self-driving car, the research work intro-
duced methods to estimate the human movement direction
on videos. The best method to track human direction was to
implement a Shi-Tomasi corner detector and good features
function. Detected points were tracked with optical flow.
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